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“Queria proteger contra o esquecimento. A maior vulnerabilidade do humano, a contingência de não

lembrar e de não ser lembrado.”

— Valter Hugo Mãe, A Desumanização
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Resumo

Recentemente utilizaram-se algoritmos genéticos para controlar aceleradores a plasma usando impul-

sos lasers ultracurtos para aceleração de eletrões. Neste trabalho esta técnica é usada para fazer

experiências virtuais de controlo e otimização desses mesmos aceleradores. O algoritmo genético foi

implementado no ZPIC, um código particle-in-cell (PIC) totalmente relativista. O algoritmo é bastante

automatizado: depois de informado do conjunto de parâmetros iniciais, lança várias simulações em

paralelo, analisa os resultados e termina automaticamente quando os critérios de convergência são

alcançados. Este código pode portanto ser corrido em supercomputadores. Depois de um benchmark

a PIC 1D, resultados de simulações 1D e 2D são apresentados. Em 1D, a otimização focou-se em

plasmas com densidade não uniforme e em lasers com perfis longitudinais variáveis. Em 2D, o papel

da frente de onda na aceleração é considerada: a distância de aceleração, a radiação emitida pelos

electrões e a eficiência energética (mais partı́culas num intervalo de energia) foram todas otimizadas via

um laser que não era perfeitamente gaussiano. Os resultados da eficiência energética corroboram as

teses de outros estudos, mas os resultados da distância de aceleração e radiação são novos e podem

levar a experiências para os testar. O algoritmo é geral, e pode ser imediatamente aplicado a qualquer

outra classe de problemas de otimização em fı́sica de plasma.

Palavras-chave: Aprendizagem Automática, Algoritmo Genético, Plasma, Otimização, Laser
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Abstract

Recent experiments have employed genetic algorithms to control plasma-based accelerators, in partic-

ular using ultra-short laser pulses to drive the acceleration of electrons. In this work this technique is

used to perform virtual experiments of control and optimization of such accelerators. The genetic al-

gorithm was implemented in ZPIC, a fully relativistic particle-in-cell code. The algorithm is almost fully

automated: after being informed of the first set of inputs to test, it creates an initial set of input param-

eters, launches several simulations in parallel, analyses the results, and ends automatically once given

convergence criteria are reached. The algorithm can thus take full advantage of large-scale supercom-

puters. After a benchmark test in 1D, results from both 1D and 2D simulations are presented. In 1D,

the optimization focus on plasmas with non-uniform density and lasers with variable longitudinal enve-

lope profiles. In 2D, the role of distorted wave-fronts in the acceleration is considered: the acceleration

distance, the radiation produced by the electrons and the energy efficiency (most particles in an energy

range) were all optimized via a laser which was not perfectly gaussian. The energy efficiency result

corroborate findings from other studies, but the acceleration distance and radiation results are new and

can pave way to experiments to test these discoveries. The algorithm is general, and can be readily

applied to any other class of optimization problems in plasma physics.

Keywords: Machine Learning, Genetic Algorithm, Plasma, Optimization, Laser
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Chapter 1

Introduction

1.1 Plasma Accelerators

Particle accelerators are fundamental to a myriad of different areas of physics, ranging from high-energy

physics (CERN) to low-energy medical appliances. Accelerated particles can also be a source of high

energy radiation that may be used to perform several diagnostics and measurements with light, e.g.

spectroscopy.

Radio frequency (RF) cavities are the basis for most particle accelerators. This technology is based

on applying large electric fields in a metal and/or superconductor cavity. This provides a theoretical limit

to the acceleration in cavities - the threshold for dielectric breakdown of the acceleration tube (electric

field that damages the material, typically at a micrometer scale), that is known to be under 200 MV/m [1].

These cavities allowed major scientific findings, such as the Higgs Boson discovery, so its importance

must not be undervalued.

In 1979, Tajima and Dawson [2] provided the guidelines for a new type of particle accelerator. It

was called a plasma accelerator, as the medium used to sustain the electric fields responsible for the

acceleration was a plasma. This medium is, in fact, a state of matter, an ionized gas highly electrically

conductive where collective phenomena of electrons and ions dominate the dynamics. It differed from

the conventional accelerators because it could theoretically have a much higher acceleration per unit

length. Plasmas are able to sustain waves with electric fields [3] given by

E0 =
cmeωp
e

, (1.1)

or, in SI units, E0 [V/m] ≈ 96

√
n0[cm-3], where e is the electron charge and me is the electron mass,

ωp = (4πn0e
2/me)

1/2 is the plasma frequency and n0 the plasma density. For example, with an electron

density of 1018 cm-3, the electric fields can get close to 100 GV/m, which is approximately 3 orders of

magnitude higher than those of RF cavities. This is rather innovative as it may reduce the length of

acceleration by the same factor. The reduction could pave way for linear accelerators able to collide

electrons at energies similar to those of the protons of the LHC. The linear acceleration is essential as

1



electrons lose more energy than protons when they are forced to perform a circular motion (like the

LHC). A smaller scale makes the total cost of the plasma accelerator smaller than that of RF cavities,

easing the replacement of the latter by plasma-based accelerators.

Generally, plasma acceleration uses relativistic wakefields or plasma waves, associated with elec-

tron density waves in the plasma. These relativistic plasma waves can be excited by ultra-intense lasers

(laser wakefield acceleration, or LWFA) [2] or by ultra-relativistic charged particle bunches (plasma wake-

field accelerator, or PWFA) [4]. The element that excites these waves is called a driver.

For the LWFA, the laser exerts a ponderomotive force on the electrons (radiation pressure) when

entering the plasma. The typical values for the laser are duration tl=100 fs and peak intensity Il=10 TW

- 1 PW [3]. For the PWFA the wave is excited by the electrostatic forces associated with an intense

and ultra-relativistic particle bunch. Here the values [5] for this driver particle bunch are σz=100 µm,

Np=1011, Ep=1 - 100 GeV (longitudinal size of the bunch, the particle number and particle mean energy,

respectively).

The ponderomotive force of an intense laser or the electric field of a particle bunch repells plasma

electrons as the driver propagates through the plasma. The background plasma ions remain nearly

immobile at the time scale associated with the plasma electron response, because they are around

2000 times more massive than electrons. The resulting space-charge fields result in the generation of

a relativistic plasma wave, whose phase speed is close to the speed of the driver. When the driver

(laser or particle beam) is sufficiently intense, it can expel all plasma electrons at its passage. In this

strongly nonlinear regime, also known as the nonlinear blowout regime [6, 7], the plasma wave is nearly

a sphere, which is commonly known as a bubble due to its geometry. The region void of electrons is

formed at the back of the driver (in the case of the LWFA, see fig.1.1, white region). These expelled

electrons are attracted back towards the axis and therefore end up forming an area with a negative

charge (fig. 1.1 in black) located in the axis. The electrons overshoot this area, forming again an ion

bubble. This charge separation (positive and negative charges separated along the axis) is the source

of the longitudinal electric field needed for the acceleration. This wave propagates at a group velocity

which is approximately the speed of light, which implies that a relativistic electron can be trapped in such

a wakefield (between the electron-populated negative-charged area and the ion bubble). However, to be

trapped, it needs to travel at the same velocity, in order to keep accelerating. This is quite similar to a

surfer in a wave, as one needs to have a minimum velocity before catching it.

Both the LWFA and PWFA have been subjected to proof-of-principle experimental demonstrations

[3, 8]. Although the fundamental aspects and properties of these accelerators are accessible through

simplified analytical models, the self-consistent dynamics of the driver in the plasma, which ultimately

determines the output of the accelerator, can only be captured by sophisticated numerical simulations.

