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Abstract 9 

The negative impacts of cement-based material (CBM) production are way bigger than ever expected. 10 

To illustrate the scale of this phenomenon, all the forests in the world, regardless of the fact that they 11 

are disappearing at an alarming rate, are not enough to offset even half the environmental impact (EI) 12 

of global aggregates and cement production. Thus, it is necessary to promote scientific research and 13 

guide more researchers and professionals in the construction industry to investigate the undiscovered 14 

sustainability paths, namely for concrete before and after end-of-life. For that purpose, a global and 15 

extensive review is made here to provide an overall view of concrete sustainability in all possible paths. 16 

Then, each path is organized as follows: (i) brief introduction, (ii) presentation of non-traditional mate-17 

rials and techniques that can be used for the selected strategy, (iii) their limitations and (iv) future trends. 18 

The study also identifies what is already known to avoid putting valuable research resources into redun-19 

dant scientific studies. The following paths of concrete production sustainability were identified: mix 20 

composition (e.g. reduce the EI and resources use of binders, aggregates, water and reinforcement), 21 

materials manufacturing (e.g. new production techniques of cement, aggregates and steel bars), con-22 

crete mixing (e.g. mixer type and mixing method), on-site application (e.g. regular casting and digital 23 

concrete/3D printing), and in-service performance (e.g. increase the durability of reinforced concrete 24 

and carbon capture and thermal conductivity). On most of these paths, many studies have been made 25 

on the same non-traditional materials and techniques and similar outputs were obtained. Yet, many 26 

other non-traditional materials and techniques have not been explored before, or are incomplete in 27 

terms of the characteristics analysed. More than providing definite solutions, this contribution intends 28 

to open the minds of the readers to the vastly unexplored world of “green concrete”. 29 

Main Keywords 30 

Concrete sustainability; Life-cycle assessment; Cementitious materials; Recycled materials; Sustainable 31 
development; Integrated sustainability trends. 32 
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Acronyms list: 33 

AAM - Alkali-activated material MIBA - municipal solid waste incinerator bottom ash 

ACR - alkali-carbonate reaction MIFA - municipal solid waste incinerator fly ash 

ADP - abiotic depletion potential MRA - mixed recycled aggregate 

AP - acidification potential MSA - mussel shell ash 

 ASR - alkali-silica reaction NF - natural fibres 

AWA - agricultural waste ash ODP - ozone depletion potential 

AWAF - agricultural wastes and aquaculture farming OPC - Ordinary Portland cement 

AWAFA - agricultural wastes and aquaculture farming ashes OWA - olive waste ash 

BLA - bamboo leaf ash PCM - Phase change materials 

BTQ - binary, ternary and quaternary PE-NRe - non-renewable primary energy resources 

CBA - coal bottom ash PE-Re - renewable primary energy resources 

CBM - cement-based materials POCP - photochemical ozone creation potential 

CCA - corn cob ash POFA - palm oil fuel ash 

CDRA - mixed construction and demolition recycled aggregate RCA - recycled concrete aggregate 

CDW - construction and demolition waste RH - rise husk; RHA - rise husk ash 

CNT - carbon nanotubes RMA - recycled masonry aggregate 

ECR - epoxy-coated rebar SAP - Super absorbent polymer 

EC - expanded clay SA - silica aerogel 

ECG - expanded cork granules SBA - sugarcane bagasse ash 

EGA - elephant grass ash SCC - self-compacting concrete 

EI - environmental impacts SCM - supplementary cementitious material 

EP - Eutrophication potential SF - silica fume 

FA - coal fly ash SMM - Shape memory material 

FBBA - forest biomass bottom ash SP - Superplasticizer 

FRP - fibre reinforced-polymer SSA - sewage sludge ash 

GGBS - ground granulated blast furnace slag SSD - saturated surface-dry 

GR - galvanized rebars SSR - stainless steel rebar 

GWP - Global warming potential TWA - tire waste aggregate 

L - lime TWA - tobacco waste ash 

LCA - Life Cycle Assessment WA - wood ashes 

LOI - loss on ignition w/b - water to binder ratio 

LWA - light-weight aggregate WFA - wood fly ash 

M - methylcellulose WSA- wheat straw ash 

 34 
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1 Introduction 36 

Many studies have alerted us to the negative impacts of cement-based materials (CBM) production 37 

within the construction industry. These impacts may be way bigger than ever anticipated. Illustrating the 38 

concept, the total world production of aggregates and cement can be around 48.3 billion tonnes (IEA, 39 

2019; USGS, 2019) and 4.1 billion tonnes (average - (Freedonia, 2016; PMR, 2017)) in 2018, respectively. 40 

Additionally, the average global warming potential (GWP) of 1 kg aggregate and cement is 0.0123 kg CO2 41 

eq (Braga, 2015; Korre and Durucan, 2009; Marinkovic´ et al., 2010; Tošić et al., 2015) and 981 kg CO2 eq 42 

(Blengini, 2006; Braga, 2015; Chen et al., 2010; de Schepper, M. et al., 2014; ECRA, 2015; Marinkovic´ et 43 

al., 2010; Teixeira et al., 2016), respectively. Thus, the total GWP of aggregates and cement will be 44 

around 5.9409E+11 kg CO2 eq and 4.0221E+15 kg CO2 eq, respectively. Contrary to a common statement, 45 

instead of concrete, aggregates are the most consumed material after water. Previous values shown in 46 

the previous sentences indicate that, although aggregates consumption is almost 12 times bigger than 47 

that of cement, their environmental impact (EI) is insignificant relatively to cement. If one considers only 48 

half of the produced aggregates and cement used for paste, mortar and concrete without considering 49 

the mixing procedure and transportation, the total GWP will be around 2.0113E+15 kg CO2 eq. Thus, the 50 

EI of the main raw materials to produce paste, mortar and concrete is at least 710 and 31 times higher 51 

than the total emitted CO2 by “human exhalation” and “all human activities including exhalation” per 52 

year, respectively (source of the secondary data: human population ≈ 7.7576E+09 (WPC, 2019), global 53 

normalisation factors for the environmental footprint and Life Cycle Assessment - LCA of all activities of 54 

human (Sala et al., 2017) per year ≈ 8.40E+03 kg CO2 eq, Human CO2 exhalation (USGCRP, 2019) per year 55 

≈ 365 kg CO2 eq). If it were not for some tiny ocean plants, namely phytoplankton, the three trillion trees 56 

on the surface of Earth would not be enough to offset half the EI of aggregate and cement production 57 

(source of the secondary data: number of trees  ≈ three trillion (Ehrenburg, 2015) and CO2 consumption 58 

of a mature tree ≈ 22 kg/year (EVA, 2012)). 59 

Most of the materials used in concrete production are, in sensu stricto, non-sustainable because they 60 

are coming from non-renewable sources. In addition, concrete may contribute to 4-8% of the world’s 61 

CO2 and consume a significant amount of natural resources, besides other negative impacts during con-62 

crete mixing and on-site application. Nevertheless, the term sustainability mentioned in this work, can 63 

still be used to characterize the concrete production, since concrete is one of the most competitive con-64 

struction materials and it can last for centuries. In fact, concrete is arguably the main driver of modern 65 

development, protecting humans from natural disasters and providing a structure for transportation, 66 

education, healthcare, energy, among many other industries. 67 
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After an extensive review, the lessons learned show that many case studies and review studies have been 68 

made to overcome the mentioned issue regarding the high negative impact of the construction industry, 69 

namely that of concrete. For example, similarly to this study, there are other attempts focused the gate-70 

to-cradle boundaries of CBM (Morbi et al., 2010) and concrete pavements (FHWA-HIF-16-013, 2016) 71 

in the construction industry, including the relationship between the main sustainability parameters 72 

(e.g. cost and performance, including rehabilitation cost, versus service life for high- and low- perfor-73 

mance concrete). Nevertheless, to the best of the authors’ knowledge, there is no single study collecting 74 

all the strategies (given example for each) and providing a global overview of the mix design and whole life 75 

cycle of concrete (Figure 1), namely mix composition (sections 3-7), materials manufacturing (section 8), 76 

concrete mixing (section 9), on-site application (section 10) and in-service performance (sections 11-13). 77 

Thus, this study organized and discussed most of the potential strategies to guide and introduce scientists 78 

and the general public in and outside the construction industry to the available sustainability options. Apart 79 

from introducing the most sustainable options for CBM, this study also shows the limitations (critical issues) 80 

and future needed investigation for these strategies to be a baseline and foundation for coming studies. 81 
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Figure 1 - Strategies for sustainable concrete 83 
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2 Methodology 84 

This work is a systematic and extensive analysis that intends to synthesize, identify, and evaluate the 85 

literature regarding the sustainability paths concerning mix design and whole life cycle of CBM (Figure 86 

1), with special emphasis on concrete. Thereafter, this work is followed by an exhaustive analysis of 87 

the literature to identify topics for further study. The study is mainly focused on the various options 88 

to move towards CBM’s sustainability. Thus, a literature research was made using the search engines 89 

of several databases (Figure 2). For each database, the same search options were repeated using com-90 

binations of different keywords based on the strategy. Furthermore, for each selected study, the ref-91 

erence list and the studies cited in the selected study were checked to find further relevant studies. 92 

 93 

Figure 2 - Databases and search options (besides the main databases, other databases such as ICE, Wiley 94 

Online Library, RILEM, Web of Knowledge are also considered) 95 
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complete parameters (e.g. considering EI, technical performance and cost); 105 

- Review studies were prioritized relative to case studies; 106 

- Finally, more recent studies were preferred to older publications; 107 

- The focus is mostly on the studies that relate to concrete, followed by mortar and paste. 108 

In some cases, the authors have use more than 3-4 references for a single path in order to stress that path 109 

has been studied by multiple scholars, and researchers must avoid duplicating paths. In other cases, only a 110 

few studies (e.g. 1-2 studies) have been used because the number of studies for that path is limited. The 111 

basic body of the literature comprised 2,044 studies. The journal papers have the lion share of the total 112 

number of cited studies (87%) and are distantly followed by conference papers (3%), book/book chapter 113 

(3%), scientific reports (2%), standards (2%), theses (2%) and others (1%) such as patents, software, inter-114 

national symposiums/seminars and web-sites (Figure 3a). The ‘’publication and accessed year’’ of the ref-115 

erences range from 1956 to 2020 and 91% of the studies were made in the 2000-2020 period (Figure 3b). 116 

Figure 4 shows the citations and publication year of the journal papers. Since there was a big gap between 117 

the citation of the studies (e.g. 16, 64, 256, 1024 and 4096 citations), the scale was depicted in a different 118 

manner (logarithmic scale). The results show that about 90% of the papers have at least four citations. 119 

(a) (b)  120 

Figure 3 - Breakdown of cited references per publication (a) type and (b) year 121 
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scatter due to its wide scope many studies on this path (Figure 5). Finally, studies relating to section 3 (reduce 129 

the total amount of binder) had the least citations compared to other sections, probably due to the fact that 130 

studies on this path are not majorly promoted by the scientific community and concrete industry. According 131 

to Figure 5, about 73% of the studies relate to only sections 4-5 and 11. This means that most of the 132 

efforts have been made on only a few sustainability paths and the others have been disregarded and 133 

insufficiently developed. 134 

 135 

Figure 4 - Publication year versus citations 136 

 137 

Figure 5 - Percentage of total cited papers per section 138 
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3 Reduce the total amount of binder 139 

The essential goal of this strategy is to obtain environmental-friendly, durable and economically feasible 140 

concrete mixes using an unconventionally low binder content. According to EN 206-1 (EN 206-1, 2000), 141 

the minimum cement content in concrete must be equal to or higher than 260 kg/m3 to achieve an 142 

adequate durability performance, depending on the exposure class. Another study (Damineli et al., 143 

2010) collected the results of 1585 concrete mixes from different countries and concluded that it is pos-144 

sible to obtain a 20 MPa compressive strength concrete with the minimum cement content (260 kg/m3). 145 

However, the literature shows no consensus on minimum binder content requirements relative to the 146 

durability performance of concrete (Bentur et al., 1997; Damineli et al., 2010). For example, a study (Dhir 147 

et al., 2004) concluded that, apart from the strength class and water/cement ratio, it may be unneces-148 

sary to impose a minimum cement content to reliably obtain an adequate durability performance, as 149 

specified by standards (EN 206-1, 2000). Other studies (Buenfeld and Okundi, 1998; Loo et al., 1994; 150 

Monteiro and Helene; Wasserman and Bentur, 2006) show that cement content can be reduced without 151 

jeopardizing the durability performance. To date, the literature on this strategy is very scarce (Carvalho, 152 

2017; Damineli et al., 2010; Damineli et al., 2013; Dhir et al., 2004; Dinakar et al., 2007; Ergün, 2011; F. 153 

J. Wombacher and Sommer; Fennis-Huijben et al., 2012; Kapelko, 2006; Kato et al., 2019; Liu et al., 2012; 154 

López-Uceda et al., 2016; Mohamadreza et al.; Naik and Ramme, 1987; Park et al., 2012; Penttala and 155 

Komonen, 1996; Proske et al., 2013; Pusch et al., 2014; Su and Miao, 2003; T. de Grazia et al., 2019; 156 

Tagliaferri de Grazia et al., 2018; Tikkanen et al., 2014; Tikkanen et al., 2011; Topçu et al., 2009; Urban, 157 

2018; Wassermann et al., 2009; Yousuf, 2018; Yousuf et al., 2019). 158 

The following sub-strategies are suggested to reduce the amount of binder in concrete. 159 

3.1 Pozzolanic or hydraulic powders 160 

Generally, most supplementary cementitious materials (SCMs) (§4) can be used in concrete to reduce the 161 

binder content (by replacing a given amount of cement with SCMs) because they may significantly improve 162 

some durability properties, except for carbonation in most cases. By lowering carbonation resistance, the 163 

use of SCM is only recommended in concrete structures when not directly exposed to high CO2 contents 164 

(e.g. foundation and underwater structures near chloride-enriched environments or watertight concrete - 165 

§11.2.3), with unconventional reinforcement rebars (§11.1), or when involving great masses to reduce the 166 

heat of hydration. Additionally, some attempts were made on low binder mortar. For example, Li et al. (Li, 167 

L.G. et al., 2019) showed that the cement content of mortar can be reduced by 33% with an increase in 168 

strength of 33% by using superplasticizer (SP) and ceramic polishing waste as addition (Li, L.G. et al., 2019). 169 

This path can also be followed in concrete (Cheng et al., 2014). Nonetheless, some studies (Ferrer et al., 170 
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2016; Kurda et al., 2019c; Kurda et al., 2019b; Vares and Penttala, 2007) show that, even when carbonation 171 

resistance is involved for XC3 and XC4 exposure classes, concrete with common cover depth can protect 172 

rebars for more than 50 years by using low or even high volume of SCMs. 173 

3.2 Filler powders 174 

The workability, stiffness and cohesiveness of concrete are significantly influenced by the volume of 175 

paste (Dhir et al., 2004; Ferraris and Gaidis; Wassermann et al., 2009). Thus, low binder may negatively 176 

affect the mentioned properties of concrete and indirectly influence other properties due to less-than-177 

optimal compaction (e.g. in terms of strength and porosity). One way to overcome this issue is by using 178 

(chemically non-active) fillers, namely marble waste (Aliabdo et al., 2014; Ashish, 2019; Ergün, 2011; 179 

Khodabakhshian et al., 2018; Singh, M. et al., 2019; Topçu et al., 2009), limestone powder (Carvalho, 180 

2017; John et al., 2018; Li, W. et al., 2015; Ling and Kwan, 2018; Urban, 2018), quartz (Damineli, 2013; 181 

Moosberg-Bustnes et al., 2004; Tikkanen, 2013; Vogt, 2010), dolomite (Barbhuiya, 2011; Mikhailova et 182 

al., 2013; Nguyen et al., 2018), granite (Ghannam et al., 2016; Ghorbani et al., 2019b; Ghorbani et al., 183 

2018; Mashaly et al., 2018), cristobalite (Damineli, 2013; Vogt, 2010), nepheline syenite (Damineli, 2013; 184 

Lagerblad and Vogt, 2004; Vogt, 2010), wollastonite (Jahim, 2010; Kalla et al., 2015; Mathur et al., 2007; 185 

Vogt, 2010), iron (Ghannam et al., 2016), soil (Cong and Bing, 2015), and talc - hydrated magnesium 186 

silicate (Pusch et al., 2014; Woo and Ryu, 2006). However, studies on the effect of fillers in low binder 187 

concrete are very limited (Ergün, 2011; Pusch et al., 2014; Topçu et al., 2009) and mostly related to 188 

normal concrete with limestone filler (Carvalho, 2017; Scrivener et al., 2018; Urban, 2018) or self-com-189 

pacting concrete (Topçu et al., 2009; Urban, 2018). 190 

Filler powders will also work as nucleation site-acting (Moosberg-Bustnes et al., 2004) (Gutteridge and 191 

Dalziel, 1990; Lawrence et al., 2003; Soroka and Stern, 1976; Stumm, 1992). For example, Penttala and 192 

Komonen (Penttala and Komonen, 1996) obtained high mechanical (compressive and tensile) strength 193 

and durability performance (carbonation and capillary water absorption) concrete with a low binder 194 

amount (180 kg/m3 cement and 13 kg/m3 condensed silica fume -SF) and micro-filler (ground quartz). 195 

Another study of Tikkanen et al. (Tikkanen et al., 2014) showed that the strength of low binder con-196 

crete (cement type: CEM II/A-M(S-L)) can be increased by adding mineral powder (limestone and 197 

quartz). This study did not focus on durability. However, they showed that the Ca(OH)2 (the main con-198 

tributor to carbonation resistance) content of concrete mixes slightly decreases when mineral powder 199 

increases. This may happen because the filler, despite its crystallinity and considerably smaller result-200 

ing porosity, reacted in the alkaline medium and consumed Ca(OH)2 to create C-S-H. The same author 201 

(Tikkanen et al., 2011) used the same type of cement and showed that, by using mineral powders 202 



11 

 

(limestone and quartz), 75 kg/m3 of cement can be removed without jeopardizing the compressive 203 

strength. However, according to this study, the fine powder content should not be higher than 550 204 

kg/m3 because of pumpability requirements. Other fillers, e.g. quartz (Moosberg-Bustnes et al., 2004), 205 

granite (Ghorbani et al., 2019b; Ghorbani et al., 2018; Mashaly et al., 2018) and earth concrete (Van 206 

Damme and Houben, 2018), can be also used to promote nucleation sites. 207 

3.3 Water to binder ratio (w/b) and dispersants 208 

Generally, lowering the binder content of concrete by using this sub-strategy can be considered the 209 

most promising solution in terms of sustainability, quality, and economy. Using the knowledge col-210 

lected from different studies (Aïtcin, 2019; Aïtcin et al., 2016; Bache, 1981; Jensen and Hansen, 2001; 211 

Lura et al., 2003; Mehta and Monteiro, 2006; Wilson et al., 2017), Figure 6 was drawn, and the results 212 

show that the quality of cement paste essentially depends on the closeness of cement particles, rather 213 

than the binder content or volume, and rate of hydration. Figure 6 shows that the porosity (linked to 214 

free water) of cement paste with water to binder ratio (w/b) of 0.36 or lower is insignificant (almost 215 

non-porous materials) because all the water content will be consumed by the cement particles. Nev-216 

ertheless, more studies must be made to confirm the previous assumption. 217 

This can be concluded for concrete as well. Derived from the results of 140 concrete mixes, made with 140-218 

260 kg/m3 of cement, SCMs and different types of aggregates, sourced from 29 publications (Abbas et al., 219 

2009; Barra and Vázquez, 1998; Berndt, 2009; Brand et al., 2015; Butler et al., 2011; Cong, 2006; Costabile, 220 

2001; Dhir and Paine, 2007; Gonçalves et al., 2004; Gurdián et al., 2014; Huda, 2014; Jau et al., 2004; Khodair 221 

and Bommareddy, 2017; Kim et al., 2013; Kou et al., 2011; Kou and Poon, 2013; Kou et al., 2007; Kurad et 222 

al., 2017; Li, Y. et al., 2018; Lima, Carmine et al., 2013; Limbachiya et al., 2012; Marinković et al., 2017; 223 

Marinković et al., 2016; Otsuki et al., 2003; Poon and Kou, 2010; Radonjanin et al., 2013; Sadati et al., 2016; 224 

Somna et al., 2012; Tangchirapat et al., 2013; Zega and Maio, 2006), Figure 7 shows that concrete with 225 

acceptable compressive strength can be produced with unconventionally low binder content (grey back-226 

ground - Figure 7) when the w/b ratio is equal to or less than 0.40. This can also be seen for low and high 227 

binder content (white background - Figure 7) that complies with EN 206-1 (EN 206-1, 2000) standard (these 228 

are out of the scope of this section). Regarding the durability performance, by comparing the results of 229 

previous studies (Cartuxo, F., 2013; Fattuhi, 1986; Geng and Sun, 2013; Kurda et al., 2019b; Kurda et al., 230 

2018c; Limbachiya et al., 2012; Lo et al., 2009; Pedro et al., 2018; Sim and Park, 2011; Singh, S. and Singh, 231 

N., 2016; Wassermann et al., 2009), it can be said that CO2 and chloride diffusion of concrete exponentially 232 

decrease by lowering w/b to ≈ 0.36 (0.35-0.40) due to the smaller diameter of pores that may not be easily 233 
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penetrated by CO2 or any other agents. In other words, carbonation and chloride ion penetration re-234 

sistances are likely to be excellent in concrete with the mentioned w/b value. However, further study needs 235 

to be performed to confirm this trend, especially when low binder content is used. 236 

 237 

Figure 6 - Hydration of cement paste with different w/b (Cement gel - water chemically reacted with cement particles; Wa-238 
ter gel - water physically linked with hydrated cement particles in a closed system although they have not reacted chemi-239 
cally yet and it significantly affects the rate of strength development; Free water - open porosity filled with water; further 240 

details on the mentioned expressions are shown in (Jensen and Hansen, 2001; Powers, 1968; Richardson, 2004)) 241 
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than 0.20 (Aïtcin, 2019). Additionally, the EI of most chemical admixtures used in concrete is very small 247 

(Braga et al., 2017; Kurda et al., 2018e), because of the small amounts used relative to the bulk of concrete 248 

mix. Although chemical admixtures increase the total cost of concrete, their cost can be offset by decreas-249 

ing the cement content (Kurda, 2017). However, further study is needed to find the optimum cement con-250 
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tent by using chemical admixtures without affecting the total cost and performance of concrete. Further-251 

more, for most concrete characteristics, the performance of SP in concrete with blended cement is higher 252 

than that of the concrete with Portland cement (Kurda et al., 2018a; Kurda et al., 2018c). 253 

 254 

Figure 7 - Effect of w/b and binder content on compressive strength of concrete regardless of the type of aggregates and binder (cement 255 
content = 140-260 kg/m3; No. of studies = 29; Workability S2-S3; Confidence interval of boundary lines = 95%; white background - concrete 256 

mixes that comply with the binder content suggested by standard EN 206-1; grey background - concrete mixes with less binder content 257 
than suggested by that standard) 258 
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cantly contribute to the compressive strength of cement paste (Aïtcin et al., 2016), and therefore the ce-261 

ment content can be lowered. Thus, it can be said that, in regard to cement paste containing a filler, de-262 

creasing w/b can be more effective than modifying the physical and chemical characteristics of cement. 263 

Finally, according to the above discussion, low binder concrete with reliable technical performance, EI 264 

and cost can be produced by lowering w/b to 0.40 (Figure 7), using SP, fillers and SCMs with spherical 265 

particles, simultaneously. However, concrete with lower w/b must be even more carefully water-266 

cured. Otherwise, the uncontrolled development of autogenous and plastic shrinkage causes serious 267 
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early cracking that may compromise the durability performance of concrete structures. 268 

3.4 Indirect reduction of the binder amount 269 

In this sub-strategy, the binder content is decreased but none of the concrete’s technical characteris-270 

tics is jeopardized. In other words, the following solutions may not have been used in low binder con-271 

tent so far, but they are presented in this section as a clue to produce it: nanomaterials (§11.2.2.1), 272 

binary-quaternary mixes (§4.4), stainless rebars (§11.1.1), barriers against the penetration of aggres-273 

sive agents (§11.2). The reasoning is, since they can improve the concrete’s characteristics, they can 274 

be also used to offset the consequences of reducing the amount of cement. 275 

Several studies (Carvalho, 2017; Fennis-Huijben et al., 2012; Liu et al., 2012; Yousuf, 2018; Yousuf et 276 

al., 2019) show that low binder concrete with acceptable technical characteristics can be produced by 277 

considering particle packing models (e.g. Faury and Alfred mix design models). For example, Carvalho 278 

(Carvalho, 2017) concluded that the durability and strength of concrete with 175 kg/m3 of cement 279 

designed by the particle packing models can be higher than concrete mixes designed with traditional 280 

approaches using 250 kg/m3 cement content. 281 

By considering all the above sub-strategies (section 3.1-3.4), low binder concrete may have low tech-282 

nical performance. As stated before, the best way to solve this issue is by lowering w/b (§3.2). How-283 

ever, this strategy may not work by itself. Thus, it is urgent to develop a new cement type for normal-284 

strength concrete that in general has better compatibility with most chemical admixtures, lower wa-285 

ter-demands, early strength-gain, lower heat-evolution compared with Ordinary Portland cement 286 

(OPC), thus allowing a reduction of the binder content for the same final characteristics of concrete. 287 

As suggested by other studies (Aïtcin, 2019; Chitvoranund et al., 2016; Gartner and Sui, 2018; Hanein 288 

et al., 2017; Londono-Zuluaga et al., 2017; Montes et al., 2018; Naqi and Jang, 2019; Shi, C. et al., 2019; 289 

Sui et al., 2015; Sui et al., 2006; Sui et al., 1999; Zea-Garcia et al., 2019), the ye'elimite-rich cement 290 

techniques (§4.5) can be considered a preliminary solution for the mentioned issues because the rhe-291 

ological problem (major issue (Aïtcin, 2019)) of low binder concrete can be controlled. 292 

4 Reduce the environmental impacts and resources use of binders 293 

Cement is the main contributor to energy consumption and greenhouse gas emissions in concrete (Kurda 294 

et al., 2018b; Marinković et al., 2008). One strategy to decrease concrete’s EI is by replacing its cement 295 

with co-products and by-products (without reducing the overall binder content). In this strategy, most of 296 

the researchers are focused on the effect of SCMs on the technical performance of concrete. Apart from 297 
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industrial waste ashes (§4.2), LCA studies on other sub-strategies (§4.1 and §4.3-4.6) are very few. Most 298 

studies presume that the EI of concrete decreases by decreasing its cement content, by incorporating 299 

SCMs. However, this assumption may not be correct when the service life of concrete is considered (ex-300 

amples regarding this matter are shown in the first paragraph of section 11). Therefore, it is preferable to 301 

study simultaneously the technical performance (e.g. mechanical and durability characteristics), EI/re-302 

sources use (GWP, energy consumption, abiotic depletion potential (ADP), eutrophication potential (EP), 303 

acidification potential (AP), ozone depletion potential (ODP), photochemical ozone creation potential 304 

(POCP), renewable primary energy resources (PE-Re), etc.), economy and toxicity of concrete. Then, it is 305 

possible to classify each product from a sustainability point of view. In addition, the production process of 306 

some non-conventional materials involves several steps, such as recovery, transportation and treatment 307 

that potentially present considerable EI. Thus, all steps involved in concrete production from cradle to 308 

grave need to be considered. 309 

4.1 Agricultural wastes and aquaculture farming as SCM 310 

Generally, most of the agricultural wastes and aquaculture farming (AWAF) are burned as renewable 311 

and sustainable energy resources, and they have remarkable potential as low-cost binders to be used 312 

as SCMs in concrete. Contrary to industrial wastes (§4.2), LCA studies on concrete containing AWAF 313 

ashes (AWAFA) as SCM are very limited. Regarding the technical performance, there is a consensus 314 

