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Resumo

A distribuição quântica de chaves (QKD) explora os princípios da mecânica quântica para gerar e

distribuir chaves privadas usando sistemas quânticos e um canal clássico público autenticado. Apesar de

incondicionalmente segura, implementações normalmente não são devido a fontes de fuga de informação

inesperadas, chamadas canais laterais.

Canais laterais em QKD ou são semelhantes aos de implementações clássicas ou estão relacionados

com processamento quântico. A investigação e desenvolvimento atuais têm negligenciado os primeiros.

Nesta tese, revemos sumariamente os principais avanços na análise de segurança de QKD, os

principais componentes das implementações e algoritmos de pós-processamento clássico e o uso de

repetidores para aumentar a distância de transmissão. Revemos integralmente os principais ataques de

canal lateral a implementações de QKD e contramedidas.

Propomos um ataque de canal lateral clássico à etapa de amplificação de privacidade dum protocolo

geral de QKD, usando técnicas de aprendizagem automática para analisar o seu consumo elétrico.

Analisamos vários cenários simulados e conseguimos recuperar toda a chave privada múltiplas vezes.

O gradient boosting foi o modelo com melhor performance em praticamente todos os cenários e

recuperou toda a chave para taxas de amostragem do instrumento de medida suficientemente altas,

independentemente do tamanho da matriz de hashing e do nível de ruído usados. Para modelos

imperfeitos, formulamos uma estratégia que pdoe viabilizar uma procura da chave por força bruta.

Discutimos contramedidas baseadas em inserção de ruído, masking e randomização.

Este trabalho demonstra que aprendizagem automática pode ser usada para caraterizar canais

laterais em QKD robustamente e executar ataques poderosos.

Palavras-chave: distribuição quântica de chaves, amplificação de privacidade, ataque de

canal lateral, consumo elétrico, aprendizagem automática, gradient boosting
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Abstract

Quantum key distribution (QKD) exploits the principles of quantum mechanics to generate and

distribute private keys using quantum systems and an authenticated public classical channel. Although

it offers information-theoretical security, its physical implementations usually do not due to unintended

sources of information leakage called side channels.

Side channels in QKD are either similar to those found in classical implementations or related to the

quantum processing. Current research and development have often neglected the former.

In this thesis, we briefly review the main breakthroughs in QKD security analysis, the main components

of QKD implementations and algorithms for classical postprocessing and the use of repeaters for extending

transmission distance. We also comprehensively review the main side-channel attacks demonstrated in

QKD implementations and their countermeasures.

Moreover, we propose a classical-side-channel attack on the privacy-amplification step of a gen-

eral QKD protocol based on matrix hashing, using machine-learning techniques to analyse its power-

consumption leakage. We analyse multiple simulated scenarios and are often able to recover the full

private key. Gradient-boosting machine was the best-performing model in virtually every scenario, recov-

ering the full key for high-enough measuring-instrument sampling rates with any hashing-matrix size and

noise level tested. In case of a non-perfect model, we devise a strategy, based on analysing confusion

matrices, which can make a brute-force search for the key feasible.

We also discuss countermeasures based on noise insertion, masking and randomization techniques.

This work demonstrates that machine-learning techniques can be used to robustly characterize the

leakages in a QKD implementation and generate powerful attacks.

Keywords: quantum key distribution, privacy amplification, side-channel attack, power consump-

tion, machine learning, gradient boosting
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Chapter 1

Introduction

We begin this work by introducing the fields of cryptography and quantum key distribution and

motivating the need for this research in section 1.1. In section 1.2, we state the objectives of our research

and, in section 1.3, we outline the contents of the different chapters of this thesis.

1.1 Motivation

When we want to share a secret message over an untrusted channel, it is essential that we encrypt

that message if we want to ensure it does not fall into the wrong hands. Cryptography studies protocols

for secure communication in the presence of an adversarial party. These usually include the encryption

of messages with a secret key.

