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Abstract

This thesis presents an implementation of multiple User Datagram Protocol (UDP) ports for

FaceWorks, an Intelectual Property (IP) core used for hardware test and debug over the UDP/IP

network protocol, which is a patented and proprietary technology of the company Coreworks

SA. The objective of having multiple ports is to allow multiple software processes to indepen-

dently control the device under test (eg. multiple audio streams driven by multiple programs).

An overview of the FaceWorks technology and its possible applications is presented, with em-

phasis on the Coreworks Datagram Protocol (CWDP), which was added on top of the common

UDP protocol to enable test and debug functions. The FaceWorks hardware has been converted

to Verilog, upgraded to support two UDP ports, and tested using the Verilator simulator and an

Field Programmable Logic Array (FPGA) board. A SystemC model of the core is automatically

generated and simulated by Verilator. A SystemC testbench that uses network sockets has been

written to fully replicate the hardware behavior in simulation. A PC software driver and an appli-

cation which connects to the two UDP ports for testing the system have been developed. This

application connects to both the SystemC model or FPGA board, indistinguishably. Experiments

and implementation results are reported.
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Resumo

Esta tese apresenta uma implementação de portas UDP múltiplas para o FaceWorks, um

núcleo de Propriedade Intelectual utilizado para o teste e depuração de hardware. Funciona so-

bre o protocolo de rede UDP/Internet Protocol (IP), e é uma tecnologia patenteada e propriedade

da empresa Coreworks SA. O objectivo das portas múltiplas é permitir que vários processos

de software possam controlar de forma independente o dispositivo de teste (múltiplos fluxos de

áudio gerados por vários programas). Uma descrição geral da tecnologia FaceWorks e suas

possı́veis aplicações é apresentada, dando ênfase ao Coreworks Datagram Protocol (CWDP),

que consiste numa camada adicionada sobre o protocolo UDP para realizar as funções de teste

e depuração. A descrição do FaceWorks foi convertida para Verilog, actualizada para suportar

duas portas UDP, e testada utilizando o simulador Verilator e uma placa de FPGA. Foi gerado au-

tomaticamente um modelo SystemC do núcleo e simulado com recurso ao Verilator. Foi descrita

uma bancada de teste em SystemC que usa sockets de rede para replicar totalmente o compor-

tamento do hardware em simulação. Foram desenvolvidos um controlador de software para PC

e uma aplicação que se liga às duas portas UDP para testar o sistema. A aplicação desenvolvida

interage indiferentemente com o modelo SystemC ou com a placa de FPGA. Experiências e

resultados de implementação são apresentados.

Palavras Chave

Ethernet, UDP, CWDP, Sistema-num-Chip, Verilator, Verificação
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1. Introduction

In this chapter the scope of the work is presented, the problem addressed is formulated, the

proposed solution is explained, the objectives of the work are stated, and the thesis contents is

outlined.

1.1 Scope

Nowadays, integrated circuit designers are presented with extremely short design cycles. To

deliver on time, companies are required to optimize the design flow. Of the many solutions cre-

ated, one of the most successful is the reuse of pre-existent and complex blocks, often called

Intellectual Property Cores, or simply IP Cores.

A core with well defined and specialized functionality is easier to implement and verify, and can

be reused later in other designs. This greatly overcomes some of the complexity of the design

and verification process.

Out of this idea a brand new business model has flourished, where IP providers produce

verified hardware IP libraries, sometimes associated with software IP libraries, and IP integrators

select and integrate multiple IP cores from different vendors on a System-on-Chip (SoC).

Due to the consistent evolution of semiconductor manufacturing processes, integrated circuit

manufacturers are raising the gate count per die area year after year, and lowering other metrics

such as power consumption and cost per gate [1, p. 24]. Table 1.1 shows the complexity of some

large devices from various manufacturers in terms of their transistor area density.

The latest developments in Field Programmable Logic Arrays (FPGAs), placed high-end FPGAs

as one of the devices with the highest transistor counts per die area. Launched in September

2011 by Xilinx, the Virtex-7 2000-T presented an astonishing value of 12.85 million transistors

per square mm. This is more than the generation of Graphics Processing Units (GPUs) launched

later by NVIDIA, in April 2012, the GTX 670 (Kepler), with 12.04 million transistors per square

mm. Both devices are fabricated using 28nm technology.

With such high transistor density, several FPGA devices, from mid to high-end, already inte-

grate up to 2 million logic cells and hard blocks for functions like DSP, PCI-E controllers, Ethernet

Media Access Controls (MACs), memory controllers, DCM/PLL, BRAMs, etc. These highly het-

erogeneous devices allow engineers not only to use FPGAs as a prototyping platform but also as

the target platform.

As FPGAs present themselves as flexible and cost effective platforms to test, verify and pro-

duce IP cores, challenges arise on how to properly communicate independently with each IP core

in the FPGA. IP cores need to be observed, configured, tested and debugged. Complex hard-

ware systems demand complicated and concurrent testing and debug methods, often requiring

expensive equipment to be used.

2



1.2 Problem

Table 1.1: Transistor Density Comparison

Device Millions of
Transistors

Die Area
(mm2)

Density

GPU
Nvidia GTX 670 (2012 - 28 nm) [2] 3540 294 12.04

AMD Tahit RV1070 (2011 - 28nm) [3] 4312 365 11.81
Nvidia GF100 Fermi(2010 - 40 nm) [3] 3200 526 6.08
AMD Caymn RV870 (2010 - 40 nm) [3] 2154 334 6.44

AMD RV790XT (2008 - 55nm) [3] 959 282 3.40
NVIDIA GT200 Tesla (2008 - 55nm) [3] 1400 576 2.43

CPU
Intel Ivy Bridge (22 nm -2012) [4] 1400 160 8.75

Amd Trinity (32nm - 2012) [5] 1178 228 5.17
Intel Xeon 2690EP (32 nm -2011) [6] 2260 416 5.43

Amd Bulldozer 8 Cores (32 nm - 2011) [7] 1200 315 3.81

FPGA
Xilinx Virtex-7 2000 T (28nm - 2011) [8] 6800 529 12.85

To solve this problem, the company Coreworks SA created and patented a technology [9,

US 2008/0288652], [10, EP 2003571/A2] that uses a simple PC and the office network to exer-

cise multiple cores in the FPGA. The technology has been called Core Access Networks R©and

comprises the FaceWorks IP core, which is the gateway between the IP Cores under test and a

software program (test driver) running on the PC.

Prior devices for observation, configuration, testing and debugging on-chip cores resorted to

already existing communication protocols. Most of them used low-speed serial protocols with low

pin counts, such as I2C, SPI or JTAG, which was initially created to test printed circuit boards and

later extended to chips.

FaceWorks implements the User Datagram Protocol (UDP)/Internet Protocol (IP)/Ethernet pro-

tocol stack in hardware, dispensing with an embedded processor and a software protocol stack.

In addition, the Coreworks Datagram Protocol (CWDP) was created to implement test and debug

functions on top of the UDP/IP stack. Other functions such as data streaming can also be per-

formed with this technology. This solution represents an almost costless, high-speed and versatile

test and debug mechanism.

1.2 Problem

The implementation of FaceWorks that existed when this work started used only a single UDP

port to communicate with the FPGA board. The main problem of having a single port is that, to

exercise IP modules concurrently, the test driver application becomes very difficult to write. This

is the problem that this work solves.

3



1. Introduction

1.3 Solution

To solve the problem formulated in the previous section, it has been decided to increase the

number of UDP ports supported by FaceWorks, in order to allow multiple software processes or

threads to independently and concurrently stimulate and observe multiple Intelectual Property (IP)

cores in the system.

1.4 Objectives

The main objectives of this thesis are the following:

1. Upgrade the FaceWorks hardware so that it can support multiple and concurrent channels

by means of multiple UDP ports. The upgrade is done using the Verilog language, which

implies converting the original code from VHSIC Hardware Description Language (VHDL)

to Verilog.

2. Write a SystemC verification environment (testbench) that uses the FaceWorks SystemC

model generated by the Verilator tool.

3. Write an application that generates and sends test patterns for the multiple UDP ports,

receives the responses and checks the results. This application can communicate indistin-

guishably with either the FPGA board or the SystemC testbench.

1.5 Outline

This thesis is structured in the given form:

Chapter 2

The main concepts of the protocols and interfaces used by FaceWorks are presented. The

existing FaceWorks architecture is also presented.

Chapter 3

The development methodology for both the software and hardware components of this work

is presented.

Chapter 4

The architecture of the application that uses Verilator to create a FaceWorks simulator is

presented.

Chapter 5

Implementations results are presented and compared with the previous implementation. A

caracterization of the network is performed and an analysis of the network performance of

FaceWorks is presented.

4



1.5 Outline

Chapter 6

Conclusions are drawn. Future modifications and alternative implementations are discussed.
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2. Background

In this chapter the FaceWorks IP core is introduced, and its interfaces and protocols are ex-

plained. The existing FaceWorks architecture is shown in Figure 2.1. In the following sections,

the implementations of the Media Independent Interface (MII) interface, data link, network and

transport layers are presented.

PHY

Ethernet
RX

ARP

Ethernet
TX

IP
TX

IP
RX

UDP
TX

UDP
RX

CWDP
TX

CW-Link
TX

CWDP
RX

CW-Link
RX

RAM TX

RAM RX

CORE

CORE

CORE

CORE

º
º
º

º
º
º

Physical Data Link Network Layer Transport Layer

FPGA

FACEWORKS

Figure 2.1: FaceWorks Block Diagram

2.1 Media Independent Interface

The MII[11] is a well known industry standard for the interface between the MAC and the

Ethernet Physical Transceiver (PHY). In terms of the OSI layer model, it implements the interface

between the physical layer and the data link layer. MII is used to interconnect the FaceWorks core

in the FPGA and the PHY chip on the same board, as depicted in Figure 2.2. The MII signals of

the FaceWorks core are presented in Table 2.1.

Both TX CLK and RX CLK are 25 MHZ clock signals, required for a PHY operating at 100 Mbps.

The signal RX ER is not used. Instead the Cyclic Redundancy Check (CRC) field provided by the

MAC layer is used to check the frame content. The signal mdio is in high-impedance as both the

managing signals are not used.
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2.1 Media Independent Interface

PHY

MII

F
A
C
E
W
O
R
K
S

FPGA

º
º
º

CORE

CORE

Figure 2.2: Interconnection of PHY and FaceWorks using MII

Table 2.1: Media Independent Interface Signals

Signals Direction Description

Transmit
TX CLK input Clock signal reference for the transmit signals
TX EN output MAC is presenting data on the MII for transmission

TX D[3:0] output Transmit Data
TX ER output MAC Signals the transmission of a coding error on the frame

Receive
RX CLK input Clock signal reference for the receive signals
RX DV input MII is presenting data to the MAC

RX D[3:0] input Receive Data
RX ER input PHY signals the transmission of error on the frame

Management
MDC input Management data clock
MDIO output Management data input/output
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2. Background

2.1.1 Data Stream

Packets transmitted through the MII, are framed as shown in Figure 2.3. Below follows an

explanation of each field.