1.2 PIC simulations

A plasma is a many-body system. A potential approach to simulate a problem involving a plasma is to

evaluate the forces on every particle by calculating all interactions between pairs of particles, which will

2
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Figure 1.1: Numerical simulation of an intense laser pulse (rainbow color) propagating in plasma (grey,
white corresponds to positive charges and black to negative ones), superimposed with a graph of the
local longitudinal electric field in the axis, in red.

be purely electromagnetic. The electric field felt by particle i due to particle j, for example, would be

given as
~Eij ∝ qiqj

~ri − ~rj

|~ri − ~rj |3
(1.2)

where the position of the j-th particle is taken at the retarded time. Using this method, one ends with a

number of computations proportional to N2
p , where Np is the number of particles, which means that the

simulation time would be gigantic when simulating experiments (n ≈ 1017 cm−3).

There are several efficient ways to simulate a plasma . In plasma-based acceleration, particle-in-

cell (PIC) simulations are among the most successful. They allow quantitative predictions, that are in

good agreement with experiments and play a crucial role in exploring new concepts and ideas before

testing them experimentally. With the available computing power, PIC simulations fully play the role

of virtual experiments. In a PIC simulation, charged particles interact self-consistently through the EM

fields defined in a grid. The PIC loop involves four key steps (i) particle push using the fully relativistic

Lorentz force, (ii) current deposition onto a discretised spatial grid, (iii) electric and magnetic field update

using the time-dependent Maxwell’s equations, given by:

∂E
∂t

= 4πj− c∇× B
∂B
∂t

= −c∇× E, (1.3)

and (iv) electromagnetic field interpolation back to the position of the particles. The loop that is used to

calculate the time evolution of particles is described in fig.1.2. One needs to take into account that the

initial conditions for the fields must respect the time-independent Maxwell equations.

The space derivatives are calculated using finite-difference approximation. In order to get a 2nd order

method concerning the time derivatives, one deviates the E grid from the B grid by half grid spacing, such

that the method is both time and space centered. The first scheme developed to obtain the evolution of

the EM fields in a grid in space and in time is the Yee method, which uses the first neighbour cells to

3



Figure 1.2: Scheme of the loop that advances both particles and fields. The index i refers to the particles
and the index j to the grid points.

compute the temporal and spatial derivatives of the Maxwell equations. This is called the Yee scheme

[9], and it is a standard algorithm in science and engineering. There are other higher order algorithms

that provide higher accuracies (e.g. better EM dispersion properties) but the Yee scheme is an essential

first step.

The computational time in PIC codes is proportional to Np + Ng, where Ng is the number of grid

points. This linear scaling massively improves the range of the number of particles that are treatable

by the simulations. A small example illustrates the speed up from a PIC method: with 128 particles

per cell and 1000 cells, and admitting that each particle/grid time advance takes 1 µs, a PIC code

would need (128000+1000)×10-6=0.129 s to advance in time all its elements, whereas a code that

calculates every force would need (128×1000)2×10-6=16384 s. Another great advantage is that no

major approximations are done, allowing extremely complex experimental set-ups to use this type of

simulations to try to explain various phenomena. It is also worth mentioning that one can propagate a

laser on the Yee grid, but that would not be possible in a particle only code as the laser must be able to

propagate through a vacuum.

1.3 Numerical simulations and experiments

The interplay between advanced numerical simulations and experiments has lead to an explosion in

experimental progress. Using parallel computing allows the total simulation time to decrease. Because

the standard PIC algorithm requires local operations, i.e. because the motion of the particles depends on

the fields from nearby grid-cells, the PIC scheme is ideal to take advantage from distributed computing

approaches. By assigning a given region of the total simulated volume to different computing nodes can

strongly relax the wall-clock time requirements for these simulations. Still, 3D modelling of experiments

is computationally intensive as the code makes no physical approximations to the extent where quantum

mechanical and gravitational effects can be neglected (the discretization of the Maxwell’s equations is

an approximation, but a numerical one).

However, with the advent of large super-computers, 3D modelling is now possible. The existing

synergies between simulations and experiments have lead to major improvements of plasma-based ac-

celerators. Despite the tremendous success, improving beam quality is still a major research issue. The

energy gain record for a laser wakefield accelerator was recently established in experiments leading to

an acceleration of 4.2 GeV electron bunches in a 9 cm plasma [10]. Early experiments at SLAC (Stanford

Linear Accelerator Center), using a particle bunch as a driver, demonstrated an energy doubling of some
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of the electrons of the driver from 40 to 82 GeV in a 1 meter long plasma [11]. More recent experiments

at SLAC managed to obtain energy conversion efficiencies of up to 30% [12], competitive in comparison

to conventional approaches. Another example of research is the EuPRAXIA project [13], where a con-

ceptual design of a highly compact, cost-effective, industrial quality 5 GeV plasma accelerator is to be

designed until 2020, funded by the EU.

Even though the mean energy of an accelerated particle bunch is immensely improved with regard

to RF cavities, additional internal properties of the accelerated beams must also be tightly controlled, as

they are an essential aspect of the overall quality of the beam. The energy spread, efficiency (conver-

sion of energy from the driver to the bunch) and angular divergence (angular dispersion of the bunch)

are examples of beam quality parameters that still need to be improved in experiments. The plasma

technology is still not on a par with the RF cavities when it comes to these other parameters.

Since this improvement is necessary, optimization is required to get a better output beam quality.

The number of free available parameters that can be used to control these properties and improve beam

quality is very large.

There is flexibility to change the details of the plasma density profile. In the case of a laser pulse

driver, is is also possible to vary the details of the laser profile and internal spatio-temporal structure,

such as dimensions, intensity, envelope profile and phase profile. Because experiments are expensive,

it is not possible in practice to test and investigate all these possibilities in the lab.

Computer simulations are thus promising tools to explore the wide range of parameters that are avail-

able. There are no analytical models capable of describing laser plasma accelerators and that includes

the exact role of the plasma density profile, laser pulse profile and internal structure. In fact, one of the

most widely used analytical models to describe laser plasma accelerators has only two free parameters

(the laser energy and plasma density), thus completely disregarding the role of any other parameter. As

a result, exploring the vast parameter space that is currently available to control the acceleration and the

output beam properties would require extensive parameter scan simulations, covering the entire range

of parameters that can be envisioned. Because of computational constraints this is not possible even

in the largest supercomputers. In this thesis, a radically new approach that uses machine learning is

proposed to address this challenge and facilitate the parameter search

. To regulate the phase-space quality, the laser-plasma initial conditions should be treated carefully.

It is possible to use simulations to provide the conditions that optimize the beam quality. Unfortunately,

these simulations are often computationally expensive, so a regular parameter scan is not desirable to

tackle the optimization problem.

It has already been discussed [14] that in non-linear cases (like this one) machine learning tech-

niques may not only be useful to predict results but to model the process itself.

A machine learning algorithm, based on genetic algorithms, was incorporated in the PIC scheme.

The algorithm was developed in the PIC code ZPIC. ZPIC is a free, open-source project (https://

github.com/zambzamb/zpic), that is being developed at the group of lasers and plasmas (GoLP) at IST.

The coordinates in ZPIC are normalized for faster performance and improved accuracy. This requires

a normalization reference frequency, ωn. Time is normalized to 1/ωn. The density is normalized to a
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Variables Normalized units
Space x′ = ωn

c x
Velocity v′ = v

c

Momentum u′ = u
c = γv

c

Electric Field E′ = e c/ωn

mec2
E

Magnetic Field B′ = e c/ωn

mec2
B

Table 1.1: Normalized units in ZPIC

background density n0. The electric charge is normalized to e and the masses are normalized to the

electron mass me. The normalization for the electromagnetic fields follows. Some normalized units are

shown in Table 1.1.

ZPIC can run in a standard desktop or laptop computer requiring only a C compiler to install. It

is a simple PIC code that incorporates all the essential features of the PIC algorithm, without having

advanced features. Because it is easy to read and modify, ZPIC is an ideal tool to incorporate a machine

learning algorithm. The final goal is to have a machine learning controlled PIC simulation code.

1.4 Machine learning

Machine learning algorithms have been employed in several fields, and its importance has been growing

over the last few years. Some authors predict [14] that it should be as common as numerical simulations

in the future to come. Machine learning, generally speaking, is the field that provides computers the

ability to learn without being explicitly programmed.

