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ABSTRACT

The prediction of aerodynamic interactions has been shown to earn careful
consideration in helicopter design because of their consequences to the han-
dling qualities, dynamics and performance. Under forward flight condition at
moderate advance ratio, aerodynamic interactions may manifest as high lev-
els of vibration and noise or as large nose-up pitching moments acting on the
helicopter. These effects are investigated in a generic coaxial helicopter that
is representative of modern configurations and features a hingeless hub, rigid
blades and thrust compounding. The correct prediction of the detailed evolution
of the vortex structures within the helicopter rotor wake is essential for the anal-
ysis of aerodynamic interactions. This is properly addressed by using lifting-line
theory coupled to a Vorticity Transport Model to compute the evolution of the
vorticity generated at the rotor blades. This finite volume boundary-free model
solves the vorticity equation and circumvents the excessive numerical diffusion
of vorticity that limits standard CFD-based techniques. Numerical simulations
on several combinations of the components that constitute the helicopter were
carried out and compared against the results for the full helicopter in order to
better understand the origins and effects of the interactional phenomena. It is
shown that the effects of some aerodynamic interactions can be directly as-
cribed to a particular event, like the impingement of the main rotor wake into
another component, while others may manifest in a more subtle way, like the
mutual interaction between the wakes generated by different rotors or the dis-
placement of the main rotor wake caused by the airframe.

Keywords

Interactional aerodynamics, forward flight, compound helicopter, coaxial rotor,
Advancing Blade Concept, Vorticity Transport Model.
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RESUMO

A simulação de interacções aerodinâmicas merece grande consideração no
projecto de helicópteros devido às suas consequências para a qualidade de
voo, dinâmica e performance. Em condição de voo nivelado a razão de avanço
moderada, as interacções aerodinâmicas podem manifestar-se como níveis de
vibração e ruído elevados ou momentos de cabragem severos aplicados no
helicóptero. Estes efeitos são investigados num helicóptero coaxial genérico,
composto em propulsão e representativo de configurações modernas carac-
terizadas por hélices de pás rígidas desarticuladas. A correcta previsão da
evolução das estruturas de vórtice que dominam a esteira da hélice do he-
licóptero é essencial para a análise de interferências aerodinâmicas. Isto
é conseguido através da teoria de linha sustentadora em conjunto com o
método ‘Vorticity Transport Model’ que são usados para calcular a evolução
de vorticidade produzida pelas pás das hélices. Este modelo de volume finito
e fronteira-livre resolve a equação de vorticidade, contornando a excessiva
difusão numérica que limita as técnicas convencionais de CFD. Simulações
numéricas de várias combinações de componentes do helicóptero foram efec-
tuadas e comparadas com os resultados obtidos para a configuração completa
de modo a melhor entender as origens e efeitos dos fenómenos de interferên-
cia. É demonstrado que os efeitos de algumas interacções aerodinâmicas po-
dem ser directamente imputados a um dado evento, como o embate da esteira
da hélice principal num outro componente, enquanto outros podem manifestar-
se de um modo mais subtil, como a interacção mútua entre as esteiras pro-
duzidas por diferentes hélices ou a deformação da esteira da hélice principal
causada pela fuselagem.

Palavras-chave

Interacções aerodinâmicas, Voo rectilíneo uniforme, helicóptero composto, ro-
tor coaxial, Advancing Blade Concept, Vorticity Transport Model.
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1 INTRODUCTION

1.1 Historical Perspective

Since time immemorial, mankind has been dreaming of flying with uncon-
strained freedom together with full motion control. Since early days, man has
been striven after a reliable and practical machine that could raise him to the
skies, fly in any commanded direction and then come down again to the ground
in a comfortable and safe journey. The helicopter, as we know it today, is by
far the flying vehicle that more closely satisfies that demand due to its inherent
flying characteristics – its ability to take-off and land vertically, and to hover for
extended periods of time, as well as its handling properties under low airspeed
conditions. This idea is well patent in the following citation from Igor Sikorsky,

“The helicopter approaches closer than any other [vehicle] to fulfil-
ment of mankind’s ancient dreams of the flying horse and the magic
carpet.”

The first recorded attempt to build a vertical flight machine stem back to early
1480’s, when the great Italian Leonardo Da Vinci pre-dated the helicopter with
a design sketch for a machine that could be described as an ”aerial screw”, [3].
However, it was the ancient Chinese flying top that inspired the first helicopter
models almost 300 years later, with the first small scale models featuring a pair
of coaxial counter-rotating rotors developed by the Russian Mikhail Lomonosov
and a few years later by the French Christian De Launoy and his mechanic,
Bienvenu.

Although experiments with helicopters appear early in history, its progress
was beset by some fundamental technical problems. The aerodynamics of ver-
tical flight were yet to be grappled and the lack of technology to build a suitable
engine with higher power-to-weight ratio was not to be overcome until about
1920. By that time, the internal combustion engine allowed for the develop-
ment of the first full-sized models, but then rotor torque reaction became a
major problem. Also, the lack of stability and proper means of control consti-
tuted a barrier in the development of the earlier helicopter models. It followed
a period of prominent advancements in helicopter design. It was not until 1936
that many of the problems that shattered the hopes of earlier designers were
properly addressed, leading to what is considered the first practical fully-con-

1



trollable helicopter that was successfully flown, the German Focke-Wulf Fw 61.
A few years later, in 1942, Igor Sikorsky designed the R-4, which became the
first helicopter to reach mass production, [4].

On achievement of practical controlled powered flight, designers became
quickly enthralled by the need of improving the performance of the helicopter.
Several limitations in the lifting and propulsive capabilities of the single rotor he-
licopter were encountered in forward flight, namely the adverse effects of com-
pressibility on the advancing blades and stall on the retreating blades, which
can be ascribed to the asymmetric flow conditions experienced by the rotor. As
the forward speed of the helicopter was increased the difference in dynamic
pressure between the advancing and retreating sides of the rotor disk became
greater. An increase in the cyclic pitch then needed to be fed to the rotor blades
not only to maintain the aircraft in roll trim but also to tilt the disk further forward
to overcome the increase in drag of the entire aircraft. Accompanying the in-
crease in cyclic pitch was a reduction in the amount of collective pitch in order
to avoid blade stall on the retreating side of the rotor disk, where the collective
and cyclic pitch add up to increase blade pitch. That implied a decrease in the
rotor thrust capability, leaving rotor designers immersed in a speed trap, [5].
The benefit from the advancing blade lift potential is also compromised as a
consequence of the inefficient angles of attack in which the advancing blades
operate. An increase in the rotational speed of the rotor will give rise to a higher
dynamic pressure which will alleviate the problem of the retreating blade stall,
but will expose the advancing blades to the restrictive compressibility effects.

In order to expand the flight envelope of the helicopter, designers needed to
overcome the limitations imposed by retreating blade stall and advancing blade
compressibility that arose in forward flight. A method to circumvent this limita-
tions was to supplement the helicopter with an additional wing and/or propul-
sion device, which is commonly known as the compound helicopter. Extensive
research has been performed since the end of the Second World War, with
many compound helicopter prototypes produced and trialled mainly with the
aim of increasing the maximum forward speed of the helicopter. Worth to men-
tion is the British Fairey Gyrodyne first flying on December 1947. On June
1948 the compound Gyrodyne set a world speed record by flying at 200 km/h,
although at such high speeds it behaved more like an autogyro rather than
a true helicopter. Other notable practical compound helicopters include the
Fairey Rotodyne that set the world speed record in the convertiplane category,
at 307.2 km/h on January 1959, and Lockheed AH-56A Cheyenne, [6], first
flying on September 1967.

Another promising solution to the retreating blade stall and its associated
limitations in performance began at Sikorsky Aircraft in 1964, with the Advanc-
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ing Blade Concept (ABC) research helicopter. In August 1973 the XH-59A
Advancing Blade Concept demonstrator aircraft was flown in order to inves-
tigate the ABC rotor characteristics, figure 1.1(a). Unfortunately, an accident
occurred in a hard landing after a low speed forward flight test at an altitude of
about 15 m. The helicopter pitched nose-up, lost altitude, and hit the ground
with its tail, leaving the aircraft extensively damaged. Investigation results dis-
closed an underprediction of cyclic control requirements at low speed leading
to insufficient longitudinal control, [7], rather than a basic flaw in the concept.
Another model was built the following year and flight testing commenced in July
1975. In April 1978, tests were conducted with the addition of two pod-mounted
1361 kg thrust Pratt & Whitney J60-P-3A turbojet engines for thrust compound-
ing, further expanding the flight envelope with a top speed of 488 km/h in for-
ward level flight, figure 1.1(b).

(a) XH-59A Advancing Blade Concept technology demonstrator helicopter
without auxiliary propulsion.

(b) Second version of the XH-59A compounded in thrust with two J60-P-3A
turbojet engines.

Figure 1.1: The Sikorsky’s XH-59A Advancing Blade Concept Technology
Demonstrator Helicopter.

Later in the 1980’s, another project was proposed that implemented the
ABC rotor. It was designated the XH-59B and derived from the former XH-
-59A model through the introduction of several modifications, including a new
engine, a shorter fuselage, advanced rotors and a ducted pusher propeller
mounted at the tail to provide forward thrust. However, a full-scale model was
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never built and the XH-59 programme was abandoned. The advantages of
the Advancing Blade Concept were outweighed by the excessively heavy rotor
and transmission system and by the very high levels of vibration induced by the
rotor system at high speed forward flight. In addition, numerous minor structural
concerns were reported and low-speed autorotative yaw control revealed to be
unsatisfactory, [8].

Yet the ABC-type coaxial rotor has been brought back recently with the
modern Sikorsky’s X2 high-speed technology demonstrator, achieving its first
flight in August 2008, as depicted in figure 1.2. The X2 was designed to cruise
comfortably at 460 km/h while retaining the handling qualities in low-speed
flight and the efficiency in hover that are characteristic of the conventional he-
licopter. The transition to high speed flight is designed to be seamless and
simple. During a 1.1 hour flight in the 15th of September 2010, it successfully
achieved a speed of 463 km/h true air speed in level flight thus exceeding by
63 km/h the officially recognized top speed for a helicopter – 400 km/h by a
Westland Lynx in 1986. The X2 features a LHTEC-T800 engine, a four-bladed
coaxial rotor and a six-bladed pusher-type propeller. It also includes fly-by-wire
controls and active vibration control that are hoped to circumvent the high levels
of vibration that jeopardized the XH-59 programme.

Figure 1.2: The Sikorsky’s X2 Technology Demonstrator. Top Left: concept
model. Top Right: flight testing in August 2008. Bottom: flight testing in
September 2010. (Courtesy of Sikorsky Aircraft Corp.)
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1.2 Compound Helicopters

A possible solution to the retreating blade problem is to add wings to the fuse-
lage that could share the task of supporting the weight of the aircraft, thus
unloading the rotor at high speeds. This is known as lift compounding. Another
possible way of augmenting the propulsive force generated by the rotor is by
adding a propulsion device, which is known as propulsive thrust compounding.
Although lift compounding did not provided a significant increase in forward
speed, it could be greatly enhanced with the addition of a propulsion device
because the forward disc tilt of the main rotor would no longer be required and
the benefits of unloading the main rotor could now be used with plenitude, [5].
This is known as fully compounding. It was the combination of both lift and
propulsion compounding that brought helicopter designers up to high speed
forward flight.

In the present helicopter model both lift and propulsive thrust compounding
were implemented. The former was achieved with the introduction of an extra
rotor, arranged in coaxial configuration with the first and rotating in the oppo-
site direction and the later was accomplished through the addition of a pusher
propeller mounted at the rear of the fuselage.

1.3 The Advancing Blade Concept

The ABC helicopter was comprised of a pair of rotors arranged in a coaxial
configuration and rotating in opposite directions to each other. The blades were
very stiff compared to conventional helicopter blades. They were designed
to be particularly stiff under three modes of bending corresponding to three
degrees of freedom of blade flexure, namely under flapwise bending (virtual
deflection in the direction of blade flap), chordwise bending (direction of blade
lag) and torsional bending (direction of blade pitch). The blades were rigidly
attached to the hub except for feathering freedom. The concept derives its
name from the fact that it makes more efficient use of the lift generated on the
advancing blades at high speed forward flight. The advancing blades of each
rotor may operate at higher pitch angles to produce more lift without prejudice
to roll trim, since the difference in lift between the advancing and retreating
sides of the upper rotor are balanced by the equal and opposite lift distribution
of the lower blade. Figure 1.3, adapted from the work of Paglino, [9], better
illustrates this principle. Rotor lift is then retained with increasing speed and
speed capability is maintained at altitude, [8]. In addition, the maximum lift-to-
drag ratio (L/D) is improved, [10].

In terms of induced power consumption, the coaxial rotor as proved to be
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intrinsically more efficient in hover, forward flight and during manoeuvres than a
single rotor of the same solidity and blade geometry, [1]. In addition, the coaxial
rotor provides torque cancellation, thereby eliminating the need for a tail rotor
and its associated shafting and gearboxes. This turns out to be a prominent
feature of the coaxial rotor since in conventional helicopters the tail rotor re-
quires typically 5 to 10% of the main rotor power without making any significant
contribution to the thrust generated by the main rotor, [4]. Nonetheless, the
advantages of the ABC rotor cannot be summarized to performance benefits,
but extend to substantial improvements in handling qualities, acoustics, loads
and dynamics compared to contemporary conventional helicopters, [8].

Figure 1.3: Comparison of the lift distribution and rotor rolling moments for a
conventional and ABC rotor system.

Since both rotors combine very stiff blades and a hingeless hub, the dis-
tance between them was allowed to be minimized in order to reduce parasite
drag without the risk of blade tip collision. These rotor characteristics also
gave rise to a substantially higher control power than conventional rotors which
translated into a faster response to pilot’s inputs and ultimately led to an ex-
tremely agile, highly manoeuvrable and easier to fly helicopter, [11, 9].

1.4 Interactional Aerodynamics and Its Modelling

Throughout their history, helicopters have progressed at a rather slow pace.
Many of the shortcomings that have been reported stem from the intricate in-
terference effects between the surrounding flow field and the various parts that
constitute the helicopter. In the vast majority of cases, the complex dynam-
ics of the flow field result in several types of interactions which are highly un-
steady in nature and strongly dependent on the particular operational flight con-
dition. They are responsible for a wide range of issues that include a negative
impact on performance, unsatisfactory flight dynamics and handling qualities,
high blade loading, high vibration and high noise levels.
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Extensive research has been conducted to investigate this topic. In 1980,
the authoritative work of Sheridan and Smith, [12], provided some good insight
to the various forms of possible aerodynamic interactions that take place dur-
ing helicopter flight. Whilst these interactions are complex and do not occur
in isolation, in the sense that all the flow disturbances act on every helicopter
component of the helicopter, as well as all the various components act on each
of the flow disturbances and these effects combine to give the resultant aero-
dynamic environment and behaviour of the components, Sheridan and Smith
classified the categories of these interactions according to the helicopter com-
ponents involved and the associated flow anomaly. For instance, the ‘main
rotor-fuselage’ interaction referred to the effects induced by the main rotor wake
in the fuselage loading and the associated flow anomaly could be of the ‘wake
impingement’ type. They also distinguished between the ‘main rotor-fuselage’
and ‘fuselage-main rotor’ types of interactions, for instance, and recognized
the mutual effects of both components on each other. The reductive approach
of this method provides good insight into the various aerodynamic interactions
present within the system and is adopted in this study.

