
18

Enhancing the Unlinkability of Circuit-Based Anonymous
Communications with k-Funnels
VÍTOR NUNES, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal
JOSÉ BRÁS, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal
AFONSO CARVALHO, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal
DIOGO BARRADAS, University of Waterloo, Canada
KEVIN GALLAGHER, NOVA LINCS, NOVA School of Science and Technology, Portugal
NUNO SANTOS, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal

Anonymous communication systems are essential tools for preserving privacy and freedom of expression.
However, traffic analysis attacks make it challenging to maintain unlinkability in circuit-based anonymity
networks like Tor, enabling adversaries to deanonymize communications. To address this problem, we introduce
k-funnel, a new security primitive that enhances the unlinkability of circuit-based anonymity networks, and we
present BriK, a Tor pluggable transport that implements k-funnels. k-Funnels offer k-anonymity to a group of 𝑘
clients by jointly tunneling their circuits’ traffic through a bridge while ensuring that the client-generated flows
are indistinguishable. BriK incorporates several defense mechanisms against traffic analysis attacks, including
traffic shaping schemes, synchronization protocols, and approaches for monitoring exposure to statistical
disclosure attacks. Our evaluation shows that BriK is able to support web browsing and video streaming
while offering k-anonymity. We evaluate the security of BriK against traffic correlation attacks leveraging
state-of-the-art deep learning classifiers without considering auxiliary information and find it highly resistant.
Although k-funnels require the cooperation of mutually trusted clients, limiting their coordination, our work
presents a new practical solution to strengthen unlinkability in circuit-based anonymity systems.

CCS Concepts: • Security and privacy → Usability in security and privacy; Privacy-preserving proto-
cols; Pseudonymity, anonymity and untraceability; • Networks → Network privacy and anonymity.

Additional Key Words and Phrases: k-anonymity, statistical disclosure, Tor, traffic analysis, unlinkability

ACM Reference Format:
Vítor Nunes, José Brás, Afonso Carvalho, Diogo Barradas, Kevin Gallagher, and Nuno Santos. 2023. Enhancing
the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels. Proc. ACM Netw. 1, CoNEXT3,
Article 18 (December 2023), 26 pages. https://doi.org/10.1145/3629140

1 INTRODUCTION
Internet users are exposed to unprecedented levels of surveillance, tracking, and monitoring by
governments, corporations, and other third parties [70, 72]. To counter these threats to privacy
and freedom of expression, anonymous communication systems have emerged as central tools for
protecting users’ identities and ensuring their online activities remain private and secure [27, 75]. A

Authors’ addresses: Vítor Nunes, vitor.sobrinho.nunes@tecnico.ulisboa.pt, INESC-ID / Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal; José Brás, jose.bras@tecnico.ulisboa.pt, INESC-ID / Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal; Afonso Carvalho, afonso.de.carvalho@tecnico.ulisboa.pt, INESC-ID / Instituto
Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Diogo Barradas, diogo.barradas@uwaterloo.ca, University of
Waterloo, Waterloo, ON, Canada; Kevin Gallagher, k.gallagher@fct.unl.pt, NOVA LINCS, NOVA School of Science and
Technology, Lisbon, Portugal; Nuno Santos, nuno.m.santos@tecnico.ulisboa.pt, INESC-ID / Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2834-5509/2023/12-ART18
https://doi.org/10.1145/3629140

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

https://doi.org/10.1145/3629140
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629140
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629140&domain=pdf&date_stamp=2023-11-28

18:2 Vítor Nunes et al.

crucial desirable property of these tools is unlinkability, which ensures that an eavesdropping adver-
sary cannot link the source with the destination of communications, offering strong anonymity [43].
However, given the advances in traffic analysis attacks, unlinkability has become increasingly

difficult to preserve in connection-based anonymity networks [75] such as the Tor [23] and I2P [36]
networks. Circuit-based (also known as connection-based) communication is a latency-sensitive
paradigm in which the sender and receiver establish a long-lived, encrypted, and multi-hop virtual
circuit before transmitting or receiving data. For instance, in Tor, circuits are designed to tunnel
TCP/IP streams, which require synchronous low-latency channels to achieve good performance.

Since circuits rely on long-lived connections between a few hops in the network, each of a circuit’s
packets cannot be sent through random independent paths. Unfortunately, this makes circuit-based
communication substantially prone to traffic correlation [60, 66], website fingerprinting [16, 69], or
statistical disclosure [19, 57] attacks. As shown in prior work [21], achieving strong security, low
latency, and high throughput is impossible; only two of these are achievable simultaneously.
Using Tor as reference, we aim to explore a new design in circuit-based anonymity networks

offering stronger security in exchange for lower bandwidth. We wish to ensure the unlinkability of
circuits, making them resilient to advanced state-of-the-art machine learning based traffic analysis
attacks such as DeepCoFFEA, and to statistical disclosure attacks (sans auxiliary information). In
addition, the latency of the channels must remain low to ensure that TCP/IP streams can function,
albeit we can tolerate a reduction in the channel’s bandwidth so long as end-users can still access
the Internet for typical tasks such as web browsing and video streaming.

To this end, we propose a new security primitive named k-funnel to enhance the unlinkability of
circuit-based anonymity networks. Our primitive achieves this by offering k-anonymity to a group
of k clients that can jointly tunnel their circuits’ traffic through a common proxy while ensuring
that the characteristics of individual client-generated flows are indistinguishable from one another.
By doing so, we prevent an adversary from determining the true source of the traffic exiting the
proxy thus breaking the linkability between the connected k clients and the observed destinations.
Although k-anonymity has been successfully adopted in the past for message-based anonymity
systems [35, 38, 93], implementing it in general-purpose circuit-based systems poses non-trivial
challenges due to the tight low-latency and synchronization restrictions that need to be satisfied.

To demonstrate the feasibility and effectiveness of this primitive, we designed and implemented
BriK, a system that enables the establishment of k-funnels as a pluggable transport for Tor. Released
as open-source [65], BriK implements a bridge that serves as a k-funnel proxy for Tor clients. This
bridge allows groups of 𝑘 users to connect to the Tor network via k-funnels, offering k-anonymity
for Tor users without requiring changes to the Tor protocols or software. BriK incorporates multi-
ple defense mechanisms against traffic analysis attacks: i) special-purpose protocols that ensure
synchronization between clients, bridges, and the Tor network, ii) traffic shaping techniques that
guarantee indistinguishability of client connections, and iii) dedicated mechanisms for monitoring
the exposure to statistical disclosure attacks and taking precautionary defensive measures.

We find that BriK offers sufficient bandwidth for web browsing and video streaming workloads
while funneling the traffic of a few dozen clients through a single bridge. Though throughput
decreased due to client synchronization, clients across nine residential networks averaged 1–3Mbps
when funneling Tor circuits. Our evaluation revealed that BriK is resistant to the state-of-the-art
traffic correlation attack DeepCoFFEA [66] aimed at breaking the unlinkability of circuits, even if
subjected to active network manipulations. We also analyzed the success of statistical disclosure
attacks in the absence of auxiliary information, which depend on how stable is the group of users
who simultaneously funnel traffic through a bridge. Our evaluation shows that BriK can prevent
statistical disclosure attacks by monitoring and, if necessary, reacting to users’ browsing habits.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:3

Ourwork represents a new practical application of k-anonymity to secure circuit-based anonymity
systems, laying the groundwork for future improvements. We believe BriK can be especially useful
for smaller user groups subject to mass or targeted surveillance such as investigative journalists
fearing retaliation or oppression. By working together, k-anonymity can protect them individually,
enabling them to form pockets of trusted peers and collaborators. To improve k-funnel connectivity
opportunities, BriK hub devices can be deployed by fellow journalists and permanently connected
to the Internet, in their homes or offices. BriK bridges can be deployed by trusted third parties, such
as NGOs, press freedom organizations, and media outlets, to help protect investigative journalists’
freedom, e.g., Amnesty International, Human Rights Watch, Reporters Without Borders, the Asso-
ciated Press, the Guardian Project, the Freedom of the Press Foundation, and/or the International
Consortium of Investigative Journalists. By leveraging the support of these organizations, BriK can
offer k-anonymity to journalists and their sources.

2 BACKGROUND ANDMOTIVATION
2.1 Circuits Under Traffic Analysis Attacks
Tor establishes encrypted channels called circuits through which user traffic is tunneled via a
network of servers called relays. Once established, circuits can transmit latency-sensitive TCP/IP
streams, encoding the packets inside fixed-side cells. The routing protocol ensures that user traffic
is routed through three geographically-dispersed relays – guard (or entry), middle, and exit – to
break the linkability between the source and destination of communications.

However, traffic analysis techniques can compromise unlinkability. As remarked by Tor’s design-
ers [82], this limitation is structural to Tor and is inherent to synchronous low-latency anonymity
networks as the relays must forward payload packets as fast as possible to offer high performance
and good web browsing experience. As such, emerging traffic patterns become hard to masquerade
and can be detected through different approaches depending on the adversary’s capabilities.

Two notable techniques include traffic correlation and website fingerprinting attacks. In traffic cor-
relation [40, 79], the adversary must be able to monitor the guard and exit relays. Because observable
traffic features such as the volume of inter-packet arrival times will be related between the flows
near the source and the destination, the adversary can employ statistical analysis techniques [60, 61]
to correlate flow pairs and break their unlinkability. In website fingerprinting [16, 69], the adversary
only typically needs to monitor the user traffic at the guard and match the observed patterns against
a collection of known website fingerprints. If a match exists, the adversary can establish a link
between the source and the destination website, again deanonymizing the communication.

2.2 Unlinkability Through k-Anonymity
Our work aims to address the research gap in mitigating traffic analysis attacks and improving
unlinkability in circuit-based networks like Tor. Borrowing the definition from Hopper et al. [38],
by unlinkability we refer to the property that messages output by the anonymity network to a
destination within a certain timeframe cannot be traced back to the messages that were originally
entered into the network from a source during that same timeframe.

Existing protections attempt to avoid network regions controlled by an adversary: some strategies
avoid potentially compromised relays [80], while others circumvent untrusted ASes [2, 26, 64, 76]
or geographical regions [42, 53]. However, these strategies are ineffective if the adversary can still
manage to intercept the traffic, e.g., by establishing new collusion agreements with specific ISPs.

To strengthen the unlinkability of circuit-based systems, we propose loosening the strict binding
between the source and destination in circuits with k-anonymity. Each of the k clients has an equal
probability (sans auxiliary information) of being the source of a flow targeting some destination,

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:4 Vítor Nunes et al.

thereby enhancing unlinkability proportionally to the group size k. To be effective, the adversary
cannot distinguish individual participants based on their traffic features. Our approach must tackle
non-trivial requirements due to the circuits’ synchronized and low-latency nature:
• R1. The𝑘 participantsmust be synchronously online:Contrary tomessage-based paradigms,
where participants can buffer and send messages asynchronously, circuit-based communications
require all k participants to generate traffic simultaneously to cover for each other’s network
accesses. This restriction creates usability and availability hurdles, forcing participants to be
online or to trust an online surrogate operating on their behalf.

• R2. The 𝑘 participants must generate indistinguishable traffic: Unlike message-based
paradigms, the strategies to achieve this property are more constrained in circuit-based commu-
nications as they cannot arbitrarily delay or mix packets. Even if padding and traffic modulation
are employed to streamline the traffic characteristics, subtle differences can still emerge due to
changing network conditions or the deliberate interference of an adversary. For instance, the
adversary may selectively drop participants’ packets and detect interruptions in the transmission
to the destination, giving away the true source. Moreover, the traffic obfuscation mechanisms
should not significantly reduce the throughput of the circuits or require excessive additional
bandwidth resources to obfuscate communications, rendering the solution impractical.

