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”Always tell the truth. Always take the high road.

Live each day like it could be your last. Drink it in.

Be adventurous, be bold, but savor it. It goes fast.”

- Ben, Captain Fantastic
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Resumo

Esta dissertação apresenta um sistema autónomo de rastreio e seguimento de alvos baseado em

visão, concebido para Veı́culos Aéreos Não Tripulados (UAVs). A aplicação de métodos recentes de

Rastreamento de Objetos Múltiplos (MOT) em cenários de seguimento de alvos é testada, em vez dos

algoritmos tradicionais de Rastreamento de Objeto Único (SOT), explorando esta lacuna no estado-da-

arte. O sistema integra o modelo de deteção de objetos em tempo real, You Only Look Once (YOLO)v8,

com algoritmos MOT BoT-SORT e ByteTrack, extraindo informações sobre múltiplos alvos. Com estas

informações, as capacidades de redetecção são melhoradas, resolvendo os maiores desafios destes

algoritmos como alterações de ID dos alvos e oclusões. Um módulo de medição de profundidade é

incorporado para melhorar a estimativa da distância, quando disponı́vel. Quando não há informação

de profundidade, o tamanho do alvo na imagem é utilizado. Para o seguimento, é proposto um sistema

de controlo em 3D, capaz de reagir às mudanças de velocidade e direção do alvo, mantendo-o em

vista. O sistema é testado em simulação e implementado em cenários reais num UAV montado de raiz

nesta tese. Os resultados mostram um seguimento preciso do alvo, resistente a oclusões e distinguindo

eficazmente o alvo seguido dos restantes. Comparações entre os algoritmos BoT-SORT e ByteTrack

revelam um compromisso entre precisão e eficiência computacional, favorecendo o BoT-SORT devido

à redução significativa do número de alterações de ID. Com as contribuições apresentadas, esta tese

possibilita novas aplicações de seguimento de alvos a partir de UAVs, aproveitando informação sobre

múltiplos alvos.

Palavras-chave: Veı́culo Aéreo Não Tripulado, YOLOv8, Rastreamento de Objetos Múltiplos,

BoT-SORT, ByteTrack, Seguimento de Alvos Móveis.
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Abstract

This thesis presents an autonomous vision-based mobile target tracking and following system de-

signed for Unmanned Aerial Vehicles (UAVs) leveraging multi-target information. It explores the research

gap in applying the most recent Multi-Object Tracking (MOT) methods in target following scenarios over

traditional Single-Object Tracking (SOT) algorithms. The system integrates the real-time object detection

model, You Only Look Once (YOLO)v8, with the MOT algorithms BoT-SORT and ByteTrack, extracting

multi-target information. The system leverages this multi-target information to improve redetection ca-

pabilities, addressing key challenges such as target miss-identifications (ID changes), and partial and

full occlusions in dynamic environments. A depth sensing module is incorporated to enhance distance

estimation when feasible. When depth information is not available, the target size in the image is used

instead. A 3D flight control system is proposed for target following, capable of reacting to changes in

target speed and direction while maintaining line-of-sight. The system is initially tested in simulation

and then deployed in real-world scenarios within a UAV platform assembled from scratch for this thesis.

Results show precise target tracking and following, resilient to partial and full occlusions in dynamic

environments, effectively distinguishing the followed target from bystanders. A comparison between the

BoT-SORT and ByteTrack trackers reveals a trade-off between computational efficiency and tracking

precision, with a preference for BoT-SORT due to its substantial decrease in ID changes in target track-

ing. In overcoming the presented challenges, this thesis enables new practical applications in the field of

vision-based target following from Unmanned Aerial Vehicles (UAVs) leveraging multi-target information.

Keywords: Unmanned Aerial Vehicle, YOLOv8, Multi-Object Tracking, BoT-SORT, ByteTrack,

Mobile Target Following;
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Chapter 1

Introduction

In this chapter, an overview of the potential of Unmanned Aerial Vehicles (UAVs) in vision-based

mobile target tracking and following is provided along with the motivation for continuous improvements

in this field of research. The proposed solution is shown as well as the contributions that this thesis

presents for the Aerospace Engineering field.

1.1 Context and Motivation

Airborne information is one of the best and fastest ways to assess an open environment and, more

than ever, UAVs are becoming an essential, valuable and reliable tool to quickly and efficiently provide it.

Recently, the ability of UAVs to perform autonomous tasks has increased the need for higher quality and

quantity of information, which can be a determining factor in critical decision making during operations.

This work will focus on one of these autonomous tasks: vision-based mobile target tracking and following

using UAVs.

The ability to track and follow moving targets from the air has numerous applications, including search

and rescue [1], human pursuit in police cases [2], aerial photography [3], ship tracking [4], and vehicle

tracking [5]. In these applications, dynamic scenarios with multiple visible targets are expected. Being

able to retrieve and process this information can be crucial to enhance the capacity to continuously

follow the desired target or even dynamically determine which target is most suitable to follow for the

success of the mission. The ability to retrieve multi-target information enables many of these potential

applications using mobile target tracking and following from a UAV. Therefore, it is vital that the systems

deployed have the capability of not only tracking and following the target of interest, but are also able to

be aware of other objects of interest in the image.

The problem of vision-based mobile target tracking and following usually encompasses the detection

of the object in the image, followed by a target tracking algorithms that monitors the position of the object

over time in the image. Finally, the relative position of the object in relation to the UAV is computed to

give feedback to the controller, in order to allow target following. Currently there is a divide between two

different strategies that perform target tracking in the image: Single Object Tracking (SOT) approaches,

1



where only the object of interest is detected and tracked in the image and Multi-Object Tracking (MOT)

approaches, where the system detects and tracks all the objects of interest in the image and assigns a

specific ID to each of them.

Many works have been developed in the field of vision-based mobile target tracking and following by

UAVs, however, the most accepted approach is to tackle the tracking step of the problem by using SOT.

These approaches only perform the detection step in the initial frame, which is usually done manually.

Although they provide an efficient way to perform the target tracking and following task, they severely

limit the system’s knowledge of other objects of interest in the image which can harm the redetection

capabilities if the target is under occlusions in a dynamic environment. Hence, they show clear limitations

in terms of accurate position estimation of the target, handling dynamic environments, and managing

occlusions.

To take advantage of multi-target information, it is necessary to apply MOT methods. These algo-

rithms handle dynamic multi-target environments but struggle with camera motion and view changes

provoked by the UAV movement. Recently, some works attempt to address this issue by improving cam-

era motion models [6, 7]. Additionally, MOT algorithms are more computationally demanding, having to

process multiple detections in each frame. Recent improvements in deep learning methods show that

they are becoming more reliable for real-time applications, making them appealing for the detection step

[8]. In particular, the detection algorithm You Only Look Once (YOLO)v8 is the new iteration of the YOLO

family and proves to be faster and more accurate than the previous versions [9]. This deep-learning

approach can be an improvement on existing approaches as suggested per Liu et al. [10].

Despite these advancements, real-world experimentation with MOT algorithms has predominantly

been confined to fixed-area monitoring without camera movement. Consequently, there is a significant

research gap regarding the practical application of MOT algorithms in UAV-based target tracking and

following. This thesis aims to bridge this gap through rigorous real-world validation. New state-of-the art

MOT algorithms show improvement in camera motion corrections, enabling exciting new applications in

target following scenarios. MOT applications also have the advantage of working under a tracking-by-

detection approach which performs a detection step followed by a tracking step, in every frame. This

approach allows for the consistent use of new the new deep-learning based detection methods such as

YOLOv8 in order to increase the reliability of the system as a whole.

Taking into consideration the recent developments in detection and tracking algorithms, this thesis

proposes the use of MOT algorithms and the multi-target information they provide in a vision-based

target tracking and following Unmanned Aerial System (UAS). The system combines a state-of-the-art

detector, YOLOv8, with the recent MOT algorithm BoT-SORT and compares the results with its prede-

cessor ByteTrack. It is believed that by leveraging this new information, new and exciting applications for

these systems can be unlocked, thus further propelling the research in this field.

Target following algorithms still require improvements in the estimation of the distance to the target.

The limitation of precise target positioning is still present in many works, which could benefit from a

more accurate position estimation method. Incorporating a depth estimator module is an interesting

improvement that can solve this issue [10]. Hence, in this work a two step distance estimation approach
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will be taken by combining the visual information with depth information from an RGB-D camera for

better distance estimation accuracy in dynamic environments.

1.2 Proposed solution

First, this work integrates a detection and tracking algorithm combining the YOLOv8 detection al-

gorithm with both the BoT-SORT and the ByteTrack MOT algorithms into a comprehensive system that

provides multi-target information for vision-based mobile target tracking and following using a UAV. By

keeping track of the identities of all possible targets in the image, the system is able to accurately dif-

ferentiate between the followed target and similar objects. The additional information is used to improve

redetection algorithms in dynamic scenarios, making the system robust to partial and full occlusions.

Second, an estimation method is implemented to calculate the distance from the UAV to the target.

In addition to an estimation method based on visual information, a depth camera is installed to provide

more reliable estimations, when the information is available. Based on this information, a 3D controller

is implemented for the UAV, that can effectively respond to the movement of the target while keeping it

in line-of-sight at a pre-determined distance.

Third, extensive simulation testing is conducted to evaluate the performance and reliability of the

integrated system and the controller under various conditions and scenarios.

Fourth, a UAV platform is developed by integrating and assembling every necessary component for

a fully functional experimental setup capable of performing real-world tests. With this, real-world tests

are conducted to validate the performance of the developed system through real-world testing using the

developed platform. Finally, the performance of the developed system is analysed, by comparing both

the YOLOv8+BoT-SORT and the YOLOv8+ByteTrack setups in terms of detection accuracy, tracking

consistency, computational load, control precision, and overall system robustness.

1.3 Contributions

The objectives of this thesis aim to push the boundaries of vision-based target tracking and following

using UAVs, particularly in dynamic and uncooperative environments, by leveraging multi-target infor-

mation. By proposing new redetection methods to tackle the problems associated with integrating MOT

algorithms in target following, this work seeks to bridge the gaps in current state-of-the-art solutions and

allow new applications in the field.

The main contributions of this thesis are:

1. Development of a Visual Detection and Tracking System: Implementation of a state-of-the-art

visual detection and tracking system utilizing the YOLOv8 detection algorithm in combination with

two MOTs algorithms: BoT-SORT and and its predecessor ByteTrack. This system is designed for

target following scenarios, providing robust multi-target information.

2. Innovative Redetection Algorithm: Creation of a novel redetection algorithm that leverages
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multi-target information to effectively handle partial and full occlusions of the target in dynamic

environments. This enhances the system’s ability to maintain continuous tracking despite visual

obstructions.

3. 3D Flight Control Algorithm Design: Design and implementation of a 3D flight control algorithm

that uses both RGB and depth information to accurately follow a target. This approach improves

the precision of distance estimation and target positioning.

4. Comprehensive Simulation Testing: Extensive testing of the integrated system and control algo-

rithms within the MRS-UAV System [11] simulation environment. These tests evaluate the system’s

performance, reliability, and robustness under various conditions and scenarios.

5. Real-World Validation and Data Collection: Development of a fully functional UAV platform to

perform real-world tests, validating the system’s performance in near-limit conditions. These tests

provide valuable data to support the findings and demonstrate the system’s capabilities and limita-

tions in practical applications.

These contributions aim to enhance the effectiveness and reliability of vision-based target tracking

and following systems using UAVs in dynamic scenarios, paving the way for for new and exciting appli-

cations with the use of multi-target information.

This work was partially published in the 2024 IEEE International Conference on Autonomous Robot

Systems and Competitions (ICARSC2024) [12]. The paper presents the proposed method and simula-

tion results using the YOLOv8+BoT-SORT setup with slight modifications.

• D. Ferreira and M. Basiri. Leveraging multi-object tracking in vision-based target following for

unmanned aerial vehicles. In 2024 IEEE International Conference on Autonomous Robot Systems

and Competitions (ICARSC), pages 88–93, 2024. doi: 10.1109/ICARSC61747.2024.10535936.

1.4 Thesis Outline

The structure of this thesis is as follows:

Chapter 1 - Introduction: This is the current chapter which provides the context and motivation

behind the proposed topic, glances over the current dilemma in the literature, exposing the research

proposition. It also outlines the proposed solution and major contributions of this thesis in the context of

vision-based mobile target tracking and following by UAVs.

Chapter 2 - Literature Review: This chapter explores the state-of-the-art regarding this field of

research. It begins by analysing the current object detection methodologies and explaining the YOLO

family. Next, it reviews the literature on target tracking and following approaches using SOT and explains

the current MOT algorithms. The chapter also explores distance estimation and control methods used in

similar systems. Finally, it concludes with an overall analysis of the available approaches to the problem,
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highlighting their advantages and limitations. The analysis culminates in the identification of a noticeable

research gap in the current literature that this thesis aims to investigate.

Chapter 3 - Theoretical Background: This chapter explores some mathematical concepts related

to this thesis that will be useful for the explanation of the proposed approach.

Chapter 4 - Proposed Approach: This chapter describes the full system, starting with the architec-

ture, the implementation of the Detection, Tracking and Following algorithms followed by an overview on

the Robot Operating System (ROS) implementation.

Chapter 5 - Results: This chapter first dives into the simulation experiments, explaining the setup

and experiments. It presents the performance of the system and compares the differences obtained

for both trackers. Next, it transitions into the real-world results starting with the test environments and

the developed UAV platform. Then, it shows an analysis on the redetection capabilities and robustness

of the system, followed by some long-term following experiments in an open-field. Finally, it ends with

some additional tests in limit conditions.

Chapter 6 - Conclusions: This chapter presents the overall achievements of the developed system

and discusses the limitations and possible improvements for future works.
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Chapter 2

Literature Review

The research in the field of vision-based mobile target tracking and following from a UAV can be

broadly categorized into three distinct steps:

1. Object Detection in an image;

2. Mobile Target Tracking in an image;

3. Vision-based Mobile Target following.

Each of these steps plays a vital role in the overall process and has been the subject of extensive

research. This literature review aims to dive into these topics, exploring the various methodologies and

techniques that have been proposed, their advantages and limitations, and the current state-of-the-art.

