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Abstract

Plasma-based accelerators (PBA) are strong candidates for the next generation of

particle accelerators as conventional accelerators reached their limitations in terms

of accelerating gradients. To understand the underlying physics and to model those

accelerators, the particle-in-cell (PIC) method is commonly used. While accurate,

simulations based on PIC require to resolve the shortest and fastest scales, making

it computationally expensive. In the case when an intense laser pulse is propagat-

ing through a plasma, the shortest scales are associated with the laser wavelength,

typically in µm-range, and are required to be resolved over acceleration distances,

in meter-ranges. Reduced solvers can gain high computational speedup.

In this thesis, the implementation of a ponderomotive guiding center (PGC) sol-

ver is presented. In the case of PGC, only the laser envelope instead of the short

laser wavelength is resolved. The relaxed resolution allows for high computational

speedups. For PGC, the implementation, the numerical stability, and the parallel

scalability are obtained, discussed, and analyzed. As PGC requires less computa-

tional resources than a full PIC simulation, it is a prime candidate to perform para-

metric studies. By comparing physical equivalent scenarios of particle for injection,

the applicability for that kind of simulation is discussed.

Additionally, PGC allows to model scenarios that are not feasible with PIC. Such

an example is the ionization seeding for the self-modulation instability for the

AWAKE experiment at CERN. For the AWAKE experiment, a laser is used to seed

the self-modulation instability and cut a long proton bunch in small beamlets which

drive accelerating wakes inside a plasma. For this, the PGC implementation is ex-

tended to include laser-induced ionization to allow to model the self-modulation

instability for the AWAKE experiment self-consistently. More specifically, a study

for small misalignment in the order of the width of the proton bunch is presented.

Keywords: plasma-based accelerators, particle-in-cell simulation, parallel

computing, envelope model





Resumo

Os plasma-based accelerators (PBA) são fortes candidatos à próxima geração de

aceleradores de partı́culas, visto que os aceleradores convencionais atingiram suas

limitações em termos de gradientes de aceleração. Para entender a fı́sica subjacente

e modelar esses aceleradores, o método de particle-in-cell (PIC) é comumente us-

ado. Embora precisas, as simulações baseadas no PIC exigem resolver as escalas

mais curtas e mais rápidas, tornando-o computacionalmente caro. No caso em que

um pulso intenso de laser está se propagando através de um plasma, as escalas

mais curtas são associadas ao comprimento de onda do laser, tipicamente na faixa

de µm, e precisam ser resolvidas nas distâncias de aceleração, na faixa de metros.

Nesta tese, é apresentada a implementação de um ponderomotive guiding cen-

ter (PGC) solver. No caso do PGC, apenas o envelope do laser, em vez do com-

primento de onda curto do laser, é resolvido. A resolução relaxada permite al-

tas acelerações computacionais. Para o PGC, a implementação, a estabilidade nu-

mérica e a escalabilidade paralela são obtidas, discutidas e analisadas. O PGC é

o principal candidato para realizar estudos paramétricos. Ao comparar cenários

fı́sicos equivalentes de partı́culas para injeção, é discutida a aplicabilidade para

esse tipo de simulação. Além disso, o PGC permite modelar cenários que não são

viáveis com o PIC. Um exemplo é a propagação de ionização para a instabilidade

de auto-modulação (SMI) para o experimento AWAKE no CERN. Para o experi-

mento AWAKE, um laser é usado para propagar a SMI e cortar um longo grupo

de prótons em pequenas feixes de luz que conduzem a acelerações de vigı́lia den-

tro de um plasma. Para isso, a implementação do PGC é estendida para incluir

a ionização induzida por laser para permitir modelar a SMI para o experimento

AWAKE de forma consistente. Mais especificamente, é apresentado um estudo

para pequenos desalinhamentos na ordem da largura do bunch de prótons.

Keywords: aceleradores baseados em plasma, simulação particle-in-cell,

computação paralela, algoritmos reduzidos, modelo de envelope
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möglich gewesen.

Lastly, from the bottom of my heart, I would acknowledge the strong support

from my girlfriend, Ana. She dealt with me as an individual over the past months,

and I know I was not much of a help, but she also supported me strongly. I can not

express how grateful I am for having her on my side.

Thank you to everyone!

ii



Contents

Introduction 1

Particle accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Plasma-based accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Motivation and thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Original contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Theoretical background: plasma-based accelerators 9

1.1 Laser-driven plasma wakes . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Proton-driven plasma waves . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Particle-in-cell algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Implementing custom algorithms in OSIRIS . . . . . . . . . . . . . . . 21

2 Reduced modeling on the plasma scale 25

2.1 Ponderomotive Equations . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The Envelope Equation for the PGC algorithm . . . . . . . . . . . . . 30

2.2.1 Envelope Equation in 1D . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Envelope Equation in 2D . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Envelope Equation in 3D . . . . . . . . . . . . . . . . . . . . . 34

2.3 Boundary Conditions for the Envelope Equation . . . . . . . . . . . . 35

2.4 Numerical stability of the envelope equation . . . . . . . . . . . . . . 35

2.5 Particle advancing for the ponderomotive guiding center solver . . . 44

2.6 Physical benchmark of the implementation . . . . . . . . . . . . . . . 45

2.6.1 Vacuum propagation . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



2.6.2 Wakefield excitation . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Parallelization of the ponderomotive guiding center solver 51

3.1 Parallelization and scalability . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Parallelization based on memory organization . . . . . . . . . . . . . 54

3.3 Shared memory parallelization for ponderomotive guiding center

solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Distributed memory parallelization for ponderomotive guiding cen-

ter solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Parametric studies of laser-plasma accelerators using PGC 63

4.1 Parametric studies for down-ramp injection . . . . . . . . . . . . . . . 65

4.2 Comparison between PGC and PIC for short density transitions . . . 69

4.3 Electron injection for long density transitions . . . . . . . . . . . . . . 72

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Full-scale modeling of the relativistic ionization front for the AWAKE

experiment 79

5.1 Ionization model for the envelope . . . . . . . . . . . . . . . . . . . . 82

5.2 Simulation parameters and modeled scenario . . . . . . . . . . . . . . 85

5.3 Results for seeding the self-modulation instability using a relativistic

ionization front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Study of the effect of ionization on the self-modulation instability . . 89

5.5 Transverse effects on the development of the self-modulation insta-

bility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Conclusion and Outlook 99

iv



Introduction

Dass ich erkenne, was die Welt

Im Innersten zusammenhält.

(eng.: So that I may perceive whatever holds

The world together in its inmost folds.)

Faust. Eine Tragödie (Vers 382 f.),

Johann Wolfgang von Goethe

The idea of knowing what happens on the smallest scales has always been part of

human curiosity. Rutherford showed one way of achieving it in 1911. By utiliz-

ing a beam of charged particles, he was able to calculate the nuclei’s size [1]. In

his well-known gold foil experiment, the particles were emitted by a radioactive

element. Probing matter on even smaller scales requires higher energies with sig-

nificant control. More recently, the collision of proton beams at the Large Hardon

Collider (LHC) confirmed the Higgs boson [2] and explained why particles have

a mass. While Higgs’s work was acknowledged with a Nobel prize, it is clear it

would not be achievable without decades of development of particle accelerators

and, in particular, raising the energy of the particle beams. Particle accelerators

became a fundamental tool not only in the realm of physics but also in hospitals

to diagnose and treat patients [3], in the semiconductor industry [4] and as a light

source for X-ray beams [5].
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INTRODUCTION

Due to the limitation in acceleration gradients, current accelerator technologies

require progressively larger facilities to accelerate particles. In the case of the LHC,

particles are accelerated in a 27 km-ring to a cumulative energy of 13 TeV. With di-

rectly allocated resources of e 1.0 billion for the years 2009–2012 [6], the LHC is an

expensive scientific endeavor. The reason for requiring such great resources comes

down to the point that with high accelerating gradients, around 100 MV/m, the

metallic walls of a conventional accelerator are getting destroyed. An alternative

approach is to use plasma. A plasma is a quasi-neutral cloud of ionized gas, and

being an already disrupted gas, it can sustain higher accelerating gradients. This

thesis focuses more on a complementary particle acceleration technique, called the

plasma-based acceleration (PBA). It promises to reduce the size of particle acceler-

ation by a thousand-fold or more, which inherently reduces the cost dramatically.

Given the wide range of applications for particle accelerators in all the different sci-

ence branches, cheaper and smaller accelerator facilities have a great potential of a

broad impact on a wide range of scientific discoveries.

Particle accelerators

Charged particles can be accelerated when they are placed in an electric field.

The gain of energy for the particles is equivalent to the crossed potential difference

of the accelerating region. One of the first generations of particle accelerators were

the Cockcroft-Walton generators [7]. Such generators were first used in 1932 by

the scientist John Cockcroft and Ernest Walton and consisted of a capacitor bank

to generate a high direct current (DC) voltage. While scientists were able to carry

out an atom-splitting experiment [8], which was awarded a noble prize, the ap-

proach is not scalable for high voltages as spark discharges occur. Ising already

proposed an alternative approach in 1924 [9]. He planned to apply consequently

the same voltage to a particle through alternating fields. Even though Ising himself

was not successful, it is a building block for conventional accelerators. The rapid

2



PARTICLE ACCELERATORS

development in accelerator technology in the following years, including advances

in superconducting magnet design and radiofrequency (RF) cavities, has led to the

high peak energies available today.

However, the large electric fields stored in RF cavities lead to electrons being lib-

erated from the surface walls and limiting the accelerating field [10]. Nevertheless,

the particle energy can be increased by using a circular geometry for the accelerator

where the same fields are applied multiple times to the particle beam as it circulates

and gains energy. Such machines are known as synchrotrons and hold the record

for the highest particle energies, e.g. the Large Electron Positron Collider (LEP)

with 209 GeV [11] for electrons and positrons and the Large Hardon Collider (LHC)

with 13 TeV for protons. Due to continues transverse acceleration a particle with a

mass m traveling at energy E radiates synchrotron radiation of power

P ∝ E4/
(

m4R2
)

(0.1)

to stay on a circular trajectory of radius R. As the radiated power scales with m−4,

electrons tend to radiate at a power 18364 ≈ 1013 times higher than of protons.

With the inverse dependence of the synchrotron radius in (0.1), increasing the ra-

dius seems to be an alternative, but requires an accelerator to circle the planet to

achieve a few TeV for electrons†. Hence, only linear geometries for electron accel-

eration are feasible. Therefore, the proposed International Linear Collider (ILC) is

based on a linear scheme and aims to deliver 1 TeV electron bunches [13]. It will use

state-of-the-art accelerating structures based on superconducting RF cavities. Un-

fortunately, the electric field inside such cavities is limited by resistive dissipation

of electromagnetic energy in the walls. In case of the ILC the average acceleration

field is intended to be around 31.5 MV/m which would require to have a 20.5 km

†On January 29, 1954, Fermi projected as part of his speech as retiring president of the American
Physical Society that by 1994 a “Globatron” could be available. His prediction was based on the evo-
lution of particle accelerators. The Globotron would span over the entire globe, delivering particles
with an energy of up to 5× 1015 eV [12].

3
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long site to accelerate electrons and positrons to 250 GeV cumulative energy‡. The

estimated construction cost for ILC is e 7.2 billion.

Although extensive research in the field of RF cavities has been conducted, which

led to the development of superconducting Niobium cavities [14], the average ac-

celerating field is currently limited to 45 MV/m. Moreover, due to the disruption of

the accelerator cavity walls, the highest measured accelerating field in RF cavities is

limited to 200 MV/m [10]. Given the limitations, alternative methods for accelera-

tion have been proposed, such as direct-laser acceleration [15], inverse free-electron

laser [16] and plasma-based acceleration (PBA). The latter one has received the

most attention.

Plasma-based accelerators

The use of plasmas as an accelerating medium has been proposed to overcome

the limitation of the available acceleration gradient. Given that a plasma is a quasi-

neutral cloud of electrons and ions, disruption has already occurred and would

allow for higher accelerating gradients.

In 1979, Tajima and Dawson proposed using a laser pulse to generate a laser-

driven electron accelerator. When an intense laser pulse propagates through a

plasma, its radiation pressure can sweep the electrons aside while the heavy ions

remain approximately static. Afterward, as the intensity of the pulses eases, the

expelled electrons will feel an electrostatic restoring force caused by the remaining

ions. This force will accelerate the electrons back, but like a harmonic oscillator, the

electrons overshoot and continue in oscillatory motion at the characteristic plasma

frequency ωp. This motion introduces a density wave and, as a charge imbalance

is present, a longitudinal electric field is established, which trails together with

the density wave of the laser pulse. The acceleration scheme is known as laser-

wakefield acceleration (LWFA).

‡Additional upgrades of the machine could deliver 1 TeV by expending the site length to 40 km.
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MOTIVATION AND THESIS OUTLINE

Propogation
direction

min max
Laser intensity

min max
Eletron density

Figure 0.1: Schematic illustration of a laser-wakefield acceleration (LWFA) using
simulation data. Shown here is the propagation of a laser pulse through
a plasma. The laser pulse excites a density wave which is trailing the
laser pulse. Associate with the charge imbalance is an electric field.

Moreover, a similar principle applies if a charged particle bunch is used to drive

the wakes [18], known as plasma wakefield acceleration (PWFA). In this case, the

space-charge forces of the particle bunch are responsible for perturbing the plasma.

Both LWFA and PWFA are subgroups of PBA

Motivation and thesis outline

The physics behind PBA is highly complex and nonlinear. Hence, a purely theo-

retical description lacks to capture all observable phenomena, and numerical sim-

ulations based on the particle-in-cell (PIC) algorithm are required. While accurate,

codes based on the PIC algorithm are computationally expensive. This thesis aims

to implement, verify, and study a reduced solver with the potential to reduce the

computational cost significantly. A reduction of the computational cost enables

efficient exploration of vast parameter space, enables end-to-end full-scale simula-
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tions, and promotes scientific discoveries.

The thesis is split in five chapters. In chapter 1, the introduction is extended to

provide a theoretical background for the topics discussed later on. The purpose

for the theoretical background is to give a brief overview instead of covering each

detail individually.

The main focus of this thesis is to introduce and describe the implementation of

the reduced pondermotive guiding center (PGC) solver based on the propagation

of the envelope rather than the fast oscillating laser field in chapter 2. This allows

to obtain computational speedups for laser-driven PBAs in the order of
(
ω0/ωp

)2

where ω0 is the laser frequency, ωp is the plasma frequency, so that the relation

ω0 > ωp applies. The presented implementation focuses mainly on the 3D im-

plementation as in these geometries, the full physical aspects are recovered, and

the impact arising from computational gains is the greatest. The discussion is con-

cluded with a full derivation of the stability condition for the 3D version.

A major part of running numerical simulations is to take the full advantage of the

available computational resources. For this, in chapter 3 the scalability of PGC on

modern high-performance computing (HPC) systems is presented and discussed.

By utilizing shared and distributed memory parallelization, the scalability of PGC

for utilizing full HPC systems is shown.

One great advantage which arises with the reduced computational cost is the

possibility of performing parametric studies. Hence, it is beneficial for designing

future generations of particle accelerators as it allows them to find optimal param-

eters. Chapter 4 includes a review of using parametric studies for finding optimal

parameters for down-ramp injection in the European Plasma Research Accelerator

with eXcellence in Applications (EuPRAXIA) framework.

As the speedup of the PGC algorithm scales with the ratio between laser fre-

quency and the plasma frequency, cases with ω0/ωp > 103 become feasible to

be studied. One of those examples is the ionization seeding of the self-modula-

tion instability (SMI). In chapter 5, the use of PGC combined with an ionization
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1 Theoretical background: plasma-based

accelerators

A Physicist is just an atom’s way of looking at itself.

Niels Bohr

Using laser pulses to drive a plasma-based particle accelerator was initially pro-

posed about four decades ago by the pioneering work of Tajima and Dawson [17].

Due to the usage of a laser pulse as a driver, it is referred to as LWFA. Since the ini-

tial proposal, LWFA and the field of PBA, in general, has seen tremendous progress,

experimentally, theoretically, and computationally. Most of its growth connects to

the development of the chirped-pulse amplification (CPA) laser technology [19].

CPA allows to generate short and intense laser pulse for various application, e.g.

laser eye surgery [20–22], and manufacturing [23]. Since it is crucial for so many

fundamental applications, the CPA technology was awarded a Nobel prize in 2018.

While before 2004 several experiments demonstrated the acceleration of elec-

trons [24–30], the quality of the accelerated electron bunch was less than desired.