Machine learning is booming. This kind of approach is motivated by the increased computational

capacity. Some fields have been completely taken over by these techniques, like computer vision [15].

In October 2015, AlphaGo defeated the best European Go player [16]. Eventually, the same algo-

rithm beat the best player in the world, and was selected in 2016 by Science as one of the runner-ups for

the Breakthrough of the year award. Google was able to create an even better algorithm, AlphaGoZero

[17], that required no human interaction. It gained knowledge by playing against itself 4.9 million games,

something unthinkable for a human.

It is also worthy mentioning that one can propagate a laser on the Yee grid, but that would not be

possible in a particle only code as the laser must be able to propagate through vacuum.

Artifical intelligence (and in particular deep neural networks) were substantially improved over the

course of the past decade. Genetic algorithms also improved during this time, benefiting from the

research on neural networks [18].

What has been delaying the adoption by the physical community is the lack of transparency of the

algorithms, which means that it is difficult to extract knowledge from the raw output, as the internal

processes of the methods are often hidden from the user. However, because simulations provide the full

6D (3 positions plus 3 momenta) phase-space of the particles and field evolution in space and time, this

approach provides a path to potentially generalize the findings of the machine learning algorithm to new

situations, and make theoretical models to justify them.
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Figure 1.3: Image depicting an example of a genetic algorithm. The fittest elements can produce other
offspring, something that is denied to the remaining individuals. This will produce a next generation that
will be fitter.

Genetic algorithms (GA), which are standard optimization methods [19], mimic the process under

which the living beings give their characteristics to their offspring. First several random ”subjects” (input

parameters) are created. Then, the inputs are rated according to a fitness function (in this case, the

”subjects” would be simulations and the fitness function could be the largest electric field at some definite

time). From all the inputs only the fittest (with the best fitness function) are chosen to create the offspring

for the next generation of inputs. The modifications include mutations (small random change of the

parents’ inputs) and crossovers (two fit members of the population are used to form a new one). Figure

1.3 elucidates this concept - the giraffes that are fitter (heads closer to the leaves) are able to produce

offspring whereas the less fit do not, making the next generation taller.

Machine learning algorithms have already been applied alongside PIC simulations [20]. Multi-layer

perceptrons (MLP, artificial neurons) were employed to study high-order harmonic generation. The final

goals were to predict optimal interaction scenarios for producing harmonics with certain characteristics,

such as brightness, efficiency or wavelength range, which was done with several architectures of neu-

ral networks. This approach uses neural networks to predict the results of the simulations. Machine

learning, however, has not yet been incorporated in PIC simulations with the goal of optimizing the initial

simulation parameters towards a specific goal. One of the disadvantages of neural networks [21] is that

they require a large amount of data before it is effectively applied, which doesn’t blend well with the

computational time it would cost. Genetic algorithms are ideal to this end because they can optimize the

search over a wide parameter space.

Genetic algorithms have already been tried in the control of real plasma experiments [22]. To change

the wave front of a laser, the voltages of some piezoelectric actuators of a deformable mirror were used

as the set of unknown variables that served as individuals of the population. This new methodology

allowed to control the energy gain of a low energy electron beam (tens of keV) in a laser-plasma accel-

erator by acting on the internal wavefront structure of the laser. This is a very promising experimental

result. Numerical simulations controlled by machine learning could significantly expand these results

into novel territories, in higher energy accelerators, or to enhance radiation generation. In addition not

all variables are known in an experimental setup, making it limited compared with this approach - an ex-
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periment may in principle measure the energy of the beam only at a finite number of locations, whereas

our simulations can give insight over temporal and spatial evolutions of the most important parameters.

In the particular experiment, the electron beams were collected once at a predetermined distance from

the laser focus. Therefore, it is likely that the score obtained by a beam would change if the beam was

detected at a different spatial location.
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Chapter 2

Genetic algorithm controlled PIC

simulations

The initial parameters of a PIC simulation are defined in a text file, usually known by input-deck. Com-

monly the input-deck is designed and written by a user, who also launches the simulation in a computer.

The goal is to use machine learning to write the input-decks automatically and to design a procedure that

launches the simulations in parallel in a supercomputer, analyses the results, launches new simulations,

and repeat this process until the results converge, all without human intervention, except for the initial

definition of the goal of the simulations and the boundaries for the machine learning guided search. This

procedure is illustrated in Figure 2.1.

The algorithm was kept as generic as possible, so it can be applied to a plethora of optimization

cases. Thus, before running the algorithm, one should prepare two files, the text file, which was called

the initializer, with the initial values to be explored, and the input-deck. For example, an optimization of

the length of the laser requires an initial set of values for the laser length to be used in each simulation.

These values can be initially chosen randomly, as long as each set of points is valid (the user can choose

conditions for the validity - an example could be of a time being larger or equal to 0).

2.1 Initial input to the genetic algorithm

The listing below shows a portion of the input deck file where a laser is added to the simulation with

its starting point, a0=10 (normalized vector potential), ω0=10 (ωp) (laser frequency) and polarization

constant = 10π. The rise, flat and fall time of the laser are to be determined - in the first generation those

values will be selected by the user itself (via the initializer), and in posterior generations the genetic

algorithm will automatically determine the best values for these variables in order to optimize some

property.
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Figure 2.1: Flow chart of the general procedure

t e m f l a s e r l ase r = {

. s t a r t =10 ,

. r i s e = v a r i a b l e [ 0 ] ,

. f l a t = v a r i a b l e [ 1 ] ,

. f a l l = v a r i a b l e [ 2 ] ,

. a0 = 10 ,

. omega0 = 10 ,

. p o l a r i z a t i o n = 10∗M PI

} ;

s im add laser ( sim , &lase r ) ;

The initializer can be written with the help of a simple python program. Each line consists of the

variables of each simulation, separated by whitespace. Every line of the initializer is read and stored into

the variable vector of the input deck (the first column of the initializer matches variable[0], and so

on). The initializer can be used to control every aspect of the simulations simultaneously. In this work the

search was restricted to the physical parameters of the simulation (e.g. laser dimensions, plasma profile)

but the numerical aspects (e.g. resolution, box size, etc.) could have been changed as well. An example

of an initializer preparing 4 simulations with 2 free variables each is presented in init example.txt.
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init example.txt

#Lines that start with # are not read

#All these lines work

1 0

1 1

1 3

1 4

2.2 Genetic algorithm

The genetic algorithm used for optimization is shown in fig.2.2. After both files are created, the number

of simulations (n scan, chosen by the user) is equally distributed by the available computer nodes.

Because ZPIC can only run in a single core, it was designed a script that launches simultaneously

n scan simulations, one per computer core. This procedure is fully automatized, and can run in an

arbitrary number of computing cores. Each core will attribute a score to each simulation. The score is

a measure of how good the results yielded by the simulation are. These scores are then sent through

MPI routines to a root core, which is responsible to store the scores from every simulation of a given

generation, choosing the best scores, making the necessary changes and preparing the next set of

inputs. A buffer text file is created and the root core gives the order for the new simulations to be

launched.

At the end of the algorithm the results for all generations can be found in the same folder as the

text file that defined the first set of inputs in a straightforward manner - if the original file is called

acceleration.txt the results for generation 0 are saved into acceleration 000000.txt, and the re-

sults for the remaining generations follow the same pattern. In order to collect and plot the results simple

python programs were designed.

The genetic algorithm was implemented in C, as it was the language of the original ZPIC program.

To perform the parallelization, MPI was used. This allowed for the program to be run in the Accelerates

cluster at GoLP running up to 1580 simulations at the same time.