The goal is to provide a comprehensive understanding of the existing body of knowledge in this field and

identify potential areas for further research and development.

2.1 Object Detection in an Image

Identifying an object in an image can be defined as the act of surrounding the object with a bounding

box and classifying which type of object it is. Traditional object detection algorithms are mainly composed

of three main steps: informative region selection, feature extraction, and classification [13]. Informative

region selection involves identifying potential areas in the image that may contain the object of interest,

thereby reducing computational complexity. The second step, feature extraction, involves analysing

these regions and extracting a set of distinctive attributes or properties, such as edges or textures,

that best represent the object. For this second step, different sets of techniques can be used, such as:

Histogram of Oriented Gradients (HOG) [14], which calculates and encodes local shape information from

regions within an image; Scale-Invariant Feature Transform (SIFT) [15], which detects and describes

local features in images, making them invariant to image scaling, translation, and rotation; and Haar-like

feature extractors [16], which uses a filter to perform feature extraction from an image, summing the

pixel intensities in each region and calculating the differences. In some deep-learning approaches a

Convolutional Neural Network (CNN) is used in the feature extraction step. The final step, Classification,
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involves using these features to categorize the object within a given set, with the help of a classifier

which could be a traditional machine learning model or a deep learning model.

2.1.1 Deep Learning-based Detection

Deep Neural Networks (DNN) models can be referred to as neural networks with deep structures

and the first implementations can date back as far as the 1940s [17], inspired by human brain nervous

connections. The first goal was to create an algorithm capable of classifying information according to

useful common characters and learn features directly from the data without the need for manual feature

extraction. During the 1980s and 1990s, it kept increasing its’ popularity, losing some relevance in

the 2000s in favor of other machine learning methods [18]. After 2006, new technologies in parallel

computing, such as GPU clusters, began to emerge. This, along with the availability of large scale

annotated training data like ImageNet [19], and improved design of network structures and training

strategies, led to DNN gaining new popularity and relevance [18].

Deep learning-based object detection algorithms can be divided into two categories: single-stage or

two-stage detectors as shown in Figure 2.1. In short, one-stage detectors have high inference speeds

and two-stage detectors have high localization and recognition accuracy [20]. Two-stage detectors first

generate regions of interests in the image and send the region proposals down the pipeline to obtain the

object bounding-boxes and classification [21]. Post-processing is then applied to fine-tune the bounding

box and remove any duplicate detections. Although this two-stage architecture has the advantage of

higher accuracy, it is slower and not entirely fit for real-time deployment onto constrained edge devices

[9]. To allow faster speeds, single-stage detectors treat object detection as a simple regression problem

by taking an input image and learning the class probabilities and the bounding box coordinates in one

single step [21] without using pre-generated region proposals. Some examples of single-stage detectors

are Single Shot Detector (SSD) [22], Deconvolutional Single Shot Detector (D-SSD) [23], RetinaNet [24]

and YOLO [25].

Figure 2.1: Deep learning object detection meta-architectures from [26]. Comparison between one-
stage and two-stage object detectors
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2.1.2 YOLO

YOLO was first introduced in 2016 as the first detector to frame object detection as a simple regres-

sion problem, allowing for real-time object detection with a single pass through the network. This made

it faster and more efficient compared to many of its predecessors. Currently YOLO is a family of archi-

tectures, very popular due to its high accuracy, lightweight, and capabilities of edge deployment with the

most recent introduced in 2022 as YOLOv8 [9].

Since YOLO fits the category of single-stage object detector, it performs the three steps of object

detection in one evaluation: region selection, feature extraction, and classification. This is done using a

CNN to analyze the entire image in one pass. The CNN divides the input image into a SxS grid, with

each grid cell responsible for predicting the objects in that cell returning the bounding boxes along with

the associated confidence scores reflecting how confident the model is that the box contains an object.

In addition, the CNN also returns the class probabilities.

Figure 2.2: YOLOv1 Model. The input image is divided into an SxS grid and for each cell there are B
predicted bounding boxes with correspondent scores, and C class probabilities. Taken from [25].

The network consists of multiple layers that extract features from the image. These can be extracted

by identifying various details from simple ones like edges and corners in the initial layers, to more com-

plex ones like shapes and patterns in the deeper layers. The output of the CNN acts as a feature

extractor, and the extracted features are then used for predicting the probabilities and coordinates of

objects. Since the YOLO detection pipeline is composed of a single network, it can be optimized on

detection performance, making it exceptionally fast and efficient for real-time object detection.

2.1.3 YOLOv5

YOLOv5 [27] was introduced by Ultralytics in 2020 and has become very popular in computer vision

applications that need real-time capabilities [28–30], showing improvements over the previous YOLOv4

model. In addition, YOLOv5 was the first of the YOLO family to be developed in PyTorch instead of the
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Darknet framework of the other variants. Pytorch [31] provided a friendlier approach with emphasis on

usability on top of speed, which made it popular within the computer vision community.

Similar to the previous YOLOv4 version, the YOLOv5 architecture is composed of 3 components: the

backbone, the neck and the head shown in Figure 2.3.

Figure 2.3: The network architecture of YOLOv5. It consists of three parts: (1) Backbone: CSPDarknet,
(2) Neck: PANet, and (3) Head: YOLO Layer. The data are first input to CSPDarknet for feature ex-
traction, and then fed to PANet for feature fusion. Finally, YOLO Layer outputs detection results (class,
score, location, size). Taken from [30].

The backbone serves as the main body of the network and extracts rich feature representations

from the input image. The backbone is designed using the CSP-Darknet53 structure which essentially

combines the convolutional network Darknet53 with the Cross Stage Partial (CSP) network strategy [32].

Using this method, the backbone is able to decrease the spatial resolution of the image while enhancing

important features, making the model more compact which in turn increases the processing speed for

the next steps.

The neck connects the backbone and the head and applies a Path Aggregation Network (PANet)

[33] to extract feature pyramids. Feature pyramids are a crucial step in computer vision than enable

the detection of objects at various spatial resolutions within the same image. By combining features

from different scales, YOLOv5 can handle objects of different sizes effectively. The neck bridges the

gap between the low-level features extracted by the backbone and the high-level features needed for

accurate predictions.

The head is responsible for the final stage operations in YOLOv5. It uses the features from the

neck and scans the image for possible objects. It applies anchor boxes on feature maps and generates

the final output, which includes the predicted class labels for detected objects, the confidence scores
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indicating the presence of an object and finally the bounding boxes, which specify the location of the

detected object.

2.1.4 YOLOv8

YOLOv8 [34] is one of the most recent additions to the YOLO family by Ultralytics on 10 January

2023, the original creators of YOLOv5. The YOLOv8 architecture shown in Figure 2.4 is very similar to

YOLOv5 which a couple of major improvements leading to better speed and accuracy.

Figure 2.4: The network architecture of YOLOv8 by [35].

By exploring the YOLOv8 architecture, some other notable changes can be pointed out.

As mentioned in the YOLOv5 explanation, the backbone serves the purpose of extracting features

from the image. In YOLOv8, the CSPDarknet53 is replaced by the CSP Bottleneck with 2 Convolutions -

Fusion (C2f) module. The bottleneck improves efficiency by dividing the input into two parts, performing

a convolution step in one of them and merging both paths together again. After four C2f steps, the

algorithm utilizes a Spatial Pyramid Pooling - Fast (SPPF), an upgrade from the Spatial Pyramid Pooling

(SPP) in YOLOv5. This module together with the convolution layers processes the features at varying

scales while the Upsample layers increase the resolution of feature maps. The C2f module combines
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the high-level features with contextual information to improve detection accuracy.

Finally, the high-dimensional features are mapped into bounding boxes and classes by a set of con-

volutional and linear layers in the Detection module. Since YOLOv8 is an anchor-free model, it directly

predicts the center of the object rather than the distance to a predefined anchor box. This speeds up

the process by lowering the amount of box predictions and consequently shortening the time taken in

post-processing [36]. Also, the YOLOv8 head performs class assignment and bounding box assignment

separately, thereby enhancing the processing speed of the module.

2.2 Mobile Target Tracking in an image

Tracking in computer vision can be succinctly defined as the process of identifying and monitoring

the position of a detected object in an image sequence over time. This is achieved by assigning a

unique identifier to each detected object and subsequently tracking the evolution of its position across

successive frames. The tracking of objects can be categorized within two different levels, SOT and MOT.

2.2.1 Single-Object Tracking approaches

SOT focuses on tracking a specific object over time and the process typically involves three main

steps:

1. Initialization: The tracker is initialized in the first frame by manually selecting the object to track

or using an automatic object detection algorithm (e.g. YOLO [37]);

2. Propagation: The tracker estimates the position of the object in the subsequent frames by ana-

lyzing its appearance and motion information in the previous frames;

3. Adaptation: The tracker adjusts to variations in the object’s appearance, scale, or pose, as well

as changes in environmental conditions, to ensure accurate tracking over time.

On SOT, some works chose to address this problem using classical computer vision like Image-

Based Visual Servoing (IBVS) [38–40]. In IBVS approaches, the detection and tracking steps are per-

formed by extracting features from the images, which can be points, lines, corners or more complex

structures. The features are then used to compute the error between the current and desired image

features. The error is then used as feedback for the control algorithms.

Detection and tracking in IBVS approaches has some noticeable limitations, requiring clear unaltered

visual features in the target for detection. This proves impractical for some targets such as people, where

the visual features are not so clear. In the works [38–40], the object to follow was a rectangular plane

ground robot using the 4 corners as distinct features. IBVS also has difficulties with occlusion since it

needs the features to be always identifiable. According to Zheng et al. [39], loss of the target visual

features will result in a fatal failure of the tracking task.

To address these concerns and enable less limited applications other authors preferred the Kernel-

ized Correlation Filter (KCF) method [10, 37, 41–43] for vision-based object tracking from UAVs.
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The KCF method uses implicit properties of tracked images (circulant matrices) for training and track-

ing in real-time. Unlike deep learning, which is data intensive, KCF uses these dynamic properties of the

scene and movements of image patches to form an efficient representation based on the circulant struc-

ture for further processing, using properties such as diagonalizing in the Fourier domain. Correlation-

based trackers such as KCF propose one-shot learning and show better performances without GPU

acceleration, which makes them very appealing for embedded systems with computational limitations

[44].

However the KCF method is very susceptible to partial target occlusions and can only track the target

in the image after the selection of the target in the first frame, which is usual done manually [10, 41, 43].

To tackle the problem of recovery after occlusion, Cheng et al. [41] developed an algorithm that analyses

the motion between frames to detect movement indicative of the target. This can be susceptible to noise

and dynamic environments. Wei [43] tackles this problem by using the Kalman Filter in conjunction

with the KCF. This is done by defining a confidence level for the measurements of the KCF. When the

confidence level drops, the estimations of the KF are taken into consideration until the target is retrieved.

Luo et al. [37] proposes an interesting approach, using the KCF and Kalman Filter approach similar

to [43] and deep learning methods (YOLOv3) to initialize the tracker while improving the capabilities of

recovery after occlusion. The author uses the Kalman Filter to keep track of the targets movement which

is useful in case of occlusion, however after many consecutive failure frames, the UAV stops following

the estimations from the Kalman Filter and stays in hover utilizing the YOLOv3 until a new detection is

made and restarting the KCF in that case. This, however, is also very susceptible to dynamic scenarios

where YOLO can detect more than one pedestrian, in which case it will not be clear which one is the

previous target and may result in losing the target.

With technological progresses in GPU boards for UAVs such as the NVIDIA Jetson and improve-

ments in one-stage deep neural detectors such as the newer versions of YOLO, the computational

limitations that called for the use of fast methods such as the KCF are slowly being lifted. With that

in mind, there can be a transition to more robust deep learning-based approaches for object tracking

which may integrate MOT algorithms to compensate for complex and dynamic backgrounds, leveraging

multi-target information.

2.2.2 Multi-Object Tracking approaches

MOT is a technique that aims to analyze images to locate and track multiple moving objects, without

any prior knowledge about the appearance and the number of target entities. A common approach in

many MOT methods is the use of pre-trained object detectors to identify target objects within individual

frames. These detections are then linked over time by trackers, by attributing unique identifiers for each

object. This method is known as track-by-detection, and several algorithms such as SORT [45], Deep

SORT [46], ByteTrack [47], and BoT-SORT [7] have been developed based on this concept. Typically,

these algorithms involve the following steps [45]:

1. Detection: A pre-trained object detector is used to identify objects of interest in an image.
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2. Estimation model: The tracker predicts the position of the objects in the current frame based on

previous detections.

3. Data association: The tracker calculates the similarity between the predictions and the detec-

tions, using factors like position, size, and potentially more advanced features like appearance

descriptors.

4. Creation and deletion of identities: The calculated similarity is used to match identities to current

objects being tracked, delete identities when objects are not visible for some frames or create new

identities for unmatched objects.

Each of these steps plays a crucial role in ensuring the effectiveness of the tracking process.

DeepSORT is an improvement on the SORT algorithm, and both are commonly used for MOT. SORT

[45] manages to achieve great accuracy using a simple effective combination of the Kalman filter and

the Hungarian matching algorithm [48], proving to be suitable for real-time applications. DeepSORT

[46], improves on the previous algorithm by integrating appearance information by using pre-trained

association metrics which represent major improvements in recovery from occlusion.