(most references cited in §4.1) that the workability and drying shrinkage of concrete decrease with 315 

increasing AWAFA content, and the opposite occurs for setting time. However, as shown in the fol-316 

lowing sub-sections (§4.1.1-4.1.10), other technical properties’ prevailing trends depend on the incor-317 

poration ratio and type of AWAFA. In addition, studies on the effect of AWAFA on the carbonation 318 

performance of concrete are very limited. 319 

Figure 8 presents the chemical composition of different types of AWAF such as rice husk ash (RHA - (Fuad 320 

et al., 1993; Gursel et al., 2016; Khan et al., 2012; Massazza, 1998; Moayedi et al., 2019; Nguyen, 2011; 321 

Ramezanianpour, 2014)), corn cob ash (CCA - (Adesanya, 1996; Adesanya and Raheem, 2009b; 322 

Suwanmaneechot et al., 2015)), sugarcane bagasse ash (SBA - (Chusilp et al., 2009; Frias et al., 2007; Frías 323 

et al., 2011; Payá et al., 2002; Rukzon and Chindaprasirt, 2012; Somna et al., 2012)), wheat straw ash (WSA 324 

- (Biricik et al., 1999; Khushnood et al., 2014; Memon et al., 2018; Zhang, Q. et al., 2019)), leaf ash (Ademola 325 

and Buari, 2014; Dhinakaran and Gangava, 2016; Dwivedi et al., 2006; Frías et al., 2012; Singh et al., 2007; 326 

Umoh and Odesola, 2015), palm oil fuel ash (POFA - (Al-mulali et al., 2015; Aprianti S, 2017; Awang et al., 327 

2014; Tangchirapat et al., 2009; Tangchirapat et al., 2007)), forest biomass bottom ash (FBBA - (Garcia and 328 

Sousa-Coutinho, 2013; Rajamma et al., 2009)), wood fly ash (WFA - (Berra et al., 2015; Miles et al., 1995; 329 
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Rajamma et al., 2012; Saraber and Haasnoot, 2012)), olive waste ash (OWA - (Al-Akhras and Abdulwahid, 330 

2010; Al-Akhras et al., 2009; Cuenca et al., 2013; Vassilev et al., 2010)), tobacco waste ash (TWA - (Celikten 331 

and Canbaz, 2017; Moreno et al., 2018)), elephant grass ash (EGA - (Cordeiro and Sales, 2015; Roselló et 332 

al., 2015)) and mussel shell ash (MSA - (Lertwattanaruk et al., 2012; Olutoge et al., 2012; Zhong et al., 333 

2012)), sourced from 48 publications. The results show that there is a wide range in terms of the chemical 334 

composition of most AWAF ashes. Thus, the performance of concrete containing the same type of AWAF 335 

ashes may differ because their characteristics dramatically change according to the combustion technique 336 

and genetic types (e.g. white and black rise husks) of the AWAF (Fuad et al., 1993; Garcia and Sousa-337 

Coutinho, 2013). In other words, each region has different species of animals (e.g. oyster shell) and plants 338 

that have unique chemical compositions. According to the literature, AWAF ashes can be used as an active 339 

binder when they are incinerated at about 1000 oC, because at this temperature the quantity of amorphous 340 

particles increases (Etiegni and Campbell, 1991; Garcia and Sousa-Coutinho, 2013). However, further stud-341 

ies need to be done to confirm the quality of the AWAF ashes in terms of the burning technique. 342 

343 

344 

 345 

Figure 8 - Chemical characteristics of rise husk ash, corn cob ash, sugar cane bagasse ash, wheat straw ash, leaf ash, palm oil fuel ash, 346 
forest biomass bottom ash, wood fly ash, olive waste ash, tobacco waste ash, elephant grass and mussel shell ash (Ademola and 347 

Buari, 2014; Adesanya, 1996; Adesanya and Raheem, 2009b; Al-Akhras and Abdulwahid, 2010; Al-Akhras et al., 2009; Al-mulali et al., 348 

0

20

40

60

80

100

Al
2O

3+
Fe

O
3

co
nt

en
t (

%
)

0
20
40
60
80

100

Ca
O

 
co

nt
en

t (
%

)

0

20

40

60

80

100

Ri
se

 h
us

k 
as

h

Le
af

 a
sh

El
ep

ha
nt

 g
ra

ss

Su
ga

r c
an

e 
ba

ga
ss

e 
as

h

W
he

at
 s

tr
aw

 a
sh

Fo
re

st
 b

io
m

as
s 

bo
tt

om
…

Co
rn

 c
ob

 a
sh

Pa
lm

 o
il 

fu
el

 a
sh

W
oo

d 
fly

 a
sh

To
ba

cc
o 

w
as

te
 a

sh

O
liv

e 
w

as
te

 a
sh

M
us

se
l s

he
ll 

as
h

Si
O

2
co

nt
en

t (
%

)



17 

 

2015; Aprianti S, 2017; Awang et al., 2014; Berra et al., 2015; Biricik et al., 1999; Celikten and Canbaz, 2017; Chusilp et al., 2009; 349 
Cordeiro and Sales, 2015; Cuenca et al., 2013; Dhinakaran and Gangava, 2016; Dwivedi et al., 2006; Frías et al., 2012; Frias et al., 2007; 350 

Frías et al., 2011; Fuad et al., 1993; Garcia and Sousa-Coutinho, 2013; Gursel et al., 2016; Khan et al., 2012; Khushnood et al., 2014; 351 
Massazza, 1998; Memon et al., 2018; Miles et al., 1995; Moayedi et al., 2019; Moreno et al., 2018; Nguyen, 2011; Payá et al., 2002; 352 

Rajamma et al., 2009; Rajamma et al., 2012; Ramezanianpour, 2014; Roselló et al., 2015; Rukzon and Chindaprasirt, 2012; Saraber and 353 
Haasnoot, 2012; Singh et al., 2007; Somna et al., 2012; Suwanmaneechot et al., 2015; Tangchirapat et al., 2009; Tangchirapat et al., 354 

2007; Umoh and Odesola, 2015; Vassilev et al., 2010; Zhang, Q. et al., 2019) 355 

4.1.1 Rice husk ash 356 

Relatively to other AWAFA, RHA is the most common material studied in the literature. Well burned 357 

rice husk (RH) may contain a high amount of amorphous silica. However, its quantity significantly de-358 

pends on the type of RH, i.e. black or white (Fuad et al., 1993). Apart from workability (Khan et al., 359 

2012), most of the concrete technical performances, i.e. strength (Fuad et al., 1993; Gursel et al., 2016; 360 

Nguyen, 2011), carbonation (Gastaldini et al., 2007), shrinkage (Nguyen, 2011), porosity (Nguyen, 361 

2011; Saraswathy and Song, 2007a), water absorption (Saraswathy and Song, 2007a) and chloride ion 362 

penetration (Gursel et al., 2016), improve or remain similar to those of conventional concrete when 363 

cement is replaced with up to 20% of RHA (Fuad et al., 1993; Gursel et al., 2016; Khan et al., 2012; 364 

Massazza, 1998; Moayedi et al., 2019; Nguyen, 2011; Ramezanianpour, 2014). 365 

4.1.2 Palm oil fuel ash 366 

After RHA, POFA is the second most studied AWAF. The literature suggests that POFA can be used in high-367 

strength concrete due to its high ratio of ultrafine particles (Alani et al., 2019; Aldahdooh et al., 2013; Awal 368 

and Shehu, 2013; Bamaga et al., 2013; Javed et al., 2018; Tangchirapat et al., 2009). Generally, it is suggested 369 

that POFA can be effectively used as SCM to replace up to 20% of cement in concrete (Al-mulali et al., 2015; 370 

Bamaga et al., 2013; Sata et al., 2007; Tangchirapat et al., 2009). 371 

4.1.3 Corn cob ash 372 

According to the literature, the optimum incorporation ratio of CCA depends on the type of CBM (e.g. 373 

paste and concrete). Although some studies (Adesanya and Raheem, 2009a, 2010; Suwanmaneechot et 374 

al., 2015) have been concluded that the paste containing up to 15% of CCA complies with NIS 439:2000, 375 

ASTM C 150:1994 and BS 12:1991 requirements (Adesanya and Raheem, 2009a, 2010; Suwanmaneechot 376 

et al., 2015), there is a consensus in the literature that cement of concrete should not be replaced with 377 

more than 10% of CCA (Adesanya, 1996; Adesanya and Raheem, 2009b; Mujedu et al., 2014; Olafusi and 378 

Olutoge, 2012). 379 
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4.1.4 Sugarcane bagasse ash 380 

Different replacement levels (5-25%) are given by the literature as optimum values to substitute cement 381 

with SBA in concrete (Ganesan et al., 2007; Hailu and Dinku, 2012; Katare and Madurwar, 2017; Lin et 382 

al., 2012; Mangi, S.A. et al., 2017; Montakarntiwong et al., 2013). Cordeiro et al. (Cordeiro et al., 2009) 383 

concluded that SBA must be burned at least at 600 oC for 3 hours to obtain amorphous and low carbon 384 

content precursor. Nevertheless, this temperature may not be enough to degrade the entire carbon-385 

containing phases. The optimum incorporation ratio of SBA depends on the target properties of con-386 

crete, i.e. 10% (Rukzon and Chindaprasirt, 2012), 15% (Ganesan et al., 2007), 20% (Singh et al., 2000), 5-387 

20% (Hailu and Dinku, 2012; Lin et al., 2012; Srinivasan and Sathiya, 2010), 25-30% (Ganesan et al., 2007; 388 

Rukzon and Chindaprasirt, 2012) and 25% (Ganesan et al., 2007) to obtain improvements in water ab-389 

sorption, sorptivity, strength, chloride penetration, chloride penetration and soundness, respectively. 390 

4.1.5 Straw ash 391 

Studies on the effect of straw ash as a partial substitute for cement in concrete are very limited and 392 

mostly related to WSA. This is maybe related to the fact that the results are not promising relatively to 393 

other AWAF (Aksoğan et al., 2016; Al-Akhras, 2011; Zhang, Q. et al., 2019). However, it is mostly used 394 

for other applications (Al-Akhras, N. M. et al., 2008; Ataie and Riding, 2013; Biricik et al., 1999; 395 

Khushnood et al., 2014; Memon et al., 2018). There are also a few studies on the effect of the use of rice 396 

straw ash (El-sayed et al., 2017) and rape-plant straw ash (Zhang et al., 2014) on the technical perfor-397 

mance of concrete and mortars (Munshi and Sharma, 2016). Other straw ashes, made with barley 398 

(Risnes et al., 2003), corn (Masiá et al., 2007), and rape (Masiá et al., 2007) straws, have similar chemical 399 

compositions to WSA. 400 

4.1.6 Leaf ashes 401 

Amorphous and pozzolanic ash can be obtained by incinerating banana (Kanning, Rodrigo C. et al., 2014; 402 

Kanning et al., 2011) and bamboo (Dwivedi et al., 2006; Singh et al., 2007; Villar-Cociña et al., 2011) 403 

leaves. It was concluded that the activity of bamboo leaf ash (BLA) is greater than that of RHA and SBA 404 

(Frías et al., 2012). The results show that cement can be replaced with up to 15% (Dhinakaran and 405 

Gangava, 2016) and 20% (Goyal and Tiwari, 2016; Kanning, Rodrigo C. et al., 2014) of each BLA and ba-406 

nana leaf ash, respectively, for a compromise between the durability and strength performances. Nev-407 

ertheless, a study produced low binder content concrete with a high w/b ratio and showed that the 408 

strength decreases with increasing BLA content (Asha et al., 2014). Apart from the mentioned ashes, 409 

there are other leaf ashes, used only in pastes and mortars (Ademola and Buari, 2014; Umoh and 410 
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Odesola, 2015). 411 

4.1.7 Forest biomass bottom ashes 412 

Forests must be isolated and divided in several zones to prevent uncontrollable fires. Normally, the isolated 413 

zones must be cleaned of all the grass, wood, straw, leaves, etc. For sustainability reasons, these forest 414 

residues can be used to obtain renewable energy and use their ash for construction purposes. Accordingly, 415 

these ashes may have significant ranges in terms of chemical and physical properties, depending on the 416 

source of biomass. Previous studies (Farinha et al., 2019; Garcia and Sousa-Coutinho, 2013) showed that 417 

strength may slightly improve with the incorporation of 10-15% FBBA as cement substitution, especially 418 

after 90 days. Several studies on the effect of forest residues ashes on mortar have been made (Coelho, 419 

2010; Farinha et al., 2019; Garcia and Sousa-Coutinho, 2013; Rajamma et al., 2009). However, this path has 420 

not been followed for concrete. 421 

4.1.8 Wood ashes 422 

Although wastes from forests (section 4.1.7) contain a variety (contaminated) of materials, quite often 423 

their characteristics may not be that different from those of wood ashes. A couple of studies 424 

(Sigvardsen, Nina M. et al., 2019; Teixeira et al., 2019) showed that the majority of wood ashes (WA) 425 

have lower SIO2+Al2O+Fe2O3 and higher CaO content than those of coal ashes. This helps concrete to 426 

develop more C-S-H. However, the amount of loss on ignition (LOI) in WA is significantly higher than 427 

that of the coal ashes, which negatively affects the performance of concrete. Most of the studies show 428 

that the mechanical performance of concrete decreased with increasing incorporation ratio of WA 429 

(Abdullahi, 2006; Chowdhury et al., 2015; Kara et al., 2012; Udoeyo et al., 2006). In terms of durability, 430 

namely chloride ion penetration, there is no consensus in the literature, but some studies showed that 431 

it may increase durability by being incorporated with other SCM (Teixeira et al., 2019). WA is also 432 

harmful in terms of carbonation (Teixeira et al., 2019) and water absorption (Udoeyo et al., 2006), but 433 

it may decrease the carbonation rate with FA because of the synergetic behaviour of the two materials 434 

(Teixeira, 2019). In addition, despite several attempts (Abdullahi, 2006; Chowdhury et al., 2015; Kara 435 

et al., 2012; Mangi, S. et al., 2017; Siddique, 2012b; Teixeira et al., 2019; Udoeyo and Dashibil, 2002; 436 

Udoeyo et al., 2006) to understand the effect of WA on concrete, Magi et al. (Mangi, S. et al., 2017) 437 

stated that there is no detailed study on the effect of WA on high-strength concrete. Furthermore, 438 

attempts to treat WA before using it as SBM are very limited (Sigvardsen, Nina Marie et al., 2019). 439 

The bark ashes of most trees (balsam (Bryers, 1996), beech (Bryers, 1996), pine (Theis et al., 2006), 440 

birch (Bryers, 1996), elm (Bryers, 1996), eucalyptus (Theis et al., 2006), hemlock (Bryers, 1996), maple 441 
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(Bryers, 1996), poplar (Bryers, 1996), spruce (Bryers, 1996), and tamarack (Bryers, 1996)) contain a 442 

significant amount of CaO (43-68%) that is very close to that of ordinary Portland cement. However, 443 

studies on their effect on concrete have not been made. For example, although the amount of CaO in 444 

cement and the mentioned materials may be the same, it does not necessarily have the same potential 445 

in terms of reactivity. In fact, their potential depends on the ratio of amorphous particles. 446 

4.1.9 Other agriculture-farming wastes 447 

There are also few attempts to use other farming wastes ashes such as those from the olive (Al-Akhras 448 

et al., 2009; Cuenca et al., 2013; Eisa, 2014), tobacco (Moreno et al., 2018), elephant grass (Cordeiro 449 

and Sales, 2015), banana (Kanning, Rodrigo C et al., 2014), sisal (Wei and Meyer, 2014) and ripe plan-450 

tain peels (Ahmad and Ma’aruf, 2016) sectors as SCMs in concrete. According to the mentioned stud-451 

ies, the performance of farming waste ashes depends on their exposure to heat that directly affects 452 

the amount of amorphous particles. 453 

4.1.10 Shell wastes 454 

Most of the shells are used as partial replacement of natural aggregates in concrete (§5.2). However, some 455 

attempts have been made to show the effect of oyster shell ash as partial replacement of cement on the 456 

technical performance of mortar (Lertwattanaruk et al., 2012; Zhong et al., 2012), as well as that of mussel 457 

shell ash (Lertwattanaruk et al., 2012; Zhong et al., 2012), periwinkle shell ash (Dahunsi and Bamisaye, 458 

2002; Umoh and Olusola, 2013), cockle shell ash (Othman et al., 2013) and eggshell (Tan et al., 2018) on 459 

cement pastes, mortars and concrete. According to the mentioned studies, the shell ashes generally de-460 

crease strength, drying shrinkage and thermal conductivity, increase setting time, and improve resistance 461 

to magnesium-sulphate attack. 462 

4.2 Industrial wastes as SCM 463 

Contrary to AWAF, there are many studies on the effect of industrial waste ashes as substitutes of 464 

cement on the cost, EI and quality of concrete. However, further study on the majority of these ma-465 

terials is still needed due to their discrepant chemical composition. Using the ternary phase diagram, 466 

Figure 9 is drawn, presenting the chemical composition of different types of binders, sourced from 81 467 

publications (Ademola and Buari, 2014; Adesanya, 1996; Adesanya and Raheem, 2009b; Aïtcin, 2016; 468 

Al-Akhras and Abdulwahid, 2010; Al-Akhras et al., 2009; Al-mulali et al., 2015; Alemayehu and 469 

Lennartz, 2009; Andrade, L. et al., 2009; Aprianti S, 2017; Awang et al., 2014; Ayano and Sakata, 2000; 470 

Berra et al., 2015; Biricik et al., 1999; Brännvall and Kumpiene, 2016; Burduhos Nergis et al., 2018; 471 
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Celik et al., 2014; Chen et al., 2013; Chusilp et al., 2009; Cordeiro and Sales, 2015; Cuenca et al., 2013; 472 

Dai et al., 2014; De Belie et al., 2018; Dhinakaran and Gangava, 2016; Dhir et al., 2017; Djon Li Ndjock 473 

et al., 2017; Du and Pang, 2018; Dwivedi et al., 2006; Frías et al., 2012; Frias et al., 2007; Frías et al., 474 

2011; Fuad et al., 1993; Garcia-Lodeiro et al., 2011; Garcia and Sousa-Coutinho, 2013; Gursel et al., 475 

2016; Hwang and Laiw, 1989; Imris et al., 2000; Jamaluddin et al., 2016; Kaid et al., 2009; Kasemchaisiri 476 

and Tangtermsirikul, 2008; Khan et al., 2012; Khushnood et al., 2014; Kıyak et al., 1999; Lemougna et 477 

al., 2014; Marghussian and Maghsoodipoor, 1999; Massazza, 1998; Memon et al., 2018; Milagre 478 

Martins et al., 2010; Miles et al., 1995; Mineral and Technology, 1989; Moayedi et al., 2019; Mobasher 479 

et al., 1996; Moura et al., 1999; Newlands and Macphee, 2017; Nguyen, 2011; Park et al., 2009; Payá 480 

et al., 2002; Rafieizonooz et al., 2016; Rajamma et al., 2009; Rajamma et al., 2012; Ramezanianpour, 481 

2014; Romano et al., 2018; Roper et al., 1983; Roselló et al., 2015; Rossen, 2014; Rukzon and 482 

Chindaprasirt, 2012; Sanchez de Rojas et al., 2004; Sanjith et al., 2015; Saraber and Haasnoot, 2012; 483 

Siddique, 2013; Singh et al., 2007; Snellings et al., 2012; Somna et al., 2012; Suwanmaneechot et al., 484 

2015; Tangchirapat et al., 2009; Tangchirapat et al., 2007; Umoh and Odesola, 2015; Vassilev et al., 485 

2010; Zain et al., 2004; Zhang, Q. et al., 2019; Zheng et al., 2009). The results show that the chemical 486 

composition of industrials wastes relatively to AWA (§4.1) are more discrepant and significantly de-487 

pends on the type and source of the materials. It is important to mention that the data given in Figure 488 

9, namely the amount of CaO, Al2O3 and SiO2 given for each material (e.g. CFA and GGBS), cannot be 489 

directly compared with the same amount in cement because the amount of amorphous particles in 490 

these materials is different from that in cement. 491 

4.2.1 Coal fly ash 492 

According to the American (ASTM C618-02, 2005) and Canadian (CSA-A23, 1982) standards, which are 493 

comparable to European standard (EN 450-1, 2012), FA is classified as high (type C) and low (type F) CaO 494 

content. Relatively to other industrials wastes, type F coal FA is the most common material used in the 495 

literature regarding technical performance (Gonzalez-Corominas et al., 2016; Gopalan, 1996; Güneyisi et 496 

al., 2015; Huang et al., 2013a; Jalal et al., 2015; Jiang and Malhotra, 2000; Karaşin and Doğruyol, 2014; 497 

Khatib, 2008; Khunthongkeaw et al., 2006; Kim et al., 2013; Kou and Poon, 2013; Kou et al., 2007; Kumar 498 

et al., 2007; Kurda et al., 2017a; Kurda et al., 2019b; Lammertijn and Belie, 2008; Leung et al., 2016; Lima, 499 

Carmine et al., 2013; Limbachiya et al., 2012; M., 2002; Malhotra, 1993; Mardani-Aghabaglou et al., 2013; 500 

Marinković et al., 2016; Marthong and Agrawal, 2012; Michael, 2007; Misra et al., 2007a; Misra et al., 501 

2007b; Mittal et al., 2004; Naik et al., 2002; Nath and Sarker, 2011; O’Brien et al., 2009; Pacheco Torgal 502 

et al., 2011; Poon and Kou, 2010; Rashad, 2015a, 2015b; Ruixia, 2010; Şahmaran et al., 2008; 503 

Saravanakumar and Dhinakaran, 2013; Shaikh and Supit, 2015; Siddique, 2004a; Simčič et al., 2015; Singh, 504 
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N. et al., 2019; Somna et al., 2012; Surya et al., 2015; Tangchirapat et al., 2013; Thomas and Bamforth, 505 

1999; Tian et al., 2011; Wang et al., 2017b; Wu and Xu, 2011; Xie et al., 2019; Yoo et al., 2015; Yoon et al., 506 

2014; Yoshitake et al., 2014; Younsi et al., 2011; Zhao et al., 2015a), LCA (DTI, 2013; Göswein et al., 2018; 507 

Kurda et al., 2020; Kurda et al., 2018e; Kurda et al., 2018c; O’Brien et al., 2009; Page et al., 1979; Tait and 508 

Cheung, 2016; Teixeira et al., 2016; Wu and Xu, 2011), cost (Braga et al., 2017; Camões et al., 2003; Kurda 509 

et al., 2018b), and toxicity (Egemen and Yurteri, 1996; Kadir et al., 2015; Kurda et al., 2018b; Palumbo et 510 

al., 2005; Regennitter, 2007; Sočo and Kalembkiewicz, 2007; Tripathi et al., 2004; Tsiridis et al., 2006; Ye 511 

et al., 2007; Zhu, 2011). Nevertheless, studies on the service life and toxicity of concrete containing a high 512 

volume of FA are still very limited. According to most of the previous studies (Gonzalez-Corominas et al., 513 

2016; Gopalan, 1996; Güneyisi et al., 2015; Huang et al., 2013a; Jalal et al., 2015; Jiang and Malhotra, 514 

2000; Karaşin and Doğruyol, 2014; Khatib, 2008; Khunthongkeaw et al., 2006; Kim et al., 2013; Kou and 515 

Poon, 2013; Kou et al., 2007; Kumar et al., 2007; Kurda et al., 2019b; Lammertijn and Belie, 2008; Leung 516 

et al., 2016; Lima, Carmine et al., 2013; Limbachiya et al., 2012; M., 2002; Malhotra, 1993; Mardani-517 

Aghabaglou et al., 2013; Marinković et al., 2016; Marthong and Agrawal, 2012; Michael, 2007; Misra et 518 

al., 2007a; Misra et al., 2007b; Mittal et al., 2004; Naik et al., 2002; Nath and Sarker, 2011; O’Brien et al., 519 

2009; Pacheco Torgal et al., 2011; Poon and Kou, 2010; Rashad, 2015a, 2015b; Ruixia, 2010; Şahmaran et 520 

al., 2008; Saravanakumar and Dhinakaran, 2013; Shaikh and Supit, 2015; Siddique, 2004a; Simčič et al., 521 

2015; Singh, N. et al., 2019; Somna et al., 2012; Surya et al., 2015; Tangchirapat et al., 2013; Thomas and 522 

Bamforth, 1999; Tian et al., 2011; Wang et al., 2017b; Wu and Xu, 2011; Xie et al., 2019; Yoo et al., 2015; 523 

Yoon et al., 2014; Yoshitake et al., 2014; Younsi et al., 2011; Zhao et al., 2015a), the technical properties 524 

of concrete may worsen when a high volume of cement is replaced with FA type F. Some researchers 525 

overcame this issue by replacing a given amount of cement with FA and adding extra FA as an addition 526 

(Lima, Carmine et al., 2013; Naik and Ramme, 1987; Pepe, 2015). 527 
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 528 

Figure 9 - CaO-SiO2-Al2O3 ternary phase diagram of different binders. AWA = agricultural wastes (rise husk ash, corn cob 529 
ash, sugarcane bagasse ash, straw ash, palm oil fuel ash, forest biomass bottom ash, wood ash), BF = Brick feedstock, BF = 530 
brick feedstock, CBA = coal bottom ash, CL = clay, CS = copper slag, FA = coal fly ash, FG = flat glass, GGBS = ground granu-531 
lated blast furnace slag, HL = hydraulic lime, MIBA = municipal solid waste incinerator bottom ash, NP = natural pozzolan, 532 
PC = Portland cement, QL = quick lime, SF = silica fume, SH = shale, SLG = soda lime glass. Texts with red and black colours 533 
are average value and range values, respectively. C = CaO, S = SiO2, A = Al2O3 (grey texts). AFt = ettringite, AFm = monosul-534 

phate, C-S-H = Calcium-Silicate-Hydrate (blue texts). CS, C2S, C3S, and lime are reactive to CO2. Data obtained from 535 
(Ademola and Buari, 2014; Adesanya, 1996; Adesanya and Raheem, 2009b; Aïtcin, 2016; Al-Akhras and Abdulwahid, 2010; 536 

Al-Akhras et al., 2009; Al-mulali et al., 2015; Alemayehu and Lennartz, 2009; Andrade, L. et al., 2009; Aprianti S, 2017; 537 
Awang et al., 2014; Ayano and Sakata, 2000; Berra et al., 2015; Biricik et al., 1999; Brännvall and Kumpiene, 2016; 538 

Burduhos Nergis et al., 2018; Celik et al., 2014; Chen et al., 2013; Chusilp et al., 2009; Cordeiro and Sales, 2015; Cuenca et 539 
al., 2013; Dai et al., 2014; De Belie et al., 2018; Dhinakaran and Gangava, 2016; Dhir et al., 2017; Djon Li Ndjock et al., 2017; 540 

Du and Pang, 2018; Dwivedi et al., 2006; Frías et al., 2012; Frias et al., 2007; Frías et al., 2011; Fuad et al., 1993; Garcia-541 
Lodeiro et al., 2011; Garcia and Sousa-Coutinho, 2013; Gursel et al., 2016; Hwang and Laiw, 1989; Imris et al., 2000; 542 

Jamaluddin et al., 2016; Kaid et al., 2009; Kasemchaisiri and Tangtermsirikul, 2008; Khan et al., 2012; Khushnood et al., 543 
2014; Kıyak et al., 1999; Lemougna et al., 2014; Marghussian and Maghsoodipoor, 1999; Massazza, 1998; Memon et al., 544 