• R3. The 𝑘 participants must be protected against statistical disclosure attacks assuming
reasonable up-time: A k-anonymity system should be able to resist statistical disclosure
attacks, which arise when the k group of users changes over time. This variation in access
patterns enables an adversary to collect observations that depend on the presence or absence
of a particular participant in a session, potentially revealing the identity of the user. While
prior systems [35, 38, 93] have explored solutions for this problem in message-based anonymity
settings, it is crucial to investigate how building a K-anonymous circuit-based connection can
make participants vulnerable to these attacks and devise appropriate measures to mitigate them.

It is worth noting that the existence of auxiliary information may make these attacks far more
effective, depending on the auxiliary information that the adversary may have. For this work we
assume that the adversary does not have such auxiliary information, and must resort to attacks
based only on traffic analysis. We discuss this assumption more in Section 6.

3 OVERVIEW
This section introduces BriK, a system that enhances Tor circuits with k-anonymity. We present
the system model and describe our threat model and assumptions.

3.1 System Model
Architecturally conceived as a Tor pluggable transport, the system model for BriK is centered on
providing Tor users with k-anonymity through a new anonymization primitive called “k-funnel”.
This primitive allows communities of Tor users with 𝑘 participants to create coordinated encrypted
streams between a local hub and a dedicated bridge hosted by a trusted third party. Using these
streams, participants can establish Tor circuits and tunnel their payload traffic through the bridge to
the Tor network. By doing so, the source of the traffic exiting the bridge cannot be determined by an
adversary since any of the 𝑘 participants could be the likely source of a given circuit. Thus, the use
of a k-funnel ensures the unlinkability between the source and destination of Tor communications.
In Figure 1, we illustrate this idea for a simple scenario involving three users. The hub, acting

as a local gateway, provides a k-anonymous tunneling service for the circuits initiated by the Tor
client software running on the users’ computers. The hub service can run on a dedicated device or
as a background process on the users’ workstation or mobile phone. On the other hand, the bridge

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:5

Fig. 1. BriK k-funnel where 𝑘 = 3. An adversary can observe all flows indicated by the dashed red line. Alice
and Bob access WikiLeaks and Rumble websites through independent Tor circuits. Charlie is offline.

is a standalone server that accepts connections from hubs. Both hub and bridge implement the Tor
pluggable transport specification and are fully compatible with existing Tor protocols and software.
In this example, BriK enables three users to establish a k-funnel with 𝑘=3 to access Tor with

k-anonymity properties. The k–funnel connects 𝑘 hubs to the bridge, which serves as the Tor entry
relay, and tunnels the Tor circuit traffic created by the participants through these connections,
which we call funnel streams. In this case, Alice and Bob are accessing the Web through independent
Tor circuits, with Alice accessing WikiLeaks and Bob accessing Rumble. Charlie is not currently
online but has left his hub device online to act as his proxy and fulfill requirement R1 (see §2.2).
To make the streams indistinguishable (as per requirement R2), BriK encrypts and modulates

them using a common traffic shaping function, generating fixed-sized packets at a pre-defined
transmission rate. By doing so, an adversary will not be able to discern which stream carries the
cell packets of each Tor circuit exchanged by their associated participants. In situations where there
is no payload data to send, the hub and bridge may generate and transmit chaff to keep the streams
active. In the case of Charlie’s hub, which is online but not in use, it continually sends chaff.

3.2 Usage Model
Intended usage scenarios: BriK is not intended for all Tor users or to protect communities facing
highly oppressive regimes with power and incentive to block Tor or arrest whole groups. Instead,
we envisioned BriK for smaller user groups in democratic countries that may be the target of mass
surveillance or endure political pressure, e.g., journalists. Fears of exposure may stifle their freedom
to access/share sensitive information. BriK enables them to form pockets of trusted peers where
they can benefit from k-anonymity, e.g., co-reporters from the same media outlet or from different
news agencies. Adversaries (e.g., governmental agencies) can still identify the group but not trace
individual web browsing patterns, protecting members from reprisals (e.g., being sacked).
Deployment and user management: BriK is meant to be deployed independently by a trusted
organization acting as a service provider, such as a news agency. The service providers maintain
one or multiple hubs and bridges permanently connected to the Internet. Some hubs might be set
up within the provider’s premises (enterprise hubs), while others could be placed off premises e.g.,
in users’ homes (personal hubs). Bridges can be hosted on the organization’s own network or in the
cloud. Networking costs for hubs and bridges can either be borne by the owner or subsidized by the
provider. Regardless of the hub deployment setup, the service providers ensure that only authorized
entities can connect to their hubs. Users trust the service provider to identify and approve other
participants thus ensuring these are legitimate. A user may be the only one accessing a hub at a
given time or they might be sharing that hub with other users simultaneously (in enterprise hubs).

3.3 Threat Model and Assumptions
We consider an adversary that aims to break the unlinkability of a BriK k-funnel by determining
which of the participating hubs hides the true source of a given Tor circuit exiting the bridge. From

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:6 Vítor Nunes et al.

the egress circuits of the bridge, we assume the adversary can determine the final destination (see
§2.1): with global or state-level capabilities, it may deploy traffic correlation attacks by monitoring
the traffic between the bridge and downstream middle nodes, and at the exit nodes; with local
access to the bridge traffic, it can perform website fingerprinting on the traffic exchanged between
the bridge and the Tor network (but should be unable to track a specific website access back to the
client due to BriK’s traffic shaping). We assume the adversary does not consider auxiliary data that
could aid them in deanonymizing clients [30, 52, 56] using BriK, such as websites’ kind, language,
and typical access times [32], the physical location of visited websites and the location from which
communications take place [20], or the identification of linguistic patterns of clients’ posts to
websites [4, 8, 32]. Still, for many BriK users (such as journalist organizations or activist/NGO
coalitions), BriK bridges will be formed based on mutual interests and purposes, thus potentially
mitigating the applicability of auxiliary data in traffic analysis to some extent.

The adversary can launch passive attacks (i.e., eavesdropping) and active attacks (i.e., selectively
drop, modify, or inject packets) on this traffic. Although active attacks could trivially block avail-
ability to the bridge, the adversary’s goal is to break the unlinkability between funnel streams and
bridge egress circuits thus defeating k-anonymity. Akin to other pluggable transport implementa-
tions for the Tor ecosystem [6, 25, 81], defending the BriK bridge against DoS attacks constitutes a
complementary challenge that we do not address in this paper. We cover the four following main
attacks; each attack type leverages a distinct technique and, consequently, necessitates specific
defensive mechanisms, which act as a roadmap for presenting our system in §4.3 and onwards.
• Synchronization attacks: Detect coordination discrepancies between hubs and bridge when
managing k-funnels, e.g., the adversary can trivially link a participant’s traffic if this participant
is allowed to create a Tor circuit before the other k-1 participants have joined the k-funnel.

• Traffic confirmation attacks: Correlate the Tor circuit traffic flowing through the bridge with
any of the 𝑘 funnel streams by analyzing distinctive traffic features, e.g., volume of traffic,
inter-packet arrival time, or packet lengths.

• Statistical disclosure attacks: Observe multiple funneled connections over time toward revealing
BriK’s clients communication patterns with their likely Internet destinations.

• Bridge hijacking attacks: Gain system administration privileges on BriK’s bridge infrastructure
and leak sensitive information or deviate from BriK protocols.
In addition to DoS attacks, we do not consider micro-architectural side-channel attacks on the

bridge or attacks that exploit vulnerabilities in either the hub or bridge software. The threat of
malicious hub operators is also not in scope; we assume that hubs and the bridge belong to BriK’s
trusted computing base. Furthermore, we assume that the participants of a 𝑘 community of users are
mutually trusted to actively follow the BriK protocols, do not collude with the adversary, exchange
initial public key credentials out-of-band, and have access to the public key of an available bridge.

4 BRIK
This section presents the design of BriK. First, we give an overview of our system’s architecture
and describe the system’s operation. Then, we detail BriK’s key defense mechanisms.

4.1 Architecture and Implementation
Figure 2 depicts the internals of our system. BriK is a pluggable transport for Tor that comprises two
components: the hub, which runs on the client-side, and the bridge, which runs on the server-side.
Pluggable transports allow Tor traffic to be shaped and routed between clients and bridges without
requiring changes to the Tor core. The hub and the bridge run independent BriK processes and
implement the Pluggable Transport API [78] to interface with Tor processes running on the client
and the bridge itself. This API allows setting up these processes to be used as a custom transport

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:7

Fig. 2. Internal components of BriK and respective interactions: thick arrows represent the tunnel data path.

protocol for the Tor network. Hub and bridge also implement a SOCKS proxy interface which
allows the hub to exchange data with a client application (e.g., a browser) via a local Tor process
and the bridge to relay the traffic through the Tor network. In addition, the hub uses the Circuit
Control API [84], to control the circuit-building process of the local Tor process. It allows the hub to
intercept various circuit events, such as when a new circuit is created or when data is received on a
circuit, and modify the normal behavior to restrict the creation of Tor circuits until the k-funnel is
established or regulate the transmission of the circuits’ cells.

Internally, hub and bridge include four main components which are fundamental for the deploy-
ment and operation of k-funnels: the frame encoder and decoder, the dispatcher, the traffic shaper,
and the frame handler. To introduce these components, we explain how they serve the requests of
a Tor client application to access the Tor network, assuming that a funnel stream has already been
established as part of a currently active k-funnel with other hubs.

When a user initiates a web request in the browser, the local Tor client process needs to establish
a circuit to tunnel the request. The hub component of BriK receives the notification of this event
through the Circuit Control API. It first checks that a secure funnel stream with the bridge is
already active before proceeding to create a new Tor circuit (see §4.2). Once the circuit is created,
the client’s Tor cells enter the hub through the SOCKS proxy and are encoded into fixed-size BriK
frames by the frame encoder (step 1). The encoded frames are then forwarded to an outbound
priority queue managed by the dispatcher. The traffic shaper, which contributes to mitigating traffic
confirmation attacks (see §4.4), pops a frame from the queue at a fixed rate defined by the bridge
(step 2). The frame is then sent to the bridge through an encrypted TLS channel.

On the server side, upon receiving data frames from a hub, the bridge decrypts themwith the help
of the frame handler and enqueues them in the outbound queue for the corresponding hub (step 3).
When a frame has been received from every hub, as indicated by the green light in the traffic light
symbol for each queue, the frame encoder dequeues one frame from each queue and processes it to
relay the original request to the Tor network. This mechanism is one of BriK’s defenses against
traffic confirmation attacks (see §4.4). The frame decoder then decodes the data frames to obtain the
original Tor cells and sends them to the SOCKS proxy interface living in the bridge to be forwarded
to the Tor network (step 4). Replies from a client’s destination are propagated back to the client by
following the same steps in reverse, passing through the bridge (step 5) and then the hub (step 6).

In §4.5, we describe how BriK defends against statistical disclosure attacks. To shield BriK against
bridge hijacking attacks, we leverage Intel SGX enclaves to protect the internal state of the bridge.
We provide further details about our implementation and evaluation of this solution in Appendix A.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:8 Vítor Nunes et al.

We implemented a BriK prototype for Linux. The source code is public [65]. We wrote the hub
and bridge software components in ≈8 000 lines of C++ code using the OpenSSL and Boost libraries.
We used C++ for increased performance. All components (including the circuit control API, in
the case of BriK’s hubs) are included as part of the same program, i.e., as part of a single binary.
BriK’s use of the PT API requires minimal changes to Tor and facilitates portability to different
circuit-based anonymity networks as long as these support the PT API.