At the end of the runs in each generation, the goal is to take the parents (inputs from the simulations

that just ended) to create the children (inputs that will be run afterwards). The best N MUTATIONS (number

of the parents that will effectively be used to produce children) scores are selected. The respective inputs

are mutated to create new inputs, using the standard expression found in

new input = input (1 + c0 × random()) + c1 × random(), (2.1)

where random() is a function that returns a random number between -1 and 1 and c0, c1 are rates of

change that are responsible for how different the children and the parents are. Normally c0 is the same

for all variables and may change at runtime: if the algorithm keeps finding a higher score then it is good

practice to let c0 grow so it converges faster, but if the scores plateau one should decrease it so that a
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initializer

Figure 2.2: Diagram of the algorithm: From the initializer the several input-decks are distributed for the
available computer nodes. The simulation results are sent to the root core, which creates a new text file
with new parameters which are again fed to the available nodes, until convergence is reached.

local maximum is reached. The c1 variable serves the purpose of not letting a variable be kept constant

if the initial value is 0: as seen in Equation 2.1, every time c1 is 0 and input is 0 the new input variable

is 0 no matter the values obtained by the random() function.

The number of times the same input parameters are mutated depends, of course, of the n scan/N MUTATIONS

ratio - if the half of the simulations serve as the parents for the next generation, each of those sets of

inputs will give origin to two descendants. There is also the possibility to reject the new set of inputs

obtained with Equation (2.1) and create a new one if they do not obey certain criteria (a particle density

above zero would be an example of a mandatory condition).

All the metavariables of the algorithm, such as the maximum number of generations, the number of

set of inputs (individuals), the number of parameters for each individual and the rates of change, are

selected by the user.

2.3 Launching machine-learning controlled PIC simulations

In section 2.1 part of an input deck was shown. In the main file the user decides to take the maximum

of the electric field and the electron density at some determined time. If the user decided to have a

simple initializer data.txt like shown below, three simulations would be run in the first generation, with

(trise, tflat, tfall) = (1, 2, 3) for simulation 0, (trise, tflat, tfall) = (2, 3, 1) (the rise, flat and fall time of the

laser, respectively) for simulation 1 and (trise, tflat, tfall) = (3, 1, 2) for simulation 2. The next generations

are determined by the results of these first simulations, as they depend on the genetic algorithm.
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data.txt

# Lines that start with # are not read and do not transpose to

# the following text files.

# Inputs: trise; tflat; tfall

# Outputs: max e field; max density;

1 2 3

2 3 1

3 1 2

In this particular case two outputs are taken from the simulations - maximum of the electric field and

electron density. The results of the first generation can be accessed via the text file data 000000.txt

after the first set of simulations is completed (this particular output file does not come from the algorithm

and only serves an illustrative purpose).

data 000000.txt

1 2 3 0.0001 0.0003

2 3 1 0.0002 0.0002

3 1 2 0.0003 0.0001

Supposing the variable N MUTATIONS was 1, only the best simulation will be used to create the new

set of inputs. This will depend on the variable the user chooses to optimize (the maximum electric field

or the maximum density in this example)

If the maximum electric field is selected, the algorithm sorts the results by the first output column,

selecting line 3 with inputs (3,1,2) and tweaks the inputs using Equation (2.1). These inputs are then

stored into the buffer.txt file. This assures that in case one wishes to stop the program and resume it

they can restart at the latest generation.

buffer.txt - optimization of first output column

3.11 1.13 1.99

2.94 0.99 2.14

3.03 0.94 2.02

Using buffer.txt as the input of the program instead of data.txt, the user resumes what was

already done and thus the first set of simulations does not have to be run again.

2.4 Automatic PIC simulation analysis: Clustering and k-means

One of the major goals of this work is to improve the properties of the accelerated beam. Thus, the first

goal was to automatically isolate an accelerated electron bunch from the background plasma electrons.
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The standard way to identify particles that belong to a beam is to detect energies of the particles

and select a threshold that is able to group the majority of the accelerated particle bunch. However, this

method is ad hoc, as the threshold needs to be selected manually so that the ’beam’ appears to be a

separate entity.

In PIC simulations, the momenta and positions of each particle are accessible at all times. The

possibility of getting beam properties at runtime is very helpful. In this case, running several simulations

at the same time requires an automatic way to identify the beam. Because the 2D beam has a specific

spatial shape, a standard clustering technique was employed to classify particles as part of the beam or

not.

In machine learning problems, the supervised learning branch refers to when the correct answer is

known for some cases. An example would be to tell what is in a new picture provided one has that

information for a number of different pictures (which would be used to train the classifier).

In this case, the electrons which are part of the beam do not have a specific label that easily allows

the separation between them and the background electrons that support the accelerating structure.

This means that the correct answer is not known and therefore beam classification is an unsupervised

learning problem.

The simplest way to approach such problems is through clustering. A clustering algorithm takes a

set of objects and divides them into groups (clusters). In this case, one of such clusters would ideally

represent the beam. Specifically, the k-means clustering algorithm was used.

This algorithm depends on the concept of distance. If xin refers to the n-th variable of object i then

the distance between points a and b is calculated according to:

dab =
∑
n

(x(a)n − x(b)n )2 . (2.2)

In the k-means algorithm, the number of cluster is predetermined (k). From the whole set, k objects

are chosen as centres of the clusters. These centres can be selected randomly between the full set

of objects but if the distribution of the objects is known this information may be used to speed up the

process. After choosing the centres for the first iteration, the k-means loop involves three steps (i) The

distance between every non-centre point to the centres is calculated, (ii) Each point is assigned to the

cluster whose centre is closer (smaller distance), (iii) New centres are calculated from the mean of the

points in the cluster in that iteration, If after step (ii) the points keep the same assignment as in the

last iteration convergence is reached and the algorithm stops. An example of the application of this

method is presented in Figure 2.3. This method is general, as the axis could represent any phase space

variable (position, momentum) or functions of the phase space variables (e.g. kinetic energy, transverse

momentum, etc.).

In this work, the chosen variables were the particle position (the number of independent variables

depends on the code that is being used - a one dimensional PIC code will have only one variable and a

two dimensional one will have two, x1 and x2, for example) and kinetic energy. This is easily understood

as a beam in a two dimensional simulation normally has a defined position (Figure 2.4)and the particles
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Figure 2.3: Application of the kmeans method. The starting point is a set of points identified with
some variables (x,y and z) with no labels (left). The number of clusters (3) is predetermined. At the
convergence point each object is assigned label, identified as a color in the plot (right).

of the beam have a higher energy than the background.

In these simulations, particle number can be of the order of millions. Because the time until conver-

gence in clustering algorithms increases with the number of objects, a threshold energy was selected

in order to reduce that number. This is fundamentally different than the threshold energy discussed at

the beginning of this chapter - this new threshold only acts as a way for the algorithm to consider less

particles. For example, a good threshold energy could be as low as 1 MeV, with the beam itself having

more than 15 MeV.

In a 2D simulation, a gaussian laser with a length of 4 c/ωp, W0=4, and peak electric field Emax =

10mecωpe
−1 was launched against a constant plasma density n0. After the accelerating structure is

defined, the particles were subject to the k-means algorithm with k=2 (Figure 2.5a) and k=3 (Figure

2.5b).

The results seem to be rather satisfactory - good beam separation was obtained with both two and

three clusters. In the case with two clusters, two labels were defined: ’Beam’ and ’Not beam’. The eye

test suggests that the beam is defined up to a waist (where the beam gets slightly larger in x2) and that

would probably be very similar to where a human would choose the threshold energy. In the case of

three clusters, three labels were defined: ’Beam’, ’Semi-beam’ and ’No beam’. The ’Beam’ here appears

to collect less particles than a human would, as there is no apparent reason to have a threshold at that

specific energy. The ’Semi-beam’ collects the remaining particles that were in the ’Beam’ category in

the two clusters case and some more. Both the ’Beam’ category in 2D and the ’Beam’+’Semi-beam’

category in 3D yield results that are very similar to what a human would choose with a threshold. This is

useful to determine, for example, the number of electrons, the electronic spatial configuration, the mean

energy, and other variables at runtime.