Frame

SFD

Preamble

IFG 12 bytes

7 bytes

1 byte

64 to 1564 bytes

P
A
C
K
E
T

Figure 2.3: MII Packet

IFG The inter-frame gap (IFG) is a period of 12 bytes in which the TX EN or the RX EN signals are

asserted low to produce an idle time between the previous packet and the current packet. This

allows both the PHY and the MAC to process the previous packet, and prepare for the reception

of the new packet.

Preamble The preamble consists of a sequence of 56 bits of alternating 1’s and 0’s 1, in order

to allow the receiver PHY Digital Phase-Locked Loop (DPLL) to lock.

SFD The Start Frame Delimiter (SFD) consists in the bit sequence 10101011 1, marks the start

of the packet and the end of the preamble.

Frame Contains the actual payload that is transmitted through the MII.

2.2 Media Access Control

The Media Access Control (MAC)[12] protocol together with the MII interface implement the

Ethernet data link layer and the interface to the physical layer, respectively.

From the packet format defined previously for the MII interface, the MAC encapsulates the data

payload with a 14-byte header and a 4-byte CRC trailer, as shown in Figure 2.4. Below follows an

explanation of each field.
1The stream is transmitted from left to right.
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2.2 Media Access Control

DATA

Ethertype

SRC ADDR

DST ADDR 6 bytes

6 bytes

2 bytes

46 to 1500 bytes

F
R
A
M
E

PADDING

FCS

OPT

4 bytes

SFD

Preamble

IFG

1 byte

7 bytes

12 bytes

P
A
C
K
E
T

Figure 2.4: Ethernet Packet Structure with the MAC Protocol

DST ADDR The destination address is a 6-byte field that specifies the MAC adapter(s) for which

the packet shall be delivered, through the use of an unicast or multicast address.

SRC ADDR The source address is a 6-byte field that specifies the unique MAC adapter from

which the packet is sent.

Ethertype This is a 2-byte field2 field that identifies the type of protocol being carried on the

payload.

Data This is the field that carries the inner protocol payload.

Padding This is an optional field necessary when the Data field is smaller than the specified

size of 46 bytes.

FCS This is a 4-byte field that contains the Cyclic Redundancy Check (CRC) of the MAC frame.

The CRC is calculated over all fields of the MAC frame, except the Frame Check Sequence (FCS)

field. The CRC uses the 0x04c11db7 polynomial.

The FaceWorks implementation of the MII interface and MAC layer consists of two logic blocks,

an Ethernet receiver and an Ethernet transmitter, as shown in Figure 2.1.
2Type for ARP is 0x0806, for IP is 0x0800
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2. Background

The receiver block is responsible for removing the preamble, detecting the SFD, performing

packet filtering based on the destination MAC and Ethertype, and checking the CRC to validate

the data.

The inverse operation is performed by the transmitter block: it adds the preamble to the pay-

load, inserts the SFD, the Ethernet header, and calculates the trailing CRC.

As imposed by the specification, the MII interface clock has a period of 40 ns. However, the

internal FaceWorks clock period is often faster. Since two clock domains exist, two asynchronous

First In First Outs (FIFOs) are necessary to buffer the data in each direction.

2.3 Address Resolution Protocol

The Address Resolution Protocol (ARP)[14] is used for resolving network layer addresses into

data link layer addresses. Since IPv4 over Ethernet is beng used, the correspondence between

an IP address and a MAC address is established. It can also be used for different types of network

layer and data link layer protocols.

When a computer A wants to send a packet to a computer B in the Local Area Network (LAN),

it needs to identify it with the IP address and the MAC address of computer B, to unequivocally

tell the computer that is supposed to get this packet.

Assuming that computer A knows the IP address of computer B, it sends an ARP Request to

all computers in the LAN, to inquire which computer possesses that IP address. Upon receiving

the ARP Request, computer B replies with an ARP Reply packet, which causes computer A to

learn the MAC address of computer B, and finally send the packet to computer B. To avoid sending

an ARP Request every time a packet needs to be sent, computer A holds a simple ARP cache,

where it stores IP/MAC address pairs. Figure 2.5 shows how an ARP packet is structured. This

packet format is used for both the ARP Request and for the ARP Reply. Each field of an ARP

packet is explained next.

0 7 8 15 16 31

Target protocol address (TPA) [bytes 0-3]

Hardware Type (HTYPE) Protocol Type (PTYPE)
HLEN PLEN Operation (OPER)

Sender hardware address (SHA) [bytes 0-3] 
Sender hardware address (SHA) [bytes 4-5] Sender protocol address (SPA) [bytes 0-1]
Sender protocol address (SPA) [bytes 2-3] Target hardware address (THA) (bytes 0-1)

Target hardware address (THA) [bytes 2-5]

Figure 2.5: ARP Packet

HTYPE The Hardware Type specifies the data link layer protocol type; for Ethernet this value is

0x0001.
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2.3 Address Resolution Protocol

PTYPE The Protocol Type specifies the network layer protocol; for IPv4 it has the value 0x0800.

HLEN The Hardware Length specifies the data link layer address size; for Ethernet this value is

0x06 (length of the MAC address).

PLEN The Protocol Length specifies the network layer address size; for Ethernet this value is

0x04.

OPER The Operation field specifies the type of the ARP packet; the value is 1 for an ARP

Request, 2 for an ARP Reply.

SHA The Sender Hardware Address contains the sender MAC address.

SPA The Sender Protocol Address contains the sender IP address.

THA The Target Hardware Address contains the target MAC address; this field is ignored in

ARP Requests.

TPA The Target Protocol Address contains the target IP address; this field is ignored in ARP

Requests.

The FaceWorks ARP implementation consists in a single-entry ARP table, to create the corre-

spondence between the IP address and the MAC address of the host that drives FaceWorks. The

ARP table is connected to both the Ethernet RX and Ethernet TX blocks, as shown in Figure 2.1.

Upon reception of an ARP Request, the Ethernet RX block forwards the packet to the ARP

block which generates an ARP Reply packet and requests the Ethernet TX block to transmit it to

the network.

When the Ethernet TX block is constructing an Ethernet packet to be sent, it provides the

destination IP of the host to the ARP logic. If the IP is registered in the table, the ARP block

outputs the host MAC address; otherwise the ARP block generates an ARP Request, which is

sent by the Ethernet TX block. Later, the respective ARP Reply will be processed by the Ethernet

RX block, which forwards the IP and MAC address to the ARP block. After this the ARP table

holds the necessary information to process the current and future Ethernet TX requests to the

same host.
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2. Background

Figure 2.6 exemplifies how values are assigned to the ARP packet fields: computer A with IP

address 192.168.0.22 and MAC address 00:26:9e:e2:e3:14 broadcasts an ARP Request to find

IP address 192.168.0.133, and receives a reply from FaceWorks containing its MAC address.

PC FW

 IP: 192.168.0.22
 MAC addr: 00:26:9E:E2:E3:14

 IP: 192.168.0.133
 MAC addr: 00:AA:00:62:C6:21

DST: Broadcast
SRC: 00:26:9E:E2:E3:14
ARP request:
     "Who has 192.168.0.133?"
     "Tell 192.168.0.22"

DST: 00:26:9E:E2:E3:14
SRC: 00:AA:00:62:C6:21
ARP reply:
     "192.168.0.133 is 
           at 00:AA:00:62:C6:21"

Figure 2.6: Address Resolution using ARP

2.4 Internet Protocol

The Internet Protocol (IP)[15] main purpose is to provide an abstraction layer that hides differ-

ences on the data link layer implementation. It offers a uniform addressing and routing scheme,

and a fragmenting mechanism so that different Maximum Transmission Unit (MTU) values can be

supported across different data link layer technologies. FaceWorks only supports IPv4 packets;

therefore, IPv6 packets are not discussed here. An IP packet consistes of header and payload.

Figure 2.7 shows the format of an IPv4 packet header. The meaning of each field is explained

below.

0 3 4 7 8 13 14 15 16 18 19 23 24 31

Source IP Address
Destination IP Address

Fragment OffsetFlags

Options (Optional) Padding

Time to Live Protocol Header Checksum

Version IHL Total Lenght
Identification

DSC ECN

Figure 2.7: IPv4 Packet Header
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2.4 Internet Protocol

Version This 4-bit field identifies the version number of the Internet Protocol, only versions v4

and v6 are defined. For IPv4 this value is 4.

IHL The Internet Header Length is also a 4-bit field that contains the length of the packet header

in 32-bit words, and points to the beginning of the data. The smallest valid value is 5 and the

highest value is 15 (corresponds to a header length of 60 bytes).

DSC The Differentiated Services Codepoint is a 6-bit field used for describing the intended for-

warding behavior. This is mainly used for real-time applications, and is not used in FaceWorks.

ECN The Explicit Congestion Notification is a 2-bit optional field, which is an extension to TCP/IP

used for end-to-end congestion notification. This field is not supported by FaceWorks.

Total Lenght This is the total length of the IP packet. It is a 16-bit field, so the maximum size

of an IP datagram is 65535 bytes. The minimum-length of a packet is 20 bytes (size of header

without data). The largest datagram size that a IP-enabled computer is required to reassemble is

576 bytes.

Fragment ID The destination computer uses this identifier and the sender’s address to identify

fragments of IP datagrams, so that the original datagrams are reconstructed at the destination

computer. FaceWorks does not support IP fragmentation.

Flags The flag field is used for fragmented IP packets. It contains two flags: Don’t Fragment

(DF) and More Fragments (MF). The DF bit shows that the datagram must not be fragmented,

even if it cannot be forwarded further. The MF bit shows more fragments exist in this IP packet.

Thus, the last packet of a fragmented IP datagram has MF set to 0. Both these flags are not

supported in the FaceWorks IP implementation.

Fragment Offset Specifies where in reference to the beginning of the entire datagram the

present fragment has to be ordered. This information is essential to reassemble the original

packet from the individual fragments in the case fragments arrive out-of-order This is also not

supported by the FaceWorks IP implementation.

TTL The Time To Live is an 8-bit field that is used to prevent datagrams from going in circles in

the internet. It implements a counter that for each router on the path is decremented by at least

one. If the field reaches value 0, then the packet is discarded.
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2. Background

Protocol An 8-bit field that describes the protocol used in the payload of the IP datagram.3

Header Checksum This field contains a 16-bit checksum of the IP packet header. It is used for

error-checking the IP header. When a router receives an IP packet it calculates the checksum

and compares it with the value in this field. If the values match the TTL is decremented by 1 and

the checksum has to be updated since the header content has been updated. Since the payload

data is not verified by this checksum, the payload protocols have their own checksum.

Sender Address This field contains the 32-bit IP address of the sender computer.

Destination Address This field contains the 32-bit IP address of the destination computer.

Options This field is used for user data, and must comply with a standard format not discussed

here. Since the header length must be a 32-multiple, the user is required to insert padding bits.

This field not used or supported by FaceWorks.