4.2 k-Funnel Setup
To create a k-funnel, the bridge first needs to know which hub devices can join the group. These
devices must be registered and form the pool of potential participants. For authentication, each hub
generates a public-private key pair, with the private key used to authenticate the hub towards the
bridge. The bridge offers an HTTPS API that allows users to create groups and invite participants
by uploading their respective hub public keys. The bridge also exposes a public key certificate that
the hubs use for server-side authentication when initiating a connection to the bridge.
A k-funnel can be initiated in two ways once a pre-defined set of hubs agree to participate in

said k-funnel. One way is to schedule rounds for specific dates and times, with a certain duration,
during which the k-funnel is open. For example, a round may be open for 30 minutes and occur
every other hour, starting at noon. When the hubs first connect to the bridge, they download the
schedule and set timers for each round. Alternatively, a k-funnel can be initiated on demand by
a specific member, with the request propagated to other members. Once the minimum required
number of members agrees to participate, the round is scheduled and executed.

The 𝑘 value for a k-funnel is determined by the BriK bridge when a set of participant restrictions
is met. Each participant can set a lower bound k-min, specifying the minimum number of members
required in the k-funnel. For example, Alice may set k-min = 3 indicating that she only wants to join
k-funnels with at least three users, i.e., 𝑘 ≥ 𝑘-min. When a round starts, the bridge will maintain a
waiting line of connecting hubs until all k-min restrictions are met, forming the k-funnel. Once all
three funnel streams are ready, the hubs can authorize the local user to access Tor. Each participant
can enhance their anonymity by increasing the k-min, potentially reducing their usability window.

4.3 Thwarting Synchronization Attacks
Synchronization attacks aim to deanonymize the creator of a Tor circuit by exploiting deficient
coordination between hubs and the bridge during the formation and dissolution of k-funnels, as
well as the creation and termination of Tor circuits. To mitigate these attacks, BriK implements
a protocol between the hubs and the bridge (over a secure TLS channel) ensuring that certain
invariants are preserved to maintain proper synchronization of these events.
Synchronization invariants: Three invariants must hold to coordinate k-funnel management:
I1 Funneling invariant: Traffic from Tor clients must be tunneled exclusively through a k-funnel

via their local BriK hub to prevent detection of the circuit’s source.
I2 k-min invariant: Tor circuits require hubs to meet the minimum k-min value specified by each

user to be created and maintained. This ensures k-anonymity, where the probability of guessing
the author of a Tor circuit is at most 1/𝑘𝑝 (𝑘𝑝 is the k-min restriction specified by any user).

I3 Fixed-set invariant: Maintaining the set of hubs in a k-funnel fixed during a round is essential
for ensuring k-anonymity. Any changes in the set of hubs, such as a new hub joining or
an existing one leaving, require the termination of active Tor circuits and potentially their
recreation. This is necessary to prevent an attacker from guessing the identity of a circuit’s
creator. Suppose a circuit is active in a k-funnel involving 𝑘 hubs, and one hub leaves while
the circuit remains alive. In that case, the circuit was not created by the client attached to the

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:9

exiting hub, increasing the probability of guessing the true creator to 1/(𝑘 − 1). Similarly, if a
new hub is allowed to join, guessing the circuit creator is skewed in favor of the adversary.

To enforce these invariants, hubs and bridges implement a specific network protocol. Next, we
present this protocol and its state machine transitions from the hub’s perspective (see Figure 3).
1. Joining a k-funnel: A hub starts in the Init state. Unless it joins a k-funnel, the hub does not
allow the local Tor client to create new Tor circuits; this condition ensures I1. Whenever a round is
scheduled to begin, the hub connects to the bridge (over an encrypted and traffic-shaped channel),
and sends a HELLO message to join. This message contains the local user’s k-min value, which
indicates the minimum size of the set of online hubs demanded by the user before Tor circuits
can be created (e.g., 3 in the example of Figure 1). In the first case, the hub enters a Connected
(Conn.) state, otherwise, it enters Shutdown (Shut.) state disconnecting itself from the bridge. In
the Conn. state, the hub can request the creation of Tor circuits if instructed by the local Tor client.

Shut.

Hello

Wait

Start Init Conn.

Active

Chan.

Fig. 3. State machine of a BriK hub.

2. Creating a Tor circuit: When a connected
hub intends to create a Tor circuit it will send a
CREATE message to the bridge. The bridge will
reply either with ACTIVE, placing the hub in the
Active state and authorizing it to create the Tor
circuit, or with WAIT otherwise. Receiving WAIT
places the hub in the Wait state and tells it to
suspend the Tor circuit creation until receiving an ACTIVE message. An ACTIVE will be sent by
the bridge as soon as sufficient participants are online to satisfy each user’s k-min, i.e., until the
number of participants is greater or equal to the maximum of all k-min values of each participant.
This ensures invariant I2. For instance, if k-min values of Alice and Bob are 2 and 3, they must wait
until a new participant joins with k-min ≤ 3 for all of them to be able to create Tor circuits. At this
point, every participating hub will receive an ACTIVE message and transition to the Active state.
3. Dealingwith churn:An active hub can receive a WAITmessage telling it that its k-min restriction
does not hold anymore because one of the hubs has left and the current number of participants is
less than the maximum k-min value required by the remaining participants in the circuit. Given
that the hubs are dedicated devices stably connected to the Internet, we expect these situations to
be relatively rare. Nevertheless, to guarantee I2 and I3, the hub reacts immediately by tearing down
all its currently established Tor circuits. The hub will then need to wait until its k-min condition
is again satisfied before new Tor circuits can be allowed. Apart from WAIT instructions, hubs can
receive a CHANGE instruction which aims to preserve I3 if a participant has left but the k-min
restrictions of the connected participants still hold. In this case, the bridge requests all connected
hubs to tear-down existing circuits and create new ones. Upon sending a WAIT or CHANGE control
frame, bridges immediately close active Tor client circuits and drop any data frames received after
the control frame has been sent. In case of changing circuits, hubs should acknowledge bridges
with a CHANGE_OK to resume the exchange of data frames. This prevents delivering Tor cells from
previous Tor circuits (to the Tor network) after the client restriction has become invalid.

4.4 Thwarting Traffic Confirmation Attacks
To protect users against traffic confirmation attacks and preserve k-anonymity of a given k-funnel,
the k streams interconnecting hubs and bridge must be indistinguishable, preventing an adversary
from correlating individual streams with Tor circuit flows leaving the bridge or at exit relays. To
achieve this, our solution involves dynamically shaping and throttling the funnel streams.
Traffic shaping: To mitigate traffic confirmation attacks, BriK encrypts and encodes all packets
between hub and bridge inside frames. The size and sending rate of these frames are equalized by a

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:10 Vítor Nunes et al.

modulation signal across all streams of a k-funnel to make them indistinguishable. All frames in
both directions have the same total length and provide a cover for tunneling Tor circuit cells and
control plane messages. There are three types of frames (see Figure 2) whose format is detailed
in Appendix B: data frames transmit Tor circuits’ data, control frames exchange BriK protocol
messages between hub and bridge, and chaff frames add noise and confuse an adversary [94].

To determine the cover signal to use for modulating traffic, there is a trade-off between network
efficiency and performance. A bridge can specify different frame sending rate strategies:
• Constant rate: When the number of hubs is high, this strategy may be inefficient due to
bandwidth waste, but has the benefit of giving a constant and predictable throughput.

• Dynamic rate: Calculated by dividing the maximum throughput of the bridge by the number of
𝑘 hubs connected at a given time. Since this approach allows higher rates when the number of
hubs is lower, the bridge can offer a better QoS to users. We opt to use this strategy by default.

At funnel setup time, the bridge sends the frame size and sending rate to the hub through the
TLS channel. The traffic shaper dispatches the frames to the network at the agreed-upon sending
rate. Control frames are given higher priority than data frames, enabling prompt delivery of control
messages at the next traffic shaper event. If there are no data or control frames to send, a chaff frame
is sent. The traffic shaper coordinates this process using a buffered chaff packet sample and two
queues that buffer pending data and control frames. Figure 2 shows the outbound frame-sending
mechanism in the hub (step 2) and the inbound frame-sending mechanism in the bridge (step 5) for
the funnel stream between hub 𝑥 and the bridge. The bridge maintains inbound queues for every 𝑘
connected hub and iterates through them at each frame sending rate interval.1

Throughput leveling: Although hubs send traffic to the bridge at the same frame rate, variability
in network conditions may lead to delays or bursts of frames. This can introduce characteristic
timing differences in each funnel stream that can be reflected to the packets relayed to the Tor
network, making passive attacks easier for the adversary. In addition, the adversary could actively
drop frames of each funnel stream and detect interruptions in transmission of packets to the Tor
network, thus identifying their source. To address this issue, we propose an adaptive throughput
leveling mechanism, which ensures that the bridge only delivers traffic to the Tor network after
receiving a BriK frame from all connected hubs, thus equalizing the throughput across all streams
of a k-funnel. For example, two Tor cells received from different hubs within the same k-funnel
with different uplink capacity are drained to the Tor network at the speed of the slowest client,
preventing correlation between a hub and its Tor circuit based on timing properties.
This throughput leveling mechanism is illustrated in step 3 of Figure 2 and works as follows.

The bridge maintains an outbound queue for each connected hub. When a frame is received from a
hub, it is added to the corresponding queue. The bridge then waits until every queue holds at least
one frame from each hub. Then, the dispatcher processes the frame at the head of the queue. If it is

1Setting up the traffic shaper: The frame sending rate (FSRate) and frame size (FSize) must be chosen carefully by the
bridge operator as they impact network efficiency and performance. These parameters condition the traffic shaping rate
(TSRate), which is the total throughput achievable by each funnel stream. We suggest an empirical approach: (1) The
bridge operator picks the maximum bandwidth offered by the bridge (bridgeCapacity) and the maximum number of
hubs connected simultaneously (maxHubs). These determine the minimum traffic shaping rate (TSRate) available to each
hub; e.g., with bridgeCapacity = 125 Mbps and maxHubs = 25, TSRate = 5 Mbps when all hubs are connected. TSRate is
dynamically adjusted based on the number of connected hubs (nHubs) as TSRate = bridgeCapacity / nHubs, providing
smaller bandwidth to hubs as the number of connections increase. (2) The bridge operator then selects a candidate FSize
which will determine the FSRate at which frames must be sent to meet the current TSRate. FSRate is calculated as TSRate /
FSize. The frame size should be chosen such that it takes less time than FSRate to process and send frames to the clients to
avoid timing differences between chaff and data frames. The value for FSize can be found experimentally by measuring the
time it takes for the bridge to process and send a frame. (3) Following the procedure in (2), the bridge operator should test
different FSize values. Depending on context, it may be better to leverage larger FSize and lower FSRate, or vice-versa.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:11

a chaff frame, it is discarded. If it is a control frame, it is locally processed by the controller. If it
is a data frame, it is dispatched to the Tor network. By ensuring that every frame sent to the Tor
network is the result of at least one frame being received from each hub, this mechanism prevents
an adversary from telling which hub is responsible for generating the packet relayed by the bridge.
Adaptability in response to nodes with variable bitrates: Whether due to network conditions
or adversaries, our shaping mechanism only adjusts when a hub joins or departs from the bridge.
As an illustration, let’s consider a bridge with a capacity of 100Mbps, with two connected hubs each
allowing a bandwidth of 50Mbps. When a third node joins the bridge, the shaping mechanism will
proportionally adjust, reducing the bandwidth to approximately 33Mbps for each of the three hubs.
Alternative traffic shaping patterns: The current design of BriK leverages a naive traffic shaping
mechanism which may be reminiscent of Herd [50], a system designed for anonymizing VoIP calls
and which relies on constant rate and size chaffed traffic to conceal users’ activities. We discuss the
use of alternative (and potentially more efficient) traffic shaping patterns in Appendix C.