Typically, the accelerated electron bunch was characterized by an exponential en-

ergy distribution and only a small fraction of the electron bunch reached energies

above 100 MeV. This status changed significantly in 2004 when three groups pre-

sented high-quality electron bunches [31–33]. These works resulted from a higher
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THEORETICAL BACKGROUND: PLASMA-BASED ACCELERATORS

degree of control of the laser and plasma parameters, improved diagnostics tech-

niques, and a greater understanding of the underlying physics. For this, numerical

simulations are a great pillar to provide insight and allow to understand the com-

plex nature of those systems.

The generation of plasma waves with large amplitudes to accelerate electrons in-

side a plasma is not exclusive to laser pulses. An alternative approach is to use a

particle bunch, and it was initially proposed by Chen [18] in 1985. For this, a rela-

tivistic electron beam is used to drive a wakefield and is known as PWFA. While

the two schemes show differences, they are built around the same idea, that a driver

can perturb the quasi-neutrality of a plasma which creates large accelerating fields

E0 = cmeωp/e or

E0 [V/m] ' 96
√

n0
[
cm−3] (1.1)

where ωp =
(
4πn0e2/me

)1/2 is the electron plasma frequency, n0 is the ambient

electron number density, me and e are the electron rest mass and charge, respec-

tively, and c is the speed of light in vacuum. The interesting aspect about a PBA

is the dependence on the plasma density. For common scenarios a plasma with a

density of n0 = 1× 1018 cm−3 is used, leading to field strength of E0∼96 GV/m.

Over the years, several theoretical concepts supported by experiments and simu-

lations have been examined and proposed. Some of which allow us to give insight

into the complex and intertwined physics happening in PBA. The focus of this

chapter lies in reviewing several concepts associated with LWFA and proton-driven

PWFA. Rather than providing a deep dive and rigorous analytical calculations for

the underlying physics, the aim is to provide a brief overview. In the first part of

this chapter, the focus lies on LWFA. The aim is to give insights into the genera-

tion of wakes and propagation inside a plasma of a short laser pulse, in a way, that

the work on the reduced model presented in chapter 2 will become evident. Also,

the theoretical background for LWFA is extended to complement the discussion on

the use of reduced modeling for particle trapping and acceleration. Another cor-
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1.1 LASER-DRIVEN PLASMA WAKES

nerstone of the thesis presents full-scale modeling of the AWAKE experiment. For

this, section 1.2 accompanies a review on proton-driven PWFA. All the work pre-

sented in the thesis utilizes the PIC algorithm and, more specifically, is connected

to the implementation of a reduced solver in OSIRIS [34]. The PIC algorithm is dis-

cussed in section 1.3, and the general overview of extending OSIRIS is presented in

section 1.4.

1.1 Laser-driven plasma wakes

The development of LWFA has created much excitement in recent decades. Much

of it came from successful experiments and theoretical understanding. In laser-

driven PBA, an intense short laser pulse pushes the light electrons away, leaving

a positive channel of heavy ions. The high inertia of the ions results in a space-

charge force that pulls the electrons back. However, as the electrons try to establish

a quasi-neutrality, they overshoot and create a periodic wake structure behind the

laser pulse. Commonly, an analogy to a boat moving over water is made. Inside

the periodic wake structure, fields of several GV/m are reached.

In general, a laser pulse has to be strong enough to be able to push electron such

that a clear separation is noticeable. Its field strength is commonly expressed in

terms of the normalized vector potential a0 = eA/mec2 where A = |A| is the laser

vector potential. When the normalized vector potential is above unity, the elec-

tron quiver motion in a fast-oscillating laser field becomes relativistic. Such laser

strengths are commonly reached in typical LWFA scenarios where lasers intensities

are above & 1018 W cm−2 with a laser wavelength of ∼1 µm. More common, the

normalized vector potential is expressed in an engineering formula

a2
0 ' 7.3× 10−19 (λ0 [µm])2 I0[W/cm2] (1.2)

and given the mentioned example, the normalized vector potential is a0 = 0.85.

11
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The response of the plasma to a laser driver is inherently nonlinear, and therefore

challenging to understand. Nevertheless, several theoretical descriptions exist.

The force characterizing the displacement of the electrons, the ponderomotive

force, is associated with the light pressure. In the limit of small laser amplitudes,

when a0 � 1 is fulfilled, the ponderomotive force of a linear polarized laser pulse

is given as

Fp = −mec2∇(â2/2) (1.3)

where a2 = a2(r, t) is the slow-varying laser envelope squared. Here, the force is

associated with the envelope’s gradient, and the negative sign indicates that elec-

trons located along the propagation will be pushed towards the laser propagation.

In the non-linear regime, the ponderomotive force is

Fp, nl = −mec2∇γ, (1.4)

where γ corresponds to the relativistic Lorentz factor of an electron fluid element.

While it implicitly depends on the envelope, the leading motion is the relativis-

tic quiver motion. The effect of the light pressure onto the electrons is the strong

modulation of their density.

Throughout the propagation of the laser pulse inside a plasma, the locally differ-

ent plasma densities influence the propagation. Those effects refer to the non-linear

optical behavior of a plasma [35]. Three different effects are important to be men-

tioned. These effects are

• modulation of the pulse length,

• modulation of the pulse width,

• and modulation of the laser frequency.

For pulse compression, the head and the tail of the laser pulse propagate at differ-

ent group velocities due to different plasma densities in the longitudinal direction.

More specifically, the head has a lower group velocity as the local plasma density is

12



1.1 LASER-DRIVEN PLASMA WAKES

higher than the density at the tail of the laser pulse. In the transverse direction, the

effect of the plasma density gradient leads to self-focusing. The natural diffraction

can counteract this effect. One further modulation can occur due to longitudinal

variations of the phase velocity and leads to local frequency changes. The combi-

nation of all these processes, their evolution, and the laser propagation contribution

are important to be considered. In particular, those effects can affect the local en-

ergy distribution of the laser pulse, modify the ponderomotive force of the laser,

and hence change the resulting wake.

As the laser propagates inside the plasma, its strength expels a significant portion

of the plasma electrons, while leaving the heavy and static ions behind. Due to

the electron deficiency, large electric fields are generated, pulling electrons back,

and giving them a transverse momentum. While the electrons try to reestablish

the quasi-neutrality, they overshoot and continue oscillating. Several theoretical

models have been developed to characterize the wakes in LWFA scenarios [36–41].

In the 1D linear limit, the plasma perturbation is determined by

δn
n0

=
c2

ωp

∫ t

0
dt′ sin

[
ωp
(
t− t′

)] ∇2 â2(r, t′)
2

(1.5)

and the corresponding field is

E
E0

= −c
∫ t

0
dt′ sin

[
ωp
(
t− t′

)] ∇â2(r, t′)
2

. (1.6)

From equations (1.5) and (1.6), it is noticeable that the density modulations and the

corresponding fields exhibit a sinusoidal shape with a frequency corresponding to

ωp. Moreover, the modulation’s main contribution arises from the ponderomotive

force (1.3), seen by the gradient of the laser envelope in the integral. Extending

this theoretical model to a non-linear regime was done only in 1D [39–41] and in

the 3D non-linear regime, numerical calculations are usually required. The most

significant change for the non-linear regime is the modification of the wake struc-
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Figure 1.1: PIC simulation of a non-linear LWFA case. Shown are the areas where
electron acceleration is favorable. It is favorable as an electron bunch
would be accelerated and focused.

ture. The sinusoidal density modulation transforms into density spikes leading to a

sawtooth-like electric field. Due to the absence of analytical models for the 2D and

3D non-linear cases, simulations are vital to model LWFA in non-linear regimes.

Moreover, higher dimensions are required to model transverse fields accurately

and to recover full geometrical properties. In Figure 1.1, the plasma density, the

accelerating, and the transverse fields are shown. Given an injected electron bunch,

the generated plasma wakes allow focusing during the acceleration period. The

challenging question becomes, how to inject an electron bunch for the acceleration.

While in general, particles can be injected externally and PBA can be used to in-
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1.1 LASER-DRIVEN PLASMA WAKES

crease the energy, a more practical scenario is to combine it to a particle injector

and particle accelerator. This approach allows us to build compact accelerator fa-

cilities with moderate particle energies. In 2002 Pukhov [42] showed through 3D

simulations that a highly intense laser pulse with a0 = 10 could generate a wake to

produce mono-energetic electron beam without an external injection. This regime

is known as a highly non-linear broken wave regime or blow-out regime. Using a

laser pulse to self-trap electrons is experimentally challenging, as it requires precise

control of the laser and plasma parameters. Hence, alternative injection approaches

were suggested, such as ionization injection [43], injection through utilizing exter-

nal magnetic fields [44], or by evolving plasma bubble [45]. In the case of ionization

injection, a gas mixture of two gases is used. One of these two gases (with a lower

ionization threshold) is used to generate a background plasma, while the other gas

can be used to ensure ionization occurring at the higher laser field values. It allows

for high fidelity control of particle trapping. Another approach is to use external

magnetic fields. As the magnetic field is present, the wake structure is shortened

due to the more forceful bending of the electrons towards the center as they slip

behind the laser pulse. When the magnetic field is turned off, plasma electrons

are trapped due to an expanding plasma bubble. A similar physical principle is

achieved during a density down-ramp by making the plasma bubble expand. As

the laser pulse propagates through a density transition, the wake structure expands

from a higher density to a lower density, allowing for trapping of electrons.

There are important physical limits to laser-driven PBA. Those limits are associ-

ated with the laser propagation inside the plasma. One such limit is the depletion

length. The depletion length is characterized by the laser’s energy loss due to the

production of the plasma waves required to accelerate particles. Another limita-

tion of LWFA is described as the dephasing length. The phase velocity of the wake

causes it, as it is less than the speed of light. As the longitudinal momentum of

the electrons increases, their velocity can be higher than the wake’s phase velocity.

This momentum gain leads to electrons ending up in the decelerating region.
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1.2 Proton-driven plasma waves

While the limitations like depletion and dephasing present in LWFA can be over-

come through staging [46], further progress in terms of higher charge coupling

efficiency has still to be shown. An alternative approach to LWFA is to use another

way to drive the wakes. Such an alternative driver is a bunch of charged particles,

and it is known as plasma wakefield acceleration (PWFA). Chen initially proposed

it in 1985 and doubling of the 42 GeV Stanford Linear Accelerator Center (SLAC)

beam was shown in the meter-scale was shown by Blumenfeld et al. [47] in 2007.

PWFA would allow us to overcome the limitations of LWFA. However, the genera-

tion of a particle bunch requires large facilities to accelerate the bunch to moderate

energies and contradicts the idea of building compact accelerators. In PWFA, the

transformer limit determines similar to depletion in LWFA, the reachable energy of

a witness bunch [48]. It arises because an electric field of the same order drags the

driver as the one that accelerates a witness beam. Though, the energy achievable

with conventional accelerators are orders of magnitude higher compared to a laser

pulse. More specifically, the 42 GeV electron bunch of SLAC carries a total energy

of 0.1 kJ and the 400 GeV proton bunch of Super Proton Synchrotron (SPS) at CERN

carries a total energy of 20 kJ. The SPS bunch is the driver in the AWAKE experi-

ment, and it was used to accelerate an electron bunch to 2 GeV recently [49]. In the

following, as part of later discussions, the focus lies on proton drivers, but certain

aspects apply to electron bunches as well.

While PWFA and LWFA share common physical aspects, such as perturbation

of the quasi-equilibrium and the generation of the wake, the underlying physics is

significantly different. In PWFA, rather than the ponderomotive force causing the

electron displacement, the space charge force is felt by the plasma electrons. For an

azimuthally symmetric bunch with density

nb(ξ = ct− x1, r) = nb,0 nb,‖(ξ) nb,⊥(r), (1.7)
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1.2 PROTON-DRIVEN PLASMA WAVES

an analytical description in the linear regime exists [48]. For the bunch density

in (1.7), the coordinate ξ is the position along the bunch which is moving with the

velocity vb ' c, nb,0 is the charge density, nb,‖ is the longitudinal and nb,⊥ is the

transverse bunch distribution. The longitudinal plasma wakefield W‖ is given as

W‖(ξ, r) =
nb,0 e

ε0

∫ ξ

−∞
nb,‖

(
ξ ′
)

R(r) cos
(
kp
(
ξ − ξ ′

))
dξ ′ (1.8)

and the radial wake field W⊥ is

W⊥(ξ, r) =
−nb,0 e

ε0kp

∫ ξ

−∞
nb,‖

(
ξ ′
) dR(r)

dr
sin
(
kp
(
ξ − ξ ′

))
dξ ′ (1.9)

where the R(r) determines the radial dependency of the wake fields and is

R(r) = k2
p K0

(
kpr
) ∫ r

0
r′nb,⊥ I0

(
kpr′

)
dr′

+ k2
p I0
(
kpr
) ∫ ∞

r
r′nb,⊥K0

(
kpr′

)
dr′

(1.10)

with I0 and K0 being the modified Bessel functions of the first and second kind.

Comparing this equation to (1.6), a convolution of the driver density is noticeable.

Like for the LWFA case, due to the causality condition, no fields exist ahead of the

bunch. The term R(r) has its maxima at r = 0 due to symmetry, which leads to

vanishing radial wakefields at zero on-axis. On the other hand, assuming a Gaus-

sian distribution in the longitudinal and transverse direction, the most effective

wakefield excitation by a drive bunch with a bunch length σz and radial with σr the

condition

kpσz =
√

2 (1.11)

for the longitudinal distribution and kpσr = 1 for the transverse distribution of the

bunch have to be met [50].

Using a proton bunch to drive plasma wakes effectively becomes quite challeng-

ing as they usually tend to be long. More specifically, the SPS bunch used in the
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AWAKE experiment has a length of 12 cm and requires a plasma with a density

of 4× 109 cm−3 to drive plasma wakes effectively. Using a plasma with such low

densities leads to acceleration gradients in the order of a few MV/m which is not

sufficient to replace any conventional accelerators. A better approach would be to

split the long proton bunch into beamlets to drive plasma waves periodically. This

split into beamlets is achieved by seeding an instability, the self-modulation insta-

bility (SMI). The SMI arises from the transverse wakefields created by the front of

the bunch, and it modulates the trailing proton bunch by pinching it into micro-

bunches. Each beamlet is separated by the plasma wavelength, allowing to drive

the wakefields resonantly. In the linear regime, the growth rate of the SMI [51] is

given by

Γ =
3
√

3
4

ωp

(
nb,0me

2nempγb

ξ

ct

)1/3

(1.12)

where mp is the proton mass, ne is the ambient plasma density, and γb the Lorentz

factor of the proton beam.

1.3 Particle-in-cell algorithm

Over the past decades, the PIC algorithm has been established as a viable tool

to model the behavior of plasmas under extreme scenarios. Moreover, it refers to

a method to solve the fundamental kinetic equations for plasmas. Thanks to the

pioneering work of Buneman, Dawson, Birdsall, Langdon, and others, PIC simula-

tions allow us to provide real insights in astrophysical scenarios [52–55] and PBA

accelerators [56–58].

The main governing idea of PIC is to reduce the computational needs required

to advance plasma particles. Instead of calculating particle-particle interactions,

it solves the equations for the particle motion based on surrounding fields. Af-

ter advancing the particles, the associated currents with the particle motion are

calculated. Then, the fields are calculated with the updated currents on a grid. Af-
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Interpolate fields at
particle position rα

(E, B)ijk → (E, B)α

Integrate equa-
tions of motions

(E, B)α → pα → xα

Deposit current based
on particle position

rn−1
α − rn

α → jijk

Advance fields

jijk → (E, B)ijk

∆t

Figure 1.2: Simplified illustration of the PIC loop.

terward, the updated fields are then used for advancing the particles. These steps

continue in a loop until a particular simulation time is reached, as shown in Fig-

ure 1.2.

