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Atabak Dehban. This work would not have been possible without you.
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Abstract

Exclusively online supermarkets have been expanding in recent years. Their operation involves packing

and shipping millions of orders as efficiently as possible. The automation of the former task, bin packing,

has seen slow progress mainly due to the inherent complexity of safely packing irregular objects such

as groceries. This task’s underlying constraints on object placement and manipulation, and the diverse

objects’ physical properties make preprogrammed strategies unfeasible.

Our approach is to learn directly from expert demonstrations in order to extract implicit task knowl-

edge and strategies. As such, we collect and make available a novel and diverse dataset of bin packing

demonstrations by humans in virtual reality. In total, 263 boxes were packed with supermarket-like ob-

jects by 43 participants, yielding 4644 object manipulations. This collection is annotated with multiple

task parameters and is the most diverse public dataset involving irregular objects. It has the potential

to train models that achieve efficient space usage, safe object positioning and to generate human-like

behaviors that enhance human-robot trust in a collaborative scenario.

We leverage the data in this new dataset to learn a Markov chain to predict the object packing

sequence for a given set of objects. The proposed model makes predictions in real-time, only requires a

simple and fast training scheme, and accurately captures the strategies that humans use during the bin

packing task. Our experimental results show that the model generates sequence predictions that are

indistinguishable from human-generated sequences when classified by individuals.
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Resumo

Os supermercados exclusivamente online têm expandido consideravelmente nos últimos anos. O seu

funcionamento requer embalar e expedir milhões de encomendas da forma mais eficiente possı́vel. A

automatização do processo de embalar os produtos tem progredido lentamente, principalmente devido

à complexidade inerente a embalar de forma segura objetos irregulares. As restrições que esta tarefa

impõe sobre o posicionamento e manipulação dos objetos, e as variadas propriedades fı́sicas dos

mesmos tornam ineficazes comportamentos pré-programados.

A abordagem proposta consiste em aprender diretamente de demonstrações, extraı́ndo conheci-

mento implı́cito da tarefa. Como tal, é reunido um novo e diversificado dataset de demonstrações de

indivı́duos a arrumar objetos em realidade virtual. No total, 263 caixas foram arrumadas com objetos

de supermercado por 43 participantes, resultando em 4644 manipulações de objetos. Este dataset é

anotado com múltiplos parâmetros e e atualmente é o mais diversificado entre os que contém objetos

irregulares. O dataset tem potencial para treinar modelos para obter um uso eficiente do espaço, gerar

posicionamentos seguros para os objetos e comportamentos semelhantes a humanos, aumentando a

confiança nesta tarefa de colaboração com robôs.

Utilizando estes dados é treinada uma cadeia de Markov que permite estimar a sequência de

arrumação para um conjunto de objetos. O modelo proposto faz estimações em tempo real, apenas

requer uma aprendizagem simples e rápida, e captura com exatidão as estratégias que os indivı́duos

utilizam durante a tarefa. Resultados experimentais revelam que o modelo proposto gera sequências

que são indistinguı́veis daquelas geradas por humanos.

Palavras Chave

Embalar Produtos; Aprendizagem Através de Demonstrações; Datasets para Aprendizagem Robótica;

Automatização Centrada em Humanos.
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1.1 Motivation

The ceaseless digitalization of the modern world has steadily transformed many aspects of our daily

lives, including the grocery shopping experience. In recent years it too has begun the shift from the

physical retail spaces into the online environment, with companies such as Ocado [1], a dedicated

online grocery retailer, reporting 2.5 billion GBP of revenue in 2021.

However, hidden behind the simplicity and convenience of an online purchase lies a logistics chal-

lenge that involves collecting, packing, and shipping the purchased items as efficiently as possible. And

even considering that in semi-structured environments such as warehouses the collection of the items

can be done (to some extent) by automated mobile robots, the process of packaging multiple, irregularly-

shaped items has yet to be automated. This is particularly challenging in supermarket-like environments

where there is a massive variety of items ranging from regular cardboard-box cereals to soft, irregular

vegetables.

Concurrently, robots have steadily been entering our workplaces and homes. These collaborative

robots have attracted a considerable amount of research and development attention, with the introduc-

tion of Amazon’s new Astro robot [2] and Temi robot [3]. Besides the critical need to ensure a safe

operation while interacting with humans, they must also act as human-like as possible, such that their

actions can be understood and anticipated by their human owners, providing users with an improved

interaction experience [4].

The research project that motivated this thesis lies at the intersection of these two rapidly expanding

fields. It is called PackBOT and it is illustrated in Figure 1.1. Its goal is to develop the first framework for

a collaborative robot that is able to operate side-by-side with a human worker in order to pack any kind

of items in a box, while simultaneously learning from observing the human how to safely pick and place

all items.

Figure 1.1: Illustration of the PackBOT project.
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To achieve these goals, the use of collaborative robots is essential. This necessity is not specific to

our goals but rather a pressing need felt both in academic and industrial environments for safer robots

that can coexist in the same workspace as other humans. Collaborative robots are an outstanding

achievement of modern robotics. Their invention is usually attributed to J. Edward Colgate and Michael

Peshkin, who in 1997 filed their patent for Cobots, described as

”An apparatus and method for direct physical interaction between a person and a general

purpose manipulator controlled by a computer.” ( [5] ).

One conceptualization of such a device can be seen in Figure 1.2. Since then, many technological

developments such as better sensors, the introduction of flexible joints, and increased processing power

have enabled the development of a vast diversity of collaborative robots. Although they were mainly

used in industrial environments, their safety and robustness have improved so much that there has been

a growing interest in collaborative robots in the social and domestic robotics areas.

Figure 1.2: Diagram of a three-wheel cobot to illustrate one possible embodiment according to the original patent.
The human operator would cooperate with this cobot via the vertical handle. This input would be
measured by a computer and sensors to move the cobot accordingly. Adapted from [5].

The introduction of these robots in the highly complex, ever-changing environments that are our

homes and workplaces means that it is of the uttermost importance to develop learning mechanisms

that make these robots capable of adjusting to changes and capable of autonomous learning. Perhaps

even more important is that these cobots are capable of acquiring the user’s trust, which requires that

they behave similarly to humans.
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1.2 Objective

As mentioned earlier, this thesis is framed within the research project called PackBOT. In this work, we

focus on learning aspects of the packing task with irregular objects from human demonstrations. In

particular, we seek to predict the packing sequence given the set of objects that needs to be packed.

For instance, given an order from a customer at an online supermarket, we want to predict the sequence

in which the objects should be packed into the container. This is one of the steps in the bin packing task,

which can be roughly decomposed into three main components or sub-tasks.

The first is how to grasp objects with a robotic gripper so that an autonomous agent can pick and

place an arbitrary object. Research on software for grasp inference has been extensive and many

approaches have achieved impressive accuracy [6]. Furthermore, many different types of grippers have

been developed [7], ranging from the more traditional two-finger gripper to soft grippers that have been

deployed to grasp soft, irregular, and fragile objects [8]. Given this extensive literature, this thesis does

not propose new methodologies for this sub-task. However, the dataset we collect in this work contains

data that can be used to learn better grasp inference models with supermarket-like objects.

The second is determining the order in which the objects should be packed into the container. This

aspect has been partially overlooked since research into bin packing usually assumes that the objects

arrive at the robotic manipulator on a conveyor belt, as is shown in a review of this field in Section 2.3.

However, this assumption implies that there is no situation where the robot needs to choose the order

in which to pack the objects, or that this order is not important, which is not true in many situations.

The research that addresses this issue generally assumes that the objects are cuboids or that they

can be approximated as cuboids (as reviewed in Section 2.3), which is only valid for some industrial

applications. Given this gap in the current bin packing literature, we propose a strategy that tackles this

sub-task.

The third and final sub-task is predicting a placement pose inside the box for each object. This pose

must ensure that both the object and all other items already in the box are safe and stable, and that the

final layout of the items inside the container uses the available space efficiently. In Section 2.3 a review

of the literature on this topic is presented. Although this thesis does not propose a specific method to

solve this task, we propose a new dataset that can be used to learn better models for placement pose

prediction.

In summary, the contributions of this thesis are threefold:

1. We learn a model to predict the packing sequence, based on Markov chains, that extracts implicit

task knowledge directly from human demonstrations. Unlike previous research on this topic, our

model is learned and tested with irregular objects and considers their fragilities. Another advantage

is that it is much faster at predicting packing sequences and can be deployed in real-time.
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2. To learn the aforementioned model we create a new dataset called Box packing with Everyday

items Dataset (BoxED), the first publicly available collection of human experts packing groceries

into a box. BoxED was collected in Virtual Reality (VR) and captures many parameters of this

task, including 6 degrees of freedom (6-DoF) pick-and-place grasp poses, object and headset

trajectories, packing sequences, and more. This dataset enables learning models for multiple

aspects of this task from humans, which is unlike all other public datasets in the field of bin packing.

This dataset is made available in this link1, along with an object-oriented Python framework that

facilitates importing and using these data.

3. The proposed model is validated with real experiments involving human experts. The experimental

results reveal that the predicted packing sequences lead to the safe and efficient positioning of the

objects and are classified by the experts as indistinguishable from human-generated sequences.

Furthermore, the research developed in this thesis led to:

1. The submission of a short paper and presentation of the associated poster at the 2022 IEEE

International Conference on Development and Learning (ICDL), in London.

2. The submission of a paper2 to the 2023 IEEE International Conference on Robotics and Automa-

tion (ICRA), which is currently under review.

1.3 Document Structure

The rest of this document is structured as follows. The following Chapters 2 and 3 lay the theoretical

basis required for this thesis. Chapter 4 presents the dataset, namely what it contains and how it was

collected. Also in Chapter 4 is the introduction of the proposed model for packing sequence prediction,

specifically how it is learned from the expert demonstrations we collected, and how it is tested and

validated. Finally, Chapter 5 presents the main conclusions and implications gathered from this work, as

well as possible directions for future work.

1https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#BoxED
2http://arxiv.org/abs/2210.01645
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One may argue that collaborative robots have been closely coupled with the development of robots.

In fact, some of the first robots ever made arose from a need to handle radioactive materials from a safe

distance. These pioneer robots built in the early 1950s hardly fit in our current concept of a robot - they

were master-slave manipulators that had simple controls and almost no autonomy (Figure 2.1). Never-

theless, they evolved from the need for machinery that would cooperate with a human to accomplish a

task that would otherwise be impossible.

Figure 2.1: Example of master-slave manipulator developed in the 1950s. Adapted from [9].

Although these early “robots” already revealed in some ways the need for cooperation between hu-

mans and robots, they were devoid of any intelligent capabilities. In the following decades, many tech-

nological developments enabled the construction of much more complex robots, capable of performing

more diverse tasks compared to the simple master-slave manipulators. Furthermore, the increase in

computational power and data availability enabled the development of more flexible learning frameworks,

adequate for a larger variety of tasks.

The contents of this chapter are active research fields that branched from these pioneer robots. The

chapter presents an introduction to relevant approaches in the field of Learning from Demonstrations

(LfD) and high-level task learning, two important aspects of any collaborative robot. After an overview

of LfD methods, a review of sequence prediction strategies is presented. Then follows a summary of

approaches to packing objects into a container, followed by a review of available datasets which are

relevant to the goals of the thesis.

2.1 Learning from Demonstrations

Learning from demonstrations consists of learning how to perform new tasks and their constraints by

observing an expert complete the task first. This paradigm has attracted increasing attention from

8



the robotics community because it circumvents predefined behaviors and introduces more flexibility in

robotic learning. In this thesis, we seek to learn certain aspects of the packing task and its underlying

constraints from passive observations of an expert.