It is important to take into consideration that in these simulations the size of the simulation box is

important. The simulations run for this section only had the length to accommodate one of these accel-

erating structures. Having a box with two or three accelerating structures and respective electron beams

requires more clusters so all the beams can be isolated from one another and from the background
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Figure 2.4: Example of a accelerating structure after a laser beam collides with a plasma. At x1 =
15(c/ω0) a small beam is observed, separated from all other particles by an electron free zone.
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Figure 2.5: Example of the k-means clustering algorithm applied to particles in a two-dimensional PIC
simulation. The particles were identified by their position (x and y axis) and kinetic energy (z axis)

electrons. However, if having beam statistics from the second or third accelerated electron beam is

important, the k-means algorithm should in principle suffice provided k (number of clusters) is enough.

In the case of 1D simulations the k-means algorithm can still be applied. However, if the position

and energy of the particle is chosen, it is seen that no good separation of the beam can be done, as

shown in Figure 2.6a (2 clusters) and Figure 2.6b (3 clusters). Even when other variables were chosen,

such as the transversal momentum of the particles, the algorithm did not output results as good as the

ones obtained in 2D - there are particles which are labelled as part of the beam that are one plasma
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Figure 2.6: Example of the k-means clustering algorithm applied to particles in a one-dimensional PIC
simulation. The particles were identified by their position (x axis) and kinetic energy (y axis)

length far from each other. This is understandable - there is no accelerating structure governing the

background electrons and therefore it is harder to isolate the beam, i.e. there is no spatial separation

between accelerated and background electrons and therefore fewer differences in the fields felt by both

groups.

The clustering algorithm thus provides the required framework to explore 2D simulation results auto-

matically.
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Chapter 3

Application to one-dimensional

scenarios

The 1D version of a PIC code takes a four-dimensional phase space into consideration (one spatial

dimension and three momenta). The genetic algorithm was first applied to this subset of problems

as the runtime is smaller than that of extra spatial dimensions, and because it allows to benchmark

against conditions where the optimal configuration is known theoretically. A number of configurations

was explored with the goal of improving the outputs of a laser wakefield accelerator in 1D.

The number of optimization parameters is restricted, as important components of the acceleration

such as the laser wave-front have to be completely discarded (only plane waves are allowed). In order

to study more parameters than those offered by the original ZPIC, new features were added, such as

the possibility to introduce a chirp and to have a fine control of the longitudinal profile of the laser.

3.1 Using machine learning to recover known optimizations

In order to check if the genetic algorithm can be successfully applied to PIC simulations, a simple

benchmarking test was conducted. According to Esarey [3], the equations for the density perturbation

normalized to the background plasma density n0 (δn/n0) and electric field of the wake (normalized to

E0, defined in Equation 1.1 that is driven by a laser beam with a2 � 1 (normalized vector potential) and

ω0 � ωp (laser frequency much bigger than plasma frequency) are given respectively by:

δn/n0 = (c2/ωp)

∫ t

0

dt′ sin[ωp(t− t′)]∇a2(r, t′)/2 (3.1)

E/E0 = −c
∫ t

0

dt′ sin[ωp(t− t′)]∇a2(r, t′)/2 (3.2)

Solving these equations provides information about some known features of the optimized laser

19



profile. If the laser is perfectly flat, for instance, then

a(x, t) = a0H(−(x− xst) + ct)H((x− xend)− ct), (3.3)

where H is the Heaviside step function and xst and xend the positions that limit the flattop. The derivative

gives two delta functions. The effect of the δ at the front of the laser is a push forward on the plasma

electrons, which sets up a plasma wave. The effect of the δ at the back of the laser is a push backwards

on the plasma electrons. The final amplitude of the plasma wave depends on the timing between the

two pushes, which is set by the laser duration. The final result for the longitudinal electric field is given

by:

Ex(x > xp, t) =


0 , x > xst + t

−sin(t− (x− xst)) , xst + t > x > xend + t

−sin(t− (x− xst)) + sin(t− (x− xend)) , x < xend + t

(3.4)

In this particular case, the best shape for the laser for optimization of the maximum longitudinal

electric field comes from a xst − xend = λ/2, where λ is the plasma wavelength[3].

The genetic algorithm was run with 20 subjects, 5 of which were selected to mutate. A laser with a0 =

0.05, ω0 = 10 (ωp), and variable length (free parameter) initialized in vacuum and propagated towards

a plasma. The plasma density was constant and equal to n0. The fitness score of each simulation was

the highest electric field in the grid.

In Figure 3.1 the results for the genetic algorithm are shown. The algorithm converged to a solution

which is very similar to the theoretical prediction of π (0.9% error) but still deviated. However, when the

exact value was tried the result was slightly worse than the one found by the algorithm which shows that

the algorithm is finding the maximum, but numerical aspects such as the resolution are responsible for

the aforementioned deviation.

3.2 Enhancing beam quality

Since the algorithm is able to retrieve known results in a simple configuration, the next step was moving

into a more complex configuration where there is no analytical solution. The goal was to increase beam

quality.

A definition of beam quality depends strongly on the specific application for the beam. There are

however a few features that are desirable across different applications. Beams with low energy spreads

σE , with high energy, and high number of particles are usually sought in any application (e.g. in HEP,

radiation emission, etc.). A measure of beam quality Q is therefore defined as:

Q =
njĒ

σE + σmin
, (3.5)

where

n =
∑

i,Ei>Et

1, is the number of particles in the beam,
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E =
1

n

∑
i,Ei>Et

Ei, is the mean energy of the beam,

σ2
E =

1

n

∑
i,Ei>Et

1

n
E2
i − E

2
is the energy spread of the beam,

and σmin is an auxiliary parameter: it was seen that σE dominated the result for Q, since the algorithm

was most of the time converging to a final set-up with a very low relative energy spread, and because of

it, variations of σE are more important to the overall final result. This led to a different equation whose

purpose is to take importance from the σE variable (Equation (3.5)) using another variable σmin. This

variable is to remain constant throughout the algorithm and allows to fix a minimum spread under which

the minimization of the spread should not be a priority. The motivation behind the j parameter (exponent

of n in Equation 3.5) is to allow the user to tune the relative importance of the two variables in the

numerator - the mean energy and the number of particles. A value of j>1 will give more importance to

the number of particles, as doubling n will have a greater impact than doubling Ē. The reverse happens

for j<1.

In order to perform the optimization a number of initial parameters from the laser (chirp and longitudi-

nal profile) and from the plasma (density profile) have to be made free. These parameters are thoroughly

described below.

3.2.1 Optimization parameters

Density ramp

The electron density profile is extremely important for LWFA. The electric field generated by the wake is

dependent on the local electron density (Equation (3.1)). Because it is hard, experimentally, to have a

control of the density at every point along the laser trajectory, a simple ramp was implemented (with the
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(a) Plasma longitudinal density profile
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Figure 3.2: Optimization parameters. On a) an example of a longitudinal density profile - in the studied
cases only the length of the ramp and the density at the end of the ramp were changed. This is equivalent
to change the coordinates of the point in red. On b) a down-chirped wave (travelling to the right).

free variables being the length of the ramp and densities at the start and end point).

Physically, the wake changes as the density change. If the slope of the density is negative, the wake

starts with a smaller wavelength. As the density decreases, the wavelength gets larger and the wake is

able to reach more electrons, increasing the number of particles in the accelerated bunch. The whole

process is called downramp injection [23].

Chirp

The frequency of the laser can be changed as a function of time, as seen in Figure3.2b.

Enabling this feature in LWFA acceleration provides an extra degree of freedom in the shape of the

accelerated electron spectra [24]. In this code, a simple chirping factor was introduced as shown in

Equation (3.6). The number n can be selected in the input deck.

ω(t) = ω0 + tα1 + t2α2 + ...tnαn (3.6)

Since the spatial resolution of the system is directly determined by the laser frequency (because

ω > ωp), there is a maximum frequency that a laser should have depending on the number of grid points

(20-30 points per wavelength are required to properly resolve the laser beam). That way, if the algorithm

detects that due to the chirp, the frequency will be above that maximum, the outputs have to be rejected

and a new output is requested to the algorithm.