The governing equations for the electric E and magnetic fields B, are Maxwell’s

equations (in cgs-units)
∇ · E = 4πρ

∇ · B = 0

∇× E =
1
c

∂B
∂t

∇× B =
1
c

∂E
∂t

+
4π

c
J

(1.13)

where ρ and J are the charge and the current density distribution. The particles are

advanced through a relativistic Boris-pusher [59] for the Lorentz-force equation:

dp
dt

= q (E + v× B) (1.14)
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Figure 1.3: Weak and strong scaling test of OSIRIS on NERSC’s Cori system us-
ing a hybrid parallelization scheme with OpenMP and MPI. The tests
were done on the Intel Knights Landing nodes using AVX-512 vector
pipelines. Each node has 68 cores, with each core having two vector
processing units (VPUs).

where q is the charge of the particle and v is the velocity of the particle. In equation

(1.13), (1.14), and in the following all quantities will be normalized. Spatial co-

ordinates r = (x, y, z) are normalized to c/ωp where c is the speed of light and

ωp = (n̂0e2/me)1/2 is the plasma frequency to the background plasma density

n̂0 with e, me being the electron charge and mass, respectively. Time t is normal-

ized to ω−1
p , frequencies ω to ωp, wavenumbers k to kp = ωp/c, and velocities

v =
(
vx, vy, vz

)
to c. Moreover, momenta p are normalized to mec. Electrical fields

E are normalized to mecωp/e, while magnetic fields B to meωp/e, and the vector

potential A (or a), to mec2/e. Densities n are normalized to n̂, charges q to e, and

masses m to me.

While the equations (1.13) and (1.14) allow to model plasmas with large number
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of particles, e.g. 1018 particles per cubic centimeter for LWFA, it is still compu-

tationally expensive. For this, PIC codes have to be developed to utilize modern

HPC systems. In this thesis, the three-dimensional, relativistic, massively parallel,

object-oriented PIC code OSIRIS [34] was used. Figure 1.3 shows the scaling of

OSIRIS from a few computational nodes to almost the full NERSC Cori Machine.

Even if it scales efficiently over many cores and modern hardware architectures,

full-scale modeling is still computationally expensive. To overcome this, the fo-

cus of this thesis is the implementation of a reduced solver pondermotive guiding

center (PGC). The advantage of OSIRIS 4.0, the latest version, is the increased flex-

ibility for incorporating custom solvers into the PIC algorithm.

1.4 Implementing custom algorithms in OSIRIS

OSIRIS, with its latest version, is designed to utilize the object-oriented program-

ming (OOP) paradigm. It allows developing classes to leverage composition, in-

heritance, and delegation. One possible approach is to incorporate classes dealing

with communication, file reading, and writing, from classes used to solve the par-

tial differential equations numerically. Inheritance can then be used to create cus-

tom classes to extend the functionality without adapting other parts of the code. In

the following, a brief description of the OOP model in OSIRIS will be presented.

While it was not developed as part of the thesis, it was extensively used in the

implementation of the pondermotive guiding center (PGC) solver.

OSIRIS is constructed on top of the simulation object t simulation which stores

other objects, e.g. t node conf (required for handling communications), t emf (ob-

ject connected to electromagnetic fields), and t particles (object storing particle

information), as seen in Figure 1.4. Using the core object, custom solvers or “sim-

ulation modes” can be created by inheriting from the t simulation object. Doing

so allows us to customize the creation and the type of other objects. At the ini-
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simulation iteration
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Figure 1.4: Object-oriented model for adapting custom algorithms in OSIRIS. The
t simulation class is the base class which which contains other im-
portant objects, e.g. t node conf for handling communications, t emf

for handling with electromagnetic fields, and t particles for handling
particles. By inheriting the base class, any class can overwrite specific
simulation objects or methods and customize them to change the pro-
gram flow. Transparent objects and methods represent the use of parent
objects and methods.
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tialization step of an OSIRIS simulation, the object method* allocate objs() is

responsible to allocate all required objects. In the case of PGC, a custom method

allocate objs pgc is defined and provides custom objects for particles t emf pgc

and electromagnetic fields t particles pgc which are extensions to t emf and

t particles, respectively. Also, every inherited object can access methods and ob-

jects associated with the parent object. Therefore other object which do not require

to be extended or specified can be directly allocated. Similarly, methods which are

not specified but are available are going to be used directly, e.g. the method iter()

of the simulation object. OSIRIS calls iter() to iterate the whole simulation by one

time step which calls advance methods of individual objects for fields and particles.

Any specification in those objects gives the flexibility of extending the object better.

As seen in this brief example, the OOP paradigm provides high flexibility to

customize any OSIRIS simulation at runtime. It grants the possibility to perform

a facet of different scenarios with no or minimal code adaptations. On the other

hand, due to the cross-connection of the different objects, code fragmentation can

increase, leading to increased maintainability.

*In modern Fortran this is known as type-bound procedures.
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2 Reduced modeling on the plasma scale

I insist upon the view that “all is waves”

Erwin Schrödinger

Schrödinger: Life and Thought (1989)

Book by Walter Moore

Modeling the behavior of plasmas through computer simulation consist of vast

numerical approaches. For some applications, simplified expressions may be de-

rived for plasma under particular circumstances, e.g., cold fluid equations and

magnetohydrodynamics. The LWFA is an example of a physical problem, more

specific the non-linear regimes with a0 ≥ 1, for which no analytical expressions for

a realistic, fully 3D problem exist. Kinetic modeling with the utilization of the PIC

algorithm plays a critical role in these scenarios. Typically it involves self-consistent

modeling of the electromagnetic fields, using Maxwell equations, and solving the

particle motion under consideration of the ambient electromagnetic fields through

the Lorentz force. PIC showed great success, especially in describing strong non-

linear regimes, such as the highly non-linear broken-wave regime [42]. Unfortu-

nately, it needs to resolve the shortest and the fastest scales. In LWFA, the short-

est time scales are associated with the laser frequency, and the spatial scales are

connected to the laser wavelength. These scales have to be resolved over the full

propagation distances. It means that for a plasma accelerator with the density of
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1017 cm−3 a laser pulse with a wavelength in the µm-range has to be propagated for

3.2 cm so that electrons can gain an energy of 1 GeV and 32 m to gain 1 TeV. Due

to the disparity between the shortest scales associated with the laser wavelength

and the longest scales associated with the acceleration distances makes modeling

of plasma-based accelerators computationally challenging. Therefore, simulations

are commonly performed in reduced geometries to overcome this disparity. While

these simulations can be useful for carrying out parameter scans and providing

insights into the underlying physics, many of the relevant physics is inherently

three-dimensional.

Over the past years, numerous techniques and methods have been developed

to overcome the disparity and reduce the computational cost of modeling LWFA

scenarios. One example is the use of the moving window method [60], where the

simulation box is co-propagating with the laser pulse, and only a fraction of the

whole physical setup is considered. Following a similar approach led to the devel-

opment of simulations in a Lorentz boosted frames [61–63]. By moving in a Lorentz

boosted frame, where the laser pulse is stretched and the plasma is streaming to-

wards the laser pulse, significant computational speedups can be obtained. How-

ever, those types of simulation are prone to numerical Cherenkov instability (NCI)

which introduces artificial numerical noise and introducing unphysical scenarios.

Despite the recent progress on understanding the NCI, there is still research left

on the use of Lorentz boosted frames to model nonlinear regimes of laser accelera-

tion [64–66]. Another approach is based on utilizing a cylindrical mode expansion

of the electric and magnetic fields in a simulation [67]. The initial computational

cost of a 2D setup is multiplied by including additional harmonic modes and lead-

ing to computational costs comparable to 2D simulations. Though, in cases of an

optical-thin plasma where ω0/ωp � 10, those simulations are still challenging. An

alternative method is to use a self-consistent description of the interaction between

the particles and the laser field in terms of the slowly varying laser envelope and

the associated ponderomotive force [68, 69]. This approach is known as ponder-
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motive guiding center (PGC). For a PGC solver, the electric and the magnetic fields

are governed by Maxwell’s equations, and the Lorentz force is extended to include

the ponderomotive force. As only the plasma fields are required to be resolved, a

factor (ω0/ωp)2 performance increase is obtainable.

In this chapter, the governing equations for the envelope and the Lorentz force

extension are presented for the PGC algorithm. The main aim is to derive the finite

difference equation for the laser envelope, in section 2.2, and for the extension of

the Lorentz force, in section 2.5, which are implemented into OSIRIS. A discussion

on the boundary conditions of the envelope solver is mentioned in section 2.3. An

important aspect when performing numerical simulation is to ensure numerical

stability. Moreover, in the case of PGC, numerical stability for Maxwell’s equations

and the envelope equation has to be guaranteed. In section 2.4, an analytical de-

scription of the numerical stability for the PGC algorithm in the presence of plasma

is presented.

2.1 Ponderomotive Equations

The main idea behind the PGC algorithm is to introduce a self-consistent way of

modeling the propagation of a laser pulse, focusing solely on its envelope and not

requiring to solve for the rapid oscillations of a laser field. For this approximation

to be valid, the condition 1− v‖ � ωp/ω0 for the normalized electron velocity v‖
in the direction to the laser propagation has to be satisfied. Moreover, the condition

requires that an electron passes through a laser field wavelength in time sufficiently

short such that the radial motion is negligible. Given this and the Coulomb gauge

∇ · Ã = 0 for a general vector potential Ã, the wave equation with fast and slow

varying components can be expressed as

(
∇2 − ∂2

∂t2

)
(A + a) = −J− j +∇∂Φ

∂t
(2.1)
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following the description by [69] where the normalized code units, as mentioned

in section 1.3 are used. For (2.1), the capitalized symbols, such as current density

J, a scalar potential Φ, and vector potential A, are associated with slow varying

components of the fields and the lowercase symbols, such as the vector potential

a and current density j, are connected to the fast varying laser field. While the

slow-varying components are associated with the plasma response, the fast varying

current density driven by the laser if the spot size was infinite can be defined as

j = −a ∑
i

qiρi

mi
(2.2)

where the sum is evaluated over particles with their charge qi, charge density ρi,

and the relativistic mass mi. Therefore, we can express the evolution of our laser

field to follow (
∇2 − ∂

∂t2

)
a = −j. (2.3)

Here, the laser field is still in its general form. To obtain the evolution of the enve-

lope, we can assume a linear polarized laser pulse

a =
a(x, y, z, t)

2
eiω0(t−x)ey + c.c. (2.4)

with a polarization direction in y-direction. The laser pulse (2.4) corresponds to a

monochromatic wave with the frequency ω0 and a complex-valued envelope a =

a(x, y, z, t) which depends on the spatial and temporal coordinates. The evolution

of the envelope, derived by Mora and Antonsen Jr [68], is governed by

(
∇2
⊥ − 2iω0

∂

∂τ
+ 2

∂

∂τ∂ξ

)
a(ξ, y, z, τ) = −χa(ξ, y, z, τ) . (2.5)

In (2.5), the envelope is now given in the light frame coordinates (τ, ξ) = (t, x− t)

and includes the transverse Laplacian ∇2
⊥ =

(
∂2

y + ∂2
z

)
. The right-hand-side char-

acterizes the plasma susceptibility and the plasma response to the propagation. It
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is given as

χ = −∑
i

q2
i ni

〈mi〉
(2.6)

and determines the non-linear effects of the plasma onto the envelope with cycled

averaged mass

〈m〉 =

√

m2
0 + p2 +

(q |a|)2

2
(2.7)

where m0 is the rest mass, p is the momentum of a charged particle induced by

the wake, and the envelope a interpolated at the particle position. Expression (2.5)

depends on a mixed temporal and spatial derivatives. The terms with 1/ω2
0 can be

dropped, reducing (2.5) to

∂a
∂τ

=
1

2iω0

(
1 +

∂ξ

iω0

) (
χa +∇2

⊥a
)

. (2.8)

The dropped term is used to reduce the axial group velocity of waves propagating

at an angle to the axis. However, if Raman sidescatter is not essential and only

forward Raman scattering is considered, this term can be dropped [69]. Also, the

exclusion of mixed derivatives makes equation (2.8) of the form of a heat equation.

Surprisingly, we moved from a wave description of light to a way of characterizing

light using the principles of heat transport.

While the evolution of the envelope is influenced by the ambient plasma through

the plasma suscebility χ, the influence of the envelope onto the motion of the par-

ticles is done through an extension of the Lorentz force [68]

dp
dt

= q
(

E +
p
γ
× B− 1

4
q
〈m〉∇|a|

2
)

(2.9)

with the Lorentz factor γ. The field quantities E and B correspond to the slow-

varying electric and magnetic fields, respectively.

With this set of equations, we can see that a PIC code has to solve the envelope
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equation separately while the Lorentz force has to be extended by an additional

term. In the next sections we focus mainly on the envelope equation and derive

a finite difference scheme which can be incorporated next to a general Maxwell

solver.

2.2 The Envelope Equation for the PGC algorithm

To include the envelope equation in three dimensions into OSIRIS, we require

a set of algebraic equations. A finite difference method is used to transform the

differential equation into a system of algebraic equations. This section is split into

three subsections, containing a detailed derivation of the finite difference equation

for each spatial dimension. The 2D cartesian, 2D cylindrical, and 3D cartesian ver-

sion of the envelope equation are currently incorporated into OSIRIS. Other groups

incorporated the PGC algorithm in 1D and 2D cartesian geometries [69] and in 2D

cylindrical geometries [70]. Alternatively, the envelope equation (2.5) can be solved

in the lab frame [71] rather than in a co-moving frame, but requires additional treat-

ment of large phase errors or spurious dissipation [72]. While [73] included a 3D

cartesian version of PGC in the light frame coordinates, their implementation scales

quadratically with the transverse simulation box size and limits cases where the

simulation box is large in the transverse direction.

2.2.1 Envelope Equation in 1D

As a limiting case, the one-dimensional version of the envelope equation allows

us to characterize the plasma’s influence on the evolution of the envelope. The

equation for the envelope in this scenario is

∂a
∂τ

=
1

2iω0

(
1 +

∂ξ

iω0

)
χa (2.10)
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2.2 THE ENVELOPE EQUATION FOR THE PGC ALGORITHM
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ξ

χ(ξ, τ) = −1
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ξ

χ(ξ, τ) = ξ − 1

Figure 2.1: One-dimensional propagation of an envelope for the case of a constant
χ and with a constant longitudinal gradient for χ. For the evolution,
equation (2.13) is used and the initial value of the envelope follows
a(ξ, τ = 0) = sin2(ξπ), shown in the left panel. Two scenarios are
presented, a case with a constant plasma susceptibility (middle panel)
and with a constant longitudinal gradient (right panel). The dashed
black line represents the absolute value |a|, the blue line represents the
real part <(a), and the red line represents the imaginary part =(a) of
the envelope.

where the transverse Laplacian ∇2
⊥ in equation (2.8) has been dropped. In the case

of a vacuum propagation, when χ = 0 and therefore ∂ξχ = 0, the envelope in

the light frame coordinates would not evolve. It highlights that higher dimensions

have to be included to have a correct physical representation of an envelope prop-

agation.

To convert (2.10) into a set of equations, a central finite difference in time can be

used. The usage of a central difference is favorable as its second order in time. In a

finite-difference notation, we have

[
∂a
∂τ

]n

i
=
Dτan

i
2∆τ

=
an+1

i − an−1
i

2∆τ
(2.11)

where the square brackets show the evaluation of a differentiation on time and

space grid with i representing the spatial coordinate ξi = i∆ξ, n representing the
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temporal coordinate τn = n∆τ, and the grid spacing for space ∆ξ and time ∆τ.

The finite-difference operator D characterizes the difference on the grid. The su-

perscript represents the finite difference in time, and the subscript indicates the

difference in space. For longitudinal derivatives, a central difference scheme

[
∂a
∂ξ

]n

i
=
Dξ an

i
2∆ξ

=
an

i+1 − an
i−1

2∆ξ
(2.12)

is applied as well. The full finite difference expression of (2.10) in an expression for

the envelope at a time step n + 1 is

an+1
i = an−1

i +
∆τ

iω0

[
χn

i an
i +

1
2iω0∆ξ

(
an

i
(
χn

i+1 − χn
i−1
)
+ χn

i
(
an

i+1 − an
i−1
))]

. (2.13)

As seen in Fig. 2.1 or by inspecting (2.13), the effect of the plasma susceptibility is

an introduction of phase rotation, and its gradient introduces a spatially different

phase rotation. The slip back of the envelope arises from having the longitudinal

gradient of the envelope and χ being negative while the gradient of the plasma

susceptibility stretches or compresses the envelope.