ByteTrack [47] introduces a novel approach to multi-object tracking by retaining low-score detec-

tions in the tracking process. This innovative method allows it to preemptively detect partially occluded

objects and yield superior tracking predictions. Unlike traditional methods that set a detection score

threshold and discard all information below this level, ByteTrack leverages the similarity between low-

score detections and existing tracklets (short tracks representing the path across a limited number of

frames) to enhance the algorithm’s performance. Initially, ByteTrack matches high-score detections with

existing tracklets. However, due to factors such as occlusions, motion blur, or size differences, some

tracklets remain unmatched. At this point, ByteTrack considers low-score detections to recover some

of these unmatched tracklets. All matched tracklets are retained, while unmatched low-score detec-

tions, considered as background noise, are discarded. During the first high-score detection matching,

an appearance similarity model can be employed to match tracklets. However, for the second associa-

tion involving low-score detections, which typically represent occluded objects, reliance on appearance

models is not feasible. Therefore, ByteTrack resorts to an Intersection over Union (IoU) approach, which

does not depend on detected features. Following the execution of both high-score and low-score associ-

ations, unmatched tracklets are stored in a temporary list for a specific number of frames. If they remain

unmatched after this period, they are subsequently deleted.

Although ByteTrack is able to achieve better tracking capabilities more robust to occlusions, it has still

difficulties handling camera motion. Hence, due to the complex nature of pedestrian tracking and fre-

quent occlusion, the accuracy of SORT, DeepSORT and ByteTrack are still compromised. BoT-SORT [7]

was developed with the goal of improving these algorithms, making them more robust to camera move-

ment and occlusions, and is tested directly in pedestrian datasets. BoT-SORT identifies two primary

shortcomings in MOT algorithms and integrates them into ByteTrack [47] with the respective solutions:

1. Camera Motion Compensation: This is incorporated to prevent inaccurate bounding box po-

sitions that can occur due to camera movement. By compensating for the camera motion, the
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algorithm can maintain accurate tracking in dynamic scenarios of moving UAVs.

2. Improved Kalman Filter State Vector: Instead of merely using the aspect ratio, BoT-SORT im-

proves the Kalman filter state vector to calculate the width and height of the bounding boxes. This

leads to a more precise localization of the object, enhancing the overall tracking accuracy.

With these changes, BoT-SORT ranks above previous algorithms including SORT, DeepSORT and

ByteTrack in IDF1, MOTA, and HOTA performances as show in figure Fig. 2.5. IDF1, MOTA, and HOTA

are metrics used to evaluate the performance of multi-object tracking algorithms. IDF1 [49] measures

the consistency of trajectory ID with the ground truth ID. MOTA [50] combines three error sources: false

positives, missed targets, and mismatch errors, with 100% indicating perfect performance. HOTA [51]

measures the alignment between the predicted and ground truth trajectories as sets of object detections

over time, focusing on how well identities are maintained.

Figure 2.5: IDF1-MOTA-HOTA comparisons of state-of-the-art trackers with BoT-SORT and BoT-SORT-
ReID on the MOT17 and MOT20 test set kindly borrowed from [7]. The x-axis is IDF1, the y-axis is
MOTA, and the radius of the circle is HOTA.

Nehru et al. [52] conducts a comparison between BoT-SORT and its predecessor ByteTrack. The re-

sults indicate that BoT-SORT is capable of improving upon existing strategies while maintaining real-time

capabilities. However, due to its simplicity, ByteTrack outperforms BoT-SORT in terms of computational

cost.

Regarding UAV-based MOT approaches, Liu and Zhang [5] proposes a detection and tracking strat-

egy for UAVs using YOLOv4 and DeepSORT for vehicles in urban scenes. The combination of YOLO

with a track-by-detection method such as DeepSORT shows great accuracy and robustness in multi-

object detection and tracking.

Li et al. [53] demonstrates the accuracy of a tracking-by-detection approach using both YOLO (in this

case YOLOv7) and the state-of-the-art BoT-SORT algorithm. Results show an effective solution for target

occlusion and identity switching in pedestrian target tracking, even under poor illumination conditions

and complex scenes, which are some of the most common difficulties in this task. In comparison to

similar methods such as YOLOv7-DeepSORT, YOLOv7-StrongSORT and YOLOv7-ByteTrack, YOLOv7-

BoTSORT shows the best results between them for non-rigid target tracking of pedestrians.

Yan et al. [54] applies a similar system that utilizes YOLOv8 and BoT-SORT within a Synthetic Aper-

ture Radar imaging framework. The experimental findings suggest that the proposed method exhibits
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high precision in both detection and tracking. Furthermore, it is capable of performing tracking operations

in real-time.

2.3 Vision-based Mobile Target following

Once the location of the target within the image has been identified using the aforementioned meth-

ods, the subsequent step involves leveraging this information to precisely ascertain its position relative

to the UAV, enabling effective following.

2.3.1 Mobile Target in-world position estimation

A common strategy for target position estimation involves using the discrepancy between the pixel

position of the target and the center of the image frame as an estimate of camera deviation. This method

is used to direct the camera towards the target, achieving line-of-sight [10, 37, 41, 42]. Both Liu et al.

[10] and Cheng et al. [41] employ this deviation to steer the gimbal towards the target. In contrast, Feng

et al. [42] and Luo et al. [37] don’t utilize a gimbal system, therefore use this deviation as feedback for

lateral and vertical movements to keep the UAV focused on the target.

After the target is in line-of-sight, the next step is to maintain the relative distance for target following.

Cheng et al. [41] estimates distance based on the standard pinhole imaging model, which calculates the

distance to the target using the height of the UAV, the target’s pixel coordinates and the intrinsic param-

eters of the camera. This is then combined with an Extended Kalman Filter to account for observation

noise. On the other hand, Liu et al. [10] and Luo et al. [37] use the proportion of the size of the target in

relation to the image as a reference for the following speed.

Alternatively, Feng et al. [42] employs a method of converting the image values to the body frame

to estimate the relative position of the target. This process requires depth information to determine the

target’s height for future iterations, which is not available in their configuration. To acquire this informa-

tion, the UAV initiates a probing step, capturing two consecutive frames from different perspectives of

the target by simply moving sideways. This is carried out under the assumptions that there is no rotation

of the camera, no forward/backwards movement and no vertical movement from the UAV, and that the

target remains stationary. The author then uses triangulation with these two frames to determine the

target’s real height. This real height value is subsequently used to estimate the distance to the target

by comparing it with the image height. The position of the target is then provided to the flight control

software as an input.

2.3.2 Control algorithms for Mobile Target following

Using the estimation mechanisms enumerated previously, Feng et al. [42] uses a simple approach of

giving the 3D position calculated directly to the flight controller. Luo et al. [37] employs a 3D proportional

control algorithm by using the horizontal and vertical pixel deviations for the lateral and vertical speeds

of the UAV. Then, they use the scale change of the target for the forward/backward speed of the UAV. To
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achieve smooth movement and prevent rapid changes, the author applies a maximum velocity change

threshold, usually referred to as slew rate controller. Liu et al. [10] follows a Proportional Navigation (PN)

strategy, aiming at keeping the target in line-of-sight at all times and using the scale change as reference

for acceleration changes. The references of desired position and yaw angle are then given to a cascade

Proportional Integrative Derivative (PID) controller to control the position and attitude of the UAV. Cheng

et al. [41] present a Switchable Tracking Strategy based on the estimated distance to the target, varying

between the observing and following modes. In observing mode, the UAV only changes the yaw angle

using a PID controller, while in following mode, the UAV will change its horizontal position assuming a

2D tracking problem based on the Lyapunov theory.

2.4 Overall Literature Analysis

As shown in 2.2.1, recent advancements in SOT have addressed some limitations related to occlu-

sions by incorporating new methods of object position monitoring, such as Kalman filters, and leveraging

these estimates to enhance existing algorithms. However, they still show some limitations in dynamic

scenarios where more than one moving target is in line-of-sight. On top of that, these algorithms, with

their single initial detection step, do not fully utilize the capabilities of new deep learning-based detection

algorithms such as YOLO. In contrast, MOTs employ a tracking-by-detection approach, which, while

more computationally intensive, makes better use of state-of-the-art detection algorithms. Furthermore,

MOT methods are more adept at managing complex and dynamic scenarios involving multiple moving

entities.

Despite the remarkable utility of MOTs in dynamically monitoring various targets such as vehicles

and pedestrians using UAVs, there is a lack of research exploring the use of these methods for target

following. Hence, a visible research gap emerges in the application of a combined system that leverages

a deep learning method like YOLOv8 with an MOT algorithm like BoT-SORT. Such a combination could

enable more intricate operations with UAVs in mobile target tracking and following. The use of an MOT

allows the system to monitor not just the target it is following, but also the surrounding objects. This

capability can be particularly beneficial for following pedestrians in densely populated environments and

provides a more robust way to handle occlusions.

This research introduces a combination of YOLOv8 with the trackers BoT-SORT or ByteTrack to de-

tect and track moving targets. The detections and identities obtained are then integrated into the control

system to enable accurate following of a selected target, demonstrating the potential of this combined

approach in advancing UAV operations. The multi-target information is used into a comprehensive re-

detection scheme that is able to retrieve target tracking and following after partial and full occlusions in

dynamic scenarios.

In the realm of mobile target following, this work draws inspiration from Luo et al. [37], Feng et al.

[42], employing the deviation between the target’s pixel location and the central position of the image

frame as feedback for lateral and vertical movements. The objective is maintaining the focus of the UAV

on the target, utilizing a PN strategy [10]. The distance to the target is estimated using two different
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methods: by comparing the scale of the target in relation to the image, and by using depth sensors.

The UAV forward speed is calculated using a Proportional Integrative (PI) controller using the esti-

mated distance to the target as reference. A Switchable Tracking Strategy [41] is implemented, switching

between two methods of distance estimation, since the depth sensors can only provide accurate read-

ings when the UAV is within a close proximity to the target.
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Chapter 3

Theoretical Background

In this chapter, some important theoretical background for this thesis will be explored, namely the

pinhole model, camera parameters and the Kalman Filter.

3.1 Pinhole Camera Model

The pinhole camera model is an approximation model used to mathematically describe the relation

between the three-dimensional coordinates of a point with the two-dimensional projection coordinates

in the image frame. This relation takes into consideration that the camera can be modeled as an ideal

pinhole camera where the camera aperture is no more than just a point and no lenses are used to

focus light. Naturally this approximation doesn’t represent the reality in its entirety however, despite its

simplicity, it is still an acceptable approximation for most cases.

The pinhole model equivalence can be visualized in Figure 3.1. Considering, in this scene, a refer-

ence frame centered around the camera center and an image plane at a distance f in the Z direction,

its given that the projection of a point X with coordinates (X,Y,Z) in the image plane is the point x with

coordinates (x,y,z) of the image plane. Since the distance from the pinhole to the image plane is fixed,

the coordinates for point x can be defined as (x, y, f).

By triangle similarity, it gives that the point X (X,Y,Z) is projected to the point x such as:

x = f X
Z

y = f Y
Z

, (3.1)

effectively mapping the R3 space to an R2 space by ignoring the final image coordinate.

3.1.1 Camera intrinsic parameters

Taking into consideration the pinhole camera model, it is possible to derive the a set of parameters

used to describe the camera and perform translations between 3D and 2D coordinates. Firstly the ho-

mogeneous coordinates for the points mentioned above are taken into consideration where a normalized
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(a) (b)

Figure 3.1: Representation of the pinhole model. C is the camera center in the coordinate origin. p is
the principal point in the image plane, placed in front of the camera center.

plane is considered at a unit distance (f = 1) between the pinhole and the image plane to normalize the

coordinates.

With this homogeneous coordinates representation of the system, the relation between the world

and the image plane points may be written in terms of matrix multiplication:


x

y

1

→

fX

fY

Z

 =


f 0 0

0 f 0

0 0 1



X

Y

Z

 . (3.2)

Considering that many cameras have rectangular pixels, the focal distance f is changed for each

coordinate into the focal lengths fx and fy. In addition, the camera center may not be precisely aligned

with the principal point. In order to correct this deviation, the principal point coordinates (ppx, ppy) must

be considered. These changes applied to Equation (3.2) give Equation (3.3).


x

y

1

→

fxX + Zppx

fxY + Zppy

Z

 =


fX 0 ppx

0 fy ppy

0 0 1



X

Y

Z

 (3.3)

with:

K =


fX 0 ppx

0 fy ppy

0 0 1

 . (3.4)

The matrix K shown in Equation (3.4) is called the camera calibration matrix and contains the intrinsic

parameters of the camera.
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3.2 Kalman Filter

A Kalman Filter [55] is a mathematical model that can be used to estimate the state of a linear

dynamic system from a series of noisy measurements. The problem is best described by the author as

the ability to measure the value of a random variable x1(k) given the observations of its noisy counterpart

y(k) = x1(k) + w(k) at all time-steps such as y(k0), ..., y(k) is known, such as y(k) can also be defined

as a random variable and w(k) is a random Gaussian noise. Hence, Kalman [55] defines estimation as

the inference of the value of x1(t) at any time-step k1 from the observation y(k0), ..., y(k), for any k. In

this sense, the Kalman Filter can perform interpolation if k1 < k, filtering for k1 = k or predictions for

k1 > k.