More recently, a study on the main rotor-tail rotor wake interaction and its
impact on yaw control developed by Fletcher and Brown, [13], disclosed two
distinct modes of interaction between the main rotor and tail rotor that are
amenable to be verified whenever a pair of distinct rotors are operating rela-
tively close to each other. The first mode is termed ‘direct’ mode because it is
related to the direct effect caused by the wake of one of the rotors that impinges
on the other thus subjecting the affected blades to a modified aerodynamic en-
vironment that leads to variations in the loading and hence affecting overall
performance. The second mode of interaction is the ‘indirect’ mode and con-
sists in the mutual interaction between the wakes of the two rotors. Whilst this
second mode of interaction is more subtle than the first, it is often visualized
as a distortion of the geometries of both wakes, even at a distance from the
intervening rotors. Yet it still has an impact in the blade loads and performance
of the rotors because the altered wake geometries feed back into the aerody-
namic environment of the rotor system. Both modes of interaction, and spe-
cially the second mode, may be better tracked if the wake geometry and loads
generated by both rotors in its real configuration are compared against the re-
spective data generated when the rotors are operated in isolation at equivalent
flight conditions and trim.

Although much remains to be achieved in the modelling of aerodynamic
interactions between the various components of the helicopter, numerical he-
licopter programs have progressed to a stage where some aspects of these
interactions can be modelled to an appreciable degree of realism, [14]. In
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particular, those using Computational Fluid Dynamics (CFD) techniques can
provide fundamental insight into the structure and geometry of the wakes in-
duced by helicopter rotors because they are based in a very elementary level of
description of the helicopter aerodynamics. The Vortex Transport Model (VTM)
is one of these techniques, yet it departs somewhat from the standard CFD
methodology, in that it simulates the vorticity dominated aerodynamic environ-
ment of the helicopter rotor wake directly as a time-dependent vorticity distribu-
tion in the space surrounding the helicopter using the vorticity-velocity form of
the Navier-Stokes equations, hence allowing more control of the effects of nu-
merical diffusion and dissipation of vorticity, [15]. The present work uses such
a model to examine the flow physics that underlie the aerodynamic interactions
between the various components of a helicopter with a ABC type coaxial rotor.

1.5 Objectives

The objective of the present thesis is to analyse the aerodynamic environment
and blade loads generated by a coaxial helicopter configuration with an auxil-
iary tail propulsor flying forward at advance ratio µ = 0.15. The rotor system is
comprised of two very rigid hingeless rotors as to follow the Advancing Blade
Concept rotor systems. This analysis comprises the quantification and charac-
terization of the most significant aerodynamic interactions between the different
parts of the helicopter and its influence in the unsteady loads on the blades of
the main rotor and tail propulsor.

1.6 Thesis Layout

This section renders a short overview of the structure of this thesis.
Chapter 1 begins with an historical presentation of facts, from the early at-

tempts to develop a vertical flight machine that culminated in the first practical
helicopter to the more recent and state-of-the-art X2 Technology Demonstra-
tor, in which the helicopter model of the current work is inspired. This chapter
also gives a brief exposition of some of the well-know fundamental technical
problems that hampered the progress of the earlier helicopters and motivated
the surge of the compound helicopter. Then, it highlights the attributes of the
Advancing Blade Concept – a solution that effectively provides lift compound-
ing through the use of a coaxial rotor and, although dating back to the sixties,
Ref. [10], continues to attract the interest of the industry. Chapter 1 closes
with an insight into the subject of interactional aerodynamics. It focuses on
the network-type analysis and associated reductionist approach of Ref. [12]
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and offers examples of typical aerodynamic interactions that occur during heli-
copter flight and have been subject of research. Finally, it introduces the Vortic-
ity Transport Model as an efficient technique for modelling vorticity dominated
flows.

Chapter 2 is devoted to the physical and computational details of the model
that is the object of this study. The model consists in the helicopter body com-
posed of several distinct components and a computer programme that simu-
lates the evolution of the flow field around the body from an Eulerian perspec-
tive. In this chapter, a succinct description of each component is provided and
particular attention is given to the description of the coupled lifting-line – VTM
concept that constitutes the computer programme used for the simulations.
Firstly, the vorticity-velocity formulation is approached with a derivation of the
equations in which the VTM concept is grounded. The simplifying assump-
tions that underlie these equations are exposed in order to better understand
the restrictions on the physics that are captured by this method. Secondly,
the lifting-line method is introduced as the vehicle for the computation of the
shed and trailed vorticity produced by the rotor blades. Emphasis is placed
in the way these two concepts are coupled together, with the vorticity being
fed into the computational domain through a source term figuring in the afore-
mentioned equations, in one hand, and its convection inside the domain being
evolved according to the VTM method in the other hand. This chapter closes
with a brief explanation of the methods and simplifying assumptions employed
for the trimming of the helicopter model.

Chapter 3 concentrates in the validation of the VTM computer programme.
It gathers some references to previous works that used the VTM to predict the
flow field around isolated coaxial rotor systems in hover and forward flight. The
experiments that were conducted are summarised and the quality of the predic-
tions is reported. This chapter also provides references that give an account
of the predictions obtained with the VTM on the pressure distribution over a
helicopter fuselage developed for the study of rotor-fuselage interactions.

Chapter 4 presents the results obtained with the coupled lifting-line – VTM
method, for steady level flight at advance ratio µ = 0.15. As mentioned be-
fore, the helicopter model is divided into different components. In this chapter,
results are given with respect to three different combinations of these compo-
nents, in order to follow the reductionist approach. Each combination forms a
helicopter configuration that is analysed in this chapter by order of increasing
complexity, namely the isolated coaxial main rotor, the main rotor with auxil-
iary propulsor and the combined main rotor, auxiliary propulsor, fuselage and
tailplane. The first step of this presentation is analysing how the geometry of
the vortex structures within the wake of the main rotor depart from an idealized
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case where they are not allowed to interact with each other. The next step
is understanding how the vortex structures produced by the individual lifting
components influence each other and how these wake structures change be-
tween the different configurations. After the analysis of the wake structure, the
features that characterise the aerodynamic environment of the isolated coaxial
rotor are studied and the different aerodynamic interactions between both the
upper and lower rotors are identified. Then, the system is allowed to grow in
complexity with the inclusion of the auxiliary propulsor and, at a later stage,
fuselage and tailplane. The modifications to the inflow velocity and blade load-
ing of the main rotor system as well as their impacts on the performance of the
vehicle are investigated. The induced aerodynamic effects caused by the main
rotor on the propulsor and fuselage are also analysed.

Finally, chapter 5 closes the current thesis. It begins to point out some pos-
sible sources of inaccuracy inherent to the coupled lifting-line – VTM model.
Taking that into account, it then draws conclusions based on the results from
the current work and gives some suggestions to further the analysis of aerody-
namic interactions recurring to this model.
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2 DESCRIPTION OF THE SIMULA-
TION MODEL

2.1 Helicopter Geometry

The geometry of the helicopter configuration was purposely made to resemble
helicopters like the XH-59A or the X2, while still representing a generic modern
ABC-type helicopter configuration, as depicted in figure 2.1. The dimensional
and geometric characteristics of the XH-59A main rotor are documented in
[16, 17].

Figure 2.1: Geometry of the simulation model including a generic ABC-type
coaxial rotor and a tail propulsor.

Whilst the task of developing a computer geometry that mimics a real heli-
copter into a high level of detail can be a great challenge to the designer due
to the panoply of complex shapes that form many helicopter components in
one hand, and in the time constrains in the other hand, a compromise should
be reached between design fidelity and practical constrains. These constrains
include availability of computer resources, maximum allowed duration for the
design phase and suitability to fulfil research aims. Having this in mind, signifi-
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cant simplifications have been introduced in the model geometry. Hence, both
the main rotor and propulsor hubs are not included in the simulations. How-
ever, an entirely fictitious main rotor mast and propulsor hub are included in the
drawings, as can be seen in figure 2.1, in order to connect the main rotor and
propulsor to the fuselage and thus clarify the relative positions of these com-
ponents and foster a more realistic impression of the helicopter model. The
omission of the hubs in the aerodynamic model may have some obvious ef-
fects in the structure of the wake immediately downstream of the rotor shaft. In
addition, the blade geometry is not modelled directly, instead it is concealed in
the blade aerodynamic model, to be described later in this chapter. However,
the blade geometry is indirectly simplified in its aerodynamic model because it
relies on two-dimensional airfoil data, thus not incorporating the effects of the
three-dimensionality in the flow near the blade surface. Yet, the use of this ap-
proach is quite common in comprehensive rotor codes since it still gives a very
accurate description of the evolution of the main rotor and propulsor wakes and
a reasonably precise representation of the flow field, except perhaps near the
surface of blades and wings.

2.2 Main Rotor System

The main rotor consists of two axially aligned rotors. The upper rotor rotates
counterclockwise while the lower rotor rotates clockwise, when viewed from
above. Each rotor is comprised of three blades and its centres are separated
by a distance of 0.139R, where R stands for main rotor radius. The main rotor
as a solidity of 0.127, which is equal to the solidity of the XH-59A rotor system.
The blades have linear taper and−10° of non-linear twist. Real ABC-type rotors
possess blades with rather complex spanwise variation of airfoil section and
twist distribution, [18]. Some even implement distinct airfoil sections at different
blade stations. For instance, the Sikorsky XH-59A combined three different
types of airfoil sections, the NACA 63(230)-224A, NACA 63(230)-213A and
NACA 23012(64), [17].

A departure from these sophisticated rotor designs was adopted, concern-
ing the choice of airfoil sections, in order to simplify the geometry of the blade
used in the simulations. Therefore, a NACA 23012 airfoil section was kept con-
stant along the entire span of the main rotor blades. The geometric properties
of the main rotor system are summarised in table 2.1. Note that this table also
provides data for the auxiliary propulsor, which is introduced in a later section.

The upper rotor is designed to rotate anticlockwise and the lower rotor to ro-
tate clockwise when viewed from above. The phasing of the rotors is arranged
such that blades from the upper and lower rotors overlap at an azimuth of 0°.
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Note that the azimuth angle, ψ, follows the traditional convention and thus is
defined as zero when a blade is pointing downstream.

In terms of structural characteristics, the rotor blades and their attachments
to the rotor hub are assumed to be completely rigid. This simplification permits
a decoupling of the aerodynamic response of the system from its structural
dynamics.

Table 2.1: Main rotor and propulsor characteristics

Main rotor Propulsor
Rotor Radius 5.5 m 0.28R

Number of rotors 2 1

Blades per rotor 3 5

Root cut-out 0.12R 0.20Rp

Twist −10° −30°

Chord Tapered (2 : 1) 0.18Rp

Airfoil Sections NACA 23012 NACA 0012

The main rotor blades are modelled computationally according to the Weis-
singer L-method, which is a modified version of the lifting-line method. This
topic is approached briefly in section 2.7.

A study was conducted in order to evaluate the impact of rotor stiffness on
the performance of the ABC-type coaxial rotor and to disclose the level of ap-
proximation involved in the modelling of a completely rigid rotor configuration to
the detriment of the real rotor with flexible, although rather stiff blades, [2]. The
study incorporated finite stiffness blades, where the rotor flapwise stiffness was
modelled very simply by assuming each rotor blade to be rigid and articulated
in flap through the introduction of a hinge at some distance from the rotational
axis together with a suitable flap spring. The stiffness of this spring was deter-
mined by matching the natural frequency of the blade model with the first flap
mode frequency of the flexible blades of a real helicopter. The particular rotor
blades that served as a baseline to that study were those of Sikorsky’s XH-
59A. Since the principal blade modes are known to vary with rotor speed, two
test cases were analysed that corresponded to the limiting rotational speeds
of operation. Hence, the XH-59A was designed to operate at or near 345 rpm
in hover and low speed flight and at values as low as 240 rpm in high speed
cruise flight, yielding natural frequencies of the first flap mode of approximately
1.8 cycles/rev and 1.5 cycles/rev respectively, [11, 8]. Then, frequencies of
1.5 and 2 cycles/rev were considered to be representative of a generic ABC-
type coaxial system, and computer simulations were conducted at these flap
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frequencies and were compared against the completely rigid model. The ro-
tors of all test cases were trimmed to the same thrust, CT = 0.0048, forward
force and, in the case of the stiffened rotors, overall moment. The lateral force
component was not trimmed in any instance. Three flight conditions were sim-
ulated, corresponding to advance ratios of 0.12, 0.24 and 0.36. The auxiliary
propulsor was only included at the higher advance ratio. The results pertain-
ing to the time-dependent component of the aerodynamic forces and moments
and to the wake geometry of the coaxial system revealed consistent qualitative
similarities between the finite stiff coaxial rotors and the rigid coaxial rotor at
an advance ratio of 0.12. However, for real systems with flexible blades the
relationship between aerodynamic loads and helicopter vibration characteris-
tics departs somewhat from the results obtained in this study because of the
simplifying assumptions involved on the dynamic characteristics of the blades
themselves. Yet, concerning the effects of aerodynamic interactions, the ap-
proximation introduced with the rigid rotor system still yields a close represen-
tation of the flow field that is experienced by practical very stiff coaxial rotor
systems.

2.3 Fuselage and Tailplane

The geometry of the fuselage was inspired by full-scale helicopter models like
the XH-59A or the X2, and tries to represent the compact and streamlined
fuselage of modern high-performance helicopters. The fuselage includes two
side pods and a tailplane and its length, `, is about two times the main rotor
blade radius. A summary of the geometric properties of the fuselage is given
in table 2.2.