2.2.2 Envelope Equation in 2D

For the 2d case, the diffusion in one transverse direction is added compared to

the 1d case. The equation which characterizes the envelope evolution for cartesian

geometries is
∂a
∂τ

=
1

2iω0

(
1 +

∂ξ

iω0

)(
χa +

∂2

∂y2 a
)

(2.14)

where the second-order derivatives in y-direction transforms the envelope equa-

tion into a heat-type equation. In the case of cylindrical geometries, the transverse

Laplacian is given as ∇2
r a = 1/r∂ra + ∂2

r a where r is the radial coordinate. As the

governing equation is a heat-type equation, we require an implicit method for fi-
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nite differentiation. Commonly, an implicit Crank-Nicolson (CN) method is used

for this type of equations. Here, we consider an approach where only the second-

order derivative in y-direction is solved implicitly. For this, time step n + 1 and

n− 1 are used. The other terms are evaluated at time step n. It leads to the finite

difference expression
(
α− βyDyy

)
an+1

ij = Sij (2.15)

with the right-hand side

Sij =
(
α + βyDyy

)
an−1

ij + χn
ija

n
ij + γDξχn

ija
n
ij + 2γβyDξDyyan

ij, (2.16)

α = iω0/∆τ, γ = 1/2iω0 and βy = 1/2∆y2. In above expression, the finite differ-

ence operator

[
∂2

ya
]n

ijk
=
Dyyan

ijk

∆y2 =
1

∆y2

(
an

i,j+1,k − 2an
i,j,k + an

i,j−1,k

)
(2.17)

for the second-order central difference is used. The right-hand side depends only

on the normalized vector potential from previous time steps and can be calculated

before calculating the envelope at the new time step n + 1. Due to the finite differ-

ence operator in expression (2.15), a matrix inversion of a sparse tridiagonal matrix

must be performed. Currently, three different methods are incorporated for the

matrix inversion. The first method inverts the algebraic problem using the Thomas

algorithm, and the second method utilizes QR-Factorization. Both methods are

directly implemented in OSIRIS. They are provided to the PGC algorithm to be

available at any point in time. Also, the third method uses specialized routines

from LAPACK [74]. Using an external library like LAPACK is favorable as it is in

general, optimized for numerical stability, and is widely available on computing

platforms. All of the mentioned methods have a linear compute complexityO(Ny)

with Ny being the number of cells in y-direction.
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2.2.3 Envelope Equation in 3D

In the 3d case, the envelope can diffuse over the two transverse dimensions and

can be compared to solving a heat equation in two dimensions. For solving heat

equations in higher dimensions, the alternating-direction-implicit (ADI) method

is frequently applied [75]. It is an example of an operator splitting method. ADI

allows us to solve equation (2.8) numerically over two steps with the benefit that

the diffusion operator for one transverse direction is evaluated at each step and

allowing to keep a linear compute complexity. Hence, the two finite difference

equations for the 3d case are

(
2α− βyDyy

)
an+1/2

ijk = S?
ijk (2.18a)

(2α− βzDzz) an+1
ijk = S??

ijk (2.18b)

with the right-hand sides

S?
ijk =

(
1 + γDξ

)
χn

ijkan
ijk +

(
2α + βyDyy

)
an−1/2

ijk

+
(
2βzDzz + 2γDξ

(
βyDyy + βzDzz

))
an

ijk

(2.19a)

S??
ijk =

(
1 + γDξ

)
χn

ijkan+1/2
ijk + (2α + βzDzz) an

ijk

+
(
2βyDyy + 2γDξ

(
βyDyy + βzDzz

))
an+1/2

ijk

(2.19b)

where first the diffusion in the y-direction and then in the z-direction has been

evaluated. For the right-hand side, we assumed that that the plasma susceptibility

χn
ijk ' χn+1/2

ijk does not change over a sequential half time step as it is quasi-static in

the light frame coordinates. This assumption allows us to compute the envelope’s

evolution without advancing the particles over two consecutive half time steps.

Each equation in (2.18) can be solved by inverting the matrix expression, similar to

the 2D case.
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2.3 Boundary Conditions for the Envelope Equation

Boundary conditions are an essential element in the discussion of differential

equations. Their correct treatment is required, as otherwise, non-physical solutions

can be obtained. As shown in the previous section, the finite difference equation

set requires a matrix inversion, which depends on the transverse direction. Ac-

cordingly, we treat the boundary conditions for longitudinal and transverse sep-

arately. The finite-difference operator Dξ appears only on the right-hand side of

(2.18). Hence, a masking function onto the envelope after advancing and along

the longitudinal boundaries can be applied. As a masking function, the first quar-

ter of a sin2(ξ)-function over several boundary cells is used. It ensures a smooth

transition and makes the envelope vanish at the boundaries. For the transverse di-

rection, without further modification of the first and the last line of the matrices in

(2.18a) and (2.18b) a Dirichlet boundary condition for the envelope is introduced.

As in most scenarios, the envelope does not extend to the transverse boundaries;

we considered this as a sufficient condition for the boundaries. In the case of peri-

odic boundaries, the matrices’ tri-diagonal structure is broken, and the additional

side-diagonal entry appears at the upper-right and lower-left corner of the matrix.

For this, we utilize the Sherman-Morrison formula [75], reducing it to an auxiliary

problem.

2.4 Numerical stability of the envelope equation

The numerical stability of a finite difference scheme is necessary and sufficient for

convergence. When solving Maxwell’s equations, the Courant–Friedrichs–Lewy

(CFL) condition has to be fulfilled to achieve stability. Here, we have to consider,

in addition to the CFL condition, a stability equation for the envelope solver char-

acterized by equations (2.18) and (2.19).

For obtaining the stability condition, a von-Neumann analysis can be applied,
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which characterizes the growth of a numerical error. The derivation requires the

governing finite difference scheme (2.18) and (2.19) to be rewritten in a matrix form

L an+1/2
ijk = R an

ijk (2.20)

where the vector
an+1/2

ijk =
(

an
ijk, an+1/2

ijk , an+1
ijk

)T

an
ijk =

(
an−1/2

ijk , an
ijk, an+1/2

ijk

)T (2.21)

are characterizing the envelope values on a temporal and spatial grid. As seen,

each component of the vectors is evaluated at different times steps and is shifted

by a half time step. The matrix L is a diagonal matrix

L = diag(L11, L22, L33) (2.22)

with the entries

L11 = 1

L22 = 2α− βyDyy

L33 = 2α− βzDzz.

(2.23)

while R is a sparse matrix

R =




0 R12 0

R21 R22 0

0 R32 R33


 (2.24)
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where each entry

R12 = 1

R21 = 2α +Dyyβy

R22 = γδχ + χ
(
γDξ + 1

)
+ 2Dzzβz + 2γDξ

(
Dyyβy +Dzzβz

)

R32 = 2α +Dzzβz

R33 = γδχ + χ
(
γDξ + 1

)
+ 2Dyyβy + 2γDξ

(
Dyyβy +Dzzβz

)

(2.25)

can be obtained by comparing with the finite difference scheme. The finite differ-

ence operators Dξ , Dyy and Dzz are acting directly on the envelope values in (2.21).

In above expressions, the plasma susceptibility χ and its longitudinal difference

δχ = Dξχ = χi+1,j,k − χi−1,j,k are treated as constant parameters neglecting any

spatial and temporal dependencies. The error for a finite difference scheme can be

defined as

εn
ijk = an

ijk − a(n∆τ, i∆ξ, j∆y, k∆z) (2.26)

representing the difference of the envelope evolution using finite difference, char-

acterized by an
ijk and the analytical solution a(n∆τi∆ξ, j∆y, k∆z) to (2.8). Given this,

we can use the ansatz that the error can be decomposed into

ε̂n = gneikξ ξeikyyeikzz (2.27)

with the unknown error growth rate

g =
ε̂n+1

ε̂n (2.28)

and the different numerical modes characterized by kξ , ky and kz. Due to the usage

of Fourier transformations, periodic or spatially bounded solutions are required.

Both cases are present as, in general, the laser pulse is not extended to the bound-

aries unless a periodic case is studied. With the ansatz (2.27) we can evaluate the

37



REDUCED MODELING ON THE PLASMA SCALE

finite difference operators as

Dξ ε̂n = 2i sin
(
kξ∆ξ

)
ε̂n = 2iSξ ε̂n

Dyyε̂n = 4 sin2
(

ky∆y
2

)
ε̂n = 4Syyε̂n

Dzzε̂n = 4 sin2
(

kz∆z
2

)
ε̂n = 4Szzε̂n

(2.29)

with the properties |Sξ | ≤ 1, 0 ≤ Syy ≤ 1 and 0 ≤ Szz ≤ 1. Together with (2.20)

and (2.27), the error growth rate can be found by solving an eigenvalue problem

√
gε̂n = L̂−1R̂ε̂n (2.30)

with the error vector ε̂n = (ε̂n−1/2, ε̂n, ε̂n+1/2)T and the matrices L̂ and R̂ being

representations of the matrices L and R in the k-space. The eigenvalues to the

eigenvalue problem (2.30) are

λ1 =
R33

L33

λ2 =
R22

2L22
−

√
L11R2

22 + 4L22R12R21

2
√

L11L22

λ3 =
R22

2L22
+

√
L11R2

22 + 4L22R12R21

2
√

L11L22

(2.31)

where the last two eigenvalues differ only by the sign of the last term. The eigen-

values are connected to the error growth rate through
√

g = λ. The given finite

difference scheme is stable if the following condition

|g| =
∣∣∣∣
ε̂n+1

ε̂n

∣∣∣∣ ≤ 1 (2.32)
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is fulfilled which corresponds to

max{|λ1|, |λ2|, |λ3|} ≤ 1 (2.33)

in the eigenvalue notation. In general, only the highest growing error mode will

dominate, and therefore an upper limit given a set of parameters is required to

be considered. The eigenvalues in (2.31) depend not only on the spatial and tem-

poral resolutions but also on the numerical modes, the plasma susceptibility, its

longitudinal gradient, and the laser frequency. In the following paragraphs, the

discussion is separated into two parts. First, we focus on the stability of the finite

difference scheme for propagation in a vacuum, and second, we discuss the sta-

bility of this scheme in the presence of a plasma. For both cases, square cells will

be used. Assuming square cells allows studying of the numerical stability without

loss of generality.

The case of vacuum and the absence of a plasma can be characterized by a van-

ishing plasma susceptibility χ. Using expressions (2.31), we can find the highest

growing eigenvalue

λmax = − 2∆τ (∆ ω0 + 2)
∆ ω0 (∆τ − i∆2ω0)

(2.34)

where Sξ = Syy = Szz = 1 for the eigenvalue λ1 is used. With this, the condition

for stability for vacuum is

∆τ ≤ ∆2ω0√
(1 + 4/∆ ω0) (3 + 4/∆ ω0)

(2.35)

with ∆ being the spatial resolution. Note that it depends not only on the spatial

and temporal resolution but also on the laser frequency ω0, which is normalized to

a characteristic frequency ω̃. Furthermore, the upper limit of the stability condition

increases with the grid size but also with the laser frequency, as seen in Fig. 2.2(a).
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Figure 2.2: Figures are representing the stability condition for the envelope equa-
tion in a vacuum. Different stable regions for different temporal and
longitudinal resolution are shown in (a). The regions differ based on the
laser frequency ratio to a normalization constant ω̃. The scatter points
represent three simulations with different resolutions where red repre-
sents numerical unstable and green numerical stable simulations. The
resolution is connected to the simulation results in (b), which shows
the evolution of a laser pulse center towards the focal plane. The laser
follows a Gaussian beam profile.

For ω0 � 1/∆, the condition reduces to

∆τ <
∆2ω0√

3
. (2.36)

The above expression is an oversimplification of the stability condition, and in gen-

eral, the full equation (2.35) should be used. The simplification is used merely

for better interpretation of the stability condition. Examining the stability condi-

tion (2.36), it is noticeable that higher laser frequency loosens the temporal resolu-

tion restriction and scales linearly with the laser frequency. This result is not sur-

prising, as seen in the governing equation for the envelope (2.8) the laser frequency

reduces the contribution of the right-hand side. For verification of the stability

condition (2.35), three simulations were performed with a laser pulse propagating

towards the focal plane. The transverse component of the laser pulse follows the
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description of a Gaussian beam

a(x, r) =
a0√

1 + (x/xR)2
exp (iφ) exp

(
−r2/w2) (2.37)

where
r =

√
y2 + z2

φ = arctan(x/xR)− (x/xR) r2/w2

w = w0

√
1 + (x/xR)2

R = x
(
1 + (xR/x)2)

(2.38)

are the common parameters for a Gaussian beam. In the study, the laser pulse has

a pulse width of w0 = 4.0, a laser frequency of ω0 = 15.0, and a Rayleigh length of

xR = 120.0 and only the spatial and temporal resolution is modified. In Fig. 2.2(b),

the results of three different test cases are shown. If the stability condition is not

satisfied, then the envelope erupts numerically after several iterations.

For the case when a plasma is present, a non-vanishing plasma susceptibility

is required to be considered. Hence, all eigenvectors in (2.31) are considered. In

Fig. 2.3, the highest error growth rate of all the possible growing modes is plotted

against the laser frequency for a case without any longitudinal plasma gradients

and including plasma gradients. If a plasma without a plasma gradient is present,

then the error growth rate is bound by the stability criteria of the vacuum. On

the contrary, including longitudinal plasma gradients, by the means of the longi-

tudinal difference δχ, introduces non-vanishing error growth rates. Particularly,

using (2.31) and Sξ = Syy = Szz = 0.0, the error growth rate is given by

ĝ = 1 +
∆τδχ

√
64∆2ω4

0 + ∆τ2δχ2

32∆2ω4
0

(2.39)
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Figure 2.3: Double-log plot of the numerical error growth rate |g| − 1 as a func-
tion of the laser frequency ω0. In this representation, a non-vanishing
growth rate represent an unstable scenario. Shown here are cases with
the time step of ∆τ = 0.15 and the spatial resolution of ∆ξ = ∆y =
∆z = 0.2. In each different case, the proxy parameters for plasma sus-
ceptibility χ and its longitudinal gradient δχ were changed. For both
cases χ = 1.0 is used. The blue line represents the case δχ = 0.0 and the
green line represents δχ = 1.0. The black line shows the asymptote for
the stability if a gradient is present.

and for ω0 � 1, the error growth rate reduces to

ĝ = 1 +
∆τ

4∆
· δχ

ω2
0

(2.40)

which does never fulfill the stability criteria (2.32) unless longitudinal plasma gra-

dients δχ vanish. A longitudinal gradient is generally given in our simulations,

and a non-vanishing envelope will push electrons inducing gradients in the plasma

susceptibility. This fact makes the presented finite difference scheme for the PGC

solver unconditionally unstable. However, as seen in Fig. 2.3, the error growth rate

is close to unity implying small growth rates. Assuming the asymptotic limit, we
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can find the incubation step

N =
log f

log
(

1 + ∆τ
4∆ ·

δχ
ω2

0

) . (2.41)

after which an initial error is amplified by a amplification factor f = |εN |/|ε0|. Us-

ing above equation and considering a case where ∆ = 0.1, ∆τ = 0.05, δχ = 1.0,

ω0 = 30 and f = 108, we obtain an incubation step of N ∼ 130 000. After this

number of iteration, an error in the double-precision range has been amplified

to a single-precision range. A further doubling of the incubation step implies

an error growth to the order of unity from the initial range of double precision.

Converting this to a real scenario, then this corresponds to a laser pulse with a

wavelength of 1 µm propagating through a plasma with an electron density of

ne = 1.24× 1018 cm−3 for 6.32 cm such that the numerical error in double precision

range reached unity. Here, we have to point out that a high gradient for the plasma

susceptibility δχ = 1.0 has been assumed. These high gradients are expected to be

present at the vacuum-plasma interface, and more common throughout the prop-

agation, gradients with at least an order of magnitude lower are expected. As the

error growth scales with ∼1/ω2
0, PGC is preferable for simulations where the ratio

between the laser frequency and the plasma frequency is extremely high. These

particular cases would not just lead to higher computational speedups but also sta-

bilize the envelope propagation. Also, artificial numerical noise in the plasma sus-

ceptibility can be reduced by smoothing the plasma susceptibility and inherently

reducing the numerical error growth.
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2.5 Particle advancing for the ponderomotive guiding center

solver

After having an equation governing the dynamics of the envelope as it propa-

gates through the plasma, we now focus on the equation governing the dynamics

of the plasma in response to the envelope. This inclusion is required to model the

plasma response correctly, and as the envelope evolution is affected by it through

the plasma susceptibility. The envelope can affect the particles through its pon-

deromotive force [68]. It can be included through an extension to the Lorentz force

dp
dt

= q
(

E +
p
γ
× B− 1

4
q
〈m〉∇|a|

2
)

(2.42)

as discussed in section 2.1. At a given time n, the grid quantities En, Bn and the

ponderomotive force Fn = ∇|an|2 are known. To evaluate the time derivative in

(2.42), an implicit equation for the mass is required to be solved:

〈m〉n = 〈m〉n−1/2 + q
(

En − q
4 〈m〉n Fn

)
pn−1/2

〈m〉n−1/2
∆t
2

. (2.43)

This can be done with a simple quadratic formula. Then, the momentum can be

updated using a Boris push [59]. The effect of the ponderomotive force can be seen

as a correction to the electric field and leads to

pn+1/2 = R
(

pn−1/2 +
I
2

)
+

I
2

(2.44)

with

I =
(

qEn − 1
4

q2

〈m〉n Fn
)

∆t (2.45)
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where the operator R rotates the momentum vector around the magnetic field by

an angle

Θ = − qBn

〈m〉n ∆t. (2.46)

In the absence of an envelope an → 0 and therefore an absence of the ponderomo-

tive force Fn → 0 the unmodified Boris push is recovered.