The problem of target tracking in the image is commonly modeled as linear dynamic system [56]

which can be described as:

xk+1 = Akxk +Bkuk + wk, k > 0 (3.5)

zk = Hxk + vk (3.6)

x(0) = x0 (3.7)

where xk, uk, zk, wk and vk represent the state, control, observations and measurements noise,

respectively, and Ak, Bk and H represent the system transition, input distribution and observation ma-

trices, respectively.

wk and vk are Gaussian, white noises processes that are random with zero mean,

E{wk} = 0, (3.8)

E{vk} = 0 (3.9)

have no time-correlation,

E{wiw
T
j } = E{vivTj } = 0, if i ̸= j (3.10)

and have covariance matrices Q(k) and R(k), respectively, both positive definite defined by:

E{wkw
T
k } = Qk, (3.11)

E{vkvTk } = Rk. (3.12)

Given that all the variables are random and Gaussian, the Kalman Filter takes root in the principles

of Bayesian inference which provides a systematic method for updating the probability estimate for a

hypothesis as additional evidence is acquired. This probabilistic approach is essential for understanding
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how the Kalman Filter integrates noisy measurements to produce optimal state estimates. The goal of

the Kalman Filter is to derive the current state based on the previous estimates. The a priori state is

defined as the estimate at time t x̂−
k ∈ ℜn which is the state based on previous observations and x̂k ∈ ℜn

defines the a posteriori state estimate given the observation zk. The a posteriori estimate can be given

as a linear combination between the a priori estimate and a measurement prediction Hx̂−
k as shown in

Equation (3.13):

x̂k = x̂−
k −K(zk −Hx̂−

k ), (3.13)

where (zk − Hx̂−
k ) is the residual which represents the difference between the measured and the

expected values. The value K is usually referred to as the Kalman Gain and represents the matrix that

minimizes the a posteriori error covariance Pk = E([xk − x̂k][xk − x̂k]
T ) such as:

Kk = P−
k HT (HP−

k HT +Rk)
−1. (3.14)

The recursive process of the Kalman Filter follows two main steps: prediction and update. In the

prediction step the filter utilizes the proposed system dynamics to estimate the next state of the sys-

tem based on the current state and the associated error covariance for this prediction considering the

uncertainty in the system’s dynamics and any process noise.

In the update step, the measured values are used to improve the state estimate. Based on the con-

fidence levels given to the measurement and the prediction (measurement noise and sensor accuracy),

the filter combines the information using weighted averages. After the update step, the filter again gives

an updated version of the estimated state and respective error covariance.

The iterative steps from the Kalman Filter can be given by:

Prediction Step:

x̂−
k = Ax̂k−1 +Buk−1 (3.15)

P−
k = APk−1A

T +Qk. (3.16)

Update Step:

Kk = P−
k HT (HP−

k HT +Rk)
−1

x̂k = x̂−
k +Kk(zk −Hx̂−

k )

Pk = (I −KkH)P−
k .
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Chapter 4

Proposed Approach

This chapter describes the full system, starting with the architecture, the implementation of the de-

tection, tracking and following algorithms followed by an overview on the ROS implementation.

In order to properly describe the proposed system, it is important to remember some important

definitions:

• Detection: The process of identifying and localizing objects of interest within an image. YOLOv8

is used for this step, which provides bounding box detections.

• Bounding Box: A rectangular region that encloses an object detected within an image. In

YOLOv8, the bounding box contains the information of the size (width, height) of the rectangu-

lar region and the center of the bounding box.

• Tracking: Following objects of interest over consecutive frames in an image sequence. The BoT-

SORT or ByteTrack algorithms are used to associate detected objects across frames, thereby

maintaining consistent identities for objects as they move.

• Target: The specific object of interest that is being tracked and followed.

4.1 System Configuration

The system configuration is shown in Figure 4.1. The overall system can be split in to four modules:

1. Visual Detection and Tracking Module;

2. Distance Estimation;

3. Following Flight Controller;

4. System Mode Switcher.

The ”Vision Detection and MOT Module” encompasses the Vision Detection and MOT Algorithm

where all objects of interest in the field-of-view including the target to follow are detected and tracked
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Figure 4.1: System Configuration of the vision-based detection, tracking and following system.

in the image; the Target Acquisition stage where a Kalman Filter is used to estimate the position of

the selected target in the image; and the Redetection Algorithm, which is responsible for assessing

the mode of the target and redetect it if possible. This module is responsible for using the RGB data

from the camera and performing the detection and tracking of all the people in the image, including the

target determined to be followed. It is also responsible for clearly differentiating between the target and

the bystanders during normal operations or in the event of occlusions. In case of a redetection, the

”Redetection Mode” is sent forward to the System Mode Switcher to determine the control output.

The bounding box information from the ”Vision Detection and MOT Module” is then sent to the ”Dis-

tance Estimation” stage to get an estimate of the relative distance from the UAV to the target as control

error for the ”Following Flight Controller”. The distance estimation may also be obtained from a depth

sensor, such as ones included in a RGB-D camera, when available, due to the natural limitations of

depth use from larger distances. From the position of the target relative to the center of the image and

the estimated distance, the controller then computes the yaw rate and velocity commands for the UAV,

respectively, and sends them to the ”System Mode Switcher”. In turn, it will determine which inputs are

sent to the autopilot according to the current mode of the system. The autopilot controls the attitude of

the UAV and sends the IMU data as feedback to the controller.

Without loss of generality, the proposed system will undergo testing in complex scenarios featuring

multiple pedestrians in motion, where challenges like occlusions and disturbances are likely to arise.

Notwithstanding, this system can be applied to many objects of interested by changing the training

dataset used for the object detector and re-tunning the control parameters. Variations for distance

estimation methods for other object types are also mentioned.
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4.2 Visual Detection and Tracking Module

The first module is the Visual Detection and Tracking Module responsible for processing the images

from the camera, identifying the target and performing necessary redetections.

4.2.1 Object Detection and Tracking

The first step to achieve target following is to detect the target and all bystanders in the image, and

assign each one a unique identifier (ID) for tracking over time. This is accomplished by using a track-by-

detection approach where a real-time object detector is used to identify target objects within individual

frames. For the detections, the system takes advantage of the state-of-the-art detector YOLOv8, utilizing

the smallest and fastest model YOLOv8-nano to get the best detection speeds. The model used is pre-

trained with the COCO128 dataset [57] and, for the purpose of this thesis, will only perform the detection

of the ”person” class. As mentioned in Section 2.1.2, the YOLOv8 model will analyse the image in real-

time and provide a list of detections, highlighting all the objects in the image that are identified with the

”person” class above a threshold confidence level. These detections contain: bounding box surrounding

the object, class of the object (”person”, in this case) and confidence score in that result. An example of a

detection scenario from this thesis both in simulation and in real-world scenarios is shown in Figure 4.2.

(a) Simulation detection. (b) Real-world detection.

Figure 4.2: Detection and tracking frames with ID, class (”person”) and confidence score (∈ [0, 1]).

The confidence score level in this thesis was set to a low value of only 0.25 confidence, in order

to increase the robustness to partial occlusions. Drawbacks of low confidence levels include some

miss-detections that can include, for example, shadows of people in the image as shown in Figure 4.3.

However, this does not influence the capacity of the system to successfully detect, track and follow the

selected target, hence it can be considered a good trade-off.

The detections (composed of the bounding boxes and classes) are then linked over time by the

tracker, by attributing unique identifiers (IDs) for each object, as also shown in Figure 4.2. Two state-

of-the-art trackers, mentioned in the Chapter 2, that are worth to consider are the BoT-SORT MOT and
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Figure 4.3: Detection of a shadow as a person derived from low values of confidence score allowed.

its predecessor, ByteTrack. YOLOv8 provides the detections via bounding boxes to the tracker which in

turn performs data association with the previous frame to match each detection with a corresponding ID.

4.2.2 Target Acquisition and State estimation

After take-off and initialization of the detection and tracking algorithm, users have the option to select

the target to follow from the list of detected people. In this thesis, the algorithm automatically designates

the first person detected as the target to follow, storing its respective ID for subsequent frames. In order

to take full advantage of the MOT capabilities, the position of other people in the image and respective

assigned IDs will also be stored to enhance the redetection capabilities in case of target occlusion.

After detection, a Kalman Filter is used to predict the position of the target in the image even after

occlusion [43]. A constant velocity motion model [56] is applied, using the velocities calculated from the

movement of the center of the target in the image. The states used are the center coordinates of the

bounding box (Cx, Cy), the size of the bounding box (width - w, height - h) and the speed of movement in

the image (Ċx, Ċy), calculated from the movement of the center of the bounding box pixel coordinates.

The states are defined in Equation (4.1).

s(t) = (Cx, Cy, Ċx, Ċy, w, h). (4.1)

The observations are shown in Equation (4.2).

z(t) = (Cx, Cy, w, h). (4.2)

The constant velocity model assumes the pixel coordinates of the center of the target (Cx, Cy) move in

the image with constant speed (Ċx, Ċy) and direction. Hence, the Kalman Filter can predict the position
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of the target during temporary occlusions. The Kalman Filter updates with new observations every time

the target is visible. When the mode is set as ”Target Missing”, the predictions from the Kalman Filter

are sent to the controller as the input to continue target following, since it is likely to reappear in the next

few frames. If the target does not show after a set amount of frames, the Kalman Filter predictions are

used in the redetection process to evaluate potential redetection candidates.

The dynamics of the system can be derived assuming no control input uk which is the common

approach in target tracking scenarios. Hence, the dynamics can be defined as shown in Equation (4.3).

xk = Axk−1 + wk−1 ⇔



cxk

cyk

ċxk

ċyk

wk

hk


=



1 0 ∆T 0 0 0

0 1 0 ∆T 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





cxk−1

cyk−1

ċxk−1

ċyk−1

wk−1

hk−1


+Wk−1, (4.3)

where ∆T represents the difference between the latest and the current time step and Wk−1 repre-

sents a zero mean Gaussian noise. The observation matrix can be given by Equation 4.4:

H =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

 . (4.4)

4.2.3 Redetection algorithm

In vision-based detection and tracking of mobile targets from UAVs, occlusions pose a significant

challenge, especially in densely populated areas. Redetection algorithms are crucial for reliable oper-

ations, particularly in scenarios involving multiple individuals. In such systems, the availability of multi-

target information is a valuable asset to enhance the redetection algorithms and prevent the loss of the

target.

Starting from the beginning of the target following process, the algorithm verifies detections using the

assigned IDs from the YOLOv8+BoT-SORT or YOLOv8+ByteTrack setups by matching the received de-

tections IDs with the locally stored detection list IDs. If the assigned target ID is absent in the detections,

three possible situations may arise:

1. Target ID change: Limitation of MOT algorithms that occurs when the target is still visible in

the image, however, the MOT algorithm assigned it a different identity than the previous frame.

This may happen due to sudden movements of the target or the UAV that cause the tracker to

miss-identify the target. Since the algorithm identifies the target via the assigned ID, an identity

change would cause a system failure if left unattended. Hence, it is necessary to update the locally

defined target ID with the new assigned ID from the MOT module for continuous target following.
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This redetection mode allows the system to keep accurate target tracking and following, despite

the MOT limitations.

2. Target missing: Initiates when the target is no longer detected in the image, potentially due to

occlusions or obstructions by other objects, and a counter is initiated. During this step, the system

continues to follow an estimate of the position of the target given by the Kalman Filter. The brief

window where the Kalman Filter is used allows for a more robust system that will not immediately

stop for short occlusions, like when two people cross paths. The Missing stage also adds some

robustness to fast target movements that would cause the target to leave the image, by continuing

the corrective maneuver even after the target leaves the field-of-view.

3. Target lost: Declared after a set of consecutive frames where the target is absent, suggesting a

potential loss or concealment. To prevent further deviation from the hidden target, the UAV will

stop and hover, looking for potential redetection candidates until the target is redetected. In this

stage, a relocation strategy could also be considered in future works to position the UAV in a better

view to redetect it.

To perform the redetection process, the algorithm searches all detections for possible redetection

candidates. Firstly, if the target ID is not found, it will attempt to check if a ”Target ID Change” is in place.

If no match is found, then it will enter the ”Target Missing” mode and later the ”Target Lost” mode.

A viable candidate for a successful redetection must fulfill the following conditions:

1. It must represent a new detection not previously tracked, thereby excluding individuals already

accounted for as they cannot be the target. This effectively excludes all the bystanders in the area

and allows for redetections even in dynamic areas.

2. Candidate detections are evaluated based on a minimum interception threshold with the latest

estimated position of the missing target, determined using an IoU approach (Equation (4.5)). The

bounding boxes are scaled to allow for a greater recovery range.

3. Among all the candidates that fulfill step 1 and step 2, it must be the one that scored the highest

on step 2.

The IoU approach is a common evaluation method to determine similarity between two bounding

boxes in an image. It is given by the relation in Equation (4.5) which can be visualized in Figure 4.4.
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IoU =
Area(BA ∩BB)

BA ∪BB
(4.5)

Figure 4.4: Representation of the IoU calculation.

If the target is redetected during the ”Target ID Change” or the ”Target Missing” modes, the UAV will

immediately resume regular operations and continue following the target. If the redetection happened

during the ”Target Lost” state, then the System Mode Switcher will change the input to the controller

accordingly, in order to resume target following operations after a complete stop. Further explanation

will be given in the System Mode Switcher Section, Section 4.5.

The full candidate evaluation process can be summarized with the pseudo-code in Algorithm 1.

Algorithm 1 Redetection Algorithm
function REDETECTION ALGORITHM(detections)

if target.id in detections then ▷ Check if the target is detected
target found

else
target not found

end if

for detection in detections do ▷ Loop through all the detections
if detection.id in existing object list.id then ▷ Check if it was a previously detected object

Update Object(detection.id, detection.bbox)

else ▷ New detected object, add it to the list. Checks 1st redetection condition
new object = Detected Object(detection.id, detection.bbox)
existing object list.append(new object)

if target not found then ▷ Valid candidate for redetection. Check the 2nd condition
IOU = Calculate IOU(detection.bbox, target.bbox)
if IOU > best IOU then

best IOU = IOU
best detection = detection

end if
end if

end if
end for

if target not found and best IOU > threshold then ▷ Use the best candidate - 3rd condition
target.id = best detection.id
Update Object(best detection.id, best detection.bbox)

end if
end function
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4.3 Distance Estimation

Distance estimation is a crucial step to be able to effectively follow the target. This value can be

roughly estimated based on the detection bounding box provided by the ”Visual Detection and Tracking

Module” or more accurately obtained by a depth sensor installed. Despite the preference for depth

information, it is not always available in most configurations and will have a shorter range limit than its

RGB counter part.