The fuselage surface is modelled as a set of 2810 discrete panels. Each
panel may assume a quadrilateral or triangular shape. The latter is obtained
by superposing two vertices of the quadrilateral. Each panel represents a
closed loop of vorticity, with each segment forming a vortex filament of constant
strength. Then the velocity at the centroid of each panel may be decomposed
into two contributions, one is the velocity induced by any vortex filaments and
the other is the velocity induced by any other vorticity within the flow, ~w. The
vorticity strength of each vortex loop is set to satisfy the boundary condition of
zero normal flow across the solid surface and at the centroids of the respective
panel. This condition yields the following system of equations,

(
~V∞ + ~w

)
i
· ~ni +

N∑
j=1

aijΓj = 0, for i = 1, . . . , N (2.1)
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where the aij are known influence coefficients and Γj are the vortex loop
strengths that are to be computed at each computational time step. Let A
be the matrix whose elements are the influence coefficients, aij . Let bij be an
element of the matrix obtained from the inversion of A. Then the vortex loop
strengths may be computed through the following system of equations,

Γi = −
N∑
j=1

bij

(
~V∞ + ~w

)
j
, for i = 1, . . . , N. (2.2)

The fuselage is assumed to be rigid which implies a time-independent ma-
trix of influence coefficients, therefore allowing its inversion to be computed
prior to the simulation and thus significantly enhancing computational efficien-
cy.

For a lifting body, in addition to the N equations given by (2.2) applied to all
the panels, another condition must also be satisfied in order to fix the precise
value of the circulation around the body. This is the Kutta condition, which is
satisfied along the entire trailing edge of the tailplane, thus accounting for the
existence of lift.

Table 2.2: Fuselage geometric properties

Fuselage length 2.04R

Fuselage maximum width1 0.1891`

Tailplane span 0.3201`

Tailplane chord 0.0835`

Tailplane airfoil section NACA 0012

Shaft inclination angle 4° (forward)

Lower rotor hub x coordinate2 0.3825`

Lower rotor hub z coordinate2 0.1930`

Upper rotor hub z coordinate2 0.2610`

Propulsor hub x coordinate2 1.0395`

Propulsor hub z coordinate2 0.0555`

1Excluding tailplane.
2Relative to fuselage nose.

The pressure on the fuselage surface may then be obtained from the un-
steady Bernoulli equation,

p− p∞
1
2ρ

= V 2
∞ − |~u|2 − 2

∂φ

∂t
(2.3)
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where the unsteady potential ∂φ/∂t is assumed to arise solely due to the varia-
tion of panel strengths with time and accounts for the disturbance to the velocity
potential due to the convection of vortices within the main rotor wake. The ve-
locity on the body surface is designated as ~u and includes the contribution from
all the vorticity in the computational domain as well as a near-field correction
term that accounts for the self-influence of the vorticity on each panel by as-
suming it to be distributed as an equivalent vortex sheet.

In rotorcraft applications, a modified pressure coefficient is often used for
convenience instead of the standard pressure coefficient, which is given by

C ′p = 100
p− p∞

1
2ρ (ΩR)

2 . (2.4)

Note that the modified pressure coefficient is non-dimensionalised by rotor
tip speed rather than the freestream velocity in order to avoid division by zero
at hover, and is scaled by a factor of 100 purely for numerical convenience.

The helicopter model also features a simple horizontal tailplane rigidly at-
tached to the fuselage body. It was designed to have a constant NACA 0012
airfoil section along its entire span. The tailplane is untwisted and its chord is
parallel to the horizontal plane, x − y. It is modelled as a surface of discrete
panels, each panel representing a closed vortex loop. Unlike the fuselage,
the tailplane is allowed to produce lift and so the Kutta condition is also satis-
fied along its entire trailing edge, which means that the panel segments at the
trailing edge of the tailplane are required to reproduce a vortex of vanishing
strength.

2.4 Auxiliary Propulsor

The auxiliary propulsor consists of a five-bladed pusher propeller mounted at
the tail of the helicopter such that its rotational axis is aligned with the longitudi-
nal axis of the fuselage. A NACA 0012 airfoil section is used along the span of
each blade, with no taper and with 30° of linear twist. The radius of the propul-
sor is 28% of the main rotor radius and its rotational speed is 4.25 times that of
the main rotor.

The thrust generated by the propulsor can be controlled by altering its the
collective pitch. The blades and their attachments to the hub are assumed to be
rigid, except for feathering motion. The hub of the propulsor is not modelled for
further simplicity. The properties of the propulsor are summarised in table 2.1.

As with the main rotor blades, the computer modelling of the auxiliary pro-
pulsor blades follows the Weissinger L-method, introduced in section 2.7.
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2.5 Vorticity Equation

The general laws of physics tell us that the motion of a fluid may be completely
described by the conservation laws for the three basic properties: mass, mo-
mentum and energy. These laws are well established and can be formulated
in many equivalent forms. Although the integral formulation of the equations is
more generally valid, its direct applicability in control volume analysis is often
limited. If more detailed information is required to investigate the fine, detailed
behaviour of the fluid flow, the differential form of the conservation laws is nor-
mally the analytical technique employed. Also, approximations in the simplifi-
cation of differential expressions can be made in order to not only ease their
implementation in a modern computer, but also to save computational time
when obtaining the solution. In particular, the Vortex Transport Model (VTM)
is formulated in terms of a form of the momentum equation alone, known as
the vorticity equation. The vorticity equation will be derived here, following the
basic equations governing fluid flow in differential form.

The vorticity equation is then discretized and solved in a finite volume ap-
proach. The VTM uses a semi-Lagrangean adaptive grid composed of cells
that can be dynamically created or destroyed in order to track regions of vor-
ticity in the flow. In this manner, the regions in the flow where the vorticity field
has zero magnitude are not contained in the computational domain. The equa-
tions governing fluid flow are taken as a starting point in deriving the vorticity
equation. The mathematics and physics that underlie these equations are left
to specialized books on the topic, for instance see [19]. Yet, there are some
assumptions involved in those equations that should be pinpointed as they re-
strict the type of flow that can be modelled, namely the fluid is regarded as a
continuum and is assumed to be homogeneous and Newtonian.

The equation of conservation of mass may be written in differential form as

∂ρ

∂t
+∇ ·

(
ρ~V
)
. (2.5)

The equation of linear momentum may be expressed as

∂

∂t

(
ρ~V
)

+∇ ·
(
ρ~V ⊗ ~V

)
= −∇p+∇ · ¯̄τ + ρ~fe. (2.6)

The equation of conservation of energy may be written as

∂

∂t
(ρe) +∇ ·

(
ρ~V e

)
= ∇ ·

(
k∇T

)
−∇ ·

(
p~V
)

+∇ ·
(
¯̄τ · ~V

)
+ ρ~fe · ~V + qH (2.7)
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where ¯̄τ is the viscous shear stress tensor, equal to

¯̄τ = µ
[
∇~V +

(
∇~V

)T ]
+ λ
(
∇ · ~V

) ¯̄I. (2.8)

In spite of the complexity and interdependence of the flow equations in this
general case, it can be shown that for an incompressible flow with assumed
constant fluid properties, equations (2.5) and (2.6) constitute an independent
system for flow velocity and pressure. Furthermore, the equation of momentum
can be written in many equivalent forms, one of them known as the vorticity
equation, which is used in VTM formulation.

The derivation of the vorticity equation follows from the momentum equa-
tion. After expanding the derivatives in the left hand side of equation (2.6) and
making use of equation (2.5) to drop out terms in ~V , the non-conservative form
of the momentum equation is obtained,

ρ
d~V

dt
= −∇p+∇ · ¯̄τ + ρ~fe. (2.9)

Introducing the vorticity vector ~ζ,

~ζ = ∇× ~V (2.10)

and using the vector identity,

(
~V · ∇

)
~V = ∇

(
V 2

2

)
− ~V ×

(
∇× ~V

)
(2.11)

in the inertia term d~V /dt, equation (2.9) becomes

∂~V

∂t
− ~V × ~ζ = −1

ρ
∇p−∇

(
V 2

2

)
+

1

ρ
∇ · ¯̄τ + ~fe. (2.12)

Taking the curl of the last equation, and after some algebra, the Helmholtz
vorticity equation is obtained,

∂~ζ

∂t
+
(
~V ·∇

)
~ζ =

(
~ζ ·∇

)
~V −~ζ

(
∇·~V

)
+

1

ρ2
∇ρ×∇p+∇×

(
1

ρ
∇· ¯̄τ

)
+∇× ~fe. (2.13)

This equation can be significantly simplified if the flow is assumed to be
incompressible and barotropic. By definition, a fluid is incompressible when
the expansion rate of any fluid element is zero,

∇ · ~V = 0. (2.14)
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This flow restriction results in the second term on the left hand side of equa-
tion (2.13) to vanish. This term accounts for the stretching of vorticity due to
the contraction or expansion of fluid particles, which cannot take place in an
incompressible fluid.

The barotropic flow assumption can be defined as the density of each fluid
element to be dependent on its pressure only, ρ = ρ(p). This approximation
leads to the vanishing of the baroclinic term which is the third term in the left
hand side of equation (2.13).

The resulting expression yields the unsteady vorticity equation

∂~ζ

∂t
+
(
~V · ∇

)
~ζ =

(
~ζ · ∇

)
~V +∇×

(
1

ρ
∇ · ¯̄τ

)
+∇× ~fe. (2.15)

The viscous term can be further simplified if the kinematic viscosity coeffi-
cient is assumed to be constant, in which case it reduces to the laplacian of the
vorticity,

∇×
(

1

ρ
∇ · ¯̄τ

)
= ν∇2~ζ. (2.16)

In helicopter flows, the free stream Reynolds number is typically at least 105

and thus viscosity effects become important only in a thin layer of fluid adjacent
to the surfaces of the aerodynamic body or in very small scales, compared to
the wake structure dimensions, where diffusion of vorticity becomes predomi-
nant, giving rise to the viscous decay of the small scale vortex structures of the
helicopter wake.

In the Vorticity Transport Model the entire flow surrounding the helicopter is
assumed to be inviscid, and the vorticity generated by the rotor blades, which
is associated with the generation of aerodynamic loads there, is modelled as a
local source of vorticity, ~S. If no other sources of vorticity are considered, the
last term in equation (2.15) is equal to the source term S. Equation (2.15) is
then written as

∂~ζ

∂t
+
(
~V · ∇

)
~ζ =

(
~ζ · ∇

)
~V + ~S. (2.17)

In accordance with this equation, vorticity is first generated locally by nu-
merically defined surfaces immersed within the fluid and is evolved through a
three-dimensional computational domain under the action of the local veloc-
ity field. Hence, the problem can be conceptually divided in two parts. The
first part is the model of the evolution of the rotor wake in a computational
grid as described by equation (2.17) and the second part is the model of the
blade aerodynamics that provides the vorticity source to be interpolated into
the aforementioned computational grid.
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2.6 Velocity Field

The velocity field can be calculated once the vorticity field is known. Taking the
curl of the vorticity, such that

∇× ~ζ = ∇×
(
∇× ~V

)
(2.18)

which results in
∇× ~ζ = ∇

(
∇ · ~V

)
−∇2~V (2.19)

which, after the incompressible assumption, can be rewritten as

∇2~V = −∇× ~ζ (2.20)

which is a vector Poisson equation. The solution of this equation in an un-
bounded domain, that is, over the whole three-dimensional space, can be writ-
ten as

~V (~x) = − 1

4π

∫
R3

(~x− ~y)× ~ζ (~y)

|~x− ~y|3
dV(~y) (2.21)

which is the Biot-Savart equation.

Figure 2.2: Comparison between the velocity field induced by the Biot-Savart
kernel and by the Rosenhead-Moore kernel.

Equation (2.20) can be solved directly in differential form, but the complex-
ity of the vortical structures in the rotor wake pose a serious difficulty in the
derivation of boundary conditions. Instead, VTM solves a modified version of
equation (2.21) that was proposed by Rosenhead, [20], who suggested the
following approximation to the Biot-Savart equation,

~V (~x) = − 1

4π

∫
R3

(~x− ~y)× ~ζ (~y)

(|~x− ~y|2 + δ2)
3/2

dV(~y) (2.22)
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for some positive δ. This modification accounts for the finite core effects and
was first used in the numerical calculation of aircraft trailing vortices by Moore,
[21]. It is well suited for numerical implementation because the singularity is re-
moved, thus allowing for a uniform distribution of vorticity in each computational
cell.

In the VTM, the parameter δ is chosen such that the location of the maxi-
mum velocity induced by the vorticity in a cell coincides with the edge of that
cell. Figure 2.2 shows the velocity induced by a vortex element in a plane or-
thogonal to the swirl axis, obtained using both equations (2.21) and (2.22). The
boundaries of a computational cell of width ∆ are also shown.

2.7 Blade Aerodynamic Model

The VTM calculates the blade aerodynamics through the Weissinger L-method
[22], which is a modified version of the Prandtl lifting-line model that is also
applicable to swept-back wings. This feature provides additional flexibility for
rotorcraft applications since it allows the representation of blades with complex
planform geometry.

A brief description of the salient aspects of the blade aerodynamic model is
given next. For a more detailed explanation of the various features comprising
this model see [23, 15, 24, 25].

The blade is divided into a finite number of discrete panels along the span
of the blade. Each panel consists of a horseshoe vortex with the bound vortex
positioned at the 1/4-chord. For each time step the blade rotates within the
flow and a new row of spanwise panels consisting of trailed and shed vorticity
is created in a fixed position relative to the trailing edge of the blade. This
process is repeated at each time step, thus generating a vortex lattice that is
allowed to convect by the local flow velocity.

At each time step the local flow velocity, ~Vb, is calculated for each blade
panel at a collocation point positioned at the 3/4-chord. The computed velocity
is the vector sum of the free-stream velocity, the velocity induced by the vortex
lattice within the blade aerodynamic model, the velocity induced by the remain-
der of the rotor wake and the velocity induced by blade structural motions, if
any. Then the no-flow penetration condition is imposed at each collocation
point, which forces the velocity component normal to the blade at those points
to be zero. This results in a set of simultaneous equations that can be solved
for the bound vorticity over the blade, ~ζb, and the strength of the trailed and
shed vorticity produced over that time step. This, in turn, can be expressed as
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the source term of equation (2.15),

~S = −d
~ζb
dt

+ ~Vb∇ · ~ζb (2.23)

where the first term on the left hand side represents the shed vorticity and the
second term the trailed vorticity.

Although the blade aerodynamic model is coupled with the wake evolution
model through the source term, ~S, they can be regarded as two distinct parts of
the overall VTM, as mentioned earlier. Each of these parts can be solved with
a different time step, allowing the problem of having two different timescales
to be resolved. One time scale is associated with the lower frequency of the
evolution of the wake, and the other can be attributable to the high frequency
unsteady blade aerodynamics and rotor-blade dynamics. In practice, this can
be accomplished through a global time step ∆t for solving the wake evolution
within the computational domain and a lower time step, or substep ∆t/m, to
solve the evolution of the blade vortex lattice, within the blade aerodynamic
model. If the blade sweeps by an angle ∆ψ during the global time step ∆t, then
for each substep it would sweep an angle ∆ψ/m. At each substep the system of
horseshoe vortices is allowed to grow as described previously and the vorticity
generated is calculated. After m substeps the total vorticity source is obtained
as the sum of the intermediate vorticity generated at each substep and it is
introduced in the computational domain of the wake through interpolation of
the vortex lattice.