The implementation of the IP protocol in FaceWorks uses two blocks, the IP RX block and the

IP TX block, as depicted in Figure 2.1.

The IP RX block implements the IP protocol for the receive packets. It processes the IP

packets that are received from the MAC layer, according to the values of their IP header version,

destination IP address and protocol type. It calculates the checksum to verify the header and

forwards the payload data to the next block, the UDP RX block.

For transmit packets the IP TX block calculates the header checksum and writes the IP header

and checksum in the RAM TX block, which is where the packet is being formed. Finally, it requests

the Ethernet TX module to send the packet.

2.5 User Datagram Protocol

The User Datagram Protocol (UDP)[16] provides an unreliable, connectionless transport data-

gram service. UDP uses the Internet Protocol as the underlying protocol.

UDP is suitable for this work because error checking is not necessary, and retransmission of

lost packets is implemented by a higher application protocol. This way the overhead of a TCP

session is avoided, and a much simpler implementation on the hardware is obtained.

2.5.1 UDP Packet Header

A UDP packet consists of header and payload. Figure 2.8 shows the format of a UDP packet

header. The header fields are briefly described below.

3UDP is 17
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2.5 User Datagram Protocol

0 15 16 31
Destination Port

Lenght
Source Port

Checksum

Figure 2.8: UDP Packet Header

Source Port This is a 16-bit field which identifies the port used by the sender process.

Destination Port This is a 16-bit field that identifies the destination port used by the receiver

process.

Length This is a 16-bit field, which contains the size in bytes of the packet header and payload

combined.

Checksum This a field used for verifying the contents of the header and data. The checksum

is calculated over a pseudo-header, the UDP header and the data. Padding may be necessary in

order to have multiples of two bytes.

2.5.2 Implementation

The FaceWorks implementation for the transport layer is also composed of two blocks, the

UDP RX and the UDP TX blocks, as shown in Figure 2.1.

The UDP RX block filters out UDP messages that are not being sent to the UDP port being

used for CWDP communication. For messages addressed to the UDP port being used for CWDP

communication, the UDP RX block removes the UDP header and forwards the UDP payload

(CWDP packet) to the CWDP RX module.

The UDP TX block inserts the UDP header in the RAM TX buffer, calculates the checksum as-

suming the pseudo-header is attached upfront, and forwards the transmission of the UDP packet

to the IP TX module.
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2. Background

2.6 Coreworks Datagram Protocol

The Coreworks Datagram Protocol (CWDP)[17] is a proprietary protocol, which runs over

UDP, and was created to communicate with the on-chip cores using the FaceWorks core. Each

CWDP packet is sent as a UDP payload, as shown in Figure 2.9.

UDP PayloadUDP Header

CWDP Header CWDP Data

Figure 2.9: CWDP Encapsulation in the UDP Payload

For this project only a subset of the FaceWorks commands is presented, since there are

several features that have not been used in this work.

2.6.1 CWDP Packet

Figure 2.10 shows how a CWDP packet is structured. The fields are briefly described below

0 8 16 32
CW-Link ID Packet Type CWPD PayloadPacket Number

CWDP header

Figure 2.10: CWDP Packet

CW-Link ID This field identifies the destination core interface for which the packet data is in-

tended.

Packet Type This field identifies the CWDP packet type; not all available packet types are used

in this work.

Packet Number This field is a sequence number for data packets. It is used to implement

reliable transmission. The Packet Number is incremented for every packet acknowledged by the

receiver. Only packets with the expected Packet Number are acknowledged by the receiver.

Payload Contains the data to be delivered to the cores, or parameters for FaceWorks.
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2.6 Coreworks Datagram Protocol

2.6.2 Packet Types

This section presents the CWDP packet types that have been used in this work. Refer to [17]

for a complete outline of the existing CWDP packet types.

SET CORE ACCESS (packet type 0x03) This packet type is used to initialize the FaceWorks

core. In Figure 2.11 the structure of a CWDP SET CORE ACCESS packet is shown. When a

CWDP SET CORE ACCESS packet is received by FaceWorks it locks to the host IP and UDP

port of the origin for the purpose of replying. The ARP table is cleared and any packet present in

the receive or transmit buffers are deleted. Incoming or outgoing packet counters are both reset to

zero. The registered host will maintain control of FaceWorks core until a CWDP SET MAC packet

is sent by the host. When FaceWorks is locked to a host, other incoming CWDP packets from

other origins are dropped.

Packet TypeCW_Link ID

CWDP header

Packet Number

Figure 2.11: CWDP SET CORE ACCESS Packet

SET MAC (packet type 0x04) This type is now used to release control and terminate a connec-

tion with the FaceWorks core. In a complete FaceWorks implementation this could be used to

change from core access mode to MAC mode. In MAC mode FaceWorks as a regular MAC core

by an embedded processor and CORE DATA packets can not be transmitted. In Figure 2.12 the

structure of the CWDP SET MAC packet is shown. When a CWDP SET MAC packet is received

the control of the FaceWorks core is released, the registered IP and UDP port are deleted, the

ARP table is cleared and packet buffers are cleared. Incoming or outgoing packet counters are

both reset to zero. Control can be regained by sending a SET CORE ACCESS packet again.

Packet TypeCW_Link ID

CWDP header

Packet Number

0 7 8 15 16 31
Not used 0x04 Not Used

Figure 2.12: CWDP SET MAC Packet

19



2. Background

CORE DATA (packet type 0x01) This packet type is used to send data between systems and

cores. In Figure 2.13 a CWDP CORE DATA packet is shown. The packet payload is composed of

several CW-Link words, each word is 32-bit long and each CORE DATA packet can contain up to

360 CW-Link words.

Packet TypeCW_Link ID

CWDP header

! " #$ %& $' ()*#+,%&
-./0123456764)8!94:::94;< !=!# >6?3@74)ABC@D -./0123456764! :::

Figure 2.13: CWDP CORE DATA Packet

ACK (packet type 0x02) This packet type is used to acknowledge received packets. In Figure

2.14, the structure of a CWDP ACK packet is shown. Received CWDP packets, except for the

Acknowledge (ACK) packet itself, trigger a reply with an ACK packet. The packet number of the

transmitted ACK matches the packet number of the received packet when a CORE DATA packet

is received. If the received packet is a SET CORE ACCESS packet then the packet number of

the ACK packet is set to zero.

Packet TypeCW_Link ID

CWDP header

Figure 2.14: CWDP ACK Packet
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2.6 Coreworks Datagram Protocol

2.6.3 Implementation

The CWDP application layer is implemented using 4 logic blocks (CWDP RX, CWDP TX,

CW-Link RX and CW-Link TX), as shown in Figure 2.1.

The CWDP RX block implements the CWDP protocol for the received packets. It decodes

the type of the received packet and performs the instructed action. The payload of CORE DATA

packets is placed in the RAM RX buffer. After the reception of a CWDP packet it requests the

CWDP TX to send the acknowledge packet. If the CWDP packet is a CORE DATA packet it

forwards the data to CW-Link RX block in order to be delivered to the addressed IP Core. An

interaction diagram between the CWDP receive and transmit sides is shown in Figure 2.15.

CWDP
TX

CW-Link
TX

CWDP
RX

CW-Link
RX CORE

CORE

Payload of UDP RX Payload of Core Data Data

CWDP Packet to UDP TX CWDP Payload Data

Received ACK Number

Data 
Number

Send 
ACK

Figure 2.15: CWDP Layer

The CWDP TX block receives data from the CW-Link TX block and sends the data to the

UDP TX module by means of the RAM TX buffer. Then it waits for the ACK packet of the sent

packet, which will arrive in the CWDP RX block. When the ACK packet arrives, the CWDP RX

block presents the sequence number to the CWDP TX block, so it can verify that it matches the

sequence number of the packet previously sent.
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2. Background

2.6.4 CW-Link Interface

FaceWorks uses CW-Link interfaces[17] to send data or commands to and from the cores

inside the chip. In Figure 2.16 the CW-Link interfaces between FaceWorks and a few cores are

shown.

Core A
Receiver

Core B
Receiver 

and 
Transmiter

FaceWorks

Core C
Transmiter

C
W

-L
in

k 
R

X
C

W
-L

in
k 

TX

cw_link_rx [31:0]

cw_link_tx [7:0] [31:0]

cw_link_tx [0] [31:0]

cw_link_tx [1] [31:0]

cw_req_vector_rx [7:0]

cw_req_rx [0]

cw_req_rx [1]

cw_req_vector_tx [7:0]

cw_req_tx [0]

cw_req_tx [1]

cw_ack_vector_rx [7:0]

cw_ack_rx [0]

cw_ack_rx [1]

cw_ack_vector_tx [7:0]

cw_ack_tx [0]

cw_ack_tx [1]

cw_mode_rx

Figure 2.16: CW-Link Interface

The CW-Link interfaces specifies four logic signals: request (req), acknowledge (ack), data

(link) and mode (mode). FaceWorks is the master of the CW-Link RX interface and is a slave of

the CW-Link TX interface. The mode signal is only used in the CW-Link RX interface to distinguish

between data and commands for the IP cores. The CW-Link RX may be interconnected to eight

different IP cores.

As depicted in Figure 2.16 both the receive data bus and mode signal are shared between the

receiving cores, and there is a req/ack pair for each of the 8 cores; only one of the req signals

may be active at any instant. There is one transmit data bus and one req/ack pair for each core.

A timing diagram of CW-Link RX transactions is shown in Figure 2.17. The communication

uses simple handshaking: a single bit from the req signal vector goes high to identify the destina-

tion IP core while the data bus holds a valid value until the respective ack signal goes high.
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2.6 Coreworks Datagram Protocol

clk

cw_link_rx[31:0] D1 D2 D3 D4_1 D4_2 D4_3

cw_req_vector_rx[7:0] 0x00 0x01 0x00 0x02 0x04 0x00 0x08

cw_ack_vector_rx[7:0] 0x00 0x01 0x00 0x02 0x04 0x00 0x08

M
as

te
r

Figure 2.17: CW-Link RX Transactions

CW-Link also supports burst transfers by keeping the request signal high and sending data

words consecutively as long as the ack signal is kept high. An example burst transfer is depicted

in yellow in Figure 2.174 and consists of 3 data words for core 4. The same rationale is used for

the CW-Link TX interface.

4This timing diagram has been constructed using the javascript web application Wavedrom available at:
http://wavedrom.googlecode.com
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3. Design

In this chapter the implementation of multiple UDP ports for FaceWorks is presented. The

software components and the hardware modifications effected to support two distinct ports are

explained. The same method can be used for more than two ports.

During the development loopback wires have been used, to directly connect the CW-Link RX

block to the CW-Link TX block, as shown in Figure 3.1. With the CW-Link loopback, there is no

need for a stimulus generator for the CW-Link TX interface. CORE DATA packets are sent from

a host computer and are delivered back to the host. This way packets that are sent and received

back can be compared to detect possible differences.