Two well-known classes of such protocols, also known as cryptosystems, are symmetric- or private-key

cryptosystems [1], which use identical private keys for both encryption and decryption of messages, and

asymmetric- or public-key cryptosystems [2], which use a public key to encrypt messages and a private

key to decrypt them. The former protocols are difficult to implement alone in a secure way due to the need

to keep keys private during the key-exchange process. By contrast, public-key protocols have achieved

widespread use since their proposal in 1976, with the Rivest-Shamir-Adleman (RSA) cryptosystem [3]

being a prime example.

The security of key distribution based on public keys and classical channels relies on the unproven

assumption that eavesdroppers lack the computational resources needed to solve a specific mathematical

problem [1], namely the inversion of one-way functions. Thus, public-key protocols are said to be

computationally secure. However, scientific and technological advances are progressively weakening this

form of security. In fact, standard public-key algorithms, such as RSA, will be broken by a sufficiently-

powerful quantum computer in the future [4]. This lack of long-term security has generated the need for

new protocols with a stronger notion of security.

In quantum cryptography, we exploit the principles of quantum mechanics to perform cryptographic

tasks, such as key exchange [4]. This is usually called quantum key distribution (QKD) and consists in

generating and distributing a private key using quantum systems and an authenticated public classical

1



channel, i.e., a classical channel where an eavesdropper is not able to impersonate one of the two

parties but can still eavesdrop on them. This key can then be used in a symmetric protocol, for instance.

QKD offers information-theoretical security [5], also known as unconditional security. This means it can

be proven secure with information-theory methods without imposing any conditions on the resources

available to an eavesdropper. Thus, in theory, QKD protocols cannot be broken even by an eavesdropper

with unlimited classical and quantum computing power.

Despite its information-theoretical security, QKD faces a few practicality challenges. Some of the major

ones concern its limitations in transmission distance and key generation rate [6]. These limitations come

from the instability of the quantum systems used to encode the transmitted information. These systems

are prone to decoherence by interacting with the quantum channel over which they are transmitted, which

results in information loss. At present, few basic QKD implementations are able to perform key exchange

over more than 500 km of ultra-low-loss optical fiber [7].

A solution to this challenge is the use of repeaters, also known as nodes or relays, along the

communication channels. These repeaters work either by executing key exchanges between consecutive

repeaters and encrypting the final private key with those keys [8] or by correcting the decoherence in the

transmitted quantum systems through a process called entanglement distillation [9]. The latter type of

repeaters is still an embryonic technology [5].

Another major challenge in the practical use of QKD is due to unintended sources of information

leakage in physical implementations [5], since these leakages are often highly correlated with the

generated key. Such leakage sources are commonly called side channels. An eavesdropper can interact

with and exploit physical side channels rather than the abstract protocol to obtain information about the

generated key without being detected.

We will divide side channels in QKD into two categories according to their origin. We will refer to side

channels related to the quantum processing of a QKD protocol as quantum side channels. On the other

hand, side channels such as power consumption [10], emanated electromagnetic radiation [11] and even

sound produced by implementation devices [12] are also found in classical cryptographic implementations.

Thus, we will refer to them as classical side channels.

There has been substantial research on quantum-side-channel attacks [5], with multiple security

patches proposed for each attack. Besides specific security patches, new classes of protocols have

been proposed which claim to make side-channel attacks fully or partially obsolete. The most-well-known

classes are measurement-device-independent (MDI) QKD [13] and device-independent (DI) QKD [14].

The former claims to remove all side channels from detection components, while the latter claims to

remove all side channels from all implementation components. However, we argue that DI-QKD protocols

may still be exposed to classical side channels since these do not disturb the transmitted quantum

systems. Moreover, MDI-QKD protocols may still be exposed to both classical and quantum side channels

in source components.

Unfortunately, classical-side-channel attacks are often not taken into account in QKD research and

development. In fact, only very recently there have been a few proposals of such attacks on QKD

implementations, targeting side channels such as timing information [15], power consumption [16, 17],
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emanated electromagnetic radiation [18, 19] and cache state [20] of specific implementation devices.