The Weissinger L-method is based upon potential flow theory and so it does
not take into account the effects of Reynolds number and Mach number that
are experienced by real airfoil sections in a broad range of helicopter flight con-
ditions. In order to include this effects in the model, tables containing the lift
coefficient, CL(α,Re,M), are given as an input to the VTM. These tables can
be obtained either numerically from an external solver or directly from exper-
imental data, if available. The full angle of attack range of [0°, 360°] is given
since the blade can experience reverse flow. If the lift coefficient data was ob-
tained through an incompressible model, it is modified with the application of
the Prandtl compressibility correction. Coefficients of drag and moment about
the 1/4-chord are also included in the tables.

At the beginning of each time step, the lift coefficient is obtained from the
respective table according to the flow conditions at each airfoil section and is
used to modify the no-flow penetration boundary condition at the correspondent
collocation point. The strength of the bound vorticity is then calculated, as
described previously, and so a different result is obtained. In this manner, the
model is able to capture the behaviour of the airfoil in its stall regime.
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The VTM also incorporates a simple dynamic stall model that can track the
main features of the dynamic stall effects in the blade loading. However, as
already mentioned in Section 2.1, certain three-dimensional effects cannot be
captured by the blade aerodynamic model, since the airfoil data included in the
model is two-dimensional. One of these effects, mentioned by Line, [25], is the
stall-delay that is known to be a result of the influence of the blade rotation in
the boundary-layer profile of the two-dimensional airfoil sections.

2.8 Trim Model

The present study focuses on the aerodynamic interactions that take place at
a single flight condition, in which the helicopter model described earlier is re-
quired to flight in a horizontal rectilinear path, with no sideslip, at constant for-
ward speed with an advance ratio of µ = 0.15. At this advance ratio the aero-
dynamic interactions between the various helicopter components have been
predicted to be more diverse and more interesting of being investigated, [2]. In
order to maintain this particular flight condition the resultant forces acting on
the rotorcraft should balance each other such that their vector sum is zero, as
a consequence of Newton’s second law. In particular, it implies that the lift gen-
erated by the rotorcraft should balance its own weight, the drag should balance
the propulsive force generated by the main rotor plus auxiliary propulsor and
the resultant side force should vanish. Conditions on the resultant moments
acting on the rotorcraft should also be satisfied in order to ensure the rotor-
craft has a fixed overall orientation along its flight path. Hence, it is required
that the resultant moment acting on the rotorcraft vanishes. Moment equilib-
rium may be calculated with respect to an arbitrary reference point, which, for
convenience, is chosen to be the centre of the lower rotor hub.

It is important to distinguish between instantaneous and average forces act-
ing on the helicopter. On the one hand, the instantaneous forces change with
time in both magnitude and direction. Consider, for instance, a blade from
one of the rotors. That blade is subjected to an aerodynamic loading that will
change with time because it depends on the relative velocity field, which in turn
will vary while the blade is rotating. Average forces, on the other hand, are de-
fined by the average of the instantaneous forces over n rotor revolutions. The
same definitions also apply to the moments acting on the system.

The purpose of the trim model is thus to find the control inputs to the main
rotor and tail propulsor that drive the helicopter into an equilibrium condition.
However, the time varying aerodynamic loads acting on the helicopter lead to
a dynamic trim process that continuously adjusts the control inputs during the
simulation in order to approach equilibrium. This process can be summoned in
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the form of a first order dynamic system,

d~θ

dt
= ~f

(
~θ
)

(2.24)

where ~θ is the vector of pitch inputs given by

~θ =
[
θu0 , θ

u
1s, θ

u
1c, θ

`
0, θ

`
1s, θ

`
1c, θ

p
0

]T
(2.25)

and ~f is a vector valued function that gives a linear relationship between the
rate of change of the control inputs and the instantaneous resultant forces and
moments acting on the system,

~f = K
(
~C∗F − ~CF

)
. (2.26)

The matrix K is a 7 × 6 coupling matrix and is introduced in [2], although
not taking into account the propulsor control input. The vector ~C∗F contains the
prescribed target load coefficients on the vehicle, given by

~C∗F = [−CD, 0, CW , 0, 0, 0]T (2.27)

and ~CF represents the vector of overall aerodynamic force and moment coef-
ficients that are produced by the rotors and other lifting components, and may
be written as

~CF = [CFx
, CFy

, CFz
, CMx

, CMy
, CMz

]T . (2.28)

The components of ~CF are written with respect to a global Cartesian refer-
ence frame with origin at the lower rotor hub centre and axes aligned as shown
in figure 2.1. Each component is regarded as positive in the corresponding
positive axis direction.

After the initial conditions have been set, the system would evolve through a
transient phase until the aerodynamic environment and loads eventually reach
a steady state. Static equilibrium may then be pursued if the equilibrium equa-
tions are formulated in terms of the long-term average of forces and moments.
Hence, the system is considered to be trimmed when

~C∗F − ~CavF = 0 (2.29)

where ~CavF designates the long-term average of ~CF . Note that this simplification
is only valid if the amplitude of the instantaneous quantities remains within
acceptable bounds.

The following methods and simplifying assumptions were incorporated into
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the trim algorithm:

• The matrixK is defined such that the response of the collective and cyclic
controls to the forces and moments produced by the main rotor system is
decoupled.

• The collective pitch inputs of both upper and lower rotors are varied si-
multaneously in order to modify the thrust produced by the main rotor,
whereas they are varied differentially to trim the net yawing moment of
the system. Hence, instead of adjusting directly the collective pitch of
the upper and lower rotors, the idea is to control a single collective pitch
angle and a differential collective angle defined by θ̄0 =

(
θu0 + θ`0

)
/2 and

∆θ0 =
(
θu0 − θ`0

)
/2, respectively.

• The equilibrium of the system in terms of pitch and roll is achieved by
varying the cyclic pitch inputs. The same cyclic pitch inputs are applied
to both upper and lower rotors.

• The weight coefficient is denoted by CW and accounts for the total weight
of the vehicle. In the present analysis, the weight coefficient is fixed at
CW = 0.012. Following [26], an equivalent flat-plate parasite-drag area
of 1/25th of the main rotor disc area is used in order to calculate the
drag of the system at µ = 0.15, which yields CD = 0.00072. The values
assumed for the weight and drag coefficients of the system are similar to
those of the XH-59A helicopter, [27].

• The main rotor contributes partially to the forward component of thrust
that is required to maintain the forward speed of the helicopter. Since the
blades are very rigid and no flap hinges are used, the longitudinal tilt of
the main rotor cannot be achieved through cyclic pitch controls to tilt the
tip path plane relative to the rotor shaft. Instead, the high control power
of the main rotor allows very direct control of the rotor shaft tilt relative
to the flight path. It is considered that the pitching moment produced
by the main rotor is enough to cause its tip path plane and rotor mast to
incline 4° forward, thus allowing the main rotor to contribute to the forward
component of thrust.

• The longitudinal force balance is ensured by the propulsive force gener-
ated by the tail propulsor, which may be adjusted through the variation of
its own collective pitch.

• The resultant lateral force can be assumed negligible and therefore is not
trimmed in the present calculations.
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3 VALIDATION OF THE VTM COM-
PUTER PROGRAMME

The helicopter model described previously does not accurately mimic any par-
ticular helicopter prototype but can only, at best, be representative of full-scale
helicopter models such as the Sikorsky X2 and the XH-59A. Therefore, no
direct comparison between the documented experimental data of those proto-
types and the computational results of the present model has been attempted
due to the obvious differences in the main rotor, fuselage geometry and aux-
iliary propulsive device. However, helicopter models from several widely-used
experimental sets of data have been recreated and incorporated into the VTM
for validation purposes. This chapter gives a brief qualitative description of the
VTM predictions against several experiments for different flight conditions.

The results of a validation of the VTM in hover flight are reported in [15],
where it is compared against the well-known experimental data from the work
of Caradonna and Tung [28]. The experimental model comprised an isolated
two-bladed rotor with 7.5 ft (2.286 m) diameter and 0.5° of precone angle which
was cantilever-mounted at the drive shaft. The blades were untwisted and un-
tapered with an aspect ratio of 6 and featured a NACA 0012 airfoil section along
the whole span. Blade collective pitch could be manually adjusted. Test cases
for three collective pitch settings and several rotational speeds were conducted
with pressure data being collected from 60 pressure tubes along each blade.
Wake data was also acquired through a hot-wire probe mounted beneath the
rotor. Data from the wire was measured at several points along the tip vortex
trajectories and allowed to assess both the tip vortex geometry and strength.
The corresponding computational rotor model was compared against the ex-
perimental one in terms of blade loading with the rotor operating at 150 m/s
tip speed and generating a constant thrust coefficient of 0.0079. The results,
presented in [15], revealed the VTM to agree well with the relatively sparse
experimental data, with a maximum relative difference of about 8% close to
the blade tip. The location of the tip vortices in the flow downstream of the
rotor was also subject of comparison, under the same rotor operating condi-
tions. The tip vortex positioning was measured in terms of radius and vertical
displacement beneath the rotor versus vortex age. The VTM results were con-
sistent with the experimental data, particularly over the first 270° of vortex age,
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beyond which the computational data became increasingly scattered due to the
far wake unsteadiness. Furthermore, results showed a slight overprediction of
the axial contraction rate of the tip vortices. The VTM was also compared
against Kocurek and Tangler’s widely-used empirical wake trajectory, [29], this
time showing the opposite trend – an underprediction of the tip vortex axial
contraction.

The VTM has been validated in steady forward flight against the experi-
mental data produced by Harris, [30]. This data was obtained from wind-tunnel
tests to an isolated four-bladed articulated rotor model over a range of flight
speeds. The rotor was trimmed to generate a prescribed thrust coefficient, with
the cyclic pitch controls held fixed, and the flapping behaviour of the rotor disk
was measured. Two sets of results corresponding to different computational
versions of the VTM were compared against the experimental data from Harris
and are presented in [31] and [15]. The two computational versions differed
from each other in the number of cells used to resolve the rotor wake and in
the number of grid levels that formed the nested grid structure. The numerical
results obtained using these two different versions were compared against Har-
ris measurements of longitudinal and lateral tilt of the rotor disc as a function
of advance ratio. The predicted values obtained by both versions of the VTM
showed good agreement with the experimental data. The computed curves for
the lateral disc tilt were enclosed within the experimental error bounds for all
advance ratios tested, whereas the longitudinal curves revealed a slight over-
prediction for advance ratios beyond 0.15 that was attributed to a deficiency in
the blade aerodynamic model at high advance ratio.

A more relevant account of the validation of the VTM, regarding the rotor
configuration employed in the present study, is that given by references [1] and
[2] whereby a coaxial rotor system is analysed. Results from the wind-tunnel
tests reported by Harrington, [32], and Dingeldein, [26], constituted the sources
of the experimental data against which the VTM results were compared. Har-
rington conducted an investigation on the performance of coaxial and single
rotors in hover and under static-thrust conditions. Two different coaxial rotors
were tested but only one of them, referred to as ‘rotor 1’ in Harrington’s pa-
per, was compared against the VTM simulations. Dingeldein also adopted this
particular rotor system in his study of coaxial rotor performance in both hover
and level flight. The rotor system consisted of two rotors arranged in a coaxial
configuration, each featuring two blades attached to a simple hub allowing for
feathering motion. The hubs where assembled into their respective drive shafts
through a single horizontal pin thus forming a teetering design. The blades
were untwisted, combined linear taper in plan form with non-linear spanwise
thickness distribution and were composed of NACA four-digit symmetrical air-
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foil sections. The rotor system yielded a rather low solidity of 0.054, relative
to the value of 0.127 that is characteristic of the rotor system considered in
the current work, but still constitutes a reliable model for comparison with VTM
predictions. The general properties of Harrington’s coaxial rotor are gathered
in table 3.1.

Table 3.1: Properties of Harrington’s rotor 1

Rotor Radius 12.5 ft (3.81 m)

Number of rotors 2 (coaxial arrangement)

Blades per rotor 2

Interrotor spacing 19% of rotor radius

Root cut-out 13% of rotor radius

Rotor solidity1 0.054

1Based on the projected area.

Reference [1] shows a comparison between the predictions of the VTM and
the experimental results of Harrington in terms of nondimensional rotor power
versus thrust for the hover case. Both the experimental and computational
models used differential collective pitch in order to trim the yawing moments
produced by the coaxial rotor. The VTM implemented two different drag mod-
els in its simulations. For low values of thrust coefficient, the power predicted
by both models was very close to the experimental data and started to depart
gradually beyond a thrust coefficient of 0.003, although falling within the exper-
imental error margin. The observed differences were attributed to the profile
drag models employed.

The steady level flight case was also considered in Ref. [1], where the
VTM predictions were compared against Dingeldein’s data. The coaxial rotor
was trimmed in yaw and its thrust coefficient and tip speed were held con-
stant throughout the experiment and equal to 0.0048 and 469 ft/s (143 m/s)
respectively. An equivalent single rotor with the same solidity as the coaxial
rotor was also modelled in this study. It consisted in a conventional, articulated
rotor composed of four blades having the same properties as the blades of
the coaxial rotor. Figure 3.1 shows the results of a comparison between the
VTM results, with respect to the coaxial and equivalent single rotors, and Din-
geldein’s measurements for the variation of power consumption with advance
ratio. The results obtained with the VTM revealed a systematic underpredic-
tion but followed the shape of the experimental data points very closely. As in
the hover case, the observed differences were ascribable to deficiencies in the
profile drag model of the rotor blades.
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Figure 3.1: Comparison of the overall power consumption with advance ratio
in forward flight between the VTM simulations and Dingeldein’s experimental
data. (Adapted from Ref. [1].)

The same rotor configuration was replicated in Ref. [2] and was used in
VTM simulations. However, a systematic correction was applied to the numer-
ical results since the previous drag model used in the VTM simulations was
based on the original results of Harrington for the hover case despite the small
offset between Dingeldein’s and Harrington’s measurements of power required
by the rotor to hover. Figure 3.2 compares the VTM predictions of the vari-
ation of total power with advance ratio obtained from two distinct simulation
cases against the experimental data of Dingeldein. The data sets yielded by
these distinct cases were named VTM-dynamic and VTM-static data. The for-
mer corresponds to a single simulation where the coaxial rotor was accelerated
from hover to µ = 0.35, while the later corresponds to a simulation where the
advance ratio was held fixed for each of the advance ratios of interest. This
duality of methodology arises as part of an assessment of the ratio between
computational efficiency and accuracy. Also plotted in this figure is the curve
labeled ‘VTM-dynamic (filtered)’ that was obtained from the dynamic data by
removing all fluctuations at greater that blade-passing frequency.