2018; Milagre Martins et al., 2010; Miles et al., 1995; Mineral and Technology, 1989; Moayedi et al., 2019; Mobasher et al., 545 
1996; Moura et al., 1999; Newlands and Macphee, 2017; Nguyen, 2011; Park et al., 2009; Payá et al., 2002; Rafieizonooz et 546 

al., 2016; Rajamma et al., 2009; Rajamma et al., 2012; Ramezanianpour, 2014; Romano et al., 2018; Roper et al., 1983; 547 
Roselló et al., 2015; Rossen, 2014; Rukzon and Chindaprasirt, 2012; Sanchez de Rojas et al., 2004; Sanjith et al., 2015; 548 
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Saraber and Haasnoot, 2012; Siddique, 2013; Singh et al., 2007; Snellings et al., 2012; Somna et al., 2012; Suwanmaneechot 549 
et al., 2015; Tangchirapat et al., 2009; Tangchirapat et al., 2007; Umoh and Odesola, 2015; Vassilev et al., 2010; Zain et al., 550 

2004; Zhang, Q. et al., 2019; Zheng et al., 2009) 551 

4.2.2 Coal bottom ash 552 

CBA is mainly recommended to be used in concrete as a partial replacement of sand because it has 553 

less active SiO2 content compared to FA and its particles are porous, irregular and angular, and have 554 

a rough surface texture (Andrade, L.B. et al., 2009; Rafieizonooz et al., 2016; Ramzi et al., 2016; Singh 555 

and Siddique, 2013; Singh, Navdeep et al., 2018). However, some studies show that it can also work 556 

as a potential SCM after proper grinding (Mangi et al., 2019). Most of the previous studies are focused 557 

on the effect of CBA, as cement replacement, on concrete strength (Argiz et al., 2018; Chaipanich et 558 

al., 2014; Jaturapitakkul and Cheerarot, 2003; Khan and Ganesh, 2016; Kurama and Kaya, 2008; Marto 559 

et al., 2010; Pyo and Kim, 2017; Rafieizonooz et al., 2016; Wongkeo et al., 2012), and a few studies 560 

focused on durability (Argiz et al., 2018; Khongpermgoson et al., 2019; Singh, 2018), toxicity (Kadir et 561 

al., 2015), EI (Bumanis et al., 2013; Hafez et al., 2019b; Hafez et al., 2019a; Rathnayake et al., 2018) 562 

and cost (Bumanis et al., 2013). Based on the mechanical strength, CBA is recommended to be used 563 

at up to 10% of cement’s weight (Argiz et al., 2018; Khan and Ganesh, 2016; Kurama and Kaya, 2008). 564 

4.2.3 Industrial slags 565 

Industrial slags are another by-product remaining after an intended metal smelts from its raw ore. To 566 

produce more sustainable concrete, cement has been substituted with ground granulated blast furnace 567 

slag, i.e. lead slag (Penpolcharoen, 2005), copper slag (Gursel and Ostertag, 2019; Prem et al., 2018; Shi 568 

et al., 2008), nickel slag (Papadakis et al., 2002), and iron slags (Jiang et al., 2018; Yi et al., 2012). Due to 569 

their high density, reactivity and/or pozzolanicity, most of the mentioned slags were recommended to 570 

be used as aggregates for radiation shielding concrete (Hafez et al., 2019; Ismail et al., 2008; Lee, H.-S. 571 

et al., 2016; Picha et al., 2015). However, due to their chemical composition (Figure 9), ground granu-572 

lated blast furnace slag (a by-product of iron and steel-making) is also studied as SCM in terms of quality 573 

(Özbay et al., 2016; Saleh Ahari et al., 2015; Song and Saraswathy, 2006b) and EI (Heard et al., 2012; 574 

Jamshidi et al., 2015; Tait and Cheung, 2016). However, this solution significantly increases the dead 575 

loads of the concrete structure. 576 

4.2.4 Silica fume (SF) 577 

SF has been successfully used for many applications (Çakır and Sofyanlı, 2015; Choi et al., 2016; 578 

Cwirzen et al., 2008a; Jalal et al., 2015; Mastali and Dalvand, 2016; Papa et al., 2016; Sadrmomtazi et 579 
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al., 2012; Saleh Ahari et al., 2015; Saraya, 2014; Tamimi et al., 2016), and it may act as a healing agent, 580 

filler and SCM in concrete (Abd Elhakam et al., 2012; Dilbas et al., 2014; Gesoğlu et al., 2009; González-581 

Fonteboa et al., 2009; Jalal et al., 2015; Leung et al., 2016; Malhotra, 1993; Pedro et al., 2017a, 2017b; 582 

Pedro et al., 2018; Rashad, 2015b). SF significantly increases strength, pozzolanic activity (Papa et al., 583 

2016; Saraya, 2014; Tamimi et al., 2016), durability and impact resistance (Çakır and Sofyanlı, 2015; 584 

Choi et al., 2016; Jalal et al., 2015; Mastali and Dalvand, 2016; Zhang, Zengqi et al., 2016) of concrete 585 

due to its multi-range macro-particles and chemical composition. Existing standards such as European 586 

standard (EN 197-1, 2000) already have the recommended amount of silica fume that cement may 587 

have when using conventional materials (e.g. natural aggregate). Regarding non-conventional mate-588 

rials such as recycled aggregate and steel fibres, 10%-14% of SF considered as an optimum (Çakır and 589 

Sofyanlı, 2015; Jalal et al., 2015; Mastali and Dalvand, 2016). Nevertheless, SF may decrease workabil-590 

ity (Khatri et al., 1995) and long-term compressive strength (De Larrard and Bostvironnois, 1991) and 591 

it is not easily dispersed in concrete. In addition, SF may not be effective in terms of creep (Buil and 592 

Acker, 1985) and corrosion resistance in marine environment (Sandberg, 1998). 593 

4.2.5 Other artificial pozzolans 594 

Artificial pozzolans can be classified as industrial by-products (most of SCM in §4.1-4.3) and burned 595 

materials, namely (i) calcined clays (Al-Rezaiqi et al., 2018; Asadollahfardi et al., 2019; Saboo et al., 596 

2019; Saleh Ahari et al., 2015; Schulze and Rickert, 2019; Shafiq et al., 2015; Shi, Z. et al., 2019; 597 

Sujjavanich et al., 2017; Vu et al., 2001), (ii) ceramic residues (Andreola et al., 2010; Cheng et al., 2014; 598 

El-Dieb and Kanaan, 2018; Kannan et al., 2017; Li, L.G. et al., 2019; Pacheco-Torgal and Jalali, 2010), 599 

(iii) sedimentary rocks containing clay minerals (Seraj et al., 2015; Vejmelková et al., 2018; Yılmaz and 600 

Ediz, 2008) and (iv) burned bauxites (Liu and Poon, 2016; Rathod et al., 2013). 601 

Natural calcined clay such as kaolinite (Fernandez et al., 2011; Schulze and Rickert, 2019; Simone and 602 

Jorg), montmorillonite (Fernandez et al., 2011; Simone and Jorg), and muscovite/illite (Fernandez et 603 

al., 2011; Simone and Jorg) can be used as SCM (Schulze and Rickert, 2019). However, the most com-604 

mon one is metakaolin (Asadollahfardi et al., 2019; Saboo et al., 2019; Saleh Ahari et al., 2015; Shafiq 605 

et al., 2015; Sujjavanich et al., 2017; Vu et al., 2001), which is derived from calcined kaolin clay. Their 606 

performance significantly depends on the calcined temperature (600-850 °C for 1-12 h) (Rashad, 607 

2013b). The use of metakaolin in the construction sector is still far behind that of the other SCMs 608 

because of its price (3-4 times higher price than that of cement (Vejmelková et al., 2018)). 609 

Ceramic residues (Andreola et al., 2010; Li, L.G. et al., 2019; Pacheco-Torgal and Jalali, 2010) or ceramic 610 

polishing waste (Cheng et al., 2014; El-Dieb and Kanaan, 2018; Kannan et al., 2017) are other active 611 
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pozzolans and they are considered as the illite group (Vejmelková et al., 2018), used for the production 612 

of red-ceramics. After milling, they can be used as a partial replacement of cement (Andreola et al., 613 

2010; Cheng et al., 2014; El-Dieb and Kanaan, 2018; Kannan et al., 2017; Li, L.G. et al., 2019; Pacheco-614 

Torgal and Jalali, 2010). However, studies in this path are still very limited and the ceramic residues 615 

powder is not widely available (Vejmelková et al., 2018). 616 

Sedimentary rocks contain clay minerals, also termed calcined shale (Seddik Meddah, 2015; Seraj et 617 

al., 2015; Taylor-Lange et al., 2014) and claystone (Vejmelková et al., 2018). Although they may be an 618 

alternative solution to the other two artificial pozzolans (Vejmelková et al., 2018), due to their lower 619 

price and availability, studies on these materials are still very scarce. 620 

In the aluminium industry, sedimentary rock (bauxite) with a relatively high Al content is burned. As a 621 

result, a significant amount of hazardous waste (red mud) is generated (this can also be included in 622 

§4.2.3). This bauxite residue is considered as an effective SCM to be used as partial replacement of 623 

cement in concrete (Liu and Poon, 2016; Rathod et al., 2013). 624 

4.2.6 Natural pozzolans 625 

Natural pozzolans are sourced from (i) volcanic tuffs/zeolites (Raggiotti et al., 2018; Ramezanianpour et 626 

al., 2013), (ii) siliceous such as opal and diatomaceous earth (Abrão et al., 2019; Li, J. et al., 2019; Tagnit-627 

Hamou et al., 2003; Vejmelková et al., 2018; Yılmaz and Ediz, 2008), and (iii) volcanic glasses such as 628 

volcanic ashes (Hossain and Lachemi, 2007; Lemougna et al., 2018; Siddique, 2012a), pumice and pumic-629 

ite (Nozahic et al., 2012; Ulusu et al., 2016). Most of the conclusions drawn for artificial pozzolans can 630 

be apply to concrete containing natural pozzolans, except the fact that it costs less (Lemougna et al., 631 

2018; Raggiotti et al., 2018). In other words, the cost of concrete can significantly decrease by increasing 632 

the incorporation ratio of natural pozzolans because they do not need to be burnt. 633 

4.3 Municipal wastes as SCM 634 

4.3.1 Glass powder 635 

Glass is an amorphous and non-crystalline material. It has been used as partial replacement of aggregate 636 

in concrete (Hama et al., 2019; Karim, F. et al., 2016; Korjakins et al., 2009; Korjakins et al., 2012; Matos 637 

et al., 2016; Park et al., 2004; Rossomagina and Puzanov, 2004; Yang, S. et al., 2019) and in other products 638 

such as fired-clay bricks (Muñoz et al., 2016), alkali-activated materials (Benmokrane et al., 2002; Liu, Y. 639 

et al., 2019), glass-reinforced panels (Pastor et al., 2014), structural repair mortar (Calmon et al., 2014), 640 

ultra-lightweight fibre-reinforced concrete (Yu et al., 2016), micro filler for concrete (Korjakins et al., 2009; 641 
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Korjakins et al., 2012), lightweight aggregates (Nemes and Józsa, 2006) and concrete blocks (Yang, S. et 642 

al., 2019). However, sometimes the results are not satisfactory when waste glass is used as aggregates in 643 

concrete due to a destructive reaction between silica in waste glass aggregate and alkalis in Portland ce-644 

ment that form silica gel (the main contributor to expansion) and micro-cracks generate around the reac-645 

tive aggregates (Rossomagina and Puzanov, 2004). Nevertheless, several studies concluded that very fine 646 

glass powder as a partial replacement of cement in concrete may have sufficient pozzolanic properties 647 

and no detectable deleterious action from alkali-silica reaction and they reported several replacement 648 

ratios (40% (Vijayakumar et al., 2013), 20% (Hama, 2017), 15% (Kamali and Ghahremaninezhad, 2015), 649 

10% (Aliabdo et al., 2016)) as an optimum. Additionally, glass can be considered as industrial (e.g. from 650 

car manufacturers) and municipal (flat glass sourced from households) waste. 651 

4.3.2 Sludge ashes 652 

Sludges are semi-solid slurries mostly produced from drinking water and wastewater treatment 653 

plants. Since dried sludge has similar heat value (calorific) to that of brown coal (Abd Ar Rafie et al., 654 

2016; Fytili and Zabaniotou, 2008; Oladejo et al., 2018), its incineration has become more attractive 655 

lately. For sustainability reasons, the ashes resulting from burning these sludges, such as sewage 656 

sludge ash (SSA) (Baeza-Brotons et al., 2014; Horiguchi et al., 2010; Lynn et al., 2015; Monzó et al., 657 

1999; Nakic, 2018; Smol et al., 2015) and sludge wastewater sludge ash (Sogancioglu et al., 2013), can 658 

be used as a partial replacement of cement in concrete. Generally, only low contents of SSA can be 659 

used (MIM and OBE, 2012). For higher quantities, treatment is required to extract phosphorus (Dhir 660 

et al., 2017b; MIM and OBE, 2012). Generally, they can be used as aggregates (Jamshidi et al., 2012; 661 

Kosior-Kazberuk, 2011), as binder (Chang et al., 2010; Monzó et al., 1999), in blocks (Baeza-Brotons et 662 

al., 2014; Pérez Carrión et al., 2014), in lightweight aggregate concrete (Bhatty and Reid, 1989; Yip and 663 

Tay, 1990), and in aerated/foamed concrete (Wang and Chiou, 2004). 664 

Apart from the above sludges, paper sludge (Banfill and Frias, 2007; Bui et al., 2019; Ferrándiz-Mas et 665 

al., 2014; Santa et al., 2013), granite waste sludge (Al-Hamaiedeh and Khushefati, 2013; Mármol et al., 666 

2010), galvanic sludge (Luz et al., 2009), glass waste sludge (Kim, J. et al., 2014; You et al., 2016), paint 667 

sludge (Avci et al., 2017), and contaminated arsenic sludge (Roy et al., 2018) are also used, after burn-668 

ing or drying, in pastes, mortars and concrete. 669 

4.3.3 Municipal solid waste incineration ashes (MIBA) 670 

In terms of chemical composition, MIBA can be divided in “pozzolanic regions” and “latent hydraulic” 671 

(Dhir et al., 2017), depending on the combustion temperature and the source of the solid waste. Most 672 
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studies are focused on the effect of MIBA on the compressive strength (Fatihhi et al., 2019; Jurič et 673 

al., 2006; Li, X.-G. et al., 2012; MANGA, 2016; Silva et al., 2019b) and leachability (Jurič et al., 2006; 674 

Shao et al., 2014; Shirazi and Marandi, 2012; Silva et al., 2019b) of concrete. Generally, MIBA are det-675 

rimental to the strength of concrete due to the reaction between cement and aluminium of MIBA 676 

(Dhir et al., 2017; Silva et al., 2019b). Regarding municipal solid waste incineration fly ash, high chlo-677 

ride ions content is the main detrimental aspect to its potential use (Aubert et al., 2004; Haiying et al., 678 

2010; Hartmann et al., 2015; Keppert et al., 2013; Shao et al., 2014; Ye et al., 2007). 679 

4.4 Binary, ternary and quaternary SCM mixes 680 

So far, there is no systematic review on the effect of binary, ternary and quaternary SCMs (BTQ-SCM) 681 

on the performance of concrete, specifically for incorporation ratios of SCM higher than the standard 682 

limit (EN 197-1, 2000). Additionally, consensus on the negative and positive effect of this path cannot 683 

be reached (Celik et al., 2015; Gursel et al., 2016; Jones et al., 1997; Patel et al., 2016; Rahla et al., 684 

2019; Saleh Ahari et al., 2015; Tang et al., 2019c). Nevertheless, according to the results of most stud-685 

ies (Celik et al., 2015; Gursel et al., 2016; Rahla et al., 2019; Saleh Ahari et al., 2015; Tang et al., 2019c), 686 

the synergetic behaviour of BTQ-SCM with normal particle size (> 100 nm) and specific surface area (< 687 

10,000 m2/kg) (Shi et al., 2015) may not be significant. However, promising results are shown by using 688 

one or two SCMs with normal particle size and a small quantity of nano SCM particles, such as nano 689 

SiO2 (Jalal et al., 2015; Li, 2004; Qing et al., 2007; Tavakoli et al., 2020), nano CaCO3 (Antoni et al., 690 

2012; Khongpermgoson et al., 2019; Shaikh and Supit, 2014), nano TiO2 (Khushwaha et al., 2015; Li, Z. 691 

et al., 2017; Maravelaki-Kalaitzaki et al., 2013; Norhasri, M.S.M. et al., 2017), nano Fe2O3 692 

(Khoshakhlagh et al., 2012; Nazari et al., 2010; Rashad, 2013c), nano Al2O3 (Rashad, 2013c; Wu et al., 693 

2016a), nano ZnO (Arefi and Rezaei-Zarchi, 2012; Duraipandian, 2016), and nano clay (Allalou et al., 694 

2019; Morsy et al., 2010). 695 

4.5 Alternatives to Portland cement clinker 696 

Another solution to promote sustainability, instead of replacing cement with SCMs, is by producing 697 

alternative cement clinker such as ye'elimite-rich cements - binders based on phosphates (Abyzov, 698 

2017; Lieberman et al., 2018; Yang, Q. et al., 2002), , magnesium-based cements (Gartner and 699 

Macphee, 2011; Liska et al., 2008), thermal activated low-carbon recycled cement (Bogas, J.A. et al., 700 

2019), binders by activating of liberated concrete fines (recycled concrete fines are activated through 701 

a thermal treatment method) (Florea et al., 2014), and binders based on reactive calcium silicates 702 

produced by hydrothermal processing techniques (Link et al., 2015; Stemmermann et al., 2010). 703 
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Generally, Ye'elimite-rich cements can be divided in two main groups (i) low belite (calcium sulphoalu-704 

minate cements - CSA) such as reactive belite-rich Portland cement clinkers (Gartner and Sui, 2018; Naqi 705 

and Jang, 2019; Sui et al., 2015; Sui et al., 2006; Sui et al., 1999), and (ii) high belite such as belite-ye'elim-706 

ite-ferrite binders (Gartner and Sui, 2018; Naqi and Jang, 2019; Shi, C. et al., 2019), belite-alite-ye'elimite 707 

binder (Chitvoranund et al., 2016; Londono-Zuluaga et al., 2017; Shi, C. et al., 2019; Zea-Garcia et al., 708 

2019), and belite-ye'elimite-ternesite binder (Hanein et al., 2017; Montes et al., 2018; Shi, C. et al., 2019). 709 

Generally, these cements require a lower temperature, but their performance is worse than that of OPC. 710 

However, studies regarding these new cement clinkers are very scarce due to the cost barriers 711 

(Gartner and Sui, 2018) and the fact that it is complicated to simulate it in laboratory conditions such 712 

needed operations as filling a “rotary clinker kiln” with the raw materials used to make these cements. 713 

4.6 Activation techniques and geopolymer 714 

One way to promote sustainability is by utilizing co-products or by-products as partial replacements of 715 

cement. However, their incorporation ratios are limited because, after a given ratio (high volume), further 716 

hydration products in the paste may not be produced. To overcome this issue, alkaline activator (e.g. 717 

NaOH, KOH, and Na2SiO3) can be used. Thus, alkali activation techniques can be considered an alternative 718 

process to partial replacement of cement with SCMs. Materials that are rich in amorphous Al2O3 and SiO2 719 

can be used as a precursor, such as: 720 

i. AWAF: RHA (Bernal et al., 2012; Detphan and Chindaprasirt, 2009), POFA (Islam et al., 2014; Ranjbar 721 

et al., 2014; Salih et al., 2014b; Zarina et al., 2013), CCA (Matalkah et al., 2017; Oyebisi et al., 2018), 722 

SBA (Castaldelli et al., 2013), straw ash (Al-Akhras, 2013; Matalkah et al., 2017), FBBA (Girón et al., 723 

2015), WA (Cheah et al., 2017; Matalkah et al., 2016), other agriculture-farming wastes (e.g. alfalfa 724 

steam ash, cotton gin ash, com stalk ash and switch grass ash - (Alonso et al., 2019; Bernal et al., 725 

2016; Matalkah et al., 2017)), and shell wastes (Djobo et al., 2016; Monneron-Gyurits et al., 2018); 726 

ii. Industrial waste ashes: FA (Choo et al., 2016; Hajimohammadi and van Deventer, 2017; Nematollahi 727 

et al., 2014; Palomo and Fernández-Jiménez, 2011; Payá et al., 2019; Singh and Middendorf, 2020; 728 

Zhang, Zuhua et al., 2016; Zhou et al., 2016), CBA (Donatello et al., 2014), industrials slags (Aydın and 729 

Baradan, 2012; Font et al., 2020; Huseien et al., 2018; Islam et al., 2014; Li and Liu, 2007; Mehta and 730 

Siddique, 2018; Payá et al., 2019; Sun et al., 2018), SF (Assi, L. et al., 2018; Assi, L.N. et al., 2018; Çevik 731 

et al., 2018; Daniel et al., 2017; Duan et al., 2017; Kovtun et al., 2015; Okoye et al., 2016; Okoye et al., 732 

2017), artificial pozzolans (calcined clays (Duxson et al., 2007; Granizo et al., 2000; Longhi et al., 2016; 733 

Sun et al., 2018), ceramic residues (Reig et al., 2013; Shoaei et al., 2019), sedimentary rocks containing 734 
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clay minerals and burned bauxites (Dimas et al., 2009; Gong and Yang, 2000; Kumar and Kumar, 2013)), 735 

natural pozzolans (volcanic tuffs/zeolites (Raggiotti et al., 2018; Ramezanianpour et al., 2013), siliceous 736 

such as opal and diatomaceous earth (Abrão et al., 2019; Li, J. et al., 2019; Tagnit-Hamou et al., 2003; 737 

Vejmelková et al., 2018; Yılmaz and Ediz, 2008), and volcanic glasses such as volcanic ashes (Hossain 738 

and Lachemi, 2007; Kani and Allahverdi, 2009; Kani et al., 2012; Lemougna et al., 2018; Siddique, 739 

2012a), pumice and pumicite (Almalkawi et al., 2017; Yadollahi et al., 2015), mine mud waste (Manso 740 

and Castro-Gomes, 2015, 2019; Manso et al., 2018; Manso and Castro-Gomes, 2016)); 741 

iii. Municipal waste ashes: glass powder (Kourti et al., 2011; Liu, Y. et al., 2019; Martinez-Lopez and 742 

Ivan Escalante-Garcia, 2016; Pascual et al., 2014; Puertas and Torres-Carrasco, 2014; Tashima et 743 

al., 2012; Torres-Carrasco and Puertas, 2015), sludge ashes (Banfill and Frias, 2007; Cherian and 744 

Siddiqua, 2019; Guo et al., 2010; Santa et al., 2013; Yang et al., 2013), MIBA (Aliabdo et al., 2019; 745 

Chen, Z. et al., 2016; Galiano et al., 2011; Garcia-Lodeiro et al., 2016; Giro-Paloma et al., 2017; 746 

Huang, G. et al., 2019; Huang et al., 2018; Jing et al., 2007; Kim and Kang, 2014; Krausova et al., 747 

2012; Lancellotti et al., 2013; Liu, Y. et al., 2018; Onori et al., 2011; Penilla et al., 2003; Qiao et al., 748 

2008a, 2008b; Rożek et al., 2019; Song et al., 2015; Wongsa et al., 2017; Xuan et al., 2019; Zhu et 749 

al., 2016, 2018; Zhu et al., 2019), and municipal solid waste incinerator fly ash (MIFA) (Ferone et 750 

al., 2013; Jin, M. et al., 2016; Lach et al., 2018; Li, R. et al., 2019; Ryu et al., 2013; Shao et al., 2014; 751 

Shiota et al., 2017; Sofi et al., 2007; Yakubu et al., 2018). 752 

Alkali-activated materials (AAM’s) can be also produced with blended SCMs. For example, GGBS-SBA 753 

(Castaldelli et al., 2013), biomass FA-metakaolin (Rajamma et al., 2012), RHA-GGBS (Mehta and 754 

Siddique, 2018), FA-metakaolin (Duan et al., 2015; Fernández-Jiménez et al., 2008), POFA-FA (Islam et 755 

al., 2014), FA-RHA (Chindaprasirt and Rukzon, 2008), FA- SF (Assi, L. et al., 2018; Assi, L.N. et al., 2018; 756 

Duan et al., 2017; Okoye et al., 2016; Okoye et al., 2017), and FA-slag (Al-Majidi et al., 2016; Fang et 757 

al., 2018; Nath and Sarker, 2014; Rao and Rao, 2015; Rashad, 2013a) blends have been used. FA with 758 

spherical particles to control the fresh properties is used as SCM to produce AAM (Al-Majidi et al., 759 

2016; Chindaprasirt and Rukzon, 2008; Deb et al., 2014; Duan et al., 2015; Fernández-Jiménez et al., 760 

2008; Islam et al., 2014; Ismail et al., 2013; Nath and Sarker, 2014; Rao and Rao, 2015; Rashad, 2013a). 761 

In other words, most AAM studies are related with industrials wastes because concrete with different 762 

mechanical performance (e.g. 55-60 MPa (Chindaprasirt and Rukzon, 2008), 20-60 MPa (Nath and 763 

Sarker, 2014), 30-62 MPa (Rashad, 2013a), 20-60 MPa (Fang et al., 2018), 20-50 MPa (Al-Majidi et al., 764 

2016), 20-70 MPa (Deb et al., 2014)) can be obtained from their use for a regular curing temperature 765 

(20-23 °C). Relatively to industrial waste ashes, studies on AAM containing agricultural and municipal 766 
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waste ashes are still very few. Perhaps this happens because the results are not promising when agri-767 

cultural and municipal waste ashes are used in AAM alone (Chen, Z. et al., 2016; Detphan and 768 

Chindaprasirt, 2009; Galiano et al., 2011; Garcia-Lodeiro et al., 2016; Giro-Paloma et al., 2017; He et 769 

al., 2013; Huang, G. et al., 2019; Huang et al., 2018; Jing et al., 2007; Kim and Kang, 2014; Krausova et 770 

al., 2012; Lancellotti et al., 2013; Liu, Y. et al., 2018; Nazari et al., 2011; Onori et al., 2011; Penilla et 771 

al., 2003; Qiao et al., 2008a, 2008b; Rożek et al., 2019; Salih et al., 2014a; Song et al., 2015; 772 

Songpiriyakij et al., 2010; Wongsa et al., 2017; Xuan et al., 2019; Yusuf et al., 2014; Zhu et al., 2016, 773 

2018; Zhu et al., 2019). One way to boost the performance of AAM is by blending one SCM with na-774 

noparticles, especially nanosilica (Adak et al., 2014; Adak et al., 2017; Behfarnia and Salemi, 2013; 775 

Bittnar et al., 2009; Çevik et al., 2018; Deb et al., 2015; Ehsani et al., 2017; Naskar and Chakraborty, 776 

2016; Qing et al., 2007; Singh, NB et al., 2018) or ultrafine slag (alccofine - (Jindal, B. et al., 2017; Jindal 777 

et al., 2017b; Jindal, B.B. et al., 2017a; Jindal, B.B. et al., 2017b)), or low quantity of cement (Alonso 778 

and Palomo, 2001; Chindaprasirt and Rukzon, 2008; Jiang, 1997; Nath and Sarker, 2014; Palomo et al., 779 

2007; SHI et al., 2012; Shi et al., 2003; Shi et al., 1993). 780 

5 Reduce the environmental impacts and resources use of aggregates 781 

Replacing virgin aggregates (de Brito et al., 2018) with non-conventional aggregates is another strategy 782 

that can be used to promote sustainability. However, relatively to other strategies (e.g. reduce the EI of 783 

binder, §4), the EI of concrete can only slightly decrease (up to 10% (Braga et al., 2017; Kurad et al., 2017; 784 