PHY

MII

FPGA

FaceWorks

C
W

-L
in

k 
R

X
C

W
-L
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k 

TX

Figure 3.1: CW-Link Loopback

3.1 Face-Test Application

The FaceWorks test application (Face-Test) is a C language application that implements the

CWDP protocol. The application has been tested on the pre-existing FaceWorks architecture and

on the new FaceWorks architecture.

3.1.1 Basic Functions

The two basic functions used in the Face-Test application are the CWDP receive packet() and

the CWDP send packet() functions. These functions create an abstraction layer which hides the

CWDP details. They are used for sending / receiving packets to / from FaceWorks, and can be

called for different sessions/connections inside a user process.

The CWDP receive packet function (Figure 3.2) reads UDP packets from a socket descriptor

fd and places the content in buffer buf in. If the received packet is an ACK packet the value of

core out (sequence number of the last packet sent) is compared with the sequence number of the

received ACK packet. If they do not match the CWDP receive packet() function returns the error
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3.1 Face-Test Application

code P ERROR; otherwise the function returns the type of packet received. If a CORE DATA packet

is received the ack out variable is updated with the sequence number of the received CORE DATA

packet so a ACK packet can be sent with the correct value.

int CWDP_receive_packet (int fd, struct sockaddr_in server_addr,byte *buf_in,

u_int16_t *core_out,u_int16_t *ack_out);

int CWDP_send_packet (int fd, struct sockaddr_in addr, struct sockaddr_in server_addr, byte *buf_out,

byte * buf_in, int buf_size, e_cwdp cwdp_type, u_int16_t *core_out, u_int16_t *ack_out);

Figure 3.2: CWDP Send/Receive Functions

The CWDP send packet function (3.2) sends a UDP packet to a socket descriptor fd, using

as destination the FaceWorks IP address addr.

If the type of packet sent requires an acknowledge from FaceWorks, the CWDP send packet()

function internally calls to the CWDP receive packet() function to get the packet, and then verifies

if the sequence number is the expected one.

3.1.2 Test Application

The Face-Test application is a simple C application that consists in sending CORE DATA pack-

ets with random data from a PC to a network connected FPGA with a FaceWorks core.

After defining the socket settings the application starts by sending a SET CORE ACCESS

packet as depicted in Figure 3.3 to establish the PC controlling the FaceWorks core.

/*Send Core Access and receive Ack*/

buf_size=0;

CWDP_send_packet (fd,addr,server_addr,buf_out,buf_in,buf_size,P_SET_CORE_ACCESS,&core_out,&ack_out);

Figure 3.3: Send Core Access and Wait for Acknowledge

As Ethernet is a best-effort service, a packet sent by the PC can fail to be delivered to Face-

Works, and the acknowledge sent by FaceWorks can fail to be delivered to the PC.

To resolve both these situations it is needed that the CWDP receive packet() function have a

timeout when reading data from the socket. When the CORE ACCESS packet sent from the PC

is lost in the network, FaceWorks will not reply with the ACK packet.
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Figure 3.4: Recovering from Lost Packets

When the PC is waiting to receive an ACK packet from FaceWorks, if a timeout did not exist,

the PC would block. Therefore, after a timeout, the CWDP receive packet() function returns

P ERROR and the CORE ACCESS packet is retransmitted. This situation is depicted in Figure

3.4(a).

The same procedure applies for the loss of the ACK packet, as depicted in Figure 3.4(b). As-

suming the ACK packet transmitted by FaceWorks is lost in the network, the PC waits for it until the

CWDP receive packet() function times out and returns P ERROR. After that, the CORE ACCESS

packet is retransmitted.

After the PC sends the SET CORE ACCESS packet to FaceWorks successfully, it can start

to send CORE DATA packets. To accomplish this the CWDP send packet() function is called as

shown in Figure 3.5.

/*Send Core Data and receive Ack*/

CWDP_send_packet(fd,addr,server_addr,buf_out,buf_in,buf_size,P_CORE_DATA,&core_out,&ack_out);

Figure 3.5: Send Core Data and Wait for Acknowledge
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Now the PC expects to receive the same CORE data packet it sent to FaceWorks. To accom-

plish this the CWDP receive packet() function is called inside a do while loop until a CORE DATA

packet type is received (Figure 3.6).

/*Read Core Data and send Ack*/

do{

do{

memset((void*)&buf_in,(unsigned char)0,sizeof(buf_in));

}while(CWDP_receive_packet(fd,server_addr,buf_in,&core_out,&ack_out)!=P_CORE_DATA);

CWDP_send_packet(fd,addr,server_addr,buf_out,buf_in,buf_size,P_ACK,&core_out,&ack_out);

/*Compare sent packet with received packet*/

if(memcmp(&buf_out[4],&buf_in[4],1444)==0)

{

#ifdef PREF_TEST

printf("Data Match!!\n");

#endif

(u_int16_t)(core_out)++;

}

else

{

printf("Invalid Data!!\n");

}

#ifdef PREF_TEST

printf("Core seq number: %d Ack seq number: %d\n",core_out,ack_out);

#endif

}while(memcmp(&buf_out[4],&buf_in[4],1444)!=0);

Figure 3.6: Read Core Access and Send Acknowledge
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When the CORE DATA packet is received from FaceWorks, the PC replies with an ACK

packet. If this ACK packet is not delivered, the PC will not know of this and will transmit the

next CORE DATA packet.

PC FW

CORE_ACCESS 0

ACK 0

CORE_DATA 1

ACK 1

CORE_DATA 1

 ACK 1

CORE_DATA 2

ACK 2

CORE_DATA 1

 ACK 1

CORE_DATA 2

×

 ACK 2

core_out=0
ack_out=0

T
I
M
E
O
U
T

core_out=1
ack_out=0

core_out=1
ack_out=1

core_out=2
ack_out=1

core_out=2
ack_out=2

Figure 3.7: Facework Recovery from a Lost Packet

FaceWorks assumes the previous CORE DATA packet sent was not received by the host, so

after a timeout period it resends the same CORE DATA packet. A recovery from such failure is

depicted in the network diagram in Figure 3.7.

30



3.2 Hardware Implementation

3.2 Hardware Implementation

The new architecture is presented in Figure 3.8. Compared to the original architecture, the

CWDP Link modules are duplicated on both the reception and transmission sides. The RAM RX

block is also duplicated in order to receive and store two consecutive packets with different des-

tination ports. An arbiter is added to decide which of the CW-Link TX is granted access to the

medium.
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Figure 3.8: Two-Port FaceWorks Block Diagram
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3.2.1 Modified Blocks

In this implementation FaceWorks supports a single sender IP address and listens to two

hardwired UDP ports, whose numbers differ by 1. For example, ports 1234 and 1235. The

following paragraphs describe the modifications effected on the original hardware blocks.

UDP RX The UDP RX block original implementation filtered out the UDP packets whose desti-

nation port did not match the current listening port. This behavior has been modified. The UDP

destination port field is subtracted from the base listening port. If the result is 0 then the packet is

aimed at the first port; else, if the result is 1 the packet is aimed at the second port; otherwise the

packet is dropped.

CWDP RX The CWDP RX block is used for both ports and it must keep track of the packet

sequence numbers for the two ports. A block diagram is depicted in Figure 3.9. The control signal

CWLinkPort produced by the UDP RX block identifies the currently active port, and is used to

select the packet sequence number register to check and increment. The CWLinkPort signal is

also decoded to produce a 2-bit signal (active unit RX) to select the active CW-Link RX block.

Upon reception of a SET CORE ACCESS packet from a given UDP port, one of two registers

named ( locked UDP 0 and locked UDP 1) is set with the source UDP port. These are provided

to the CWDP TX block so it can choose the correct destination UDP port to reply to. See Figure

3.11 for details.
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Figure 3.9: CWDP RX and CW-Link RX
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CW-Link RX The CW-Link RX unit is duplicated, one for each communication port. Its control

Finite State Machine (FSM) has been modified so that they are activated one at a time, based on

the value of the control signal active unit RX.

CW-Link TX The CW-Link TX unit is duplicated. Its control FSM has been modified to allow

execution only when the Arbiter block grants access to the (RAM TX and CWDP TX) resources.

To do this, two signals are sent to the arbiter, cw req vector TX and busy cwlink, and one signal

is received from the arbiter, active unit tx, as shown in Figure 3.10. When the resources are

granted to one of the CW-Link TX units the arbiter waits until its execution ends before granting

the resources to the other CW-Link TX unit.
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Figure 3.10: CWDP TX and CW-Link TX

CWDP TX A single CWDP TX block is used. The UDP destination port may be different depend-

ing on the type of packet: ACK packet requested by the CWDP RX block or data packet requested

by one of the two CW-Link TX units, as shown in Figure 3.11. If the CWDP TX is processing a

CORE DATA packet, the destination UDP port is selected from the locked UDP 0 or locked UDP 1

inputs, based on the currently active CW-Link TX block. For an ACK packet request, the SendACK
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signal is activated, the SelACK signal selects the UDP destination port from the locked UDP 0 or

locked UDP 1 inputs, and the sequence number is provided by the SeqNumACK signal.
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3.2.2 Arbiter

To control the access to both the CWDP TX and the RAM TX modules from the CW-Link

TX modules an arbiter block has been implemented. The arbiter FSM is described in Table 3.1

(states), Table 3.2 (input/output signals), and Figure 3.12 (state transition diagram). The arbiter’s

algorithm is simple and tries to ensure that both UDP ports get the same priority in using Face-

Works’ transmission infrastructure: when both ports want to have access to the CWDP layer,

control is toggled from the port that currently has control to the port that does not.

Table 3.1: Arbiter FSM States

State Description

s stop Initial state. FSM waits for a TX request from one of the Cw-Link units.
s stop 1 FSM waits for a TX request from one of the Cw-Link units.

s tx 0 Resources Granted to Cw-Link 0.
s tx 1 Resources Granted to Cw-Link 1.

s wait 0 Waiting for Cw-Link 0 to free the Resources.
s wait 1 Waiting for Cw-Link 1 to free the Resources.

Table 3.2: Arbiter Input and Output Signals

Signals Direction Description

CWDP
busy input Signals that the CWDP TX unit is being used.

cwdp sent input Signals that the packet was sent.
CW-Link 0

active unit tx[0] output Activates the CW-Link 0 unit.
busy cwlink 0 input Signals that the CW-Link 0 is busy.

cw req vector TX 0 input Signals that the Cw-Link 0 is requesting access.
CW-Link 1

active unit tx[1] output Activates the CW-Link 1 unit.
busy cwlink 1 input Signals that the CW-Link 1 is busy.

cw req vector TX 1 input Signals that the Cw-Link 1 is requesting access.
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In this chapter the methodology used to debug, verify and inspect the FaceWorks core is

presented.

Initially, verification of the design was being performed directly on the FPGA using as main

tools for debug a packet sniffer (Wireshark), an Integrated logic analyzer (ILA) (Xilinx’s ChipScope

Pro) and the Face-Test application to send stimuli to the FPGA board and analyze the responses.

However, as the design got near completion, some intermittent bugs showed up, which were very

difficult to identify using this ad-hoc verification method.