Laser longitudinal profile

The laser longitudinal profile has also a preponderant effect in the outcome of the experiments. If the

energy and shape are kept constant, a longer pulse will necessarily lower the peak intensity of the laser,

which can have dramatic effects if it is below the ionization threshold (below it no electrons are taken out
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Gen. 0 Gen. 20

Figure 3.3: Example of a longitudinal profile of the laser across generations. The points at the laser
extremities are always 0 to ensure continuity. In this case, in generation 0 the profile is a straight line.
After optimization, the small changes in the first twenty generations yield a profile which is in principle
better than the one the algorithm started with.

of the atom and thus no acceleration takes place).

In order to be able to change the profile, the user is allowed to select the number of points for

the interpolation, the relative intensity in each one and the total length of the pulse. Two interpolation

methods can be chosen, a simple line interpolation or a cubic spline. This forces the electric field to be

continuous, which is a mandatory condition for an electric pulse in vacuum. An example of such profiles

can be found on fig. 3.3.

If the genetic algorithm changes the inputs as equation (2.1) suggests, it will create a bias at points

with lower intensities, since the intensities at such points will change at smaller rates (the change is

linearly dependent on the input). To bypass it, two steps are followed. Firstly, the maximum intensity

for all the points is calculated and there is a recalibration such that the maximum is always one (this

balances all input sets among each other). Then, all points are changed according to the equation (2.1)

except as if input was one (to balance all points in the same set).

The use of the 1D PIC code hides some physical phenomena that occur at higher dimensions. For

example, the bubble effect analyzed at section 1.1 has no analogous in a PIC code with one spatial

dimension.

3.3 Results from machine learning optimization with 1D PIC code

The output variables of the algorithm should only take into account particles that are part of the final

accelerated electron bunch. Particles were considered accelerated when their energy was above a

certain threshold Et. The threshold has to be chosen by the user, as there is no structure governing the

electron acceleration, unlike the ones seen in 2D or 3D. For all the runs the energy of the initial laser

was kept constant.

There is also the possibility of easily adding new variables, like transverse momentum, beam effi-

ciency, maximum energy.
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Figure 3.4: Set-up of the simulated cases. A laser beam is placed before the electrons and it will
produce an electron beam, whose optimization is the goal of this work. Next to each element some
specific variables used for optimization.

3.3.1 Simulation parameters

In order to study laser wakefield acceleration, the laser beam was placed before the plasma itself (Figure

3.4). The simulations were run with a moving window: the finite difference models can be run using a

moving simulation window that moves at the speed of light. This allows following the relevant phenomena

in display here: relativistic electron beams and laser pulses. This does not mean that the phase space

variables are calculated in a frame moving at c: these values are still calculated in the lab frame, but this

allows for a smaller box and thus a smaller computational time.

The laser beam is in 1D so only plane waves can be placed inside the simulation domain. The total

length of the laser was limited to 9 c/ωp and 20 points (18 of them free) were used to characterize the

longitudinal profile.

The laser energy El is defined as

El =
∑
i

(E[i]2 +B[i]2) dx, (3.7)

where E[i] (B[i]) represents the electric (magnetic) field in the cell i and dx was the grid size then the

laser energy was constant and equal to 50 c3meωp/e
2.

The number of particles per cell was 128 (standard) and the number of cells was chosen such that

a single laser oscillation could always be resolved with 20-30 cells: as the laser initial frequency was

ω0 = 2ωp and the frequency varied with ω = ω0 + α(x− xstart) (chirp) if the frequency at the back of the

laser (x = xstart − 9) was over 2.4 the α parameter was deemed invalid.

The ramp final density as well as the length of the ramp were also free. Every generation had 200

individuals and the algorithm was run for 400 generations. In each simulation, Q is calculated at each

time step and the largest value for instant Q represents the score attributed to the simulation.

In this run of the code the free parameters from Equation (3.5) were chosen to be j = 1/2 and

σmin = 0.10. The selected threshold energy was Et = 4mec
2.

Among all individuals in the generation, the one with the best Q was selected, and the results are
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Figure 3.6: Evolution of the properties of the electron beam at the same iteration the instant Q was
maximal. Only the best result for instant Q in the whole generation is plotted.

shown in figure 3.5. The increase in Q was about 45% from the first (945) to the last (1370) generation,

which shows the effectiveness of the genetic algorithm in this setup.

The first 40 generations were enough to see a great improvement in the Q-factor. From the three

main parameters of the beam, 2 of the three were improved. The relative energy spread decreased from

2 to 1.2 % at the same time the mean energy of the beam went up from 4.2 to 5 mec
2. The number of

particles went down from 1900 to 1650. However, having the parameter j = 1/2 means that the score

due to the number of particles only went down by (1650/1900)1/2 = 0.931, which is much smaller than

the improvement in the mean energy and energy spread. After 40 generations some oscillations are

observed in all three parameters. This means that little changes in the inputs of the simulation lead to

large changes in the parameters themselves, but these changes do not seriously affect the Q-parameter

as it is defined.

The chirp factor went up consistently across generations (Figure 3.7a, which shows it is a very

important factor to consider, as variations of the chirp may influence greatly the final electron beam.

Considering the plasma density profile, both the final density of the ramp and the end position appear to

have little significance to the end result - high Q-factors were obtained with end positions from 60 to 75

and with final densities from 0.75 to 0.95 (Figures 3.7c and 3.7b, respectively).
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Figure 3.7: Evolution of the properties of the laser and plasma at the beginning of the simulation.
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Figure 3.8: Evolution of the longitudinal profile

The longitudinal profile of the laser started as a straight line and changed to a laser with a higher

peak electric field. As the generations progress, it becomes apparent that the internal laser structure

(chirp and laser longitudinal profile) is the most important factor to consider when optimizing Q.
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Chapter 4

Two-dimensional simulations: the role

of the internal laser structure

In chapter 3, a 1D PIC code was used to predict the best conditions for LWFA under certain restrictions.

However, as already stated, there are phenomena such as the formation of a bubble which cannot

happen in a 1D code but it is essential to the acceleration mechanics.

To have results that can more consistently match those captured by experimental setups, the original

2D ZPIC code was also restructured and a genetic algorithm was made available.

4.1 High repetition lasers and the tailoring of the wavefront

Most LWFA experiments work with high powered lasers (1 Joule @ 100 TW) and have a repetition rate

below 1 Hz. Many studies have been conducted on LWFA with higher repetition rates (kHz) with smaller

laser energies (≈ 1mJ) because of the several advantages it conveys over the 1-J class - (i) larger mean

electron current, (ii) higher level of stability, (iii) easier optimization via feedback control and (iv) fast

averaging to increase the signal-to-noise ratio [25, 24, 26].

Since the technology has already been validated by multiple experiments, the effort at the experimen-

tal side is to optimize beam quality changing plasma or laser related variables, while trying to control

the characteristics of the final beam. Some recent results [27] suggest that the tailoring of the wavefront

could potentially be used to control the electron spatial distribution, as the distortion of the wavefront

causes inhomogeneities in the laser intensity and consequently changes its focusing and defocusing

properties.

4.2 Wave front shaping: the Zernike polynomials

The additional degree of freedom of 2D simulations brings a new range of possibilities that can be varied

in the laser. In 2D, the laser pulse does not need to be a plane wave. Instead, the phase of the laser
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No. Polynomial
0 1
1 ρ cos(θ)
2 ρ sin(θ)
3 ρ2 − 1
4 2ρ2 cos(2θ)

Table 4.1: The first five Zernike polynomials
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Figure 4.1: Examples of Zernike polynomials

can have complex spatiotemporal profiles that can change the dynamics of the laser in the plasma. The

basis of the optimization in 2D runs was the shaping of the wavefront.

The electric field of a perfectly Gaussian beam is given by equation (4.1).