However, most devices used in a QKD implementation may be vulnerable to classical-side-channel

attacks. Moreover, QKD networks with multiple remotely-located repeaters can be particularly exposed to

such attacks since constant surveillance of all repeaters can be difficult. Therefore, we believe greater

focus should be given to research on classical-side-channel attacks on QKD implementations to maximize

their practical security.

1.2 Objectives

The aim of our thesis is to contribute to the research on classical-side-channel attacks on QKD

implementations, while also reviewing some of the main theoretical and experimental progress in the field

of QKD.

Our main objectives are to:

1. briefly review some of the major theoretical and experimental advances in QKD and its most-used

current techniques;

2. comprehensively review the main quantum- and classical-side-channel attacks demonstrated in

QKD implementations and their respective countermeasures;

3. propose and analyse a new classical-side-channel attack on the privacy-amplification step of a

general QKD protocol based on matrix hashing, using its power-consumption leakage. For this, we

will simulate the power-consumption leakage of a specific implementation for privacy amplification

in multiple attack scenarios. Then, we will analyse all leakages with machine-learning techniques;

4. provide different approaches to analyse leakages as a supervised-learning problem and assess the

best approach and machine-learning model to perform our proposed attack. The aim is to study the

exploitability of classical side channels in QKD implementations with the aid of machine-learning

techniques;

5. in case of a successful attack, propose countermeasures to prevent similar side-channel attacks

and discuss their efficiency.

1.3 Thesis outline

The remainder of this thesis is organized as follows: in chapter 2, we introduce the basics of

QKD, reviewing some of its theoretical and experimental progress, current techniques and side-channel

attacks. We also present the theory behind the machine-learning techniques used in a reasonably-self-

contained way, focusing on supervised learning and its general workflow. We leave in-depth mathematical

descriptions of the models used to appendix A; in chapter 3, we present our proposed attack on the privacy-

amplification step of a general QKD protocol based on matrix hashing, using its power-consumption

leakage. We also detail the implementation considered, how we simulated the power-consumption
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leakages, the machine-learning-based approaches used and the considered attack scenarios; in chapter 4,

we present our results, analysing both the simulated power-consumption leakages and the results of the

various approaches used for each attack scenario. We then compare and choose the best approach

depending on the attack scenario and discuss possible countermeasures to prevent similar side-channel

attacks. A summary of all results can be found in appendix B; finally, in chapter 5, we describe our main

achievements, discuss further considerations and suggest possible future research directions.
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Chapter 2

Background

In this chapter, we introduce the topic of QKD, reviewing some of its theoretical and experimental

progress, current techniques and side-channel attacks. We also present the theory behind the machine-

learning techniques used in a mostly-self-contained way, focusing on supervised learning and its general

workflow.

In section 2.1, we present the mathematical formalism necessary to understand the following ex-

position of QKD. In section 2.2, we delve into QKD, focusing on discrete-variable protocols. We de-

scribe entanglement-based and prepare-and-measure protocols and provide examples in sections 2.2.1

and 2.2.2, respectively. In section 2.2.3, we review the common assumptions of QKD security proofs

along with the main breakthroughs in QKD security analysis. In section 2.2.4, we describe the main

components of QKD implementations, the most common discrete-variable implementations, the main

algorithms for classical postprocessing and the use of repeaters for extending the transmission distance

of QKD implementations. In section 2.3, we present the concepts of side channel and side-channel attack,

distinguishing classical side channels from quantum side channels. In section 2.3.1, we review some of

the main side-channel attacks demonstrated in QKD implementations and proposed countermeasures.

In section 2.4, we delve into machine learning, focusing on supervised learning. We describe the data

used in supervised learning and how to use it for model training in section 2.4.1. In section 2.4.2, we

describe the data-preprocessing techniques we used. In section 2.4.3, we provide a brief description of

the models used in our analysis. More in-depth mathematical descriptions of those models are provided

in appendix A. In section 2.4.4, we introduce the task of hyperparameter optimization, along with the main

techniques used for training, testing and selecting models, including lower-fidelity approximation methods.