One common approach for extracting knowledge from demonstrations is policy learning, which can

encompass algorithms from Reinforcement Learning (RL), supervised learning [10] and Inverse Rein-

forcement Learning (IRL) [11]. A policy π : S → A maps the input space S (usually the state space) into

the output space A (usually the action space). The goal is to learn a policy that can accurately mimic

the demonstrations or to obtain a policy that learns underlying rules from the demonstrations and is able

to replicate the desired outcome.

The formulation above assumes that there is an external signal that indicates which states are de-

sirable and which are not, thus guiding the policy learning process. This is the reward signal, usually

denoted as Ra(s, s
′), and provides the reward for transitioning from state s to state s′ due to action a.

This is essentially the formulation of a Markov Decision Process (MDP), which is an underlying building

block for much of the research in this field [12–14].

An MDP models decision-making in situations where there is uncertainty in the actions’ effects and

where different states have different rewards or desirabilities. Generally, the policy is learned by maxi-

mizing the total reward that it achieves. Its well-established mathematical foundations make it a popular

choice for modeling human-robot interactions. For instance, Munzer T. et al. [12] used a variation of

Markov Decision Processes along with first-order logic to develop a system for a collaborative robot that

learns tasks and human preferences before and during execution.

One major difficulty when learning a policy from demonstrations under this formulation is how to

encode the demonstration in a format that can be processed by the learning algorithm. In the case of

passive observation, the information can be a video of the task execution which presents additional diffi-

culties for representation extraction. To address this issue some works introduce simplifying measures,

such as having the expert wear some form of motion capture suit [15] or having the demonstrations

in a simulated environment [13], while others use complex pose estimators [16]. Once the relevant in-

formation has been extracted from the demonstrations, it may still be necessary to obtain a compact

representation of the data. For instance, in a work by Dasari S. and Gupta A. [13], a transformer net-

work [17] is deployed to extract a state representation from a video of the demonstration.

Instead of introducing simplifying assumptions or extracting the state of the system from the demon-

strations, some approaches bypass the explicit characterization of the state by defining as input the raw

data from the system [14, 18, 19]. These approaches use neural networks to learn end-to-end policies

that extract meaningful information from the raw input data and map it to output actions. This type of

implicit policy learning is useful to circumvent state characterization in tasks where defining the state is

challenging. However, end-to-end policies require large amounts of data, which may be expensive for

9



specific tasks, and prevent most methods of theoretical analysis for establishing performance guaran-

tees.

In the context of learning the bin packing task from human demonstrations, collecting a dataset that

is large enough to train an end-to-end policy with neural networks would be impractical and very time-

consuming, which is unfeasible in the time frame allocated for this thesis. Furthermore, a key parameter

in this task is the placement pose of each object inside the container. There are two approaches to

accurately recording the poses of all objects during the task. The first would be to use a motion capture

system along with reflective markers on each object. However, this would still be susceptible to occlu-

sions and the markers could potentially influence how individuals handle the objects. Furthermore, it

would also be necessary to track the pose of the hand of the participant to record the grasp poses.

The second approach is to conduct and collect the demonstrations in a virtual environment using VR

technology. This is the approach that is chosen in this thesis since it provides the exact values of all

the parameters and variables we need to collect. Furthermore, we can also design a virtual gripper that

resembles a robot’s gripper and thus minimize the domain gap between the demonstrator and the robot.

2.2 Sequence Prediction

Within the field of sequence prediction there are multiple types of sub-tasks, for instance:

• Sequence-to-sequence (seq2seq) problems where the goal, as the name suggests, is to predict

an output sequence of tokens given another input sequence. In the most general case, both the

input and output sequences can have any length. Some examples of this type of problem are

machine translation tasks and conversational agents.

• Sequence classification problems that aim at labeling an entire sequence as belonging to a single

class. For instance, in sentiment analysis the goal is to classify a review as good, bad, or according

to other descriptors.

In the context of box packing, the sub-task that is most related to sequence prediction is predicting the

packing sequence. Its goal is to predict which object should be placed next inside the box, given what

objects are still available to pack and what objects have already been packed. For this task, the most

relevant type of sequence prediction is next value prediction. This type of sequence prediction focuses

on predicting the next element of a sequence of tokens and encompasses problems such as time series

forecasting and product recommendation.

Algorithms that address this class of problems range widely in their approach, from explicit associa-

tion rules and Sequential Pattern Mining (SPM) algorithms [20,21], to deep learning based approaches

which learn implicit representations [22, 23]. These algorithms search for sub-sequences that appear
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often in the data and thus contain important sequential or associative information to predict the next

element. The former methods, sequential pattern mining approaches, benefit from learning models that

are human-interpretable and are described in Section 3.2. This section will focus instead on introducing

deep learning approaches.

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [24] were pur-

posely designed to model sequential data. These are the standard deep learning choices for the task of

next value prediction. For instance, in [23] the authors train both a RNN and a LSTM network to predict

the price of stocks at every minute.

More recently, Transformer networks [17] have gained popularity for their performance in sequence

modeling tasks, including next value prediction. This advantage is partially due to its ability to retain in-

formation from more distant parts of a sequence and process longer sequences than RNNs or LSTMs,

which is a consequence of its attention layers. More concretely, these networks only require one oper-

ation to relate two words, regardless of how far apart in the sequence they are. Recent models, such

as BERT [22], are trained for language modeling on very large datasets with outstanding performance.

These models are capable of generating long segments of text through next word prediction.

However, neural networks for sequence prediction such as these require large datasets. For in-

stance, the stock price predicting RNN [23] was trained on more than three months of stock prices sam-

pled every minute. Even larger is the training dataset of BERT [22], which contained billions of words.

Although these models are capable of achieving record-breaking performances, such large datasets are

not available for most tasks such as box packing. For this reason, this thesis deploys alternative methods

(described in Section 3.2) to learn and predict the packing sequences from expert demonstrations.

2.3 Bin Packing

The field of bin packing addresses the task of packing a set of objects into one or more bins with

maximum space efficiency and object safety. Although this field hasn’t been substantially researched,

the need for such methods is increasingly pressing. Grocery shopping is transitioning to the online

space which puts growing pressure on supermarkets to pack and ship online orders.

There are two main types of tasks in this field since the packing process can be either offline or

online [25]. In the offline bin packing problem the goal is to pack a set of objects into a container and

all the objects are available from the start. This includes two sub-tasks: choosing a packing order and

predicting a placement for each object. On the other hand, the online bin packing problem assumes that

the objects arrive one by one (for instance, on a conveyor belt) and need to be immediately packed into

the container. Thus, it mostly corresponds to the second stage of the offline problem.

The following review will first address the approaches that include the sub-task of choosing a packing
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sequence and afterward those that focus solely on predicting a placement pose. This distinction is made

because considering sequential data drastically changes the type of method that can be deployed. It

concludes by reviewing the first research on a prototype for an automatic supermarket checkout system

that packs groceries.

2.3.1 Packing Sequence Prediction

Although it appears deceivingly simple, the sequence in which a set of objects is packed into a container

can negatively impact how good the final layout of the objects is. This is illustrated in Figure 2.2, where

two sequences for the same set of objects lead to different outcomes. In one situation, due to a sub-

optimal sequence, the packing planner was unable to find a solution.

(a) (b)

Figure 2.2: The predicted packing sequence can negatively impact the success of the packing task. In (a) the
planner successfully packed all objects in the container whereas in (b), for the same set of objects,
a different packing sequence leads to failure as there is insufficient space inside the box for the last
object. Both images were adapted from [26].

As such it is important to predict a packing sequence that enables a safe, stable, and efficient place-

ment of the objects. Most recent approaches to this sub-task do not focus solely on predicting the

packing sequence. Rather, they deploy a Deep Reinforcement Learning (DRL) agent to jointly predict

the packing sequence along with another parameter, such as the orientation of the placement [27, 28],

or the position and orientation of the placement simultaneously [29]. These approaches formulate the

problem as a sequence-to-sequence prediction task where the input sequence contains all the objects,

and optionally some of their properties (e.g., dimensions), and the output sequence corresponds to the

predicted best packing sequence.

The neural networks trained in these approaches follow an encoder-decoder shape and are trained

on a RL scheme to learn a policy that predicts the probability of the next object in the sequence in each

decoding step. An example of this structure which was proposed by [29] is presented in Figure 2.3.

The network in Figure 2.3 consists of two Recurrent Neural Networks, one for the encoder and

the other for the decoder. The encoder network receives, at each step, the dimensions of one of the

objects that should be packed as input. The decoder receives the output from the final encoding step
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of the encoder and the prediction made by the decoder in the previous decoding step. Furthermore, the

authors also deploy an attention mechanism to better integrate the information from the encoder and

decoder when predicting the next item in the sequence. The inclusion of an attention mechanism is a

common feature in these architectures [27,28].

Figure 2.3: Neural network illustrating the common encoder-decoder structure proposed by [29] to predict the pack-
ing sequence. Image adapted from [29].

In [27] the authors predict the orientation of the placement along with the packing sequence, also

using an encoder-decoder neural network. To decouple the placement orientation from the placement

position, the proposed approach uses a search strategy with a custom heuristic to predict the placement

position.

Even though this type of approach for sequence prediction can lead to good performance, they

generally assume that the objects are cuboids. Although this assumption is valid in some industrial

applications, in most situations with everyday objects it is not. Consequently, many of these methods

cannot be applied to everyday problems such as the grocery packing problem. Furthermore, the rein-

forcement learning scheme is not guaranteed nor encouraged to produce human-like behaviors, which

is inadequate for applications that involve human-robot interaction.

Since the approach proposed in this thesis involves collecting data from human demonstrations,

we must consider a fixed-size collection of objects. Although this assumption restricts the diversity of

objects that the proposed model considers, it is a trade-off that enables learning a model for diverse

object geometries which also considers their physical properties (such as fragility and weight), unlike

previous research in this field.
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2.3.2 Placement Pose Prediction

So far in this review, the bin packing task has been described under the context of packing objects one

by one. However, a large portion of research [30–32] actually focuses on a slightly different problem:

packing all the objects at once. This seems counterintuitive because the goal is not to pack the objects

for shipping, for instance, but rather to optimize their layout such that the total volume of the objects is

minimized. This is an important problem in some industrial applications such as Additive Layer Manu-

facturing (ALM), which is the industrial name for 3D printing.

In this context, it is beneficial to minimize the total volume since this also minimizes the amount

of material that is wasted. Furthermore, time constraints are not imperative since the manufacturing

processes can be planned ahead of time. However, deploying these methods in the task of packing

groceries would lead to a different problem: reverse-engineering a packing sequence that would lead to

that final layout of the objects. Since this is an equally complex problem and not guaranteed to have a

solution, these approaches are not adequate for the task addressed in this thesis. As such, the following

review focuses on placement prediction methods that can be deployed in the grocery packing task.

In general, there are two categories of approaches, within the aforementioned context, to predict

the placement pose for an object in the packing task: those based on search strategies and those that

use learning methods with limited supervision such as reinforcement learning. The first cluster has

the advantage of fast deployment as there is no learning phase, however, most have slow execution

times (ranging from dozens of seconds to a few hours [26, 33]). Conversely, methods based on RL or

DRL [34,35] require complex training schemes but have faster execution times. In this section we dissect

some of these approaches along with their advantages and disadvantages.

Search-based strategies seek to formulate the packing task as an optimization problem under task-

specific constraints and guided by heuristics. The constraints can restrict the placement positions for an

object (for instance, all objects must be placed in the internal space of the container), enforce stability

requirements for the final pose of the object, or impose manipulation feasibility. As an example, in [26]

the authors formulate three constraints, two of which focus on the valid positioning of each object such

that it does not collide with other objects but is stable under gravitational and frictional forces. The third

constraint focuses on ensuring that a planned manipulation is feasible and does not disturb other items

in the container considering the robotic manipulator. Just verifying these constraints requires solving a

convex optimization problem and performing collision checking for multiple sampled poses during the

manipulation of each object.