To estimate the distance (d in Figure 4.5), the system used the relation between the pixel height (h)

of the target in the image and a tuned constant value C as shown in Equation (4.6):

d =
C

h
. (4.6)

Figure 4.5: Relative distance to the target d and reference frames - UAV body frame Fb, Camera frame
Fc and World frame Fw. θ represents the camera pitch angle. H represents the altitude of the UAV. X ′′

b

is the parallel line to Xb in the plane. ϕ represents the heading of the UAV.

The height of the target in the image is chosen as reference over the area occupied by the bounding

box (w ∗ h) [43] since it mainly depends on: the real height of the target, the distance to the target and

known camera parameters. On the other hand, the width of the target in the image may vary according

to the direction of movement, and position of the arms and legs. The constant value can be previously

tuned for the average height of a human and adjusted during operations after getting a better estimate

from on-board depth sensors. In non-person target tracking and following (such as vehicles or robots),

the area of the bounding box can be considered.

The second distance estimation method is the depth-based estimation from the RGB-D camera. As

mentioned, depth accuracy varies according to the distance to the target, being the most effective after

the UAV reaches close proximity to the target and possibly not available for greater distances. For the

Realsense camera used in the experimental setup, the effective range overs around the 10 meter mark.

In this sense, the system utilizes the visual-based distance estimation method to approach the target

30



and the the depth information to fine tune target following.

Taking into consideration the depth accuracy from the RGB-D camera, a distance threshold is de-

fined, from where the system will switch from the visual-based distance estimation method to depth-

based estimation if it receives valid data. The depth-based estimation method will take the depth esti-

mate from the center of the bounding box of the target (marked as (Cx,Cy) in Figure 4.5) and calculate

the distance to the point using depth. The distance is calculated using the Pinhole Model explained

in Section 3.1. The 3D coordinates of the center point of the target are computed using the following

relations in Equation (4.7). The principle point coordinates ppx and ppy and the focal lengths fx and fy

are obtained from the intrinsic parameters of the camera.

XC =
Cx− ppx

fx
,

YC =
Cy − ppy

fy
,

ZC = depth.

(4.7)

where the distance d is computed using Equation (4.8).

d =
√

X2
C + Y 2

C + Z2
C . (4.8)

The distance estimation can be susceptible to observation noise. To achieve smooth control, an

exponential low-pass filter in a discrete-time system is used as shown in Equation (4.9). dlow pass is the

filtered value, d(tk−1) is the previous estimation and d(tk) is the current estimation. The α value is tuned

to prevent higher frequency oscillations in the measurements that could disrupt the controller.

dlow pass = (1− α) ∗ d(tk−1) + α ∗ d(tk), α ∈ [0, 1]. (4.9)

4.4 Following Flight Controller

The Following Flight Controller is composed of three separate controllers to achieve accurate 3D

following of the target: one for the yaw rate, one for the altitude (vertical velocity) and a third one to

control the horizontal velocity of the UAV.

4.4.1 Yaw Rate and Vertical Velocity Controllers

This work draws inspiration from [37, 42], employing the deviation between the pixel location of the

target and the central position of the image frame as feedback for maintaining the focus of the UAV on

the target. The yaw rate and altitude controllers are proportional controllers designed to center the target

in the image. Normalized references for the horizontal, and vertical pixel positions used are shown in

Equation (4.10).
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XN =
Cx

ppx
− 1,

YN =
Cy

ppy
− 1.

(4.10)

The yaw rate for the controller and vertical velocity are then computed using Equation (4.11) and

Equation (4.12) respectively. The values Kϕ and KH are the proportional gains, tuned for each controller.

˙ϕref = Kϕ ∗XN , (4.11)

Vz = KH ∗ YN . (4.12)

4.4.2 Horizontal Velocity Controller

The algorithm uses an aim-and-approach strategy similar to the PN strategy in [10] to achieve target

following, by using the yaw rate and altitude controllers to aim and the horizontal velocity controller to

approach the target. The control output for the horizontal velocity is calculated by using a PI controller

taking the estimated distance as input. The horizontal velocity controller error is defined according to

Equation (4.13).

error = d− ddesired. (4.13)

Where the desired distance ddesired is defined by the user according to the following standards:

• Camera resolution, field-of-view and camera angle - from the desired distance the UAV must be

able to capture the full size of the target to be followed (lower limit) and needs to have enough

resolution to be able to detect the target (higher limit).

• Speed and direction changes - depending on the goal of the mission, a higher desired distance

enables a larger captured area which in turn allows more robustness to target speed and direction

changes. On the other hand, a lower desired distance allows for greater use of depth information

and higher precision in target following, but lower robustness to sudden target movements.

In order to achieve smooth control, the velocity value V goes through a slew rate limiter that prevents

sudden and aggressive maneuvers which may cause loss of line-of-sight. The slew rate limiter also sets

the initial control output as zero, allowing for controlled initial movement. The limited rate of change SR

is defined according to Equation (4.14). The slew rate limiter algorithm is illustrated in Algorithm 2.

SR =
V (tk)− V (tk−1)

tk − tk−1
. (4.14)

In addition to the direct distance between the UAV and the target, the distance in the horizontal plane

is also considered as a limiter as to prevent the UAV from overshooting the target. This horizontal dis-

tance (dhorizontal) is calculated according to the current altitude of the UAV, an estimate of the target’s
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Algorithm 2 Slew Rate Limiter Algorithm
1: function RATE LIMITER(V (tk)) ▷ Takes the current velocity value as input
2: T ← tk − tk−1

3: SR← [V (tk)− V (tk−1)]/T
4: if |SR| ≤ max rate then
5: VSR ← V (tk)
6: else
7: VSR ← V (tk−1)±max rate ∗ T ▷ sign is positive if V (tk) > V (tk−1) and vice-versa
8: end if
9: return VSR ▷ Returns the limit velocity

10: end function

height and assuming the target is in the same plane as the UAV measured altitude as shown in Equa-

tion (4.15). This value can also be compromised by the quality of the altitude measurement, which is

why it is only used as a limiter and not as the error feedback for the controller.

dhorizontal =

√
d2 − (H − target height

2
)2. (4.15)

Once the horizontal distance goes bellow the set threshold, the limiter will gradually reduce the output

from the velocity controller. If the critical horizontal distance value is reached, then the forward velocity

will be set to zero.

Figure 4.6 shows the workings of the high level controller. It takes the information from the RGB-D

camera to compute the forward velocity, the vertical velocity and the yaw rate, which are then sent to the

Flight Control Unit (FCU), the Pixhawk autopilot.

Velocity Controller

Estimated 
Distance

Horizontal
Pixel Error

Vertical
Pixel Error

   Pφ

   Pz

FCU

RGBD Data

φdesired

Control output
PI

Vz

VSR
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+
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.

Horizontal 
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Rate 
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Horizontal 
limiter

Figure 4.6: Representation of the UAV High-level Controller.

33



4.5 System Mode Switcher

The System Mode Switcher is the responsible for providing the low-level controller with appropriate

control references based on the mode of the system.

The system can operate in the following modes:

• Search Mode: no target has been detected and identified yet. The UAV performs a predetermined

search pattern until the target is found.

• Adjusting Mode: only the yaw rate and vertical velocity controllers are used to center the target

in the image.

• Following Mode: this may be defined as the mode for standard operations, when the target is

identified and followed in 3D. This is also the chosen mode if a Target ID Change occurred.

• Target Missing Mode: as previously defined in Section 4.2.3, the target is not visible in the image.

• Target Lost Mode: also defined in Section 4.2.3, if the target has been missing for several con-

secutive frames it is assumed lost/hidden. Adequate procedures are taken to prevent further devi-

ations from a target hidden behind an obstacle.

Figure 4.7 presents a flowchart representing the system modes and their respective interactions.

Following take-off and systems check, the UAV will enter ”Search Mode”. In this mode, the UAV will

perform a predetermined search pattern until the target is found. In this thesis, the UAV will perform

a climb until the defined safety altitude and slowly rotate until a person is detected. The first person

detected will be set as the the target to follow. The system allows the search mode to be redefined

according to the specifications of the mission (e.g. making it possible for the user to select the specific

target to follow).

After the target is detected and identified, the UAV will enter ”Adjusting Mode”, adjusting the target to

the center of the image as best as possible, considering altitude safety limits by controlling the altitude

and yaw rate. This allows the system to have a more controlled first approach to the target. After the

”Adjusting Mode” timer is over, the system enters regular operations with the ”Following Mode”, which

feeds the output from all the controllers to the autopilot.

Regarding the first recovery mode - ”Target Missing Mode”, the System Mode Switcher will continue

to send the commands from all the controllers however, the estimated distance and subsequently the

error will be calculated using the predictions from the Kalman Filter.

Finally, in the second recovery mode - ”Target Lost Mode”, the System Mode Switcher will set the UAV

to hover. This is done to prevent further deviation from the lost target, here assumed to be hidden behind

some obstacle. The system will remain in this mode until a successful redetection is obtained. Unlike

the ”Target Missing Mode” that directly shifts to ”Following Mode”, here, once the target is redetected,

the System Mode Switcher will initiate the ”Adjusting Mode” for a brief period and reset the rate limiter

and the low pass filter previous values. This will ensure the target is properly redetected and followed.
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Figure 4.7: Flowchart of the System Mode Switcher.
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Chapter 5

Experiments and Results

This chapter presents the experiments conducted to evaluate the vision-based target tracking sys-

tem, encompassing both simulation and real-world tests. The chapter is divided into two main parts:

in the first half of the chapter, the simulation setup and results are shown; in the second half of the

chapter, the real-world experimental setup and platform are described along with the results obtained

during flight-tests. The performance of two MOT trackers, BoT-SORT and ByteTrack, is compared and

evaluated within the system. Additionally, the chapter includes a thorough analysis of the redetection

capabilities in various situations, demonstrating the robustness of the system. The UAV used for these

experiments was also fully assembled during development of this thesis, a process described in the

real-world experimental setup section.

Performance metrics are as follows:

• UAV and Target Distances: Total travel distance for the UAV and the target, respectively, in each

experiment.

• Visual Accuracy: The percentage of frames where the target is correctly identified;

• Depth Use: Percentage of time the depth sensor data is utilized for position estimation;

• Estimation error: Average error and standard deviations between the estimated distance d and

the real distance measured relative to ROS-Gazebo ground-truth, therefore is only used in simu-

lation experiments.

• Frame Rate: Rate of frames per second that are processed by the visual detection and tracking

module, which in turn gives an accurate representation of the computational speed of the algo-

rithm.

• Number of ID Changes: Used to measure target tracking performance and indicates how many

times the ID given to the followed target changed. This metric is used to assess the MOT perfor-

mance in this thesis, and does not consider the developed redetection algorithms that correct for

target ID changes, by locally correcting the assigned target ID to the new value.

37



5.1 Robot Operating System - ROS Implementation

The full system is implemented using the Robot Operating System - ROS framework [58]. ROS is an

open-source platform to enable efficient communications between different parts of a system in a robot.

These parts are called ”nodes” and are able to perform separate functions. ROS enables the different

nodes to communicate information in real-time by deploying a system of ”publishers” and ”subscribers”,

which are used inside each node. Information in ROS is published to specified topics. Each publisher

populates the topics with information that can be read from any node by subscribing to the topic.

For this thesis, there are 4 main nodes: the camera node, the visual detection and tracking node,

the MAVROS node and the target following node. Figure 5.1 shows the full topic tree and the respective

topics exchanged between the nodes.

The github repository with the full implementation can be found in the footnotes 1.

Figure 5.1: Representation of the topic tree for the system. The main topics are shown separated into
the /camera node, the /tracker node, the /mavros node and the /follow target node.

5.1.1 Camera Node

The camera node is responsible for handling the hardware interface with the chosen RGB-D camera

and publishing all the necessary information for the Visual Detection and Tracking Module. The full topic

list can be found in [59]. The following published topics are used in the system:

• /camera/color/camera info: message of type sensor msgs/CameraInfo that contains the camera

parameters such as the intrinsic parameters of the camera.

• camera/color/image raw: message of type sensor msgs/Image that contains the RGB image

from the camera.

• camera/depth/image raw: message of type sensor msgs/Image that contains the raw depth data

from the camera. This message is then transformed into camera/align depth to color/image raw

which contains the depth values aligned to the RGB pixel positions, something necessary in order

to match the detections of YOLO to the respective depth values.
1https://github.com/diogoferreira08/Target-Following-from-UAV-using-MOT.git
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5.1.2 Visual Detection and Tracking Node

The visual detection and tracking node (/tracker node in Figure 5.1) is the node responsible for

running both YOLOv8 and the chosen tracker (BoT-SORT or ByteTrack) for each frame [60]. This node

subscribes to camera/color/image raw topic, processes the image through YOLOv8 and the tracker

and publishes a list of detections to the topic /detection result. This topic contains a list of all the

detections in the image, which include the bounding box coordinates for each detected object, its class,

the class probability and the assigned ID from the tracker.

5.1.3 MAVROS Node

Referencing the system description of Figure 4.1, there must be proper bi-lateral communication

between the onboard computer and the autopilot to send control commands and to receive attitude and

positional information from the autopilot. This communication is achieved by using MAVROS, which is a

ROS package developed to accurately send and receive MAVLINK messages. Since Pixhawk is using

the MAVLINK protocol for communications, and the proposed approach of this thesis is built on top of

the ROS Noetic system, then MAVROS is the most efficient way to transfer information.

The MAVROS [61] node is responsible for the interface between the Pixhawk and the Jetson. It

publishes all the data from the FCU and receives the commands from the System Mode Switcher.

For the proposed approach we use the following MAVROS topics:

• mavros/setpoint velocity/cmd vel unstamped: topic used to send the output of the System

Mode Switcher to the Autopilot. It accepts a geometry msgs.msg/Twist() message that includes

linear velocities and angular velocities in the chosen frame of reference. For this system, the linear

velocities are used for the vertical and horizontal velocity controllers and the angular velocity in Z

is used for the yaw rate controller.

• mavros/mav frame: this message contains the frame of reference used to send velocity com-

mands. In the real-world tests, the BODY NED frame was used. This frame allows the velocity

to be sent in relation to the body of the UAV in a stabilized frame with the x-axis forward and

horizontal, the y-axis to the right and the z-axis downwards.