In section 2.4.5, we present the model-evaluation metrics we used in our analysis and, in figure 2.8, we

summarize the workflow of a supervised-learning analysis.

2.1 Mathematical formalism

Here, we define crucial mathematical objects necessary to understand our exposition regarding

quantum key distribution in later sections.
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2.1.1 Quantum bits

Analogous to a bit in classical information, a quantum bit, commonly known as qubit [4], is the basic

unit used in quantum information. It describes a two-level quantum system, such as the spin of electrons

or the polarization of photons.

A qubit in a pure state may be described as a linear operator on a Hilbert space, known as state

vector [4]. Using Dirac notation, this operator is represented as

|ψ⟩ = a |0⟩+ b |1⟩ , a, b ∈ C, |a|2 + |b|2 = 1. (2.1)

Due to noise and decoherence, a qubit’s state can become partially unknown. We say it enters a

mixed state, where it is described by a statistical mixture of pure states. In this case, it can be represented

by a linear operator on a Hilbert space known as density operator [4], which satisfies

ρ =
∑
i

pi |ψi⟩⟨ψi| , tr[ρ] = 1, ρ ≥ 0, ρ = ρ†, (2.2)

where pi is the probability of the qubit being in state |ψi⟩, tr is the trace operator, ρ ≥ 0 indicates ρ is

positive semi-definite and ρ† is the conjugate transpose of ρ. It is also possible to represent pure states

as density operators. For instance, the state in equation (2.1) can be represented as

ρ = |ψ⟩⟨ψ| =

|a|2 ab∗

a∗b |b|2

 , (2.3)

where a∗ and b∗ are the complex conjugates of a and b, respectively.

If two parties A and B share qubits, the total state of their systems is referred to as a bipartite quantum

state [4]. It is described by an operator on the tensor product of their respective Hilbert spaces HA ⊗HB

as

ρAB =
∑
i,j

pijρ
i
A ⊗ ρ

j
B , (2.4)

where
{
ρiA
}

and
{
ρjA
}

are the bases of density operators in HA and HB , respectively.

2.1.2 Quantum channels and measurements

A completely-positive trace-preserving (CPTP) mapM : HA → HB satisfies the conditions [21]

ρ′ ≥ 0 =⇒
(
In ⊗M

)
(ρ′) ≥ 0, ∀ ρ′ ∈ Cn×n ⊗HA, ∀n, (2.5)

tr [M(ρ)] = tr[ρ], ∀ ρ ∈ HA, (2.6)

where In is the identity map on Cn×n. The first condition ensures complete positivity, while the second

guarantees trace preservation.
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A CPTP map N : HA → HB on the set of density operators is called a quantum channel and can be

used to model the transmission of quantum information [21].

A generalized measurement of a quantum system can be described by a set of linear operators

{Mx}x∈X on a Hilbert space [4], where X is the set of possible outcomes. The set of operators {Ex}x∈X ,

where Ex = (Mx)
†
Mx, is known as a positive operator-valued measure (POVM) and the operators Mx

are known as Kraus operators. These satisfy

Ex = (Mx)
†
Mx ≥ 0, ∀x ∈ X, (2.7)∑

x∈X

Ex =
∑
x∈X

(Mx)
†
Mx = I. (2.8)

2.1.3 Quantum metrics

The∞-norm, also known as operator norm, for a linear operator M : HA → HB is defined as [21]

∥M∥∞ = sup
ρ∈HA
ρ̸=0

|Mρ|
|ρ|

, (2.9)

where |ρ| =
√
ρ†ρ. If HA and HB have finite dimensions, ∥M∥∞ is simply the largest singular value of M ,

i.e., the largest eigenvalue of |M |.