On the contrary, heuristics do not seek to restrict the search space, rather they intend to guide the

search to optimal solutions. They are usually formulated such that the search algorithm gives preference

to placement poses that lead to more efficient space usage. As such, heuristics play a key role in the
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success of a search-based algorithm. For instance, F. Wang and K. Hauser [33] formulate a heuristic

that, given the heightmap of the container, guides the search towards solutions that minimize the occu-

pied volume and maximize overlap with the surface below the object. As such, the proposed approach

leads to more efficient space usage than previous approaches. As shown in Figure 2.4, the proposed

heuristic leads to a solution that stacks the bowls in order to minimize the occupied volume, whereas a

previous heuristic leads to poor space usage.

(a) (b)

Figure 2.4: Final container layout after solving the packing task with two different heuristics. (a) Heuristic proposed
by [33]. (b) Another heuristic that does not optimize for space efficiency. Both images were adapted
from [33].

The advantage of these approaches is that they can be constructed as object-agnostic approaches

(i.e., do not require explicit knowledge of the object models). However, both the constraints and heuris-

tics must be hand-crafted in a time and labor-intensive process. Furthermore, since the search space

for each placement pose is six-dimensional, the search process can be very time-consuming.

Strategies based on reinforcement learning formulate the packing problem as a Markov Decision

Process. In this formulation, the state usually encodes information about the objects inside the box

and the characteristics of the object to pack next, and the chosen action is the predicted position for

the next object. Since a position inside the container is a continuous 3-dimensional variable, many

methods discretize the volume into a grid where each element is a possible placement position [36].

This discretization is a balance of accuracy and complexity since better accuracy requires a smaller grid

size which drastically increases the number of grid elements.

To avoid this problem, in [34] the authors propose a new tree-based representation of the box and the

objects in it. The proposed approach is the first to consider a continuous solution space and achieves

superior performance. However, the approach considers only cuboid objects and requires the inclusion

of other components (namely Graph Attention Networks) to extract compact representations from the

tree representation.
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Once the problem has been formulated, DRL approaches will usually train a deep learning agent to

map the input state space into a target output space. This later generally encodes the action space,

and as such, the agent predicts a placement pose for the next object [34]. However, in [35] the input

to this deep neural network, represented in Figure 2.5, is a set of candidate placement poses for the

next object represented as potential future states of the box, and the output is an estimate of the quality

of each candidate. An advantage of this approach is a considerable reduction of the dimensions of the

input and output spaces, thus making the training process less complex.

Figure 2.5: Neural network deployed in [34] to estimate the quality of possible placement poses for an object. Image
adapted from [34].

Unlike the approaches described in this section, in this thesis we do not propose a solution for

predicting the placement pose of each object. However, we argue that the data we collect has the

potential to create a model with superior performance that can handle irregular objects and lead to a

safe positioning of all objects, regardless of their fragilities. As these data are collected on multiple

objects with different geometries and properties, they can be used to learn models for packing not just

cuboid objects but also irregular, non-convex objects. Furthermore, learning directly from humans can

circumvent the convergence difficulties exhibited when training a DRL agent on a large action space [36].

2.3.3 Complete System for Bin Packing Groceries

Recently, Y. Aquilina and M. A. Salib [37] proposed the first prototype for an automated checkout system.

The system, shown in Figure 2.6, consists of a conveyor belt that transports the client’s products towards
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the packing robot, which is equipped with a vacuum gripper. The products are picked by the gripper and

placed in a box.

Figure 2.6: First prototype for an automated supermarket checkout robot proposed by [37]. Image adapted
from [37].

In the experiments reported by the authors, the complete system took about 20 seconds to pack each

item, on average. For comparison, in our virtual reality experiments, the participants took 4 seconds to

pack each object, on average. The authors successfully showed that the concept of an integrated system

for this task was feasible. However, there are important limitations to this system. For instance, although

it handles somewhat diverse objects, it requires that the objects are flat enough to be grasped by the

vacuum gripper. Furthermore, the system relies on prior information about the objects and also requires

that the objects are labeled with a large bar code visible from above. Finally, the packing algorithm only

considers object geometry and ignores other important characteristics such as fragility. Nevertheless,

the system was a successful proof-of-concept while highlighting that further developments are needed

in the field of bin packing to achieve an autonomous system that can be deployed in real-life situations.

2.4 Related Datasets

This section reviews public datasets that contain relevant data to the task addressed in this thesis. Un-

fortunately, there are very few datasets in that category. Perhaps most relevant is the dataset proposed

by Song S. et al. [38], which addresses grasping irregular objects in a scene that mimics an everyday

environment, such as a kitchen or an office. It consists of videos of eight participants performing pick-

and-place tasks in cluttered environments using the custom-made gripper shown in Figure 2.7, which is

similar to a robotic gripper.

The purpose of this custom-made gripper is to minimize the domain gap between the human demon-
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strations and the hardware that the robot will use when learning from these demonstrations. The videos

are annotated with the 6-DoF gripper trajectory (before the grasp and during the object manipulation),

6-DoF grasp pose, picking order, and object mask.

Figure 2.7: Custom-made gripper developed for data collection by [38]. The gripper is equipped with an RGB-D
camera and a servo motor for automatic finger closing. Image adapted from [38].

Although more encompassing than most robotic grasping datasets, this dataset is not related to bin

packing and as such does not include packing order nor placement inside a container. Additionally, since

these data are collected in a real environment, the videos are also not annotated with the objects’ pose

because pose estimation in a real environment is not trivial due to occlusions and fast movements.

Other research on the bin packing problem usually deploys reinforcement learning or heuristic-based

strategies and does not require annotated datasets [33–35]. Those that deploy supervised learning use

datasets that consist of industrial applications which generally consider cuboid objects and industrial

environments [27]. Consequently, these datasets cannot be deployed for our bin packing task.

This encouraged us to collect and make available a new dataset that collects data from humans

packing grocery objects into a container, which has not yet been done. Due to the aforementioned

difficulties in estimating an object’s pose in a real environment, this dataset is collected in VR. These

data are more diverse and encompassing than previous datasets, both in terms of participant diversity

and in the number of parameters that are recorded.
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This chapter provides a detailed description of the methods that play a key role in achieving the

thesis’s goals. Here we address tools such as Unity, used to create the virtual environment where all

experiments take place, and methods including Markov chains and sequential pattern mining algorithms

used to predict the object packing sequence from the data we collect. The chapter concludes by intro-

ducing relevant statistical tests used to measure the significance of our experimental results.

3.1 Virtual Reality as a Tool for Data Collection

The peculiar task of supermarket-like object packing has not yet been extensively explored in research.

As such, it is necessary to first collect data from expert demonstrations. Collecting these data will

inevitably require object classification and segmentation, grasp pose detection (which requires hand

tracking), pick and place pose detection, and finally object tracking to save the trajectory of each object.

Collecting all these variables in a real environment would require multiple complex systems, similar

to [38]. These issues can be circumvented by collecting the data in Virtual Reality (VR) since the exact

value for each variable is always known. However, VR is not devoid of its limitations. Section 4.1.3

provides a thorough analysis of the limitations introduced by this technology and explains why they are

neglectable.

The real-time development platform Unity [39] plays a key role in achieving this, as it is the chosen

platform to develop all of the virtual reality components and experiments of this thesis. It enables the

development of a 3D virtual world that can be compiled and tested in real-time and provides the flexi-

bility to implement custom functionalities. This section provides a brief overview of some of Unity’s core

functionalities, which are useful for this thesis and possibly for other projects involving human-object

interactions. Note that the following analysis is merely an introductory overview since an in-depth expla-

nation is outside the scope of this document.

3.1.1 Bypassing Object Trackers and Pose Estimators

As previously mentioned, many of the disadvantages and challenges associated with tracking human-

robot and human-object interactions in real life can be overcome by analyzing them in a simulated

environment. This is mainly because the ground truth pose of all items in the virtual environment is

known at every instance.

If the environment is developed in Unity, then each object will have its pose available for access

at any instance. More specifically, every pose is specified with respect to the origin reference frame

automatically defined by Unity at the center of the environment. A peculiar aspect of Unity’s coordinate

frames is that the Y-axis points up. For each object the developer can access every property needed to
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define its state in the environment. These include position, orientation, linear and angular velocity, and

more.

Some of these properties are easily accessible and modifiable through the graphical editor as shown

in Figure 3.1. However, the straightforward access to all properties that Unity provides through scripting

is perhaps more useful. All objects in the virtual environment can be attached with custom scripts that will

be able to access their properties and modify how the objects behave in the environment. Through this

functionality it is possible to access and record an object’s pose, for instance, at any desired sampling

rate. Note though, that this rate is always constrained to the refresh rate of Unity’s physics engine, which

can be customized within the capabilities of the machine on which the environment is being deployed.

Figure 3.1: A screenshot of the Unity Editor displaying, on the right side of the figure, the current position, orienta-
tion, and more properties of an object (the virtual gripper, in this case).

3.1.2 Physics Engine

Perhaps one of the most fundamental components is Unity’s physics engine, which drastically simplifies

the setup of a simple virtual environment that feels mostly real to the user. Unity uses NVIDIA PhysX [40]

as its 3D physics engine and provides multiple customization features. This integration automatically

detects collisions and simulates gravity, friction, and other physical aspects of the virtual scene with

minimal user input.

One key aspect is parenting objects to other objects. This enables the creation of complex objects

that are composed of multiple parts but behave as a whole. This can be especially useful to create

objects with moving parts, such as the virtual gripper.

To obtain realistic object behavior, Unity provides the option to configure objects as rigid bodies. This
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assigns the object multiple physical properties, namely a mass, drag coefficients, and more. Adequate

configuration of each rigid body’s properties is important to achieve realistic object interactions, a key

aspect when performing experiments that analyze how humans manipulate different objects.

However, configuring an object as a rigid body does not provide it with the capability of colliding with

other objects. To enable collisions, each object must have its own collider. In Unity, a collider specifies

to the physics engine what the object’s boundaries are, such that the engine knows where to search for

collisions. Thus, collisions are detected between two colliders and not between two object meshes.

Unity provides only a few basic shape colliders which are the box, sphere, and capsule colliders. It

also provides a collider for complex shapes, which is the mesh collider. However this will approximate

the object mesh with a convex hull composed of, at most, 255 triangles, and this collider will also lead to

a significant increase in computation overhead. Another option is to approximate an object with multiple

basic colliders, as illustrated in Figure 3.2. This often leads to faster performance at the cost of accuracy

in collision detection. In this work, both solutions are deployed since objects whose shapes are roughly

convex can be approximated with a mesh collider, but non-convex objects require multiple basic colliders.

Figure 3.2: An example of a simplified compound object collider. In this example, the shape of the banana is
approximated with multiple capsule colliders, which are shown in green lines.

3.2 Sequential Pattern Mining

Data mining is a multidisciplinary field that seeks to uncover patterns, irregularities, or other forms of

knowledge from large datasets by deploying different methodologies mainly from machine learning and

statistics. Contained within this broad field is the subfield of sequential pattern mining. Methods in this

research area address the task of extracting meaningful patterns or rules from ordered sequential data

such as time series of stock trading activity or DNA and protein sequences. An important advantage

of these methods over more recent deep learning approaches is that they generate models and rules

that are easy to interpret. On the other hand, deep learning approaches benefit from large datasets and

generally achieve better performance [41].