Turk et al., 2015; Wu and Xu, 2011), mostly depending on transportation scenario (Blengini and 785 

Garbarino, 2010; Coelho and de Brito, 2013; Göswein et al., 2018)) or slightly increase (Marinković et al., 786 

2010; Tošić et al., 2015). For that purpose, many specifications, e.g. from Portugal (LNEC E471, 2006), 787 

UK (BRE Digest 433, 1998; BS 6543, 1985; BS 8500-2, 2002), Austria (BRV, 2007), Japan (JSA - JIS A 5021, 788 

2016; JSA - JIS A 5022, 2016; JSA - JIS A 5023, 2016), Denmark (DCA-N.34, 1995), Brazil (NBR 15.116, 789 

2005), Holland (CUR-VB 4, 1984; CUR-VB 5, 1994; CUR 125, 1986), Switzerland (TV 70085, 2006), USA 790 

(ACI 555R-01, 2001), Germany (DIN 4226-100, 2002), France (DREIF, 2003), Spain (Vázquez et al., 2004), 791 

China (WBTC-N.12, 2002), Australia (EEPL, 2012), and others (RILEM TC 121-DRG N. 27, 1994) have been 792 

developed based on the technical properties of recycled aggregates, i.e. components, water absorption, 793 

density and maximum incorporation level in concrete and other construction materials. However, the 794 

specifications have not defined any limitations in terms of LCA. This gap is directly associated with the 795 

lack of joint investigation/data in terms of LCA and technical properties of recycled aggregates concrete. 796 
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5.1 Construction and demolition waste 797 

5.1.1 Recycled concrete aggregate 798 

Concrete can be found in most recycled aggregates due to fact that it is the most consumed material 799 

in structural applications. It can be separated from other construction and demolition waste (CDW) 800 

materials and re-used in concrete. Generally, the effect of recycled concrete aggregate (RCA) on the 801 

technical properties of concrete depends on its replacement level (Ferreira et al., 2011; Lavado et al., 802 

2020; Silva, R. V. et al., 2015b; Yang, K. et al., 2008), water absorption (Akib and Sayyad, 2015; Amorim 803 

et al., 2012; Arezoumandi et al., 2015; Arora and Singh, 2016; Brand et al., 2015; Carro-López et al., 2015; 804 

Cartuxo et al., 2015; Chan, 1998; Cong, 2006; Corinaldesi, 2011; Evangelista et al., 2015; Fumoto and 805 

Yamada, 2003; González-Fonteboa et al., 2012; Hasaba et al., 1981; Katz, 2003; Kebaïli et al., 2015; Kikushi 806 

et al., 1998; Kim et al., 2013; Kim et al., 2015; Kim and Yun, 2014; Kou and Poon, 2009b; Kou and Poon, 807 

2013; Leite, 2001; Levy and Helene, 2007; Lima, C. et al., 2013; Müeller and Winkler, 1998; Nuaklong et al., 808 

2016; Pedro et al., 2015b; Qasrawi and Marie, 2013; Ravindrarajah et al., 1987; Reddy et al., 2014; Reis et 809 

al., 2015; Schoon et al., 2015; Sérifou et al., 2013; Silva, R. V. et al., 2015b; Sim and Park, 2011; Soares et 810 

al., 2014a; Solyman, 2005; Tam et al., 2015; Wang et al., 2013; Wang, 2012; Yang et al., 2016; Yaprak et al., 811 

2011; Zega and Di Maio, 2011), moisture content (Silva et al., 2014; Silva, R. V. et al., 2015b), size (de 812 

Juan and Gutiérrez, 2009; Evangelista and de Brito, 2007; Ferreira et al., 2011; Fonseca, 2009; Gokce 813 

et al., 2011; Kurad et al., 2017; Kurda et al., 2019a; Kurda et al., 2019a; Kurda et al., 2018a; Silva et al., 814 

2014), shape (Ferreira et al., 2011; Fonseca, 2009; Silva et al., 2014), density (Akib and Sayyad, 2015; 815 

Amorim et al., 2012; Arezoumandi et al., 2015; Arora and Singh, 2016; Brand et al., 2015; Carro-López et 816 

al., 2015; Cartuxo et al., 2015; Chan, 1998; Cong, 2006; Corinaldesi, 2011; Evangelista et al., 2015; Fumoto 817 

and Yamada, 2003; González-Fonteboa et al., 2012; Hasaba et al., 1981; Katz, 2003; Kebaïli et al., 2015; 818 

Kikushi et al., 1998; Kim et al., 2013; Kim et al., 2015; Kim and Yun, 2014; Kou and Poon, 2009b; Kou and 819 

Poon, 2013; Leite, 2001; Levy and Helene, 2007; Lima, C. et al., 2013; Müeller and Winkler, 1998; Nuaklong 820 

et al., 2016; Pedro et al., 2015b; Qasrawi and Marie, 2013; Ravindrarajah et al., 1987; Reddy et al., 2014; 821 

Reis et al., 2015; Schoon et al., 2015; Sérifou et al., 2013; Silva et al., 2014; Silva, R. V. et al., 2015b; Sim and 822 

Park, 2011; Soares et al., 2014a; Solyman, 2005; Tam et al., 2015; Wang et al., 2013; Wang, 2012; Yang et 823 

al., 2016; Yaprak et al., 2011; Zega and Di Maio, 2011), recycling procedure (Chisholm, 2011; de Juan and 824 

Gutiérrez, 2009; Nagataki et al., 2004; Silva et al., 2014; Wegen and Haverkort, 1998), and quality of 825 

the original material (Barreto Santos et al., 2020; Chandra, 2004; Dhir et al., 1999; Hansen and Narud, 826 

1983; Hasaba et al., 1981; Nagataki et al., 2004; Silva et al., 2014), and on the composition of the 827 

resulting concrete, i.e. water to cement ratio (Correia et al., 2006; Evangelista and de Brito, 2010; 828 
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Kurda et al., 2019a; Pedro et al., 2015a; Pedro et al., 2015b; Pedro et al., 2017a; Silva et al., 2014; 829 

Soares et al., 2014b), chemical admixtures (Gutiérrez, 2004; Otsuki et al., 2003; Prakash and 830 

Krishnaswamy, 1998; Salem et al., 2003; Silva et al., 2014), type of binders (Ahmed, 2011; Arifi et al., 831 

2014; Berndt, 2009; Bhikshma and Divya, 2012; Costabile, 2001; de Juan and Gutiérrez, 2009; 832 

Gonzalez-Corominas et al., 2016; Gurdián et al., 2014; Kim et al., 2013; Kou et al., 2007; Kurad et al., 833 

2017; Kurda et al., 2019b; Kurda et al., 2018a; Kurda et al., 2018e; Limbachiya et al., 2012; Marinković 834 

et al., 2016; Nuaklong et al., 2016, 2018; Ping and Yidong, 2011; Poon and Kou, 2010; Sadati et al., 835 

2016; Silva et al., 2014; Singh, N. and Singh, S., 2016; Somna et al., 2012; Surya et al., 2015; 836 

Tangchirapat et al., 2013; Tian et al., 2011; Wu and Xu, 2011), and environmental conditions (Buyle-837 

Bodin and Hadjieva-Zaharieva, 2002; Fonseca et al., 2011; Silva et al., 2014). 838 

There is a wide range in the characteristics of RCA due to the quality of the original material (Pedro et 839 

al., 2014) and the size of the aggregates (Hafez et al., 2020; Kurad et al., 2017). For example, the water 840 

absorption, saturated surface-dry (SSD), particle oven-dried, apparent, and loose bulk density of fine 841 

RCA are 3.5-13%, 2161-2929 kg/m3, 1913-2620 kg/m3, 2410-2600 kg/m3 and 1344 kg/m3, respectively 842 

(Carro-López et al., 2015; Cartuxo et al., 2015; Chan, 1998; Evangelista et al., 2015; Fumoto and Yamada, 843 

2003; Hasaba et al., 1981; Katz, 2003; Kikushi et al., 1998; Kim and Yun, 2014; Kou and Poon, 2009b; 844 

Leite, 2001; Levy and Helene, 2007; Lima, C. et al., 2013; Müeller and Winkler, 1998; Schoon et al., 2015; 845 

Sérifou et al., 2013; Sim and Park, 2011; Solyman, 2005; Wang, 2012; Yaprak et al., 2011; Zega and Di 846 

Maio, 2011). In addition, the water absorption, loose bulk density and particle oven-dried density of 847 

coarse RCA are 2.8-6.8%, 1230-1600 kg/m3 and 2140-2760 kg/m3, respectively (Akib and Sayyad, 2015; 848 

Amorim et al., 2012; Arezoumandi et al., 2015; Arora and Singh, 2016; Brand et al., 2015; Cong, 2006; 849 

Corinaldesi, 2011; González-Fonteboa et al., 2012; Kebaïli et al., 2015; Kim et al., 2013; Kim et al., 2015; 850 

Kou and Poon, 2013; Nuaklong et al., 2016; Pedro et al., 2015b; Qasrawi and Marie, 2013; Ravindrarajah 851 

et al., 1987; Reddy et al., 2014; Reis et al., 2015; Sérifou et al., 2013; Soares et al., 2014a; Tam et al., 2015; 852 

Wang et al., 2013; Yang et al., 2016). 853 

In general, fine RCA is more detrimental to concrete than coarse RCA due to its high mortar content that 854 

increases its water absorption. In terms of strength, some studies mentioned that 20-30% incorporation of 855 

RCA may have a minor impact on concrete (Dhir and Paine, 2004; Evangelista and de Brito, 2007). Never-856 

theless, the effect of RCA depends on the target strength of concrete. For example, by sorting the results 857 

of the following studies based on their target strength: 20-30 MPa (Larrañaga, 2004; Sagoe-Crentsil et al., 858 

2001; Sérifou et al., 2013; Yang, K. et al., 2008), 30-40 MPa (Amorim et al., 2012; Arezoumandi et al., 2015; 859 

Guo et al., 2013; Kathirvel and Kaliyaperumal, 2016; Kim and Yun, 2014; Larbi et al., 2015; Malešev et al., 860 

2010; Movassaghi, 2006; Pacheco et al., 2015; Soares et al., 2014b), 40-50 MPa (Akib and Sayyad, 2015; 861 
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Corinaldesi, 2011; Geng and Sun, 2013; González-Fonteboa et al., 2012; Kathirvel and Kaliyaperumal, 2016; 862 

Khatib, 2005; Pereira, 2010; Yaprak et al., 2011; Zega and Di Maio, 2011), 50-60 MPa (Bogas et al., 2016; 863 

Corinaldesi, 2011; Evangelista and de Brito, 2007; González-Fonteboa et al., 2012; Ramos, 2014), 60-70 864 

MPa (Bogas et al., 2016; Cartuxo et al., 2015; Evangelista and de Brito, 2007; Pereira et al., 2012; Ramos, 865 

2014; Tam et al., 2015), and 70-80 MPa (Bogas et al., 2016; Cartuxo et al., 2015; Ramos, 2014), it can be 866 

said that the strength of high-strength concrete sharply reduced with increasing RCA replacement (failure 867 

will occur in the weaker old adhered mortar of RCA relative to the cement paste of conventional concrete). 868 

This may not occur for low strength concrete (at least up to 30% incorporation) because the ultimate 869 

strength of low-strength concrete depends mostly on its cement paste characteristics. In addition, most 870 

properties of concrete containing RCA have been studied, i.e. fresh properties (Geng and Sun, 2013; Kurda 871 

et al., 2017b; Lavado et al., 2020; Zega and Maio, 2006), tensile strength (Evangelista and de Brito, 2007; 872 

Pereira, 2010; Santos et al., 2020), modulus of elasticity (Khatib, 2005; Leite, 2001; Solyman, 2005), car-873 

bonation (Basheer et al., 2001; Levy and Helene, 2004; Prameetthaa et al., 2015), chloride penetration 874 

resistance (Cartuxo, F, 2013; Evangelista and de Brito, 2010), water absorption (Cartuxo et al., 2016; 875 

Evangelista and de Brito, 2010; Ghorbani et al., 2019a; Masood et al., 2020; Nobre et al., 2020; Zega and 876 

Maio, 2006), shrinkage (Domingo-Cabo et al., 2009; Khatib, 2005; Solyman, 2005; Zega and Maio, 2006), 877 

UPV (Khatib, 2005; Pereira, 2010), creep (Domingo-Cabo et al., 2009; ZOU et al., 2009), LCA (Braunschweig 878 

et al., 2011; de Schepper, M. et al., 2014; De Schepper, Mieke et al., 2014; Evangelista and de Brito, 2007; 879 

Göswein et al., 2018; Knoeri et al., 2013; Kurda et al., 2018c; Marinkovic´ et al., 2010; Quattrone et al., 880 

2014; Tošić et al., 2015; Weil et al., 2006), cost (Braga et al., 2017; Golgota et al., 2014; Kurda, 2017; Kurda 881 

et al., 2018d), and toxicity (Rodrigues et al., 2020; Rodrigues et al., 2017a). However, studies on the com-882 

bined effects on technical performance, LCA and cost are very few. 883 

5.1.2 Recycled Masonry Aggregate (RMA) 884 

The composition of recycled masonry aggregates (RMA) is identified to be a minimum of 90%, by mass, 885 

of mortar and burnt clay materials such as ceramic roofing tiles and shingles, ceramic bricks, light-886 

weight concrete blocks, sand-lime bricks, and blast-furnace slag bricks and blocks (Hansen, 1992; Silva 887 

et al., 2014). According to the results of 787 concrete mixes collected in (Silva, R. V. et al., 2015b), after 888 

RCA, RMA is the second most suitable type of CDW aggregates to be used in concrete. In other words, 889 

for a given incorporation ratio, RMA is more detrimental than RCA in concrete because of the former’s 890 

lower density, higher water absorption, and higher Los Angeles abrasion loss (Gomes and de Brito, 891 

2009; Silva et al., 2014). Based on the results of these studies, the 95% quantile highest strength loss 892 

of concrete mixes made with 100% of coarse RMA is 50%. The suitability of RMA in concrete can be 893 

also confirmed by other technical performances such as tensile strength (Bommisetty et al., 2019; 894 
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Debieb and Kenai, 2008; Medina et al., 2012; Pacheco-Torgal and Jalali, 2011; Senthamarai and 895 

Devadas Manoharan, 2005; Silva, R. V. et al., 2015c), modulus of elasticity (Senthamarai and Devadas 896 

Manoharan, 2005; Silva et al., 2016), carbonation (Gomes and de Brito, 2009; Silva, R. V. et al., 2015d), 897 

chloride penetration (Gomes and de Brito, 2009; Pacheco-Torgal and Jalali, 2011; Paine and Dhir, 898 

2010; Silva, Rui Vasco et al., 2015), water absorption (Gomes and de Brito, 2009; Pacheco-Torgal and 899 

Jalali, 2011; Paine and Dhir, 2010), shrinkage (Silva et al., 2015a) and creep (Silva, R. V. et al., 2015a). 900 

However, there are no detailed studies on life-cycle environmental and economic assessment. 901 

5.1.3 Contaminated construction and demolition waste 902 

CDW that contains high amount of different contaminations (e.g. wood, glass, asphalt and plastics) 903 

can be used as aggregates in concrete (Silva et al., 2019a; Sormunen and Kärki, 2019). However, the 904 

literature has limited detail on the composition and origin of this type of aggregates (Mália et al., 2013; 905 

Silva et al., 2014). A revision of Silva et al. (Silva et al., 2014) considered results of 116 studies and 906 

showed that, for a 95% confidence interval, the average (lower and higher bounds) oven-dried density, 907 

saturated surface-dry density, and water absorption are 2280 kg/m3 (2241-2318 kg/m3), 2399 kg/m3 908 

(2366-2431 kg/m3), 5% (2-32%) for coarse mixed construction and demolition recycled aggregates 909 

(CDRA), and 2207 kg/m3 (2161-2253 kg/m3), 2399 kg/m3 (2364-2433 kg/m3), 8% (4-50 %) for fine 910 

CDRA, respectively. 911 

Similar factors mentioned in section 3.2 may affect the influence of mixed CDRA on the technical perfor-912 

mance of concrete. Apart from these factors, the chemical composition of CDRA, namely sulphate 913 

(Barbudo et al., 2012; de Juan and Gutiérrez, 2009; Dhir et al., 2001), chloride (Dhir and Paine, 2003), and 914 

alkali contents (Dhir and Paine, 2003; Dhir and Paine, 2004; Dhir and Paine, 2007), may significantly com-915 

promise the performance of concrete. For example, most specifications are limited and concerned about 916 

the maximum sulphate content (0.8% (DIN 4226-100, 2002; LNEC E471, 2006; Prescriptions Techniques, 917 

2003) or 1.0% (NBR 15.116, 2005; RILEM TC 121-DRG N. 27, 1994; TV 70085, 2006; Vázquez et al., 2004; 918 

WBTC-N.12, 2002)). Furthermore, for similar mix compositions, relatively to uncontaminated CDW aggre-919 

gates, there is a big scatter between the performance of concrete mixes made with mixed CDRA (Akhtar 920 

and Sarmah, 2018a; Bravo et al., 2017; Bravo et al., 2018; Bravo, Miguel et al., 2015; Bravo, M. et al., 2015; 921 

Cantero et al., 2019; Ma et al., 2019). This can be mainly explained by the percentage of contaminated 922 

materials (Ambrós et al., 2017; Di Maria et al., 2016; Ulsen et al., 2013; Vegas et al., 2015), such as gypsum 923 

(main responsible for sulphate expansion (EN 12620, 2008; Hansen, 1992)) and reactive silica (Dhir and 924 

Paine, 2003; Dhir and Paine, 2004; Dhir and Paine, 2007). The review conducted by Silva et al. (Silva, R. V. 925 

et al., 2015b) based on the results of 787 concrete mixes containing different types of CDW aggregates did 926 
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not recommend using mixed CDRA in concrete unless they are adequately tested for their composition and 927 

properties before use. 928 

5.1.4 Mixed Recycled Aggregate (MRA) 929 

In spite of the conclusions of the previous section (§5.1.3), mixed CDRA can still have benefits by sep-930 

arating concrete and masonry particles and using this mixture as mixed recycled aggregates (MRA). 931 

Thus, this type of aggregate can be considered as intermediate between RCA (§5.1.1) and RMA 932 

(§5.1.2). Recently, a jigging technique was suggested to separate brick/concrete particles in mixed 933 

CDRA (Ambrós et al., 2017; Hu, K. et al., 2019; Sampaio et al., 2016) but studies on this separation 934 

technique are very limited. Some specifications [78, 86] identified the composition of this type of ag-935 

gregates (less than 90% of natural aggregates and Portland cement-based fragments). Thus, it may 936 

include other CDW common materials such as light-weight concrete and ceramic (Awoyera et al., 937 

2016; Awoyera et al., 2018; Etxeberria Larrañaga and Vegas, 2015; Gonzalez-Corominas and 938 

Etxeberria, 2014; Silva et al., 2014). According to the statistical analysis made in the study of Silva et 939 

al. (Silva, R. V. et al., 2015b), the 95% quantile maximum strength loss of concrete mixes made with 940 

100% of coarse MRA is 60%. Other technical performances decay with the use of MRA (Corinaldesi 941 

and Moriconi, 2009; Dhir and Paine, 2007; Gomes and de Brito, 2009; Juan-Valdés et al., 2018; Mas et 942 

al., 2012; Silva, R. V. et al., 2015c; Yang, J. et al., 2011; Zheng, C. et al., 2018). However, MRA still can 943 

be recommended for construction materials, especially for low-strength concrete. 944 

5.2 Agricultural wastes and aquaculture farming as aggregates 945 

As shown in §4.1, cement in concrete can be replaced with many types of AWAF ashes. Due to dumping 946 

problem of agricultural wastes and global demand to aggregates (due to rapid urbanization), many agro 947 

wastes can also be used in concrete as a partial replacement of aggregates, especially as a fine aggregate. 948 

Apart from sustainability reasons, the purpose of this strategy is to produce lightweight and low thermal 949 

conductivity concrete (Aslam et al., 2016; Prusty et al., 2016; Rashad, A., 2016; Shafigh et al., 2014a). On 950 

this path, most of the studies are focused on the technical properties of concrete containing bottom 951 

AWAF (as raw material and ash) as a partial replacement of sand such as SBA (Modani and Vyawahare, 952 

2013; Sales and Lima, 2010), groundnut shell (Gunasekaran and Kumar, 2008; Sada et al., 2013), sawdust 953 

(Ganiron, 2014; Mageswari and Vidivelli, 2009), wild giant reed ash (Ismail and Jaeel, 2014), wheat straw 954 

(Al-Akhras, Nabil M et al., 2008; Binici et al., 2008), WA (Ottosen et al., 2016), rice husk/ash (Chabannes 955 

et al., 2014; Kunchariyakun et al., 2015; Sua-Iam and Makul, 2013), cork (Nóvoa et al., 2004; Panesar and 956 

Shindman, 2012), tobacco waste (Ozturk and Bayrakl, 2005), CCA (Binici et al., 2008; Memon et al., 2019), 957 
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leather (Baffa and Akasaki, 2005), palm tree shell (Alengaram et al., 2010; Aslam et al., 2016; 958 

Gunasekaran et al., 2011; Kaur and Kaur, 2012; Mahmud et al., 2009; Mannan and Ganapathy, 2001; 959 

Muthusamy et al., 2013; Ndoke, 2006; Okpala, 1990; Shafigh et al., 2014b; Yap et al., 2015), plane leaf 960 

ashes (Binici et al., 2008) and olive husk (Odi, 2007), sunflower (Chabannes et al., 2015), seashell (e.g. 961 

oyster (Eo and Yi, 2015; Kuo et al., 2013; Mo et al., 2018; Yang et al., 2010; Yang et al., 2005), mussel 962 

(Martínez-García et al., 2017; Mo et al., 2018), cockle (Mo et al., 2018; Ponnada et al., 2016), scallop (Mo 963 

et al., 2018; Varhen et al., 2017), and periwinkle (Adewuyi and Adegoke, 2008; Falade, 1995; Mo et al., 964 

2018)). Most of the studies on this path are related to palm tree shells (Alengaram et al., 2010; Aslam et 965 

al., 2016; Gunasekaran et al., 2011; Kaur and Kaur, 2012; Mahmud et al., 2009; Mannan and Ganapathy, 966 

2001; Muthusamy et al., 2013; Ndoke, 2006; Okpala, 1990; Shafigh et al., 2014b; Yap et al., 2015). Addi-967 

tionally, only compressive strength has been studied in detail. 968 

5.3 Industrial wastes as aggregates 969 

Similarly to AWAF, industrial wastes can also be used as fine natural aggregate replacement in con-970 

crete. De Brito and Saikia (de Brito and Saikia, 2013) and Rashad (Rashad, A., 2016) made extensive 971 

literature reviews about this strategy. The results show that most of the studies are focused on the 972 

effect of artificial pozzolan wastes (§5.1.2-5.1.4) as sand replacement in concrete, followed by natural 973 

pozzolans (e.g. volcanic tuffs/zeolites (Bogas and Cunha, 2017; Juimo Tchamdjou et al., 2018; Maia 974 

and Neves, 2017; Marra et al., 2016), siliceous (Kotwa, 2017; Posi et al., 2013), and volcanic glasses 975 

(Öz, 2018; Sallı Bideci, 2016; Top et al., 2019; Wongsa et al., 2018)), FA (Dhir et al., 2000; Joseph and 976 

Ramamurthy, 2009; Maslehuddin et al., 1989; Parvati and Prakash, 2013; Pofale and Deo, 2010; Roy, 977 

2011; Seo et al., 2010; Siddique, 2003a, b), CBA (Aggarwal et al., 2007; Bai and Basheer, 2003; Bai et 978 

al., 2005; Basheer and Bai, 2005; Kasemchaisiri and Tangtermsirikul, 2008; Singh and Siddique, 2014, 979 

2016; Yuksel and Genç, 2007), iron and steel slags such as blast furnace slag (e.g. ground blast furnace 980 

slag (Bıṅıċi et al., 2012; Miyamoto et al., 2015; Senani et al., 2018; Singh et al., 2015) and air-cooled 981 

blast furnace slag (Gesoğlu et al., 2012; Ozbakkaloglu et al., 2016)) and steelmaking slag (e.g. converter 982 

slag (Wang et al., 2009) and electric arc furnace slag (Alizadeh et al., 2003; González-Ortega et al., 983 

2014; Maharaj and Mwasha, 2016; Manso et al., 2004; Pellegrino et al., 2013; Qasrawi et al., 2009; 984 

Vijayaraghavan et al., 2017)), SF (Ghafoori and Diawara, 1999, 2007; Ismeik, 2010), plastic waste 985 

(§5.5), rubber waste (§5.5), and then distantly followed by non-ferrous slags (e.g. copper slag (Gupta 986 

and Siddique, 2019; Lori et al., 2019; Mahesh Babu and Ravitheja, 2019; Rajasekar et al., 2019; Sharma 987 

and Khan, 2017; Vijayaraghavan et al., 2017), lead and zinc slag (Alwaeli, 2013, 2017)). These types of 988 

aggregates can reduce the cost and EI and enhance several durability properties of concrete. However, 989 

widespread reliable data are missing for the use of these aggregates in concrete. 990 
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5.4 Municipal wastes as aggregates 991 

Similarly to industrial wastes, municipal wastes as a raw material and ashes are used in concrete as a 992 

partial replacement of natural aggregates, in the shape of glass (§5.5), MIBA (Dhir et al., 2017; Dhir et 993 

al., 2002; Ginés et al., 2009; Roethel and Breslin, 1995; Saikia et al., 2008; Sorlini et al., 2011; Van den 994 

Heede et al., 2016; Zhang and Zhao, 2014), SSA (Baeza-Brotons et al., 2014; de Lima et al., 2015; Dhir 995 

et al., 2017b; Jamshidi et al., 2012; Khanbilvardi and Afshari, 1995; Kosior-Kazberuk, 2011), 996 

wastewater sludge ash (de Almeida Lima and Zulanas, 2016; Khanbilvardi and Afshari, 1995; Rabie et 997 

al., 2019), paper sludge (Bui et al., 2019), and granite waste sludge (Shermale and Varma, 2015; 998 

Vashistha et al., 2019a; Vashistha et al., 2019b). Most of the studies related to concrete containing 999 

municipal waste aggregates are focused on compressive strength. 1000 

5.5 Insulating aggregates 1001 

Normally, non-conventional aggregates are used to consume less virgin aggregates. However, some 1002 

of them (e.g. plastic, rubber and lightweight aggregates) can be used for other sustainability purposes, 1003 

namely to decrease the thermal conductivity of concrete (see section 13.2). They can be used in dif-1004 

ferent applications of concrete. This strategy can also be identified as industrial waste (§5.3). 1005 

The fast growth of the global tires market and their short service life are another serious environmental 1006 

issue (3 billion units in 2019 with forecast 7% growth rate (Freedonia-WT, 2019)). One way to promote 1007 

sustainability is by using tire waste aggregate in concrete (rubberized concrete). Most of the technical prop-1008 

erties of rubberized concrete have been studied, such as fresh properties (Corinaldesi and Donnini, 2019; 1009 

Gesoğlu and Güneyisi, 2007; Su et al., 2015), shrinkage (Bravo and de Brito, 2012; Corinaldesi and Donnini, 1010 

2019; Kang and Jiang, 2008; Yung et al., 2013), mechanical strength (Aslani et al., 2018; Corinaldesi and 1011 

Donnini, 2019; Rashid et al., 2019; Su et al., 2015; Yung et al., 2013), chloride ion penetration (Bravo and 1012 

de Brito, 2012; Gesoğlu and Güneyisi, 2007; Sofi, 2018), freeze/thaw resistance (Corinaldesi and Donnini, 1013 