4.5 Thwarting Statistical Disclosure Attacks
Long-term observations of messages in an anonymity system enable an adversary to perform statis-
tical disclosure attacks [19, 57], which probabilistically identify which participants access websites.
They work by observing when a victim participates in an anonymity system, and which websites
receive communication when the victim is online, accounting for some amount of “background
noise” either estimated [19] or measured when the victim has not participated [57].
According to theoretical results by Hopper et al. [38], k-anonymity can prevent statistical

disclosure attacks. In BriK, we rely on this property to protect users within a single k-funnel from
such attacks. This is achieved through the k-min invariant and the fixed-group invariant (see §4.3),
as well as traffic shaping and throughput leveling mechanisms (see §4.4), which ensure that each
user’s funnel stream is indistinguishable from others and that all users remain within a group
of size ≥ 𝑘 . However, continuous observation by an attacker over multiple rounds of k-funnels
may enable them to gain an advantage by discovering changes in the group membership of each
k-funnel over time. We discuss potential additional mechanisms to avoid this in Appendix D. Note,
however, that statistical disclosure attacks may be aided by auxiliary information that the adversary
possesses. For this work we consider that the adversary has trivial amounts of information that
does not aid in statistical disclosure, but the security of BriK against statistical disclosure attacks
with auxiliary information is currently unknown. We discuss this issue more in Section 6.

5 EVALUATION
Our main evaluation goals are twofold: (i) assess the network performance of BriK, and (ii) measure
its resistance against multiple attacks aimed at deanonymizing BriK users. Our evaluation assumes
that each hub serves a single user, and that multiple hubs are connected to a single BriK bridge.
Supporting multiple users per hub will ultimately result in the multiplexing of a hub’s current
TSRate bandwidth amongst its potential multiple end-users.

5.1 Performance in a Real-World Deployment
To mimic a set of users interested in leveraging BriK, we performed a practical deployment of BriK
using 9 Raspberry Pi4 (RPis) devices acting as BriK hubs, each provisioned with a 4-core Broadcom
BCM2711 CPU and 2GB of RAM. These devices were distributed among different members of our
research group and installed in households across the metropolitan area of a major European city.
This distribution enabled us to gather a representative sample of the ISPs and Internet connections’
performance expected to be found in the homes of individuals interested in using BriK. Indeed, our

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:12 Vítor Nunes et al.

(a) Throughput. (b) Latency. (c) CPU consumption.
Fig. 4. Throughput, latency, and CPU consumption in the BriK baseline (FSize = 3125 B, TSRate = 5 Mbps).

measurements using iperf3 reflect a heterogeneous landscape of network performances, where the
raw throughput of RPi nodes (without using BriK or Tor) ranged from 17 Mbps to 203 Mbps. We see
that even the low performance nodes achieve a sufficient throughput to sustain bandwidth-hungry
applications, like video streaming. The full results of our measurement are detailed in Appendix E.

We then used our RPi deployment to run periodic BriK rounds based on a k-funnel (k=9) while
using a traffic shaping rate of ≈5 Mbps, i.e., equivalent to 720p video streaming (following the
traffic shaper setup process described in §4.4). Every two hours, the RPis engaged in a BriK round
where device rpi3 sent real data, in the form of an iperf3 measurement, and all other hubs sent
chaff. Our experiment revealed that BriK’s traffic was rather stable, achieving a median throughput
of 2.3 Mbps. (Figure 12 in Appendix E details our throughput measurements.)

Further, we explored BriK’s performance when hubs are deployed in a more stable environment,
such as within well-connected enterprise-grade networks (e.g., as part of large organizations or
news outlets). To this end, we deployed a BriK bridge (4 vCPU, 4GB RAM) in a Google Cloud instance
located in Europe along with k=9 hubs split across the United States (East Coast), Western Europe,
and India. We conducted a performance measurement in this setting while measuring throughput
of one of the hubs located within the US. We observed a median throughput of ≈ 6.4Mbps, and a
throughput of 7.9 and 4.2Mbps, on the 95th and 5th percentiles, respectively (detailed results in
Appendix F). This suggests that BriK users may reap larger benefits by placing hubs within their
organizations’ headquarters rather than in their own home networks.

5.2 Baseline Microbenchmark Evaluation
We now evaluate the performance of a BriK baseline deployment. Our results suggest that a bridge
with modest hardware (4vCPU, 4GB RAM) is able to support up to 25 BriK hubs (henceforth referred
to as clients or users), while delivering enough performance for common Internet tasks.
Our testbed includes a bridge and multiple clients, where each node runs an instance of BriK

(using Tor v0.4.2.8). Unless noted otherwise, we use a baseline configuration of BriK with a traffic
shaping rate of 5 Mbps, a frame size of 3125 B, and a frame sending rate of 1.66ms. Thus, provided
that the maximum number of hubs supported by a k-funnel are connected in a given round, each
BriK hub will shape traffic such that each k-funnel stream will exchange traffic at least with a
throughput of 5 Mbps. We chose a frame size of 3125B after following the traffic shaper setup
method in §4.4. We explore other traffic shaper parameters in §5.3. Nodes run in Docker containers,
with 4 vCPU and 4GB of RAM for the bridge node, and 2 vCPU and 1GB RAM for clients. Bridge
and clients run in separate physical hosts with 2 Intel Xeon Silver 4114 vCPUs. Each client uses a
Tor circuit as created by the Tor binary (i.e., we do not choose specific circuits for clients to use).
Throughput: Figure 4(a) depicts the average throughput obtained by a single BriK client over 10
runs according to an increasing number of users connected to the same k-funnel, both when addi-
tional clients exchange chaff and when additional clients exchange payload data. For comparison,

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:13

(a) Throughput (b) Latency (c) CPU consumption.
Fig. 5. Throughput and latency for different frame sizes. All clients exchange data (TSRate = 5 Mbps).

we show the results for an increasing number of users connected to the bridge using vanilla Tor.
Note that relays may impose per-client bandwidth restrictions which are not made public.
The figure also shows that BriK clients generally achieve a throughput between 2Mbps and

7Mbps, shorter than the ≈6–12 Mbps achieved by vanilla Tor clients. When additional users connect
to the same bridge, throughput degrades from ≈4-6 Mbps when k≤10 to ≈2Mbps when k>20. This
reduction is similar both when clients are receiving useful data and chaff. It is worth noticing that
these results allude to the inherent variability of Tor circuits’ performance, which transcends past
the operation of BriK; for instance, vanilla Tor’s throughput dipped when we experimented with a
number of users between 11 and 17, before resuming a higher overall throughput for k≥18.
Latency: We measured the RTT of BriK and vanilla Tor channels by using the httping tool.
Figure 4(b) depicts the average latency of 10 runs according to the increasing number of connected
users k receiving chaff and k users receiving data through Tor. In general, having more users
exchange payload or chaff through the BriK bridge (green and orange lines) causes the latency to
increase. For a k-funnel where two users exchange data, the experienced latency is about 200ms,
while latency sits around 400ms for the same type of k-funnel with more than 20 connected users.
This latency sits close to that experienced by vanilla Tor users (200ms to 300ms).
Resource utilization: We measured the BriK bridge and clients’ CPU usage as clients joined the
system. For comparison, we performed similar measurements for a vanilla Tor bridge and its clients,
where the bridge simply acts as an entry point to the Tor network, i.e., it does not perform traffic
obfuscation. Figure 4(c) depicts clients and bridges CPU utilization. We can see that processing
chaff frames is more lightweight than data frame processing. For 15 BriK users that simultaneously
exchange data, the bridge shows an approximate usage of 1 core. This value decreases to about
0.75 cores when a single client (out of 15) exchanges data and the others exchange chaff. We also
observe a trend which shows that CPU usage increases as more clients connect to the bridge, and
that vanilla Tor bridges are ≈2.5× more efficient than BriK ones when 25 clients exchange data.

5.3 Varying BriK Traffic Shaping Parameters
Alternative frame sizes:We repeated our baseline experiments using a traffic shaping rate of 5
Mbps, but adapted our frame sending rate to use frames with double (6250 B) and triple (9375 B)
the size of our baseline frame (3125 B). Figure 5(a) shows that these configurations do not lead to a
significant reduction in throughput, except when k≥18, where the throughput of 9375 B halves
when compared to 6250 B, and is similar to that of our initial frame size (3125 B). As in §5.2, this
variability may also be explained by momentary congestion in the Tor network. Figure 5(b) depicts
the latency obtained by BriK using different frame sizes. Our results reveal that the tested frame
sizes do not cause a significant impact in the latency experimented by BriK users. For instance,
for a large pool of users exchanging Tor traffic (k≥20), connections appear to experience the same
latency either using the larger (9375B) or smaller (3125 B) frame sizes under test. Lastly, Figure 5(c)

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:14 Vítor Nunes et al.

shows the bridge CPU usage. Larger frames impose a smaller overhead in the bridge CPU, e.g., 0.75
cores for a 9375 B frame vs. 1.4 cores for a 3125 B frame when k=25 clients exchanged traffic.
Alternative traffic shaping rates:Apart from web-browsing, Tor users may wish to conduct other
bandwidth-hungry activities privately, like video streaming. In this experiment, we configured
BriK to use the same frame size (3125 B) but a different traffic shaping rate. Namely, we provide
users with 3 or 5 Mbps traffic shaping rates for enabling 480p or 720p streaming [62], respectively.

To assess the quality of experience perceived by BriK users when streaming video, we measured
the number of frames per second (FPS) transmitted by an HTTP-based video server while using
the same BriK parameter configuration as above. We streamed a 30 FPS video via HTTP from a
VLC video server (v3.0.17.4) hosted on Google App Engine. One user runs a VLC client instance
while the two remaining users support the k-funnel with chaff traffic. In both cases, BriK closely
matched the performance of vanilla Tor, fluctuating between ≈25 and 30 FPS (see Appendix G).

5.4 Resistance against Traffic Analysis
We now evaluate BriK’s ability to resist the state-of-the-art traffic correlation attacks.
Classifiers:WeusedDeepCoFFEA [66], a state-of-the-art approach for end-to-end traffic correlation
that relies on deep learning, to experiment with the correlation of k-funnel traffic (i.e., the traffic
exchanged between BriK clients and the bridge) with HTTP/HTTPS traffic observed at the egress
of the Tor network. To explore the success of a traffic analysis-capable adversary to distinguish
users who are actively participating in the system (i.e., sending real data) from those that are simply
supporting the k-funnel (i.e., sending chaff), we experimented with an XGBoost binary traffic
classifier [11] paired with a comprehensive set of features based on statistics computed over packet
lengths and inter-arrival times. We also adapted DeepCoFFEA to train on sets of ingress flows only.
Datasets: We built two representative datasets. The first dataset is used for assessing the indis-
tinguishability between BriK payload and chaff traffic. The second dataset is used for evaluating
BriK’s resistance against traffic correlation. For generating both datasets, we deployed three clients
connected to a BriK bridge, forming a k-funnel (k=3). In this setting, one client visits each of the
Alexa top 20 000 websites in sequence, while the remaining clients support the k-funnel by simply
sending chaff traffic. We collect the individual traffic flows pertaining to each website visit. We
used Selenium with a Firefox driver coupled with Tor v0.4.2.8 to fetch the pages as in a regular
web-browsing session. We configure the client to forward traffic through a bridge controlled by
us. Mimicking earlier testbeds [61], we capture the traffic generated by clients, and the traffic
exchanged between the circuit’s exit node and a proxy under our control.
Security metrics: To assess the effectiveness of traffic analysis attacks against BriK’s k-funnels,
we rely on the classifiers’ true positive rate (TPR), false positive rate (FPR), and the area under the
ROC curve (AUC), which depicts the trade-off between the TPR and the FPR. A perfect classifier
obtains an AUC of 1, whereas an AUC of 0.5 is equivalent to random guessing.
Preventing traffic correlation: Figure 6 depicts the ROC curve obtained when using DeepCoFFEA
to perform traffic correlation. The figure shows that vanilla Tor flows are highly susceptible to
successful correlation (AUC of 0.9968) but that BriK flows, both at 3 and 5Mbps rates, cannot be
accurately correlated (AUC≈ 0.5, i.e., close to random guessing). This suggests that an adversary is
unable to link k-funnel streams carrying Tor traffic with the HTTP/S flows exiting Tor.
Preventing the identification of k-funnel traffic types: Similarly to the previous setting, our
modified version of DeepCoFFEA achieves an AUC≈0.5 when attempting to distinguish whether a
given client is exchanging BriK payload data or chaff. Our XGBoost binary traffic classifier obtained
similar results to DeepCoFFEA (AUC≈0.5), suggesting that it is hard to distinguish data from chaff.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:15

Fig. 6. DeepCoFFEA traffic correlation results (ROC).