The main difficulty was to know when and what signal was the causing a problem, so that cor-

rect trigger conditions could be set. Using the ILA proved ineffective due to too many inconclusive

trigger conditions, and a limited buffer size to store data samples for analysis, which is the result

of having limited number of Block Random Access Memorys (BRAMs) in the device.

An alternative consisted in creating a testbench and running the system into a simulator such

Xilinx’s iSim. However, it was difficult to recreate realistic test conditions, unless a significant

amount of C and Verilog code were developed. Another way is to modify the system in order to

be able to run a simpler to write testbench, but this approach is risky as important features may

end up untested.

Besides, methods for the testbench to read and write data are limited to file Input-Output (IO)

since no Verilog Procedural Interface (VPI) support is offered for iSim. Writing and reading files

to exercise the MII interface in a testbench is hard and complicated to implement, considering

the sheer amount of data needed to adequately test a network interface. So other alternatives

were searched so that the design could be properly debugged and verified. Of the considered

alternatives, Verilator, a free open source application, has been chosen to perform this task.

This chapter describes Verilator, explaining C++ testbenchs, the process of instantiating Veri-

lator generated SystemC models in C++ applications, and how to run simulations.

4.1 Verilator

Verilator is an application that translates a synthesizable Verilog description into an optimized

cycle-accurate behavioral model in C++/SystemC, which is called a verilated file. Verilator is

a two state simulator (0,1), but it has features to deal with unknown states. The testbench is

a C/C++ application that wraps the verilated model and is compiled with it using a common C++

compiler. Verilated models show high simulation speed, which is on par or higher than commercial

simulators such as NC-Verilog, VCS and others. [18].

4.1.1 Verilator History

Verilator was originally created in 1994 by Paul Wasson at the Core Logic Group at Digital

Equipment Corporation (DEC). In 1998 DEC released the source of verilator under a GNU Public
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License. The maintainer of the project since 2001, Wilson Snyder, added SystemC support and

fully rewrote Verilator in C++. Latest additions provide SystemVerilog and SystemVerilog Direct

Programming Interface (DPI) language support[19, p. 65].

4.1.2 Verilator Testbench

Using Verilator, a FaceWorks simulator has been created which can be stimulated with the

same socket-based test application used for exercising FaceWorks in an FPGA. In this way test

patterns that fail in the FPGA device can be replicated and analyzed in simulation with full visibility

over all design signals. A FaceWorks SystemC model is created by running Verilator on the

FaceWorks Verilog code, and this object is then instantiated in the testbench application.

4.2 Verification Environment

Socket

Socket

Face-Test

Application

Dummy UDP
Server 0

Dummy UDP
Server 1

FaceWorks
Controller

FaceWorks
System C

Model
MII

Port 0 Port 1

Port 0 Port 1
Packets

C/C++ Testbench

sniffudp

Figure 4.1: Verification Environment

Figure 4.1 shows the verification environment for FaceWorks, encompassing the Face-test

application and the C++ testbench. The testbench has five components: 3 threads (Dummy UDP

Server 0, Dummy UDP Server 1 and sniffudp), the FaceWorks Controller and the FaceWorks

model.
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The two threads Dummy UDP Server 0 and Dummy UDP Server 1 perform the simple operation

of reading the UDP ports persistently, so the input data coming from the application do not fill the

OS socket buffer.

The sniffudp thread launches the data capture code, which is based on the sniffex.c code

example of libcap, a portable C/C++ library for network traffic capture [20].

This data capture code must be used instead of a simple UDP socket, because this way the

full Ethernet frame is captured, which makes it easier to reconstruct the MII packet in order to feed

the data to the MII interface of the FaceWorks model.

The FaceWorks Controller is responsible for receiving data from the sniffudp thread, format-

ting the data according to the MII format and deliver them to the FaceWorks MII interface. The

FaceWorks Controller is also responsible for unpacking the data it receives from the FaceWorks

model in order do send them to the test application via UDP sockets.

The FaceWorks model is a SystemC Model created by running Verilator on the FaceWorks

Verilog code.

Threads are used so that the FaceWorks Controller can run at the same time as data is

intercepted by the sniffudp function. These two components are explained in detail in the next

two subsections.

4.2.1 sniffudp

A simpler solution to capture data from the Face-Test application is to implement a C/C++

UDP socket server in the testbench to read the incoming data from the Face-Test application and

provide it to the FaceWorks SystemC model. However, since the FaceWorks connection to the

outside is the MII interface, one would need to recreate the MII packet from the received UDP

payload. Recreating the MII packet implies recreating the UDP packet followed by the IP packet,

followed the Ethernet frame. This would be unnecessarily complicated.

A solution for this problem is to capture the packets at the data link layer, which can be ac-

complish by the use of libpcap, avoiding the process of recreating the Ethernet, IP and UDP

packets.

The sniffudp function is set to capture data on the Linux loopback (lo) device, which are

addressed with the two FaceWorks UDP ports. The lo device is a virtual network interface used to

receive packets sent from the host to itself. After the setup the sniffudp thread blocks waiting for

filtered packets. When such packets arrive they are passed to a callback function got packet().

The got packet() function receives almost complete Ethernet frames (Figure 2.4) which miss

the FCS field and have a blank destination and source address, since the data is traveling through

the loopback interface. The fields preamble, SFD, destination address, source address and Ether-

type are inserted. The data field (containing the IP packet) is copied from the sniffed packet. The

CRC is calculated as described in section 4.2.4 and appended as the FCS field.
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Then, the got packet() function reaches a critical region where it pushes the packet into a

queue shared with the main thread, after which it terminates execution. When another packet is

filtered the callback function is called again and the process repeats all over again.

4.2.2 FaceWorks Controller

The FaceWorks Controller instantiates the FaceWorks model, and communicates with it. The

communication with the model is presented in this section, and the instantiation of the model is

presented in 4.3.

Since the FaceWorks Controller does not implement the ARP protocol, to properly support

the communication between the Face-Test application and the FaceWorks model, the FaceWorks

controller starts by sending a fixed ARP reply packet as shown in Figure 4.2. This packet is sent

even without receiving any ARP request from the FaceWorks model. The purpose is to fill the

ARP cache with an IP address / MAC address pair, so the FaceWorks Ethernet TX module can

obtain the MAC address by consulting the ARP module. If the cache is already stuffed, no ARP

query packets will be generated by the FaceWorks model.

DST: 00:AA:00:62:C6:21
SRC: 00:AA:00:62:C6:21
ARP reply:
     "192.168.0.133 is 
           at 00:AA:00:62:C6:21"

Figure 4.2: Injected ARP Reply Packet

After the ARP stuffing is completed, the FaceWorks controller is in a loop, trying to transfer

data from the packet queue, shared with the sniffudp thread, to the MII RX interface of the

FaceWorks model, and/or to transfer data from the MII TX interface to the socket that leads to the

Face-Test application.

To transfer data from the queue to the MII RX interface the FaceWorks controller needs to get

hold of the mutex that protects the shared packet queue. When access to the mutex is granted

and at least one packet exists in the queue, the packet is popped from the queue and fed into the

MII RX interface of the FaceWorks model, nibble by nibble.

To transfer data to the socket leading to Face-Test, the FaceWorks controller stores the re-

ceived nibbles in a buffer, which is then passed to another function, the process recv packet

function discussed in the next section, which verifies and forwards the data to the Face-Test ap-

plication.
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4.2.3 process recv packet

The process recv packet function receives as argument a packet buffer from the FaceWorks

controller, processes the packet and sends it over the network socket to the Face-Test application.

The process recv packet function checks if the Preamble, SFD and Ethernet headers are

correctly constructed, by comparing their values to the expected values. The FCS field is calcu-

lated for the received packet and compared with the FCS value in the packet itself. The FCS field

contains a CRC checksum computed as described in section 4.2.4. If any field does not match

the expected value, the function returns with an error which indicates the malformed field.

If a well formed packet is received, the IP headers and UDP headers are read to extract the

destination IP address, UDP port and UDP payload offset, and the UDP packet is sent to the

Face-Test Application.

By verifying the data from the MII interface, the operation of the FaceWorks model is always

under scrutiny, which is a valuable debug feature. Next, the Ethernet, IP and UDP headers are

removed, and the data is placed into the UDP socket to be sent to the Face-Test application, which

is listening to the UDP ports in use.

4.2.4 Cyclic Redundancy Check

The CRC is computed by both the process recv packet and the got packet function. The

source code used to calculate the CRC has been generated by a Python script denominated

pycrc[21]. The pycrc script outputs a C header file (.h) and C source code file (.c) which can

compute the CRC.

> python pycrc.py --model crc-32 --algorithm table-driven --poly 0x04c11db7 --generate h -o crc.h

> python pycrc.py --model crc-32 --algorithm table-driven --poly 0x04c11db7 --generate c -o crc.c

Figure 4.3: Generating CRC Functions with the pycrc Python Script

Figure 4.3 illustrates how to use the pycrc script. The script must be called twice: the first time

to generate the .h file and the second time to generate the .c file. The command line arguments

provided are the appropriate ones to generate the Ethernet FCS, a 32-bit CRC which uses the

0x04c11db7 polynomial. The -algorithm table-driven option has been included because it

produces the fastest algorithm. This method uses a look-up table which might not be acceptable

for embedded systems. But, since this is only used in the testbench program which runs on the

PC, memory restrictions do not apply.
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4.3 Verilator Module Instantiation

The Verilog module declaration of the FaceWorks system is depicted in Figure 4.4. The test-

bench code has been written based on the test sc and test sp examples included as part of the

Verilator installation directory verilator/examples/ [19].

module faw_system(

input wire sys_clk,

input wire sys_rst,

//!IP/PORT CONFIG PINS

input wire[3:0] faw_dyn_conf,

input wire faw_sub_net,

//!ETHERNET PHY PINS

input wire MAC_PHY_tx_clk_pin;

input wire MAC_PHY_rx_clk_pin;

input wire MAC_PHY_rx_dv_pin;

input wire [3:0] MAC_PHY_rx_data_pin;

output wire MAC_PHY_tx_en_pin;

output wire MAC_PHY_tx_error_pin;

output wire [3:0] MAC_PHY_tx_data_pin;

output wire MAC_PHY_rst_n;

output wire MAC_PHY_mdc;

);

Figure 4.4: FaceWorks Verilog Module Declaration (faw system.v)

In the testbench code quite a few declarations are needed to instantiate the FaceWorks ver-

ilated model. For this it is necessary to include the following header files, as shown in Figure

4.5.

#ifdef SYSTEMPERL

# include "systemperl.h" // SystemC + SystemPerl global header

# include "sp_log.h" // Logging cout to files

# include "SpTraceVcd.h"

# include "SpCoverage.h"

#else

# include "systemc.h" // SystemC global header

# include "verilated_vcd_sc.h" // Tracing

#endif

#include "Vfaw_system.h" // Top level header, generated from verilator

Figure 4.5: Testbench Header Files

The testbench code supports two type of simulations: the SystemC simulation (signal tracing)

and the SystemC + SystemPerl simulation (code coverage and signal tracing). The #ifdef clause

in Figure 4.5 selects the correct header files depending on the simulation case. Then the header

file Vfaw system.h, which results from running Verilator run on the FaceWorks Verilog code, is

included.