2019), fire resistance (Corinaldesi and Donnini, 2019; Guo et al., 2014), thermal insulation (Corinaldesi and 1014 

Donnini, 2019) corrosion resistance (Corinaldesi and Donnini, 2019), resistance to aggressive environmen-1015 

tal (Corinaldesi and Donnini, 2019; Topçu and Demir, 2007), carbonation (Bravo and de Brito, 2012; Rashad, 1016 

A.M., 2016), sound absorption (Corinaldesi and Donnini, 2019; Thomas and Chandra Gupta, 2016), water 1017 

permeability (Bravo and de Brito, 2012; Sofi, 2018; Su et al., 2015; Thomas and Chandra Gupta, 2016), and 1018 

density (Aslani et al., 2018; Su et al., 2015). According to the cited studies, rubber content in concrete must 1019 

be limited to up to 30% in order to guarantee an acceptable level of mechanical performance. The results 1020 

show that tire waste aggregate enhances the energy absorption ability, ductility, and electrical resistivity 1021 
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of concrete (Corinaldesi and Donnini, 2019; Rashad, A.M., 2016; Siddika et al., 2019; Strukar et al., 2019; 1022 

Yung et al., 2013). Contrary to other types of recycled aggregates, fine tire waste aggregate is less detri-1023 

mental than coarse particles (Siddika et al., 2019; Strukar et al., 2019). 1024 

According to the first review study made in (Siddique et al., 2008), the concept of using plastic waste as 1025 

a partial replacement of natural aggregates in concrete is relatively new. Nowadays, many studies are 1026 

made on this path (Akçaözoğlu et al., 2010; Albano et al., 2009; Babafemi et al., 2018; Choi et al., 2005; 1027 

De la Colina Martínez et al., 2019; Ferreira et al., 2012; Frigione, 2010; Poliotti and Bairán, 2019; Silva et 1028 

al., 2013) especially because of the amount of plastic wastes in the industry (e.g. electronic plastics 1029 

waste). Most of the studies suggested using plastic waste aggregate in the production of non-structural 1030 

concrete or temporary structures. Nevertheless, by using different forms of waste plastic (e.g. waste 1031 

plastic flakes (Rai et al., 2012; Sharma and Bansal, 2016), polyvinyl chloride pipe (Kou et al., 2009), poly-1032 

ethylene terephthalate particles (Córdoba et al., 2013; Janfeshan Araghi et al., 2015; Rahmani et al., 1033 

2013), high-density polyethylene waste (Naik et al., 1996), shredded fibres of polythene bags (Bhogayata 1034 

et al., 2013), PET bottle fibres (Foti, 2013), and PET waste (Fraternali et al., 2011)), the performance of 1035 

concrete increased, especially when used as a fibre (Sharma and Bansal, 2016). 1036 

Similarly to other insulating aggregates, researchers also focused on the effect of glass aggregates in 1037 

concrete blocks (Lam et al., 2007; Turgut, 2008; Turgut and Yahlizade, 2009; Yang, S. et al., 2019) and 1038 

structural concrete (Abdallah and Fan, 2014; Adaway and Wang, 2015; Ali and Al-Tersawy, 2012; Arabi 1039 

et al., 2019; Batayneh et al., 2007; Borhan, 2012; de Castro and de Brito, 2013; Ismail and Al-Hashmi, 1040 

2009; Lu et al., 2019; Tan and Du, 2013; Topçu and Canbaz, 2004; Wang, H.-Y. et al., 2014). According 1041 

to the systematic review study made by Mohajerani et al. (Mohajerani et al., 2017), concrete with 1042 

foamed glass aggregates or expanded glass aggregates has not been studied in detail. In addition, 1043 

most of the studies are related to concrete containing soda-lime glass or they did not mention the 1044 

type of used glass. Moreover, the weakening of the bond between cement paste and the glass aggre-1045 

gates (Ali and Al-Tersawy, 2012; de Castro and de Brito, 2013; Ismail and Al-Hashmi, 2009; Tan and 1046 

Du, 2013; Topçu and Canbaz, 2004; Wang, H.-Y. et al., 2014), and expansion due to alkali-silica reaction 1047 

(Meyer and Xi, 1999; Mirzahosseini and Riding, 2015), are two of the significant issues of this path. 1048 

Nevertheless, according to the data (experimental and literature) collected by Penacho et al. (Penacho 1049 

et al., 2014), concrete and mortars with satisfactory performance can be produced with glass sand. 1050 

Nevertheless, they only did short-term testing without performing the full alkali-silica reaction test. 1051 

Lightweight aggregates (LWA) can be manufactured (e.g. lightweight expanded clay, EC (Ayati et al., 1052 

2018; Rashad, 2018)), or sourced from nature (e.g. pumice (Rashad, 2019)), and waste products (e.g. 1053 

(e.g. sludge ash (Tay and Yip, 1989)., oil-palm (Aslam et al., 2016) and MIBA (Caprai et al., 2020) as 1054 
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lightweight aggregate). The manufactured-lightweight aggregates increase the total EI of 1m3 of con-1055 

crete (Lukic et al., 2012). However, this path can still be considered sustainable because it helps to 1056 

build a safe structure with less weight (Braga et al., 2014) and avoids thermal bridges in buildings (Real 1057 

et al., 2016). Further details on this path are given in §13.2. In addition, lightweight concrete may also 1058 

be produced with a lightweight steel system. However, studies on this path are very limited (Ahmed 1059 

and Tsavdaridis, 2018; Dai and Richard Liew, 2010; Iuorio et al., 2019; Othuman Mydin and Wang, 1060 

2011), and mostly focused on sandwich systems. 1061 

5.6 Other types of aggregates 1062 

Concrete can also be produced with other non-conventional aggregates such as alkali-activated aggregates 1063 

(§4.6), magnetite/hematite/ferrock (D et al., 2017; Gencel et al., 2010; Kubissa et al., 2018; Lanuza et al., 1064 

2017), pumice stones (Badogiannis et al., 2019; Wang, Xiaoxiao et al., 2018), stone slurry (Almeida et al., 1065 

2007), ethylene-vinyl acetate (Martins et al., 2004; Santiago et al., 2009), lead-zinc tailings (Wang, Xinpeng 1066 

et al., 2018), mine tailings (Jensen et al., 2018), and biochar aggregates (Akhtar and Sarmah, 2018b). 1067 

6 Reduce the environmental impacts and resources use of water 1068 

The concrete industry can be considered one of the largest water-consuming sectors. As reported in 1069 

(Silva and Naik, 2010a), about 150 litres of water are needed per m3 of concrete. This value can be 1070 

increased to 500 litres per m3 of concrete by considering washing out and losses during the production 1071 

and transportation stages of concrete. The wastewater generated by this activity can be considered 1072 

as a hazardous substance due to the presence of heavy metals and its high pH (Rodrigues et al., 2017a). 1073 

Furthermore, mandatory chemical boundaries, other limits and general guidance on the type and 1074 

amount of impurities of concrete mixing water are collected in (CCAA, 2007). According to the litera-1075 

ture, apart from potable water, the following main water types can be used in CBM. 1076 

6.1 Seawater 1077 

Seawater has been used in concrete in previous studies (More and Dubey, 2014; Wegian, 2010; Younis et 1078 

al., 2018). Romans made concrete that remains intact for centuries by using lime, volcanic ash, aggregate 1079 

and seawater (Jackson et al., 2017). The mechanical strength generally increases by incorporating seawater 1080 

(as a raw material instead of potable water) in concrete, especially at early ages (up to 7 days), and the 1081 

opposite occurs at longer ages (More and Dubey, 2014; Wegian, 2010; Younis et al., 2018). Besides some 1082 

attempts (CCAA, 2007; Duarte et al., 2019; Nishida et al., 2013; Saxena and Tembhurkar, 2019; Silva and 1083 
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Naik, 2010a), it is urgent to contemplate the possibility of applying seawater in mixes, especially in unrein-1084 

forced concrete, where its consequences on reinforcement corrosion are not felt. Relatively to freshwater, 1085 

curing concrete with untreated seawater does not significantly affect its strength (Akinkurolere et al., 2007; 1086 

Wegian, 2010). Thus, it is foreseen as a promising path to consume less freshwater. 1087 

6.2 Recycling water recovered from discarded ready-mix concrete 1088 

Similarly to seawater, water recovered from discarded ready-mix concrete has been used (i) for further 1089 

washing purposes (Xuan et al., 2018) and in concrete as a raw material (Arunvivek et al., 2015; 1090 

Asadollahfardi et al., 2015; Borger et al., 1994; Chini and Mbwambo, 1996; Ekolu and Dawneerangen, 1091 

2010; Fang et al., 2020; Papí, 2014; Ružinski et al., 2011; Tsimas and Zervaki, 2011) (mixing water) when 1092 

it meets the regulatory requirements for fresh concrete. A study (Sealey et al., 2001) collected the tradi-1093 

tional and non-traditional methods of cleaning mixer trucks. In addition, by recycling water recovered 1094 

from a ready-mix concrete plant (Ekolu and Dawneerangen, 2010), concrete slurry waste can be also 1095 

separated from water and used as recycled materials in concrete (Audo et al., 2016; Silva et al., 2020; 1096 

Xuan et al., 2018). Some treatment techniques seem to be promising (Magro et al., 2019). However, 1097 

studies on the durability performance of concrete with recycled water are very few. 1098 

6.3 Treated and untreated wastewater 1099 

The use of wastewater in concrete mixing is another strategy to decrease the impact of water (Hassani 1100 

et al., 2020). Wastewater such as sewage (Cebeci and Saatci; Saxena and Tembhurkar, 2018; Silva and 1101 

Naik, 2010b), industry (Ismail and Al-Hashmi, 2011; Nirmalkumar and Sivakumar, 2008; Vourch et al., 1102 

2008) and greywater (Al-Jabri et al., 2011; Ghrair et al., 2018) (greywater can be defined as any 1103 

wastewater consumed by human activities in showers, bathtubs, laundry machines, hand basins, and 1104 

kitchen sinks, in schools, office buildings, households, etc. without any inputs from toilets - (Al-1105 

Jayyousi, 2003)) are the main types used in CBM. Several studies reported that the setting time (Cebeci 1106 

and Saatci), strength (Al-Jabri et al., 2011; Cebeci and Saatci; Ghrair et al., 2018; Nirmalkumar and 1107 

Sivakumar, 2008), entrained air (Cebeci and Saatci) and water absorption (Al-Jabri et al., 2011) of CBM 1108 

may be unaffected by the use of treated wastewater. However, the use of untreated sewage water is 1109 

not recommended as mixing water in CBM composites (Cebeci and Saatci). 1110 

Apart from seawater, there are no studies on the effect of wastewater as curing water on the technical 1111 

properties of CBM. Besides a few case studies, there is no systematic review to show the effect of differ-1112 

ent types of water (e.g. well water, tap water, mineral water, bore well water, seawater, agricultural 1113 

wastewater, rainwater and treated and untreated wastewater) on the technical properties of CBM. 1114 
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7 Reduce the environmental impacts and resources use of reinforcement 1115 

Similarly to cement, aggregates and water, regular carbon steel rebars can be replaced with non-con-1116 

ventional rebars such as bamboo (Agarwal et al., 2014; Atoyebi et al., 2018; Dey and Chetia, 2018; 1117 

Ghavami, 1995; Ghavami, 2005; Ikponmwosa et al., 2017; Javadian et al., 2016; Jayachandran et al., 1118 

2019; Karthik et al., 2017; Li, W.-T. et al., 2017; Mali and Datta, 2018; Mali and Datta, 2020; Muhtar, 1119 

2019; Rahman et al., 2017; Terai and Minami, 2011; Wang, C.-L. et al., 2019), basalt rebars (§11.1.5), 1120 

glass fibre reinforced-polymer (FRP) rebars (§11.1.6) and carbon FRP rebars (§11.1.7). Other strategies 1121 

such as stainless-steel rebars (§11.1.1), low-carbon chromium reinforcing steel rebars (§11.1.2), 1122 

epoxy-coated rebars (§11.1.3), and galvanized rebars (§11.1.4) may not directly reduce the EI of con-1123 

crete reinforcement. However, they can be still considered as a sustainable solution due to the rea-1124 

sons mentioned in the first paragraph of section 11, namely increasing the durability of reinforced 1125 

concrete and consequently decreasing yearly EI over the structure’s life cycle. 1126 

8 Material manufacturing 1127 

Most of the other strategies (§3-7) are related to the EI and energy consumption of concrete (e.g. mix 1128 

composition and technical properties of concrete) to lower its negative effects. Contrary to the men-1129 

tioned sections, this chapter relates to the raw materials that have high EI and energy consumption. 1130 

In other words, the strategies that decrease the EI and energy consumption of manufacturing the main 1131 

raw materials used in concrete (e.g. cement - §8.1, aggregates - §8.2 and reinforcement - §8.4) are 1132 

discussed. Relative to the mentioned raw materials, the EI and energy consumption of water (e.g. 1133 

potable water) and admixtures (e.g. SP) are insignificant (Kurda et al., 2018b). Thus, alternative path-1134 

ways in the manufacturing of these two materials are very scarce. 1135 

8.1 Cement production 1136 

As shown in Figure 10, production of cement can be classified in five stages, namely (i) raw materials ex-1137 

traction, (ii) transport, (iii) fuel and energy consumption, (iv) calcination and (v) grinding. To achieve lower 1138 

EI and energy consumption in cement production, all the mentioned processes must be considered. As 1139 

reported in (Gartner and Hirao, 2015; Ghoshal and Zeman, 2010; Hasanbeigi et al., 2012; Lippiatt et al., 1140 

2020), the CO2 emissions of cement production can be decreased through each mentioned process: 1141 

(i) Extraction and crushing operations by considering best-practice mining (e.g. minimize essential equip-1142 

ment use, conveyor belts and alternative fuels (Jeswiet et al., 2015; Levesque et al., 2014; Norgate and 1143 
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Haque, 2010; Parameswaran, 2016)), increasing machinery efficiency (Napier-Munn, 2015), using recy-1144 

cled aggregates (Bogas, J.A. et al., 2019), reducing wear and using advanced lubricants in machinery 1145 

(Holmberg et al., 2017), and considering renewable energy-powered mills (Piemonte et al., 2011); 1146 

(ii) Transportation from one site to another by underground conveyor belts (Jeswiet et al., 2015) and 1147 

with increased efficiency (Hanle et al., 2004; Hossain et al., 2017; Yang et al., 2017). This can be consid-1148 

ered as a future plan because many quarries are usually nowhere near cement manufacturing plants; 1149 

(iii) Combustion by using alternative fuels (Rahman et al., 2013) such as oxy-fuel kiln (Hasanbeigi et al., 2012; 1150 

Luis Míguez et al., 2018)) and belite cement (§4.5); 1151 

(iv) Decarbonation by using alternatives to decarbonation of limestone (reduce the total amount of 1152 

binder - §3, blended cement - §4.1-4.4, alkali-activated concrete - §4.6, Mg cement - §12); 1153 

(v) Comminution (e.g. milling, grinding, and chipping) using renewable energy (Lamnatou and 1154 

Chemisana, 2017); 1155 

(vi) Substitute technology by prefabricating carbonate parts (Rao and Rubin, 2002; Unluer and Al-1156 

Tabbaa, 2013) and green cement plant (Miller et al., 2018). In addition, some studies have developed an 1157 

electrochemical process that can produce cement with almost zero carbon-footprint (Bertolini et al., 1158 

1996; Gilliam et al., 2012; Licht et al., 2012). 1159 

Finally, it can be said that the assumption of concrete with near-zero-carbon cements can be made by 1160 

considering the strategy described in this section and CO2 sequestration by mineral carbonation. 1161 

8.2 Aggregates production 1162 

To decrease the EI and energy consumption of aggregates, the whole process of quarrying/mining 1163 

industry, shown in Figure 11, must be considered. In fact, each production process can be divided in 1164 

several sub-processes (e.g. resources extraction includes drilling and blasting, secondary breaking, 1165 

loading and hauling) and each of them needs to be studied to find a better solution in terms of sus-1166 

tainability. However, apart from few attempts or some general recommendations made by these stud-1167 

ies (Asr et al., 2019; Awuah-Offei and Adekpedjou, 2011; Blengini et al., 2012; Bloodworth et al., 2009; 1168 

Bringezu, 2002; Chen et al., 2008; Fourie and Brent, 2006; Hilson and Murck, 2000; Langer, 2016; 1169 

Laurence, 2011; Poulin et al., 1994; Tiruta-Barna et al., 2007; Yellishetty et al., 2009), there are very 1170 

few studies on the optimization tools, source of the raw materials and alternative production process, 1171 

namely explosives, fuel, oils, electricity, equipment, vehicles, water, rock type, management and 1172 

transportation scenario. Thus, it is urgent to focus on this path. 1173 
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 1174 

Figure 10 - Activities affecting CO2 emission resulting from concrete production (adapted from (Gartner and 1175 

Hirao, 2015; Ghoshal and Zeman, 2010; Hasanbeigi et al., 2012; Lippiatt et al., 2020)) 1176 

As shown in Figure 11, for sustainability reasons, waste management can be made through recovering 1177 

or recycling CDW as aggregates. Despite the many gaps previously mentioned, most of the studies 1178 

have been focused only on this path, namely comparing the EI of natural and recycled aggregates 1179 

(Kurda et al., 2018b, 2018e; Maduabuchukwu Nwakaire et al., 2020). Bearing these results in mind, 1180 

regardless of the transportation scenario, the difference between the EI of natural aggregates and 1181 

recycled aggregates may not be significant. In addition, some studies showed that the EI of aggregates 1182 

from mobile plants is less than that of fixed plants (Estanqueiro et al., 2014). 1183 
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 1184 

Figure 11 - Different source of aggregates with their production stage (adapted from (Bringezu, 2002; Langer, 1185 

2016)) 1186 

8.3 Production of reinforcement 1187 

As schematically represented in Figure 12, the literature shows that iron and steel production (ironmaking, 1188 

steelmaking and steel products) are divided in 2-3 main steps, and each one can be made with different 1189 

procedures, machine and materials. Therefore, the number of routes to produce iron and steel is very high. 1190 

In other words, for each production step, companies have developed many pathways for iron and steel 1191 

production to decrease CO2 emissions and energy consumption of each process. As stated in various stud-1192 

ies (Conejo et al., 2019; Moya and Pardo, 2013; Pardo and Moya, 2013), the routes of iron and steel pro-1193 

duction can be identified in two main implementations: 1194 
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 1196 

Figure 12 - Simplified iron and steel production routes (adapted from (Conejo et al., 2019; Fischedick et al., 2014; Moya and Pardo, 2013; Pardo and Moya, 2013)) 1197 
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(i) “Best available technologies” that can highly decrease EI and energy consumption such as blast oxy-1198 

gen furnace waste heat and gas recovery (Jouhara et al., 2018; McBrien et al., 2016; Vance et al., 2019; 1199 

Zhang, Q. et al., 2017), coke dry quenching (Lin et al., 2009; Sun et al., 2015; Wang, J.-G. et al., 2019a; 1200 

Wang, J.-G. et al., 2019b; Yang et al., 2009; Zhang, M. et al., 2018), continuous casting (Chu et al., 2019; 1201 

Huang et al., 2017; Hulkó et al., 2016; Pineda Huitron et al., 2020; Sousa Rocha et al., 2019; Tian, C. et 1202 

al., 2019; Vynnycky and Zambrano, 2018; Wang, L.-t. et al., 2012; Yang, W. et al., 2019; Zappulla et al., 1203 

2020), optimized sinter pellet ratio (Cheng et al., 2016; Huang, X. et al., 2019; Liu et al., 2015; Zhou et al., 1204 

2015), oxy-fuel burners (Hernandez et al., 2019; Hu, Y. et al., 2019; Ilbas et al., 2018, 2019; Li, B. et al., 1205 

2018; Mayr et al., 2017; Wall et al., 2011), pulverized coal injection (Practice 99/00696, 1999; Practice 1206 

99/01486, 1999; Tiwari et al., 2018; Wu et al., 2019), scrap preheating (Arink and Hassan, 2017; Oh et 1207 

al., 2015; Selvaraj et al., 2014), sinter plant waste heat recovery (Guoqun, 2009; Jouhara et al., 2018; 1208 

SHIBUYA et al., 1981; TANAKA, 1980), stove waste gas heat recovery (Moya and Pardo, 2013; Pardo and 1209 

Moya, 2013) and top gas recovery turbine (Cai et al., 2017; Liu, M. et al., 2019; Wu and Yang, 2012); 1210 

(ii) “Most innovative technologies”, whose use is not universal or at the moment are under development 1211 

and intended to be ready for commercialization such as carbon capture and storage - blast furnace/power 1212 

plant (Arasto et al., 2014; De Ras et al., 2019; Deng and Adams Ii, 2020; Goto et al., 2011; Yasipourtehrani 1213 

et al., 2020), COREX (Han et al., 2013; Hu et al., 2009; Li, H.-f. et al., 2012; Practise 98/02347, 1998; Ziebik 1214 

et al., 2008), direct sheet plant, FINEX (Thaler et al., 2012; Xiaoguang et al., 2008), HISARNA (Meijer et al., 1215 

2011; Qu, 2013; van der Stel et al., 2013), HYL/MIDREX/ULCORED (Atsushi et al., 2010; Cheeley, 1999; 1216 

Garza, 2006; Knop et al., 2009) and top gas recycle blast furnace (Liu, L. et al., 2018; Zhang, W. et al., 2017). 1217 

Nevertheless, studies show that there is still not a significant improvement in most proposed and available 1218 

routes. Furthermore, future research directions can be seen in (Conejo et al., 2019; Zhang, W. et al., 2017). 1219 

9 Concrete mixing 1220 

Concrete can be made in plants (ready-mixed) or on-site (mixer). Besides its high energy consumption, 1221 

concrete mixing affects the quality/homogeneity of concrete. Thus, both aspects must be considered in 1222 

terms of sustainability. Generally, many different mixers and mixing methods commercially available 1223 

have been used to produce concrete based on quality, cost, transportation scenario, volume of concrete 1224 

and rate of demand. As shown in (Ferraris, 2001), different types of mixer and mixing methods must be 1225 

considered to guarantee the quality of concrete (Figure 13). Some of the parameters shown in the figure 1226 

have been considered in the construction sector without any proper study and others have been studied 1227 

by researchers, e.g. operation design (Beitzel, 1984), performance attributes (Ferraris, 1999), mixing 1228 

time and type of concrete mixer (Johansson, 1971), effectiveness of concrete mixers (Bartos, 1993; Valigi 1229 
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and Gasperini, 2007), mixing energy (Soga et al., 1986), workability and mixing (Bartos, 1993), efficiency 1230 

of mixer (Charonnat and Beitzel, 1997), volumetric-measuring and continuous-mixing (Cheff et al., 1991), 1231 

concrete mixers and mix systems (Dils et al., 2012; Sonnenberg, 1998), concrete mixes preparation 1232 

(Sinenko et al., 2018), sensor to monitor the effect of the mixing procedure (Wang and Hu, 2005), mixing 1233 

degree (Siiriä and Yliruusi, 2009) and mix design using adaptive neural fuzzy inference systems 1234 

(Deligiannis and Manesis, 2008; Neshat and Adeli, 2011; Neshat et al., 2012). Additionally, most of the 1235 

studies are related to the quality of concrete. Attempts to decrease the energy consumption of each 1236 

process are very scarce. 1237 

 1238 
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  1239 

Figure 13 - Mixer type and mixing method of concrete 1240 
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10 On-site application 1241 

To build a concrete structure, most of the stages of construction, namely (i) pre-construction and pre-1242 

placement meetings (ii) concrete ordering procedures (iii) transporting and receiving concrete (iv) 1243 

conveying, placing, consolidating and finishing concrete (v) concrete protection and curing require-1244 

ments, must be considered to minimize potential problems, EI, energy consumption, cost and time to 1245 

build a structure. Nevertheless, since this path relates to the site itself and needs a bigger scale than 1246 

laboratory, individual studies with systematic data comparing the EI and energy consumption of tra-1247 

ditional and non-traditional applications of the above mentioned stages are very rare. Among the 1248 

mentioned stages, digital concrete/3D printing has been recently focused by several research groups. 1249 

Automated and additive manufacturing (AM) techniques with traditional and non-traditional cementi-1250 

tious materials, i.e. 3D concrete printing, shotcrete 3D printing and smart dynamic casting have been 1251 

rapidly adopted in many fields. The introduction and development of this technology in construction 1252 

happened in the early 21st century after Khoshnevis et al. (Khoshnevis et al., 2001) proposed the contour 1253 

crafting 3D printing methodology for construction applications. They used robotic arms with a trowelled 1254 

nozzle to create a better finish of the printed concrete. This path can be considered one of the sustain-1255 

ability strategies because it does not need manual labour and formwork. Though this path can be more 1256 

economically viable due to less manual labour, it is not so socially acceptable since it will mean fewer 1257 

jobs. Furthermore, these two parameters’ cost may exceed 50% of the total cost of a concrete structure 1258 

(Johnston, 2008). Although AM comprises many 3D printing techniques, only a few are feasible for con-1259 

struction purposes. Two of the most promising examples are extrusion 3D printing technique (Buswell 1260 

et al., 2018; Shakor, P et al., 2019), and the binder (inkjet) 3D printing technique (Dini, 2009; Shakor, 1261 

Pshtiwan et al., 2019b). These are suitable and the most applicable techniques for construction purposes 1262 

(Shakor, Pshtiwan et al., 2019a). These techniques generally use mortar materials, and hence current 1263 

limitation are that they cannot use coarse aggregates in the mix design due to abrasion in the pump unit, 1264 

there are difficulties in feeding and the shape ability of concrete (Hosseini et al., 2019; Shakor et al., 1265 

2020a; Shakor et al., 2020b; Tay et al., 2017; Zhang, Y. et al., 2018). The other outstanding research 1266 

challenges in this field are compaction (Le et al., 2012; Shanjani and Toyserkani, 2008; Wolfs et al., 2018), 1267 

the gaps between layers (Kazemian et al., 2017; Panda et al., 2018; Perrot et al., 2015; Shakor et al., 1268 

2020a), the printed material’s porosity (Hambach and Volkmer, 2017; Shakor et al., 2017), and the nozzle 1269 

of the printhead (Bos et al., 2016; Buswell et al., 2018; Nerella et al., 2019; Shakor, P et al., 2019). In 1270 

addition, studies on the durability performance of the printed CBM are very rare. 1271 
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11 Increase the durability of reinforced concrete 1272 

One way to reduce EI of concrete is by increasing its durability. There are several direct (intrinsic method) 1273 

and indirect (extrinsic method) ways to achieve this strategy, namely by slowing down/stopping rebars 1274 

from corroding (§11.1), preventing penetration of aggressive agents to concrete (§11.2), slowing down 1275 

degradation of concrete (§11.3) and durability design (§11.4). Intrinsic methods involve changing every-1276 

thing in the actual reinforced concrete either by changing concrete itself (e.g. additions, mix design and 1277 

cover) or using more resistant steel rebars. Extrinsic methods could probably involve the use of paint or 1278 

hydrophobic coatings among other methods. Generally, these strategies may increase the initial cost 1279 

and EI of the structure. However, it may also considerably reduce costs or EI over the structure’s life 1280 

cycle (long term) because the number of rehabilitations necessary in low-performance concrete is higher 1281 

than in high-performance concrete. Thus, the total cost of low-performance concrete will be closer to 1282 

that of high-performance concrete with every rehabilitation (Figure 14). 1283 

 1284 

Figure 14 - Cost and performance, including rehabilitation cost, versus service life for high- and low- performance concrete 1285 
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11.1 Slow down/stop rebar corrosion 1286 