• mavros/global position/rel alt: altitude measured in relation to the arming altitude.

• mavros/imu/data: Inertial Measurement Unit (IMU) data from the Pixhawk. It provides the attitude

and orientation of the UAV in quaternions which are then translated to Euler angles.

• mavros/state: current mode state of the UAV. Needs to be set to ”GUIDED” in order for the system

to accept velocity commands from MAVROS. For regular take-off and manual flight, the state is set

to ”LOITER”, ”ALT-HOLD” or ”STABILIZE” modes. The search mode is activated the moment the

mode is set to ”GUIDED” and the system will go back into manual flight if the ”GUIDED” mode is

deactivated.
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• mavros/local position/pose: topic used by the autopilot to process the inner loop attitude control

of the system in order to follow the high level commands (yaw rate and velocity) from the developed

controllers.

5.1.4 Target Following Node

Lastly, the target following node encompasses the part of the system after receiving the detection

results from the vision detection and tracking node until the commands are sent to the MAVROS node.

This node subscribes to the following topics:

• /mavros/state, since the current state of the UAV is needed to know when to start the system and

send commands.

• /mavros/global position/rel alt used to limit the actuation of the vertical velocity controller within

safety heights.

• /camera/align depth to color/image raw used to compute the distance to the target using depth

information.

• /detection result contains the detections from YOLOv8+BoT-SORT or YOLOv8+ByteTrack.

• /camera/color/camera info used to obtain the intrinsic parameters of the camera needed for the

system.

For the publishers, the target following node has one mandatory and one optional publish topic. The

mandatory topic is the /mavros/setpoint velocity/cmd vel unstamped used to publish the velocity and

yaw rate message to MAVROS. The optional topic is a custom message named /rosbag data used to

store valuable information from the flight tests in order to evaluate the system.
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5.2 Simulation environment setup

The system was implemented and tested in simulation by using the MRS UAV System [11], which

provides valuable data to prepare for real-world deployment. The experimental setup was a Hexacopter

DJI-F550 equipped with a front-facing RGB-D camera Realsense D435 with a 1280x720 resolution in-

stalled at a 30◦ angle from the horizontal position, as shown in Figure 5.2(b). The low-level control and

IMU acquisition are managed by a Pixhawk FCU. Simulations are conducted within Gazebo-ROS as

shown in Figure 5.2(a).

Pedestrians are simulated utilizing the actors from Gazebo-ROS [62], which allow for easy trajectory

manipulation using waypoints. In order to perform randomized experiments, a world generation script

was developed to generate randomized waypoints based on the following defined conditions for the

experiment: maximum and minimum number of pedestrians, average walking speed, available area for

the experiments, expected duration of the experiment.

(a) Simulation Environment. (b) Simulation UAV platform.

Figure 5.2: Simulation conditions.

5.2.1 Randomized Experiments

To assess system performance in open environments with multiple pedestrians, five tests with differ-

ent conditions were conducted in a 900-square-meter area, featuring 3 to 6 pedestrians walking at an

average speed of 1 to 1.5 meters per second. Each test spans over 2 minutes, with randomized and

not pre-set trajectories. The desired distance (ddesired) is set to 11 meters, considering the Realsense’s

depth range in the simulation (10 meters) with an added 1-meter margin to enhance responsiveness to

sudden target movements toward the UAV. In order to perform a comparison between MOT methods,

the same world conditions (target waypoints) are replicated in the tests conducted using BoT-SORT in

Table 5.1 and ByteTrack in Table 5.2. Across all the experiments, the UAV successfully tracked and

followed the target, covering a total travel distance of 883.5 meters, while the target traveled for 1264.6

meters. This difference can be attributed to the fact that the UAV will sometimes only need to rotate to

match the movement of the target.

Regarding the BoT-SORT results from Table 5.1, it can be noticed that the target is detected in almost

all the frames with the lowest detection values of 99% in test number 4 which indicate that the YOLOv8
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Table 5.1: Data from the 5 randomized experiments using the BoT-SORT Tracker.

Test Time Distance Distance Visual Estimation Depth Frame No. ID
No. (s) UAV (m) Target (m) Accuracy (%) Error (m) Use (%) Rate (Hz) Change
1 137.3 91.9 123.8 99.38 0.568 ± 0.425 57.96 13.11 0
2 120.8 68.5 112.3 99.72 0.590 ± 0.570 68.43 13.25 0
3 149.5 97.0 147.2 99.71 0.547 ± 0.467 65.16 13.04 0
4 127.1 93.9 130.6 99.00 0.765 ± 0.550 51.73 9.66 1
5 151.8 94.8 118.4 99.67 0.680 ± 0.693 64.42 11.30 0

detection method has a high detection accuracy. ”Depth Use” shows that the depth estimation is used

over 50% of the time in all the tests, which is expected given the desired distance values of 11m. In order

to use depth information during a higher percentage of the tests, a lower desired distance value could

be given, however this would implicate a higher risk of the target getting out of line-of-sight if there were

sudden speed changes due to the reduced visible area in that configuration. Taking in consideration the

dynamic use of both estimation methods for distance estimation, the error values are within a range that

allows for accurate target following in dynamic scenarios. The standard deviation for the estimation val-

ues is relatively high compared to the average error, mainly due to the differences in accuracy between

using the bounding box height or the depth information. Regarding computational speed, the BoT-SORT

algorithms averages around 12,07Hz ± 1,57Hz which is adequate for real-time applications. In addition,

the BoT-SORT algorithm proves to be very effective in target following, maintaining the target ID in all

but the fourth experiment where the ”Target ID Change” redetection method had to be used once.

Table 5.2: Data from the 5 randomized experiments using the ByteTrack Tracker.

Test Time Distance Distance Visual Estimation Depth Frame No. ID
No. (s) UAV (m) Target (m) Accuracy (%) Error (m) Use (%) Rate (Hz) Change
1 137.1 90.2 123.7 98.85 0.474 ± 0.370 62.72 18.44 5
2 120.1 67.6 110.7 99.26 0.505 ± 0.505 73.61 18.51 7
3 147.7 94.0 146.8 98.08 0.468 ± 0.390 66.91 17.30 10
4 135.1 93.7 136.9 97.64 0.602 ± 0.468 63.71 16.18 7
5 147.4 91.9 118.7 98.86 0.574 ± 0.552 62.13 17.35 10

For the ByteTrack results in Table 5.2, tests number 1 to 5 were conducted under similar conditions

as the respective BoT-SORT experiments (same target movement and relatively the same durations).

Regarding the number of ID Changes, it can be seen that there is a substantial performance drop from

the BoT-SORT results, which derives from the lack of camera movement compensation enhancements

in the ByteTrack algorithm. Despite the higher number of target ID Changes, the redetection algorithm

developed in this thesis is able to handle this limitation and continue to follow the target even under

these conditions. Also, ByteTrack results show a slight drop in ”Visual Accuracy” which can be attributed

to the fact that there are more instances where the target ID is not being assigned by the tracker. This

situation is illustrated in Figure 5.3 and typically occurs in the frame prior to an ID Change, due to a loss
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of target tracking by the MOT algorithm. In Figure 5.3(a), the target is followed with ID 72. Figure 5.3(b)

shows a miss-detection frame where the target is not detected. In the next frame, Figure 5.3(c), the

target is detected again, but the MOT does not match the new bounding box with the previous ID and

begins processing a new track, marking the start of an ID change. At this point, the MOT is performing

data association and has not yet assigned an ID to the target. Finally, in Figure 5.3(d), the MOT assigns

a new ID (80) to the target. The redetection algorithm then identifies this Target ID change using the

three-step process mentioned in Chapter 4 and updates the local target ID to the new value (ID 80).

Regarding computational load, the simplicity of the ByteTrack algorithm in comparison with BoT-SORT

becomes evident with an overall increase in frame rate of 5,49Hz across the 5 tests, with an average of

17,56Hz ± 0,96Hz which translates to a 31,25% decrease in runtime from the BoT-SORT results.

(a) Target (top left) followed ID 72. (b) Target (top left) not Detected.

(c) Target (top left) Detected without ID. (d) Target (top left) ID Change to ID 80.

(e) Highlight of the target in Figure 5.3(c).

Figure 5.3: Target ID Change scenario with missed tracking frame during test number 5.

To evaluate the capabilities of the system to maintain line-of-sight and keep the target in the center

of the image, the density distribution of the target’s bounding box center position in the image was

compiled across the five tests for each tracker and shown in Figure 5.4. Results are similar for both

trackers with the target remaining predominantly centered. Target deviations along the vertical axis can

be attributed to the lack of gimbal stabilization for the camera, coupling forward/backwards movement

with a downward/upwards pitch maneuver. It is believed that introducing camera stabilization would

greatly improve these results by decoupling both movements.

5.2.2 Long term target following experiment with occlusions

To further evaluate the full system, an experiment was conducted that includes partial and full occlu-

sions up to 10 seconds where the system goes through the various redetection modes such as: Target

ID Change, Target Missing and Target Lost. Similarly to the previous experiments, in this case the same

scenario was also ran for both trackers in order to compare results which are expressed in Tab. 5.3.
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(a) BoT-SORT tracking tests. (b) ByteTrack tracking tests.

Figure 5.4: Density probability distribution of the center of the target in the image frame during the 5
tests totalling 1264.6 meters of target movement.

Table 5.3: Data from the experiment including target full occlusion.

Tracker Time Distance Distance Visual Estimation Depth Frame No. ID
Used (s) UAV (m) Target (m) Accuracy (%) Error (m) Use (%) Rate (Hz) Change

BoT-SORT 575 366.8 504.2 93.28 0.599 ± 0.502 60.72 9.33 6
ByteTrack 518 348.5 453.0 91.31 0.587 ± 0.640 60.80 15.07 46

Overall, results align closely with those of obstacle-free experiments, with the only notable differ-

ence being a decrease in ”Visual Accuracy.” This decrease can be attributed to instances where the

target experiences full occlusions during the course of the experiment. The differences between the

YOLOv8+BoT-SORT setup and the YOLOv8+ByteTrack are even more pronounced in the long-term ex-

periments with the BoT-SORT tracker performing much better in terms of keeping the IDs of the targets

while the ByteTrack tracker has the better frame rate. Considering the several instances of partial and

complete occlusions and the number of ID changes, especially in the ByteTrack experiments, it can be

said that the redetection methods performed well during both experiments, maintaining target follow-

ing throughout the full experiments. Despite the redetection algorithm being able to handle target ID

changes, the robustness of the BoT-SORT algorithm makes it more suitable for target following appli-

cations where dynamic scenarios can provoke unforeseen circumstances, which a more robust tracker

will be able to handle. A demonstration video showcasing the entire experiment using YOLOv8+BoT-

SORT is available in the footnotes2. The video includes useful time annotations, highlighting key mode

transitions and emphasizing significant moments throughout the experiment.

An example of an occlusion scenario following the target (green shirt) can be seen in Figure 5.5,

which depicts the sequence of 6 frames: 5.5(a) before the target hides, 5.5(b) during the ”Target Lost”

phase, 5.5(c) upon target reappearance, and 5.5(d), 5.5(e) and 5.5(f), subsequent to target redetection.

As shown, the system correctly follows the target on the left even when a bystander is present in the im-

age. Once the target hides behind the obstacle in Figure 5.5(b), the system enters ”Target Missing” and

then ”Target Lost” stages without ever switching to the pre-existing bystander since it doesn’t satisfy the

first redetection condition - ”It must represent a new detection not previously tracked, thereby excluding

2Simulation YOLOv8+BoT-SORT long tracking experiment: https://youtu.be/YrquRNc5tKM
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individuals already accounted for as they cannot be the target”. Once the target exits the obstacle in

Figure 5.5(c) and reappears in the detections, it fulfills all redetection conditions: it is a new detection

that is closest to the last seen position of the target. Hence, in Figure 5.5(c) and Figure 5.5(d), the

system redetects the target (green shirt) and goes into adjusting mode and then in Figure 5.5(e) and

Figure 5.5(f) into following mode once more.

(a) Following the target (left). Bystander
in the distance (right).

(b) Target (left) hidden behind obstacle. (c) Target reappears in the detections.

(d) Target (right) redetected - adjusting
mode.

(e) Target (middle) followed. (f) Target (right) followed.

Figure 5.5: Redetection algorithm experiment - target successfully redetected after full occlusion behind
an obstacle.

The altitude over time for both experiments is presented in Figure 5.6, showing similar results with

altitude levels varying between 4 and 8 meters.

(a) Altitude in the BoT-SORT Experiment. (b) Altitude in the ByteTrack Experiment.

Figure 5.6: Altitude over time during the experiments measured to the take-off level.

The estimated distance compared to the real distance and the respective error are shown for the BoT-

SORT experiments in Figure 5.7 and for the ByteTrack experiment in Figure 5.8. It is evident that while

the system maintains accuracy, certain frames exhibit noticeable peak errors. These peaks correspond

to momentary fluctuations in the bounding box of the target when relying on visual information. This

phenomenon is exemplified in Figure 5.9 for the peak near 520 seconds in the BoT-SORT experiment,

where the bounding box undergoes temporary enlargement across a few frames, mainly due to the

limitations of the YOLO detection process. The proposed system mitigates these limitations in two

ways: first, by using depth information to eliminate dependency on the bounding box once the target is
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within the depth sensor’s range; and second, by applying a low-pass filter to the distance values, which

prevents high-frequency oscillations in the estimation from affecting the controller.

(a) Estimated vs Real Distances from the Target. (b) Error between Real and Estimated Distances.

Figure 5.7: Estimated distance and respective error over time for the BoT-SORT experiment.

(a) Estimated vs Real Distances from the Target. (b) Error between Real and Estimated Distances.

Figure 5.8: Estimated distance and respective error over time for the ByteTrack experiment.