E(r, z) = E0x
ω0

ω(z)
exp

(
−r2

ω(z)2

)
exp

(
−i
(
kz + l

r2

2R(z)
− φ(z)

))
(4.1)

The Gaussian phase inside the complex exponential in (4.1) can be changed with deformable mirrors

[22]. The Zernike polynomials are the standard way to describe wavefront shaping, as they represent a

sequence of orthogonal functions in the unit circle. They are better than other orthogonal sets as they

are made of terms that have the same form as the aberrations often observed in optical tests[28]. The

first five Zernike polynomials are shown in table 4.1. Both the Zernike polynomials no. 1 and no. 3 are

shown in Figures 4.1a and 4.1b, respectively.

The Zernike polynomials are defined in 3D. Because in 2D there is only one transverse direction,

the orthogonality condition is not verified. More so, the polynomials stop being linearly dependent,

which modifies the method altogether (if the limit to the increment is 5%, two linearly dependent could

potentially increase one variable up to 10%). To avoid this situation, in 2D the Zernike polynomials were

replaced by the ρn set, being ρ the only transverse direction.

Thus, the final laser expression is given by

E(r, z) = E0x
ω0

ω(z)
exp

(
−r2

ω(z)2

)
exp

(
−i

(
kz + l

r2

2R(z)
− φ(z) + 2π/λ

k∑
n=0

anr
n

))
, (4.2)
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where the an set is given the name of the wavefront coefficients.

An important variable is the ratio kperp/klong. This ratio should be calculated at the apperture (a

measure of transversal length, normally associated with the spot size of the laser). This ratio is defined

as
k∑

n=0

|an|((d/dr)rn)r=ρ/ω0 =

k∑
n=0

n|an|ρn−1)/ω0, (4.3)

where ρ is the apperture of the laser pulse. This was given the name of maximum ratio.

4.3 Enhancing the acceleration efficiency

In a laser-plasma acceleration, energy flows from the laser to the plasma, and from the plasma to the

accelerated beam. A key feature associated with the process is energy conversion efficiency: from the

laser to the accelerated particle beam. To estimate the efficiency of the acceleration, the total energy of

each beam is calculated, and the laser energy is kept constant for all simulations.

In the 1D case, plane waves were used, which means that there is no focusing or defocusing of the

laser. For the 2D simulations, a focus has to be selected for the laser. In experiments [22, 27] normally

a gas is ionized by the laser in the first place, creating ion-electron pairs (plasma) and only then LWFA

takes place. In ZPIC however, the set-up is similar to the one described in Figure 3.4. To be able to

compare different laser pulses, their energy was kept constant throughout the algorithm, as already done

in section 3.3.

For all the simulations in 2D , the box size was (25,51.2), with (nx,ny)=(1250,256) with a particle per

cell number of 8, and a maximum ratio at the aperture (Equation 4.3) of 0.1 except when it is specified.

4.3.1 Energy efficiency

The energy range 20 to 25 mec2 was selected, with 200 individuals per generation and the best 50 being

mutated with a total of 8 generations. The score of a simulation was given by the number of particles

npar whose energy was within the [20,25]mec2 range.. The free variables were only associated with the

wavefront coefficients (6). The plasma started at x=25.5 c/ω0. The density was a simple step from n=2n0

to n=n0 at x=30.6. The first 4 Zernike polynomials were used. The length of the pulse was 4 and if the

laser energy density is defined as

El =
∑
i,j

(E[i, j]2 +B[i, j]2) dx dy, (4.4)

where E[i, j] / B[i, j] represents the electric/magnetic field in the cell (i, j) and dx,dy the respective grid

size. The laser energy was constant and equal to 500 c4m2
e/e

2. The focus of the laser pulses was fixed

at z=0 (before the plasma started).

The results from the genetic algorithm are shown in Figure 4.2. The improvement of npar was of the

order of 20% in relation to a Gaussian beam. However, if it is taken into account that the iteration at

which both maximums were attained is different and the energy profile of electrons is plotted in the exact
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Figure 4.2: Evolution of the number of particles in the 20 to 25mec
2 range (npar) during the simulation.

Upper and lower bound of the colored region in black represent the maximum and minimum value of
npar in each generation. Mean value in the generation appears in dark blue. The value for a Gaussian
pulse is shown in dashed red.

iteration where the optimized beam has its maximum, it is observed the profile in Figure 4.3. The reason

for this comparison is to replicate what was done in experiments before (the detector is in a fixed spatial

position). This plot was run with a larger particle per cell (ppc) number (36) than in the original run (8).

This shows that an fourfold increase in that parameter did not change the overall results and therefore

the simulations for the energy efficiency are not very ppc-sensitive.

These results are very promising, as the improvement in that range is of the order of 100%. It is

seen that the optimized beam not only surpasses the Gaussian beam at the desired range but it is also

better for the whole energy range of 12 to 30 mec
2. This reveals that the wavefront may be used as an

independent variable to control the energy of the electron beam.

A full comparison with energy and angle for both lasers can be found in Figures 4.4a and 4.4b. The

major difference between beams is the position of the maximum density of particles in energy, which is

slightly higher in the Gaussian beam. Even though the optimized electron beam is more disperse, it is

clear that the number of electrons in the desired energy range is greater in the optimized beam.

The electric fields of both Gaussian and optimized laser pulses can be found in Figures 4.5a and

4.5b, respectively. The global phase stayed fairly similar, but in the optimized laser one denotes a slight

tilt counterclockwise. The transformation originated both from the r and r3 polynomial.

4.3.2 Decreasing the acceleration distance

As explained in subsection 1.1, plasma accelerators could improve significantly the acceleration length

when compared to conventional accelerators. This is calculated from the maximum electric fields a

plasma can hold. However, the internal structure of the laser driver could be a new degree of freedom to

further reduce the acceleration distance. In order to explore this possibility, the score of a simulation now

corresponds to the first iteration at which the sum of all the energies of particles whose energy exceeds
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Figure 4.4: Histogram (energy, angle) for particles in the [15,32] mec
2 energy range. At the left side,

the result for the Gaussian pulse at the iteration where the number of electrons in the [20,25]mec
2 is

maximum for the optimized beam. The angle is calculated via the momentum ratio pperp/plong, where
plong was defined as the momentum parallel to the laser propagation direction.

Et is larger than a number. In this case the variable Et = 15mec
2 was selected and the total energy

was 20000 mec
2. This ensures that the number of particles considered for the total energy is statistically

significant.

In this case 600 individuals per generation and the best 50 being mutated with a total of 70 gener-

ations. The free variables were only associated with the wavefront coefficients (6). The plasma started

at x=25.5 c/ω0. The density was a simple step from n=2n0 to n=n0 at x=30.6. The first 6 Zernike poly-

nomials were used. The length of the pulse was 4 and the laser energy was constant and equal to 500
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Figure 4.5: Transverse electric field at the initial time. a) The perfectly Gaussian laser. b) The optimized
laser with 4 Zernike polynomials.

c4m2
e/e

2. The focus of the laser pulses was fixed at x=22.5 c/ω0(start of the plasma).

The results and comparison with the Gaussian beam are in Figure 4.6. It is relevant to point out that

the number of generations of this optimization study far exceeded that of the other studies in 2D. This is

due to the fact that the algorithm is actively trying to reduce the number of time iterations (the simulation

runs until the threshold Et is obtained) and therefore the computational time for each simulation is

reduced.

The improvement shown in figure 4.6 is self-evident - the acceleration time (and therefore, distance)

is reduced by just over 10% (11%) in comparison with the Gaussian beam. The red line represents

the Gaussian phase whose global phase was optimized via the same algorithm, which makes the result

more meaningful. It is not clear that this procedure was followed in [22]. Even though the optimization

value is not impressive, saving 10% in plasma length purely by adjusting the laser beam may reduce

costs in that same magnitude, increasing even further the gap between plasma and conventional accel-

erators.