11.1.1 Stainless-steel rebars 1287 

The corrosion resistance and chloride threshold of stainless steel rebars (SSR) are about 800-1500 and 4-1288 

24 times higher than those of the conventional bars, respectively (Lollini et al., 2019; McDonald et al., 1998; 1289 

Van Niejenhuis, 2015; Vinoth Jebaraj et al., 2017). Due to its importance in the construction industry, sev-1290 

eral standards from EU (EN 10088-1, 2005), UK (BS 6744, 2016), USA (ASTM A955/A955M-19, 2019) and 1291 

guideline reports (Markeset et al., 2006; Mietz, 1997; SSINA) have been developed. Generally, stainless 1292 

steel can be divided in four types: (i) Austenitic (most widely used type (Mietz, 1997) with high range of 1293 

corrosion resistance (Calderon-Uriszar-Aldaca et al., 2018; Markeset et al., 2006; Rabi et al., 2019; Tsouli et 1294 

al., 2018; Tsouli et al., 2019)); (ii) Ferritic (relatively to other SSR types, it has lower range of corrosion re-1295 

sistance (Arrayago et al., 2018; Markeset et al., 2006)); (iii) Austenitic-ferritic (also called duplex stainless, 1296 

is a combination between austenitic and ferritic SSR). Comparing to other SSR types, austenitic-ferritic is 1297 

cheaper and rated in the very high range of corrosion resistance (Duarte et al., 2014; Li, X. et al., 2018; 1298 

Markeset et al., 2006; Pachón-Montaño et al., 2018; Rabi et al., 2019)); (iv) Martensitic (it is not recom-1299 

mended to be used as reinforcement (Markeset et al., 2006) because it has minimal ductility (Darvell, 1300 

2018)). 1301 

Generally, SSR are rarely used in the construction field because they may increase the initial cost of 1302 

the structure by as much as 6-10 times (Gu and Hong Meng, 2016). However, it may also considerably 1303 

reduce costs over the structure’s life cycle (long term), especially for bridges (Cope and Labi, 2009) 1304 

and rehabilitation (Gu and Hong Meng, 2016; Perez-Quiroz et al., 2008). In addition, stainless-steel-1305 

clad rebar was introduced in the market in the past decade (Basham, 1999). They have a conventional 1306 

carbon steel core covered with a thin outer cladding of stainless-steel. They basically perform similarly 1307 

to solid stainless-steel rebars (Gu et al., 1998). However, they require following more demanding spec-1308 

ifications for cutting and bending (CRSI, 2013). 1309 

Further studies are required to identify chloride threshold values of different types and grades of SSR, 1310 

and corrosion risk when it contacts carbon steel. In addition, researchers are only focused on Austen-1311 

itic SSR (Calderon-Uriszar-Aldaca et al., 2018; Tsouli et al., 2018; Tsouli et al., 2019). It is clear that a 1312 

review study needs to be made to understand recent developments in stainless steel. 1313 

11.1.2 Low-carbon chromium reinforcing steel rebars 1314 

High corrosion resistant reinforcing steel can be made either by solid stainless steel (high chromium 1315 

content, specified in AASHTO (AASHTO MP 18M/MP 18-15, 2015) - §11.1.1) or by low-carbon chromium 1316 
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(low chromium content, specified in ASTM (ASTM A1035 / A1035M-19, 2019)). Even though this type of 1317 

steel is identified in standard (ASTM A1035 / A1035M-19, 2019), related studies are very limited 1318 

(Callaghan, 1993; CRSI - ETN-M-11-17, 2017; CRSI, 2013; Darwin et al., 2002; EIG, 2011; Kahl, 2007; Lee, 1319 

2018; Sharp et al., 2011) and most of them are not associated with concrete reinforcement. 1320 

11.1.3 Epoxy-coated rebars 1321 

In this sub-strategy, conventional rebars are coated with epoxy to increase their corrosion resistance and 1322 

act as a physical barrier, and their chloride threshold value is above or equal to that needed to initiate 1323 

corrosion in regular steel rebars (Manning, 1996; McDonald, 2016; Venkatesan et al., 2006). According to 1324 

previous studies, epoxy-coated rebars (ECR) with damage level of 0.004-0.50% may increase the corrosion 1325 

resistance of rebars by 69-1762 times (Basham, 1999; Gustafson and Neff, 1994; Smith and Virmani, 1996), 1326 

and their cost is lower than that of other rebars. However, their performance may not be guaranteed be-1327 

cause the coating may be damaged during bending, handling, placing, transportation, and concrete casting. 1328 

For example, recent studies (Sagüés et al., 2001; Smith and Virmani, 1996) show several cases where ECR-1329 

reinforced concrete (made in the past 30 years) failed due to corrosion issues. Therefore, an update of the 1330 

service life of structure containing ECR needs to be done, especially for structures made 30 years ago. So 1331 

far, there is no systematic review study on the performance of concrete with ECR. Even though there are 1332 

some case studies on the application of ECR in bridge decks (Smith and Virmani, 1996), bridges (Sagüés, 1333 

A.A. et al., 1994), marine bridges (Sagues et al., 2010), marine environment (Smith et al., 1993), marine 1334 

substructures (Sagüés, A. et al., 1994), and tunnel structures (Montes et al., 2004) relative to other sub-1335 

strategies (§11.1.1, §11.1.4, §11.1.6-11.1.8), case studies on this path are very limited (Dong et al., 2012; 1336 

Lee, J. et al., 2018; McDonald, 2016; Swamy and Koyama, 1989; Wang, X.-H. et al., 2018; Zhou and Qiao, 1337 

2018). Furthermore, there are some attempts to increase the bond strength between ECR and concrete 1338 

(Chang et al., 2002; Yeih et al., 2004), and overcome the issue of damaging spots of the ECR by using self-1339 

healing epoxy coatings (Weishaar et al., 2018). 1340 

11.1.4 Galvanized rebars 1341 

Another sustainable way to increase the reinforcement durability is by normal hot-dip galvanizing (zinc 1342 

coated/metallic coated) (Andrade and Macias, 1988; Bellezze et al., 2006; Bellezze et al., 2018; 1343 

Figueira et al., 2015; Hamad and Jumaa, 2008a, b; Kayali and Yeomans, 2000; Luna Molina et al., 2017; 1344 

Sayadi et al., 2016a; Sena-Cruz et al., 2009; Tittarelli and Moriconi, 2010; Wang, Y.-q. et al., 2018; 1345 

Zheng, H. et al., 2018). Even though the chloride resistance of galvanized rebars (GR) is only 2-4 times 1346 

higher than that of conventional rebars (Porter, 1991, 1994; Zhang, 2013), it can be considered more 1347 

cost-efficient than ECR (§11.1.2) because it is more difficult to damage, even though it is 40% more 1348 
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expensive than ECR (Luna Molina et al., 2017; Zheng, H. et al., 2018). In low-performance concrete 1349 

exposed to aggressive environments, galvanized rebar may not necessarily extend the service life of 1350 

reinforced concrete (Yeomans, 2004). Similarly to ECR, galvanizing decreases the bond strength be-1351 

tween concrete and reinforcement (Arup, 1979; Belaıd̈ et al., 2001; Pokorný et al., 2015; Robinson, 1352 

1956). Some review studies have analysed the technical performance of GR in concrete and its appli-1353 

cation in the construction industry (Pokorný et al., 2017; Yeomans, 2004). One way to promote using 1354 

GR and offset its cost is by using it in concrete (e.g. FA concrete) in which durability, namely carbona-1355 

tion, is an issue. However, studies on the performance of GR in fully carbonated concrete are very 1356 

limited (Roventi et al., 2014). 1357 

11.1.5 Basalt rebars 1358 

Basalt rebars are made with inert volcanic rock (basalt) and have been used as a fibre (Ayub et al., 1359 

2014; Borhan, 2013; Brik, 2003; Dhand et al., 2015; Dias and Thaumaturgo, 2005; Fan and Zhang, 1360 

2016a; Inman et al., 2017; Jiang et al., 2014; Lipatov et al., 2015; Monaldo et al., 2019; Serbescu et al., 1361 

2015) for strengthening purposes (secondary reinforcement) and as main reinforcement (Adhikari, 1362 

2013; Fan and Zhang, 2016b; Kumbhar, 2014; Lapko and Urbański, 2015; Urbanski et al., 2013) in con-1363 

crete. They have higher tensile strength than that of standard steel rebars (Kumbhar, 2014; Lapko and 1364 

Urbański, 2015), but lower modulus of elasticity that may significantly increase the deflection of a 1365 

structure (Lapko and Urbański, 2015). Also, it has higher resistance to corrosion and less weight rela-1366 

tive to standard steel rebars (Lipatov et al., 2015; Smith, 2018). Additionally, they are non-hygroscopic, 1367 

and non-conductive thermally or electrically (Santhosh et al., 2018; Zhang, Y. et al., 2012). Generally, 1368 

studies on basalt rebars as main reinforcement (mini bars) are very limited (Adhikari, 2013; Fan and 1369 

Zhang, 2016b; Kumbhar, 2014; Lapko and Urbański, 2015; Urbanski et al., 2013). 1370 

11.1.6 Glass fibre reinforced-polymer rebars 1371 

Similarly to basalt, glass FRP can be used in concrete as fibres (Asokan et al., 2009; Dehghan et al., 1372 

2017; Mastali et al., 2016) or main reinforcement (Dong et al., 2019a; Dong et al., 2019b; El-Hassan et 1373 

al., 2018; Zhao et al., 2019). In this section, however, the focus is on their performance as the main 1374 

reinforcement. 1375 

Some review articles were made to understand the performance of glass FRP on the following topics: in 1376 

aggressive environments (Fang et al., 2019), structural applications (Fang et al., 2019; Mugahed Amran et 1377 

al., 2018), strengthening (Aslam et al., 2015; Mugahed Amran et al., 2018), near-surface in reinforced con-1378 

crete structures (Al-Saadi et al., 2019), composites materials (Bakis et al., 2002; Sathishkumar et al., 2014), 1379 
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and the their chemical and mechanical performance (DiBenedetto, 2001). Generally, the tensile strength 1380 

of glass FRP rebars is higher than that of standard steel rebars, but their modulus of elasticity is significantly 1381 

lower. Thus, they may not be advisable for structural concrete, especially when it involves significant spans. 1382 

Nevertheless, these rebars do not corrode at all and, in terms of weight, glass FRP rebars are lighter than 1383 

standard steel rebars. In addition, they are thermally and electrically nonconductive. 1384 

The bearing capacity of structures with glass FRP rebars significantly decreases at elevated tempera-1385 

tures (Zhao et al., 2019). In addition, glass FRP is immune to both chloride contamination and many 1386 

forms of chemical-induced degradation (Almusallam and Al-Salloum, 2006; Kim et al., 2008; Micelli 1387 

and Nanni, 2004; Mukherjee and Arwikar, 2005; Robert et al., 2009; Tannous, 1998). Several studies 1388 

concluded that columns with glass FRP rebars have lower carrying capacity than those with standard 1389 

steel rebars (Elchalakani and Ma, 2017; Hassan et al., 2019; Khorramian and Sadeghian, 2017). Fur-1390 

thermore, bond between glass FRP rebars and normal (Achillides and Pilakoutas, 2004; Baena et al., 1391 

2009; Benmokrane et al., 1995; Hao et al., 2009; Okelo and Yuan, 2005; Saleh et al., 2019; Tastani and 1392 

Pantazopoulou, 2006)- and high- strength (Hossain et al., 2012; Lee et al., 2017; Lee et al., 2008; Lee 1393 

et al., 2012; Tekle et al., 2016) concrete is another issue of this type of reinforcement. 1394 

Generally, most of the studies focused on the performance of glass FRP rebars in columns (Afifi et al., 1395 

2013; De Luca et al., 2010; Hadi and Youssef, 2016; Karim, H. et al., 2016; Mohamed et al., 2014; 1396 

Pantelides et al., 2013; Paramanantham, 1994) and beams (Almusallam and Al-Salloum, 2006; Aslam 1397 

et al., 2015; Reis and Ferreira, 2003; Said et al., 2016; Zhao et al., 2019). However, studies on their 1398 

performance in slabs are very limited (Deitz et al., 1999). In addition, most of the studies only focused 1399 

on the present limitations of glass FRP and not on future improvements. 1400 

The performance of concrete filled glass FRP circular tubes (Fam and Cole, 2007; Fam and Mandal, 1401 

2006; Fam and Rizkalla, 2002; Mohamed and Masmoudi, 2010; Wang and ElGawady, 2019; Xie et al., 1402 

2018) or rectangular shaped FRP cross-sections (Abouzied and Masmoudi, 2017; Aslani et al., 2019; 1403 

Aydın and Sarıbıyık, 2013; Belzer et al., 2013) is another application of FRP that researchers are now 1404 

working on. However, knowledge on this path is still very limited. 1405 

11.1.7 Carbon fibre reinforced-polymer rebars 1406 

Carbon FRP is a type of composite material composed of polymer and carbon fibres. The carbon fibres 1407 

give the stiffness and strength, and the polymer works as a cohesive-matrix to protect and hold the 1408 

fibres together. Even though carbon FRP rebars have been studied in many aspects such as durability 1409 

performance in general (Ceroni et al., 2006; Karbhari et al., 2003), fire resistance (Hollaway, 2010; 1410 

Uomoto and Nishimura, 1999), stiffness (Takewaka and Khin, 1996), flexural strengthening (Bogas and 1411 
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Gomes, 2008; Ferrari et al., 2013; Triantafillou et al., 2001), tensile (Cao et al., 2009), pull-out capacity 1412 

(Barros and Sena-Cruz, 2002; de Sena Cruz and Oliveira de Barros, 2004), bond strength (Teng et al., 1413 

2006; Yun et al., 2008), shear behaviour (Zhang, H. et al., 2019), and even GWP (Das, 2011; Song et al., 1414 

2009), relative to glass FRP rebars studies on carbon FRP rebars are more limited (Barros and Sena-1415 

Cruz, 2002; Bogas and Gomes, 2008; Cao et al., 2009; Ceroni et al., 2006; Das, 2011; de Sena Cruz and 1416 

Oliveira de Barros, 2004; Ferrari et al., 2013; Hassan and Rizkalla, 2002; Hollaway, 2010; Karbhari et 1417 

al., 2003; Kobayashi and Fujisaki, 1995; Rasheed, 2014; Song et al., 2009; Takewaka and Khin, 1996; 1418 

Teng et al., 2006; Triantafillou et al., 2001; Uomoto and Nishimura, 1999; Yun et al., 2008; Zhang, H. 1419 

et al., 2019). Their seismic performance, and long-term behaviour and durability when exposed to 1420 

harsh environment have not been extensively studied yet. 1421 

In addition, there are other types of FRP rebars such as aramid (Djafar-Henni and Kassoul, 2018; Leung 1422 

and Burgoyne, 2001; Noritake et al., 1993; Sonnenschein et al., 2016; Uomoto and Nishimura, 1999; 1423 

Wang and Wu, 2011) and glass-carbon (Kang et al., 2014) that can be used as reinforcement in con-1424 

crete structure. 1425 

11.1.8 Corrosion inhibiting admixtures 1426 

The service life of concrete significantly depends on the corrosion rate of steel bars (Hansson et al., 1998; 1427 

Tuutti, 1982). Thus, several methods (§11.1.1-§11.1.7) have been proposed to prevent steel bars from 1428 

corroding and to extend the service life of reinforced concrete structures as a result. Relatively to other 1429 

techniques, corrosion inhibitors are one of the most efficient and appropriate methods due to their low 1430 

cost, excellent corrosion resistance effect, and easy application (Christodoulou et al., 2010; El-Hacha et 1431 

al., 2010; Jiang et al., 2017; Karthick et al., 2016; Królikowski and Kuziak, 2011; Saraswathy and Song, 1432 

2007b; Zheng et al., 2012). As defined in a ASTM standard (ASTM C1582 / C1582M-11(2017)e1, 2017), 1433 

corrosion inhibitors can be used to inhibit chloride-induced corrosion of reinforcing steel in concrete. 1434 

Generally, there are no accurate data regarding the effect of corrosion inhibitors on the carbonation 1435 

resistance of concrete, which is considered one of the two most influential factors on the service life of 1436 

concrete and corrosion of rebars together with chloride penetration resistance. 1437 

As shown in Figure 15, the corrosion resistance of concrete depends on the reinforcement concrete 1438 

cover (time - to) and rebars corrosion resistance (time - t1). Each of these periods depends on different 1439 

factors. Thus, corrosion inhibiting admixtures depending on their type (organic and inorganic) can af-1440 

fect either the concrete cover (reducing the permeability) or the rebars (forming a protective film) by 1441 

(i) increasing the chloride threshold value (by improving the resistance of the passive-film or creating 1442 

a barrier-film and extending its lifetime - t0 - as a result (Hansson et al., 1998)), (ii) decreasing chloride 1443 
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diffusion rate (increasing t0 (Hansson et al., 1998; Tuutti, 1982)), (iii) increasing the degree of chloride 1444 

binding of concrete (decreasing the movement of ions on the metallic surface and increasing t1 1445 

(Hansson et al., 1998; Lee, H.-S. et al., 2018; Tuutti, 1982)), (iv) eliminating the dissolved oxygen in the 1446 

pore system and preventing the ingress of oxygen (increasing t1 (Hansson et al., 1998)), or (v) increas-1447 

ing the electrical resistivity of the metallic surface (increasing t1 (Lee, H.-S. et al., 2018)). 1448 

Based on several studies (Gaidis, 2004; Ormellese et al., 2006; Song and Saraswathy, 2006a; Vyrides 1449 

et al., 2013), corrosion inhibitors can be classified based on mechanism (anodic and cathodic, or both 1450 

actions), type of chemical (organic and inorganic/mixed inhibitors) and application (either on the sur-1451 

face of hardened concrete or mixed during the production stage). Most examples of corrosion-inhib-1452 

iting admixtures can be seen in the USA standard (ACI 212.3R-10, 2010; ASTM C1582 / C1582M-1453 

11(2017)e1, 2017). 1454 
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 1455 

Figure 15 - Corrosion process of structural concrete as a function of lifetime with and without corrosion inhibitors (adapted from (Elsener and Angst, 2016; Hansson et al., 1998; Lee, H.-S. et al., 2018; Tuutti, 1982)) 1456 
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Several studies (Elsener and Angst, 2016; Hansson et al., 1998; Lee, H.-S. et al., 2018; Tuutti, 1982) simpli-1457 

fied the electrochemical theory of corrosion, namely with and without the use of corrosion inhabiting ad-1458 

mixtures. Under normal circumstances (non-protected metal surface), some parts of the rebars act as cath-1459 

odes and others as anodes. With the presence of water and oxygen around the surface of rebar, corrosion 1460 

will occur. Thus, the ultimate purpose of any corrosion inhibiting admixture or other protection systems 1461 

(§11.1.1-11.1.4) is to stop fleeing/travelling electrons from the anodic area to cathodic area. This can be 1462 

made by three protection mechanisms (i-iii): 1463 

(i) Anodic inhibitors can be named passivation inhibitors or sacrificial inhibitors. In electrochemical terms, 1464 

the anodic reaction of the anodic inhabiting admixture must be more active than the anodic reaction of 1465 

the surface of steel bars. There are two types of anodic inhibitors, non-oxidizing ions (phosphate, molyb-1466 

dates, and tungstate) and oxidizing anions (nitrates, chromates, and nitrites), working in the presence and 1467 

absence of O2, respectively. There are also inorganic-anodic inhibitors, such as chromates (Fernández Olmo 1468 

et al., 2001), calcium nitrate (Ann et al., 2006), nitrates (Gaidis, 2004; Justnes, 2004), sodium nitrite (Song 1469 

and Saraswathy, 2006a), and trisodium phosphate (Gallant and Simard, 2005; Sail et al., 2013). 1470 

(ii) Cathodic inhibitors may work similarly to anodic inhibitors by sacrificing themselves and producing 1471 

a barrier film, and slowing the cathodic reaction on the surface of the metal (e.g. zinc, magnesium 1472 

slats). Generally, anodic inhibitors are more effective than cathodic inhibitors because they generate 1473 

less H2. As stated in (Lee, H.-S. et al., 2018), in terms of chemical composition, corrosion inhibiting 1474 

admixtures that mainly work as either anodic or cathodic mechanism can be identified as inorganic 1475 

inhibitors. There are also inorganic-cathodic such as zinc oxide (Baiqing et al., 2003; Song and 1476 

Saraswathy, 2006a). 1477 

(iii) Mixed inhibitors (pore blocker - hydrophobic material that has polar groups charged positively and 1478 

negatively) act on the cathodic and anodic areas. There are also organic - chemisorption and - physisorp-1479 

tion (mixed inhibitors) such as sodium ‘’nitrite+ zinc oxide’’ (Song and Saraswathy, 2006a), triethanola-1480 

mine (Song and Saraswathy, 2006a), monoethanolamin (Song and Saraswathy, 2006a), diethanolamine 1481 

(Song and Saraswathy, 2006a), “disodium β-glycerol phosphate pentahydrate + sodium 3-aminobenzo-1482 

ate” (Criado et al., 2012), “disodium β-glycerol phosphate pentahydrate + sodium N-phenylanthranilate” 1483 

(Criado et al., 2012), benzoate (Blustein et al., 2006), nitrite and ethanolamine (Asipita et al., 2014). 1484 

There are some issues that need to be answered concerning this path. For example, (i) how do the corro-1485 

sion inhibitors work when concrete is fully carbonated or contaminated with salt-containing chloride ions? 1486 

(ii) How long can the corrosion inhibitors protect the reinforcement of concrete structures? (iii) How to test 1487 

corrosion inhibitors’ reliability in laboratory to achieve practice-related results? In addition, most of the 1488 
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previous studies used commercially available corrosion inhibitors without providing their composition. 1489 

11.2 Slow down penetration of aggressive agents to concrete 1490 

11.2.1 Shrinkage control 1491 

Aggressive agents may penetrate concrete due to shrinkage cracks (Hewlett and Liska, 2019; Shami and Ian). 1492 

To control the shrinkage of concrete, several strategies are proposed such as using shrinkage/crack-reducing 1493 

admixtures (e.g. polyoxyalkylene alkyl ether and propylene glycol (ACI 212.3R-10, 2010; José Oliveira et al., 1494 

2014; Maltese et al., 2005; Meddah et al., 2008; Meddah et al., 2011; Mora-Ruacho et al., 2009; Pistolesi et 1495 

al., 2009; Ribeiro et al., 2006; Schokker, 2010)), controlling the mix design (w/b and aggregate/binder ratios 1496 

(Hewlett and Liska, 2019; Jensen and Hansen, 2001)), and applying a surface treatment (Xu and Chung, 1497 

2000c). In general, most of the materials used in concrete for self-healing can be included in this strategy, 1498 

such as SCM (e.g. FA (Atiş, 2003; Kurda et al., 2019a), SF (Güneyisi et al., 2012) and metakaolin (Güneyisi et 1499 

al., 2012)), metallic/steel fibres (Ghorbani et al., 2020; Susetyo, 2009; Yousefieh et al., 2017), polypropylene 1500 

fibres (Karimipour et al., 2020; Sadiqul Islam and Gupta, 2016), cellulose fibres (Parviz and Siavosh), polysty-1501 

rene aggregate (Tang et al., 2008), internal curing (e.g. light-weight aggregates (LWA) (Akcay and Tasdemir, 1502 

2010; Cusson and Hoogeveen, 2008; Kovler and Jensen, 2007), super-absorbent polymers (Jensen and 1503 

Hansen, 2001; Kovler and Jensen, 2007), water-saturated recycled porous ceramic aggregate (Meddah and 1504 

Sato, 2010; Suzuki et al., 2009)), and expansive agents (Collepardi et al., 2005; Hori and Morioka, 1999; Ito 1505 

et al., 2004; Meddah et al., 2011; Mo et al., 2012). This strategy must be considered especially for self-com-1506 

pacting concrete (SCC) due to the high risk of shrinkage caused by the low volume of coarse aggregates 1507 

(Barluenga and Hernández-Olivares, 2007). 1508 

11.2.2 Self-healing concrete 1509 

The self-healing (self-repairing) mechanism of concrete can be defined as the capability of concrete (or 1510 

CBM) to repair its cracks by two processes, namely (a) autogenous and (b) autonomous (Figure 16). Several 1511 

review studies can be seen on this path (Bekas et al., 2016; De Rooij et al., 2013; Gupta et al., 2017; He and 1512 

Shi, 2017; Huseien et al., 2019; Muhammad et al., 2016; Rajczakowska et al., 2019; Sidiq et al., 2019; 1513 

Souradeep and Kua, 2016; Wang, X.F. et al., 2019), but there are many contradictory statements in terms 1514 

of the classification of the two mentioned process. This may have happened because some materials can 1515 

be used for both purposes (autogenous - as a main healing material and as a secondary healing material to 1516 

protect the main healing material). 1517 

(a) In autogenous self-healing (a natural phenomenon, spontaneous and self-created, that occurs 1518 

without the presence of external/artificial phenomena), cracks may heal after some time due to (i) 1519 
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expansion of hydrated cementitious matrix, (ii) carbonation of calcium hydroxide, (iii) impurities pre-1520 

sent in water, and (iv) ongoing hydration of unreacted cement (Edvardsen, 1999). This healing mech-1521 

anism occurs in the presence of the materials that are not specifically designed for self-healing (Van 1522 

Tittelboom et al., 2013). In fact, they are added to concrete for other purposes, i.e. durability or 1523 

strengthening. 1524 

(b) Contrary to autogenous self-healing, autonomous self-healing can include any technique that uses 1525 

cementitious materials only for healing cracks. Bacteria-based (with and without shell) and capsule-1526 

based (polymer-based containing liquid healing agents) are the most common techniques in this path, 1527 

but have not been applied in practice. Apart from the mentioned techniques, fungi, shape memory ma-1528 

terials, and external supply of healing agent can be also classified as autogenous self-healing (Figure 16). 1529 
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 1530 

Figure 16 - Self-healing strategies in cement-based materials (adapted from (Bekas et al., 2016; De Rooij et al., 2013; Gupta et al., 2017; Huseien et al., 2019; Muhammad et al., 2016; 1531 
Rajczakowska et al., 2019; Sidiq et al., 2019; Souradeep and Kua, 2016; Wang, X.F. et al., 2019)) 1532 
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11.2.2.1 Autonomous self-healing 1533 

11.2.2.1.1 Bacteria as self-healing agent 1534 

Bacteria are incorporated with cementitious materials as a potential self-healing agent because they 1535 

motivate the precipitation of CaCO3 as a crack-healing agent. Based on the metabolic processes, four 1536 

types of bacteria can induce CaCO3 precipitation, namely (i) aerobic respiration (Bhaskar et al., 2017a; 1537 

Bundur et al., 2017c; Erşan et al., 2016a; Gupta et al., 2018; Li, W. et al., 2018; Seifan et al., 2018c; 1538 

Wang, Jianyun et al., 2014; Wang, J. et al., 2012; Wang, J.Y. et al., 2014a; Wang, J.Y. et al., 2014b), (ii) 1539 

nitrogen cycle (Alazhari et al., 2018; Erşan et al., 2015; Erşan et al., 2016a; Erşan et al., 2016b; Khaliq 1540 

and Ehsan, 2016; Li, W. et al., 2018; Sierra-Beltran et al., 2014; Stuckrath et al., 2014; Tziviloglou et al., 1541 

2016; Wang, J.Y. et al., 2014b; Zhang, J. et al., 2017), (iii) photosynthesis (Baumgartner et al., 2006; 1542 

Lee and Park, 2018; Siddique and Chahal, 2011), and sulphur cycle (Baumgartner et al., 2006; Braissant 1543 

et al., 2007; Lee and Park, 2018). Further details on each of these bacteria types are shown in (Wang, 1544 