This section considers as a running example basket analysis - the task of extracting sets of objects

frequently bought together from a dataset of multiple baskets. This problem actually belongs to the field
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of frequent itemset mining, which is essentially identical to SPM except that there is no order in the lists

of items. The reason for using it as an example is that a foundational algorithm for basket analysis, the

Apriori algorithm [20], introduced an important property that became an underlying motivation for many

of the algorithms in SPM [42]. This property is also an important piece of how we extract knowledge

from our dataset in this thesis.

Consider a supermarket owner who wants to optimize the positioning of the products in the store

to maximize purchases. A reasonable choice is to place items that are frequently bought together

physically close to each other. But how would the supermarket owner extract the sets of objects that

are most frequently bought together from the collection of client baskets? In some aspects, the goal is

similar to that of a principal component analysis: to extract the underlying components from these data

that explain the majority of customers’ shopping choices.

Consider as an example the collection of product baskets presented in Table 3.1. The brute-force

approach would be to search and store all possible combinations of two products in a basket, then of

three products, and so forth, and simply keep count of which combinations appear most often. This is

not just inelegant but also practically unfeasible since a simple basket containing 10 items would lead to

more than 1000 possible product combinations.

Table 3.1: Example of basket data used for the task of basket analysis.

Product basket

Client 1 Apple, banana, crackers, tuna can

Client 2 Rice, crackers, wine, cheese, potato

Client 3 Wine, onions, cheese

Client 4 Crackers, banana, wine

A simple and effective observation is that if a set of two products does not appear often in the basket

collection then any set of three products that contains this set of two products will also be rare, and thus,

irrelevant to the goal. Likewise, if a set of three objects does not occur often in the baskets, then all sets

of four items than contain this rare set of three items will also be unlikely. And so, instead of counting

all possible combinations of items, one could start by counting how often each item appears in the data

and determining which items are frequent. The next step would be to count all possible combinations

of two items while discarding those that include one of the rare items, which would drastically speed

up the search and reduce the memory complexity. This would be repeated until all combinations were

exhausted.

This observation is essentially the intuition behind the well-established Apriori algorithm [20] and

many algorithms in SPM [42]. The Apriori algorithm defines as support the probability of an item or

set of items appearing in the baskets. One of its key parameters is the minimum support, which is an
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adjustable threshold that defines what was informally referred to as ”not appearing often in the baskets”.

It is the minimum probability of occurring in each basket for a set of items to be considered relevant.

In the first iteration, the algorithm will traverse the database and keep track of all items and their

occurrence probabilities. Then the items with a support probability that is less than the minimum support

are discarded and the algorithm repeats the first step for sets of two items (ignoring the discarded items).

The pairs of items with a support probability that is less than the minimum support are discarded and

the process repeats until all possible sets of items have been discovered.

Consider the example basket data in Table 3.1 and suppose that we define as minimum support a

probability of 0.5, meaning that a set of products is relevant if it appears in, at least, half the baskets in

the dataset. During the first iteration the algorithm would produce the item count shown in Table 3.2.

Table 3.2: Output of the first iteration of the Apriori algorithm.

Item Apple Banana Crackers Tuna can Rice Wine Cheese Potato Onions

Count 1 2 3 1 1 3 2 1 1

Support

probability
0.25 0.5 0.75 0.25 0.25 0.75 0.5 0.25 0.25

In the second iteration of the algorithm, only the banana, crackers, wine, and cheese are considered.

The search would look for sets of two of these items that appear often in Table 3.1, such as the set

composed of wine and cheese. This process repeats until all possible sets of items have been extracted.

Once the frequent set mining stage of the algorithm is complete, the Apriori algorithm produces

patterns or association rules with the format ItemA ⇒ ItemB , which indicate that when ItemA appears,

then it is likely that ItemB will also occur. These rules are labeled with two metrics, confidence and lift.

The confidence is how likely ItemB is given that the customer chose ItemA. The lift of a rule is how

correlated the items in the rule are, and indicates how buying one of the items influences the possibility

of choosing the other.

Although the Apriori algorithm cannot be directly applied to the packing sequence prediction problem

since it does not consider the order of a list, the important property that it highlights and the concept of

minimum support are the basis of the approach that is proposed in this thesis. Since its introduction in

1994, other methods have been proposed that were based on it but introduced extensions to consider

the order of a list. Some of these methods, such as the SPADE algorithm [21], also improved the

efficiency of the search process, mainly by reducing the number of database scans that are required.
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3.3 Markov Chains

A Markov chain is a well-established mathematical framework that models stochastic sequential pro-

cesses. More specifically, it models processes where each change, or event, depends solely on the

current state of the system. This characteristic is known as the Markov property and essentially means

that the system has no memory of past events, and consequently, past events cannot influence future

changes to the system, only the present state can. Note that this discussion does not consider Variable-

order Markov Models (VMMs), which are an extension of Markov chains.

Let si define the state of the system at step i. The aforementioned property corresponds to

p(si+1|si, si−1, ..., s1) = p(si+1|si). (3.1)

As such, a Markov chain is simply described by the set of possible states and the probabilities of transi-

tioning from one state to another, as illustrated in Figure 3.3.

Figure 3.3: An example of a simple Markov chain with three states (A, B, and C), and corresponding transition
probabilities.

Its simplicity and effectiveness have made it a popular framework in modeling many systems where

the Markov property holds [43]. One notorious example is PageRank [44], developed in 1998 by Sergey

Brin and Larry Page which would later become the foundation of Google. This web-page ranking system

essentially considers each website as a node of a Markov chain and the links to these websites are the

transitions between nodes. This large Markov chain is then processed to infer which website is most

relevant.

However, the Markov property is not always applicable since only simple systems display memory-

less behavior. Yet many systems can be modeled under the simplifying assumption that they respect

this property when in reality they do not. One such example, which displays some resemblance to the

box packing task, is next word prediction where the goal is to predict the next word given a portion of a

sentence. The next word clearly depends on more than just the previous word, however by assuming

that as a simplification, the Markov property holds, a Markov chain can be learned to complete this task.
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It should be noted though, that this approach is an oversimplification of the task and would likely not

produce the most coherent sentences. Even so, it is useful to illustrate that some complex problems can

benefit from the simplification implied by the Markov property. For instance, in the context of this thesis’

goals, some aspects of the box packing task can be efficiently modeled under this assumption. One

example is predicting the packing sequence for a set of objects, which we address in Section 4.3.

3.4 Beam Search

Consider the following situation. There is a model trained to predict the optimal packing sequence for

a set of objects. In this simplistic example, consider also that there are only three different objects,

objA, objB , and objC . At each step the model predicts the likelihood of the next object in the packing

sequence as a probability distribution over the set of the three objects.

For instance, consider that there are four objects on a table that need to be packed, objA, objA, objB ,

and objC (note that there are two instances of objA). In the first step, the model predicts the probability

distribution in Table 3.3 for the first object in the sequence.

Table 3.3: Example probability distribution for the first element in the sequence.

Object objA objB objC

Probability 0.2 0.5 0.3

At this point, the sequence prediction algorithm would have to decide which object should be chosen

as the first element in the sequence. The obvious answer is to choose objB since it is the most likely. This

strategy is called greedy search since at each step the algorithm simply chooses the best element and

produces good results for very short sequences. However, as the sequence grows, choosing the best

element at each step will lead to suboptimal predictions. This is because each element is not isolated in

the sequence. Instead, the likelihood of a small sequence segment around an element depends on the

elements before it and after it.

This is the motivation for beam search. This search strategy considers multiple possible sequences at

each step. The only adjustable parameter is the beam width, which corresponds to how many sequence

hypotheses are maintained during the search. Its effectiveness is more easily demonstrated with an

example. Consider the situation illustrated in Figure 3.4, where we consider greedy search and beam

search with a beam width of 2. Each table represents the probability distribution over the set of objects

for the next element in the sequence.

In this situation, greedy search would choose as first element objB with a likelihood of 0.5, and then

choose objC as the second element in the sequence with a likelihood of 0.4. This sequence would then

have a total likelihood of 0.5× 0.4 = 0.2.
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Figure 3.4: Sequence prediction example.

On the other hand, beam search would maintain two possible sequences throughout the search

process. In the first step it would choose objB as the first element of the first sequence and objC as the

first element of the second sequence. Then, in the second step these would be extended with objC and

objA respectively. At this point, the most likely sequence would be chosen as the final prediction, which

is the second sequence composed by objC → objA, with a total likelihood of 0.3 × 0.8 = 0.24, which is

higher than the likelihood of the sequence returned by greedy search.

The superior performance of beam search over greedy search has made it the default choice for

the majority of tasks that involve natural language modeling. This dominance is also due to its cus-

tomizable trade-off between accuracy and performance. A higher value for the beam width parameter

increases computational cost and accuracy, whereas a smaller value reduces the computational cost

and approximates the greedy behavior.

When deploying beam search in a practical situation as the one described in Figure 3.4, some

issues may appear. For instance, the sequence prediction model provides a probability distribution over

the entire object set even though, at a certain step, one of the objects may not be available to pack.

The methodology proposed in Section 4.3.2 describes a possible approach to address these issues in

practice.

3.5 Statistical Analysis

This section briefly introduces important concepts and tests in statistics that are useful for analyzing

experimental results. In particular, the section introduces statistical tests that evaluate the difference of

a parameter in two populations, as well as the important concept of power analysis that analyzes the

impacts of the experimental design on the validity of ensuing results.
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3.5.1 Comparing Two Proportions

The two proportions Z-test is commonly used in statistical analysis to compare the proportion of a

parameter in two samples. The goal of this test is to infer if the difference in the sample proportions

is due to an actual effect in the populations from which the samples were taken. For instance, this test

can be used in a vaccine trial study to compare the proportion of people that were infected by the target

disease in the control group and in the treatment group.

Let the proportions of the target parameter in each population be defined as p1 and p2. This test

evaluates the null hypothesis

H0 : p1 = p2 (3.2)

against one of the following alternative hypotheses

H1 : p1 ̸= p2 (3.3)

H1 : p1 > p2 (3.4)

H1 : p1 < p2 . (3.5)

However, as with any Z-test, there is an underlying assumption that the distribution of the test statistic

can be approximated as a normal distribution. Since this assumption derives from the Central Limit

Theorem, a requirement for the applicability of these statistical tests is that the sample size is sufficiently

large.

In cases where the sample size is small, there are alternative statistical tests that can still be con-

sidered. One of the most popular is Fisher’s exact test [45], so called because it belongs to a subset of

tests that make no assumptions about the normality of the test statistic. Instead, these tests calculate

the probability of getting a result that is as extreme or more than our sample and hence provide the exact

test score.

Another alternative is Boschloo’s test [46] which has the advantage of more accurately rejecting the

null hypothesis when compared to Fisher’s test, and thus it is usually a better choice [47]. This test, also

part of the exact tests class, is very similar to Fisher’s test. In fact, it results from a small modification

of the latter that leads to a smaller chance of failing to reject the null hypothesis [46]. Since it derives

from Fisher’s test, Boschloo’s test also essentially determines the likelihood of obtaining an outcome as

extreme or more than our sample.

The hypotheses for this test are formulated as described in Equations (3.2) to (3.5) where the choice

of which alternative hypothesis is dependent on the characteristics of the problem. The p-value obtained

from the test will be compared to the significance level, α, to reject (or not) the null hypothesis. Although
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there is no universally accepted standard choice for the significance level, a common choice is to set it to

0.05 as this represents an adequate trade-off between the risk of incorrectly rejecting the null hypothesis

and the risk of not detecting a false null hypothesis [48].

3.5.2 Power Analysis

The significance level, α, is an important parameter of any statistical test. Intuitively, it encodes how sure

the experimenter can be in rejecting the null hypothesis. It is the probability of a type I error - rejecting

the null hypothesis when it is actually true. Thus, one may assume that the lower the significance level

the better.