This time, computational predictions for the total power consumption re-
vealed a better agreement with Dingeldein’s experimental data, with the static
case yielding a slighter underprediction of power consumption in hover and at
advance ratios between 0.10 and 0.20, and a small overprediction beyond. The
filtered dynamic case also revealed slighter underprediction for all the advance
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ratios of the experimental data. However, it predicted a significantly higher
power consumption than the static case for advance ratios in the pre-transi-
tional regime (µ < 0.10).

Figure 3.2: Comparison of the overall power consumption with advance ratio
in forward flight between the VTM simulations and Dingeldein’s experimental
data using the corrected drag model. (Adapted from Ref. [2].)

Other successful validations of the VTM include rotor-fuselage interactions,
in which the VTM was used to predict the pressure distribution over the isolated
ROtor Body INteraction (ROBIN) fuselage at forward flight and over a number
of advance ratios including µ = 0.15. The analytic definition of the ROBIN body
is given as an appendix to the work of Mineck and Gorton, Ref. [33], together
with tabular listings of measured unsteady pressure data. Kenyon and Brown,
Ref. [34], conducted the VTM simulations and compared its predictions to the
measurements of Freeman and Mineck, [35]. Although it is reported that the
quality of the predictions decreased at some locations towards the tail of the
fuselage, the VTM results were generally in very close agreement with the
experimental data.

The VTM was also coupled with a particle dynamics model for simulation
of the brownout effect, where the helicopter model is operating close to the
ground in desert or dusty conditions, and was successfully validated against
both empirical correlations and flight test data, Ref. [36].
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4 RESULTS

The helicopter rotor wake is dominated by strong vortices that are trailed from
the tips and roots of each rotor blade. Since the helicopter is flying forward
at an advance ratio µ = 0.15, these vortices are convected behind as well as
below the rotor. The fundamental process of the formation of the blade wake
and tip vortices is similar to that of a fixed wing. However, in a system of rotating
wings the wake and tip vortices produced by each blade can remain close to
the plane of rotation and can have strong induced effects on the velocity field
there, which in turn can change the lift distribution at the blades and constitute
a source of unsteadiness. Although the VTM models the blade wake as a
vortex lattice of trailed and shed vorticity, as mentioned in section 2.7, at this
forward flight speed the effects of the trailed vortices, and specially those of the
tip vortices, on modifying the velocity field at the plane of the rotor are generally
more important than the effects of the shed vortices, Ref. [37]. The intricate
process of tip vortex formation will not be discussed here but a comprehensive
account on this topic is given by Ref. [38], while the evolution of general vortex
filaments in three-dimensional ideal flows is treated in Ref. [39] and under a
more mathematical standpoint in Ref. [40]. In a contrarotating coaxial rotor
arrangement, however, the bound vortex to each blade as well as the shed
vorticity immediately behind each blade can gain significant importance, as the
blades pass close to each other as they rotate.

This section provides an account of the several aerodynamic interactions
that are induced by the main rotor wake on the main rotor itself and on the other
components of the helicopter model. It also gives a description of the individual
contributions of each component in modifying the main rotor and propulsor
wakes and hence the velocity field around the helicopter and its effects on rotor
loads and overall performance.

4.1 Wake Structure

Consider the simple case first, where only the main rotor is present. Two kinds
of aerodynamic interactions are possible, namely the interaction between the
main rotor and the vortex filaments and the mutual interaction between the in-
dividual vortex filaments. If none of these interactions is modelled, then the
wake geometry can be described by a Prescribed Wake Model with rigid wake
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(Ref. [4]) and the result, at a given time t, is shown in figure 4.1. Only the tip
vortices produced by two of the blades are shown for clarity. Different colours
were used to distinguish the filament produced by the upper rotor from that pro-
duced by the lower rotor. The geometry obtained consists of a pair of skewed,
undistorted helixes symmetric with each other with respect to the x− z plane.

Figure 4.1: Three-dimensional view of the tip vortex filaments trailed by two
blades of the coaxial rotor system as given by the prescribed wake model.

Figure 4.2 shows the main rotor and the complex set of all tip vortex ge-
ometries produced by all the blades when the observer is located over the
main rotor. It is apparent from this view that each vortex filament describes a
prolate cycloid. It can be seen that the vortices cross the blades at different
orientations although physical intersection only occurs in the lower rotor since
the tip vortices produced by the upper rotor are convected underneath it.

Figure 4.2: Tip vortex filaments trailed by the coaxial rotor system as viewed
from above.

Now consider the case where interactions are modelled. Figure 4.3 shows
the main rotor and the set of tip vortex tubes produced by its rotor blades in
four different perspectives. The surface that bounds these vortex tubes was
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obtained directly from the vorticity field around the rotor and consists in the set
of all points were the magnitude of the vorticity is constant. As before, distinct
colours are associated with the iso-surfaces of vorticity generated by each of
the main rotors. A bottom view of the configuration is also provided in appendix,
figure A.3.

Figure 4.3: Iso-surfaces of vorticity magnitude generated by the main rotor
operating in isolation at advance ratio µ = 0.15. (Iso-surfaces from different
rotors rendered separately in distinct colours.)

Comparison between figures 4.1 and 4.3 reveals a significant change in
the idealized helicoidal wake structure. Now the vortex tubes are allowed to
interact with each other which results in the distortion of the wake. It is evident
that along the lateral edges of the wake and starting shortly behind the main
rotor the tip vortices tend to roll-up into a pair of concentrated, counter-rotating
“super-vortices”. The symmetry in the x− z plane is also destroyed due to the
mutual interaction between the vortices inside the rotor wake. Another feature
that departs from the idealized model of figure 4.1 is that the vortices generated
at the leading edge of the disk are initially convected along the rotor disk plane
whereas the vortices generated at the trailing edge of the rotor are readily
convected away from that plane. This is a result of a small region of upwash
velocity at the leading edge of both rotor disks and a strong longitudinal inflow
gradient.

The wake geometry gains another degree of complexity if the tail rotor wake
is also simulated. Figure 4.4 shows the iso-surfaces obtained from the vorticity
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field around the main rotor and tail rotor.
It can be seen that the wake generated by the tail propulsor is strongly

disturbed by the induced effects of the tip vortices. The tube-shaped geometry
of the propulsor wake is disrupted due to the strong interaction with the root
vortices of the main rotor. The main rotor wake is also influenced by the vorticity
generated by the propulsor, especially downstream of the propulsor where the
disruption of the tip vortices originated in the lower rotor blades is apparent.
The mutual effects between the main rotor and tail rotor wakes can be classified
as an “indirect” mode of interaction.

Figure 4.4: Iso-surfaces of vorticity magnitude generated by the main rotor
and propulsor at advance ratio µ = 0.15. (Iso-surfaces from different rotors
rendered separately in distinct colours.)

Finally, consider the full helicopter configuration consisting of the main rotor,
tail propulsor, fuselage and tailplane. Figure 4.5 shows four different views of
the wakes generated by the lifting components of this configuration. Again,
different colours were used to shade the different vortex structures generated
by each component.

It is evident from the top view (x− y plane) that the root vortex structures of
the main rotor as well as the propulsor wake are skewed towards the port side
of the configuration. This is due to the strong interaction between these vortex
structures and the super-vortices. Indeed the skew of the root vortices pro-
duced by the main rotor is also present in the previous configurations, namely
the isolated main rotor and main rotor with propulsor, as can be seen in the
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top views of figures 4.3 and 4.4 respectively. It can be inferred that the super-
vortex trailing down the port-side is stronger than the one at the starboard-side
causing an asymmetry in the flow field and the skew of the root-vortex struc-
tures. The combined effects of the super-vortices and the root-vortices causes
the propulsor wake to be skewed as well. However, the trailing vortex from the
starboard tip of the tailplane is close enough to the starboard-side super-vortex
to escape the influence of the port-side super-vortex and instead reveals a
skew towards the starboard-side, which allows it to convect without any signif-
icant distortion. It is also visible the helicoidal geometry of the trailing vortices
produced by the port-side of the tailplane that are the result of the interaction
between these vortices and the root vortices from the main rotor.

Figure 4.5: Iso-surfaces of vorticity magnitude of the full helicopter configura-
tion at advance ratio µ = 0.15. (Iso-surfaces from different components ren-
dered separately in distinct colours.)

A comparison between the lateral views of figures 4.4 and 4.5 shows that
there is a strong indirect interaction between the fuselage and the main rotor
wake. It can be observed the upward displacement of the main rotor wake of
the full configuration relative to the configuration were the fuselage is absent.
The fuselage is responsible for altering the local velocity field, such that the
front part of the lower rotor suffers a small upwash that will affect the angles of
attack over that region, and hence the blade loading and rotor trim (Ref. [4]).
The opposite behaviour occurs in the rear part of the lower rotor disk, where
the fuselage causes a small downwash.
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Figure 4.6 shows a direct mode of interaction between the tip vortices gen-
erated by the main rotor and the tailplane and propulsor. The impingement of
tip vortices results in pressure fluctuations on the upper surface of the tailplane
that integrate to produce a periodic loading that may cause high vibrations in
the tailplane that may be transmitted to the fuselage. In order to maintain the
aircraft in pitch equilibrium, the trim algorithm tries to compensate the down-
load on the tailplane thus modifying significantly the loading distribution of the
main rotor system.

Figure 4.6: Iso-surfaces of vorticity magnitude showing the close-passage of
the tip vortices from the main rotor on the upper surface of the tailplane and
the ingestion of these vortices by the propulsor.

4.2 Isolated Coaxial Rotor

The sources of aerodynamic interaction involving the main rotor system will be
exposed in this section. In order to better track these interactions the approach
introduced in the previous section will be adopted here, in which configurations
having a different degree of complexity are analysed and compared with each
other.

When operating in isolation, the main rotor aerodynamic characteristics are
influenced only by the mutual interactions between the main rotor and its wake.
In order to have a better understanding of the aerodynamic environment experi-
enced by the main rotor, figure 4.7 shows the distribution of inflow, −viR−1Ω−1,
along two representative blades, one on the upper and the other on the lower
rotor, as a function of their azimuth. The same method is used to plot the
distribution of blade loading over the blades of the main rotor in figure 4.9.

Figure 4.7 shows localized curved ridges that represent the close-passage
of a tip vortex near the blade and are responsible for strong and localized radial
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gradients of inflow velocity on both rotor disks. The tip vortices can interact
with the rotor that has originated them or with a different rotor. For instance,
the vortices originating in the upper rotor meet the blades of the lower rotor
and the tip vortices originating from the leading edge of the upper and lower
rotors interact with the upper and lower rotors respectively since they travel
some distance along the rotor disk plane, as can be seen in figure 4.8.

Figure 4.7: Distribution of inflow over the blades of the upper and lower rotors
during a complete rotor revolution. Left: upper rotor. Right: lower rotor.

Figure 4.8: Contour plot of the y-component of non-dimensional vorticity (nor-
malized by its maximum value ζmax) in the x − z plane for the isolated main
rotor. Region of |ζy/ζmax| < 0.06 not plotted for clarity.

The reason why these leading edge vortices are initially convected along
the plane of the rotor is due to the very small inflow magnitude in the region
between the leading edge of the disks and the first localized curved ridge. The
small inflow is due to an upwash introduced by the system of previously gen-
erated tip vortices. It can be verified that the upper rotor wake disturbs the
aerodynamic environment of the lower rotor more strongly than the lower rotor

37



on the upper, which is a consequence of the direct impingement of vortices
from the upper rotor into the lower rotor.

It can be seen that the tip vortices interact with the rotor blades under differ-
ent relative orientations. The interaction between a vortex and a rotor blade is
called a Blade-Vortex Interaction (BVI) and can be classified into two different
groups, according to two limiting conditions on the angle between the vortex
axis and the blade. When the vortex axis and the blade are perpendicular
to each other the interaction is called a Low Speed Interaction (LSI) and when
they are parallel it is called an High Speed Interaction (HSI). The LSI is respon-
sible for an increase in overall power consumption and low harmonic loading
while the HSI is responsible for noise, vibration and higher harmonic loading,
Ref. [41].

An HSI type of interaction can be observed in figure 4.7 as the straight
radial ridges that are induced when the blades of the upper and lower rotors
pass over each other. These ridges are clearly visible only on the lower rotor.
The frequency of the blade over-passage type of interaction is 6 rev−1. The
same figure also shows a complex interaction at the rear of both rotor disks that
results from the interaction between the rotors and the root-vortices. Again, the
lower rotor is visibly more affected than the upper rotor.

Figure 4.9 shows a contour plot of the blade loading distribution experi-
enced by a representative blade of both rotor disks and during one rotor rev-
olution. The loading on the blade is higher in the region close to the tip and
in the advancing side of both rotors, which is a consequence of the rigid rotor
system that was employed in the simulations.

Figure 4.9: Distribution of loading over the blades of the upper and lower rotors
during a complete rotor revolution. Left: upper rotor. Right: lower rotor.
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Figure 4.9 shows that the concentration of loading on the upper rotor occurs
at the right-hand side while on the lower rotor occurs on the left hand side,
which is guaranteed by the trim algorithm in order to achieve rolling moment
equilibrium.

The integrated blade loading over all the blades of a particular rotor yields
the thrust produced by that rotor. Figure 4.10 shows the thrust coefficient as a
function of azimuth over a complete rotor revolution as well as the respective
frequency spectrum.

Figure 4.10: Thrust coefficient generated by the upper and lower rotors of the
coaxial system as a function of azimuth and respective frequency spectrum.

The average thrust coefficient with respect to the upper and lower rotors
is also included and represents half of the total thrust produced by the main
rotor. The mean thrust over one revolution is similar between both rotors with
the lower rotor producing a mean thrust coefficient that is 1.8% greater than
that produced by the upper rotor (table A.1). However there is significant un-
steadiness that is a direct consequence of the several aerodynamic interactions
alluded to earlier.

Figure 4.10 shows the frequency spectrum of the thrust signal for the up-
per and lower rotors, that was obtained through a discrete Fourier transform
of the signal. It shows that the frequencies occur as multiples of three, as a
consequence of the simultaneous action of the three blades in producing tip
and root vortices over each revolution. The higher amplitude of the signal oc-
curs at 3 rev−1, and can be attributable not only to the blade-vortex interaction
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but to the aerodynamic properties of the rigid blades that constitute each rotor
of the coaxial system. To see this, consider the case where no interactions
occur between the rotors and their wakes. If a Uniform Inflow Model (UIM) is
used to obtain the thrust produced by each of the rotors it can be verified that
the 3 rev−1 component still appears in the thrust coefficient as a function of
azimuth. Figure 4.11 shows the particular case where only the upper rotor is
considered in the analysis and compares the thrust function obtained using the
VTM and the uniform inflow model, at the same average thrust coefficient.

Figure 4.11: Comparison between the thrust coefficient generated by the upper
rotor obtained with the VMT and the UIM simulations and respective frequency
spectrum.