X.F. et al., 2019). 1545 

In terms of application, bacteria can be directly added to the cementitious materials without shells (Bundur 1546 

et al., 2017a; Bundur et al., 2017b; Jonkers et al., 2010; Luo et al., 2015a; Luo et al., 2015b; Mors and 1547 

Jonkers, 2017; Qian et al., 2015; Sarkar et al., 2015; Siddique et al., 2017; Thiyagarajan et al., 2016; Williams 1548 

et al., 2017; Xu and Yao, 2014) or they can be added with shells (encapsulation material) such as calcium 1549 

alginate (Palin et al., 2017), ceramsite (Chen, H. et al., 2016), diatomaceous earth (Wang, J.-Y. et al., 2012), 1550 

geopolymer (De Koster et al., 2015), hydrogel (Wang, JY et al., 2014a), iron oxide nanoparticle (Seifan et 1551 

al., 2018a; Seifan et al., 2018b; Seifan et al., 2018c), expanded clay (EC) (Bundur et al., 2017c; Wiktor and 1552 

Jonkers, 2011), melamine-based (Wang, JY et al., 2014b), polyurethane (Wang, J. et al., 2012), silica gel 1553 

(Wang, J. et al., 2012), and zeolite (Bhaskar et al., 2017b). Compared to the direct addition of bacteria, the 1554 

long-term viability of the bacteria with the encapsulation technique is higher because it protects bacteria 1555 

from the high pH of the cementitious materials (Souradeep and Kua, 2016). Moreover, bacteria can be 1556 

externally added to concrete (§11.2.2.1.4). 1557 

11.2.2.1.2 Fungi 1558 

Fungi can be multicellular or single-celled organisms such as yeasts and moulds. Some studies show 1559 

that fungi can also fill the cracks in cementitious materials. However, studies on this path are very 1560 

limited (Luo et al., 2018; Menon et al., 2017; Sidiq et al., 2019). Thus, as reported in (Talaiekhozan et 1561 

al., 2014), the mechanism of fungi to fill cracks has not been fully understood yet. 1562 
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11.2.2.1.3 Encapsulation of chemical agents 1563 

Encapsulation can be made by filling the capsule materials with a healing agent, i.e. bacteria 1564 

(§11.2.2.1.1) or chemical agents (De Rooij et al., 2013; Kousourakis and Mouritz, 2010; Li, W. et al., 1565 

2017; Zhong and Post, 2015). In this section, the focus is only on the method with chemical agents. 1566 

The self-healing-based encapsulation can be made with either micro- (De Rooij et al., 2013; 1567 

Rajczakowska et al., 2019; Van Tittelboom et al., 2013) or tubular- (De Rooij et al., 2013; Ghosh, 2009; 1568 

Joseph et al., 2010) capsules (the tube can be similar to a vascular system but it is filled with the healing 1569 

agent and both ends are closed) filled with a chemical agent such as cyanoacrylate (Joseph et al., 2010; 1570 

Van Tittelboom and De Belie, 2010), epoxy (Mihashi et al., 2001; Thao et al., 2009; Van Tittelboom 1571 

and De Belie, 2010; Xing et al., 2008), acrylic resin (Mihashi et al., 2001), sodium silicate solution 1572 

(Pelletier et al., 2011), “methyl methacrylate with triethylborane as catalyst’’ (Yang, Z. et al., 2011), 1573 

tung oil (Cailleux and Pollet, 2009), calcium hydroxide (Cailleux and Pollet, 2009), and polyurethane 1574 

(Van Tittelboom et al., 2011). Additionally, the capsule material can be made with glass (Escobar et 1575 

al., 2013; Joseph et al., 2010; Thao et al., 2009; Van Tittelboom and De Belie, 2010; Van Tittelboom et 1576 

al., 2011), Perspex (Thao et al., 2009), urea formaldehyde formalin (Mihashi et al., 2001), gelatine 1577 

(Cailleux and Pollet, 2009; Mihashi et al., 2001), formaldehyde (Xing et al., 2008), polyurethane 1578 

(Pelletier et al., 2011), silica gel (Yang, Z. et al., 2011), ceramics (Cailleux and Pollet, 2009; Van 1579 

Tittelboom et al., 2011), and others (Wang, X.F. et al., 2019). 1580 

11.2.2.1.4 External supply of healing agent 1581 

The external supply of healing agent can be related to many paths. Nevertheless, the paths mentioned in 1582 

this section are related to the techniques that spontaneously work when cracks occur. This strategy can be 1583 

made with hollow fibres and is called a vascular system. In this system, the healing agent is supplied to 1584 

concrete by an external source through the hollow tubes previously installed in concrete at the fresh stage 1585 

(Dry, 1994; Escobar et al., 2013; Huang et al., 2014b; Joseph et al., 2010; Sangadji and Schlangen, 2012). 1586 

Generally, the tube can be made of glass (Al-Gemeel et al., 2018; De Rooij et al., 2013) or carbon fibre-1587 

reinforced plastic (De Rooij et al., 2013). This system can be made with single-channel when only one heal-1588 

ing agent is used and multiple-channel when the healing agent involves the reaction of two components 1589 

(Souradeep and Kua, 2016). This strategy is feasible only at laboratory scale and it may not be cost-efficient 1590 

for bigger scales because it requires a long piping system to cover the entire structure (Souradeep and Kua, 1591 

2016) and it is difficult to release the agent from the pipe (De Rooij et al., 2013). Therefore, capsule-based 1592 

self-healing can be considered as an alternative method. 1593 
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Apart from the vascular system, this strategy can be also made by curing of material in bacterial cul-1594 

ture (Tripathi et al., 2019), spraying of bacteria (Wiktor and Jonkers, 2015), injection of bacteria (Li 1595 

and Qu, 2015; Sangadji et al., 2013), electrodeposition method (JIANG et al., 2004; Jiang et al., 2008; 1596 

Modaresi et al., 2015; Nobuaki Otsuki and Eiji; Otsuki and Ryu, 2001; Ryou and Monteiro, 2004; Ryu 1597 

and Otsuki, 2002), and self-healing coating (§11.2.3). 1598 

11.2.2.1.5 Shape memory materials as self-healer 1599 

Shape memory materials (SMM), i.e. alloy wire (Bonilla et al., 2018; Huseien et al., 2019; Sherif and 1600 

Juan; Sun et al., 2013a; Wang, X.F. et al., 2019) or polymers (Huseien et al., 2019; Jefferson et al., 2010; 1601 

Teall et al., 2018; Wang, X.F. et al., 2019) as reinforcing bar, are effective to reduce the size of cracks 1602 

and increase the resistance of concrete to any damage actions due to their super-elastic behaviour 1603 

(Choi, E. et al., 2014; Han et al., 2017; Kim et al., 2016; Kuang, Y. and Ou, J., 2008; Li et al., 2006; Li et 1604 

al., 2007; Sakai et al., 2003; Song et al., 2006; Sun et al., 2013b). However, the cracks cannot be filled 1605 

and still exist. SMM can be activated by electricity or heating to generate effective stress to facilitate 1606 

energy dissipation and control cracks (Choi et al., 2017; Kim, D.J. et al., 2014; Nassiri-monfared et al., 1607 

2018). SMM fibres can be straight or dog-bone shaped, with and without paper wrapping in the middle 1608 

(Choi, E. et al., 2014). A systematic review study must be done to show the types of materials that can 1609 

be used for this purpose. 1610 

11.2.2.2 Autogenous self-healing 1611 

11.2.2.2.1 Supplementary cementitious materials 1612 

Apart from cement, many of the SCMs may work as autogenous self-healing materials (Rajczakowska et 1613 

al., 2019). For that purpose, researchers have studied the feasibility of slag (Alyousif et al., 2015; 1614 

Darquennes et al., 2016; Gruyaert et al., 2014; Huang et al., 2014a; Hung et al., 2018; Jiang, Z. et al., 1615 

2015; Kim et al., 2018; Mehdipour et al., 2018; Olivier et al., 2016; Qian et al., 2009; Qiu et al., 2016; 1616 

Ryou et al., 2015; Schlangen et al., 2006; Van Tittelboom et al., 2012), FA (Alyousif et al., 2015; Gruyaert 1617 

et al., 2014; Herbert and Li, 2012; Herbert and Li, 2013; Hung and Su, 2016; Hung et al., 2018; Kan and 1618 

Shi, 2012; Liu, Hezhi et al., 2017; Ma et al., 2014; Mehdipour et al., 2018; Na et al., 2012; Özbay et al., 1619 

2013; Qian et al., 2009; Şahmaran et al., 2008; Sherir et al., 2016, 2017a, b; Siad et al., 2015; Siad et al., 1620 

2017; Suryanto et al., 2016; Termkhajornkit et al., 2009; Van Tittelboom et al., 2012; Yildirim et al., 2014; 1621 

Zhang and Zhang, 2017), lime (Jo et al., 2015; Siad et al., 2015; Yildirim et al., 2015), silica (Jiang, Z. et al., 1622 

2015; Nishiwaki et al., 2015; Ryou et al., 2015), and metakaolin (Ryou et al., 2015) for monitoring autog-1623 

enous crack healing in cementitious materials. 1624 
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11.2.2.2.2 Super absorbent polymer 1625 

Super absorbent polymer (SAP) can absorb a great quantity of liquid and swell significantly to form an 1626 

insoluble and soft gel (De Rooij et al., 2013; Van Tittelboom et al., 2013). It may work as a direct physical 1627 

blocking effect after exposure to water and swelled, or it may work as an internal curing system and moti-1628 

vate autogenous healing (De Rooij et al., 2013; Pelto et al., 2017). Although this strategy causes autogenous 1629 

healing, it can be also considered as autogenous because these materials are also added to concrete and 1630 

do not belong to a typical mix design. For that purpose, it has been used in CBM (Didier, 2018; Hong and 1631 

Choi, 2017, 2018; Lee, H.X.D. et al., 2016, 2018; Mechtcherine et al., 2013; Mechtcherine et al., 2017; 1632 

Mignon et al., 2017; Snoeck and Belie, 2016; Snoeck et al., 2016; Snoeck et al., 2014). Nevertheless, un-1633 

coated SAP may absorb a part of concrete mixing water during the fresh state and generate a considerable 1634 

amount of porosity in hardened concrete. To overcome this issue, the SAP particles are encapsulated with 1635 

a shell to resist the mechanical stresses of mixing procedure and become fragile enough to be broken when 1636 

a propagating crack passes through them (Pelto et al., 2017). 1637 

11.2.2.2.3 Expansive and crystalline admixtures 1638 

Another way to achieve autogenous self-healing can be through (i) expansive admixtures such as calcium 1639 

sulpho aluminate (Wang, Xianfeng et al., 2018), MgO (Qureshi et al., 2016; Sherir et al., 2017a), CaO (De 1640 

Nardi, Cristina et al., 2017; De Nardi, C. et al., 2017; Qureshi et al., 2016), anhydrite(Wang, Xianfeng et al., 1641 

2018), bentonite (Qureshi et al., 2016; Rehman et al., 2019); generally, they react with calcium hydroxide to 1642 

procedure expansive products (e.g. calcium hydroxide, ettringite, magnesium carbonate and magnesium 1643 

hydrate) and consequently fill the cracks; (ii) crystalline chemical admixtures that consist of hydrophilic ac-1644 

tive chemicals particles (ACI 212.3R-10, 2010) such as crystalline catalysts (De Nardi, Cristina et al., 2017; 1645 

Ferrara et al., 2014; Roig-Flores et al., 2016; Wang, Xianfeng et al., 2018), sodium silicate (Alghamri et al., 1646 

2016; Beglarigale et al., 2018; Kanellopoulos et al., 2015), colloidal/active silica, sodium carbonate 1647 

(Sisomphon et al., 2011; Wang, Xianfeng et al., 2018), sodium monofluorophosphate (Sisomphon et al., 1648 

2011). According to a previous study (Wang, X.F. et al., 2019), crystalline admixtures such as ethyl silicates 1649 

sodium bicarbonate and lithium carbonate can be used for the same goal. In terms of application, the min-1650 

eral admixture can be added to concrete by encapsulation (Alghamri et al., 2016; Beglarigale et al., 2018; 1651 

Kanellopoulos et al., 2015; Qureshi et al., 2016) or direct (Ferrara et al., 2014) use or only by dipping the 1652 

sample in a solution (Jacobsen and J. Sellevold, 1996). Studies on this path, namely using crystalline chemical 1653 

admixtures in concrete, are very limited and, as presented by (Wang, X.F. et al., 2019), there might be other 1654 

materials (e.g. ethyl silicates sodium bicarbonate and lithium carbonate) to be used for the same purpose. 1655 
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11.2.2.2.4 Nanomaterials-based self-healing concrete 1656 

As any other autogenous self-healing strategies, the main purpose of using nanomaterials is to act as a 1657 

crack bridging agent and in concrete as filler and enhance concrete’s performance (Norhasri, M.S.M. et al., 1658 

2017; Reches, 2018). According to a review study (Huseien et al., 2019) on nanomaterials-based self-heal-1659 

ing concrete, nanomaterials in self-healing concrete are added to control the corrosion of steel bar. Gen-1660 

erally, several types of nanomaterials have been used in concrete such as carbon nanotube (CNT) (Ahmed 1661 

et al., 2018a; Ahmed et al., 2018b; Bogas and Hawreen, 2019; Bogas, J. et al., 2019; Carriço et al., 2018; 1662 

Cwirzen et al., 2009; Guedes et al., 2016; Hawreen, 2017; Hawreen and Bogas, 2018; Hawreen et al., 2018a; 1663 

Hawreen et al., 2017; Hawreen and Bogas, 2019; Hawreen et al., 2018b; Hawreen et al., 2019), polycar-1664 

boxylates (Norhasri, M.M. et al., 2017), titanium oxide (Sobolev et al., 2006), nanokaolin (Morsy et al., 1665 

2010), nanoclay (Morsy et al., 2010), nanoiron (Olar, 2011), nanosilver (Olar, 2011), and graphene (Chuah 1666 

et al., 2014; Dimov et al., 2018). 1667 

11.2.2.2.5 Other techniques 1668 

The expression “smart concrete” can include most of the autogenous and autogenous self-healing 1669 

strategies. Several studies on so-called smart concrete use carbon fibre (Chen and Chung, 1993; Chen 1670 

and Chung, 2011; Pu-Woei and Chung; Sun et al., 2000; Van Mullem et al., 2019; Zhou et al., 2009), 1671 

shape memory alloy (Kuang, Y.-c. and Ou, J.-p., 2008; Li et al., 2007), phase change materials 1672 

(D'Alessandro et al., 2018) and sensors fabricated using nanotubes or others hybrid fillers 1673 

(D'Alessandro et al., 2015; Han, B. et al., 2014; Loh et al., 2015). 1674 

11.2.3 Surface protection 1675 

According to review studies (Pan et al., 2017a, b), in terms of chemical composition, surface protection 1676 

agents can be classified as: (i) organic, which is the most commonly used and effective technique to 1677 

protect concrete (Delucchi et al., 1997); however, its service life is short, and it may not easy to remove 1678 

(Delucchi et al., 1997; Pan et al., 2017a, b); (ii) inorganic, such as sodium silicate solution (most com-1679 

mon), lithium silicate, fluosilicates and potassium silicates, which have been also used to protect the 1680 

surface of concrete (Franzoni et al., 2013; Pacheco-Torgal and Jalali, 2009; Pan et al., 2017a, b). 1681 

In terms of mechanism, based on the strategies given in various studies (Esteves et al., 2019) (Dai et 1682 

al., 2010; Duarte et al., 2020; Flores-Colen et al., 2020; Galvão et al., 2020; Medeiros and Helene, 2009; 1683 

Pan et al., 2017a) and a standard (BS EN 1504-2), surface protection can be divided in four main groups 1684 

(i) surface coating, (ii) multifunctional surface treatment, (iii) pore blocking surface treatment, and (iv) 1685 

hydrophobic impregnation. 1686 
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11.2.3.1 Surface coating 1687 

Surface coating creates a continuous polymer film that works as a physical barrier to stop aggressive 1688 

agents penetrating into CBM (Almusallam et al., 2003; Diamanti et al., 2013; Pan et al., 2017a). As 1689 

reported by (Pan et al., 2017a), in terms of composition, surface coating can be divided in three 1690 

groups: (i) traditional polymer coatings such as epoxy resins (Ahmad et al., 2005; Chruściel and Leśniak, 1691 

2015; Moloney et al., 1987; Reddy and Sykes, 2005; Sangermano et al., 2013; Topçuoğlu et al., 2006; 1692 

Velan and Bilal, 2000; Wetzel et al., 2003; Yamini and Young, 1977; Yarovsky and Evans, 2002; Zerda 1693 

and Lesser, 2001), acrylic (Carretti and Dei, 2004; Chattopadhyay et al., 2004; Kozak, 2015; Lewis et 1694 

al., 2012) and polyurethane/asphaltic (Awad and Wilkie, 2010; Elnaggar et al., 2019; Sørensen et al., 1695 

2009; Toutanji et al., 2013; Yang, X.F. et al., 2002a; Yang, X.F. et al., 2002b; Yang et al., 2001; Zur, 1696 

2010); (ii) polymer nanocomposite coatings such as polymer-clay (Hackman and Hollaway, 2006; 1697 

Kojima et al., 1993; Scarfato et al., 2012; Woo et al., 2008b), silane-clay (Woo et al., 2008a), polymer-1698 

silica (Carmona-Quiroga et al., 2010; Manoudis et al., 2007; Woo et al., 2007); as confirmed in (Pan et 1699 

al., 2017a), polymer-Al2O3 as coating has potential for this path but it has not been investigated yet; 1700 

(iii) mixed coatings, such as polymer modified cementitious coating (Diamanti et al., 2013), acrylic 1701 

rubber surface coating (Swamy and Tanikawa, 1993), and alkali-activated materials coating (Aguirre-1702 

Guerrero et al., 2017; Balaguru, 1998; Salwa et al., 2013; Zhang, Z. et al., 2012; Zhang et al., 2010). 1703 

11.2.3.2 Hydrophobic impregnation 1704 

By coating the surface of hardened concrete with hydrophobic agents (water repellent) such as silane 1705 

and/or siloxane (Johnson et al., 2009; Li, H. et al., 2012; Medeiros and Helene, 2008; Pan et al., 2017a; 1706 

Woo et al., 2008a), the surface of interior-pores of concrete can be increased increasing the surface 1707 

contact angle between concrete and liquid to more than 90° (Kulkarni and Shaw, 2015). Thus, this 1708 

technique inhibits water and other aggressive liquid from penetrating through the pores of concrete 1709 

by capillarity, even though humidity can enter or exit. This strategy can be also applied by incorporat-1710 

ing nanoparticles (Esposito Corcione et al., 2018; Li, G. et al., 2018), acrylic-silicon resin (Edao et al., 1711 

2012), micro silica particles (Mora et al., 2019), GGBS (Qu and Yu, 2018), and stearic acid emulsion 1712 

(Feng et al., 2019). 1713 

Recently, superhydrophobic coatings have also been developed by researchers. They can include ammo-1714 

nium polyphosphate(Chen et al., 2015), calcium carbonate nanoparticle (Chen, B. et al., 2016), candle soot 1715 

(Deng et al., 2012; Iqbal et al., 2017; Li, J. et al., 2017; Seo et al., 2014), carbon black/polybutadiene elasto-1716 

meric composite (Hu et al., 2017), cyanoacrylates (Pan et al., 2018), epoxy resin (Peng et al., 2018), gra-1717 

phene oxide/diatomaceous earth/polydimethylsiloxane (Liu, Hui et al., 2017), polyelectrolyte complexes 1718 
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(Coclite et al., 2012), silver nanoparticles (Liu, F. et al., 2014), SiO2 (de Francisco et al., 2015; Zhi et al., 2017), 1719 

TiO2 (Ghosh et al., 2014; Lu et al., 2015), wax (Wang et al., 2016), and RHA (Husni et al., 2017; Junaidi et al., 1720 

2016; Ramachandran et al., 2016). 1721 

11.2.3.3 Pore blocking surface treatment 1722 

This strategy intends to block the capillary-pores in the concrete surface to increases its watertight-1723 

ness and hardness. For that purpose, fluosilicate (Jia et al., 2016; Jiang, L. et al., 2015; Pan et al., 2016) 1724 

and silicate-based solutions (e.g. sodium silicate (Dai et al., 2010; Jiang, L. et al., 2015; Pan et al., 2016), 1725 

calcium silicate (Moon et al., 2007)) have been used as an effective agent to block capillary-pores in 1726 

concrete surfaces. 1727 

Electro-kinetic nanoparticle treatment (Kupwade-Patil et al., 2012; Wu et al., 2016b) and brushing nano-1728 

SiO2 (Hou et al., 2014; Hou et al., 2015) and nano MgO (Pan et al., 2017a; Shah et al., 2016) can be also 1729 

used as a pore blocking surface treatment. Additionally, this strategy can be also be made with self-1730 

healing coating by using epoxy coating containing microencapsulates (Chen et al., 2017; Nesterova et 1731 

al., 2011; Samadzadeh et al., 2011), fibres distributed in a shape-memory epoxy matrix (Luo and Mather, 1732 

2013), hydrogel coatings (Yang et al., 2015), polymer coatings (Bode et al., 2013; Cho et al., 2009; Huang 1733 

et al., 2012; Song et al., 2013). Although the results of this path are very promising, there are only few 1734 

studies focused on this strategy. 1735 

11.2.3.4 Super skin concrete 1736 

The term super skin concrete can be defined as a thin ultra-high-performance concrete used to protect 1737 

and be filled with ordinary concrete. It may resist the ultimate load of the structure and improve du-1738 

rability. It can work as a typical concrete-filled steel (Han, L.-H. et al., 2014; Yang, H. et al., 2008; Yuan 1739 

and Yang, 2013) or FRP (Zhang, B. et al., 2015) tubular cross-section. This strategy is normally used in 1740 

rehabilitation to cover old concrete. However, there are only few scientific works on this path for 1741 

beams (Martins et al., 2018) and columns (Kim et al., 2017). 1742 

11.3 Reduce degradation rate of concrete 1743 

11.3.1 Alkali-aggregate reaction 1744 

Generally, aggregates can be considered an inert material from a chemical point of view. However, 1745 

some of them may react with the alkali-hydroxides in concrete, resulting in expansion and cracking 1746 

over time. The alkali-aggregate reaction may induce concrete damage in two forms: alkali-silica reac-1747 

tion (ASR) and alkali-carbonate reaction (ACR). 1748 
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ASR damages concrete due to the presence of reactive silica in the aggregate, alkalis mainly from ce-1749 

ment, and moisture (FHWA-RD-03-047, 2016; Lindgård et al., 2012; Liu, K. et al., 2018; Thomas et al., 1750 

2012). To prevent or mitigate ASR, the following paths have been considered: (i) SCMs, namely FA, are 1751 

the most common solution to prevent ASR (Shayan et al., 1996; Shehata and Thomas, 2002; Sibbick 1752 

and Page, 1995; Thomas et al., 2011; Thomas et al., 1997). Other SCMs, such as SF (Shehata and 1753 

Thomas, 2002), GGBS (Arano and Kawamura, 2000; Bleszynski et al., 2002; Thomas et al., 1997), me-1754 

takaolin (Ramlochan et al., 2000) and other calcined clays, RHA (Khan et al., 1985) and natural zeolites 1755 

(Naiqian and Tingyu, 1998), can be also used for the same purpose; (ii) chemical admixture, such as 1756 

lithium salt (Ohama, 1992; Sakaguchi, 1989), air-entraining admixtures (Ohama, 1992; Ratinov and 1757 

Rosenberg, 1989), hydration controller (Ekolu et al., 2007; Hobbs, 1988), ilanes, siloxanes, and silico-1758 

fluorides (Nakajima et al., 1992; Saucier and Neely, 1987), and phosphate (Diamond, 1992); (iii) using 1759 

nonreactive aggregates complying with standards ASTM C294 (ASTM C294-05, 2005) and C1293 1760 

(ASTM C1293, 2018), CSA A23 (Rogers, 1990); BS 7943 (Institution, 1999), RILEM AAR (Sims and Nixon, 1761 

2003), AASHTO PP65 (AASHTO PP65, 2016) and other standards collected in a review study (Lindgård 1762 

et al., 2012); (iv) limiting the total alkali content of concrete to 1.8-3 kg Na2Oe per m3 (ASTM C1293, 1763 

2018; FHWA-RD-03-047, 2016; Rogers, 1990). Apart from cement, alkalis may have also come from 1764 

some specific SCM, aggregate, chemical admixtures, recycled water and outer sources such as de-icing 1765 

salts and seawater (FHWA-RD-03-047, 2016; Lindgård et al., 2012; Swamy, 2002). 1766 

Relatively to ASR, ACR damage in concrete is rare and it mainly happens when a specific type of ag-1767 

gregates (dolomitic rocks) or clay is present in the matrix (Farny and Kosmatka, 1997; Swenson and 1768 

Gillott, 1964). In terms of mechanism, there is no consensus on how ACR affects concrete (Beyene et 1769 

al., 2013). Future paths to prevent ASR and ACR damage in concrete have been identified in (Lindgård 1770 

et al., 2012). 1771 

11.3.2 Freeze-thaw resistance 1772 

Water expands when it freezes. Accordingly, as water inside concrete pores freezes, its volume increases 1773 

and consequently generate pressure. This may rupture and dilate the concrete voids if it is higher the ten-1774 

sile strength of concrete. As reported in (Ebrahimi et al., 2018), frost resistance can be improved in four 1775 

ways: (i) hindering crack propagation by using CNT (Kumar et al., 2015; Li, W.-W. et al., 2015), PVA fibre-1776 

reinforcement (Jang et al., 2014; Nam et al., 2016), graphene oxide (Mohammed et al., 2016; Tong et al., 1777 

2016) nano silica (Behfarnia and Salemi, 2013) and nano TiO2 (Salemi et al., 2014); additionally, there are 1778 

some novel surfactants that can work as air entraining agents (Chen et al., 2018; Qiao et al., 2017); (ii) 1779 

refining pores and decreasing the porosity of concrete by using SCMs (e.g. FA (Chung et al., 2010), SF 1780 
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(Hooton, 1993; Sabir, 1997), metakaolin (Duan et al., 2013; Moradgholi and Irandegani, 2014), RHA (Park 1781 

et al., 2014; Salas et al., 2009), GGBS (Duan et al., 2013; Li et al., 2011)) and fillers; (iii) reducing water 1782 

absorption by using hydrophobic admixtures in concrete (Ebrahimi et al., 2018); (iv) introducing additional 1783 

space for ice-expansion in concrete by adding air-entraining admixtures (Shang et al., 2014; Shang and Yi, 1784 

2013). 1785 

11.3.3 Resistance to other physical and chemical attacks 1786 

The effect of aggressive soils (sulphates and other salts), abrasion, marine salt exposure, soft water and 1787 

cyclic wetting-drying must also be considered in advance to predict the service life of concrete. For exam-1788 

ple, a study (Douglas Hooton, 2019) collected all current specifications and codes and showed require-1789 

ments for each of the mentioned issues in various standards in America, Europe, Australia, Canada, and 1790 

China. To improve durability regarding the mentioned issues, industrial SCM (§4.2), slowing down or stop-1791 

ping penetration of aggressive agents (§11.2) and unconventional reinforcement (§11.1) have been used 1792 

in concrete. Additionally, the durability design (§11.4) is the most important factor to overcome the men-1793 

tioned issue. 1794 

11.4 Durability design 1795 

The factors that affect durability design are shown in Figure 17. All the factors at the material level, 1796 

structural level, external factors and design stage must be considered in advance to obtain a durable 1797 

design. In other words, such design may not increase the service life of a new concrete structure, but 1798 

rather it guarantees/controls a given service life of concrete by providing a baseline for the engineer-1799 

ing judgment of the most relevant factors affecting durability of concrete. Nevertheless, durability 1800 

design has been considered as key to improve concrete’s sustainability (Hooton and Bickley, 2014) 1801 

and it should be considered based on concrete’s application. 1802 

Besides quality control and quality assurance, reliability of the considered data (input parameters) 1803 