(a) No throughput leveling (b) With throughput leveling
Fig. 7. Bytes received when dropping all packets
from Bob, without and with throughput leveling.

Tolerating active network perturbations: An adversary could benefit from observing traffic
patterns caused by unpredictable network events (e.g. full packet loss due to ISP outages) or active
perturbations (e.g., intentional packet drops). Consider that Alice and Bob form a k-funnel with
𝑘 = 2, and both start to upload a file over Tor. Then, during this operation, Bob’s ISP suffers an
outage and is unable to route Bob’s packets towards the BriK bridge. Without a proper protection
mechanism, an adversary could observe that the bridge continues to exchange traffic with the Tor
network and unmistakably identify Alice as the source of the only active circuit leaving the bridge.

To protect against such attacks, we introduced a throughput leveling mechanism (§4.4) that stalls
the traffic exchanged between clients within a k-funnel and the bridge upon detecting interference
with BriK frames’ sending rate. Figure 7 (a) and Figure 7 (b) depict the amount of bytes exchanged
by both clients and the BriK bridge, without and with throughput leveling protection, respectively.
The blue line shows the aggregate traffic from both Alice’s and Bob’s clients exiting the bridge to
the Tor network. Suppose that Bob’s ISP suffers an outage at 𝑡 = 51s (we use tc to emulate total
packet loss). Without the protection, the bridge continues to facilitate the exchange of Tor data
with Alice. In turn, when applying the protection mechanism, an outage of Bob’s ISP causes the
bridge to completely stall its Tor data exchanges. Note that Alice keeps sending BriK frames to
the bridge for a short period until she receives no response back. This however will not allow an
adversary to pinpoint which client is connected to a given Tor circuit.
While the above example focused on full packet loss conditions for ease of exposition, our

throughput leveling mechanism operates in a similar way when considering other (potentially
adversarial) network perturbations (e.g., constrained bandwidth, added latency, etc.).
Attacks considering auxiliary information:While DeepCoFFEA works well against typical Tor
traffic, it is not designed to break k-anonymity. Note, however, that BriK may not be secure against
other attacks, specifically those that consider auxiliary information toward breaking k-anonymity
(c.f. §3.3). We leave the investigation of such techniques, as well as how machine learning-based
traffic analysis attacks may be modified to include such auxiliary information, to future work.

5.5 Resistance against Statistical Disclosure
Hopper et al. [38] showed that k-anonymity offered theoretical protection against statistical dis-
closure. To examine how BriK performs in unreliable environments, we measure its resistance to
statistical disclosure under high-failure conditions. To do this we simulated an unlikely failure
scenario for the BriK system – we assumed that a client’s hub would drop out of communication and
cause the users to drop below the k threshold, and that the BriK bridge would be unable to detect
this and still allow clients to send traffic. As such, the word “failure” for a given user in our analysis
means (1) the user does not send either chaff nor real traffic; and (2) for some unknown reason,
the BriK system fails to pick up this user failure and decides to continue with communication
anyway. As such, this experiment is a conservative estimate of how much statistical disclosure will

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:16 Vítor Nunes et al.

(a) SDA - failure rate of 10%
and max. of 1 msg/round.

(b) ISDA - failure rate of 10%
and max. of 100 msg/round.

(c) ISDA - failure rate of 1%
and max. of 100 msg/round.

(d) ISDA - failure rate of 0.1%
and max. of 100 msg/round.

Fig. 8. Results from statistical disclosure experiments.

affect our system, as we programmed the system to detect a lack of user participation and halt
communication in the case that this occurs. We implemented two statistical disclosure attacks: the
original attack [19] (sda), and the improved attack [57] (isda). We ran 30 attack simulations against
generated BriK data. For each simulation we generated a different probability distribution per user.
Consider a set of sites 𝑆 that are accessible from a BriK bridge, and a set of user hubs𝑈 who are
using BriK via the same bridge. Then, ∀𝑢 ∈ 𝑈 we generate ®𝑣𝑢 s.t. ∀𝑠 ∈ 𝑆, 𝑣𝑠 ∈ ®𝑣𝑢 is a randomly
chosen variable 𝑣𝑠 ∈ [0, 1] and ∑

𝑠∈𝑆 𝑣𝑠 = 1.
We generate probabilities in this way because we believe it to be realistic, as each BriK user is

likely to have different browsing habits. This method of probability generation directly violates
the assumption presented in sda [19], where only one user, Alice, is assumed to have a unique
probability distribution while others draw uniformly at random. As such we include isda [57], which
does not assume the probability distribution of non-Alice users, but models the noise generated by
them using data collected from rounds in which Alice fails.
Half of our simulations were performed using sda, and half using isda. For both attacks we ran

simulations with differing probabilities of user failure, which remained constant for the duration of
a simulation. The probabilities of failure were based on the five-nines: 90% availability (10% failure),
99% availability (1% failure), etc. User participate in every round for which they do not fail.
We ran experiments looking at the effect of the number of messages sent by users per round.

Users sent a random number of messages with a set maximum, which remained constant during
each simulation. For each failure probability we changed the parameter of maximum messages
allowed to 1, 10, and 100 messages. Finally, we measure the success of statistical disclosure based
on the average of the differences between a user’s probability of visiting a given site and the
adversary’s approximation of it. Given a user’s probability distribution ®𝑣 and the results of an attack
®𝑣′where |®𝑣 | = | ®𝑣′| = |𝑆 |, we define the attack success for a round as: 𝑑 =

∑
𝑠∈𝑆 𝑎𝑏𝑠 (®𝑣𝑠 − ®𝑣′𝑠)/|𝑆 |.

Figure 8(a) shows the result of sda against BriK assuming a failure rate of 10% and a maximum
of one message per round. As predicted, sda is unsuccessful against BriK, likely due to our method
of generating probabilities over 𝑆 . All other results for sda are similar.
Isda provided different results. With a failure rate of 10% and a maximum of 100 messages per

round, after 365 rounds idsa computed a probability distribution that was on average 0.09 away from
the user’s probability. With more rounds the adversary could approximate the correct probability
with more accuracy. The results of this simulation are shown in Figure 8(b). When the user fails
only 1% of the time with 100 maximum messages per round, the average difference on round 365
raises to 0.19, and when the user fails 0.1% of the time it raises to 0.35. These results are shown in
Figures 8(c) and 8(d), respectively. In the case of 99.999% up-time, the attack fails entirely.
Thus, our solution is vulnerable to isda only under certain conditions. Given that our BriK

deployment shows more than 99.9% up time, and that a user sends chaff whenever they are not

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:17

participating, we consider a real world deployment of BriK under high availability to be resistant
to statistical disclosure attacks. This is consistent with the theoretical results of Hopper et al. [38].
Note, however, that this analysis assumes that the adversary does not have access to useful auxiliary
data. We leave the exploration of the impact of auxiliary data on BriK’s security to future work.

6 DISCUSSION
Privacy and usability trade-offs: To ensure k-anonymity, BriK must maintain a fixed set of hubs
as part of a k-funnel while a round is in progress, requiring that Tor circuits can be terminated and
re-created upon set membership changes, disrupting user experience and introducing a delay in
service. By keeping clients independent from their hubs, a client can disconnect while keeping the
respective hub active in chaff sending mode, thus avoiding the need for Tor circuit termination.
Hubs’ connectivity:While the connectivity of hubs deployed in major cities (see Figure 12) can be
more stable than in other regions of the world, our statistical disclosure experiments (§5.5) reveal
that BriK is robust against such attacks even for large node failure rates (e.g., 90% availability).
Ultimately, we expect the churn experienced by hubs to be dependent on the type of hub deployed.
Enterprise hubs are expected to offer higher availability and to experience lower recovery times
after failure than personal hubs.
Connecting users to remote hubs: Our prototype (§ 4.1) assumes users are co-located (i.e., within
the same network) with the hub they wish to use to participate in the system. However, BriK’s
design does not preclude users from establishing secure connections to remote hubs. To reap the
benefits of k-anonymity in such a setting, users must ensure that the traffic they exchange with a
remote hub does not disclose the user’s real online behavior via Tor. To this end, users may utilize
existing traffic obfuscation techniques [12, 73, 77] to break the link between the traffic observed
by a network adversary and a user’s real traffic patterns. Investigating the performance penalties
imposed by traffic obfuscation schemes on BriK remote hub access is left for future work.
Improving resistance to statistical disclosure: Though our results are promising in thwarting
statistical disclosure, we did not analyze our system with respect to auxiliary data. However, the
fact that BriK is envisioned to be used by organizations with similar interests may limit the impact
of auxiliary data on these attacks, though we leave analyzing this claim to future work. Another
direction to improve on BriK against statistical disclosure attacks is by using a statistical disclosure
oracle and a policy to determine not only when a client should send chaff, but then mimicking a
seemingly “normal” pattern of interactions with websites [54] (automatically clicking links, etc.).
DoS attacks: BriK slightly enlarges the attack surface for DoS attacks in that an adversary actively
interfering with a single connection between a hub and a bridge, e.g., by dropping its packets, would
automatically block the traffic of all other k-1 participant hubs in a k-funnel. This is an inherent
limitation of our design and a price to pay to ensure unlinkability among the 𝑘 participants.
Scalability: The BriK service can easily scale vertically (by increasing the compute resources of
hubs and bridges to accommodate more hubs) and, perhaps, horizontally (by deploying additional
bridges and by distributing the hubs’ workloads among them). However, further research is required
to assess the potential security implications of a dynamic distribution of hubs between bridges.

7 RELATEDWORK
A popular use case for pluggable transports (PTs) [83] is to shape and obfuscate TLS flows carrying
Tor traffic for bypassing Tor blockingmeasures [6, 25, 81] or foilingwebsite fingerprinting [33, 34, 37];
for instance, similar in spirit to BuFLO [24], BriK also shapes Tor traffic into a constant-rate traffic
stream. However, in contrast to BriK, these solutions offer no anonymity guarantees if an adversary
can probe further into the Tor network egress links and perform statistical disclosure attacks.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:18 Vítor Nunes et al.