(a) Frame preceding bounding box enlargement. (b) Frame exemplifying bounding box enlargement due to
close proximity between two people.

Figure 5.9: Bounding box enlargement during target tracking.
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5.3 Real-world Experiments

After having the proof-of-concept finalized in simulation, and the full system evaluated, it is possible

to safely transition the system into the real-world. This section covers the experimental setup and the

results obtained. The first batch of real-world experiments were conducted in the outdoor facilities of

Instituto Superior Técnico (IST) in Lisbon3, specifically on the football court marked red in Figure 5.10

with 40mx20m dimensions. In these experiments, the algorithm was tested in dynamic environments

where multiple instances of redetection scenarios were studied.

Figure 5.10: Football court at IST Lisbon where the real-world tests were conducted.

The second batch of the real-world experimentation aimed at testing the full system in a longer target

following and open-field experiments, complete with partial and full occlusions. For this purpose, the

experiments where conducted at the Portuguese Navy Operational Experimentation Center (CEOM) in

Tróia4 shown in Figure 5.11, an experimental and investigation section of the Portuguese navy aimed at

developing innovating unmanned technologies. In this venue, it was possible to test the system in longer

tracking and following scenarios and obtain valuable data to evaluate target following performance as

well as the ability to keep the target in line-of-sight. In total, five tests were conducted: two in the runway

(marked 1 in Figure 5.11) using BoT-SORT and ByteTrack and two more with both trackers in the Heliport

marked as 2. The final test was also conducted in the runway, in strong wind conditions above 10 m/s

to test the system in limit conditions. Video footage from the experiments can be seen in the footnotes5.

5.3.1 Experimental setup and Platform

The UAV platform, shown in Figure 5.12 was assembled from scratch based on the DJI-F550 Hex-

acopter frame. For the on-board computer, a NVIDIA Jetson Xavier NX Developer Kit was used, which

is capable of high-power performance on a portable light-weight system. The FCU of choice was the

Pixhawk 2.1. Cube Orange, which is connected to the NVIDIA Jetson via the telemetry port TELEM2

to transmit control commands. Due to some know issues with the telemetry connection between the
3Google maps IST field location: https://maps.app.goo.gl/RhEaq1UJcRoMFrTT9
4CEOM Google maps location: https://maps.app.goo.gl/5WTGRWUyhjNFL7KMA
5Real-world experiments video: https://youtu.be/eQuAWoovpI8
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Figure 5.11: Portuguese Navy Operational Experimentation Center (CEOM) at Tróia. Runway marked
with number 1 and Heliport marked with number 2.

NVIDIA Jetson and the Pixhawk 2.1. Cube Orange [63, 64], instead of using the TX, RX ports, a USB to

TTL Serial, HW-597 converter was introduced to allow communications. The MAVROS node is launched

through this connection using the /dev/ttyUSB0 port with a baud-rate of 921600. In addition, the FCU

is connected to a telemetry radio module via the TELEM1 telemetry port. This module operates under

the MAVLINK protocol with a frequency of 433MHz and up to 500mw. It is responsible for handling

all communications between the FCU and the Ground Station during flight operations. For the GPS, a

here+ HEX GPS was used on the flight platform with an here+ RTK GPS support in the Ground Sta-

tion. A scheme of the several connections and parts of the system is shown in Figure 5.13. For the

camera sensor view and secure landing, a carbon fiber landing gear was installed that allows for a clear

unobstructed view from the Realsense D435 RGB-D camera, installed at a 30 degree angle from the

horizontal position as in the simulation, shown in Figure 5.12(b). The realsense camera resolution in

the real-world was set as 640x480 at 30FPS, for both RGB and depth. The depth images are aligned in

real-time with the RGB images to allow accurate matching between the YOLOv8 detections and depth

values.

The desired distance ddesired was set to 8 meters considering the measured accuracy of the re-

alsense in the real-world as shown in Figure 5.14. The accuracy was measured based on a set of

real-world experiments, by comparing the realsense measured depth distances with the real distance

measurements between the camera and a blank wall. It can be seen that the accuracy decreases lin-

early with the distance from the camera with the 20% error line chosen as the threshold for depth use,

falling around the 8-meter mark.

5.3.2 Redetection Results

To properly test the redetection capabilities of the proposed system, several real-world scenarios

where considered where the target would go through all the redetection modes: Target ID Change,
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(a) UAV platform during flight tests. (b) Camera installation angle.

Figure 5.12: UAV platform developed for real-world tests.
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Figure 5.13: Developed UAV platform System Scheme.

Target Missing and Target Lost modes.

First, the effectiveness of the Target ID Change redetection mode was evaluated. As mentioned in

Chapter 4, an ID change is a phenomenon in target tracking where the target is assigned a different

identity by the MOT, in consecutive frames. This is more frequent in dynamic environments and can

be exaggerated due to sudden camera movements. Hence, the Target ID Change redetection mode

is vital step to make the system able to track the target in dynamic environments by overwriting the

locally defined target ID with the newly assigned ID from the MOT algorithm, keeping accurate target

tracking and following, despite MOT limitations. Figure 5.15 shows an example of several consecutive

Target ID Change redetections where the target is successfully redetected without interference in target

following. These results demonstrate that the system is robust to ID Changes, addressing one of the

biggest limitations of MOT methods in these applications.

Second, the Target Missing mode was assessed through scenarios with temporary occlusions, since

this mode serves as an intermediary phase between the initial detection failure of the target and its

categorization as lost. During this phase, an estimation of the position of the target is pursued to navigate
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Figure 5.14: Realsense Depth Accuracy over distance.

(a) Target followed with ID 51. (b) Target ID Change - overwrite local target ID from 51 to 52.

(c) Target ID Change - overwrite local target ID from 52 to 53. (d) Target ID Change - overwrite local target ID from 53 to 54.

Figure 5.15: Target ID change redetection experiment: system recognizes and adapts to ID changes
from the MOT module by updating the locally defined target ID.
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temporary occlusions without completely stopping the UAV. Figure 5.16 shows an instance where the

target was obscured as it crossed behind a bystander. Results demonstrate a continuous target following

behaviour even during the occlusion period by utilizing the Kalman Filter predictions during the Target

Missing mode.

(a) Following the target (left). Bystander
in the right.

(b) Target crosses behind the bystander.
Initiate Target Missing mode.

(c) Target Missing - following Kalman Fil-
ter estimate.

(d) Target (right) redetected and followed. (e) Target (right) followed. (f) Target (right) followed.

Figure 5.16: Target Missing redetection experiment: the target is redetected after temporary occlusion
when crossing behind a bystander.

To test more complex redetection scenarios with full occlusions, three progressively more challenging

scenarios where considered. Firstly, the target gets behind a non-person static obstacle in the terrain.

In this scenario, the capabilities of redetection are tested on a basic level without any interference from

bystanders. Figure 5.17 shows the sequential steps during the first experiment. The system tracks

the target in the Following Mode for Figure 5.17(a). During Target Missing Mode (from Figure 5.17(b)

until Figure 5.17(c)) the UAV attempts to follow the missing target by using the Kalman Filter estimate.

After some consecutive frames without redetecting the target, the system will switch to the Target Lost

mode where all movement is stopped (Figure 5.17(c)). Once the target is redetected (Figure 5.17(d)) the

System Mode Switcher will activate the Adjusting Mode to center the target in the image (Figure 5.17(e))

which is then followed by the Following Mode (Figure 5.17(f)).

In the second scenario, the target walks alongside another person and then hides behind that by-

stander for a brief amount of time. Here the redetection algorithm is challenged in its ability to differenti-

ate between a bystander and the target in a redetection scenario.

In the third experiment, the ability to handle dynamic scenes with multiple people is tested by having

the target and two more bystanders walking randomly in the same area. The target then hides behind

one of the bystanders in the center while the other keeps moving around in the image (Figure 5.19(c)).

It can be seen that the system ignores the bystanders and correctly waits for an accurate redetection
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(a) Target Following Mode ID 7. (b) Target hidden behind bystander. (c) Target Lost. Stop movement.

(d) Target reappears. (e) Target redetected ID 16. Adjusting
Mode.

(f) Target redetected ID 16. Following
Mode.

Figure 5.17: Target Lost Experiment 1 - Obstacle occlusion redetection scenario. Target successful
redetection after full occlusion behind a non-identifiable object.

(a) Following the target (left). Bystander
in the right.

(b) Target hidden behind bystander. Tar-
get Missing Mode.

(c) Target Lost mode.

(d) Target reappears in the detections. (e) Target Adjusting Mode. (f) Target Following Mode.

Figure 5.18: Target Lost Experiment 2 - Two person redetection scenario. Target successful redetection
after full occlusion behind bystander.
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candidate while the target is hidden. Once the target is redetected in the image (Figure 5.19(d)), it is

correctly identified and followed (Figure 5.19(e) and Figure 5.19(f)).

(a) Following target green ID-31. By-
standers: grey ID-38 and red ID-36.

(b) Following the target (green ID-31). (c) Target hides behind bystander ID-38
(grey). Bystander ID-36 (red) moving.

(d) Target (green ID-41) reappears in the
detections.

(e) Target Adjusting Mode. (f) Target Following Mode.

Figure 5.19: Target Lost Experiment 3 - Dynamic scenario with multiple people. Target successful
redetection after full occlusion behind bystander while another person walks around in the image.

5.3.3 Target tracking and following

In this subsection, the target tracking and following capabilities were evaluated for both the BoT-

SORT and the ByteTrack trackers during five long term tracking and following experiments in CEOM

(Figure 5.11). During the experiments, the target also underwent through several different occlusion

scenarios such as hiding behind other people, thereby also testing the redetection capabilities of the

system.

The trajectories of the experiments conducted in the runway are illustrated in Figure 5.20 and the

trajectories for the tests in the heliport are shown in Figure 5.21. Results for the experiments are shown

in Table 5.4. For the real-world experiments the same overall metrics of performance evaluation are used

as in the simulation experiments, with the exception of the estimation accuracy which is not available in

the real-world due to the lack of accurate ground truth positioning caused by the accumulation of GPS

deviations in the UAV and GPS deviations in the target’s equipment used to map the trajectory.

Regarding UAV and Target distances, the same pattern as the simulation results can be seen with

the UAV traveling slightly less distance than the target, totaling 1233m for the UAV distance and 1370m

for the target due to the rotation capabilities of the UAV. Depth Use values are considerably lower than

their simulation counterpart, which can be attributed to the reduced performance of the realsense D435

camera in the real-world for distances greater than 8 meters. Considering the reduced field-of-view of
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(a) BoT-SORT Experiment.
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(b) ByteTrack Experiment.

Figure 5.20: UAV and target trajectories during the runway experiments. The target walks randomly at
average walking speed with some moments of higher speed variations (e.g. running). Moments of full
occlusion are performed with the target hidden behind bystanders.

the camera in the real-world and the reduced resolution from 1280x720 to 640x480, it is unviable to keep

the drone at smaller distances from the target which hinders the Depth Use performance. However, this

method still proves very effective in preventing the UAV from overshooting the position of the target
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(a) BoT-SORT Experiment.
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(b) ByteTrack Experiment.

Figure 5.21: UAV and target trajectories during the heliport experiments. The target performs clockwise
laps at an average walking speed without speed variations and without major occlusions.

in the event of partial occlusions where the bounding box information is not reliable. Considering this

safeguard feature, it can be considered that the use of depth information is a vital cornerstone for the

reliability and robustness of the system, even if it is only used between 9.60% and 15.63% of the time.

Regarding Target ID Changes, it is still very noticeable the limitations in the ByteTrack tracker com-

pared to the BoT-SORT tracker, that has substantial improvements. In addition, in the real-world sce-
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Table 5.4: Data from the real-world experiments conducted in CEOM.

Experiment Tracker Time Distance Distance Visual Depth Frame No. ID
Scene Used (s) UAV (m) Target (m) Accuracy (%) Use (%) Rate (Hz) Change

Runway BoT-SORT 274 308 340 92.31 15.63 6.96 13
Runway ByteTrack 376 439 510 90.27 10.35 8.05 77
Heliport BoT-SORT 252 228 250 99.69 10.83 7.62 3
Heliport ByteTrack 320 258 270 88.12 9.60 8.92 118

nario despite the ByteTrack experiments still achieving higher frame rate, the difference is much less

pronounced which makes a better case for the trade-off between effectiveness and computational load

that the BoT-SORT tracker offers. Overall, in terms of computational capabilities, the system still ob-

tains frame rates capable of sustaining real-world performance, although it is noticeable a decrease in

efficiency from the simulation experiments, mainly due to the lower level of processing power available

on-board. Visual Accuracy is within expected levels, comparing with simulations results and considering

the partial and full occlusions present. The decrease in visual accuracy for the ByteTrack tracker can be

justified by the increased amount of ID Changes that are usually associated with some frames without

detections or missed tracks.

To further evaluate the capabilities of the system at maintaining line-of-sight, the heatmaps repre-

senting the position of the center of the bounding box of the target for the four experiments are shown in

Figure 5.22, with the average and standard deviations shown in Tab. 5.5. Firstly, a distinction is observed

between the runway and heliport experiments, where the latter shows overall better results in maintain-

ing line-of-sight. This difference can be attributed to the nature of the experiments conducted: while in

the heliport the target followed a circular trajectory with little speed variations and direction changes, in

the runway, the trajectory was more erratic with speed and direction changes (walking, jogging and even

running as shown in Figure 5.23). With this in consideration, it can be seen that there are no noticeable

differences between both trackers. In the heliport experiments there is a visible shift in the density distri-

bution to the right, caused by the clockwise direction of the movement in those experiments while in the

runway the distribution is more evenly spread. Hence, it can be determined that the horizontal deviations

are mainly caused by the sideways movement of the target in relation to the UAV when turning.

Table 5.5: Average and standard deviation of the target pixel positions during the experiments.