The first case, corresponding to the green curve, was obtained by replicat-
ing the cyclic control inputs between the VTM and the UIM simulations. The
3 rev−1 component is still present in the thrust signal and is a direct conse-
quence of the simultaneous action of the aerodynamics of the three blades. If,
however, the cosine cyclic control input is increased such that the amplitude of
the 3 rev−1 component is the same as that obtained with the VTM simulation
then the 6 rev−1 component becomes significant in the thrust signal obtained
with uniform inflow. The increase in amplitude of the cosine cyclic input can
thus mimic an aerodynamic interaction between the upper rotor and the vortex
system trailed from the main rotor blades. The 6 rev−1 variation in thrust is not
only attributable to the tip-vortices but also to the blade over-passage type of
interaction. Both the 3 rev−1 and the 6 rev−1 variations of the thrust have a
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marked increase in amplitude for the lower rotor.
The variation of power and pitching moment coefficients with azimuth of the

isolated main rotor is given in appendix as figures A.4 and A.5. Although the
mean power consumed by both the upper and lower rotors is the same, as to
achieve yaw equilibrium, the power coefficient reveals high unsteadiness that
is stronger for the lower rotor, where the amplitudes of the 9 and 12 rev−1

components of the frequency spectrum are higher than that of the 6 rev−1.
The only significant variations of the pitching moment produced by the up-

per rotor have frequencies of 3 and 6 rev−1 only, as opposed to the lower rotor
that shows the characteristic frequencies multiples of three, with 3, 9 and 15
the most significant ones. This is also an effect of the interference between the
complex system of tip vortices produced by the main rotor and the blades of
the lower rotor. It can be verified that the 6 rev−1 component is now stronger
for the upper rotor.

4.3 Coaxial Rotor with Auxiliary Propulsor

This section treats the aerodynamic interactions that take place when the aux-
iliary propulsor is included in the coaxial rotor configuration discussed in the
previous section. The interference effects on the main rotor induced by the
propulsor are expected to be not as much pronounced as the interference ef-
fects induced by the main rotor into the propulsor, since the auxiliary propulsor
is located far downstream of the main rotor. Indeed, the geometry of the wake,
as well as the trajectory of the tip and root vortices from the main rotor are only
slightly modified in the region of space upstream of the auxiliary propulsor, as
can be verified when comparing figures 4.8 and 4.12.

Figure 4.12: Contour plot of the y-component of non-dimensional vorticity (nor-
malized by its maximum value ζmax) in the x − z plane for the configuration
composed of the main rotor and auxiliary propulsor. Region of |ζy/ζmax| < 0.06
not plotted for clarity.
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Moreover, the aerodynamic environment of the main rotor when acting to-
gether with the auxiliary propulsor presents similar characteristics as those of
the isolated main rotor, as can be seen in figure A.9, given in appendix, which
shows a polar plot of the inflow velocity over a representative blade of the up-
per and lower rotors as a function of blade azimuth. The thrust, power and
pitching moment coefficients produced by the main rotor as a function of blade
azimuth are provided in the appendix under the figures A.10, A.11 and A.12,
respectively, and are consistent with the observation that the main rotor aerody-
namic environment is not much influenced with the introduction of the auxiliary
propulsor.

There is, however, consequences in the loads generated by the main rotor
that can be translated into an 1.8% decrease and 2.3% increase in the mean
thrust produced by the upper and lower rotors, respectively, during one com-
plete rotor revolution. Thus, instead of the 1.8% obtained for the isolated main
rotor, the lower rotor now generates 6% more thrust than the upper rotor, as
can be deducted from table A.2. This increase in the difference between the
mean thrust produced by the upper and lower rotors is performed by the trim
algorithm in order to counteract the yawing moment introduced by the auxiliary
propulsor into the system.

The introduction of this yawing moment by the propulsor also manifests as
a penalty in the power consumption of the system, which translates into a 1.6%
increase in the power consumed by the main rotor. This increase is the result
of a 3.9% increase in the power consumption of the lower rotor and only a slight
decrease of 0.7% in the power consumption of the upper rotor.

Figure 4.13: Distribution of loading over the blades of the upper and lower
rotors during a complete rotor revolution for the configuration comprised of the
main rotor and auxiliary propulsor. Left: upper rotor. Right: lower rotor.
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The nose-up pitching moment introduced by the propulsor triggers the trim
algorithm to respond by decreasing the nose-up pitching moment of the lower
rotor and increasing significantly the nose-down pitching moment of the upper
rotor. This is well patent in figure 4.13 that shows the blade loading distribution
of the upper and lower rotors over one rotor revolution. There is a marked
decrease in the concentration of blade loading in the upper half of the upper
rotor disk as well as an increase on the lower half of the lower rotor disk relative
to the isolated main rotor configuration.

Although the aerodynamic characteristics of the main rotor are not much
disturbed by the inclusion of the auxiliary propulsor, the main rotor causes a
strong effect on the aerodynamic environment of the auxiliary propulsor. The
wake generated by the main rotor is convected past the propulsor, as depicted
in figures 4.4 and 4.12, and modifies significantly the velocity field at the propul-
sor disk.

A clear evidence of the aerodynamic interaction between the main rotor
wake and the propulsor is the skew of the propulsor wake. When acting alone,
the propulsor generates a steady cylindrical wake characteristic of a propeller,
as shown in figure A.22(a). However, when operating together with the main
rotor, its wake is skewed downwards due to the downwash from the main rotor
wake. According to figure 4.12, the tip vortices trailed by the main rotor blades
pass through the propulsor and along its wake hence inducing rotation in the
flow field near the upper and lower edge of the propulsor wake, which gives
rise to the wave-like pattern that can be visualised in figure A.22(b). The root
vortices also manifest in a way that is not so clear, as they seem to disrupt as
they pass across the propulsor disk and then tend to roll-up with the propulsor
wake.

The induced effects of the root-vortices as well as the tip-vortices on the in-
flow velocity field of the propulsor can be visualized in figure 4.14, which shows
the mean and Root Mean Square (RMS) components of the inflow distribution
over a representative blade. The method of decomposing the inflow distribu-
tion, or a periodic aerodynamic property in general, into the mean and RMS
fluctuations as well as the reason why it is presented in this way is explained in
appendix A.7.

The mean loading distribution constitutes a marked departure from the pat-
tern that is expected when the propulsor is operated in isolation, as can be
seen in figures A.6 and A.7 in appendix. Alone the propulsor loading distribu-
tion is similar to that of an hovering rotor. However, the downwash from the
main rotor modifies the velocity field near the propulsor in such a way that, in
the mean, the propulsor loading distribution becomes similar to that of a rigid
rotor in forward flight. The heavy loaded advancing side of the rotor disk is a
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prominent feature. It leads to the aforementioned yawing moment applied to
the helicopter that is counteracted by the main coaxial rotor leading to higher
overall power consumption.

Figure 4.14: Distribution of inflow over the blades of the auxiliary propulsor as
seen from behind the helicopter when operating together with the main rotor.
Left: mean inflow. Right: RMS fluctuation in inflow.

Figure 4.15: Distribution of blade loading over a representative blade of the
auxiliary propulsor as seen from behind the helicopter when operating together
with the main rotor. Left: mean loading. Right: RMS fluctuation in loading.

The localized patches of higher RMS fluctuation in the inflow distribution
correspond to the regions of higher unsteadiness in the velocity field at the
propulsor disk. This unsteadiness is a direct consequence of the passage of
the tip and root vortices from the main rotor across these regions. Thus, the
leading and trailing edge regions of higher inflow fluctuation can be associated
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with the passage of tip vortices while the central, slightly biased to the right-
hand side, as well as the smaller left-hand side regions of higher fluctuations
can be associated with the impingement of root vortices.

The fluctuations that are observed in the inflow field on the auxiliary propul-
sor will alter the effective angle of attack of the blades hence introducing un-
steadiness in the aerodynamic blade loading, as can be seen in figure 4.15.
The fluctuation in blade loading is responsible for high vibration that is trans-
mitted to the fuselage and also for high levels of noise. This is well patent in
figure 4.16 that shows the thrust coefficient generated by the propulsor as a
function of main rotor azimuth. Figures A.13 and A.14, provided in appendix,
show the effects of this interaction on the power and pitching moment of the
propulsor.

Figure 4.16: Thrust coefficient generated by the auxiliary propulsor over a com-
plete main rotor revolution as a function of main rotor azimuth and respective
frequency spectrum. (Thrust coefficient defined on the basis of the rotational
speed, Ωp, and radius, Rp, of the auxiliary propulsor.

The induced aerodynamic effect by the propulsor wake on the propulsor
itself is reflected in the 21.25 rev−1 frequency, since the auxiliary propulsor
is composed of 5 blades and rotates at 4.25 times faster than the main rotor.
However, the frequency spectrum of figure 4.16 also shows a 3 rev−1 compo-
nent of very high amplitude relative to the other components, and also smaller
6 and 9 rev−1 components that arise due to the interaction between the main
rotor wake and the auxiliary propulsor. The amplitude of the 3 rev−1 compo-
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nent of the thrust variation is approximately 40% of the mean thrust produced
by the propulsor. Such high amplitude is associated with the large fluctuations
in the velocity field that are caused by the series of tip vortices from the main
rotor that pass across the propulsor disk. This high amplitude is also a con-
sequence of the particular relative arrangement between the series of upper
and lower rotor tip vortices in the wake of the main rotor. This pattern is de-
pendent on the particular phasing between the upper and lower rotors. In the
configuration presented here the blades of the upper and lower rotors pass
over each other at zero azimuth angle, which corresponds to the rear of the re-
spective disks. Hence, the tip vortices that are generated by those blades are
convected very close to each other forming a coherent structure as they pass
the propulsor disk. If the phasing of the main rotor disks were changed such
that the blades of the upper and lower rotors pass over each other at a different
azimuth angle, a different pattern of wake tip vortices would be obtained, as
depicted in figures A.1 and A.2 in appendix, which could modify the amplitude
of the 3 and 6 rev−1 components of the thrust coefficient.

4.4 Complete Configuration

This section presents the results obtained with the complete or full helicopter
configuration, which is comprised of the main rotor, auxiliary propulsor, fuse-
lage and tailplane. The role of the fuselage in modifying the wake from the main
rotor was explained previously in section 4.1. The trajectory of the tip vortices
is displaced significantly due to an indirect interaction with the fuselage, as can
be seen in figure 4.17.

Figure 4.17: Contour plot of the y-component of non-dimensional vorticity (nor-
malized by its maximum value ζmax) in the x− z plane for the complete config-
uration. Region of |ζy/ζmax| < 0.06 not plotted for clarity.

This upwards deflection of the wake forces the trailed vortices from the up-
per and lower rotors to remain closer to the respective rotor plane which trans-
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lates into a marked modification in the strengths of the localized radial gradients
of inflow, as can be visualized by comparing the inflow distribution of the pre-
vious configuration with the complete configuration, figures A.9 and A.16. It
is also visible that the full configuration presents a wider region of upflow on
the forward half of the disk and specially through the lower rotor and that this
upflow is higher than for the configuration without the fuselage. The fuselage
also contributes to an increase in downflow through the rear half of the upper
and lower rotor. This might be better grasped through figure 4.18, that was
obtained by computing the difference between the inflow distribution of both
configurations.

Figure 4.18: Distribution of the difference in inflow between the complete con-
figuration and that comprised of the main rotor and auxiliary propulsor. Left:
upper rotor. Right: lower rotor.

It is apparent that the difference over the forward part of both rotor disks is
generally positive and that over the rear part is generally negative. However,
this difference in the longitudinal gradient of inflow is not only induced by the
presence of the fuselage but is also a result of the modification of inflow that
is a consequence of the redistribution of blade loading performed by the trim
algorithm in order to counteract the strong nose-up pitching moment on the
helicopter that is induced by the downwash on the tailplane. In other words,
the impingement of the main rotor wake into the upper surface of the tailplane
creates a download there, which in turn generates a nose-up pitching moment
about the centre of gravity of the helicopter. This aerodynamic interaction be-
tween the main rotor wake and the horizontal tailplane is known as ’pitch-up’
and has caused significant problems in flight dynamics and control that ham-
pered the development of helicopters in the past decades, Ref. [42].

In order to maintain the equilibrium of the system, longitudinal cyclic pitch
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is fed into the blades of the main rotor in such a way that enough nose-down
pitching moment is produced. Results show that the mean nose-down pitching
moment produced by the main rotor when operating in the full configuration is
approximately 9.4 times that when operating without the inclusion of the fuse-
lage and tailplane. Figure 4.19 provides a better insight into this aerodynamic
interaction between the tailplane and the main rotor. It was obtained by the dif-
ference between the blade loading distribution that is presented in figures A.17
and 4.13. This figure reflects how the blade loading is redistributed in order
to produce the required pitching moment in the system. It is apparent that the
blades become less loaded at the forward part of both rotors and more loaded
in the rear part. However the decrease in blade loading over the forward part
and the increase in blade loading over the rear part is far more marked in the
lower and upper rotors respectively. The pitching moment coefficient generated
by the upper and lower rotors as a function of blade azimuth is presented in fig-
ure A.19, given in appendix, and shows a shift in the mean pitching moment
generated by both rotors towards more negative values relative to the configu-
ration where the fuselage and tailplane are absent, which is in agreement with
the previous results. Comparison with the frequency spectrum of figure A.12
shows a change in the amplitude of the 3 and 6 rev−1 components, although
similar characteristics in the frequency content are apparent.

Figure 4.19: Distribution of the difference in blade loading between the com-
plete configuration and that comprised of the main rotor and auxiliary propulsor.
Left: upper rotor. Right: lower rotor.

Figure 4.20 shows the variation, over one main rotor revolution, of the thrust
generated by the upper and lower rotors of the coaxial system. It can be ob-
served that the frequency characteristics of the thrust curve are similar to the
previous configurations, with the usual dominant 3 and 6 rev−1 components
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that were introduced in section 4.2. However, comparison with the configu-
ration where the fuselage and tailplane are absent, shows an increase of the
mean thrust, over one rotor revolution, that is produced by the upper rotor while
the lower rotor mean thrust is not significantly altered. This is also evident in
the values for the thrust coefficient provided in tables A.2 and A.3, which reveal
a 13% increase and a 0.7% decrease in the mean thrust produced by the upper
and lower rotors, respectively. This extra thrust generated by the upper rotor is
required to ensure the overall vertical force equilibrium in the system and arises
when the fuselage and tailplane are included in the helicopter configuration.

Figure 4.20: Thrust coefficient generated by the upper and lower rotors of the
coaxial system as a function of azimuth and respective frequency spectrum for
the complete configuration.