To prevent traffic correlation threats, Tor clients may attempt to avoid unsafe relays [13, 22, 90, 91].
However, existing strategies have been found to leak information about clients’ locations to
adversaries, which can then link partial traffic observations [88] or to strategically place malicious
relays [89]. CLAPS [71] aims to mitigate such issues. Yet, CLAPS assumes an adversary that may
have access to some strategic network locations, but not all, as we assume in BriK. Traffic patterns
are also not obfuscated by CLAPS in any way. AS-aware path selection algorithms help decrease
the chance of an AS-level attacker observing traffic flowing between both endpoints of a Tor
circuit [2, 26, 64, 76]. DeTor [53] and Trilaterator [42] present improved routing schemes to prevent
Tor circuits from traversing specific regions but do not fully prevent traffic correlation efforts.

To thwart statistical disclosure, Buddies [93] groups users with a fixed set of peers that access
some predetermined content at fixed intervals and in a round-robin fashion. TASP [35] aims to
reduce Buddies’ latency at the cost of an increased chance of deanonymization. However, both
systems are only applicable tomessage-based anonymity networks. Aqua [51] provides k-anonymity
on low-latency mix networks as long as the adversary colludes only with one end of the path
between the communicating clients. These assumptions result in security concerns that are akin to
those of Tor, as adversaries who observe both ends of the circuit can still deanonymize clients [67].
Many systems are based on various techniques to protect sensitive communication metadata

from a global adversary: trusted hardware [39, 74], multiparty computation [1, 3, 28, 55], private
information retrieval [5, 17, 29, 46, 86], mix networks [9, 10, 15, 44, 45, 68, 92], and differential
privacy [47, 49, 85, 87]. Among these, specific works like Stadium [85], Karaoke [47], or Groove [10]
leverage parallel mixnets to prevent global adversaries to correlate which users are communicating
(and at what times), by pseudorandomly connecting users to dead drops (i.e., ephemeral addresses
where users exchange messages) while introducing noise traffic that confuses an adversary’s
observations. BriK can be perceived as using similar ideas based on the introduction of chaff traffic
to hide the correspondence between users and the online content they access via Tor.
However, most of the systems listed in the previous paragraph do not provide general support

for low-latency communication like web-browsing. Instead, they are often focused on application-
specific scenarios, such as message broadcasting [1, 17, 18, 63], private messaging [10, 28, 29, 47],
file-sharing [31, 51, 86], VoIP [48, 50], or future Internet architectures [14, 15]. In these works, Tor
is usually criticized for its vulnerability to global network adversaries and susceptibility to traffic
confirmation attacks. BriK fills this gap, enabling Tor to resist traffic correlation and statistical
disclosure, protecting users with k-anonymity. PriFi [9] supports traffic analysis-resistant and
low-latency web-browsing within LANs, but is vulnerable to statistical disclosure attacks.

8 CONCLUSIONS
This paper introduced the k-funnel primitive for improving unlinkability in circuit-based anony-
mous systems and presented BriK, a new pluggable transport for Tor designed to make it robust
against traffic correlation and statistical disclosure attacks. Even if mounted by an adversary that
can intercept the traffic at every link of the Tor network, BriK can provide k-anonymity for groups
of Tor users and implements efficient defenses against traffic analysis.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments and insightful feedback. This work was
partially supported by the Fundação para a Ciência e Tecnologia (FCT) under grant UIDB/50021/2020
and by IAPMEI under grant C6632206063-00466847 (SmartRetail), by NSERC under grant RGPIN-
2023-03304, and by NOVA LINCS (UIDB/04516/2020) with the financial support of FCT.IP.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:19

REFERENCES
[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. 2020. Blinder–Scalable, Robust Anonymous Committed Broadcast.

In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 1233–1252.
[2] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. 2012. LASTor: A low-latency AS-aware Tor client. In

Proceedings of the IEEE Symposium on Security and Privacy.
[3] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. 2017. MCMix: Anonymous Messaging

via Secure Multiparty Computation. In Proceedings of the USENIX Security Symposium. 1217–1234.
[4] Mishari Almishari and Gene Tsudik. 2012. Exploring linkability of user reviews. In Proceedings of the European

Symposium on Research in Computer Security. 307–324.
[5] Sebastian Angel and Srinath Setty. 2016. Unobservable Communication over Fully Untrusted Infrastructure. In

Proceedings of the USENIX Symposium on Operating Systems Design and Implementation. 551–569.
[6] Yawning Angel. 2019. obfs4 (The obfourscator). https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt.
[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind, Divya

Muthukumaran, Dan O’keeffe, Mark L Stillwell, et al. 2016. SCONE: Secure linux containers with intel SGX. In
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation. 689–703.

[8] Michael Backes, Pascal Berrang, Oana Goga, Krishna P Gummadi, and Praveen Manoharan. 2016. On profile linkability
despite anonymity in social media systems. In Proceedings of the ACM on Workshop on Privacy in the Electronic Society.
25–35.

[9] Ludovic Barman, Italo Dacosta, Mahdi Zamani, Ennan Zhai, Apostolos Pyrgelis, Bryan Ford, Jean-Pierre Hubaux, and
Joan Feigenbaum. 2020. PriFi: Low-latency anonymity for organizational networks. Proceedings on Privacy Enhancing
Technologies 2020, 4 (2020).

[10] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2022. Groove: Flexible Metadata-Private
Messaging. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation. 735–750.

[11] Diogo Barradas, Nuno Santos, and Luís Rodrigues. 2018. Effective Detection of Multimedia Protocol Tunneling using
Machine Learning. In Proceedings of the USENIX Security Symposium. 169–185.

[12] Diogo Barradas, Nuno Santos, Luís Rodrigues, and Vítor Nunes. 2020. Poking a Hole in the Wall: Efficient Censorship-
Resistant Internet Communications by Parasitizing on WebRTC. In Proceedings of the ACM Conference on Computer
and Communications Security. 35–48.

[13] Sambuddho Chakravarty, Georgios Portokalidis, Michalis Polychronakis, and Angelos D. Keromytis. 2011. Detecting
Traffic Snooping in Tor Using Decoys. In Proceedings of the International Symposium on Recent Advances in Intrusion
Detection. 222–241.

[14] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrian Perrig. 2015. HORNET: High-speed onion
routing at the network layer. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security.
1441–1454.

[15] Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George Danezis, and Carmela Troncoso. 2018. TARANET:
Traffic-analysis resistant anonymity at the network layer. In Proceedings of the IEEE European Symposium on Security
and Privacy. 137–152.

[16] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online Website Fingerprinting: Evaluating Website
Fingerprinting Attacks on Tor in the Real World. In Proceedings of the USENIX Security Symposium. 753–770.

[17] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte: An anonymous messaging system handling
millions of users. In Proceedings of the IEEE Symposium on Security and Privacy. 321–338.

[18] Henry Corrigan-Gibbs and Bryan Ford. 2010. Dissent: accountable anonymous group messaging. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security. 340–350.

[19] George Danezis. 2003. Statistical Disclosure Attacks. In Security and Privacy in the Age of Uncertainty. Springer US,
421–426.

[20] George Danezis and Carmela Troncoso. 2013. You cannot hide for long: De-anonymization of real-world dynamic
behaviour. In Proceedings of the ACM Workshop on Privacy in the Electronic Society. 49–60.

[21] Debajyoti Das, SebastianMeiser, EsfandiarMohammadi, andAniket Kate. 2018. Anonymity trilemma: Strong anonymity,
low bandwidth overhead, low latency-choose two. In Proceedings of the IEEE Symposium on Security and Privacy.
108–126.

[22] Roger Dingledine and George Kadianakis. 2014. In Proceedings of the 7th Workshop on Hot Topics in Privacy Enhancing
Technologies.

[23] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-Generation Onion Router. In Proceedings
of the USENIX Security Symposium.

[24] Kevin Dyer, Scott Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012. Peek-a-boo, i still see you: Why efficient
traffic analysis countermeasures fail. In Proceedings of the IEEE Symposium on Security and Privacy. 332–346.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt

18:20 Vítor Nunes et al.

[25] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2013. Protocol Misidentification Made Easy
with Format-transforming Encryption. In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security. 61–72.

[26] Matthew Edman and Paul Syverson. 2009. As-awareness in Tor Path Selection. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. 380–389.

[27] Matthew Edman and Bülent Yener. 2009. On anonymity in an electronic society: A survey of anonymous communication
systems. ACM Computing Surveys (CSUR) 42, 1 (2009), 1–35.

[28] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous communication from multiparty shuffling protocols.
Proceedings of the Network and Distributed System Security Symposium (2022).

[29] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. 2021. Express: Lowering the cost of metadata-
hiding communication with cryptographic privacy. In Proceedings of the USENIX Security Symposium. 1775–1792.

[30] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith. 2008. Composition attacks and auxiliary
information in data privacy. In Proceedings of the ACM SIGKDD international conference on Knowledge discovery and
data mining. 265–273.

[31] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. 2003. Herbivore: A scalable and efficient protocol for anonymous
communication. Technical Report. Cornell University.

[32] Oana Goga, Howard Lei, Sree Hari Krishnan Parthasarathi, Gerald Friedland, Robin Sommer, and Renata Teixeira.
2013. Exploiting innocuous activity for correlating users across sites. In Proceedings of the international conference on
World Wide Web. 447–458.

[33] Jiajun Gong and Tao Wang. 2020. Zero-Delay Lightweight Defenses against Website Fingerprinting. In Proceedings of
the USENIX Security Symposium. 717–734.

[34] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav: Generating Realistic Traces for a Strong
Website Fingerprinting Defense. In Proceedings of the IEEE Symposium on Security and Privacy. 1558–1573.

[35] Jamie Hayes, Carmela Troncoso, and George Danezis. 2016. TASP: Towards Anonymity Sets that Persist. In Proceedings
of the ACM Workshop on Privacy in the Electronic Society. 177–180.

[36] Nguyen Phong Hoang, Panagiotis Kintis, Manos Antonakakis, and Michalis Polychronakis. 2018. An empirical study
of the I2P anonymity network and its censorship resistance. In Proceedings of the Internet Measurement Conference.
379–392.

[37] James K Holland and Nicholas Hopper. 2022. RegulaTor: A Straightforward Website Fingerprinting Defense. Privacy
Enhancing Technologies 2 (2022).

[38] Nicholas Hopper and Eugene Y. Vasserman. 2006. On the Effectiveness of k-Anonymity against Traffic Analysis and
Surveillance. In Proceedings of the ACM Workshop on Privacy in Electronic Society. 9–18.

[39] Peipei Jiang, Qian Wang, Jianhao Cheng, Cong Wang, Lei Xu, Xinyu Wang, Yihao Wu, Xiaoyuan Li, and Kui Ren.
2023. Boomerang: Metadata-Private Messaging under Hardware Trust. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation. 877–899.

[40] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. 2013. Users get routed: Traffic correlation
on Tor by realistic adversaries. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security.
337–348.

[41] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han. 2017. Enhancing Security and Privacy of
Tor’s Ecosystem by Using Trusted Execution Environments. In Proceedings of the USENIX Conference on Networked
Systems Design and Implementation. 145–161.

[42] Katharina Kohls, Kai Jansen, David Rupprecht, Thorsten Holz, and Christina Pöpper. 2019. On the Challenges of
Geographical Avoidance for Tor. In Proceedings of the Network and Distributed System Security Symposium.

[43] Christiane Kuhn, Martin Beck, Stefan Schiffner, Eduard Jorswieck, and Thorsten Strufe. 2019. On Privacy Notions in
Anonymous Communication. Proceedings on Privacy Enhancing Technologies 2019, 2 (2019), 105–125.

[44] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. 2017. Atom: Horizontally scaling strong
anonymity. In Proceedings of the Symposium on Operating Systems Principles. 406–422.