To update the particle position, the knowledge of 〈m〉n+1/2 is required. We can

use (
〈m〉n+1/2

)2
= m2

0 +
(

pn+1/2
)2

+
q2a2

2
(2.47)

together with

a2 =
(

an+1/2
)2

+∇
(

an+1/2
)2
· pn+1/2

〈m〉n+1/2
∆t
2

(2.48)

to solve for 〈m〉n+1/2 using a quadratic formula. Afterwards, we can advance the

particle position via

xn+1 = xn +
pn+1/2

〈m〉n+1/2 ∆t (2.49)

where x = (x, y, z) is the particle position.

2.6 Physical benchmark of the implementation

For testing the implementation of the PGC module, two examples can be exam-

ined. Throughout the thesis, the focus will be on the 3D implementation, as this is

the case with the highest computational gain, and which recovers all geometrical

aspects of laser-driven PBA. In the first example, a vacuum propagation of a laser

pulse is examined to ensure that the implementation of the envelope propagation

is correct and follows a Gaussian beam description. As a second example, the wake

excitation by a laser pulse compared to full PIC* is presented.

*Throughout the thesis, full PIC refers to a simulation without the PGC module.
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2.6.1 Vacuum propagation

A propagating laser pulse diffracts while moving away from the focal spot due

to its finite width. On the contrary, a laser pulse focuses while moving towards the

focal spot. In a vacuum, it is possible to obtain an analytical expression for the laser

pulse by solving the electromagnetic wave equation in the paraxial approximation.

Therefore it is an ideal physical benchmark for the implementation of the envelope

solver.
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Figure 2.4: Comparison of the evolution of the peak envelope (left) and the pulse
width (right) for a laser pulse propagating in a vacuum using the PGC
solver. In both cases, the scatter points represent the obtained values
from a simulation, and the dashed line represents the theoretically ex-
pected value.

Given a laser pulse, the envelope solver should recover the propagation prop-

erties of a Gaussian beam. The traversal component of the laser pulse follows the

Gaussian beam profile, and is described by

a(x, r) =
a0√

1 + (x/xR)2
exp (iφ) exp

(
−r2/w2) (2.50)

with each beam parameter being defined by (2.38).
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As a test case, a laser pulse with pulse width of w0 = 4.0, a laser frequency

ω0 = 15.0, and a0 = 1.0 is considered. In addition, a pulse length of τL = 4.0

is used. Figure 2.4 shows a comparison for the peak amplitude and pulse width

for different propagation distances against the expected theoretical value. As the

beam waist shrinks during the propagation towards the focal plane, the amplitude

has to increase. Afterward, as the laser pulse diffracts and the beam waist increases,

and due to energy conservation, the field amplitude has to decrease. As seen, PGC

models the laser envelope propagation properly without characterizing the laser

pulse’s fast oscillating field.

2.6.2 Wakefield excitation

An important aspect is to ensure that the PGC implementation models the wake

excitation in a plasma correctly. Analytical models for the non-linear behavior of

a plasma in a non-linear 3D regime have not been found yet. The best results for

simulating this non-linear behavior are obtained by utilizing PIC simulations. Fur-

thermore, PIC simulations are commonly used to support experimental findings.

Hence, the best approach to compare wake generation in plasmas by PGC is a com-

parison with full PIC simulation for the same physical parameters and only change

numerical parameters like the grid resolution.

For the second physical benchmark, a laser with a frequency of ω0 = 30.0, a beam

waist of w0 = 4.0, and a normalized vector potential of a0 = 1.0 is used. The longi-

tudinal laser pulse profile follows a 5th order polynomial [76] with a pulse duration

of τFWHM = 3.0, while the plasma profile follows a uniform distribution. These

physical parameters are used both for the full PIC and for the PGC simulation, and

only a short propagation inside the plasma is modeled. Later in chapter 4 longer

propagation studies are performed.

While the transverse resolution is equal for both cases with ∆y = ∆z = 0.075,

the difference between both simulations is in the resolution in longitudinal direc-
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Figure 2.5: Comparison of wakefield excitation in 3D for full PIC and PGC. In the
top plot, a slice electron density for the full PIC and PGC is shown. The
middle plot represents a lineout for both cases along the laser propaga-
tion axis, while the bottom plot shows the resulting longitudinal field
for both cases.

tion and time. For the case of PIC, the longitudinal resolution is ∆ξ = 2× 10−3

and ∆τ = 2.497× 10−3, and for PGC it is ∆ξ = 7.5× 10−2 and ∆τ = 3.75× 10−2,

respectively. With two orders of magnitude reduced resolution, the example pre-

sented in Figure 2.5 reduced the computation cost by 9.74× 101 in terms of CPUh.

As seen in figure 2.5, PGC can recover the wakefield excited by an intense laser

pulse both in longitudinal and in the transverse direction. Furthermore, in this ex-

ample, a non-linear regime is present with a0 = 1.0, which lets the plasma wakes to

deviate from the sinusoidal shape expected in the linear regime. With the envelope

description of the PGC solver, the rapid oscillations of the laser field are averaged

out. This is best seen in middle plot of the figure 2.5.
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2.7 Conclusion

This chapter’s focus is to provide the fundamental steps for implementing the

PGC algorithm, and those are required to enable PGC in OSIRIS. As only the en-

velope is used to model the non-linear interaction of a laser pulse with a plasma,

speedups in the order ω0/ωp are expected. In general, the speedup will be de-

termined by the reduction of the spatial and temporal resolution. For the finite-

difference equation for the evolution of the envelope, a stability condition was de-

rived. It restricts the numerical resolution for a given laser frequency. More specifi-

cally, if the vacuum stability condition is not satisfied, a numerical eruption occurs.

On the other hand, the propagation of a laser envelope through a plasma makes

the PGC algorithm, as described here, unconditionally unstable. Nevertheless, the

PGC algorithm, as shown in the following chapters, can be used to model LWFA

scenarios. In section 2.4, the incubation time step was introduced. It characterizes

the growth of a numerical error by a specific amplification factor. The incubation

time step estimates that for typical LWFA scenarios, the error growth rate is suf-

ficiently low that numerical disruption of the simulation is not present, and the

presented finite-difference scheme still can be used.

As discussed in this chapter, the PGC algorithm requires data locality to invert a

matrix and to solve the finite difference equation for the envelope’s evolution. Even

if the presented algorithm’s compute complexity scales linearly with the number of

cells, it hinders the parallel scalability on modern HPC systems. In the next chapter,

different parallelization schemes will be adopted to ensure the parallel scaling of

PGC.
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3 Parallelization of the ponderomotive

guiding center solver

For over a decade prophets have voiced the contention

that the organization of a single computer has reached its limits

and that truly significant advances can be made only

by interconnection of a multiplicity of computers

Gene M. Amdahl (1967)

Even with computational benefits arising from reduced models for plasma-based

acceleration, such as PGC, the simulations are still computationally intensive and

require large “supercomputers.” The use of high-performance computers is not ex-

clusive to plasma sciences, but is also crucial for many other areas such as weather

forecasting [77–80], climate research [81], various physics disciplines and artifi-

cial intelligence [82–85]. For computer simulations, performance or better time-

to-solution plays an essential role, and low performance can restrict the studied

cases or the results’ accuracy. In most scenarios, simulations are carried out on

parallel systems comprised of many computing nodes, typically more than 103,

connected by an advance interconnect. To be able to utilize such supercomputers,

the computations must be able to be portioned and assigned to parallel resources

for execution. In PIC, the standard parallelization strategy is to divide the simu-
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lation domain into computational sub-domains known as domain-decomposition.

Hence, each sub-domain can be solved independently, and only the boundaries are

required to exchange information with the neighboring domains.

The bottleneck for PGC arises from a required matrix inversion to advance the

envelope. The matrix inversion requires data locality in the transverse direction as

a forward elimination, and a backward substitution is performed. Consequently,

domain decomposition can not be directly applied to PGC, and other steps have to

be considered.

In this chapter, we focus on the parallelization of the PGC solver. First, basic

concepts and measures for parallelization are introduced, followed by an introduc-

tion of shared memory parallelization (SMP) and distributed memory paralleliza-

tion (DMP). Both concepts are the main approaches taken to ensure that PGC can

take the full advantage of modern cluster systems. Finally, results for scaling PGC

over thousands of cores are presented.

3.1 Parallelization and scalability

Since the initial observation that the number of transistors doubles approximate-

ly every two years by Moore [86], it was believed that performance gains for com-

putations would follow the same trend as the operational frequency would in-

crease, known as Moore’s law. This law endured until microprocessors reached

a frequency of a few GHz. Due to overheating issues at higher clock speeds, the

development of multi-core processors was necessary. Nowadays, even desktop

computers can be found with several cores. On the other hand, cluster systems are

a collection of computers interconnected over a network. With such heterogeneous

configurations, the trend of having interconnected and large core counts requires

computer simulations to be split into parallel chunks, and algorithms need to be

designed to take full advantage of these parallel computing architectures.
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Figure 3.1: Microprocessor Trend Data for the past 44 years. Courtesy of Karl Rupp
and Leonardo Suriano*for gathering and providing the data.

While in general several paths in parallelizing an algorithm can be taken, a quan-

titative measure is essential. To establish a benefit arising by parallelization, the

speedup

S =
Tserial

Tparallel
(3.1)

as a ratio between the time Tserial it took to perform a computation on a single com-

putational unit and the time Tparallel it took to perform the same task in parallel is an

appropriate measure. Theoretically, the speedup scales with the number of avail-

able parallel units N and the speedup is S = N in an optimal case. An alternative

approach is to characterize the efficiency

E =
S
N

=
Tserial

N × Tparallel
(3.2)

of the parallel scaling. In optimal scenarios, the efficiency is 1, and in realistic cases,

it is <1 as simulation has to wait for acquiring resources, retrieving information

from neighboring computational units or if parts of the algorithm can not be paral-

*This data and plotting script is provided under the permissive “Creative Commons Attribution
4.0 International Public License”. For more information and for the script used to generate figure,
visit https://github.com/ahelm/microprocessor-trend-data.
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lelized. Therefore any parallel application has a limited speedup. This notation is

characterized by Amdahl’s law [87] through a realistic speedup

Sreal =
1

1− p + p
N

(3.3)

with p being the fraction of a simulation which benefits from parallelization. Fur-

thermore,

lim
N→∞

Sreal =
1

1− p
(3.4)

shows the limit of parallel applications. Considering a simulation that consists of

5 % not benefiting from parallelization, then the highest achievable speedup is 20.

3.2 Parallelization based on memory organization

The possibility of executing a task in parallel strongly depends on the under-

lying architecture and the available resources. As a broad definition, a parallel

computer can be described as a collection of processing units to compute a solution

for a given problem. Such processing units require memory to store information.

Depending on how the memory is partitioned, two different parallelization mod-

els can be applied, distributed memory parallelization (DMP) and shared memory

parallelization (SMP).

In the case of DMP, a distributed memory organization where each computa-

tional unit has a dedicated addressable memory is a prerequisite. As only one

process can change the memory, a data race condition†can not appear. If a pro-

cess requires information from neighboring processes, communication by message

passing is required. Two potential bottlenecks can appear with communications

†Data race condition characterizes the substantial behavior of two or more systems competing
for resources. The outcome depends on the sequence or timing of the events occurring. One example
could be two processors who store information in the same location. In this example, the last value
of the last processor will be stored in the memory location.
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Figure 3.2: Schematic overview of different memory orchestration commonly
found in high-performance computing. In a distributed memory case
(a), each processing unit has its addressable memory, and information
has to be passed through by communication. In a shared memory or-
chestration (b), memory is shared between processing units. Both or-
chestrations can be combined used to a hybrid option (c).

between two processes. As a communication requires to send data over a network,

the communication’s performance is bounded by the latency of the network and is

typically slower than direct memory access. On the other hand, processes require

to be load-balanced, and the slowest process’s performance determines the total

computation time.

As multi-core systems became a standard, SMP can easily be applied. In SMP,

individual processing units share memory between each other. Therefore, no ad-

ditional communication is required, removing the bottleneck caused by network

latency. However, as writing and reading data synchronization is not guaranteed,
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a data race condition can occur. Synchronization between the processes becomes

crucial for critical operations and reduces parallel efficiency arising from additional

overhead.

Moreover, both parallelization strategies can be applied as a hybrid option. A

hybrid approach allows for more fine-grained control of memory access and helps

mitigate the bottlenecks between both cases or scale over a higher number of pro-

cessing units.

3.3 Shared memory parallelization for ponderomotive

guiding center solver

For the algebraic problem (2.18), data locality is required. A SMP solution, e.g.

based on openMP, seems favorable. While advancing the envelope can be paral-

lelized through openMP directives for each dimension, additional steps are required

for advancing particles. Based on the map-reduce idiom, the particle buffer can

be split by chunks over several threads. Each thread processes the given particles

individually, first, by interpolating the grid quantities onto the particle position.

Second, advancing the particles based using the extended leap-frog method, pre-

sented in section 2.5. Third, depositing the grid-related quantities based on the

updated positions and momentum. Each thread has a local buffer with the domain

size for deposition, which avoids data race conditions as particles are not neces-

sarily ordered, and deposition happens over several grid points depending on the

interpolation order. After particles have been pushed, a thread based reduce oper-

ation is required before using the deposited quantities for advancing the fields and

the envelope. The overall process for advancing particles is schematically shown

in Fig. 3.3.

The parallel scalability of the SMP implementation can be measured through

benchmarks. For this, benchmarks on an Intel Xeon Phi Knights Landing (KNL)
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Figure 3.3: Thread-based particle advancing which is used to advance particles for
shared memory parallelization.

architecture were carried out. The simulation time with a single thread is used as

a reference point, and then the thread count is doubled in each step. For the pre-

sented case, 500 iterations were performed with periodic boundaries and a plane

wave profile in transverse direction, a laser frequency of ω0 = 100.0, a pulse length

of LFWHM = 2.0 and a0 = 1.0. After 500 iterations, any overhead from initialization

can be neglected, and the main contribution to the performance comes from the ap-

plied algorithms. The simulation box size is 50× 50× 50 cells with 8 particles per

cell. For the benchmark, the simulation time, the advancing of the envelope, and

the particles’ advancing are measured individually. The latter two are subtracted

from the total time to deduce the other parts of the code’s timing. Fig. 3.4(a) shows

near-perfect scaling for the advancing of the particles.

On the contrary, the efficiency of the envelope drops significantly for the pre-

sented scaling. While some computations can be performed independently, e.g., the

longitudinal directions, the bottleneck arises from solving the expressions (2.18a)
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Figure 3.4: Benchmark for shared memory parallelization for the PGC solver. The
benchmark was carried out on one Intel Knights lading (KNL) node
using OpenMP.

and (2.18b) by inverting a matrix which, as mentioned before, requires forwards

and backward substitution and can not be parallelized. An alternative approach

might be to use cyclic reduction [75]. It allows for the step of inverting a matrix to

be better parallelized over different threads or algorithms based on the Woodbury

matrix identity [75]. In general, the total efficiency only drops below 80 % for more

than 8 threads. As the total efficiency consists of several independent parts, the

trend follows Amdahl’s law, where the theoretical achievable limit for parallelism

depends on the fraction of serial code. Here, the serial part corresponds to invert-

ing the algebraic problem. As seen in Fig. 3.4(b), particle advancing dominates

the total loop time for smaller thread counts, and with higher thread, other parts

start to dominate. Thus, using SMP for parallelization over a small core would be

applicable without significant efficiency drop. However, different approaches for

parallelization are required to allow for scaling over a high number of cores.
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3.4 Distributed memory parallelization for ponderomotive

guiding center solver

For scaling over higher core counts, DMP is desired, especially when the simula-

tion box is wide in the transverse direction. Generally, for a standard PIC algorithm,

a domain-decomposition is applied. The total simulation domain is split into sub-

regions, and the PIC algorithm is performed over the subregions. The advantage is

that only information between the neighboring subregions must be shared to solve

for the whole simulation box. In the case of PGC, matrix inversion is applied, e.g.,

utilizing the Thomas algorithm [75]. It consists of a forward and a backward sweep

over the matrix equation to advance the envelope. For DMP, this would lead to

a bottleneck as only one computational unit for inverting the matrix is used while

the others are idle. Other matrix solvers, e.g., algorithms based on the Woodbury

formula[75], could overcome the limitations by transforming it into auxiliary ma-

trix equations. We choose an alternative approach inspired by parallel algorithms

for Fast Fourier Transform (FFT) [88].