The transverse electric field for both the Gaussian pulse and the optimized pulse are presented in

Figures 4.7a and 4.7b. This pulse is dominated by the 1 and r2n polynomials, as the global phase

change is almost π and the pulse appears symmetrical in relation to the x axis.

4.4 Enhancing the radiation emission

The energy radiated by a particle is, for p‖ � p⊥, given by [29]:

Erad ∝ p2⊥γ (4.5)

where γ is the Lorentz factor and p⊥ is the transverse momentum. This is just an estimate of the

radiated power. It is important to refer that no actual radiation is being calculated explicitly. To perform
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Figure 4.7: Transverse electric field at the initial time. a) The perfectly Gaussian laser. b) The optimized
laser with 6 Zernike polynomials.

the optimization in this variable the cumulative radiation across a certain time frame should be calculated.

The peak radiation, albeit relevant, is not measured by a detector, where only a time-averaged intensity

is stored.

In this case, in order to compare beams, the best way should be to select an energetic threshold.

To have a clustering of the beam could mean that some variation of the number of particles could take
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place and account for the majority of the discrepancy between beams.

In this particular example the threshold was selected at Et = 15mec
2 and the radiation was integrated

from t = 0 to t = 900(1/ωp). If the energy threshold is selected at Et = 0mec
2, the contribution of the

particles of the background doesn’t allow for much relative difference between lasers (less than 5%). In

this case 200 individuals per generation and the best 50 being mutated with a total of 12 generations.

The free variables were only associated with the wavefront coefficients (6). The plasma started at x=25.5

c/ω0. The density was a simple step from n=2n0 to n=n0 at x=30.6. The first 6 Zernike polynomials were

used. The length of the pulse was 4 c/ωp and the laser energy was constant and equal to 500 c4m2
e/e

2.

The focus of the laser pulses was fixed at x=22.5 c/ω0(start of the plasma). The results of the optimization

are presented in Figure 4.8.

The gain in estimated radiation in comparison to a Gaussian pulse is around 30% This shows that

the amount of radiation produced is highly dependent on the internal structure of the beam. However,

it is possible to note some differences looking at the electric fields at starting time (Figures 4.9a and

4.9b for the Gaussian and the optimized pulses, respectively). The first discrepancy is the overall global

phase, that brings the maximum of the electric field forward. The optimized beam also appears to have

a slight curvature coming primarily from the even polynomials, as the beam is symmetrical in relation to

the x axis.
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(a) Gaussian laser
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Figure 4.9: Transverse electric field at the initial time. a) The perfectly Gaussian laser. b) The optimized
laser with 6 Zernike polynomials.
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Chapter 5

Conclusions

The main conclusion in this work is that genetic algorithms can be used to improve the electron beam

quality in the lab, not only to try to make the laser distortion-free but to actively try to distort it in a specific

way to tackle several optimization problems.

The k-means algorithm, a machine learning tool used in classification problems, was able to success-

fully isolate the accelerated electron bunch from the background electrons in several 2D configurations.

Áfter a successful benchmark in a known 1D case, the quality of the beam in 1D increased by over

30% across generations. In 2D, the best score for energy efficiency, acceleration distance and radiation

production was always originated from lasers that were not perfectly Gaussian, which can open a new

research area. In particular, the number of electrons in a determined energy range was increased by

20% when comparing the best score for both the optimized and Gaussian beam. If the comparison is

done for the exact iteration where the optimized beam obtain the highest number of particles in that

range, the difference reaches 100%. This corresponds to an experiment where a detector is put in a

specific spatial location and beam properties are only measured once. When minimizing the acceleration

distance, changing the laser wavefront allowed for a 10% reduction, something that no experimental set

up has measured so far. The estimated radiation from an electron beam was increased by 30% when

comparing to a Gaussian laser.

5.1 Contributions

Two posters for the EPS 2018, along with an article for the proceedings[30, 31]. Part of this work (namely

subsection 4.3.1) was used for a presentation for an European Research Council (ERC) grant. A jupyter

notebook for ZPIC was created to study the effect of the length of a flat laser on a plasma. This notebook

was used in one lab rotation of the APPLAuSE doctoral programme.
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5.2 Future Work

In the simulations that were presented here the value of the ratio kperp/klong was taken very conser-

vatively so that the final laser pulse wouldn’t be so much different from the Gaussian pulse. With the

relaxation of this parameter and using the results collected thus far it is likely that some extra improve-

ment may be had in the variables already discussed.

Other cases where it is expected that changes in the wave front may produce measurable improve-

ments in the final electron beam include

• Transverse emittance

• Electron angular profile

• Radiation shape (getting a specific signature in the detector)

• Electron spatial profile (from laser pulses with orbital angular momentum)

• Point (~r, t) to inject electrons with determined momentum

OSIRIS is the next step, where the optimization can move to a most sophisticated code. In OSIRIS

3D simulations will be carried for the exact same cases shown here and possibly some other. This will

require a hardware upgrade from the Accelerates cluster here at IST or the use of other supercomputers

so the simulation time is sustainable..

Other machine learning algorithms, like neural networks, could be used to optimize internal OSIRIS

processes and further reduce computational time.
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Appendix A

Classes Developed

Some new classes were developed in this work so that the study of the internal properties of the beam

could be done.

A.1 1D classes

A.1.1 Laser with fixed energy

Before this work, the a0 of the laser was the main variable that could be used in the input deck. A simple

laser beam could be placed in the simulation as shown in the listing below

t e m f l a s e r l ase r = {

. type = GAUSSIAN,

. s t a r t = 24.0 ,

. fwhm = 4.0 ,

. a0 = 3.0 ,

. omega0 = 4.0 ,

.W0 = 6.0 ,

. focus = 30.0 ,

. ax is = 25.6 ,

. p o l a r i z a t i o n = M PI 2

} ;

s im add laser ( sim , &lase r ) ;

Because the energy of the laser was the variable that was required to remain constant, the class

t emf full envelope was created. This class allows for selection of a chirp, an envelope and the

energy.

t e m f f u l l e n v e l o p e env = {

. s t a r t =29.5 , / / s t a r t o f the beam ( i n plasma coord ina tes )
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. l eng th =9 , / / maximum leng th o f the beam

.N=e Np , / / number o f po in t s i n the envelope

. i n t e r p o l a t i o n =SPLINE , / / can be s p l i n e or l i n e a r

. omega0= OMEGA , / / l a se r frequency a t the s t a r t

. ch i rp N= N CHIRP , / / number o f ch i r p parameters (w=w0+c0∗z+c1∗z ˆ 2 + . . . )

. f r e q l i m i t = FREQ LIMIT , / / i f the frequency i s b igger a t

/ / any po in t the new parameters w i l l be re j ec ted

. ch i r p va lues =ch i rp , / / p o i n t e r w i th c0 , c1 , . . .

. energy =50 , / / l a se r energy

. values=values2 , / / values o f the l o n g i t u d i n a l p r o f i l e ( between 0 and 1)

. p o l a r i z a t i o n =M PI 2 / / l a se r p o l a r i z a t i o n

} ;

A.2 2D

A.2.1 Laser with changed wave front

Before, only gaussian laser pulses were available on ZPIC. In 2D the biggest change was the creation

of the t emf laser zernike class, which allows for wave front tailoring.

t e m f l a s e r z e r n i k e l ase r = {

. type = GAUSSIAN,

. s t a r t = 24.0 ,

. fwhm = 2.0 ,

. a0 = 1.0 ,

. omega0 = 4.0 ,

. energy = 500.0 ,

.W0 = 4.0 ,

. focus = 20.0 ,

. ax is = 25.6 ,

. p o l a r i z a t i o n = M PI 2 ,

. aper tu re =4∗0.5 , / / aper tu re ( where you c a l c u l a t e the r a t i o )

. N zern ike =6 , / / number o f c o e f f i c i e n t s

. ze rn i ke coe f =values2 , / / vec to r w i th 6 c o e f f i c i e n t s

. r a t i o =0.1 / / maximum i n i t i a l r a t i o ca l cu la ted a t the apper ture

} ;
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