Hence, the fuselage and mainly the tailplane are responsible for a down-
ward force that is due to the impingement of the main rotor wake into the upper
surface of these components. The reason why the increase in mean thrust is
associated with the upper rotor is because of the trim methodology employed
in the simulation, which is explained in section 2.8. Indeed, the trim algorithm
increases the collective pitch of both the upper and lower rotors by the same
amount, which causes the thrust produced by both rotors to increase, at least
approximately, by the same amount, but simultaneously it increases the dif-
ference in collective pitch between the upper and lower rotors in order to trim
the mean yawing moment of the system. Since the yawing moment that re-
sults from the inclusion of the fuselage and tailplane is in the positive z-axis
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direction, the upper rotor torque must also be increased. This iterative process
results in the marked increase of the mean thrust produced by the upper rotor
and small or insignificant change in that produced by the lower rotor.

Figure 4.20 also shows an increase in the 6 rev−1 component of the thrust
signal for the lower rotor relative to the configuration where the fuselage and
tailplane are absent. This is indicative of the stronger blade-vortex interactions
that result from the blade over-passage between the upper and lower rotors.

Figure A.18, given in appendix, compares the variation in the power con-
sumed by the upper and lower rotors with azimuth, over one rotor revolution.
Again, the same frequency characteristics are observed between the different
configurations although the amplitudes of the various components vary consid-
erably. With the inclusion of the fuselage and tailplane into the configuration,
the power consumed by the lower rotor increases 3% whereas that consumed
by the upper rotor increases 15%, which is an effect of the increase in the thrust
and torque produced by the upper rotor in order to balance the download and
yawing moment, respectively, introduced by the fuselage and tailplane.

The interference effects brought in by the introduction of the fuselage and
tailplane into the configuration also extend to the auxiliary propulsor. Since
the main rotor shaft has 4° of forward tilt, the increase in the mean thrust pro-
duced by the upper rotor not only results in a higher lift generated by the main
rotor system but also in a larger propulsive force. The method used to trim
the rotorcraft responds to this increment by decreasing the propulsive thrust
generated by the auxiliary propulsor. Indeed, tables A.2 and A.3 show a 33%
decrease in thrust produced by the propulsor and, consequently, a 16% reduc-
tion in the power consumption relative to the configuration where the fuselage
and tailplane were not included.

The aerodynamic interaction between the main rotor wake and the propul-
sor wake is also modified with the inclusion of the fuselage and tailplane. After
comparing figures 4.12 and 4.17, it can be inferred that the main rotor wake is
constrained to convect downwards by the presence of the fuselage and so is
compelled to affect a smaller portion of the propulsor disk, which corresponds
to its upper half. Consequently, figure A.22(c) shows that the upper half of
the propulsor wake still presents the wave-like pattern that is visible in figure
A.22(b). However, the lower half of the propulsor wake presents a more uniform
geometry that closely resembles that of figure A.22(a) where the propulsor is
operating in isolation.

Figure 4.21 shows the mean and RMS fluctuation in the blade loading over
the propulsor disk, which is in close agreement with the results for the wake
geometry given in figure A.22(c). It can be observed that the lower region of
the propulsor disk presents smaller fluctuations in blade loading relative to the
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configuration without the fuselage, figure 4.15.

Figure 4.21: Distribution of blade loading over a representative blade of the
auxiliary propulsor as seen from behind for the complete configuration. Left:
mean loading. Right: RMS fluctuation in loading.

Figure 4.22: Thrust coefficient generated by the auxiliary propulsor over a com-
plete main rotor revolution as a function of main rotor azimuth and respective
frequency spectrum for the complete configuration. (Thrust coefficient defined
on the basis of the rotational speed, Ωp, and radius, Rp, of the auxiliary propul-
sor.

The upper region of the propulsor disk presents patches of RMS fluctuation
that correspond to the regions were the vortices from the main rotor cross the
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plane of the propulsor. Comparison with figure 4.15 shows that the amplitude
of the RMS fluctuation of these patches increases slightly when the propulsor
is integrated into the full configuration. This is in agreement with figure 4.22
that also reveals an increase in the amplitude of the 3 rev−1 component of the
thrust produced by the propulsor. This can be attributable to an increase in the
strength of the trailed vorticity from the blades of the upper rotor that is related
to the increase in the upper rotor aerodynamic loading alluded to earlier.

The power consumed by the propulsor as a function of main rotor azimuth
is provided in appendix, figure A.20, and shows very similar frequency char-
acteristics to the variation in thrust in figure 4.22. It can be seen the expected
reduction in the time averaged or mean power consumed and an increase in
the amplitude of the 3 rev−1 component, relative to the configuration without
fuselage and tailplane.

Figure 4.23: Variation of the time averaged pressure coefficient along the top
centreline of the fuselage. (Error bars represent the amplitude of the RMS
fluctuations in the pressure signal obtained for the full configuration. Courtesy
of Dr. H. Kim and Dr. A. Kenyon.)

Figure 4.23 shows the variation of the mean modified pressure coefficient
along the top centreline of the fuselage, in other words, along the upper half
of the curve obtained by the intersection of the x − z plane with the fuselage
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surface. This figure compares the pressure distribution along the fuselage that
was obtained for two distinct cases. In the first case, the full configuration
was flown at advance ratio µ = 0.15. In the second case, every component
attached to the fuselage was removed and the fuselage was flown at the same
free-stream velocity as in the first case.

The trajectory of the tip vortices that trail from the main rotor system, de-
picted in figure 4.17, show that the main rotor wake passes very close to the
rear of the fuselage. The downwash velocity it induces on that part of the fuse-
lage is thus responsible for the increase in the mean component of pressure
over that region, as can be seen in figure 4.23. This direct interaction between
the main rotor wake and the fuselage is expected to be highly dependent in the
advance ratio, however, becoming more pronounced for lower advance ratios
as the wake is allowed to convect close to a larger portion of the fuselage.

Figure 4.24: Contours of the unsteady pressure component along the top cen-
treline as a function of main rotor azimuth obtained for the full configuration.
Mean component of the signal removed. (Courtesy of Dr. H. Kim and Dr. A.
Kenyon.)

Other notorious feature presented in figure 4.23 is the significant fluctua-
tions in the pressure variation. These fluctuations are more pronounced in two
regions – one at the front of the fuselage, from the nose until about x/Rc = -0.2,
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and the other between x/Rc = 0.2 and x/Rc = 1.0. In order to better grasp
the origins of these fluctuations, figure 4.24 shows a contour plot of the VTM-
predicted unsteady component of the pressure, ∂φ/∂t, along the top centreline
of the fuselage as a function of azimuth, at an advance ratio of µ = 0.15.
This figure is in agreement with figure 4.23 since the regions of higher fluctu-
ation in the pressure distribution are strongly correlated. Thus, both regions
of higher pressure fluctuations are characterised by patches of elevated over-
pressure followed by patches of elevated suction. The patches of elevated
pressure, however, have shorter time duration than those of elevated suction
and occur almost instantaneously and at a frequency of 3 rev−1. However, the
pressure fluctuation at the region between the nose and about x/Rc = -0.2
presents a 60° of phase shift relative to the pressure fluctuation at the region
from x/Rc = 0.2 and x/Rc = 1.0. Moreover, both regions are located directly
below the area swept by the main rotor blades. It may be inferred from these
features that the strong fluctuation in the pressure distribution over these re-
gions is an effect of the periodic close passage of the blades over the fuselage.
The blades are responsible for generating a strong bound vortex that is capable
of modifying the velocity field in the vicinity of the fuselage upper surface which
in turn will affect the pressure distribution. The dominant 3 rev−1 frequency
that is characteristic of the blade close-passage event would be modified if
the phasing between the blades of the upper and lower rotors was altered. In
that case, the blades would not overlap when passing directly above the top
centreline of the fuselage which would result in the unsteady pressure signal
presenting a dominant 6 rev−1 frequency.

The unsteady pressure signature over the region from about x/Rc = 0.2
and x/Rc = 1.0 is a result of the combined effects of the blade close-passage
and a secondary, less marked event that consists in the close-passage of the
individual vortices that are trailed from the main rotor. The convection of these
individual vortices continues downstream over the remainder of the fuselage.
From about x/Rc = 1.0 until just short of the tail the effects of the blade close-
passage tend to cease while the effects of these individual vortices become
more significant as they gradually approach the surface of the fuselage. In-
deed, this feature can be identified as a series of travelling waves that are
represented in figure 4.24 by the diagonal contours over the region from about
x/Rc = 1.0 until just short of the tail.
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5 CONCLUSION

The physical processes that govern the aerodynamic interactions and flow phe-
nomena of a compound coaxial helicopter model have been investigated com-
putationally. The helicopter model employed in this study is representative of
a generic modern helicopter that exploit the Advancing Blade Concept. This
concept features two rotors arranged in a coaxial configuration and rotating
in opposite directions. The blades of each rotor are very stiff and are rigidly
attached to the hub allowing for a minimized inter-rotor separation. The he-
licopter model is also compounded in propulsive thrust with the addition of a
pusher propeller mounted at the rear of the fuselage.

The detailed geometric and aerodynamic characteristics of this particular
model where not designed with the purpose of epitomising any particular real
life helicopter, but to be representative of prototypes that employed the ABC ro-
tor, like the Sikorsky’s X2 or the XH-59A technology demonstrators. Therefore,
the results presented here lack from a source of proper experimental data and
ought to be validated. However, the numerical model used to arrive to these
results was validated previously against several reliable experimental data sets
corresponding to different helicopter configurations and for several flight condi-
tions. The results obtained provided good evidence that the coupled lifting-line
– VTM model gives an accurate prediction of the evolution of the main rotor
wake. The key feature of this model is its ability to preserve the integrity of
the vortical structures of the wake many rotor radii downstream of its source,
using less computational resources than standard CFD methods, [15]. This is
indeed an important aspect when modelling aerodynamic interactions in heli-
copters since in one hand the primary contributor to the unsteady aerodynamic
forcing of the vehicle is the interaction between the wake induced by the main
rotor and the other components of the vehicle. In the other hand, the wake
induced effects depend on the vorticity field of the wake even at locations far
downstream of the rotors.

As such, the previous validation of the lifting-line – VTM model showed
that it is capable of predicting the wake geometry and its evolution process,
blade-vortex interactions, rotor vibration and other interactional phenomena.
Thus, it is well suited for the analysis of aerodynamic interactions of helicopters,
which grows confidence in the qualitative accuracy of the results presented
here. However, the prediction of essentially viscous phenomena, like boundary
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layer separation, is beyond the capabilities of the current model. Therefore,
some significant discrepancies are to be expected near the blades of the rotors.
Hence, flow separation within the blades relies on the accuracy of the airfoil
data that is used in the pre-computation of the lift as a function of angle of
attack on each blade panel. Moreover, boundary layer separation may occur at
the fuselage surface causing secondary vortices to appear close to the surface.

The VTM also does not directly account for the compressibility of the flow
and relies on the quality of the airfoil data or in the accuracy of the Prandtl
compressibility correction.

Another indubitable source of inaccuracy in the results stems from the omis-
sion of the hubs of the main rotor and auxiliary propulsor. These components
could further distort and potentially disrupt the vortical structures of the main
rotor wake, thus introducing an additional source of unsteadiness into the sys-
tem. Vortex shedding from the hub and the interaction between the wake and
the fuselage boundary layer are believed to be partly responsible for the high
frequency content of the pressure distribution at the rear of the fuselage top
centreline, [34].

The numerical results presented here were obtained for different helicopter
configurations and subsequently analysed in the light of the reductionist ap-
proach adapted from the work of Sheridan and Smith, [12]. This method re-
lies on the direct comparison between the different configurations in order to
track the source or cause of perturbations in the velocity field and forces of
the more complex full helicopter model. However, this method presents some
deficiencies due to the fact that the main rotor reacts very differently to this
perturbations for each configuration tested and in a way that is not yet fully
understood. For instance, the inclusion of the fuselage led to the upwards dis-
placement of the wake which in turn induced an upflow at the forward part and
a downflow at the rear part of the upper and lower rotor disks. Nonetheless,
this interaction is somewhat obscured by the surge in the longitudinal gradi-
ent of inflow that is caused by the main rotor trim algorithm that tries to even
out the pitching moment imbalance that is generated by the download on the
tailplane. Thus, some aerodynamic interactions can manifest simultaneously
and may be characterised by constructive or destructive interference between
two or more components. The fact that the main rotor is trimmed in order to
achieve force and moment equilibrium may also contribute to this imbroglio
because the trimming mechanism inherently leads to complex feedback loops
that enshroud some aerodynamic interactions and make it difficult to isolate
the effects induced by different components of the vehicle. These feedback
loops continue to happen even after equilibrium is achieved, in a time average
sense, and are characterised by the gradual adjustment of the vorticity field
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and the loads on the various components of the system. In order to gain a
deeper understanding of what caused and what are the consequences of the
different aerodynamic interactions that were identified, it is suggested that this
study should be complemented with results obtained from the numeric simula-
tion of the different configurations in a wind tunnel, i.e. without rotor trimming,
and at the same advance ratio. The collective and cyclic pitch inputs could
then be used as simulation parameters that could be varied between differ-
ent runs. Moreover, another intermediate stage should be introduced in this
building-block approach that consists in the complete configuration with only
the tailplane removed, since it could better isolate the interactional effects be-
tween the wake, fuselage and tailplane.

A range of aerodynamic interactional phenomena was identified and char-
acterised for this generic helicopter model, at the advance ratio of µ = 0.15.
The following conclusions can be drawn from the results of the present work:

• The main rotor is responsible for the generation of strong tip and root
vortices that are convected downstream. The tip vortices from the upper
and lower rotors interact with each other and tend to roll-up and merge
into a pair of concentrated vortex structures or super-vortices.

• The distribution of vorticity in the wake of the main rotor is asymmetric
with respect to the x − z plane. It was verified that the trajectory of the
elements of the root vortex system was biased to the port side of the vehi-
cle for all the configurations tested and that the propulsor wake trajectory
also presented a slight skew towards that side. It may be inferred that the
concentration of vorticity in the super vortex of the port side is higher than
in the starboard side. This asymmetry is consistent with the stronger vor-
ticity trailed from the left hand side of the coaxial system, which in turn is
dependent on the distribution of blade loading required to trim the system.

• Due to the proximity to the starboard tip vortex, the trajectory of the vortex
trailed from the starboard tip of the tailplane is biased towards the right
hand side. In the other hand, the vortex trailed from the port side tip
of the tailplane together with the root vortices from the main rotor, are
completely entrained in the wake generated by the auxiliary propulsor.

• From the x − z cross section of the vorticity distribution in the main rotor
wake, it was verified that the wake skew angle is higher in the complete
configuration than for the configuration without fuselage. This interaction
is explained by the displacement of the velocity field in the vicinity of the
main rotor that is induced by the fuselage. The fuselage forces the flow
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around it, thus inducing an upflow in the region over the top surface start-
ing from the nose until roughly x/Rc = -0.4. Over the top surface of the
rear part of the fuselage the flow experience the opposite effect, i.e. a
downflow.