[45] Albert Kwon, David Lu, and Srinivas Devadas. 2020. XRD: Scalable messaging system with cryptographic privacy. In
Proceedings of the USENIX Symposium on Networked Systems Design and Implementation. 759–776.

[46] Albert Hyukjae Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Riffle: An efficient communication system
with strong anonymity. Proceedings on Privacy Enhancing Technologies 2016, 2 (2016), 115–134.

[47] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2018. Karaoke: Distributed private messaging immune to passive
traffic analysis. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation. 711–725.

[48] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2019. Yodel: strong metadata security for voice calls. In Proceedings
of the ACM Symposium on Operating Systems Principles. 211–224.

[49] David Lazar and Nickolai Zeldovich. 2016. Alpenhorn: Bootstrapping secure communication without leaking metadata.
In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation. 571–586.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:21

[50] Stevens Le Blond, David Choffnes, William Caldwell, Peter Druschel, and Nicholas Merritt. 2015. Herd: A scalable,
traffic analysis resistant anonymity network for VoIP systems. In Proceedings of the ACM Conference on Special Interest
Group on Data Communication. 639–652.

[51] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter Druschel, Hitesh Ballani, and Paul Francis. 2013. Towards
efficient traffic-analysis resistant anonymity networks. ACM SIGCOMM Computer Communication Review 43, 4 (2013),
303–314.

[52] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2007. t-closeness: Privacy beyond k-anonymity and
l-diversity. In Proceedings of the IEEE International Conference on Data Engineering. 106–115.

[53] Zhihao Li, Stephen Herwig, and Dave Levin. 2017. Detor: Provably avoiding geographic regions in Tor. In Proceedings
of the USENIX Security Symposium. 343–359.

[54] Anna Harbluk Lorimer, Lindsey Tulloch, Cecylia Bocovich, and Ian Goldberg. 2021. OUStralopithecus: Overt User
Simulation for Censorship Circumvention. In Proceedings of the ACM Workshop on Privacy in the Electronic Society.
137–150.

[55] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate, and Andrew Miller. 2019. Hon-
eybadgermpc and asynchromix: Practical asynchronous MPC and its application to anonymous communication. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 887–903.

[56] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubramaniam. 2007. l-
diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data 1, 1 (2007).

[57] Nick Mathewson and Roger Dingledine. 2005. Practical Traffic Analysis: Extending and Resisting Statistical Disclosure.
In Privacy Enhancing Technologies. Springer Berlin Heidelberg, 17–34.

[58] Aastha Mehta, Mohamed Alzayat, Roberta De Viti, Björn B Brandenburg, Peter Druschel, and Deepak Garg. 2022. Pacer:
Comprehensive Network Side-Channel Mitigation in the Cloud. In Proceedings of the USENIX Security Symposium.
2819–2838.

[59] Roland Meier, Vincent Lenders, and Laurent Vanbever. 2022. Ditto: WAN traffic obfuscation at line rate. In Proceedings
of the Network and Distributed System Security Symposium.

[60] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. DeepCorr: Strong Flow Correlation Attacks on Tor Using
Deep Learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 1962–1976.

[61] Milad Nasr, Amir Houmansadr, and Arya Mazumdar. 2017. Compressive traffic analysis: A new paradigm for scalable
traffic analysis. In Proceedings of the ACM Conference on Computer and Communications Security. 2053–2069.

[62] Netflix. 2021. Netflix Internet Connection Speed Recommendations. https://help.netflix.com/en/node/306.
[63] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. 2022. Spectrum: High-bandwidth Anonymous

Broadcast. In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation. 229–248.
[64] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill, and Michael Schapira. 2016. Measuring and mitigating

AS-level adversaries against Tor. In Proceedings of the Network and Distributed System Security Symposium.
[65] Vítor Nunes, José Brás, Afonso Carvalho, Diogo Barradas, Kevin Gallagher, and Nuno Santos. 2023. BriK source code.

https://github.com/TheBriKProject/BriK.
[66] Se Eun Oh, Taiji Yang, Nate Mathews, James K Holland, Mohammad Saidur Rahman, Nicholas Hopper, and Matthew

Wright. 2022. DeepCoFFEA: Improved Flow Correlation Attacks on Tor via Metric Learning and Amplification. In
Proceedings of the IEEE Symposium on Security and Privacy. 1915–1932.

[67] Ania M Piotrowska. 2020. Low-latency mix networks for anonymous communication. Ph. D. Dissertation. UCL (University
College London).

[68] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George Danezis. 2017. The Loopix Anonymity
System. In Proceedings of the USENIX Security Symposium. 1199–1216.

[69] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gangadhara, and Matthew Wright. 2020.
Tik-Tok: The utility of packet timing in website fingerprinting attacks. Proceedings on Privacy Enhancing Technologies
2020, 3 (2020).

[70] Neil M Richards. 2013. The dangers of surveillance. Harvard Law Review 126, 7 (2013), 1934–1965.
[71] Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira. 2020. CLAPS: Client-Location-Aware

Path Selection in Tor. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 17–34.
[72] Rafal Rohozinski Ronald Deibert, John Palfrey and Jonathan Zittrain (Eds.). 2010. Access Controlled: The Shaping of

Power, Rights, and Rule in Cyberspace. MIT Press.
[73] Marc B Rosen, James Parker, and Alex J Malozemoff. 2021. Balboa: Bobbing and weaving around network censorship.

In Proceedings of the USENIX Security Symposium. 3399–3413.
[74] Tianxiang Shen, Jianyu Jiang, Yunpeng Jiang, Xusheng Chen, Ji Qi, Shixiong Zhao, Fengwei Zhang, Xiapu Luo, and

Heming Cui. 2021. DAENet: making strong anonymity scale in a fully decentralized network. IEEE Transactions on
Dependable and Secure Computing 19, 4 (2021), 2286–2303.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

https://help.netflix.com/en/node/306
https://github.com/TheBriKProject/BriK

18:22 Vítor Nunes et al.

[75] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael Backes, and Claudia Diaz. 2018. A survey
on routing in anonymous communication protocols. ACM Computing Surveys (CSUR) 51, 3 (2018), 1–39.

[76] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford, Mung Chiang, and Prateek Mittal. 2015.
RAPTOR: Routing Attacks on Privacy in Tor. In Proceedings of the USENIX Security Symposium. 271–286.

[77] Zhen Sun and Vitaly Shmatikov. 2023. Telepath: A Minecraft-based Covert Communication System. In Proceedings of
the IEEE Symposium on Security and Privacy. 2223–2237.

[78] Tor Project. [n. d.]. Pluggable Transport Specification. https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt.
[79] Tor Project. 2014. Traffic correlation using netflows. https://blog.torproject.org/traffic-correlation-using-

netflows?page=1.
[80] Tor Project. 2018. Reporting Bad Relays. https://trac.torproject.org/projects/tor/wiki/doc/ReportingBadRelays.
[81] Tor Project. 2019. meek. https://trac.torproject.org/projects/tor/wiki/doc/meek.
[82] Tor Project. 2019. Tor FAQ. https://2019.www.torproject.org/about/overview.html.en.
[83] Tor Project. 2019. Tor Pluggable Transports. https://2019.www.torproject.org/docs/pluggable-transports.
[84] Tor Project. 2020. Tor control protocol. https://gitweb.torproject.org/torspec.git/tree/control-spec.txt.
[85] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. 2017. Stadium: A distributed metadata-

private messaging system. In Proceedings of the Symposium on Operating Systems Principles. 423–440.
[86] Adithya Vadapalli, Kyle Storrier, and Ryan Henry. 2022. Sabre: Sender-Anonymous Messaging with Fast Audits. In

Proceedings of the IEEE Symposium on Security and Privacy. 1953–1970.
[87] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015. Vuvuzela: Scalable private messaging

resistant to traffic analysis. In Proceedings of the Symposium on Operating Systems Principles. 137–152.
[88] Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang, and Prateek Mittal. 2018. Tempest: Temporal Dynamics in

Anonymity Systems. Proceedings on Privacy Enhancing Technologies 2018, 3 (2018), 22–42.
[89] Gerry Wan, Aaron Johnson, Ryan Wails, Sameer Wagh, and Prateek Mittal. 2019. Guard placement attacks on path

selection algorithms for Tor. Proceedings on Privacy Enhancing Technologies 2019, 4 (2019).
[90] Lauren Watson, Anupam Mediratta, Mohammad Tariq Elahi, and Rik Sarkar. 2020. Privacy Preserving Detection of

Path Bias Attacks in Tor. Proceedings on Privacy Enhancing Technologies 2020, 4 (2020), 111–130.
[91] Philipp Winter, Richard Köwer, Martin Mulazzani, Markus Huber, Sebastian Schrittwieser, Stefan Lindskog, and Edgar

Weippl. 2014. Spoiled onions: Exposing malicious Tor exit relays. Proceedings on Privacy Enhancing Technologies
(2014).

[92] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. 2012. Dissent in numbers: Making
strong anonymity scale. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation.
179–182.

[93] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. 2013. Hang With Your Buddies to Resist Intersection Attacks. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 1153–1166.

[94] Charles V. Wright, Scott E. Coull, and Fabian Monrose. 2009. Traffic Morphing: An Efficient Defense Against Statistical
Traffic Analysis. In Proceedings of the Network and Distributed System Security Symposium.

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://blog.torproject.org/traffic-correlation-using-netflows?page=1
https://blog.torproject.org/traffic-correlation-using-netflows?page=1
https://trac.torproject.org/projects/tor/wiki/doc/ReportingBadRelays
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://2019.www.torproject.org/about/overview.html.en
https://2019.www.torproject.org/docs/pluggable-transports
https://gitweb.torproject.org/torspec.git/tree/control-spec.txt

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:23

(a) Throughput. (b) Latency. (c) CPU consumption.

Fig. 9. Throughput, latency, and CPU consumption of BriK (FSize = 3125 B, TSRate = 5 Mbps) within SGX.

A THWARTING BRIDGE HIJACKING ATTACKS
To maintain the anonymity properties of k-funnels, BriK bridges must be trusted (1) to not reveal
the identity of participating clients and (2) to follow the protocol between hubs and bridge. However,
powerful adversaries may deploy malicious bridges or compromise benign ones, allowing them to
obtain sensitive information and potentially deanonymize clients. For instance, access to a hub’s
outbound queues would trivially allow the adversary to identify all the Tor circuit cells relayed by
that hub. Thus, it is essential that the execution state of a BriK bridge preserves two main security
properties: confidentiality and integrity.

A.1 Securing BriK Bridges Inside a TEE
To detect potentially untrusted bridges, we propose securing the BriK bridge software inside a
trusted execution environment (TEE), enabled by trusted hardware. Inspired by the approach of
Kim et al. [41], our solution requires that the bridge server is equipped with trusted TEE-enabling
hardware. The TEE provides a protected domain where the bridge program’s execution state is
isolated from the host’s OS, guaranteeing confidentiality and integrity. Remote attestation executed
at the hub can verify that the bridge is authentic before joining any k-funnels. In our implementation,
we leveraged Intel SGX to protect the bridge software inside an enclave. We used SCONE [7] which
allows Docker containers to use Intel SGX. Supporting SGX required no significant changes in our
code. Since SCONE provides a standard C library interface, we created a Docker container and
recompiled BriK using a C++ cross-compiler with SCONE support.

A.2 Performance of SGX-enabled BriK Bridges
By leveraging the memory isolation capabilities provided by SGX, BriK can protect data structures
that store sensitive information about the members of each k-funnel and BriK reception queues.
We repeated the performance measurements presented in §5.2 using an SGX-enabled machine
equipped with a common-of-the-shelf Intel Core i9-9900K CPU. Overall, our results suggest that
SGX-enabled BriK bridges could be easily adopted in practice.