Experiment X error (pixel) Y error (pixel) Total error (pixel)

Runway w/ BoT-SORT 76.47 ± 96.75 61.38 ± 74.63 68.92 ± 56.58
Runway w/ ByteTrack 76.86 ± 88.27 47.11 ± 62.62 61.98 ± 50.26
Heliport w/ BoT-SORT 63.21 ± 68.80 35.06 ± 47.54 49.14 ± 48.30
Heliport w/ ByteTrack 61.18 ± 63.54 42.63 ± 56.33 51.91 ± 45.02

Investigating this correlation further, as depicted in Figure 5.24, a slight delay is observed between

the yaw rate reference provided to the FCU by the yaw rate controller developed in this thesis (shown in

blue) and the actual actuation and consequent yaw rate produced by the UAV (shown in orange). This
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(a) Runway w/ BoT-SORT tracking tests. (b) Runway w/ ByteTrack tracking tests.

(c) Heliport w/ BoT-SORT tracking tests. (d) Heliport w/ ByteTrack tracking tests.

Figure 5.22: Heatmap with the probability distribution of the center of the target in the image frame for
the four experiments.

Figure 5.23: Running test during the ByteTrack experiment in the runway where the target quickly accel-
erates away from the UAV. UAV on the top left corner and target in the bottom right.

delay signifies the limitations of the FCU autopilot, which can be mitigated by fine-tuning the autopilot’s

parameters and filters. In this work, a standard approach was adopted where only the essential pa-

rameters were adjusted to ensure stable and controlled flight. These parameters include the Stabilize

Roll/Pitch and Rate Roll/Pitch parameters that control the roll and pitch response, and the Stabilize Yaw
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and Rate Yaw parameters that control the yaw response. However, it’s important to note that this is a

baseline tuning and there’s room for further optimization. A comprehensive tuning process, involving all

parameters and filters, could potentially yield better performance. This process, however, can be quite

lengthy and requires a significant amount of intuition and expertise. It would involve adjusting filters such

as the Fast Fourier Transform Based Harmonic Notch Filter and the accelerometer filters for less noisy

measurements which require extensive in-flight tuning. Given the scope of this thesis, a detailed tuning

process was not pursued. However, future work could explore these additional tuning possibilities to

further optimize the performance of the UAV.

(a) Plot of the full experiment.

(b) Zoomed in section of the yaw rate plot.

Figure 5.24: Desired yaw rate (blue) and respective yaw rate actuated by the UAV (orange) over the
course of the full BoT-SORT experiment in the runway during the Guided flight mode and including
take-off and landing marked by the Alt-Hold and Loiter flight modes.

Distance estimation values from the four experiments are shown in Figure 5.25, with the respective

average estimated distance to the target and standard deviations shown in Tab. 5.6. It can be seen that

the target averages around 10 meters rather than the pretended 8 meters set as the desired distance,

which explain the lower Depth Use compared to the simulation experiments. The main reason for this

deviation might be the difference in the behavior of the target between the simulation and the real-world

experiments. While in the simulation, the actors would often walk towards the UAV, in the real-world, the

target often walks or even runs away from the UAV. This behavior makes it so the UAV is often catching

up to the target giving higher average distances.
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(a) Runway Experiment using BoT-SORT. (b) Runway Experiment using ByteTrack.

(c) Heliport Experiment using BoT-SORT. (d) Heliport Experiment using ByteTrack.

Figure 5.25: Estimated distance from the target over time during the CEOM experiments.

Table 5.6: Average and standard deviations of the estimated distance from the target over time during
the CEOM experiments.

Runway Runway Heliport Heliport
w/BoT-SORT w/ByteTrack w/BoT-SORT w/ ByteTrack

Average 10.28 10.77 10.32 9.95
Standard Deviation 2.153 1.952 1.278 1.630

5.3.4 Limit Testing

Limit testing aims to evaluate the performance and robustness of the proposed system under extreme

or challenging conditions. The requirements set at the beginning of the experiments provide a framework

for these tests:

• Follow a moving target at a regular walking speed (1 to 1.5 m/s) with small accelerations.

• Maintain robustness in conditions where the target is surrounded by bystanders and can experi-

ence occlusions, such as hiding behind bystanders (as discussed in Section 5.3.2).

• Operate within reasonable wind conditions (less than 7 m/s).

The first condition was tested during the two runway experiments, where the system followed a mov-

ing target at the specified speed. Target redetection in dynamic environments was thoroughly examined

in Section 5.3.2. The wind condition was later tested in a third experiment on the CEOM runway, where

the system operated under heavy winds up to 10 m/s. These tests collectively assess the system’s

ability to perform reliably in various challenging scenarios.
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Speed change test

One of the initial parameters set by the user for the developed system is the desired distance to the

target as mentioned in Section 4.4. For the developed experiments, this parameter was set considering

an average walking speed between (1 ∼ 1.5m/s), which poses a natural difficulty in target following

if the target suddenly starts running as shown in Figure 5.23. The major limitation in this scenario is

the potential for the target to get out of frame. However, the developed system aims at providing a

robust solution to many potential situations including speed changes. Hence, in order to handle it, the

system takes advantage of the Target Missing mode in which it continues to follow an estimate of the

target position for a brief period before stopping all movement and assuming the Target Lost mode. In

Figure 5.26, the sequence of captured images from the movement of Figure 5.23 is exhibited from the

perspective of the UAV until the target enters the Target Missing mode. Figure 5.27 illustrates the target

recovery and redetection process, where the UAV continues to move forward chasing an estimate of the

target in the Target Missing mode, successfully redetects the target and recovers optimal positioning by

centering it in the image.

(a) Target Following. Starts running. (b) Target Following. (c) Target ID Change 170 to 171.

(d) Target Following. (e) Target Following. Partially occluded. (f) Target not detected. Initiate Target
Missing mode.

Figure 5.26: Limit testing - target runs away from the UAV.
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(a) Following target in Target Missing
mode.

(b) Target redetected. (c) Target Following.

(d) Target Following. (e) Target ID Change 171 to 172. (f) Target Following.

Figure 5.27: Limit testing - redetection of the target using the Target Missing mode.

Heavy wind test

It is always preferential to avoid heavy winds when dealing with UAV operations due to the inherent

perturbations associated with them. These perturbations can induce unforeseen problems with the

system that can be addressed in order to increase the range of applications. Hence, this final test

performed in the runway in heavy wind conditions fulfilled this purpose of determining the consequences

of intense external perturbations. By analysing the images taken from the on-board camera and the

roll values, the major difficulties that arise from these abnormal conditions can be summed up by an

increase in the roll angle of the UAV in an attempt to achieve a stabilized flight. The roll angle from the

first BoT-SORT experiment in the runway averages around 1.9416◦ while the heavy wind experiments

averages around 5.443◦ . Given the lack of roll stabilization from the camera (that could, for example, be

provided by a gimbal system), the external perturbations have a direct effect on the bounding boxes that

surround the target as seen in Figure 5.28, which is also mentioned by De Smedt et al. [65]. Taking into

consideration that the mainly used distance estimation method depends on the size of the bounding box,

when subject to heavy wind conditions, the roll angle of camera will directly influence the height of the

bounding box and consequently the estimated distance to the target when the depth information is not

available. Therefore, if the application of the system would: require operating in heavy wind conditions,

need precise target distance estimation precision, and there is limited or unavailable depth information;

a roll correction algorithm [65] might be worth to consider in future works, which would provide better

distance estimation values for some extra processing time without the need to incorporate extra camera

stabilization hardware.
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Figure 5.28: Example of the bounding box rotation due to higher roll angle caused by wind compensa-
tion.
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Chapter 6

Conclusions

The final chapter wraps up the work developed in this thesis. It starts by reviewing the research

problem and the objectives of the thesis and how they were initially addressed. Then, the key findings

are summed up as well as some conclusions about the obtained results and the implications they pose

for this research field. Limitations of the system are reviewed alongside some future improvement sug-

gestions and other lines of work that can arise from applying this newly developed system in different

scenarios.

6.1 Achievements

This thesis investigates the possibility of introducing the current state-of-the-art MOT algorithms in

vision-based target tracking and following from an UAV. The major challenges related to this topic are

the computational limitations imposed by the added complexity of tracking multi-target information and

the limitations imposed by these methods regarding ID changes in moving cameras, caused by the

difficulty in maintaining IDs during fast camera movements. The developed system takes on these

challenges by using the most recent object detection methods such as YOLOv8 and fast embedded

systems such as the NVIDIA Jetson Xavier NX to enable real-time processing speeds. Regarding ID

changes, this work proposes a redetection algorithm capable of going above and beyond by both solving

the ID change problems and enhancing the redetection capabilities even in dynamic scenarios with full

occlusions. Furthermore, this thesis proposes a distance estimation method composed of two stages:

utilizing visual bounding box information from afar and leveraging depth information once it becomes

available. The developed controller follows an approach similar to the PN method by centering the

target in the image using both the yaw rate and the vertical velocity controllers and then following the

target by moving forward or backwards. The system underwent extensive testing, first in a simulation

environment and later in two real-world scenarios. The real-world UAV platform was also fully developed

for the purpose of this thesis, which included: assembling the frame and onboard components, soldering

all the connections, designing the system layout and setting up the correct connections to allow accurate

communications between all systems.
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Performance evaluation took into consideration two state-of-the-art MOT algorithms (BoT-SORT and

ByteTrack) in order to have comparative data and investigate how much the recent camera motion model

compensations from BoT-SORT would improve tracking results. As expected, the BoT-SORT algorithm

outperforms ByteTrack in terms of tracking precision, however, it comes at the cost of having a lower

frame rate. If one were to take the ID Changes results at face value, it would be unthinkable to even

consider using ByteTrack for a target following application which might justify the lack of research into the

use of MOT algorithms in target following scenarios. However, the developed redetection system of this

thesis, namely the Target ID Change redetection method, makes it possible to overlook these limitations

since they are corrected as soon as they appear. In addition, BoT-SORT camera correction models show

great improvements in keeping the ID of the target constant over time, which makes it more suitable for

these applications. Real-world results continue in the same trend, although the differences between both

trackers become less pronounced in terms of computational efficiency. On the other hand, BoT-SORT

remains almost unwavering in terms of ID changes compared to ByteTrack which makes BoT-SORT a

preferable choice when weighing both metrics.

By overcoming the ID change challenge and implementing the three-step redetection process, the

system is able to outperform existing methods by leveraging the multi-target information to be able to

redetect the target even in dynamic scenarios where the target remains hidden while there are other

bystanders in the image. The use of MOT removes the dependency on other redetection methods such

as motion measurements between frames [41] or the use of YOLO without a tracker [37] which are

not able to handle multiple pedestrians moving in the frame. Results show that the system is capable

of handling complex and dynamic scenarios where partial or full occlusions are common, from simple

scenarios such as hiding behind an object, to a more complex scene where it hides behind a bystander

while others walk in the frame.

Moreover, the 3D flight controller effectively follows the target while keeping it centered in the image

showcasing robustness even during sudden direction changes. The distance estimation method relying

on both visual data and depth information performs a vital role in the system by first allowing target

following as long as the target is detected by using the bounding box information that is always available.

Secondly, the depth information on top of providing better estimation values when the UAV is close to

the target, also prevents the UAV from overshooting the target, a situation that could arise from partial

occlusions where the bounding box appears smaller than the full size of the target. The combination of

both estimation methods makes for a robust and versatile system designed to work in a wide range of

applications.

6.2 Limitations & Future Work

While this research has made significant contributions in advancing the field of vision-based target

tracking and following by UAVs, it is important to acknowledge some of the limitations. Starting from

the assumptions, although the proposed system is capable of tracking and following any target that

can be identified using YOLO, this work was developed with the goal of tracking and following walking
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pedestrians. With this in mind, in order to fully generalize the system for any target, new assumptions

have to be made regarding the expected target size, speed changes and direction changes. Hence,

one of the limitations includes the maximum acceleration of the target and direction changes which may

cause loss of line-of-sight if there is a sudden and fast movements. One such case was tested in the

”limit testing” subsection 5.3.4 where the target suddenly accelerated leaving the field of view of the

UAV. In the tested scenario, the system was able to successfully redetect the target, however, if the

same movement were to be done in such a way that the target would run towards and under the UAV,

it would prove difficult to perform a similar redetection. In cases where such scenarios are expected,

it would be advisable to set a higher value for the desired distance to increase the field-of-view of the

camera. This would however fall onto the second limitation of the system - the depth sensor’s range.

This limitation is imposed by the available hardware which can only accurately retrieve depth information

when close to the target. Regarding the ability to maintain accurate target centering, limitations arise

due to the lack of camera stabilization since the pitch and roll of the UAV are coupled with the pitch and

roll of the camera. This can influence the position of the target in the vertical axis of the image when

moving forward or backwards and in the horizontal axis when rolling (which may increase in heavy wind

conditions as shown in the limit testing subsection 5.3.4).

Future works may consider the integration of a gimbal which would decouple the movement of the

UAV from the movement of the camera and obtain better results. In addition, further tunning of the au-

topilot parameters and filters could be done to compensate for the delay between the yaw rate reference

and the controller output. Finally, a non-linear controller and a path planner could also be considered to

both improve target following and provide an alternative view point for the UAV in cases where the target

is concealed. In terms of applications, it would pose an interesting challenge to apply the developed

system to other target following scenarios such as vehicles, ships or bicycles to experiment with differ-

ent target sizes and speeds. Also, the ability to leverage multi-target information opens up new possible

avenues of research such as conditional target switching based on the detected behavior of the targets

or even multi-target following by keeping more than one target in line-of-sight.

In summary, this thesis has successfully validated the use of state-of-the-art MOT algorithms in the

context of vision-based target following by UAVs, addressing key challenges such as computational

limitations and ID changes in dynamic environments. The system takes advantage of multi-target in-

formation to improve upon existing redetection algorithms increasing the overall reliability in complex

scenarios. In overcoming the presented obstacles, this thesis lays a solid foundation for future research

and enables new practical applications in the field of mobile target following from UAVs by leveraging

multi-target information.
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