However, there is a flip side to this assumption that is often overlooked, which is the statistical power

of a hypothesis test. For instance, most of the research in the field of human-robot interactions fails to

perform a power analysis [49]. Statistical power is related to the probability of type II errors - failing to

reject the null hypothesis when it is actually false. Statistical power is the probability of not incurring a

type II error. An underpowered study may report inconclusive results (did not reject the null hypothesis)

when in fact the effect is present in the population.

The flip side of lowering the significance level is that the power of an analysis is correlated with it.

Thus, reducing the probability of a type I error increases the probability of a type II error. Hence, as

highlighted in [49], conducting a power analysis is important to obtain more insights into the validity of

the conclusions of a statistical test. Furthermore, such an analysis can also be used prior to collecting

the samples to verify if the projected sample size is large enough to obtain sufficient power.

Power calculation is dependent on the hypothesis test, however graphical interfaces are available

that automate the process, such as G*Power [50]. It is common to consider a power of 80% or more

acceptable and a significance level of 5%, as suggested by Cohen [48].

3.5.3 Effect Size

Even if a test has an appropriate power and significance level, and is able to reject the null hypothesis, its

results may still be insignificant. This can occur because a hypothesis test does not test for a significant

difference, but rather for any difference. In other words, statistical tests can correctly identify an effect in

the populations but this does not mean that the effect is significant, only that it exists.

Because of this fact, there is a separate measure of significance: the effect size. It measures the

significance of a result on a normalized scale that is independent of the quantities in the study. There

are multiple measures of this effect size, but a common choice for evaluating the difference between two
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proportions is Cohen’s H [48]. Given a proportion p, one defines its arcsine transformation, φ, as

φ = arcsin(
√
p). (3.6)

The effect size measured by Cohen’s H, represented as h, is then given by

h = |φ1 − φ2|, (3.7)

where φ1 and φ2 are the arcsine transformations of the proportions of the target parameter in each

population.

Cohen [48] provides the following interpretation of this effect size:

• h = 0.2 indicates a small effect size.

• h = 0.5 indicates a medium effect size.

• h = 0.8 indicates a large effect size.

In conclusion, one can be confident that there is a significant effect when conducting a hypothesis

test if the test has an adequate significance level and statistical power, as well as an effect size that

reveals an important effect. Even under these conditions, one must not forget that the results from such

a statistical analysis are not guaranteed, but rather only likely.
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This chapter is divided into three main sections. The first one presents the virtual environment used

for the packing demonstrations and the technical details of the data that we collect from it. The second

section analyses the actual data, for instance, the number of participants and general statistics. Finally,

the last section presents how we use these data to predict the packing sequence for a set of objects.

4.1 Real Data From a Virtual World

This section describes the virtual environment that we created to collect the demonstrations of human

experts performing the bin packing task. Furthermore, we discuss its limitations and detail what data

are collected and how they are stored.

4.1.1 The Virtual Environment

Due to the advantages highlighted in Section 3.1, we create a virtual environment in Unity [39], illustrated

in Figure 4.1(a), to collect data from humans performing the bin packing task. This environment consists

of a circular area where the user is free to move and a table in its center. The table is where the task

takes place: the user should pack the objects on the table into a box.

For each demonstration1, the objects are a random subset of the entire object collection illustrated

in Figure 4.1(b), generated such that the total sum of each object’s bounding box volume is between

70% to 90% of the box volume. This is to ensure that the task is not trivially solved, forcing the user

to carefully plan the placement of each object. In some scenes we allow repeated objects whereas in

others we enforce that there is, at most, one instance of each object. This ensures that the dataset

contains examples of all possible scenarios. At the start of each demonstration, all objects are spread

out on the table to ensure that the participant can see and grasp all objects. Out of the 24 different

objects, the majority were chosen from the YCB dataset [51] and the others were obtained from public

object model platforms.

The participants interact with the virtual world via the physical controller. The position and orientation

of the controller are mimicked by the virtual gripper and a pressure-sensing button controls the closing

and opening of the virtual gripper’s fingers, as shown in Figure 4.2. The objects are configured as rigid

bodies with colliders, which means that they are affected by gravity and friction, and can collide with

other objects.

1A video of the author of this thesis performing the packing task can be found here https://youtu.be/TUd-eCDG5i8
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(a) (b)

Figure 4.1: (a) Virtual environment created in Unity for data collection. (b) Collection of objects used in the experi-
ments.

(a) (b)

Figure 4.2: Illustration of how the virtual gripper, shown in (b), is operated with the physical controller shown in (a).

When a participant grasps an object it is rigidly attached to the gripper and the relative pose between

the gripper and the object is maintained during the manipulation until the object is released. Ideally, this

would not occur and instead, the grasping would be based on the friction between the gripper and the

object, and on the forces that are being applied. However, all approaches to achieve such a physics-

based grasping with Unity’s simplified friction physics failed during the development of the environment.

Another limitation of the physics in the virtual environment which we also addressed is the lack of

feedback of forces and contacts. Since the user does not feel contact forces when the gripper collides

with an object, it is more difficult to accurately perceive if the gripper will hit an object or the box during

a manipulation. Consequently, we verified that the participants would accidentally collide with objects

that they had already packed into the box when placing another object. Often this would lead to the
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displacement of the objects inside the box. To prevent this, we give haptic feedback through the physical

controller whenever the virtual gripper collides with an element in the virtual environment. Furthermore,

we also disable collisions between the gripper and the objects when the user is packing an object inside

the container. This helps ensure that the objects stay in their original positions inside the box after being

packed.

Before each demonstration, the participants are shown how to operate the physical controller, the

purpose of the task, and were asked to behave as realistically as possible. Particular emphasis was

given to considering the objects’ fragilities since this property is not present in the virtual environment

but must be considered when stacking objects on top of each other. For instance, the bleach cleanser,

a hard-plastic bottle, is less fragile than a small strawberry.

4.1.2 The Data

Since the data includes 6-DoF poses of the gripper and objects, one must first establish the relevant

world and local reference frames. The world reference frame is oriented according to Unity’s standards:

the Y axis points up and the X and Z axes are an orthogonal basis of the ground plane, as illustrated

in Figure 4.3(a). The gripper reference frame is presented in Figure 4.3(b). Furthermore, each object

has its own local reference frame which is defined by its mesh file and the placement box also has a

reference frame with normalized coordinates, as illustrated in Figure 4.4.

(a) (b)

Figure 4.3: (a) Virtual world reference frame. (b) Gripper reference frame.

All data is saved with the JSON format [52] (apart from images), to enable cross-platform and cross-

language compatibility. Each participant is attributed a unique integer identifier and performs the packing

task for multiple scenes. For each scene, the following data is recorded and structured in separate files,

as summarized in Table 4.1.
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Figure 4.4: Reference frame of the box used to pack objects. The coordinates are normalized.

Table 4.1: Overview of the contents of the dataset and its file structure.

Parameter File name Format Description

Grasp Pose PickPlace dataset JSON 6-DoF grasp pose

Placement Pose PickPlace dataset JSON
6-DoF placement pose

inside the box

Packing Sequence PickPlace dataset JSON
Sequence in which the

objects were packed

Object Trajectory <obj id> trajectory JSON

Trajectory of the object

from the table to the box,

sampled at 20 Hz

Headset Trajectory main camera trajectory JSON

Trajectory of the headset

during the experiment,

sampled at 20 Hz

Objects in Scene initial objects JSON
List of objects and their poses

at the start of each scene

Top-Down View top down PNG
Top-down image of the

initial layout of the objects

The file PickPlace dataset.json contains the sequence in which the objects were picked up from the

table and placed inside the box, as well as the corresponding grasp poses. It has the following fields:

• Object identifier: the object’s name, number, and unique ID (needed to distinguish between

multiple copies of the same object). Eg: 003 cracker box-01234
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• Pick translation: a 3-dimensional vector with the translation from the object’s reference frame to

the gripper reference frame, upon grasping the object.

• Pick rotation: a 3x3 rotation matrix that represents the orientation of the gripper w.r.t. the object’s

reference frame, upon grasping the object.

• Place translation: a 3-dimensional vector with the coordinates of where the object was placed

inside the box, normalized to [−1, 1] for the width and length dimensions and [0, 1] for the height

dimension, according to the reference frame in Figure 4.4.

• Place rotation: a 3x3 rotation matrix that represents the orientation in which the object was

placed inside the box, w.r.t. the world reference frame.

An example of a grasp pose saved in the dataset is presented in Figure 4.5.

Figure 4.5: An illustration of a grasp pose (both translation and rotation). The semi-transparent gripper was posi-
tioned according to the collected data.

The file <object id> trajectory.json (where <object id>is the object’s identifier) contains the trajec-

tory of the corresponding object, as visualized in Figure 4.6. The trajectories are sampled at 20 Hz for

computational efficiency and also because practical tests showed that 20 Hz is a sufficient sampling

frequency for human motion in VR. This file contains the following parameters for each sampled pose:

• Timestamp of the sample.

• Object translation: a 3-dimensional vector with the translation from the world reference frame to

the object’s reference frame.

• Object rotation: a 3x3 rotation matrix that represents the orientation of the object w.r.t. the world

reference frame.

The file top-down.png is a top-down view of the initial layout of the objects on the table, captured

from a secondary camera. An example image is presented in Figure 4.7.
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Figure 4.6: An example object trajectory recorded during a demonstration. One semi-transparent copy of the target
object was spawned at each recorded pose.

Figure 4.7: An example top-down view of the initial layout of the objects on the table.

The reason for recording all these variables is that, if necessary, it would be possible to replay each

experiment and record additional parameters or different representations of the data. In other words,

by recording all the essential task parameters we ensure that each demonstration can be accurately

replayed to extract different parameters or representations, such as a top-down or first-person video of

the demonstrations. Inevitably, the dataset does not capture all possible parameters of the task. For

instance, the dataset does not collect the participant’s eye gaze or grasping force.

4.1.3 Assumptions and Limitations

Although this dataset attempts to be as general-purpose as possible, some underlying assumptions
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must be clarified. Some of these are derived from the goal of the thesis while others are simplifying

assumptions so that the dataset could be collected within a limited period of time. This dataset assumes

that:

• All items are initially spread out on the table with no overlap. This is to ensure that all items

can be picked up in any order since the goal is to learn the packing sequence, which would be

influenced by overlaps and unreachable objects.

• All items can be grasped with the virtual gripper in, at least, one grasping pose. This means that

larger items, such as a large cube-like object, are not considered.

• The participants can accurately estimate the fragility of an object from observation only since

this property cannot be simulated in VR. This is a reasonable assumption since all the objects

are common objects that the participants were already familiar with.

Furthermore, Unity’s physics engine introduces some limitations as it is optimized for speed and not

for the most realistic behavior (it is primarily a game engine and not a physics simulator, hence the

trade-off). As such, there are some aspects that should be considered when using these data.

Firstly, simulation data is always different from real data [53]. Depending on the type of data, this

can be an important factor to consider. In the data we collect, this Simulation-to-Reality (Sim2Real) gap

is most evident in the unrealistic appearance of the objects. This would be a limiting factor for directly

using the images obtained in VR to train a neural network, for instance. However this is not a critical

issue since we collect all the necessary parameters to replicate a demonstration in a more realistic

simulator, such as Blender [54]. This would allow the collection of photo-real images of any portion of

the demonstrations.

Secondly, there is also the possibility of unnatural object manipulation due to the lack of feedback to

the user. In other words, the lack of feedback on weight, texture, and other important physical properties

may affect how the participants manipulate objects. However, during the experiments the participants

reported that the virtual reality interface was realistic and intuitive to use. As such, the object manipula-

tions should mostly resemble real object manipulations.