Figure 9 a) depicts the throughput obtained by BriK clients connected to an SGX-enabled bridge.
We can see that, similarly to our observations when using a non-SGX BriK bridge, throughput is
reduced as new clients join the k-funnel. In particular, while clients can achieve a throughput of
about 8Mbps in a k-funnel composed of just three users, the throughput achieved by a k-funnel with
𝑘 ≥18 sits between 2 and 4Mbps. In turn, Figure 9 b) shows that the latency penalty experienced by
clients when using the SGX-infused version of BriK is relatively close to that of vanilla Tor, for
small and large numbers of 𝑘 .
Regarding CPU consumption, we can also observe that an SGX-enabled bridge is able to serve

up to 25 BriK clients while consuming only about 1.25 CPU cores of the 2-core Docker container
living in the host machine. The fact that CPU consumption remains relatively stable throughout our
experiment may be explained by the fact that, for this particular experiment, we had to compile BriK
statically to ensure compatibility with SCONE (BriK’s non-SGX version was compiled dynamically).

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:24 Vítor Nunes et al.

B BRIK MESSAGE FORMATS
Hubs and bridges exchange three different frame types: data, control, and chaff. Each frame, of fixed
size, has a header and a payload. The first field of a frame’s header carries the type, and additional
header fields are dependent on it. Next, we describe the composition of each frame type.
• Data frames: Data frames include one additional header field, the payload size, which denotes
the length of useful bytes carried in the frame. Whenever Tor sends a cell to BriK, the cell
is enclosed in one or several data frames, which are later sent. Our frame format, depicted
in Figure 10 allows BriK frames to be large enough to contain multiple Tor cells, without
fragmenting those Tor cells across several frames. Whenever the payload size is smaller than
the fixed frame size, padding is appended to the payload.

• Control frames: Control frames always include one more header field: the control type. De-
pending on the control type, several additional fields may be included as depicted in Figure 11.
These frames are used for managing k-funnels. Hello commands allow users to define their
k-min to join a k-funnel. TS Rate commands allow bridges to dynamically modify the hub
frame sending rate. Like data frames, padding is added to control frames filling the frame up to
its size. Control frames have the highest priority of the three types.

• Chaff frames: Chaff frames do not include any additional header fields and their payload consists
entirely of arbitrary bytes. When no Tor traffic is available, BriK sends chaff frames. Such
frames are discarded upon reception both at the bridge and hubs. Chaff frames have the lowest
priority of the three types.

Frame Type
(1 byte)

Payload Size
(4 bytes)

Frame

Header
(5 bytes) Payload

Fig. 10. Format of BriK data frames.

Hello: Frame Type K-min

TS Rate:

Other Ctrl
Frames

Rate

Control Type

1 byte1 byte 4 bytes

Control Type

Control TypeFrame Type = CTRL

Frame Type = CTRL

Frame Type = CTRL

Frame Size

4 bytes

:

Fig. 11. Format of BriK control frame headers.

C ALTERNATIVE TRAFFIC SHAPING PATTERNS
The generation of chaff traffic based on the transmission of constant traffic that is independent
of the underlying application’s actual workload (as we do in BriK), can be inefficient. To tackle
this issue, recent works like Ditto [59] and Pacer [58] propose profiling routines that compute
and suggest more efficient chaff traffic shaping patterns according to the specific tasks users are
expected to perform more often (e.g., video streaming, e-mail, web browsing, etc.), while ensuring
that these traffic shaping patterns do not leak information to network adversaries. An interesting
direction for future work involves exploring the application of efficient traffic shaping techniques
within BriK’s traffic shaper to enhance QoS while preventing adversaries from deducing users’ real
traffic patterns, e.g., by having organizations profile user traffic before deploying BriK.

D DEFENDING AGAINST LONG TERM STATISTICAL DISCLOSURE
To protect against statistical disclosure in the long run, we propose an approach inspired by
Wolinsky et al. [93], initially conceived for message-based anonymity networks.

Specifically, a BriK bridge defines a round as a period of time, 𝛿 , and contains two components:
an oracle function 𝑂 and a policy 𝑃 . For reach round 𝑟 , Alice can send any number of messages.
After 𝛿 seconds pass, 𝑟 increments. 𝑂 then performs a statistical disclosure attack using 𝑟 and the
messages observations𝑂 up until round 𝑟 [57] using circuits as proxies for destination servers. This

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

Enhancing the Unlinkability of Circuit-Based Anonymous Communications with k-Funnels 18:25

Device ISP Modem Wired Avg. Tput. (Mbps) Avg. Latency (ms)

rpi01 ISP1 Fiber WiFi 85.51 ± 2.48 46.24 ± 1.77
rpi02 ISP1 Fiber Ethernet 194.96 ± 2.43 44.69 ± 0.30
rpi03 ISP2 Fiber Ethernet 203.43 ± 3.42 41.91 ± 1.35
rpi04 ISP3 Coaxial Ethernet 17.13 ± 2.35 49.18 ± 7.26
rpi05 ISP3 Coaxial Ethernet 21.38 ± 0.82 52.07 ± 25.70
rpi06 ISP2 Fiber Ethernet 117.90 ± 0.84 49.01 ± 3.37
rpi07 ISP2 Fiber Ethernet 92.92 ± 1.94 57.58 ± 165.15
rpi08 ISP1 Fiber WiFi 92.71 ± 0.78 118.94 ± 339.71
rpi09 ISP2 Fiber Ethernet 119.01 ± 0.48 42.49 ± 4.91

Table 1. Connectivity characteristics and network per-
formance of the deployed RPi BriK nodes.

Fig. 12. BriK throughput over six days (rpi3).

results in ®𝑣 = 𝑂 (𝑟,𝑂). The oracle then queries 𝑃 for the current policy and receives (𝑐, 𝑒) where 𝑐
is a specified level of confidence provided by the policy and 𝑒 is a margin of error. 𝑂 then can look
at the resulting probability distribution, ®𝑣 , and look at all circuits in ®𝑣 with probability difference
less than or equal to 𝑐 , resulting in set 𝐶 . Then, 𝑂 looks at the set 𝐴 of circuits owned by Alice to
see if any circuits in 𝐶 are correctly predicted.
If 𝐶 ∩𝐴 ≠ ∅, the oracle considers the attack successful and the BriK bridge notifies the client

that it should enter a chaff-only mode. Alice then switches to sending only chaff messages to the
BriK bridge. During this time 𝑂 continues performing the statistical disclosure attack as described
before. However, since Alice is in chaff-only mode, 𝑂 will look at all circuits in ®𝑣 where probability
difference is lower than 𝑐 + 𝑒 , where 𝑒 is an error parameter specified by the policy. When 𝑂

computes 𝐶 s.t. 𝐶 ∩𝐴 = ∅, the BriK bridge will notify Alice that she can leave chaff-only mode.
This conservative estimate allows a BriK bridge to determine if a statistical analysis attack would

work while circuits are alive, but it does nothing to determine the long-term effect of churn on BriK
bridges. For this, whenever churn occurs on a BriK bridge, all clients 𝑢 ∈ 𝑈 may come together
and leverage a multiparty computation (MPC) protocol to create a distributed oracle 𝑂 using an
agreed upon policy 𝑃 . Each client’s private input includes their message history𝑚𝑢∀𝑢 ∈ 𝑈 . The
output of 𝑂 will be a set of users 𝑉 ⊆ 𝑈 who are estimated to be at heightened risk of statistical
disclosure attack. Those clients may choose to enter chaff-only mode to lower the success rate of
such an attack. We leave implementing this MPC oracle 𝑂 to future work.

E RAW NETWORK PERFORMANCE
Table 1 details the connectivity characteristics of each RPi machine we deployed as BriK hubs
on the metropolitan area of a major European city (see §5.1). The table also shows the average
throughput and latency obtained by each node over the course of a six days-long measurement
where throughput and latency statistics were obtained every two hours. These statistics were
obtained by reaching out to a public server under our control, hosted within a different European
country, using the httping and the iperf3 utilities, respectively. We did not send traffic through
Tor or BriK during these measurements, i.e., we intended to measure the raw network performance.

Figure 12 shows our throughput measurements conducted over BriK. The figure reveals that
BriK’s traffic was rather stable, achieving a median throughput of 2.3 Mbps. Apart from the
performance variability of Tor circuits, which inherently affect BriK’s end-to-end performance, we
were able to observe some dips in throughput (e.g., day 1–2). This can be explained by the fact that
the home network of rpi3’s operator was significantly overloaded during this period.

F THROUGHPUT IN A CLOUD ENVIRONMENT
Figure 13 depicts the results of a throughput measurement experiment we conducted when the
BriK bridge is deployed in a cloud machine on a Google datacenter in Europe and all hubs are

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

18:26 Vítor Nunes et al.

spread out across three different continents: America, Europe, and Asia (see §5.1). The plot reveals
that well-connected hubs are able to achieve an overall higher throughput than when compared to
hubs connected to residential networks (Figure 12). However, we found throughput oscillations to
be more pronounced on the cloud deployment, likely due to the distributed nature of nodes across
the world, which might be impacted by global WAN connectivity.

Fig. 13. BriK throughput over the course of three days (rpi3) when the other 9 hubs are deployed in the cloud.

G VIDEO STREAMING
To assess different QoS indicators of BriK besides raw throughput, we explored the quality of video
streaming activities over k-funnels when our prototype is configured to operate with different
traffic shaping rates (see §5.3).
Figure 14(a) shows the number of frames displayed to BriK over the span of one minute, when

streaming a 480p resolution video. We can see that the number of frames received and displayed by
the client’s video software (VLC) is rather consistent when leveraging BriK– i.e., regularly reported
to be close to 30 FPS, with some occasional drops to 23 FPS. Figure 14(b) reveals a very similar
behavior for 720p resolution video, suggesting that BriK can accommodate for more demanding
workloads by changing its traffic shaping rate.

The figures also show that BriK does not introduce a meaningful quality of service degradation
vs. when the same tasks as performed through vanilla Tor. As can be observed in both figures, a
client leveraging vanilla Tor to perform the video streaming workload also regularly reports 30 FPS
with occasional FPS drops throughout our experiment.

(a) Streaming a 480p video. (b) Streaming a 720p video.
Fig. 14. Number of frames shown to BriK’s client over a 60 seconds-long HTTP 30 FPS video streaming.

Received July 2023; revised September 2023; accepted October 2023

Proc. ACM Netw., Vol. 1, No. CoNEXT3, Article 18. Publication date: December 2023.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Circuits Under Traffic Analysis Attacks
	2.2 Unlinkability Through k-Anonymity

	3 Overview
	3.1 System Model
	3.2 Usage Model
	3.3 Threat Model and Assumptions

	4 BriK
	4.1 Architecture and Implementation
	4.2 k-Funnel Setup
	4.3 Thwarting Synchronization Attacks
	4.4 Thwarting Traffic Confirmation Attacks
	4.5 Thwarting Statistical Disclosure Attacks

	5 Evaluation
	5.1 Performance in a Real-World Deployment
	5.2 Baseline Microbenchmark Evaluation
	5.3 Varying BriK Traffic Shaping Parameters
	5.4 Resistance against Traffic Analysis
	5.5 Resistance against Statistical Disclosure

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A Thwarting Bridge Hijacking Attacks
	A.1 Securing BriK Bridges Inside a TEE
	A.2 Performance of SGX-enabled BriK Bridges

	B BriK Message Formats
	C Alternative traffic shaping patterns
	D Defending Against Long Term Statistical Disclosure
	E Raw network performance
	F Throughput in a Cloud Environment
	G Video Streaming