The testbench is written in SystemC and therefore the main function is denoted sc main, as

shown in Figure 4.6.
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int sc_main(int argc, char* argv[]) {

(...)

//

// Define the Clocks

//

#if (SYSTEMC_VERSION>=20070314)

sc_clock sys_clk ("sys_clk", 20,SC_NS, 0.5,10,SC_NS, false);

sc_clock MAC_PHY_tx_clk_pin ("MAC_PHY_tx_clk_pin", 40, SC_NS, 0.5, 0, SC_NS, false);

sc_clock MAC_PHY_rx_clk_pin ("MAC_PHY_rx_clk_pin", 40, SC_NS, 0.5, 0, SC_NS, false);

#else

sc_clock sys_clk ("sys_clk", 20, 0.5, 10, false);

sc_clock MAC_PHY_tx_clk_pin ("MAC_PHY_tx_clk_pin", 40, 0.5, 0, false);

sc_clock MAC_PHY_rx_clk_pin ("MAC_PHY_rx_clk_pin", 40, 0.5, 0, false);

#endif

//==========

// Define the Interconnect

cout << "Defining Interconnect\n";

sc_signal<bool> sys_rst;

sc_signal<vluint32_t > faw_dyn_conf;

sc_signal<bool > faw_sub_net;

sc_signal<bool> MAC_PHY_tx_en_pin;

sc_signal<bool> MAC_PHY_tx_error_pin;

sc_signal<vluint32_t> MAC_PHY_tx_data_pin;

sc_signal<bool> MAC_PHY_rx_dv_pin;

sc_signal<vluint32_t > MAC_PHY_rx_data_pin;

sc_signal<bool> MAC_PHY_rst_n;

sc_signal<bool> MAC_PHY_mdc;

Figure 4.6: Signal Declaration in the SystemC Testbench

To declare the SystemC clock and signal objects, the sc clock and sc signal classes are

used. The sys clk object is a clock with a period of 20 ns (SC NS is used to specify time units),

a duty cycle of 50%, the first transition occurs at 10 ns, and is a negative edge transition (false).

This signal drives the FaceWorks clock pin. The other two clock signals, (MAC PHY tx clk pin

and MAC PHY rx clk pin), are used in the MII/MAC interface, and have similar declarations.

For the rest of the signals (ie, signals that are not clocks), the sc signal class is used, which

declares signals of various data types. Single bit signals use the bool type, 2 to 32-bit vectors

use the vluint32 t type, 33 to 64-bit vectors use the vluint64 t or the sc bv types1, and

wider bit vectors use the sc bv type. When Verilator translates Verilog code to SystemC, the

SC MODULE pinout will show the type conversions described, as can be seen in the output header

file Vfaw system.h, where only bool and vluint32 t types are used. The reasons for these type

conversions are linked with the simulator’s performance.

1The sc bv is also used for 33 to 64-bit vectors if the -no-pins64 flag is provided to Verilator
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//==========

// Device under test

#ifdef SYSTEMPERL

SP_CELL (top, Vfaw_system);

SP_PIN (top, sys_clk,sys_clk);

SP_PIN (top, MAC_PHY_tx_clk_pin,MAC_PHY_tx_clk_pin);

SP_PIN (top, MAC_PHY_rx_clk_pin,MAC_PHY_rx_clk_pin);

SP_PIN (top, sys_rst,sys_rst);

SP_PIN (top, faw_dyn_conf,faw_dyn_conf);

SP_PIN (top, faw_sub_net,faw_sub_net);

SP_PIN (top, MAC_PHY_tx_en_pin,MAC_PHY_tx_en_pin);

SP_PIN (top, MAC_PHY_tx_error_pin,MAC_PHY_tx_error_pin);

SP_PIN (top, MAC_PHY_tx_data_pin,MAC_PHY_tx_data_pin);

SP_PIN (top, MAC_PHY_rx_dv_pin,MAC_PHY_rx_dv_pin);

SP_PIN (top, MAC_PHY_rx_data_pin,MAC_PHY_rx_data_pin);

SP_PIN (top, MAC_PHY_rst_n,MAC_PHY_rst_n);

SP_PIN (top, MAC_PHY_mdc,MAC_PHY_mdc);

#else

Vfaw_system* top = new Vfaw_system("top");

top->sys_clk (sys_clk);

top->MAC_PHY_tx_clk_pin (MAC_PHY_tx_clk_pin);

top->MAC_PHY_rx_clk_pin (MAC_PHY_rx_clk_pin);

top->sys_rst (sys_rst);

top->faw_dyn_conf (faw_dyn_conf);

top->faw_sub_net (faw_sub_net);

top->MAC_PHY_tx_en_pin (MAC_PHY_tx_en_pin);

top->MAC_PHY_tx_error_pin (MAC_PHY_tx_error_pin);

top->MAC_PHY_tx_data_pin (MAC_PHY_tx_data_pin);

top->MAC_PHY_rx_dv_pin (MAC_PHY_rx_dv_pin);

top->MAC_PHY_rx_data_pin (MAC_PHY_rx_data_pin);

top->MAC_PHY_rst_n (MAC_PHY_rst_n);

top->MAC_PHY_mdc (MAC_PHY_mdc);

#endif

Figure 4.7: Interconnecting the Verilated Model and the Testbench Signals

After all signals are declared, they are used to connect the testbench signals to the Verilator

module pins. Another #ifdef clause is used to select if the verilated module is instantiated using

SystemPerl or SystemC, as show in Figure 4.7. With the SystemC model instantiated and the

signals connected in the C++ testbench, the model is ready to be initialized and run.
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4.4 Running the Simulation Model

To ease the compiling and running of the simulation model, two different Makefile sets have

been created. One set of makefiles generates the SystemC model and runs the simulation to

produce wave traces. The other set of Makefiles creates the SystemC and SystemPerl code to

produce wave traces and coverage metrics.

4.4.1 Folder Structure

In Figure 4.8, a representation of the folder structure used for the project is shown. Each folder

is explained as follows:

• faw sys verilog: contains the Verilog source of FaceWorks;

• test sc: contains the Makefiles and the testbench source code for generating the SystemC

simulation;

• test sp: contains the makefiles for the SystemC/SystemPerl simulation;

• src: contains files that are used as input to verilator.

cw_system

faw_system_verilog verilator_sim

src test_sc test_sp

Figure 4.8: Project Folder Hierarchy

4.4.2 Producing the Simulation Model

The SystemC simulation model is produced by the Makefile in the test sc folder, which starts

by invoking Verilator, as shown in Figure 4.9, with the following flags:

• –sc: generates SystemC output;

• -f: specifies an input file with commands;

• –trace: produces waveform traces while running.

The Verilator input file input.vc placed in the src folder is shown in Figure 4.10. The input.vc

file contains directives for file extensions and directories where the Verilog sources can be found.
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4.4 Running the Simulation Model

verilator --sc -f ../src/input.vc faw_system.v --trace

Figure 4.9: Verilator Invocation

+librescan +libext+.v

+incdir+../../faw_sys_verilog

Figure 4.10: Verilator Directives

After the input files are verilated the Makefile will call the Makefile obj file to compile the test-

bench source code and link it with the verilated model.

The resulting application needs to capture network packets without running in super-user

mode. This is accomplished by specific Linux settings and by using the setcap application. The

makefile automatically makes these settings and runs the simulator application.

4.4.3 Linting the Verilog Code

When executing, Verilator first verifies if lint violations exist, to ensure the code is synthesiz-

able. If any warning or error exists in the code Verilator aborts execution unless the particular line

of code causing the error or warning is protected with a pair of pragmas, as depicted in Figure

4.11.

/*verilator lint_off PINNOCONNECT*/

.crcValid(/* open */),

/*verilator lint_on PINNOCONNECT*/

Figure 4.11: A Linting Warning Disabled

Warnings can be ignored by calling verilator with the flag -Wno-warning. Verilator may also

be used exclusively as a ”linting” tool, invoking Verilator with the flag –lint-only. Some of the

warnings/errors produced by Verilator can have an impact on the performance of the model and

produce non-synthesizable code; so it is recommended to correct all linting warnings before pro-

ceeding. Some examples of the verilator warnings that occurred while processing FaceWorks are

illustrated below. For each one of these warnings the problem was identified and solved.
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In Figure 4.12, the Case Overlap and Case Incomplete warnings produced by a case state-

ment were due to a user error in the Verilog description. One of the case values overlaps the case

value (0x4), and leaves the case value 0x07 uncovered, as no default case statement is given.

%Warning-CASEOVERLAP: ../../faw_sys_verilog/faw_cwdp_rx.v:571:

Case values overlap (example pattern 0x4)

%Warning-CASEOVERLAP:

Use "/* verilator lint_off CASEOVERLAP */" and lint_on around source to disable this message.

%Warning-CASEINCOMPLETE: ../../faw_sys_verilog/faw_cwdp_rx.v:555:

Case values incompletely covered (example pattern 0x7)

Figure 4.12: Case Overlap and Case Incomplete Warnings

This specific situation, which was caused by a typo, is easy to correct by changing the value of

the overlapping statement to the expected value, fixing both warnings. In other cases, where a full

coverage of input signal combinations is not obtained, one needs to insert the default statement,

so that the warning does not display.

In Figure 4.13, the 11-bit signal CWDP data size is added to the 4-bit constant in the Right

Hand Side (RHS) of the expression. Although this is a valid Verilog expression, and accepted by

tools such as Xilinx Synthesis Tool (XST), this code produces the Verilator warning depicted in

Figure 4.14.

packet_size_next = CWDP_data_size + 4’h 4;

Figure 4.13: Addition with Narrower RHS Warning

%Warning-WIDTH: ../../faw_sys_verilog/faw_cwdp_tx.v:255:

Operator ADD expects 11 bits on the RHS, but RHS’s CONST ’4’h4’ generates 4 bits.

%Warning-WIDTH:

Use "/* verilator lint_off WIDTH */" and lint_on around source to disable this message.

Figure 4.14: Width Mismatch Warning

To solve the Width Mismatch warning, the missing Most Significant Bits (MSBs) on the RHS of

the expression must be declared as depicted in Figure 4.15. This way the two operands and the

sum are 11-bit vectors. A 12-bit vector for the sum would also be acceptable.

packet_size_next = CWDP_data_size + {7’b0,4’h 4};

Figure 4.15: Correction of the Previous Width Mismatch Problem
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The warning presented in Figure 4.16 identifies a path that contains circular logic. It is unlikely

that the resulting asynchronous logic will meet the desired functionality. Also, this may affect the

Verilator model performance, so it is recommended to fix this problem.