Finally, Unity’s approximate collision handling system may introduce artifacts in the interactions be-

tween objects. As reviewed in Section 3.1, Unity uses colliders to detect collisions between objects

and not the actual object mesh. To recall, these colliders can have one of a few primitive shapes (box,

sphere, capsule) or they can be a convex mesh collider which approximates objects with a convex polyg-

onal hull. This not only limits the types of objects that can be used but can also lead to an imperfect

detection of the grasp width, which is the distance between the gripper’s fingers upon grasping an object.

This occurs because contact points are detected between the gripper and the object’s colliders, not the

actual object mesh. An example of the approximation considered by an object’s colliders is shown in

Figure 4.8. Because of these differences, we do not record the grasp width since, for some objects, it
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would not correspond to the real grasp width.

Figure 4.8: An example object and its convex mesh collider (in green) for which there is a clear difference between
the actual object shape and the approximated object collider.

4.2 Unpacking the Dataset

This section presents a statistical analysis of the collected data2. More specifically, the section includes

general statistics on the participants, details about the duration of each experiment and its difficulty, and

an analysis of particular aspects of the task such as placement poses.

4.2.1 General Statistics and Task Duration

The experiments were conducted using an HTC Vive Pro headset, totaling 75 experiments and 43

different participants (some participants volunteered for the experiment more than once, hence why

the number of experiments is larger than the number of participants). Their ages were approximately

comprised in the interval of 20 to 65 years old. Recall that in each experiment the participant repeats the

task multiple times and that for simplicity, we denote each box packing as a scene. In total the dataset

contains 263 scenes, or in other words, 263 boxes were packed by the participants. This corresponds

to 4644 grasp poses and object placements, which on average corresponds to 194 manipulations per

object.

2The dataset can be accessed here https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#BoxED
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By plotting a histogram of each scene’s duration, presented in Figure 4.9(a), we observe that it

approximates a gamma distribution with an average duration of 1 minute and 17 seconds, and a standard

deviation of 36 seconds. Furthermore, a plot of each scene’s duration as a function of the corresponding

number of objects in it is presented in Figure 4.9(b). The pink line in this figure was obtained with a

standard least-squares linear regression and indicates that, on average, each object adds 4 seconds to

the task’s duration. This result is according to what was expected since the difficulty of the task naturally

increases with the number of objects that need to be packed.

(a) (b)

Figure 4.9: (a) Histogram of all scenes’ durations. (b) Duration of each scene as a function of the number of objects.
The pink line was obtained with a linear regression.

4.2.2 Placement Poses

Analyzing the placement poses is not trivial since they are six-dimensional variables. Thus, for better

visualization the following analysis considers separately its two components: position and orientation.

To detect frequent patterns in the positioning of different objects inside the box, Figure 4.11 shows

a plot of the placement positions for three different objects, in a top-down view. In other words, this plot

ignores the height of the placement and considers only the horizontal coordinates inside the box. The

three objects are a strawberry, a pudding box (a medium-size cardboard box), and a bleach cleanser, all

shown in Figure 4.10.

Figure 4.11(a) reveals that the strawberry is placed uniformly throughout the box, however the av-

erage placement is closer to the side of the box closest to the participant. This occurs because the

strawberry is one of the most fragile items and so participants tended to pack it only after all other ob-

jects, confirming that the participants considered the objects’ fragilities during the task. In contrast, both
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the pudding box and the bleach cleanser have a very uneven distribution. It is clear that they are gener-

ally placed along the edges of the box and further away from the participant. This is likely a strategy that

most participants intuitively adopted due to two factors. Firstly, to optimize the available space inside

the box, and secondly because large objects would become an obstacle for the task if they were placed

closer to the participant since they would obstruct subsequent placements.

(a) (b) (c)

Figure 4.10: Objects considered in the placement pose analysis: (a) strawberry, (b) pudding box, and (c) bleach
cleanser.

(a) (b) (c)

Figure 4.11: Placement positions inside the box of three objects, from a top-down view. The larger pink circle is the
average position and each dashed line is the standard deviation along the corresponding axis. The
objects are (a) strawberry, (b) pudding box, and (c) bleach cleanser.

A similar strategy can be used to analyze the orientation, except in this case, the three angles that
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compose it - the rotations around each axis - are visualized independently of the others. This analysis

is conducted for the same three objects and presented in Figure 4.12.

(a) (b) (c)

Figure 4.12: Placement orientations inside the box of three objects, where each line segment corresponds to one
placement. The objects are (a) strawberry, (b) pudding box, and (c) bleach cleaner.

The visualization presented in Figure 4.12 reveals, once again, distinctive patterns for each object.

For instance, the strawberry’s placement rotations shown in Figure 4.12(a) have near uniform distribution

around the Z axis. This is a consequence of the strawberry’s lack of symmetry around this axis, which

consequently means that it can be safely placed in any orientation around it. On the other hand, the

bleach cleanser presents a very skewed distribution around the Y axis (which in Unity points up). This

is a consequence of its symmetric shape which leads participants to frequently place it aligned with the

edges of the box.

This analysis of the placement poses reemphasizes the vast implicit knowledge humans use to pack

a box with groceries and motivates our approach of learning these patterns from the data rather than

relying on hand-designed rules or constraints.

4.2.3 Object Packing Sequences

Another differentiating factor of BoxED is that it contains 263 packing sequences. Each of these is an

ordered sequence of object names that describe the order in which the objects were placed inside the

box. For instance, the sequence

bleach cleanser → sugar box→ bread→ toothpaste
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indicates that 4 objects were packed, starting with the bleach cleanser and ending with the toothpaste.

This order depends on multiple factors, including the objects that need to be packed and how they

are placed inside the box. This last factor refers to how the sequence will change depending on whether

the participants pack the box in an orderly manner (i.e., starting on one side of the box and progressively

placing objects until the box is full) or just place the objects randomly inside the box. The latter scenario

would render these sequences mostly useless since they would contain no information about the final

layout of the objects inside the box.

To prevent this, the participants were asked to pack the box orderly from one side of the box until

reaching the other. The intuition behind this request is that if an object A, objA, is placed after another

object B, objB , then it is likely that objA is stacked on top of objB , and consequently objA is likely more

fragile than objB . This means that from modeling the sequences alone one can extract some information

on how to place the objects, as we demonstrate in the next section.

4.3 Predicting the Packing Sequence

This section describes how we learn to predict the packing sequences from our human demonstrations

dataset. Furthermore, this section will also describe how we test and validate our model.

4.3.1 Learning the Packing Sequence Prediction Model

As highlighted in Section 2.1, many methods exploit Markov chains and their extension, Markov Decision

Processes, as the core of their strategies to learn from demonstrations. The popularity of this model

stems from its simplicity and from not requiring large amounts of data to train. Generally, the state

encodes relevant information about the target environment and agent (a game, a robotic arm, etc.) at

each instant, and the agent’s actions cause state transitions. Here we show how a Markov chain can be

used to model the packing sequences.

When attempting to model the packing sequences in BoxED, a logical first step is to apply a se-

quential pattern mining algorithm. Such an algorithm will extract frequent patterns from the packing

sequences and their associated probabilities. For simplicity, we can consider only the patterns with two

objects. An example of one of these outputs could be the pattern cracker box → sugar box, along with

the associated conditional probability, p(sugar box|cracker box). An interesting remark appears when

this output is compared to the formulation of a Markov chain: they are the same.

The patterns and associated probabilities mined from the packing sequences naturally formulate

a Markov chain when joined together. This chain’s complexity is limited due to the assumptions that

underlie this formulation:
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1. The choice of what object to pack next depends only on the last object. This is a consequence

of only considering the mined patterns that have two objects.

2. The aforementioned choice does not depend on the pose of the last object. This derives from

analyzing the packing sequences independently from the placement poses.

Also, note that this formulation ignores the restrictions imposed by what objects are still available to

pack. However, as we will show later in this section, this issue can be addressed when sampling the

Markov chain. As a consequence of these assumptions, the state is reduced to the name of the last

packed object and transitioning to a new state corresponds to packing another object. To the reader

this may seem an oversimplification of the problem. In fact, when deciding what object to pack next, an

individual will likely take into account the last few objects that were packed (not just the last one), their

disposition inside the box, and the objects that remain unpacked. Yet we show in the remaining of this

section that accurate results can be obtained with this formulation.

To formalize this model, let O = {objA, objB , ...} be the set of all objects. We define S = {<start>,O}

as the set of all possible states, where at each instant the state indicates what object was packed last,

and the state <start> indicates that no object was packed inside the box yet. Each transition probability,

from an object objA to objB , is represented by the conditional P (objB | objA) and indicates the likelihood

of placing objB after placing objA.

Furthermore, we need to estimate the transition probabilities. Recall from Section 4.2.3 that partici-

pants were asked to pack the box orderly, such that if an object ”A” is placed after object ”B”, then ”A” is

likely stacked on top of ”B”, or at least is next to it. However this is not true for all pairs of objects in the

sequences, and so we need to extract only the meaningful patterns in the dataset.

This is precisely why SPM algorithms are useful for this task: they enable extracting meaningful

patterns from the sequences. We extract the pairs of objects that appear in the sequences with a

frequency above an adjustable threshold similarly to the first two iterations of the algorithms described

in Section 3.2: first analyze and prune individual objects, and then repeat for pairs of objects. At the end

of each step, the sets of objects whose support (probability of appearing in a sequence in the dataset)

is smaller than the threshold are discarded. For instance, if the pair strawberry → tuna can appears in

only 1% of all sequences, then it is not significant and can be discarded.

The adjustable threshold controls how sensitive the model is to the transitions in the dataset. A higher

threshold retains only the most frequent transitions whereas a lower threshold retains more transitions

and produces a Markov chain that is more densely connected, at the cost of including transitions that

may be irrelevant. This trade-off is illustrated in Figure 4.13.

The impact of the threshold is clear and can even lead to multiple disconnected chains as seen in

Figure 4.13(a). This threshold was adjusted to satisfy the following guidelines:

1. It should be small enough to include at least one transition for each object in the object set O.
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Otherwise, the sequence prediction would fail to pack all objects.

2. It should be large enough to minimize loops in the chain, in order to maintain a hierarchical

top-down structure.

(a) (b)

Figure 4.13: Influence of the minimum frequency threshold on the number of transitions extracted from the data.
In these examples, the thresholds are (a) 0.01 or 1%, and (b) 0.05 or 5%. Note that the text in these
figures is small since the purpose is to analyze the shape of the chains and not individual nodes.

After a trial-and-error analysis, a threshold value of 0.032, or 3.2%, satisfied these criteria. One final

minor adjustment is necessary: since we only select the frequent pairs of objects, some transitions are

discarded and thus we need to normalize the remaining transitions’ probabilities. This ensures that the

total sum of the probabilities of the transitions starting from each node is 1.

Having obtained the relevant transitions and their normalized probabilities, we can instantiate our

Markov model. It could be visualized as a simple table of transition probabilities between different states.

However, this would not be very intuitive. Instead, using the graph visualization toolbox PyGraphviz [55]

we are able to plot the complete Markov chain in an easily interpretable format. The resulting Markov

chain is presented in Figure 4.14.

Remarkably, this Markov chain captures precisely what was desired even though we considered

simplifying assumptions. Larger and more robust objects are placed first, followed by smaller and more

fragile objects. For instance, the topmost object is the cracker box, which is the largest object in the

dataset and was usually the first one to be placed inside the box by the participants. On the other hand,

the bread and the toothbrush are the bottommost objects since they are the most fragile and smallest,

respectively.
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Figure 4.14: A Markov chain modeling the object packing sequence. Each node corresponds to a state and the
numbers on the transition arrows are the corresponding probabilities. This chain was obtained with a
threshold value of 0.032 or 3.2%.
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Furthermore, all transitions correspond to objects that could be stacked, one on top of the other,

safely and stably, or correspond to pairs of objects that were frequently placed together, side-by-side.