(von Greve-Dierfeld and Gehlen, 2016) (Pacheco et al., 2019) and of modified models (e.g. DuraCrete 1804 

(DuraCreteR17, 2000), Life-365® (Thomas and Bentz, 2001), STADIUM®(STADIUM®), fib Bulletin 34 1805 

(Helland, 2013), concrete Works (Folliard et al., 2008) LIFEPRED (Andrade and Tavares, 2012), ClinConc 1806 

(Tang, 1996), DuraCon (Gjørv, 2009), durability Index (Mackechnie, 1995) and approach (Alexander et 1807 

al., 1999)) is required to estimate the service life of concrete (Alexander and Beushausen, 2019; 1808 

Müller, 2010). Future paths for durability design of concrete structures have been identified in 1809 

(Alexander and Beushausen, 2019; Demis and Papadakis, 2019; Douglas Hooton, 2019). 1810 
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12 CO₂ mineralization and utilization (carbon capture and storage) 1811 

The greenhouse gases emission generated by the cement industry can be decreased by capture (storage 1812 

and sequestration) of CO2 directly from cement plants (§8.1) or by CO2 sequestration by mineral carbon-1813 

ation. Generally, alkaline earth (e.g. Mg and Ca), alkali (e.g. K and Na) and other metals such as Zn, Cu, 1814 

Ni, Co, Fe and Mn can be carbonated to capture CO2. Nevertheless, most of these elements are either 1815 

very expensive or rare and not suitable to be used as feedstock for CO2 mineralization. For example, 1816 

alkali metals have a great affinity to CO2 and they are very soluble for CO2 sequestration, especially in 1817 

the long-term. In addition, although there is a substantial amount of Fe in nature, it is not suitable to be 1818 

carbonated because it involves valuable iron ore. In fact, Mg (e.g. serpentinite (Krevor and Lackner, 2009; 1819 

Li, W. et al., 2009; Zevenhoven et al., 2008), dunite- olivine (Andreani et al., 2009; Koukouzas et al., 2009) 1820 

and basalt (Olajire, 2013)  rocks) and Ca (wollastonite (Bałdyga et al., 2010; Daval et al., 2009; Kawatra et 1821 

al., 2011) and basalt (Olajire, 2013) rocks) are the most suitable elements to capture high amounts of 1822 

CO2 because they are more common in nature than other potential metals (Huijgen and Comans, 2003). 1823 

As reported in (Jang et al., 2016; Peter et al., 2008), CO2 capture in CBM can be made by carbonation of 1824 

calcium hydroxide (Johannesson and Utgenannt, 2001; Peter et al., 2008), calcium silicate hydrates 1825 

(Bukowski and Berger, 1979; Goto et al., 1995; Kobayashi et al., 1994; Suzuki et al., 1985; Young et al., 1826 

1974), calcium sulfoaluminate hydrates (Grounds et al., 1988; Nishikawa et al., 1992), cement clinker 1827 

minerals (Brunauer and Copeland, 1964; Chang et al., 2016; Goodbrake et al., 1979), and magnesium-1828 

derived hydrates (Bobicki et al., 2012; Pu and Unluer, 2016). CO2 sequestration is affected by exposure 1829 

conditions (e.g. CO2 partial pressure/content (Bukowski and Berger, 1979; Mo et al., 2016), temperature 1830 

(de Larrard et al., 2010; Liu et al., 2001), CO2 source (Haselbach and Thomle, 2014; Jang et al., 2015)) and 1831 

properties of cement-based materials (e.g. water content (Fattuhi, 1988; Fernández Bertos et al., 2004; 1832 

Walton et al., 1997), chemical composition (Meier et al., 2007; Peter et al., 2008), particle size and sur-1833 

face area (Fernández Bertos et al., 2004; Jang et al., 2016), porosity and permeability (Poon et al., 1986; 1834 

Roy et al., 1999)). 1835 
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 1836 

Figure 17 - Durability design, quality assurance and operation of new concrete in severe environments (adapted from (Demis and Papadakis, 2019; Douglas Hooton, 2019; Ebrahimi et al., 2018; Gjørv, 2008, 2016; Jianxia, 2012; Li, K. et al., 2019)) 1837 
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Concrete can be cured in a carbonation chamber (Meng et al., 2019; Vandeperre and Al-Tabbaa, 2007) or 1838 

using other novel techniques such as aqueous CO2 solution (Lippiatt et al., 2019) to promote and accelerate 1839 

CO2 sequestration. Besides magnesium (Choi, S.-w. et al., 2014; Gao et al., 2007; Gao et al., 2013; 1840 

Mavroulidou et al., 2015; Pu and Unluer, 2016; Unluer and Al-Tabbaa, 2013) or calcium -rich materials 1841 

(Morales-Flórez et al., 2011), SCMs (Bobicki et al., 2012; Choi, S.-w. et al., 2014; Dindi et al., 2019; Galan et 1842 

al., 2010; Gao et al., 2007; Gao et al., 2013; Jang et al., 2016; Kurda et al., 2019b; Mavroulidou et al., 2015; 1843 

Wang, Y. et al., 2019) (mostly FA), cement waste (Uliasz-Bocheńczyk and Pomykała, 2011), CDW 1844 

(Kaliyavaradhan and Ling, 2019), and nano-materials (Hosseini et al., 2011) can also be used for CO2 se-1845 

questration. 1846 

Critical issues and areas for further investigation in this path have been identified in several studies 1847 

(Ghoshal and Zeman, 2010; Hillebrand et al., 2016; Huijgen and Comans, 2003; Jang et al., 2016; 1848 

Kaliyavaradhan and Ling, 2017; Naraharisetti et al., 2019; Olajire, 2013; Salek et al., 2013; Sharma et 1849 

al., 2019). To link this path with industry, recycled aggregates made with concrete containing materials 1850 

rich in Mg or Ca can be used as a filter to sequestrate CO2 and other greenhouse gases generated by 1851 

the industry. For that purpose, a chamber with a given pressure and humidly needs to be built and 1852 

filled with the aggregates. Then, the greenhouse gases can be passed through this chamber in order 1853 

to be sequestrated by the aggregates before they are released. 1854 

13 Thermal conductivity improvement and energy saving 1855 

The energy expenditure in a building throughout its service life can be far greater than that expended 1856 

for its construction. Saving energy in the form of heat or air conditioning for many years is one of the 1857 

best approaches to achieve sustainability. One way to decrease the amount of heat transfer through 1858 

conduction and of energy consumption of buildings is by reducing the thermal conductivity (k-value) 1859 

of concrete. As reported in (Asadi et al., 2018), the thermal conductivity of concrete may be affected 1860 

by the following parameters (§13.1-13.4). 1861 

13.1 Moisture content and temperature’s impact 1862 

Since the k-value of air is 25 times lower than that of water (Bessenouci et al., 2014; Shin and Kodide, 1863 

2012), the k-value of concrete with high moisture content or in the SSD state is higher than in the oven 1864 

dry state (Abdou and Budaiwi, 2005; Jin, H.-Q. et al., 2016; Taoukil et al., 2013; Wang et al., 2017a). 1865 

For example, a study (Zhang, W. et al., 2015) showed that the k-value of SSD concrete is 50% higher 1866 

than that of dry concrete, and other studies showed that the k-value of concrete increases by 6% 1867 



75 

 

(Valore, 1980) and 5% (Steiger and Hurd, 1978) with 1% increment in unit weight and moisture con-1868 

tent, respectively. In addition, the k-value of concrete significantly falls as temperature increases (dos 1869 

Santos, 2003; Khaliq and Kodur, 2011; Liley, 1984; Shin et al., 2002; Wang et al., 2017a; Weidenfeld et 1870 

al., 2002). 1871 

13.2 Type and proportion of aggregates and other additional materials 1872 

Since aggregates have the lion share of the volume of concrete, the k-value of concrete significantly 1873 

changes by using different types and proportions of aggregates. For example: 1874 

(i) Natural aggregates such as basalt (Khan, 2002), limestone (Khan, 2002), siltstone (Khan, 2002), or 1875 

others contain large amount of the following minerals: quartz (Chan, 2014; Khan, 2002), feldspar 1876 

(Chan, 2014), (metamorphic) gneiss (Chan, 2014), amphibole/pyroxene (Chan, 2014) and iron ore 1877 

magnetite (Chan, 2014); 1878 

(ii) Lightweight materials (rounded or angular/irregular), mainly EC (commercial names Leca (Real et 1879 

al., 2016), Argex (Real et al., 2016; Yun et al., 2013)), expanded slate (commercial name Stalite (Real 1880 

et al., 2016; Yun et al., 2013)), expanded shale (commercial name Asanolite (Yun et al., 2013)), pumice 1881 

(Newman and Owens, 2003; Topçu and Uygunoğlu, 2007; Uysal et al., 2004) and sintered FA (com-1882 

mercial names Lytag (Real et al., 2016)). There are few studies on the following LWA, namely perlite 1883 

(Gül et al., 2007; Tandiroglu, 2010), cenospheres (Blanco et al., 2000; Huang et al., 2013), polyurethane 1884 

foam (Chen and Liu, 2013; Mounanga et al., 2008), diatomite (Topçu and Uygunoğlu, 2007), expanded 1885 

glass (Chung et al., 2016; Yu et al., 2013), silica aerogel (SA) (Gao et al., 2014; Gomes et al., 2018; Hanif 1886 

et al., 2016; Li, P. et al., 2019), high-impact polystyrene (Wang and Meyer, 2012), iron ore tailings 1887 

(Huang et al., 2013), wood shavings (Bederina et al., 2007), manufactured plastic aggregate (Alqahtani 1888 

et al., 2017), dry lime-hemp (Arrigoni et al., 2017; Dhakal et al., 2017; Piot et al., 2017; Tran-Le et al., 1889 

2019), and biochar (Akhtar and Sarmah, 2018b); 1890 

(iii) AWAF such as oil palm shell (Abdullah, 1984), palm fibre (Benmansour et al., 2014), coconut shell 1891 

(Gunasekaran and Kumar, 2008), corncob (Pinto et al., 2011) rice husk (Buratti et al., 2018; Chabannes et 1892 

al., 2014; Chabi et al., 2018; Marques et al., 2019), tobacco wastes (Ozturk and Bayrakl, 2005), sheep wool 1893 

fibres (Grădinaru et al., 2016). Studies on this path are very scarce; 1894 

(iv) Phase change material and others. 1895 

Phase change materials (PCM) are normally placed inside a building to reduce its energy consumption and 1896 

enhance indoor thermal comfort due to their potential to store and absorb heat (Sá et al., 2012; Zhang et 1897 
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al., 2013) in the phase change from liquid to solid and vice versa, during exothermic and endothermic phe-1898 

nomena (Souayfane et al., 2016). Based on the review study (Shafigh et al., 2018), PCM can be classified as 1899 

organic (paraffin and non- paraffin) and inorganic (hydrated salts). Recently, some studies (Eddhahak-Ouni 1900 

et al., 2014; Meshgin and Xi, 2013; Shafigh et al., 2018) (Aguayo et al., 2017; D'Alessandro et al., 2018; 1901 

Sakulich and Bentz, 2012; Šavija, 2018; Shi et al., 2014) showed that PCM can be used in CBM to decrease 1902 

their k-value. Nevertheless, further studies need to be made to see whether there are any negative effects 1903 

of the PCM on other technical properties of CBM. Other cementitious materials that increase the reflection 1904 

of sunlight and absorb less heat (Shirakawa et al., 2014; Werle et al., 2016), and soil-based materials (Arooz 1905 

and Halwatura, 2018; Deboucha and Hashim, 2011; Jayasinghe and Kamaladasa, 2007) can be other prom-1906 

ising paths within this strategy. 1907 

13.3 Binder content and type 1908 

Binder content and type may also affect the k-value of CBM. Nevertheless, their influence is not sig-1909 

nificant compared to other factors mentioned in other sections. Generally, the most often used SCMs 1910 

within this path are FA (Demirboǧa and Gül, 2003; Kim et al., 2003; Yun et al., 2013), SF (Demirboğa, 1911 

2007; Demirboǧa and Gül, 2003; Xu and Chung, 2000a) and slags (Demirboğa, 2007; Kim et al., 2003)). 1912 

In addition, SCMs (e.g. CBA) can be also used as aggregates (Baite et al., 2016). A study (Demirboǧa 1913 

and Gül, 2003) showed that the k-value increases with increasing binder content of concrete. 1914 

13.4 Natural fibres 1915 

Natural fibres (NF) can also be used in CBM, most commonly to improve their thermal insulation 1916 

(Benmansour et al., 2014). However, most of the previous studies (Al-Rifaie and Al-Niami, 2016; 1917 

Belakroum et al., 2018; Hamzaoui et al., 2014; Kriker et al., 2005; Lima et al., 2014; Ozerkan et al., 2013; 1918 

Tian et al., 2016; Tioua et al., 2017) concluded that the technical properties of the cementitious materials 1919 

decrease as the incorporation ratio of NF increases. According to these studies (Ali, 2012; Onuaguluchi 1920 

and Banthia, 2016; Peças et al., 2018; Sanal and Verma, 2017), NF can be divided in two main groups: (i) 1921 

plant/lignocellulosic fibre such as seed (e.g. cotton (Aghaee and Foroughi, 2013; Binici and Aksogan, 1922 

2015) and kapok (Onuaguluchi and Banthia, 2016)), stalk (e.g. tree wood (Bederina et al., 2012; Stahl et 1923 

al., 2002; Tchehouali et al., 2014), wheat (Merta and Tschegg, 2013), rice (Chabannes et al., 2014; Xie et 1924 

al., 2016) and barley (Belhadj et al., 2014) straws, and crops such as bamboo (Mohanty and Nayak, 2010) 1925 

and corn (Jarabo et al., 2013)), leaf (e.g. abaca (Coutts and Warden, 1987), agave, banana and sisal 1926 

(Ramakrishna and Sundararajan, 2005; Savastano and Agopyan, 1999; Silva et al., 2010; Toledo Filho et 1927 

al., 2003)), fruit (e.g. coir/coconut (Sanjuán and Tolêdo Filho, 1998)), blast/stem-skin (e.g. jute 1928 
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(Chakraborty et al., 2013), flax (Coutts, 1983; Fic et al., 2013) and hemp (Arrigoni et al., 2017; Arsene et 1929 

al., 2007; Dhakal et al., 2017; Piot et al., 2017; Sedan et al., 2008) and banana (Arsene et al., 2007)), grass 1930 

(e.g. bagasse (Onésippe et al., 2010), elephant (Merta and Tschegg, 2013) and bamboo (Correia et al., 1931 

2014)), root (e.g. broom root (Castro and Naaman, 1981; Momoh and Osofero, 2019)), and other by-1932 

products of plant (e.g. cellulosic (Savastano et al., 2000), and cellulose pulp (Correia et al., 2018)); (ii) 1933 

animal fibre (Benaimeche et al., 2019) such as animal hair (wool (Grădinaru et al., 2016)), silk and avian 1934 

(feathers of birds (Acda, 2010)); further development within this path are summarised in (Onuaguluchi 1935 

and Banthia, 2016); (iii) mineral fibres (ceramic (Su and Xu, 2013; Su et al., 2014), asbestos (Marino et 1936 

al., 2001; Xu et al., 2010), and metal (Miroslaw and Surendra; Naaman and Najm; Narayanan and 1937 

Darwish; Parviz and Cha-Don)). 1938 

In addition, NF can be also used in composites materials. For example, a natural fibre reinforced polymer 1939 

composite has been developed using sisal (Fung et al., 2003; Joseph et al., 2002; Joseph et al., 1999; Ku 1940 

et al., 2011; Li et al., 2000), hemp (Keller, 2003; Khoathane et al., 2008), short jute (Rana et al., 2003) 1941 

and flax (Li, X. et al., 2009; Panigrahy et al., 2006). A study (Mohammed et al., 2015) collected examples 1942 

of the application of natural fibre reinforced polymer composites in the industry and reported that it 1943 

can be used instead of asbestos (Agopyan et al., 2005; John and Thomas, 2008), and is ideal to be used 1944 

in roofs, ceilings and walls due to its lightweight. 1945 

13.5  Density and microstructure 1946 

Apart from the parameters shown in §13.2-13.3, the k-value of CBM is significantly affected by w/b 1947 

(Kim et al., 2003), volume of aggregates (Kim et al., 2003), size and proportion of sand and gravel (Kim 1948 

et al., 2003; Zhang, W. et al., 2015) (e.g. no-fines concrete (Ghafoori and Dutta, 1995; Malhotra; Riley 1949 

et al., 2019)), porosity (Khan, 2002; Kim et al., 2003) (e.g. foam concrete/aerated concrete (Ghazi 1950 

Wakili et al., 2015; Kalpana and Mohith, 2019; Liu, S. et al., 2018; Othuman and Wang, 2011; Pehlivanlı 1951 

et al., 2016; Tian, S.-Q. et al., 2019; Ulykbanov et al., 2019)), and nature of the pores (Khan, 2002). All 1952 

these parameters directly affect the density of CBM. As shown in Figure 18, regardless of the type of 1953 

used materials (i-iii), it can be said that density of concrete is the major parameter to change the k-1954 

value of any type of CBM (paste, mortar and concrete). 1955 

Figure 18 shows that ACI committee 213 R-03 model (k-value = 0.0864e0.00125·density)) can be used as a 1956 

reliable model for any type of materials. By comparing the actual and calculated k-value (Figure 18-1957 

inset graphs), the coefficient of determination (R2) with the ACI committee 213 R-03 model (upper 1958 

inset graph) was 0.66. This coefficient can be increased to 0.77 (lower inset graph) by modifying the 1959 
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mentioned model (0.85·(0.0764-௪/௕
ସ଴

) e(0.00141*density*(60%+w/b)), namely by considering the w/b ratio. 1960 

In general, most of the studies are focused on the effect of various parameters (e.g. aggregates, SCM 1961 

and w/b) on either SSD or oven-dried concrete. However, in a real situation, these two states rarely 1962 

occur in CBM. Therefore, as reported in (Asadi et al., 2018), the focus of the future studies within this 1963 

path must be on the effect of humidity in concrete for any selected parameters.  1964 
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 1965 

Figure 18 - Density and thermal conductivity of cement-based materials 1966 
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(i) Normal concrete (Bouguerra et al., 1998; Ferraro and Nanni, 2012; Hawreen, 2017; Nguyen et al., 2017; 1967 

Wadsö et al., 2012), newspaper sandwiched aerated lightweight concrete panels (Ng and Low, 2010), pol-1968 

ystyrene foamed concrete (Sayadi et al., 2016b), alkali-activated concrete based FA and oil palm shell (Liu, 1969 

M.Y.J. et al., 2014), concrete containing FA (Demirboğa, 2007; Demirboǧa and Gül, 2003), SF (Demirboğa, 1970 

2007; Demirboǧa and Gül, 2003), SF and GGBS (Demirboğa, 2007), SF and FA (Demirboğa, 2007), GGBS 1971 

(Demirboğa, 2007), FA and GGBS (Demirboğa, 2007), CNT (Hawreen, 2017), lightweight aggregates - 1972 

LWA/Argex (Real et al., 2016), LWA/expanded clay (EC) (Ng and Low, 2010), LWA/expanded shale (Ng and 1973 

Low, 2010), LWA/Leca (Real et al., 2016), LWA/Lytag (Real et al., 2016), LWA/pumice (Nguyen et al., 2017), 1974 

LWA/Stalite (Real et al., 2016), RHA (Ferraro and Nanni, 2012), silane and SF (Xu and Chung, 2000a), wood-1975 

based aggregate (Bouguerra et al., 1998), brass shavings (Wadsö et al., 2012), copper wires (Wadsö et al., 1976 

2012), micro PCM (Wadsö et al., 2012), PCM dispersion (Wadsö et al., 2012), PCM pellets (Wadsö et al., 1977 

2012), foamed concrete (Johnson Alengaram et al., 2013), graphite and magnetite (Wadsö et al., 2012), 1978 

graphite (Wadsö et al., 2012), and steel fibres (Wadsö et al., 2012); 1979 

(ii) Normal mortar (Xu and Chung, 2000b), mortar containing FA (Demirboǧa, 2003), SF (Demirboǧa, 1980 

2003), GGBS (Demirboǧa, 2003), EC (Gomes et al., 2017), expanded cork granules (ECG) (Gomes et al., 1981 

2017), High-dense SA and EC (Gomes et al., 2017), high-density SA, ECG, EC, lime (L) and FA (Gomes 1982 

et al., 2017), high-density SA, ECG, EC, L, FA and perlite (Gomes et al., 2017), high-density SA, ECG, EC, 1983 

L and FA (Gomes et al., 2017), low-density SA (Gomes et al., 2017), low-density SA and FA (Gomes et 1984 

al., 2017), low-density SA and L (Gomes et al., 2017), low-density SA, L and FA (Gomes et al., 2017), 1985 

low-density SA, L and ECG (Gomes et al., 2017); 1986 

(iii) Normal paste (Fu and Chung, 1997; Wadsö et al., 2012; Xu and Chung, 2000b), paste containing 1987 

fibres and methylcellulose (M) (Fu and Chung, 1997), fibres, SF and M (Fu and Chung, 1997), latex (Fu 1988 

and Chung, 1997), M (Fu and Chung, 1997), SF (Fu and Chung, 1997; Xu and Chung, 2000a), SF and M 1989 

(Fu and Chung, 1997), SF and silane (Fu and Chung, 1997), SF, M and defoamer (Xu and Chung, 1999), 1990 

SF, M, and dichromate-treated fibres (Xu and Chung, 1999), SF, M, and silane-treated fibres (Xu and 1991 

Chung, 1999), SF, M, defoamer and O3-treated fibres (Xu and Chung, 1999), SF, M, defoamer and 1992 

silane-treated fibres (Xu and Chung, 1999), SF, M, defoamer and as-received fibres (Xu and Chung, 1993 

1999), SF, M, defoamer and as-received fibres (Xu and Chung, 1999), SF, M, defoamer and dichromate-1994 

treated fibres (Xu and Chung, 1999), SF, M, defoamer and O3-treated fibres (Xu and Chung, 1999). 1995 

14 Summary 1996 

The aim of this study is to collect and organize the main sustainability strategies considered to offset 1997 
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the negative impact of CBM’ production. Thus, the strategies are divided in 12 sections. In each one, 1998 

a number of sub-strategies, future trends and their limitations are presented. Thus, the outputs of the 1999 

main sections are briefly presented in the following paragraphs: 2000 

 Reduce the total amount of binder. Despite few studies on concrete with low binder content, 2001 

the results of the literature show that, in opposition to the limitations imposed by standards, 2002 

concrete with an acceptable performance can be produced by following the strategies men-2003 

tioned in this paper such as using a w/b in which most the water content is absorbed by the 2004 

hydration products (additional water is the main contributor to porosity); 2005 

 Reduce the EI and resources use of binders. Most of the strategies that decrease the EI and 2006 

resources use of binders are related to replacing cement with by-products. Despite many case 2007 

studies, this strategy may not be one of the best to decrease the EI of concrete, but it is still 2008 

the most popular one because it is easy to perform. According to many studies, the biggest 2009 

challenge on the use of many by-products in concrete structures is durability, namely in terms 2010 

of carbonation (the mechanical characteristics of the concrete cross-sections can be compro-2011 

mised because of reinforcement corrosion). Nevertheless, this output resulted from labora-2012 

tory tests (accelerated carbonation) that may not correctly reproduce reality. For example, 2013 

some studies show that, even when carbonation resistance is designed for XC3 and XC4 expo-2014 

sure classes, concrete with common cover depth can protect rebars for more than 50 years 2015 

even when using varying volumes of by-products; 2016 

 Reduce the EI and resources use of aggregates. Even though the consumption of natural ag-2017 

gregate is 12 times higher than that of cement, its EI relatively to cement is inconsequential. 2018 

Nevertheless, the EI of aggregate production is still growing at an alarming rate compared to 2019 

the capacity of Nature. This study shows that, besides natural aggregates and construction 2020 

and demolition waste, there are many other potential sources (e.g. agricultural, industrial, 2021 

municipal wastes) of aggregates in concrete. In most cases, aggregate’s content and charac-2022 

teristics do not affect the durability of CBM (the main factor to define service life) as much as 2023 

those of binders. However, the applicability of most non-traditional aggregates depends on 2024 

the target-strength of concrete and the influence level varies a lot. Thus, many of the non-2025 

traditional aggregates have been recommended to be used in low-strength concrete only; 2026 

 Increase the durability of reinforced concrete. The biggest challenge of this strategy is the fact 2027 

that normally the initial cost increases. However, it may also considerably reduce costs over the 2028 
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structure’s life cycle (long-term) because the number of rehabilitations necessary in low-perfor-2029 

mance concrete is higher than in high-performance concrete (also taking into account the very 2030 

important role of the reinforcement concerning this issue). Thus, the total cost of low- perfor-2031 

mance concrete will get closer to that of high-performance concrete with every rehabilitation; 2032 

 CO2 mineralization and utilization (carbon capture and storage). Low-carbon to near-zero-2033 

carbon cements is not possible without CO2 capture by mineralization of CBM. This study 2034 

shows that, apart from Mg, there are many other techniques and other potential metals that 2035 

can capture high amounts of CO2. 2036 

 Thermal conductivity improvement and energy saving. This analysis show that, regardless of 2037 

the type of used materials (traditional or non-traditional), it can be said that density is the 2038 

major parameter to determine the thermal conductivity of any type of CBM. Nevertheless, 2039 

there is not a systematic study to suggest an optimum material among all the non-traditional 2040 

materials in terms of thermal conductivity and quality of the CBM. 2041 

 Material manufacturing. This study shows that it is not possible to significantly decrease the 2042 

EI and resources use of concrete without considering the production stage of the raw materi-2043 

als. Nevertheless, studies on this path for most of the materials are very scarce. 2044 

As shown in Figure 19, the following statements can be made about most of the selected strategies. 2045 

Most of the researchers are mainly focused on the same common non-traditional techniques and mate-2046 

rials (e.g. FA, SF, GGBS and RHA) with similar output. Nonetheless, there are many other non-traditional 2047 

techniques and materials (e.g. low binder concrete; using many types of AWAF and municipal wastes as 2048 

a binder or aggregates; nonconventional bars, production process of the main products by using differ-2049 

ent types of raw materials and energy; new site applications) that have not been investigated yet. The 2050 

analysis also shows that there is a big scatter in characteristics of the uncommon non-traditional mate-2051 

rials. Thus, they need to be classified in different categories in order to be used in CBM. 2052 

In conclusion, for the same non-traditional materials and techniques, many studies have been focused 2053 

on few characteristics, ignoring most of the others. Thus, conclusions identifying a sustainable material 2054 

or technique based on one aspect only (e.g. environmental impact, quality or costs) may not be reliable. 2055 

For example, some strategies may decrease the CBM’s EI. However, the strategy may decrease the 2056 

CBM’s durability performance and therefore reduce its service life. Thus, buildings may require further 2057 

rehabilitation to obtain a target service life. Similar reasoning could be stated for costs, which is the most 2058 

important parameter considered in business as decision-making. Thus, adequate strategies can only be 2059 

defined using a holistic approach, in which all the previous aspects are taken into account. 2060 
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 2061 

Figure 19 - The predominant flows of previous studies (Right side - uncommon non-traditional materials and all above  2062 
left side - all above, no study found) 2063 
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