The required data locality can be ensured through a transpose operation by con-

structing the grid’s local slices required for the matrix inversion. The construction

of the local slices requires node-to-node communication in the transverse direc-

tion. After the slice is constructed locally, equation (2.18) is solved and is followed

by another transpose operation to reconstruct the previous domain decomposition.

Overall, as two matrix equations for 3D have to be solved, four node-to-node com-

munications are required per time step. Compared to nearest neighbor communi-

cation in the typical domain decomposition of a PIC code, this can lead to scaling

issues. Node to node communication is, in general, less favorable for scalability

due to penalization by the latency of the communication.

The impact of additional communications have been tested by scaling studies

on the JUQUEEN supercomputer in Jülich, Germany. The JUQUEEN supercom-

puter was a Blue Gene/Q system, which was online until mid 2018 and consisted of
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Figure 3.5: Distributed memory parallelization benchmark for parallel scalability
of the PGC solver. The scaling tests was carried out on the JUQUEEN
supercomputer.

458 752 cores. A weak scaling test was performed for the first test to analyze the ef-

ficiency drop arising from node-to-node communication. For the scaling test an ini-

tial box of 2048× 10× 50 cells with 8 particles per cell is used. The scaling is done

from 32 cores (one domain) to 2048 cores (64 domains) with each transverse direc-

tion being scaled individually. As shown in Fig. 3.5(a), the implementation has less

than 10 % efficiency drop for a 64 times bigger domain. Also, having transversely

larger domains is better in terms of efficiency. It is expected that this is an artifact of

the network configuration. A strong scaling study was performed and presented in

Fig. 3.5(b). In this case, a near-ideal scaling while increasing the number of utilized

cores by 103 times is achievable. We use a simulation box of 15 360× 240× 240

cells with periodic boundaries in transverse direction and 8 particles per cell. Here,

to check for impacts on increased node-to-node communication, two scenarios are

distinguished. First, where the number of transverse domains stays constant and

with an alternating number of domains, both scenarios show similar scaling. The

drop towards the end is expected, and as the number of particles per core reduces,

and communication becomes dominant [89].
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3.5 Conclusion

In this chapter, parallelization schemes using SMP and DMP for the PGC solver

were presented. As a matrix inversion in the transverse has to be performed for

advancing the laser envelope, parallelizing PGC becomes challenging. A way to

overcome this can be done through SMP. The presented algorithm requires special

treatment of the particles. Here, splitting the particles over a different number of

threads was proposed and presented. While this approach scales well for the par-

ticles, the solution is serial and therefore scales poorly for the envelope. Scaling

over a small number of processing units is possible, but for simulations with larger

simulation boxes or to utilize a full cluster system, a DMP approach was proposed

and incorporated. While with this approach, data locality forces additional steps.

By utilizing a transpose operation similar to FFT algorithms, it was shown that

PGC could be scaled over modern HPC systems. Moreover, scaling over the full

JUQUEEN machine showed the near-ideal scaling.

In general, the two presented algorithms for SMP and DMP can be utilized to-

gether in a hybrid parallelization scheme. While the DMP scheme can be used to

parallelize PGC over almost the whole system, SMP can allow one order of magni-

tude more cores to be utilized.
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4 Parametric studies of laser-plasma

accelerators using PGC

The important thing in science is not so much to obtain new facts as

to discover new ways of thinking about them.

Sir William Lawrence Bragg

Plasma-based accelerators are promising candidates for electron acceleration in

the context of a future generation of light sources and particle colliders. Much

progress has been made to demonstrate high acceleration gradients [24, 90], gener-

ation of high-quality beams [31–33] (with promising recent progress [91]) and ap-

plications and diagnostics [92]. It is believed that plasma-based accelerators may

have a profound impact on basic research, medical applications, and material sci-

ence by providing a compact electron beam source. However, applications that

require excellent beam quality, such as free-electron lasers (FELs), are still a chal-

lenge for plasma acceleration. The typical percent-level energy spreads obtained

at the moment would not be enough to drive FELs, which typically require slice

energy spreads of 0.01 % to 0.1 % in order to lase in the X-rays domain [93].

The path towards high-quality beams leans heavily on experiments and even

more on simulations to probe new regimes and ideas. Simulations not only laid the

groundwork for the whole field of PBA by the work of Tajima and Dawson [17],
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but predicted the bubble regime [42] two years before its experimental observa-

tion [31–33]. From the simulation point of view, the PIC method is an established

tool for modeling plasma-based accelerators. In this method, the grid cells must

be sufficiently small to resolve the system’s shortest physical lengths. Usually, a

plasma for experiments can be extended up to 15 diffraction lengths on the order

of tens of cm [91]. However, this leads to a scale disparity of at least a few orders of

magnitude between the acceleration length and the grid resolution. Consequently,

full-scale three-dimensional PIC simulations are computationally expensive, mak-

ing parametric studies of LWFA challenging and computationally demanding.

The use of PGC is especially interesting as it allow large parametric scans. For

typical LWFA parameters, a speedup of at least two orders of magnitude can be

achieved. However, one must be careful and understand the limitations and appli-

cability of these algorithms to different physical scenarios. While reducing compu-

tational cost is essential, a reduced model should ensure that the most important

physical processes are recovered. The challenging aspect with reduced solvers is

modeling the acceleration process, and even more challenging is to model injection

and trapping of background electrons in the accelerating structure. One way of

quantifying a reduced solver’s performance, on that matter, is to inspect the differ-

ent phase-space properties associated with the bunch quality (e.g., energy spread,

beam emittance, charge, mean energy). While previously proposed techniques,

such as the quasi-static algorithm [68], are known not to model the self-injection

accurately, for PGC, this has to be examined in detail.

This chapter compares the performance of the PGC algorithm with full PIC in

the context of the EuPRAXIA project [94]. A key goal of EuPRAXIA is to produce

5 GeV, 30 pC electron beams from plasma accelerators with high 6D-brightness [95],

that could be used to drive FELs among other applications. Simulations for several

different schemes and design configurations have been investigated [96–99]. Here,

investigations of a LWFA injector for EuPRAXIA using density down-ramp injec-

tion is reported. For this component, the electron beam energy required is 150 MeV,
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and this beam would be transported to another plasma stage for further acceler-

ation to 5 GeV [97]. Therefore, studies comparing the PGC algorithm with three-

dimensional PIC simulations for density down-ramp injection are the main focus of

this chapter. This approach enabled us to examine the computational performance,

accuracy, and limitations of the PGC algorithm for this injection scheme. In partic-

ular two cases are studied, for very short density transitions, such as in shock-front

injection [100], and for lower plasma densities (ω0/ωp � 10, where the computa-

tional gain is significant) that the PGC algorithm can accurately predict the injected

beam charge and the energy gain of full PIC simulations. While reduced mod-

els are expected to be less accurate, they can still be used as guides to predict key

bunch properties, such as its energy and charge. The quality of these predictions

by comparing reduced simulation results with full PIC in 3D is assessed.

4.1 Parametric studies for down-ramp injection

Reduced modeling allows for efficiently exploring vast parametric spaces. With

the computational savings achievable with PGC, broader studies can be performed,

giving insight into the underlying physics of complex processes, such as the non-

linear nature of LWFA. The examination of larger parametric spaces is beneficial

for projects in their initial design stage, like the EuPRAXIA project [94]. It would

potentially narrow down possible paths and set a range of parameters for experi-

mental setups.

As the first test, the parametric space of a short density transition is examined.

Figure 4.1 shows a sketch of the density profile. After a short plateau with a density

of 2.9× 1018 cm−3, the density drops down to 1.9× 1018 cm−3. The ramp size is

on the order of the plasma wavelength, which is typical for shock-front injection

schemes [100]. During the density transition, some electrons at the back of the

bubble will be injected in the wakefield as the plasma wave expands, forming a

bunch. The beam evolution is followed for around 1.75 mm. The chosen density
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Figure 4.1: Density profile used for the parametric studies with a short density
transition.

profile is commonly used to study the injection process in density down-ramps

(see, e.g., Refs. [101, 102]). Moreover, the benefit of using a short plateau reduces

the effects of envelope evolution and its contribution to the particle injection.

As for the laser parameters, a central wavelength of 800 nm and a spot size of

w0 = 17.2 µm are used. For the parametric study, the initial peak envelope ampli-

tude ainit is scanned from 0.5 to 4.5 and the pulse duration τd from 19.1 fs to 57.3 fs.

Overall this leads to 63 full 3D simulations for the given parameter ranges. The

laser pulse’s longitudinal profile follows a 5th order polynomial [76], which is used

to mimic a Gaussian profile. The injected charged for different laser strengths, and

pulse duration is shown in Figure 4.2.

From the parametric sweep, a clear lower threshold for particle injection to occur

is observable. The envelope has to fulfill the condition ainit > 2.0 to inject particles

for the chosen setup. If the laser strength is increased, the charge increases, leading

to an injected charge above 1 nC. This behavior is supported by the theoretical

model for down-ramp injection [45]. With increasing laser strength, the amplitude

of the wake increases, and during the bubble expansion, more particles can obtain a

high enough longitudinal momentum to be trapped. As previously mentioned, the

first density plateau is short, and no significant modification to the laser profile is

expected. Hence, a polynomial dependency has to be expected and is supported by
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Figure 4.2: 3D parametric study of particle injection for a short density transition.
The laser amplitude and the pulse duration were changed for the study,
and the injected charge after 1.75 mm of propagation distance was mea-
sured. The left plot shows a parameter matrix for the different physical
parameters used with the corresponding injected charge. Plots for line-
outs for the different parameters are shown on the right.

theoretical descriptions of the wake amplitude [103]. Here, the polynomial trend

for increasing peak amplitude is recovered. Similar to this, the simulations with

ainit = 2.5 shows the highest charge for a pulse duration close to half a plasma

oscillation τd = 3.0. However, for higher laser amplitudes, this trend is not obeyed.

The observation for the case of ainit = 2.5 is similar to 1D linear theory, where the

highest wake amplitude is achievable when the laser duration is comparable to

half a plasma oscillation. This trend is not observable for higher laser amplitudes

as the laser pulse propagates through the plasma and gets compressed, the local

laser field amplitude exceeds in certain scenarios values above a > 10, which leads

to additional injection. Hence, the highest observable charge of 2 nC is obtainable
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Figure 4.3: Comparison of the mean energy for varying pulse duration and peak
amplitude for a short density transition. Shown are 35 different para-
metric studies where injection occurred. The left plot shows the mean
energy dependence on the pulse duration, with each line correspond-
ing to a fixed peak amplitude value. Similarly, the right plot shows the
mean energy dependence on the peak amplitude for a given pulse du-
ration.

for a laser pulse with an initial pulse duration of 19.1 fs and a peak envelope of

ainit = 4.5.

The comparison can be extended further, to compare the averaged energy of the

injected particle bunch. In figure 4.3, all the simulations, which include injected

particles, are shown. In comparison, a trend for the mean particle energy is re-

covered – as the pulse duration and initial peak amplitude increase, the mean en-

ergy increases. This trend is associated with the higher energy carried by the laser

pulse, which drives the wake over larger distances. Nevertheless, for the short laser

pulse with τd = 1.5, the trend is not followed. Here, the approximation of slow-

varying amplitude over one laser cycle breaks down. More specifically, for the

cases τd = 1.5 the laser pulse contains less than 8 optical cycles and a discrepancy

is to be expected.

In summary, the study presented shows the potential of performing simulations

using a reduced solver like PGC. The total computational time for all 63 full 3D

simulations was 0.5× 106 CPUh, which is comparable only one full PIC simulation.
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This reduction means that a full parametric scan can be performed for the same

costs as a full PIC simulation. Undoubtedly, one has to ensure that the physical

properties of the injected beam are recovered. To this end, we perform detailed

one-to-one comparisons between PGC and full PIC in the following sections.

4.2 Comparison between PGC and PIC for short density

transitions

As the PGC algorithm is the right candidate for performing parametric studies,

verification of how well the reduced algorithm performs against full PIC simula-

tions is required. For this, the discussion is extended and different beam parame-

ters, such as energy, energy spread, and emittance are compared against a full PIC.

For the simulation, the density profile from the previous Section is used. The di-

mensions of the simulation box for the full PIC and PGC simulations are 69.2 µm×
215.4 µm× 215.4 µm with 280 cells in each transverse direction. It has to be noted

that while a better transverse resolution may be needed to describe the bunch trans-

verse dynamics accurately, our focus is to compare both setups without investigat-

ing the numerical resolution required for establishing convergence of the simula-

tion towards a real physical scenario. The number of longitudinal cells and the

time step is given by resolving each simulation’s shortest scales. For full PIC, the

fastest oscillations are associated with the laser pulse. Hence, the number of cells

in the longitudinal direction is 5400, and the time step is ∆t = 41.1 as, to resolve the

laser wavelength and period. For the PGC simulations, the number of cells in lon-

gitudinal direction is 180 with ∆t = 1.03 fs, corresponding to 63 points per plasma

wavelength. In both cases, the Yee electromagnetic field solver [104] is used.

In a direct comparison of the injected charge results in 249 pC for the full PIC

simulation and 227 pC for the PGC, i.e., a 9 % relative difference. The injected

charge is high when compared with LWFA experiments. However, it is the typical
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Figure 4.4: Comparison between the beam parameters in full PIC and PGC with
a sharp density gradient. The propagation distance corresponds to the
laser pulse propagation inside the plasma. The upper panel (a) shows
the evolution of the mean energy [solid curves] and energy spread
[dashed curves] for full PIC [blue curves] and PGC (red curves). The
lower panel (b) displays the normalized emittance for full PIC [solid
curves] and PGC [dashed curves] in the y-direction [blue curves] and
the laser polarization z-direction [red curves].
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Figure 4.5: Electron density and laser envelope showing a comparison of the in-
jected bunch in the PGC [panel (a)] and full PIC [panel (b)] simulations
for the short density transition case. The laser propagated for both sce-
narios for a distance of L = 1.2 mm.

charge expected in down-ramp injection scenarios using a steep density gradient,

which maximizes the injected charge per unit of length during the density transi-

tion [101] and values of this order have been observed in recent experiments [105].

Figure 4.4(a) shows a comparison of the electron bunch mean energy and the rel-

ative energy spread during acceleration from PGC and full PIC simulations. An

excellent agreement in the acceleration gradient with a relative error of 5 % is no-

ticeable. While the numerical value of the energy spread is different, the overall

trend is similar. In general, the values of the energy spread and emittance can dif-

fer in simulations using reduced models compared to full PIC.

Figure 4.4(b) shows a comparison of the normalized emittance evolution between

PGC (dashed lines) and full PIC (solid lines). The normalized emittance is defined

as

εn,y =
1

mec

(〈
y2〉 〈p2

y

〉
−
〈
ypy
〉2
)1/2

, (4.1)

where py is the canonical momentum to the coordinate y. The solid curves refer to
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the full PIC simulations (blue in the y direction and red in the z direction, which

is also the laser polarization direction), and the dashed curves represent the PGC

simulations. Again, a similar trend of the emittance variation with time is found,

but the emittance in the PGC case is higher by a factor of 5. This difference can be

attributed to the injection process, which depends on the time step used in the sim-

ulation. In the PGC simulation, the transverse particle momentum at the injection

point exhibits larger variations than in full PIC because the time step is higher in

the PGC case. This increased time step increases the emittance in the PGC simula-

tion and makes the injected bunch wider, as seen in the comparison in Fig. 4.5(a) for

PGC and (b) for full PIC. Increasing the temporal resolution could reduce the emit-

tance difference arising from the injection. A time step reduction without reducing

the spatial resolution would increase the growth of the numerical Cherenkov insta-

bility. The other remark regarding the comparison is the lack of the inclusion of the

laser polarization direction in PGC. This exclusion leads to both transverse emit-

tances being equal for PGC, compared to full PIC where the normalized emittance

is higher in the laser polarization direction.