%Warning-UNOPTFLAT: ../../faw_sys_verilog/faw_faceworks.v:302:

Signal unoptimizable: Feedback to clock or circular logic: v.facework.active_unit_tx

%Warning-UNOPTFLAT: Example path: ../../faw_sys_verilog/faw_faceworks.v:302: v.facework.active_unit_tx

%Warning-UNOPTFLAT: Example path: ../../faw_sys_verilog/faw_faceworks.v:749: ASSIGNW

%Warning-UNOPTFLAT: Example path: ../../faw_sys_verilog/faw_faceworks.v:270: v.facework.CWDP_nr

%Warning-UNOPTFLAT: Example path: ../../faw_sys_verilog/faw_cwdp_tx.v:175: ALWAYS

%Warning-UNOPTFLAT: Example path: ../../faw_sys_verilog/faw_faceworks.v:357: v.facework.busy_cwdp

%Warning-UNOPTFLAT: Example path: ../../faw_sys_verilog/faw_faceworks.v:681: ALWAYS

%Warning-UNOPTFLAT: Example path: ../../faw_sys_verilog/faw_faceworks.v:302: v.facework.active_unit_tx

%Error: Exiting due to 2 warning(s)

%Error: Command Failed /usr/local/bin/verilator_bin --sc -f ../src/input.vc faw_system.v --trace

Figure 4.16: Circular Logic Warning

As one can see in Figure 4.16, the combinatorial loop starts and ends in the signal active unit tx.

This warning is corrected by changing the assignments done to the active unit tx signal within

the FSM to break the existing feedback loop.

4.4.4 Observing Wave Traces

Assuming no warning or errors were detected during the lint and compile phases, the simulator

model is run and the Face-Test application stimulates it. After a predefined number of exchanged

packets, the simulator terminates execution and dumps a VCD file that contains the simulation

waveforms.

To display the contents of the VCD file, the Makefile launches the GTKwave application [22].

With GTKWave the full hierarchy of the design is shown, and the desired signals or registers

can be added to the visualization window. In Appendix A, a screen shot showing the GTKwave

application can be seen.

4.4.5 Coverage

To generate coverage metrics the SystemPerl Makefile inside the test sp folder must be used.

This causes a coverage file name coverage.pl to be written in the verilator sim/test sp/logs/

folder when the simulation ends. Naturally, coverage results depend on the quality of the stimulus

provided by the Face-Test application.
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The application Vcoverage, part of the SystemPerl toolkit, can output a copy of the source

code files of the project with coverage metrics annotated. By default, the file logs/coverage.pl

is read to annotate the source code and place a copy under logs/coverage source/ , as shown in

Figure 4.17.

> vcoverage

Total coverage (398/687) 57.93%

See lines with ’\%00’ in logs/coverage\_source

Figure 4.17: Output from Vcoverage

For different stimulus patterns, distinct output coverage files are obtained. To combine these

into a single coverage file the vcoverage application is called with the arguments presented in

Figure 4.18.

> vcoverage --noreport -write logs/merged-cov.dat *.pl

Generating the report

> vcoverage --min 1 --o logs/coverage_source logs/merged-cov.dat

Total coverage (524/687) 76.27%

See lines with ’\%00’ in logs/coverage\_source

Figure 4.18: Merging Distinct Coverage Files and Generating Output Statistics

First, all .pl files are merged into a single merged-cov.dat file by using the –noreport option.

Then, coverage statistics are generated for the joined files and the output source code files are

placed in the same output directory logs/coverage source.

014988 s_wait_1 : begin

000026 if((busy_cwlink_1 == 1’b 0)) begin

// Ack foi recebido

active_unit_tx_next=2’b 00;

next_state = s_stop_1;

end

end

%000000 default: begin

active_unit_tx_next = 2’b 00;

next_state = s_stop;

end

Figure 4.19: Code Coverage Report Excerpt

As shown in the Verilog code example in Figure 4.19, the number of times each code block is

executed is annotated on the left. Code that vcoverage thinks needs more coverage is marked

% X, where X is the number of times the line has been exercised. Any line exercised less than a

minimum number of times (which can be specified with the --min option) is marked % X.
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5. Results

In this chapter two kind of results are presented: 1) FPGA implementation results on con-

sumed resources and operation frequency; 2) bandwidth results.

5.1 FPGA Implementation Results

The system has been developed and tested on a Xilinx SP605 board, featuring a Spartan

6 XC6SLX45T device and a Marvell Alaska PHY (88E1111) chip. The Spartan 6 is a low end

device, designed for larger production volumes and low price but with limited performance.

The synthesis results presented are obtained with the Xilinx ISE 14.4 suite of tools. In Table

5.1, synthesis results for the original single port implementation are presented. Table 5.2 presents

synthesis results for the two-port implementation designed in this work.

Table 5.1: Implementation Results for the Single-Port FaceWorks

Used Total Percentage
Used

Slice Logic Utilization
Number of Slice Registers 1527 54576 2%
Number of Slice LUTs: 2178 27288 7%

Number used as Logic 2036 27288 7 %
Number used as Memory 16 6048 1 %

Slice Logic Distribution
Number of LUT Flip Flop pairs used: 2375 - -

Number with an unused Flip Flop 999 2375 42%
Number with an unused LUT 197 2375 8 %
Number of fully used LUT-FF pairs 1179 2375 49 %

Specific Feature Utilization
Number of Block RAM (16Kb) 2 116 2%

Table 5.2: Implementation Results for the Two-Port FaceWorks

Used Total Percentage
Used

Slice Logic Utilization
Number of Slice Registers 1917 54576 3%
Number of Slice LUTs: 2965 27288 10%

Number used as Logic 2933 27288 10 %
Number used as Memory 32 6048 1 %

Slice Logic Distribution
Number of LUT Flip Flop pairs used: 3963 - -

Number with an unused Flip Flop 2046 3963 51%
Number with an unused LUT 998 3963 25 %
Number of fully used LUT-FF pairs 919 3963 23 %

Specific Feature Utilization
Number of Block RAM (16Kb) 3 116 2%
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5.2 Ethernet Switch Characterization

The synthesis results show that both FaceWorks designs are very economic in terms of size.

The single-port design uses the equivalent of 14000 gates, while the two-port design uses about

20000 gates1. However, it must be noted that the single-port design only supports 8 CW-Link

connections, while the two-port design supports 16 CW-Link connections. The IP cores use very

little memory and zero DSP blocks. The overall size can be considered adequate for a test and

debug core. For a small FPGA like the Spartan 6 , it only occupies 10 % of the logic resources in

the two-port configuration.

The results show that with about 7000 gates a new UDP port and 8 new CW-Link connections

can be added to the design. Thus, the design scales almost linearly, being the non-linear part the

small amount of logic needed to augment the size of the arbiter.

Table 5.3: Period Timing Constraints

Used Minimum

Sys clk 20 ns 8.341 ns
TX CLK 40 ns NA
RX CLK 40 ns NA

The system clock period used and the minimum period constraint that has been possible

to meet are shown in Table 5.3. The minimum period (8.341 ns), which corresponds to about

120MHz is a competitive frequency for a Spartan 6 device. Compared to the single port imple-

mentation, where the minimum clock period is 6.912 ns, the minimum clock period increases 20%

for the two-port implementation. This is mostly due the Arbiter block design, which scales poorly

in terms of frequency. A better design would not be very difficult to implement but falls out of the

scope of this thesis. For a number of ports higher than two, it is highly recommended that the

Arbiter design is reviewed.

5.2 Ethernet Switch Characterization

The results presented in this thesis have been obtained on a notebook with an Intel U4100 @

1.30GHz processor, 3 GB of RAM and an Atheros AR8131 ethernet adapter, running the Linux

kernel 3.2.0-x86-64. To interconnect Ethernet devices a TP-Link TL-WR841N switch has been

used. Two network tests have been performed to the determine the switch capabilities, and detect

if in either case they could limit the FaceWorks performance.

The first test was designed to determine the maximum throughput achievable with the switch.

This test consisted in exchanging data in both directions, simultaneously, between two notebooks

interconnected via the switch. To establish the network connections between the notebooks the

netcat (nc) application was used in UDP mode. To avoid limitations in hard disk throughput, the

outputs were redirected to the null device (/dev/null).
1This figure has been obtained by counting 6 gates per each 6-input LUT and one gate per flip-flop
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The throughput values presented in Table 5.4 represent raw values obtained using a random

stream, without sending acknowledge packets, and without any data dependencies on the data

sent by the other peer. Throughput values are measured for upstream, downstream and aggre-

gate (sum of upstream and downstream). In the remainder of this thesis, the aggregate throughput

obtained is used as a reference.

Table 5.4: TL-WR841N 10/100 Mbps Maximum Raw Throughput

Downstream Upstream Aggregate

Throughput 94.54 Mbps 95.88 Mbps 190.42 Mbps

These results show that in practice a throughput close to the nominal network speed has been

achieved. One can say the setup introduces a 5% degradation compared to ideal conditions.

The second test consisted in measuring the effective throughput for various packet sizes.

Using the ping application 10 packets were sent with three distinct data sizes, 54 bytes, 720 bytes

and 1440 bytes. The Round-Trip delay Time (RTT) values as reported by the ping application and

effective throughput for 3 packet sizes are presented in Table 5.5, where the aggregate throughput

is calculated using the following expression:

Throughput =
(2 ∗ PacketSize ∗ 8)

RTT.106
(5.1)

These results show that the factor limiting the system performance is the latency. The data is

packetized and a latency penalty is incurred for each packet sent. Naturally, the penalty decreases

with the packet size, but even for the maximum packet size allowed by the CWDP protocol (1440

bytes), the obtained practical upper bound for the aggregate throughput (21 Mbps) is only about

11% of the maximum possible throughput.

Table 5.5: Effective Throughput

Packet Size Latency Throughput Utilization

54 bytes 0.593 ms 1.51 Mbps <1%
720 bytes 0.84 ms 13.71 Mbps 7.2%
1440 bytes 1.107 ms 20.81 Mbps 10.9%
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5.3 Throughput Upper Bound Model

Since no alternative paths exist in the network one can say that the One Way Delay (OWD)

is approximately OWD = RTT
2 , with RTT measured by the application. Table 5.6 shows OWD

values for the considered packet sizes.

Table 5.6: One Way Delay

Packet Size Delay

54 bytes 0.297 ms
720 bytes 0.42 ms

1440 bytes 0.554 ms

Using the OWD values, one can calculate lower bound delays for data transactions in the

cases of single and double ports. The expression practical lower bound is used because the

delays measured below were always above these calculations. This model takes into account the

handshaking implemented with the small acknowledge packets. Figure 5.1 shows the calculation

of the practical lower bound for a single-port FaceWorks system. Sending and receiving back a

CORE DATA packet takes 1.7 ms.

ACK 1

CORE_DATA 1

CORE_DATA 1

ACK 1

OWD1440 OWD56 OWD1440 OWD56

PC

FW

Figure 5.1: Single-Port Timing Diagram

Figure 5.2 shows the calculation of the practical upper bound for a two-port FaceWorks sys-

tem. Two simultaneously working ports can send and receive back two CORE DATA packets in

approximately 2.424 ms. The blue color represents the first port, and the red color the second

port.