• The difference in the skew angle between the wakes generated by the
isolated main rotor and the combined main rotor and auxiliary propulsor
was not significant. This is because the propulsor wake is quickly con-
vected downstream of the vehicle and hence its direct interaction with
the velocity field around the main rotor is very weak. Nonetheless, the
propulsor wake is entrained in the main rotor wake and so interacts with
it, modifying the vorticity distribution. As a result, the modified vortic-
ity field in the far wake feeds back into the velocity field surrounding the
main rotor, which in turn will have an impact in the inflow distribution over
the upper and lower rotor disks. Although the precise characterisation of
the signature left by this indirect interaction in the inflow distribution of the
main rotor is difficult to ascertain due to the simultaneous action of the
trim mechanism in altering the blade loading distribution over its blades.

• The inflow velocity field over the upper and lower rotors is characterised
by a longitudinal gradient over the whole rotor disks and several high lo-
calised gradients that are identified by curved ridges in the contour plot
of the inflow distribution over the rotor disks. The longitudinal gradient
describes the variation of inflow that is required in order to achieve mo-
ment equilibrium of the system and begins with an upwash at the leading
edge, changes to downwash after the first curved ridge and continues
towards the trailing edge where the intensity of the downwash is higher.
The strong localised gradients of inflow represent the induced effects of
the trailed vortex structures produced by the rotating blades as they pass
close to the rotor plane. The curved ridges on the lower rotor outnumber
those on the upper rotor because the tip vortices from the upper rotor
are convected towards the lower rotor and add up to the tip vortices that
were generated by the lower rotor. Hence, the influence of the upper ro-
tor in modifying the inflow distribution of the lower is more significant than
the converse. These strong gradients constitute powerful BVI’s that are
capable of fomenting unsteadiness in the blade loading variation which
translates into vibration and noise.

• The variation of thrust produced and power consumed by the main ro-
tor with azimuth revealed high unsteadiness with frequencies that are
multiple of 3 rev−1. The dominant frequency of the thrust and power sig-
nals was the 3 rev−1 that is not only a direct effect of the blade-vortex
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interaction but is also a consequence of the aerodynamic properties of
the blades. The amplitude of the 6 rev−1 component also contributed
significantly for the unsteadiness of the thrust variation. This frequency
correlates with the six radial ridges that are visible in the inflow distribu-
tion over the lower rotor disk and are a manifestation of the blade over-
passage type of interaction. However, the VTM replaces each blade by a
bound vortex that acts as a source inside the computational domain and
thus the influence of the blade geometry on the upwash-downwash effect
is not modelled directly. The VTM is not capable of predicting another 6
rev−1 phenomenon that depends on the geometry of the blades and is
known as the Venturi effect, Ref. [43]. It is caused by the thickness of the
blades and manifests as a reduction in pressure between the overlapping
blades.

• The high amplitude of the 3 rev−1 component of the propulsor thrust vari-
ation indicates a powerful interaction between the main rotor wake and
propulsor that consists of the ingestion of main rotor tip vortices by the
propulsor. This causes the propulsor to act as a strong source of dynamic
excitation in the fuselage, mainly due to the unsteady force directed along
the x-axis but also in pitch and roll. Although this excitation might be
ameliorated if the phasing of the upper and lower rotors is changed. The
propulsor wake interacts with the propulsor blades at a higher frequency
of 21.25 rev−1, although at lower amplitude than the 3 rev−1 component.

• The inclusion of the fuselage and tailplane in the model resulted in a in-
crease in the longitudinal gradient of inflow, and a redistribution of blade
loading over the upper and lower rotors such that the mean nose-down
pitching moment produced by the main rotor became approximately 9.4
times greater than that obtained without the fuselage and tailplane. This
nose-down pitching moment is required to balance the nose-up pitching
moment that is mainly a consequence of the download in the tailplane.
This down-force in the tailplane is a direct result of the aerodynamic inter-
action between the main rotor wake and tailplane and manifests itself in
a flight dynamic phenomena known as ’pitch-up’. The magnitude of this
download is dependent upon the specific geometry of the empennage,
the position of the tailplane relative to the main rotor and the advance-
ratio, Ref. [42].

• It was verified that the mean thrust produced by the upper rotor increased
by 13% with the addition of the fuselage and tailplane. This increase
appears in order to counteract the down-force that is produced by the
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fuselage and tailplane and is a direct consequence of the aerodynamic
interaction between those components and the main rotor wake. Since
the main rotor is tilted forward, the propulsive force it generates is also in-
creased, thus alleviating the loading of the auxiliary propulsor and leading
to a reduction in its power consumption relative to the configuration with-
out fuselage and tailplane. This side-effect is clearly non-optimal since
the propulsor is consuming power without providing a significant contri-
bution to the propulsion of the system (about 16.7% of the main rotor
propulsive force).

• Significant fluctuations in the blade loading distribution over the auxiliary
propulsor disk are induced by the ingestion of tip and root vortices from
the main rotor. With the fuselage and tailplane present, the propulsor
lower half become isolated from the vortex impingement and thus the
fluctuations occur on the upper half. These fluctuations are dominated by
a 3 rev−1 frequency due to the interaction with the main rotor wake. A
21.25 rev−1 frequency component of lower amplitude is also present and
is due to the interaction with the tip vortices produced by the propulsor
itself. The fluctuations in the blade loading may excite significant vibration
to the aircraft.

• The aerodynamic interaction between the main rotor wake and the fuse-
lage is responsible for a gross modification of the pressure forces over the
fuselage surface. The impingement of the wake over the rear of the fuse-
lage causes an increase in the mean pressure there. This effect, together
with the download in the tailplane, contribute to the nose-up pitching mo-
ment about the aircraft centre of gravity, leading to the redistribution of
loads over the main rotor blades alluded to earlier.

• Significant unsteadiness is experienced in the regions of the fuselage lo-
cated directly below the main rotor blades. This unsteadiness is charac-
terized by fluctuations with dominant frequency of 3 rev−1 and is associ-
ated with the passage of the blades over the fuselage. Although the main
rotor is composed of 6 blades, they are arranged such that they overlap
directly above the top centreline of the fuselage. Thus, if another phasing
between the upper and lower rotors was adopted, a frequency of 6 rev−1

for the pressure fluctuations would be expected. The vortical structures
produced by the main rotor convect very close to the top surface of the
fuselage and constitute another source of unsteadiness in the pressure
distribution from x/Rc = 0.2 until just short of the tail.
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A APPENDIX

A.1 Rotorcraft Performance Characteristics

Table A.1: Performance characteristics of the isolated main rotor.

Coefficient: Thrust Power Pitching Moment

Lower Rotor 6.056× 10−3 3.763× 10−4 1.272× 10−4

Upper Rotor 5.950× 10−3 3.763× 10−4 −1.273× 10−4

Main Rotor 1.201× 10−2 7.526× 10−4 0

Table A.2: Performance characteristics of the main rotor and propulsor con-
figuration.

Coefficient: Thrust Power Pitching Moment

Lower Rotor 6.194× 10−3 3.910× 10−4 7.677× 10−5

Upper Rotor 5.843× 10−3 3.738× 10−4 −1.824× 10−4

Main Rotor 1.204× 10−2 7.648× 10−4 −1.056× 10−4

Propulsor 2.222× 10−4 2.029× 10−5 1.052× 10−4

Table A.3: Performance characteristics of the full configuration.

Coefficient: Thrust Power Pitching Moment

Lower Rotor 6.153× 10−3 4.029× 10−4 −3.573× 10−4

Upper Rotor 6.602× 10−3 4.310× 10−4 −6.345× 10−4

Main Rotor 1.276× 10−2 8.339× 10−4 −9.918× 10−4

Propulsor 1.487× 10−4 1.701× 10−5 5.761× 10−5

Note: The propulsor thrust, power and pitching moment coefficients given
in the tables above are defined on the basis of the rotational speed of the main
rotor, Ω, and main rotor radius, R.
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A.2 Isolated Main Rotor

Figure A.1: Tip vortex filaments trailed by the coaxial rotor system as viewed
from above. Lower rotor rotating with π/3 rad in advance with respect to the
upper rotor.

Figure A.2: Tip vortex filaments trailed by the coaxial rotor system as viewed
from above. Lower rotor rotating with π/2 rad in advance with respect to the
upper rotor.
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Figure A.3: Bottom view of the iso-surfaces of vorticity magnitude generated
by the main rotor when operating in isolation at advance ratio µ = 0.15. (Iso-
surfaces from different rotors rendered separately in distinct colours.)
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Figure A.4: Power coefficient consumed by the upper and lower rotors of the
main coaxial system and correspondent frequency spectrum for the isolated
main rotor.
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Figure A.5: Pitching moment coefficient produced by the upper and lower rotors
of the main coaxial system and correspondent frequency spectrum.
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A.3 Isolated Auxiliary Propulsor

Figure A.6: Distribution of blade loading over a representative blade of the
auxiliary propulsor during a complete revolution when the auxiliary propulsor is
operating in isolation and producing the same thrust as when operating in the
full configuration. Left: mean loading. Right: RMS fluctuation in loading.

Figure A.7: Distribution of blade loading over a representative blade of the
auxiliary propulsor during a complete revolution when the auxiliary propulsor is
operating in isolation with the same collective pitch control as when operating
in the full configuration. Left: mean loading. Right: RMS fluctuation in loading.
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A.4 Main Rotor and Auxiliary Propulsor

Figure A.8: Bottom view of the iso-surfaces of vorticity magnitude generated by
the main rotor when operating together with the auxiliary propulsor at advance
ratio µ = 0.15. (Iso-surfaces from different rotors rendered separately in distinct
colours.)
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Figure A.9: Distribution of inflow over the blades of the upper and lower rotors
during a complete rotor revolution for the configuration comprised of the main
rotor and auxiliary propulsor. Left: upper rotor. Right: lower rotor.

72



Figure A.10: Thrust coefficient generated by the upper and lower rotors and
correspondent frequency spectrum for the configuration comprised of the main
rotor and auxiliary propulsor.

73



Figure A.11: Power coefficient consumed by the upper and lower rotors and
correspondent frequency spectrum for the configuration comprised of the main
rotor and auxiliary propulsor.
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Figure A.12: Pitching moment coefficient produced by the upper and lower
rotors and correspondent frequency spectrum for the configuration comprised
of the main rotor and auxiliary propulsor.
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Figure A.13: Power coefficient consumed by the auxiliary propulsor over a com-
plete main rotor revolution as a function of main rotor azimuth and respective
frequency spectrum. (Power coefficient defined on the basis of the rotational
speed, Ωp, and radius, Rp, of the auxiliary propulsor.
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Figure A.14: Pitching moment coefficient generated by the auxiliary propulsor
over a complete main rotor revolution as a function of main rotor azimuth and
respective frequency spectrum. (Pitching moment coefficient defined on the
basis of the rotational speed, Ωp, and radius, Rp, of the auxiliary propulsor.
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A.5 Complete Configuration

Figure A.15: Bottom view of the iso-surfaces of vorticity magnitude generated
by the main rotor as part of the complete configuration at advance ratio µ =
0.15. (Iso-surfaces from different rotors rendered separately in distinct colours.)
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Figure A.16: Distribution of inflow over the blades of the upper and lower rotors
during one rotor revolution for the complete configuration. Left: upper rotor.
Right: lower rotor.
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Figure A.17: Distribution of loading over the blades of the upper and lower
rotors during one rotor revolution for the complete configuration. Left: upper
rotor. Right: lower rotor.
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Figure A.18: Power coefficient consumed by the upper and lower rotors and
correspondent frequency spectrum for the complete configuration.
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Figure A.19: Pitching moment coefficient produced by the upper and lower
rotors and correspondent frequency spectrum for the complete configuration.
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Figure A.20: Power coefficient consumed by the auxiliary propulsor over a com-
plete main rotor revolution as a function of main rotor azimuth and respective
frequency spectrum, for the complete configuration. (Power coefficient defined
on the basis of the rotational speed, Ωp, and radius, Rp, of the auxiliary propul-
sor.
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Figure A.21: Pitching moment coefficient generated by the auxiliary propulsor
over a complete main rotor revolution as a function of main rotor azimuth and
respective frequency spectrum for the complete configuration. (Pitching mo-
ment coefficient defined on the basis of the rotational speed, Ωp, and radius,
Rp, of the auxiliary propulsor.

84



A.6 Auxiliary Propulsor Wake

Figure A.22: Contour plot of the y-component of non-dimensional vorticity in
the x− z plane that is produced by the auxiliary propulsor. a) Isolated auxiliary
propulsor. b) Auxiliary propulsor operating under the influence of the main
rotor wake. c) Auxiliary propulsor operating under the influence of the main
rotor wake, fuselage and tailplane.
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A.7 Mean and Root Mean Square Decomposition

Consider the rigid auxiliary propulsor operating in isolation. It is known that
the rotor aerodynamic properties are periodic in nature and that the variation
of a particular property with time may be decomposed into sinusoidal func-
tions of different frequencies. The lowest frequency that can be expected is the
propulsor frequency fp = Ωp/(2π), where Ωp is given in rad s−1. However, the
aerodynamic interaction with another helicopter component may reflect in that
property and introduce lower frequency components. Thus the period of the
variation of that property with time will be higher than the propulsor period of
rotation. However, it might be beneficial to analyse the variation of this property
over one propulsor revolution. In order to do that effectively the given property
may be described as an average, or mean, and a RMS component. The mean
property should be taken with respect to time and the RMS component repre-
sents the fluctuations of the property with respect to the mean.

Suppose that the aerodynamic property under consideration can be de-
scribed as a field F : D → R, where the domain D is the set

D =
{

(r, t) ∈ R2|Rp0 ≤ r ≤ Rp and t0 ≤ t < t0 + T
}
.

The constants Rp0 and Rp are the root cut-out radius and total radius of the
propulsor. The time t0 is any instant of time considered to be far enough from
the initial transient response of the property. The constant T is the period of
the given property and, assuming that the propulsor rotates at some fraction of
the main rotor angular speed, is given by the lowest possible integer number of
propulsor revolutions, N , that must be completed such that the main rotor has
completed an integer number of revolutions as well. In this way, the frequency
components induced by the main rotor in the propulsor are fully captured in F .
Then T is given by NTp, where Tp = 2π/Ωp is the propulsor period of rotation.

The mean property is given by the field F̄ : M → R and can be obtained by
the formula:

F̄ (r, τ) =
1

N

N−1∑
i=0

F (r, τ + iTp)

where 0 ≤ τ < Tp.
The RMS fluctuation of the property is the field F̂ : M → R and is given by

F̂ (r, τ) =

[
1

N

N−1∑
i=0

(
F̄ − F (r, τ + iTp)

)2] 1
2
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