The chain does not contain illogical transitions, such as placing a heavy object on top of a fragile object

(for instance, strawberry → tuna can). Finally, this plot shows that the sensitivity threshold in the pattern

mining step was successfully adjusted such that all objects are included in the model and there are very

few loops.

4.3.2 Predicting a Packing Sequence with a Modified Beam Search

Regardless of how well the Markov model captures the packing patterns and strategies that humans

use, it is of no use without an adequate sampling mechanism. As such, this section discusses how we

generate a packing sequence prediction from our model.

As discussed in Section 3.4, when sampling from stochastic models beam search generally provides

better sampling than naive approaches such as greedy search. Other strategies as epsilon greedy

search could also be deployed to introduce more fluidity or randomness to our rigid model. However, we

choose to test beam search as our first approach. As the title of this section indicates, we don’t use a

standard beam search, rather we introduce some modifications to adjust it to models such as ours.

Recall that in each scene the set of objects that need to be packed is a random subset of all objects,

and consequently, some objects in the Markov chain may be unavailable. This is different from the text

generation task, for instance, where the models output a probability distribution over a fixed dictionary

of words at each step. In this case, standard beam search cannot be applied since the search must be

restricted to only the objects that weren’t packed yet. This not only restricts what child nodes can be

considered during the search, but it also creates the peculiar situation illustrated in Figure 4.15.

If a node has no possible child nodes for a set of objects that were not yet packed, it may still have a

transition to a valid grandchild node. By grandchild node we denote all nodes reachable from the current

node with two or more transitions. For instance, during the search the node bleach cleanser may have

no valid children but it may have a valid transition to the masterchef can through the tomato soup can.

As a consequence, when sampling a sequence the algorithm must search all the child and grandchild

nodes of the current node.

This can make the search process very slow because the algorithm would need to search through

a large portion of the chain to find valid transitions for each node. As such a modification is needed to

optimize the sampling algorithm. The key observation of our solution is that the Markov chain is static -

it never changes. Because of this, we can build a table of all possible transitions for each object before

executing the algorithm. These tables can then be stored along with the Markov chain.

For each state in S (the set of all states), we store all possible transitions in levels. The first level con-
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tains the transitions to direct child nodes - those that require only one step. The second level contains

the transitions to the grandchild nodes that require two steps, and so forth. For instance, considering Fig-

ure 4.15, the bleach cleanser node would have a table with the mustard bottle and the tomato soup can

in the first level, and the masterchef can in the second level. This is essentially a more detailed (and

redundant) description of our Markov chain. The original chain contains only the transitions to the child

nodes for each state - the minimum amount of information needed to store the chain. This new, multi-

table representation contains all the transitions for all states. This increases the algorithm’s memory

complexity but makes it much faster.

Figure 4.15: Example situation that illustrates that even when all child nodes are invalid, there may still be a valid
transition that requires more than one step.

Furthermore, one more change to the standard beam search is required. During the search process

we consider that a sequence is complete when it reaches a leaf node - a node that has no more valid

transitions. But consider the following situation: as the beam search progresses with a beam width of 2,

for simplicity, the state of both beams - called BeamA and BeamB - is

BeamA : <start>→ cracker box → sugar box

BeamB : <start>→ bleach cleanser → mustard bottle,

whose respective likelihoods are, approximately, 0.12 and 0.06. Consider also that besides the objects

in each beam, there is only one more object left to pack: a potted meat can. In the following search

iteration, this object can be added to BeamA reducing its likelihood to 0.01, but not to BeamB as there

is no transition from the mustard bottle to it.

If, at the end of this iteration, the algorithm needs to discard one of these updated beams (to replace it

with a better option), which one should be discarded? Both beams are valid predictions but if the search

considers only the likelihood of a sequence then it will inevitably be biased toward shorter sequences
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that have higher probabilities. This effect, in conjunction with the first change we made, would encourage

the algorithm to find sequences that reach a leaf node with the smallest length possible.

Thus, we must introduce a preference for longer sequences to the detriment of complete sequences.

In practice this can be accomplished with two additions:

1. During the search process, choose sequences that can still expand to more nodes to the detri-

ment of sequences that have already reached a leaf node.

2. Enforce that transitions to a new node are as small as possible. In other words, start by search-

ing for a valid state in the first level of our new representation. If none are found, proceed to the

second level, and so forth.

The final search algorithm is presented in Algorithm 4.1.

Algorithm 4.1: Modified beam search algorithm used to sample a sequence prediction from
our model.
1 beam width← 5;
2 transitions← load level representation of Markov chain;
3 unpacked← list of unpacked objects ; /* Obtained from the virtual environment */

4 open list← initial beam with <start> state ; /* Contains active search beams */

5 while not exhausted all transitions for all beams in open list do
6 cur transition level← 1 ; /* Transition level to search in */

7 while at least one beam in open list has transitions for cur transition level do
8 foreach beam in open list do
9 if transitions has valid child states for this beam and cur transition level then

10 open list +=

GenerateNewBeams(beam, transitions[beam][cur transition level]);
11 remove beam from open list;

12 if at least one beam was extended then
13 sort open list according to beam probability;
14 keep top beam width beams and delete the others;
15 break;
16 else
17 cur transition level ++;

18 return most likely beam in open list ; /* All valid transitions have been exhausted */

In this implementation we defined the beam width to be 5, meaning that the search maintains the

top 5 most likely beams between each iteration. In line 2 we load the new representation of the model,

which contains all possible transitions for each state, sorted by level number. The algorithm will exhaust

all possible transitions before returning the most likely sequence. In each iteration beginning at line 6,

the algorithm will iteratively search, for each beam and for the current transition level, if there are valid

transitions, prioritizing small step transitions. In lines 12-15 the standard beam search is implemented.

49



4.3.3 Evaluating the Model’s Performance

Now that an appropriate sampling mechanism has been implemented, this section focuses on describing

how to test the sampled sequences. The main challenge lies in the fact that, for a given set of objects,

there are numerous valid packing sequences. Depending on how the objects are placed inside the box,

two distinct sequences can lead to an equally efficient packing. This dependency on object placement

makes evaluating a sequence very difficult without actually placing the objects inside the box.

Ideally, we would use a method to predict an adequate pose for each object and carry out the box

packing, either in simulation or with a robot. In the end, a measure of the sequence prediction’s per-

formance could be how efficiently the objects had been packed inside the box. However, currently no

method is able to match a human’s efficiency at packing objects in a container. Furthermore, if the

sequence prediction model is learned from human behavior, then the placement pose prediction should

also be human-like to ensure compatibility between the two models. Thus instead of a placement pose

prediction method, we decide to have a human pack the objects in the box.

Drawing some inspiration from the Turing test in which a human evaluator must distinguish between

human or computer generated text responses, we develop a new virtual environment to test the se-

quence prediction model. This new environment is visually identical to the environment used to collect

BoxED, shown in Figure 4.1(a). The objects still appear spread out on top of the table, the participants

interact with the environment as before, and the goal is the same: pack all objects inside the box.

However, the participant no longer chooses the order in which the objects are packed. Instead, the

sequence is indicated by highlighting what object should be placed next. Some of the sequences are

real sequences that we collected in the first part of our work whereas the others are generated by the

computer. At the end of each scene (i.e., after packing all objects), the experimenter asks the partic-

ipant if the sequence was a real sequence executed by a human or a computer generated sequence.

The participants answer ”real sequence” if they felt that the sequence was human-like and logical, or

”computer generated” otherwise.

There are four types of sequences:

1. Real: sequences generated by participants during the data-collecting experiments. These are

randomly selected from BoxED.

2. Random: given the subset of objects on the table, a packing sequence is randomly generated.

3. Beam-N: sample a sequence prediction using the modified beam search algorithm described in

the previous section, Section 4.3.2. In this case, no limit is imposed on the length of a sequence

prediction.

4. Beam-3: the same as Beam-N except that a maximum sequence length of 3 is imposed.

Each one of the four types of sequences has its purpose. The real sequences are used to verify
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that the participants can detect sequences executed by other humans. This tests whether personal

packing preferences are sufficiently strong to influence the final evaluation, or if there are general packing

strategies that most humans adhere to.

The random sequences are used to answer the question ”Can participants distinguish between log-

ical and random sequences?”. The results from evaluating this type of sequence and from the real

sequences will measure if humans are good evaluators for this task and also validate the experimental

design. Finally, the results from the Beam-N and Beam-3 sequences will be used to test if our Markov

chain and sampling algorithm were able to ”trick” participants into evaluating the sequence as gener-

ated by another human. This will prove whether the model captured the general principles that guide

individuals in this task.

Note that, a sequence prediction sampled with the Beam-N or Beam-3 strategies may not include all

the objects that need to be packed. When this occurs the virtual environment waits until the participant

has packed all the objects in the current predicted sequence and then requests a new sequence pre-

diction for the remaining objects. The sampling process always starts from the top of the Markov chain.

This cycle repeats until all the objects have been packed.

A new packing sequence prediction is also requested when a participant places an object near the

top of the box. We call this latter feature ”stack detection” and the intuition is that if the last object was

placed on top of a stack of objects, near the top of the box, the next object will be placed next to this

stack, on the bottom of the box. Consequently, this needs to be a large and/or heavy object, which is

found at the top of the model and at the beginning of a sequence prediction. This feature emulates

the behavior of the participants when we were collecting data: they packed the objects orderly, usually

forming stacks of objects until reaching the top of the box.

The Beam-3 variation was created after receiving some feedback from the participants who stated

that the Beam-N sequences packed small and fragile objects too soon in the process when there were

still larger objects left to pack. This is a consequence of Beam-N sampling a long sequence from the

entire Markov model, and consequently, the Beam-3 strategy was developed to contradict this effect.

Since sampled sequences always begin at the top of the chain, limiting their length to 3 objects will first

place all the objects at the top first and only then place objects further down the Markov chain.

One final remark is due. The previous explanation mentioned that the virtual environment requests a

packing sequence prediction. The request is a message sent from the C# script that controls the virtual

environment in Unity to a Python server that runs concurrently. The request includes the set of objects

that were not packed yet and which prediction method should be used. The response from the server

contains the predicted packing sequence. The complete process of requesting a new prediction and

receiving the response lasts less than 0.1 seconds since our model can predict a packing sequence in

a very short time.
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4.3.4 Experimental Results

This section presents and analyses the experimental results obtained from testing the experiment with

29 participants. Firstly, we introduce and plot the results and then proceed to conduct a statistical

analysis that quantifies their validity and significance.

In total, we collected 96 evaluations from the participants, averaging 24 per sequence type. The

evaluations of the real sequences are summarized in Figure 4.16.

Figure 4.16: Distribution of the participants’ evaluations when presented with a real, human-generated sequence.

Overall the result is positive with 79% of the evaluations correctly identifying these as human gener-

ated. Thus we can infer that participants are generally capable of identifying a sequence produced by

another human. However, at 21% the amount of incorrect answers is larger than expected. We suggest

that there are two main factors contributing to this error. Firstly are the individual preferences of how to

best pack objects in a box which may lead individuals to dislike or deem as illogical another person’s

packing sequence. The second factor is more arbitrary and is related to the fact that a participant may

place a few of the initial objects in positions that become an obstacle or that are incompatible with the

rest of the sequence. Nevertheless, the result is positive as the majority of the participants correctly

identified the sequence type.

Proceeding to the random sequences, 93% of the participants correctly classified them as ”computer

generated”, as shown in Figure 4.17.