Table 5.7: Throughput Model

Throughput Utilization

Single Port 13.55 Mbps 7.11%
Dual Port 19.00 Mbps 10%

Converting lower bound delays to upper bound throughput yields the upper bound throughput

results shown in Table 5.7. These results are considerably lower than the switch limits shown
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ACK 1

CORE_DATA 1

CORE_DATA 1

ACK 1

OWD1440 OWD1440  + OWD56 OWD56

CORE_DATA 1

ACK 1 CORE_DATA 1

OWD1440  + OWD56

ACK 1PC

FW

Figure 5.2: Two-Port Timing Diagram

in Table 5.4. This is made clear by column Utilization in the table, which shows the obtained

throughput divided by the maximum possible throughput. The explanation for the low utilization

rate lies, firstly, in the system latency, and secondly, in the inter packet dependency between the

CORE DATA packets and the ACK packets.

These results show that the handshaking has a dramatic effect on a single-port FaceWorks,

as the next packet can only be sent after the acknowledge for the previous packet is received.

The model predicts only about 14 Mbps of effective throughput using a single port.

The situation improves considerably when the second port is added, since a packet for the

second port can be sent without waiting for the acknowledge of the packet sent to the first port.

The model predicts 19 Mbps of effective throughput, which is close to the 21 Mbps limit obtained

without handshaking.

5.4 FaceWorks Sustained Throughput

For the sustained2 throughput measurement, the previously benchmarked TP-Link TL-WR841N

10/100 Mbps switch has been used to interconnect the notebook and the FPGA board contain-

ing the FaceWorks core. In the FPGA, the CW-link RX-TX loopback shown in Figure 3.1 was in

place, so that the tests could be done using FaceWorks alone. Table 5.8 summarizes the results

obtained.

Table 5.8: FaceWorks Throughput Results

Single Port Dual Port Gain

Original FaceWorks 9.86 Mbps - -
Current FaceWorks 11.02 Mbps 14.71 Mbps 33%

Verilator Model 42.27 Mbps 79.59 Mbps 88%

Both the original and new FaceWorks implementations have been tested using the Face-Test

application. The new version is significantly faster than the original FaceWorks implementation in

2In networking the term sustained is used for results obtained by averaging over long periods of time.
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VHDL. Since the algorithms are the same, the suspicion is that the previous version may have

been dropping packets, due to the presence of problems detected by the Verilator linter, which

have been fixed in this new and cleaned up Verilog version. Specifically, the original code had a

few combinatorial loops which may cause occasional packet losses.

The two-port FaceWorks core has been tested using two Face-Test applications, one for each

UDP port. As can be seen, the two-port FaceWorks makes a better use of the available band-

width when compared to the single-port implementation, as predicted by the throughput model of

section 5.3.

Using the cycle accurate Verilator simulator, about 42 Mbps for a single-port core and 80 Mbps

for a two-port core have been obtained. Note that, in hardware simulation only, all latencies are

zero (network, switch, host and Operating System (OS)), except for the FaceWorks and the MAC

protocol small hardware latencies. This clearly demonstrates the dramatic effect of system latency

on the board measurements reported before.

The values obtained by the current FaceWorks implementation are compared with the values

predicted by the throughput model in Table 5.9. The deviations can be explained by the added

latency introduced by the host computer and its operating system. The two-port model performed

relatively worse than the single-port model, which can be attributed to the fact that the former

requires two Face-Test applications running simultaneously and competing for a shared network

interface.

Table 5.9: Measured vs. Modeled Throughput

Measured Model Deviation

Single Port 11.02 Mbps 13.55 Mbps 19%
Dual Port 14.71 Mbps 19.00 Mbps 23%
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6.1 Summary

The design of a new multiple port FaceWorks architecture is the main objective of this work,

which has been fully accomplished, including its verification and experimental characterization.

FaceWorks is a technology used to test and debug IP cores inside a chip by connecting this

chip to an Ethernet network and conducting the tests from a regular Personal Computer (PC).

FaceWorks is a patented and proprietary technology of the company Coreworks S.A. FaceWorks

uses the UDP/IP protocol stack, topped by the proprietary CWDP layer used for direct interaction

with the IP cores being debugged. The IP cores are connected to the FaceWorks module by

means of the proprietary CW-Link interfaces.

The IP cores can be tested by test programs running on the PC. The main motivation of this

work is to simplify the writing of test software, by allowing multiple threads or processes to exercise

multiple IP cores simultaneously using two distinct UDP ports.

The design consisted of extending the FaceWorks hardware to support two ports, and writing

a software application to exercise the two ports.

In the hardware implementation, the UDP and CWDP modules have been modified to work

with two ports. The number of CW-Link interfaces has been duplicated, in order to keep the

same number of debug interfaces per UDP port. Originally FaceWorks was written in the VHDL

language. In this work the code has been rewritten in Verilog to allow the new developments to

be done also in Verilog. Besides being a lot more common in the industry, the use of Verilog is

mandatory to be able to use the Verilator simulator, a key tool which made possible the completion

of this project in time.

In the software implementation, a test application (Face-Test) has been developed to send and

receive test data to the device under test. This application communicates with the target using

sockets, which is useful because it can stimulate both the actual hardware or a simulator.

For verification a cutting-edge approach has been used. Instead of using a standard Verilog

testbench and simulator, the Verilator simulator has been used to create a SystemC model of the

FaceWorks design, which has been embedded in a C++ testbench. The testbench communicates

with the Face-Test application via sockets and drives the FaceWorks SystemC model. This solves

the classical problem of integrating software and hardware in a simulation environment. Other

advantages of using Verilator are the detailed linting it effects on the Verilog code (due to the fact

that it only supports synthesizable code), the exhaustive dumping of wave traces for debugging

purposes, and the detailed coverage metrics it extracts from the design simulation.

The design has been synthesized and tested in a Xilinx Spartan 6 FPGA. The implementation

proved small and fast enough for a debug core, as such cores should not take too much space

in the overall system design. The implementation of the extra port is accomplished at the cost

of extra resources. Nonetheless, the resulting FaceWorks IP core is still a small core, using only
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10% of the area of an average size FPGA such as the Spartan 6 XC6SLX45T device.

The performance of the core has been measured using the above mentioned FPGA and the

Face-Test application. First the characterization of the used Ethernet switch was done to have

practical upper bounds for bandwidth, instead of the nominal 100 Mbps. It has been measured

that the switch introduces a 5% penalty in the throughput compared to the nominal bandwidth.

Results obtained with the ping application show that the factor limiting the system performance

is the latency. The data is packetized and a latency penalty is incurred for each packet sent.

Naturally the penalty decreases with the packet size but even for the maximum packet size allowed

by the CWDP protocol (1440 bytes), the practical upper bound for aggregate throughput thus

obtained is of about 21 Mbps.

With the delays obtained with the ping application, a model to predict the throughput for Face-

Test / FaceWorks transactions has been build. This model takes into account the handshaking

implemented with small acknowledge packets. The handshaking has a dramatic effect on a single-

port FaceWorks, as the next packet can only be sent after the acknowledge for the previous packet

is received. The model predicts only about 14 Mbps of effective aggregate throughput using a

single port. The situation improves considerably when the second port is added, since a packet

for the second port can be sent without waiting for the acknowledge of the packet sent to the first

port. The model predicts 19 Mbps of effective aggregate throughput, which is close to the 21

Mbps obtained without handshaking.

An experimental setup, using a Face-Test application sending and receiving packets to a

single-port FaceWorks core equipped with a CW-Link loopback, showed that, in practice, only

about 11 Mbps aggregate throughput can be obtained, compared to the 14 Mbps as predicted by

the model. Another experiment, using two Face-Test applications sending and receiving packets

to a two-port FaceWorks core, achieved about 15 Mbps, compared to the 19 Mbps predicted by

the model. This difference can be explained by the added latency introduced by the host computer

and its operating system. In an extreme situation where all latencies were zero (network, switch,

host and OS), one could obtain about 42 Mbps for a single-port core and 80 Mbps for a two-port

core; this result has been obtained using just the cycle accurate Verilator model.

6.2 Future work

To improve the FaceWorks throughput one obvious solution is upgrading it to use a 1 Gbps

PHY chip. This would allow for a lower latency because of a higher transmission rate and a higher

MTU with the use of Jumbo frames. However, implementing support for Jumbo frames would

require larger amounts of on-chip RAMs, and this could be a restriction depending on the target

FPGA device.
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6.2.1 Not Acknowledge

This solution consists in not sending acknowledge packets; if some packet is lost or received

out-of-order then the retransmission of that packet is requested. This solution is based on the

assumption that most packets sent from the PC to FaceWorks and vice-versa will be delivered

and arrive in order.

Such mode would work in the following way. The controlling host (PC) starts by registering

with the FaceWorks using the command SET CORE ACCESS. This command is replied with an

ACK packet. This is necessary so the PC knows that at least the first packet has been received

and that it is now controlling FaceWorks. After this, ACK packets are disabled for CORE DATA

packets. Instead, when the receiver detects a packet whose sequence number is not n+1, where

n is the sequence number of the previous packet, it emits a Not acknowledge (NACK) requesting

the retransmission of the lost packet n+1.

Figure 6.1(a) shows an example transfer from the PC to FaceWorks, where packet 3 is lost.

After receiving packet 4 and dropping it, FaceWorks sends a (NACK packet for packet 3 to the

PC. All subsequent packets are dropped until packet 3 is received. When packet 3 is received,

the transmission resumes.

Figure 6.1(b) shows an example transfer from the PC to FaceWorks where packet 4 is deliv-

ered before packet 3. The same recovery procedure is performed as described previously.

However, the NACK solution requires a more complex software application to control the

packet transmission rate, since the receipt of too many NACK packets may signal the presence

of network congestion. In this case the rate of transmission should be lowered to avoid conges-

tion. Reversely, the transmission rate can be augmented if the incidence of NACK packets is not

increased.
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Figure 6.1: Packet Loss Example Recoveries using NACK’s
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6.2.2 A UDP/CWDP Cycle Accurate Simulator

The solution proposed previously for the FaceWorks simulator was designed to debug Face-

Works core itself. To debug an IP core having a CW-Link interface, one could simply verilate it

together with FaceWorks. However, if the objective is to the debug the IP core only, simulating

FaceWorks may be an unnecessary burden. A simpler alternative is presented in Figure 6.2. It

consists in replacing the full FaceWorks model with a simple UDP/CWDP server in the C/C++

testbench.

Socket

Stimulus
Application

UDP
CWDP
Server

IP Core
System C

Model
CW-Link

C/C++ Testbench

Figure 6.2: A UDP/CWDP Cycle Accurate Simulator

The UDP/CWDP server interacts with the IP core model using CW-Link interfaces. Test ap-

plications like Face-Test can be written in any language as long as they use network sockets for

communication and implement the CWDP protocol. These test application can later be reused to

test the same IP core in a chip that contains the FaceWorks core. Finally, the major advantage

of this approach is the fact that the simulation of the IP core becomes simpler and faster because

the FaceWorks model is not being simulated.
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Figure A.1: A GTKwave Screenshot Showing FaceWorks Signals
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