Due to the reduced temporal and spatial resolution, the speedup of PGC over PIC

was 480 times, making it a viable candidate for studying down-ramp injection for

short density transitions. Even though PGC shows promising results, the injected

beam does not fulfill the goals set for an injector stage, e.g., the required energy

spread and emittance. Here, different density profiles with longer density down-

ramps are shown to offer better control.

4.3 Electron injection for long density transitions

Now we consider longer ramps, of the order of hundreds of µm, and the plasma

profile similar to ones obtained by hydrodynamic simulations of gas cells [106].

Fig. 4.6 displays the density profile used in our simulations. This profile is the

optimal case found in our study for the EuPRAXIA project [94]. Here we compare
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Figure 4.6: Sketch of density profile used in the simulations. The inset shows a
zoom of the plasma lens region.

PGC and full PIC simulations.

The profile contains an up-ramp with a Gaussian profile and the total length of

1 mm, where the density goes from 0 cm−3 to 6× 1018 cm−3. The ramp is followed

by a down-ramp, where injection occurs, with 150 µm length, which brings the

density down to 4× 1018 cm−3, where it reaches a plateau. This beam is accelerated

in the plateau for 1.8 mm. Finally, a plasma exit is considered with exponential

profile and total length of 500 µm coupled with a 2 mm long 1016 cm−3 plasma [inset

of Fig. 4.6], which works as a plasma lens [107].

The central laser wavelength in vacuum is λ = 800 nm, the beam waist and

normalized vector potential at the focus are w0 = 18 µm and a0 = 1.8, respectively,

and the pulse duration is τFWHM = 30 fs. The laser is linearly polarized in the y

direction and focused 217 µm into the plasma profile of Fig. 4.7.

For the PGC simulations, the simulation box is 52 µm× 86 µm× 86 µm and it is

divided in 180× 400× 400 cells, and each cell starts with 16 macro-particles. The

time step used for the PIC loop is ∆t = 0.225 fs and we use the Yee solver for

the plasma electromagnetic fields. For the full PIC, the dimensions of the box are

the same but it is divided in 3200× 400× 400 cells, each cell starts with 4 macro-
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Figure 4.7: Comparison of PGC [(a)-(d)] and full PIC [(e)-(h)] simulations for the
electron density and the laser envelope at four different propagation
distances L. The laser envelope and plasma structures are well de-
scribed in the PGC simulations. However, the injection during the den-
sity transition is not accurately described for long ramps.
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particles, and time step ∆t = 51.235 as. To mitigate NCI in the full PIC simulations,

a electromagnetic field solver developed by [108] is used.

Figure 4.7 shows a comparison between PGC and full PIC simulations for the

laser envelope and electron density at four different times during the system evo-

lution. Figure 4.7(a) and 4.7(e) present the laser as it propagates in the density

up-ramp, where it is being self-focused (a0 ≈ 2.3 at z ' 0.7 mm, while its maxi-

mum value in vacuum is a0 = 1.8). The laser is thus greatly affected by the plasma

– it self-focuses as it propagates in the plasma up-ramp. At z = 0.68 mm, the wake-

field resembles the quasi-linear regime, and there is no beam in the accelerating

structure. There is an excellent agreement between PGC and full PIC simulation.

Figure 4.7(b) and Figure 4.7(f) display the system at the beginning of the density

down-ramp, where we now observe a non-linear plasma wave (bubble) and the

laser strongly self-focused, which is well described by the PGC algorithm. Before

injection, around 1 mm into the plasma, the normalized vector potential gets as

high as a0 ≈ 4.0.

While the laser envelope and plasma structure are still well described in Fig-

ure 4.7(c) and 4.7(g), the comparison with full PIC [panel (g)] shows the first sig-

nificant disagreement as the latter shows injection at the rear of the bubble which

is not present in the PGC case [panel (c)]. Finally, Figures 4.7(d) and 4.7(h) display

the system after it reaches the density plateau. There is still an excellent agreement

of the laser envelope between the two cases. However, the injected beam is quite

different. For example, the total charge is 4 times higher in the full PIC case, which

leads to a much stronger beam loading. The difference can be observed by carefully

examining the region near the back of the bubble in panels (c) and (g). We conjec-

ture this discrepancy is due to the lack of spatial and temporal resolution to resolve

the injection process if the ramp is too smooth. If that is the case, one could infer

that the computational gain of the PGC will be lower, as one needs to resolve the

injection scale, instead of the plasma scales. Additionally, the algorithm becomes

numerically unstable for a high longitudinal resolution, which limits how much
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one can increase it. One possible solution is the use of sub-cycling of the particle

pusher.

Overall, the laser evolution and the plasma structures are well described by the

PGC model. However, in longer ramps, the injection details during the density

transition are not fully recovered. The electromagnetic fields are also in good agree-

ment between the two cases before injection. These results show that we can use the

PGC in the context of EuPRAXIA, for example, to probe the laser evolution quickly,

the plasma response, and the global plasma wakefield structure and dynamics at

the time of injection.

4.4 Conclusion

In this chapter, the focus is on using PGC for reduced modeling. The reduced

computational cost associated with PGC allows us to perform extensive parame-

ter studies in 3D geometries with a fraction of the computational cost associated

with full PIC. It was shown that PGC describes the laser evolution and the plasma

dynamics for propagation well. In particular, the two studied scenarios for down-

ramp injection of a short and a long density transition agree well for the envelope

evolution and the plasma response to the laser. While in the case of a short density

transition, the mean electron energy was in a good agreement, the emittance was

by a factor of 5 greater. This difference was arising from a higher time step in the

PGC case.

On the other hand, in the case of longer density transitions, a more significant

difference in particle injection is observed, and a delayed injection in the case of

PGC occurs. Here, similar to a short density transition, the time step and the spatial

resolution affect the injection process. While higher resolution might model the

injection better and give better agreement with PIC simulations, two points have

to be considered. First, the stability of the envelope solver has to be guaranteed.

Second, performing simulations at a higher resolution will reduce the speed-up
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obtained by PGC and the purpose of performing reduced model simulations in the

first place.

In summary, no significant differences in the evolution of the laser and the gen-

eration of the plasma waves were seen. This fact makes PGC an excellent tool to

perform large parametric scans. However, due to the reduced numerical resolution,

large density spikes are not adequately resolved and could introduce numerical ar-

tifacts.
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5 Full-scale modeling of the relativistic

ionization front for the AWAKE

experiment

Was besteht und wirkt,

muß einen Grund

seines Bestehens und Wirkens haben.

(eng.: What exists and acts,

has to have a reason for

its existence and its action.)

Gottfried Wilhelm Leibniz

While in the original concept of PBA by Tajima and Dawson, a laser driver is

used, this scheme holds some limitations. It is particularly evident if it is used for

accelerating particles to energies in the TeV-range. For this, LWFA requires stag-

ing [109] as a laser pulse carries a small amount of energy. An alternative approach

to LWFA is to use these high energy particle bunches to drive plasma wakefields.

It allows the use of already existing facilities to increase the peak energy of those

conventional accelerators. Driving wakes utilizing a particle bunch was already

shown experimentally by different groups [47, 110–112].
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An electron bunch, as an example for a charged particle bunch, repels electrons

in an electron plasma while propagating through it. The cavity left behind the beam

attract the repelled electrons toward the axis. On the other side, if the driver has

a positive charge, e.g., a positron beam, the plasma’s electrons are pulled towards

the center axis and overshoot as the particle beam passes. Similar to a laser driver,

this results in an electron deficiency and electron surplus areas.

Proton bunches are leading in terms of energy stored in a bunch. For example,

the LHC proton bunch carries an energy of 1.25× 105 J [6] compared to 1.6× 101 J

for the drive bunch planed for FACET II [113] and up to 2× 101 J for a laser pulse

at the Extreme Light Infrastructure (ELI) beamlines. Hence, using proton bunches

to drive plasma wakes in plasma would allow us to accelerate electrons to TeV-

range in a single stage. Indeed, this was suggested by Caldwell et al. [50]. While in

the proposed setup, a proton bunch energy of 1 TeV, corresponding to the energy

achieved by the LHC, was assumed, it also required the proton bunch to be 100 µm

short. Such short bunches are favorable as it increases the peak electric field in a

linear regime

Emax = 240
[
MV m−1

] N
4× 1010

(
0.6
σx

)2

(5.1)

where N is the number of particles in the driver and σx is the root mean square

(rms) length of the driver [50]. On the other hand, the requirement of short bunches

imposes an additional challenge. A typical proton bunch for the LHC has a length

of 7.55 cm which is orders of magnitudes longer than the bunch proposed by Cald-

well et al. [50]. Using plasmas can help to overcome this disparity. Inspired by the

self-modulated LWFA [114], it was proposed that self-modulation instability (SMI)

could lead to the breakup of a long proton bunch into small beamlets. These beam-

lets would then drive the wakefields and accelerate injected electrons which is the

main idea behind Advanced WAKEfield Experiment (AWAKE) at CERN.

In AWAKE, the proton bunch is coming from the SPS accelerator and is cut into

beamlets, schematically presented in Fig. 5.1. This is achieved by utilizing 10 m
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Figure 5.1: Sketch of seeding the self-modulation instability by using a electron
plasma which is generated by an ionizing laser. The laser and the proton
beam are co-propagating in a neutral gas, e.g. Rubidium. The plasma
column of electrons is used to modulate a long proton bunch into beam-
lets which drive plasma wakes.

long neutral Rubidium gas cell with a gas density 1014 cm−3 to 1015 cm−3 and a

laser pulse with a wavelength of 800 nm. Co-moving with the long proton bunch

is the laser pulse. It generates a plasma by ionizing the Rubidium gas. Due to the

transverse wakefields on the bunch itself, a modulation is triggered and gives rise

to the SMI [115]. In recent experiments, an acceleration of up to two GeV in a single

stage by using externally injected electrons was shown [49].

While numerous simulations and theoretical works support the AWAKE collab-

oration results, self-consistent and full-scale modeling are not present. The most

prominent aspect of full modeling is the inclusion of ionization and its contribu-

tion to the growth of the SMI. As the SMI grows exponentially, the noise level is a

determining factor and an uncontrolled seeding source for the instability. In gen-

eral, noise could arise from the plasma’s non-uniformity, the non-uniformity of the

proton bunch itself, or be subject to the density and thermal fluctuations. Such a

scenario would not be favorable for an accelerator as experimental results would
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fluctuate significantly depending on the initial conditions. Hence, controlled initial

seeding for the SMI is needed. In the AWAKE experiment, this is achieved using

an ionizing laser to create a sharp ionization front, which allows us to effectively

seed the SMI. However, PIC simulations of the AWAKE experiment exclude the

ionizing laser pulse because the ratio between the laser frequency and the plasma

frequency is ω0/ωp > 1000 and are merely impossible due to high computational

costs. To circumvent this, the SMI is commonly seeded by assuming a sharply cut

proton beam, which propagates into a pre-ionized plasma column of a fixed size.

Here, the PGC solver could bridge the gap and allow it to include an ionizing laser.

In the next section, PGC as a tool for self-consistently modeling of the SMI is

explored. First, the incorporation of an ionization model into PGC is described

and discussed. An example setup is then presented and modeled in 3D using the

incorporated ionization model in PGC. To compare the ionization model against

standard simulation setups of the AWAKE experiment, a sharply cut proton bunch

with similar parameters is used and compared against the case where ionization

modeling is discussed in section 5.4. In addition to the SMI, another instability

can occur the so-called hosing instability. The transverse hosing instability arises

due to the beam’s coupling to the plasma electrons as it propagates through an

underdense plasma [116, 117]. While the hosing instability is suppressed if the

SMI is seeded, asymmetries can reduce the suppression. Therefore this chapter

will conclude with a case study where misalignment between a laser pulse and the

proton beam is introduced.

5.1 Ionization model for the envelope

As the ionizing laser plays a significant role in the AWAKE to seed the SMI,

acurate modeling of the ionization physics is necessary. In PIC codes, the Amosov,

Delone, and Krainov (ADK) [118] model is most commonly used for ionization and

will be the basis for including ionization into PGC. The ADK model assumes tun-

82



5.1 IONIZATION MODEL FOR THE ENVELOPE

neling as the dominant ionization mechanism. Due to large scale disparities in the

AWAKE experiment, the ionization laser propagation must be modeled using the

PGC algorithm. Indeed, PGC enables 107 speedup compared to full PIC. Moreover,

a full 3D simulation over the full propagation distance of the AWAKE experiment

using PGC requires millions of CPUh, which is on the order of the largest possible

computational allocations awarded for HPC allocations.

For the ADK model, ionization is characterized by the ionization rates

W
[
s−1
]
= AE−C × e−B/E (5.2)

where E is the absolute value of the electric field in GV m−1, and the parameters

A, B and C are calculated for each ionization level. Above expression (5.2) charac-

terizes a general approach. It can be used to model ionization in the case of a laser

field and for using an averaged description of a laser. More specifically in the case

of an envelope, for each ionization level i the following relations

Ai =
1

2τa

(
2e
ns

)ns
(

1 + 2(ns − 1)√
2πns

)(
ξi

ξa

)(
2
(

ξi

ξa

)3/2

Ea

)2ns−1

Bi =
2
3

(
ξi

ξa

)3/2

Ea

Ci = 2ns − 1

ns =
Z√

2ξi/ξa

(5.3)

apply with the atomic number Z, the ionization energy in eV for each ioniza-

tion level ξi, the atomic energy scale ξa = 13.6 eV, the atomic time interval τa =

2.42× 10−17 s, and the atomic field Ea = 514.22 GV m−1.

One important aspect to discuss is the differences between an ADK model using

a full description of the laser field versus a reduced one. For this, a rubidium vapor

is considered. As a benchmark, a laser pulse with a normalized vector potential of
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Figure 5.2: Comparison of ionization profiles using a full description of the laser
pulse and the envelope. Shown are lineouts of the ionization profile
in longitudinal direction (left) and transverse direction (right) for the
case of rubidium vapor being ionized. The blue line represents a model
where the full laser field was used. While for the red line, ionization
rates for an envelope as characterized by (5.3) are used. The gray area
shows the envelope of the laser pulse for both cases.

0.1, a frequency of 30, a pulse width of 2.5, and a pulse duration of 3.0 is considered.

With the described laser parameters, a pulse is propagated through a rubidium va-

por that will only ionize the rubidium until the first level. In a direct comparison be-

tween both approaches, an agreement in the level of ionization is verified. Though,

the ionization rates for the envelope model are generally lower [119] leading to a

narrow ionization profile, as shown in Fig. 5.2. For the study of the self-modulation

instability, this results in a smaller volume of the electron column. However, for the

development of the SMI, this reduced ionization profiles, especially in the longitu-

dinal direction, will result in a small phase difference in the longitudinal direction.

It has to be pointed out, that the difference is below 10 % and is purely relative,

meaning the seeding will occur slightly delayed. On the other hand, the ionization

front propagation speed is expected to have a higher contribution to the SMI. This

effect is self-consistently modeled and is equal in both scenarios.
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In the case of PGC, the generated plasma will only affect the laser pulse’s tail

characterized by the plasma susceptibility. The head of the pulse propagates like

through vacuum and is not affected by the generated plasma. Though, the enve-

lope equation can be extended to include additional terms to characterize the dis-

persion in rubidium or nonlinear self-focusing [120, 121]. Moreover, models that

consider the nonlinear optical response of the Rubidium atoms [122] are promising

but require extensive work to be generalized so that it can be incorporated into the

PIC algorithm. However, the development of the SMI is determined by the seed

and its propagation velocity. Assuming a linear slip back of the ionization front,

then the relativistic factor is given as

γif =
1√

1− (1 + ∆ξ/∆d)2
(5.4)

where ∆ξ is the slip back distance in the light-frame coordinates and ∆d the prop-

agation distance. With (5.4) and assuming a slip back on the order of a plasma

wavelength over 10 m propagation distance would result in γif = 50. For an ion-

ization front propagating below this relativistic factor, we would obtain a phase

mixing for the seed.

5.2 Simulation parameters and modeled scenario

Modeling of the SMI self-consistently with PGC consists of three independent

components, the proton beam, the laser, and the neutral gas vapor. In this section,

the parameters used in this chapter, are presented and discussed. The main goal

is to stay as close as possible to the realistic parameters available at the AWAKE

experiment. Though shot-to-shot fluctuations may be present in the experiment,

such fluctuations are not considered.