As the vast majority correctly identified that this type of sequence was illogical, we can conclude

that there are significant differences between the real sequences and randomly packing objects. In

conjunction with the previous result, these data validate the experimental design. This is, humans are

good evaluators of this task and can recognize packing strategies in sequences produced by other

humans. This implies that there are, in fact, general rules or strategies that most humans follow when

packing objects in a box.
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Figure 4.17: Distribution of the participants’ evaluations when presented with a random sequence.

We now turn our attention to evaluating whether our model was able to capture some of these general

principles that humans consider in this task. Figure 4.18 presents the results for sequences generated

from our model and sampled with the Beam-N algorithm.

Figure 4.18: Distribution of the participants’ evaluations when presented with a sequence sampled with Beam-N.

An unexpected 50% of participants correctly detected that the sequences generated by our model

were computer generated. Such a high percentage clearly indicates that sequences sampled with

Beam-N are not similar to the real sequences. As mentioned earlier, during these experiments the

participants provided some feedback which led us to develop the variation Beam-3. The results for this

sampling algorithm are shown in Figure 4.19.

Restricting predicted sequences to a maximum length of 3 clearly had a positive influence on the

performance of our model. The success rate at ”tricking” participants increased from 50% to 88%,

even higher than the percentage of real sequences that were classified as ”human generated” by the

participants. One possible explanation for the fact that these sequences were classified as more human-

like than actual human sequences is that our model learned more general principles for the task that the
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majority of humans adhere to, instead of learning specific principles that only a few humans consider,

thus pleasing more participants. This is supported by the fact that the model derives from data gathered

from many different participants, thus improving its variability and reducing the probability of overfitting.

Figure 4.19: Distribution of the participants’ evaluations when presented with a sequence sampled with Beam-3.

All these experimental results are summarized in Table 4.2. It is important to note that since the

Beam-3 sampling strategy was introduced already during the course of the experiment, both beam

search sampling strategies have about half the samples of the other strategies.

Table 4.2: Results from the sequence prediction experiment.

Participants evaluations

Sequence Type
Human

generated

Computer

generated

Number of

samples

Random 7% 93% 30

Real 79% 21% 33

Beam-N 50% 50% 16

Beam-3 88% 12% 17

Although this intuitive analysis of the results provides a detailed understanding of the model’s perfor-

mance, we also conduct a statistical analysis to validate the significance of the data. As addressed in

Section 3.5, the 2-proportions Z-test can be applied to verify if there is a statistical difference between

the proportion of a parameter across two populations. However, its derivation from the central limit

theorem demands a sufficient sample size for it to be applicable. In our results, both Beam sampling

strategies have fewer than 30 samples and only two samples for the evaluation ”computer generated”

for the Beam-3 strategy. These limited sample sizes render the 2-proportions test inapplicable.

Instead, we conduct a Boschloo’s exact test [46] to test whether the proportion of individuals that was

“tricked” by the Beam-3 algorithm, p1, is greater than the proportion of individuals “tricked” by Beam-N,
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p2, at a significance level of α = 0.05. As such, our null and one-tailed alternative hypotheses are

H0 : p1 = p2 (4.1)

H1 : p1 > p2 . (4.2)

From this test we obtain a p-value of 0.01, and hence, at this significance level, we reject the null

hypothesis and prove the difference between these two proportions. In other words, Beam-3 is an

improvement over Beam-N. However, this only guarantees that there is an effect, and not that it is signif-

icant. Recall from Section 3.5 that the effect size measures importance or significance on a normalized

scale, regardless of the quantities in the study.

There are multiple measures of this effect size, but we consider Cohen’s H [48], as is standard

in statistical analysis. Our results produce an h value of approximately 0.86, which indicates a large

effect according to Cohen’s interpretation [48]. Finally, these results are validated with a post-hoc power

analysis, reporting a power of 79%, which is a satisfactory power value according to [48].
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5.1 Conclusions

This thesis addressed the task of packing everyday objects. We proposed a model to predict the packing

sequence for a set of objects, derived from the new dataset of bin packing demonstrations that we

collected and made publicly available.

Unlike most previous research, our goal was to learn some aspects of this task directly from human

experts instead of relying on hand-crafted heuristics or reinforcement learning. In particular, we learned

to predict an optimal packing sequence for a random subset of objects from expert demonstrations. The

proposed approach has the advantage of requiring a fast and simple training scheme. Furthermore,

we showed how the resulting model can be sampled with a modified version of beam search to predict

packing sequences in real time.

Our experimental results proved that our model surpassed human performance at generating packing

sequence predictions that individuals classified as human-like. More importantly, this high success rate

at predicting human-like packing sequences revealed that the proposed approach was successful at

extracting implicit task knowledge directly from human demonstrations. This highlights that learning

from human demonstrations is a noteworthy approach to the bin packing task and has the potential

to lead to superior models. This is especially important in the context of collaborative robots where

producing legible actions is a top priority.

This model is an example of how our dataset, BoxED, can be leveraged to learn methods that are as

effective at the bin packing task as humans. This dataset is the first public collection of human demon-

strations for this task and is very diverse in the number of parameters that are recorded. Furthermore, by

collecting these data in virtual reality we were able to accurately record task parameters such as object

poses, which would otherwise be very difficult.

Moreover, this dataset also gathered data on multiple aspects that are not exclusive to the bin packing

task. For instance, the grasping data can be used for robotic grasp inference and the object trajectories

can be used to better understand and model how humans manipulate objects. Since only a portion of

these data was used in training our model, we argue that the dataset still has a significant amount of

unexploited potential.

5.2 Future Work

Future work may include testing other sampling mechanisms to predict packing sequences from our

Markov chain model. These could include comparing our current Beam-3 sampling method to greedy

or epsilon greedy search. To address the limitation of depending explicitly on the name of each object,

which limits the maximum number of objects that our Markov chain can tolerate, we could also introduce
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a level of abstraction from the objects. One possibility for this improvement would be to use some of

the objects’ physical properties instead of their names. For instance, the objects could be classified

into different levels of fragility and characterized according to their shape. These parameters could be

estimated from an RGB-D image of the object and used to learn a new Markov chain.

Furthermore, the data we collected has the potential to create the first supervised learning approach

to predicting a placement pose for irregular objects (such as groceries) in the bin packing task. This

would likely involve the end-to-end training of a neural network to predict a placement pose for an object

given the object and the current layout of the container. If this neural network were to receive images

as input then higher-quality images could be created in a more realistic simulator, such as Blender, by

recreating the demonstrations from the data that we collected. This would also be the first approach in

this field to predict placement poses from human demonstrations.

Finally, the culmination of this work would be to develop and deploy a complete system for packing

irregular objects on a real robot.

59



60



Bibliography

[1] Ocado Group, (accessed Aug. 8, 2022). [Online]. Available: https://www.ocadogroup.com/

[2] Amazon Inc., “Introducing Amazon Astro, household robot for home monitoring,” (accessed Jan. 10,

2022). [Online]. Available: https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB

[3] temi USA inc., “temi - The personal robot,” (accessed Jan. 10, 2022). [Online]. Available:

https://www.robotemi.com/

[4] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and predictability of robot motion,” in 2013

8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2013, pp. 301–308.

[5] J. E. Colgate and M. A. Peshkin, “Cobots,” U.S. Patent 5 952 796, Sep. 14, 1999.

[6] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A Survey on Learning-Based Robotic

Grasping,” Current Robotics Reports, 2020.

[7] Z. Long, Q. Jiang, T. Shuai, F. Wen, and C. Liang, “A Systematic Review and Meta-analysis of

Robotic Gripper,” IOP Conference Series: Materials Science and Engineering, vol. 782, no. 4, mar

2020.

[8] J. Choi, “Automatic, Careful Online Packing of Groceries Using a Soft Robotic Manipulator and

Multimodal Sensing,” M.S. thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, MA, USA, 2022.

[9] R. Hoggett. 1948 - GE Master-Slave Manipulator. Accessed on: Dec. 28, 2021. [Online]. Available:

http://cyberneticzoo.com/teleoperators/1948-ge-master-slave-manipulator-john-payne-american/

[10] D. A. Pomerleau, “Efficient Training of Artificial Neural Networks for Autonomous Navigation,” Neural

Computation, vol. 3, no. 1, pp. 88–97, 03 1991.

[11] A. Y. Ng and S. Russell, “Algorithms for Inverse Reinforcement Learning,” in Proceedings of the

17th International Conference on Machine Learning. Morgan Kaufmann, 2000, pp. 663–670.

61

https://www.ocadogroup.com/
https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB
https://www.robotemi.com/
http://cyberneticzoo.com/teleoperators/1948-ge-master-slave-manipulator-john-payne-american/


[12] T. Munzer, M. Toussaint, and M. Lopes, “Efficient Behavior Learning in Human-Robot Collabora-

tion,” Autonomous Robots, vol. 42, no. 5, p. 1103–1115, June 2018.

[13] S. Dasari and A. K. Gupta, “Transformers for One-Shot Visual Imitation,” in Conference on Robot

Learning (CoRL), Nov. 2020.
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[19] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-End Driving Via Conditional

Imitation Learning,” in IEEE International Conference on Robotics and Automation (ICRA), 2018,

pp. 4693–4700.

[20] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases,” in

Proceedings of the 20th International Conference on Very Large Data Bases, ser. VLDB ’94. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994, p. 487–499.

[21] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,” in Machine Learning,

2001, pp. 31–60.

[22] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding,” in Proceedings of the 2019 Conference of the North American

62



Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-

HLT, J. Burstein, C. Doran, and T. Solorio, Eds. Association for Computational Linguistics, 2019,

pp. 4171–4186.

[23] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K. P. Soman, “Stock Price

Prediction Using LSTM, RNN and CNN-sliding Window Model,” in 2017 International Conference

on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp. 1643–1647.

[24] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” in Neural Computation, vol. 9, 1997,

pp. 1735–1780.

[25] S. Ali, A. G. Ramos, M. A. Carravilla, and J. F. Oliveira, “On-line three-dimensional packing prob-

lems: A review of off-line and on-line solution approaches,” Computers and Industrial Engineering,

vol. 168, p. 108122, 2022.

[26] F. Wang and K. Hauser, “Robot Packing With Known Items and Nondeterministic Arrival Order,”

IEEE Transactions on Automation Science and Engineering (T-ASE), vol. 18, no. 4, pp. 1901–1915,

2021.

[27] L. Duan, H. Hu, Y. Qian, Y. Gong, X. Zhang, J. Wei, and Y. Xu, “A Multi-task Selected Learning

Approach for Solving 3D Flexible Bin Packing Problem,” in Proceedings of the 18th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2019, pp. 1386–1394.

[28] R. Hu, J. Xu, B. Chen, M. Gong, H. Zhang, and H. Huang, “TAP-Net: Transport-and-Pack Using

Reinforcement Learning,” ACM Trans. Graph., vol. 39, no. 6, nov 2020.

[29] Y. Jiang, Z. Cao, and J. Zhang, “Solving 3D Bin Packing Problem via Multimodal Deep Reinforce-

ment Learning,” in Proceedings of the 20th International Conference on Autonomous Agents and

MultiAgent Systems. Richland, SC: International Foundation for Autonomous Agents and Multia-

gent Systems, 2021, p. 1548–1550.

[30] I. Ikonen, W. E. Biles, A. Kumar, J. C. Wissel, and R. K. Ragade, “A Genetic Algorithm for Packing

Three-Dimensional Non-Convex Objects Having Cavities and Holes,” in Proceedings of the 7th

International Conference on Genetic Algorithms, T. Bäck, Ed. Morgan Kaufmann, 1997, pp. 591–
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