In general, three spatial dimensions are considered and a moving window is

used. The simulation box has the dimensions of 52.5 mm× 9.0 mm× 9.0 mm with
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1656 cells in longitudinal direction and 640 cells in each transverse direction; the

longitudinal resolution is ∆ξ = 31.7 µm and the transverse resolution is ∆y = ∆z =

14.1 µm. The time step is ∆τ = 31.6 fs and the total propagation time corresponds

to the 10 m of the gas cell in the AWAKE experiment.

In these studies a fraction of the full SPS proton beams is considered. The profile

of the beam in the light frame coordinates (ξ = x− ct, τ = t) is determined as

nb (ξ, r) =





nb,0

[
1 + cos

(√
π

2σ2
x
(ξ − ξh)

)]
exp

(
r2

2σ2
r

)
, ξt ≤ ξ ≤ ξh

0, otherwise

(5.5)

with the beam radius r =
√

y2 + z2, the beam density nb,0 = 4.6× 1012 cm−3, the

rms bunch length σx = 6.0 cm, and the rms bunch width σr = 159.5 µm. Here, the

beam is cut at the front which is determined by the head of the beam ξh = 0.0 mm

and at the tail of the beam ξt = −50.2 mm. This parameters are picked so, that the

beam does not touch the boundaries of the box. Moreover, the relativistic factor of

the beam is γ = 480.

The gas vapor has a simple step profile which is 10 m long and has a density

of 2× 1014 cm−3. It is only used for the generation of the electron column based

on the ionization rate. Gas kinematics are not considered. In addition, Rubidium

absorption lines are also not included in our model. The proton beam and the laser

are co-propagating through the vapor but are initialized outside.

The laser has a normalized vector potential of a0 = 1.02× 10−2, a spot size of

1 mm, and a mean laser wavelength of 0.8 µm. These parameters are associated

with parameters obtained in the AWAKE experiment [123]. For pulse duration, a

value of 12.5 ps was picked. Here, the laser pulse duration is artificially increased

compared to the AWAKE experiment to allow lower longitudinal resolution. For

this particular modeling, an envelope approach is required as ω0/ωp = 3000, and

modeling using full PIC would be at least six orders of magnitude more computa-
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tionally expensive. The focal plane of the laser is at the midpoint of the gas vapor.

This focal plane position ensures that a plasma column is generated over the whole

propagation distance. Also, the laser center is shifted backward by 3.7 mm com-

pared to the head of the proton beam. This additional shift allows a clear separation

of the instability’s seeding, leaving 1.9 mm of the proton beam unperturbed.

5.3 Results for seeding the self-modulation instability using

a relativistic ionization front

Fig. 5.3 shows the evolution of the axial electric fields, and SMI in the laser-

ionized rubidium vapor plasma. During the initial propagation, the particle bunch

self-modulates, and the longitudinal fields grow exponentially, known as the linear

stage of the SMI [51, 124, 125]. The initial bunching can be seen clearly after 3.6 m of

propagation, shown with Fig. 5.3(II). After 5 m of propagation the non-linear stage

of the SMI is reached. It is characterized by the absence of further growth of the

axial field. This transition to a non-linear stage is also associated with a phase shift

of the axial field. While currently no theoretical model is found to describe the un-

derlying physics, it is believed that the phase shift arises due to the superposition

of the wakes generated by each beamlet [126].

On the other hand, comparing the electron density profile throughout the prop-

agation reveals a narrow distribution around the focal plane and broader distribu-

tion at the beginning and the end of the propagation. This narrowing is connected

to the laser propagation obeying the paraxial Helmholtz equation for propagation

in a vacuum. It is important to understand if the evolution of the electron column

and its description by the laser envelope have any effect on the growth and charac-

teristic of the SMI. This question will be addressed in the following section.
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Figure 5.3: Full evolution of the self-consistent longitudinal plasma field along the
protons beam center axis over the 10 m propagation distance (left panel)
with three different propagation distances, slices of the ionized plasma
column and the proton beam (right panels).
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5.4 Study of the effect of ionization on the self-modulation

instability

For establishing, how the ionization front can influence the growth of the SMI,

a comparison against a pre-ionized case can be examined. Here, we consider the

same physical parameters as in the previous section except for an ionizing laser

pulse. The seed of the SMI is associated with the sharp front of the half-cut proton

bunch propagating through a fixed-sized plasma column. The cut in the proton

profile behaves similarly to the laser pulse; it seeds the growth of the SMI insta-

bility. There are two distinct differences. The first difference is the absence of any

transverse effects due to a fixed-sized plasma column. The second difference is that

the seed of the SMI propagates with a constant velocity compared to the ionization

front in the previous example. For the pre-ionized case, the velocity of the seed is

determined by the Lorentz gamma of the proton bunch.

Based on the pre-requisites, the case presented and discussed in the previous

section is used as a base setup. For the pre-ionized case, a plasma column with a

radius of 1.5 mm is added, and all other parameters are kept unchanged. The sim-

ulation is performed in 2D cylindrical geometries to reduce the computational cost,

and the difference for the accelerating field at two distances is shown in Fig. 5.4.

For better comparison, the case where laser ionization is used is shifted such that

the tip of the proton beam and the ionization front overlap in the initial stages.

For the pre-ionized case, the seed of the SMI is determined by the half-cut front

of the proton beam. Therefore, the propagation of the seeding front depends on the

Lorentz gamma of the proton beam, which was γ = 480. Throughout the propaga-

tion, no significant slowdown of the proton bunch was observed. Complementary

to this, the case for a laser induced ionization front exhibits different propagation

velocities for the ionization front. While in the first stage, during the propagation

towards the focal plane, the ionization front propagates superluminal, as seen in

Figure 5.4. This effect of superluminal propagation arises due to the locally in-
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was shifted by 2.7 mm to overlap with the cut proton bunch.
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creased field amplitude. Afterwards, as the laser pulse defocuses, the ionization

front propagates at γif = 108.

Comparing the axial fields, some fluctuations of the field after 1.1 m are observed.

It has to be noted that the proton beam is sharply cut in the pre-ionized case, while

for the laser case, the ionization shows a smoother density transition. However,

both cases show the same phase. After a long propagation of 9.0 m, when the

SMI fully developed and moved to a non-linear regime, no significant difference

in phase and amplitude for the axial field is observed.

In summary, no significant differences in seeding the SMI between using a half-

cut proton beam or a laser-induced ionization profile are seen even though the ion-

ization front evolves over the whole propagation distance. For the second half, the

ionization front is even propagating slower than the proton beam; over the whole

propagation distance, the ionization front slipped back only by 0.3 mm which is

only a fraction of the whole plasma wavelength.

5.5 Transverse effects on the development of the

self-modulation instability

A self-consistent model for the generation of a plasma column allows us to model

transverse effects more closely and study its influence on the development of the

SMI. Here, two particular effects are discussed in this section (i) the effect of a

shift between the proton beam center axis and the laser axis and (ii) the effect of a

seeded hosing instability (HI). The latter is important to consider since the SMI and

HI have comparable growth rates [127], and HI can cause a beam-breakup.

For the first study, the laser axis is shifted downwards along the y-axes with

respect to the proton bunch’s central beam axis. In the study, a shift of 0.32 mm

is considered. Greater shifts, e.g., on the order of ∼1 mm, might result in addi-

tional issues arising from the edging of the proton beam and are not discussed
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Figure 5.5: Comparison of proton density after 9.5 m of propagation for a case
where the proton axis and the laser axis are aligned (left) and mis-
aligned (right). In the misalignment case, the laser pulse is located
0.32 mm below the proton beam axis. In both scenarios, the white line
represents the central beam axis.

here. Fig. 5.5 shows the perturbed proton bunch after 9.5 m of propagation. Only

after a full propagation distance, a transverse distortion of the proton beam is ob-

served. Before that, no clear difference with respect to the base case presented in

the previous sections is not noticeable. After 9.5 m, the protons tend to be dragged

towards the laser axis – the electron column center. Nevertheless, after the whole

propagation distance, the overall morphology of the beams are very similar.

A slight decrease in the axial field is seen along the central beam axis in direct

comparison. The reduction of the axial field is expected as a fraction of the driving

bunch is being dragged downwards and reduces the wake driven by the beamlets.

However, the transverse field in the misaligned case is more substantial, leading to

enhanced transverse deflection of the proton beam driver.

The presented scenario of misalignment shows that the development of the SMI

is stable enough even to withstand small misalignment and in the presented case,

no evidence of a hosing instability is seen. However, the asymmetric beamlets, as

seen in figure 5.5, introduce a shift of the beam centroid and further propagation

(e.g., the second stage), which could result in the growth of hosing.
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Figure 5.6: This comparison shows the axial field (left) and the Ey field (right)
driven by the proton bunch for the aligned and the misaligned scenario.
The presented fields correspond to the proton density profile shown in
Figure 5.5.

For the second study, the beam centroid is shifted downwards along the y-axis

to seed a hosing instability. More specifically, the shift is picked in such a way that

the beam at the ionization front is aligned with the laser axis, while the tail for the

50 mm long simulated beam is shifted by the beam width σr of 0.2 mm, as seen in

figure 5.7(b). The reasonably large tilt in the beam profile ensures strong seeding

for the HI as only a fraction of the protons is aligned with the wake generated by

the head of the beam.

As the beam propagates through the plasma, it self-modulates. The focusing

fields cause a fraction of the protons to be dragged towards the center of the beam’s

wake. These protons result in a train of bunches aligned with the wake driven

by the front. On the other hand, another fraction of the proton bunch is pushed

away due to defocusing fields. As the SMI saturates, no substantial transverse dis-

placements are observed, and the beam continues to propagate stably, as seen in

Figure 5.7(c). These results agree with the previous work by [128], which showed

hosing suppression for a self-modulated electron bunch without ionization mod-

eling. More specifically, the frequency associated with the centroid displacement
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(a)

(b) (c)

Figure 5.7: Density distribution of the beam driver for the study of seeded hosing
instability. The upper figure (a) shows isosurfaces and density projec-
tions of the proton bunch after 9.9 m of propagation distance. The lower
figures show slices of the beam density at the initial state (a) and after
9.9 m of propagation distance (b).
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Figure 5.8: Comparision of the normalized beam driver charge over the propaga-
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ment between the laser and beam axis (blue solid line), and for the case
of seeded hosing (red solid line). The normalization factor is the inte-
grated charge for the base case before the proton beam enters the gas
vapour.

varies for each beamlet in a modulated bunch. As each beamlet resides in the fo-

cusing region, the resonant condition for hosing to occur is not fulfilled. Hence, the

growth of HI is suppressed.

To further analyze the hosing suppression, the charge of the driver beam is com-

pared for three cases. The first case is based on the results presented in section 5.2.

In contrast, the two other scenarios correspond to the misaligned scenario and the

seeded hosing case presented in this section. The driver charge is obtained by in-

tegrating a cylindrical region of the proton density where the center axis is aligned

with the wake driven by the beam’s head, and the radius for the integration is

r = σr/2 = 100 µm. The normalized charge of the driver is shown in figure 5.8.

The charge for all three cases is normalized to the base case’s initial charge in the

integration region.

Comparing the charge evolution of each driver, two different progressions with a

transition around 4 m are observed. The transition is associated with the saturation
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of the SMI. In the first phase, the driver’s charge increases, caused by the growth

of the SMI. Afterward, the beam charge in the integration region drops with the

propagation distance d. This drop comes from the saturation of the SMI and the

associated phase transition for the driven wakefield. The phase transition yields

radial defocusing of the beam driver.

Comparing the base case with the misaligned case, overlap with the base case in

terms of the normalized charge is seen. However, as the protons get defocused, the

plasma column’s narrowness starts to play a role, and a fraction of the beam charge

is pushed towards the laser axis and the associated center of the plasma column,

which leads to a h igher reduction of the beam driver charge.

On the other side, comparing the base case with the seeded hosing case, a similar

evolution of the beam driver charge is observed. However, the proton beam’s tilt

introduces a lower charge as the considered region aligns with the base case. As

previously described, HI is suppressed for a self-modulated proton bunch resulting

in a comparable evolution for the charge. Nevertheless, as only a fraction of the

beam is driving the wake, the saturation of the SMI occurs later compared to the

base case.

5.6 Conclusion

In this chapter, the modeling of self-consistent seeding of the self-modulation

instability (SMI) was presented. More specifically, laser-ionization induced seeding

of the SMI was shown. Due to a scale disparity between the laser wavelength and

the plasma skin depth, the only computationally feasible approach is to model only

the plasma scales. Considering only the plasma scales comes with the downside of

excluding the laser pulse evolution. As shown in this chapter, the PGC solver with

ionization can model the laser’s evolution on the plasma scales.

As presented in this chapter, the ionization modeling using averaged ionization

rates gives a self-consistent ionization profile to seed the SMI. Comparing it with a
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model where ionization is excluded, but the SMI is seeded through a sharp density

jump shows excellent agreement even though the seed in the ionization case is not

static in the light-frame coordinates. However, the difference of the dynamic ion-

ization front is only a fraction of the plasma wavelength, which does not introduce

phase mixing or phase shifting to significantly modify the seed and the growth of

the SMI. Hence, good agreement for both cases can be seen.

With a self-consistent ionization model, transverse effects can be included with-

out further assumptions. As the growth rate of hosing instability (HI) is similar

to the growth rate SMI, the inclusion of transverse effects from the plasma chan-

nel is essential. Here, two cases have been discussed. For the case of possible

misalignment between the proton driver and the laser, the growth of the SMI was

unperturbed. However, as the proton beamlets defocus post SMI saturation, an ad-

ditional drag towards the laser axis was observed. Complementary to it, a seeded

hosing case was investigated where the proton beam profile was tilted. In agree-

ment with previous theoretical work, SMI suppresses the HI. Moreover, only a

fraction of the charge contributes to the growth of the SMI and delaying the satu-

ration. This reduction is associated with the tilt of the profile.
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The main focus of this thesis was to develop a reduced numerical solver to face

the main challenge of bridging the scale disparity in particle-in-cell codes. With it,

challenges for designing and studying the future generation of particle accelerators

becomes more feasible. It is clear that with higher speedup and reduced time-

to-solution, the space of exploration becomes greater and allows us to push the

scientific community to a greater extend.

Based on the ponderomotive guiding center approximation, the presented solver

enables to model the propagation of a laser pulse inside a plasma with great com-

putational benefits. As part of the thesis, 2D cartesian, 2D cylindrical, and 3D carte-

sian geometries were incorporated into OSIRIS. In this work, the numerical stability

for the 3D case was discussed, which is commonly neglected for newer implemen-

tations. It was shown that the PGC solver is unconditionally unstable and can affect

any results. However, an upper limit for the PGC solver was determined. For most

LWFA scenarios, PGC can be used before the numerical errors become dominant.

The developed methods to characterize the numerical stability can be extended

towards a path where different discretization schemes can be considered, next to

the one incorporated here. Particularly explicit schemes can be promising as their

stability is determined by a CFL condition similar to a Maxwell solver. However,

additional steps have to be considered when using explicit schemes. Spectral meth-

ods, on the other hand, could mitigate numerical instabilities. Nonetheless, spectral

methods display limitations in parallel scalability and cause additional overhead,

which decreases computational efficiency.
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As presented, the reduced PGC solver can further be used to perform paramet-

ric studies. Compared to full PIC simulations, PGC and PIC showed agreement

regarding the laser evolution and the wake profiles. On the other hand, lower nu-

merical resolution affected the injected particle bunches significantly. While this

can be overcome with an increased temporal or spatial resolution, it would lead to

higher computational costs.

A regime where PGC stands out is for cases where the ratio between the laser

wavelength and the plasma skin depth reaches large values, e.g., modeling of rel-

ativistic seeding for the development of the SMI. Here, an ionization model was

presented, which allows self-consistent modeling. It was clearly shown that using

a self-consistent ionization model does not cause any additional phase shift and

does not affect the seed for the SMI. This study helps the AWAKE experiment as it

presents that modeling the ionization is not apriori required to seed the SMI. How-

ever, the developed work provides the required tooling for future experiments in

the AWAKE framework.

Due to the high computational savings, PGC will be a vital tool for tasks associ-

ated with high computational costs, e.g., generating simulation output for machine

learning models. With the current progress of developing data-driven discovery of

governing equations [129, 130], PGC will provide valuable insights for developing

a full 3D non-linear description of the plasma waves, which is currently unavail-

able. Moreover, PGC allows having a clear separation between the laser field and

the plasma fields.
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