We define the trace distance between density operators ρ and σ as [21]

∥ρ− σ∥tr =
1

2
∥ρ− σ∥1 = sup

P
tr[P (ρ− σ)] ∈ [0, 1], (2.10)

where ∥ρ∥1 = tr[ |ρ| ] and P ranges over all projectors, i.e., positive semi-definite operators with eigenval-

ues in {0, 1}. The trace distance measures how distinguishable two states are. In particular, the maximum

probability of distinguishing two states with trace distance ϵ with a single measurement is 1
2 (1 + ϵ).

We define the diamond distance between two CPTP mapsM and F as [22]

∥M−F∥⋄ = sup
ρAE

∥M(ρAE)−F(ρAE)∥tr ∈ [0, 1], (2.11)

where ρAE ranges over all states on HA and its extensions to an auxiliary space HE . This distance may

also be called completely-bounded trace distance and measures how distinguishable two CPTP maps

are. Let us assume we have two CPTP maps with diamond distance β. Then, analogously to the trace

distance, the maximum probability of distinguishing them by applying each on a joint state on the input

space and an auxiliary space and then measuring the resulting state is 1
2 (1 + β).

2.1.4 Hash functions

A hash function is any function H : X → K such that |X| ≥ |K| [23], where |X| is the cardinality of X.

The objects in K are called hashes.
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Let H = {h : X → K} be a family of hash functions. H is universal2 if [23]

x ̸= x′ =⇒ P
(
H(x) = H(x′)

)
≤ 1

|K|
, ∀x, x′ ∈ X, (2.12)

when H is chosen uniformly at random from H.

We can further generalize this notion to a δ-almost universal2 family of hash functions [24]. Such a

family satisfies

x ̸= x′ =⇒ P
(
H(x) = H(x′)

)
≤ δ, ∀x, x′ ∈ X, (2.13)

when H is also chosen uniformly at random.

2.2 Quantum key distribution

As discussed in section 1.1, QKD is a quantum-cryptographic task which allows two parties to

generate a shared private key using quantum systems and an authenticated public classical channel.

In cryptography, these communicating parties are usually designated by Alice (A) and Bob (B), while a

possible eavesdropper is called Eve (E) [4]. At the end of a QKD protocol, the resulting private key can

be used to encrypt messages over an untrusted classical channel, i.e., a classical channel which may be

subject to eavesdropping and does not require authentication.

We note that, for QKD to be feasible, the two parties must initially share a small private, or weakly-

correlated and partially-private [25], key to authenticate the public channel and verify each other’s

identities. After the first communication round, a part of the generated key can be used for reauthentication

purposes [26]. Due to this initial constraint, QKD could also be called quantum key expansion.

QKD offers information-theoretical security [5]. This is done by exploiting the principles of quantum

mechanics. In particular, all QKD protocols use the fact that measuring a quantum system perturbs

its state to detect the presence of an eavesdropping third party. The way in which this is achieved

depends on the category of protocols considered. The most well-known QKD protocols can be divided

into two categories, depending on which quantum property they exploit [5]: entanglement-based (EB)

protocols and prepare-and-measure (PM) protocols. These will be described in sections 2.2.1 and 2.2.2,

respectively.

These two approaches can be further divided into two families of protocols: discrete-variable (DV)

protocols and continuous-variable (CV) protocols [5]. DV-QKD uses finite-dimensional quantum systems,

such as qubits. CV-QKD uses infinite-dimensional quantum systems, such as bosonic modes of the

electromagnetic field, and these protocols were initially proposed as a means of overcoming limitations in

the physical implementations of DV-QKD protocols. We will focus our description mainly on DV-QKD for

simplicity.

The first QKD protocol was a discrete-variable prepare-and-measure protocol known as BB84 and

proposed in 1984 by Bennett and Brassard [27], which makes QKD the first quantum-information

technology.
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2.2.1 Entanglement-based QKD

EB-QKD protocols take advantage of quantum entanglement [5]. This property describes groups of

smaller subsystems, such as particles, in which a subsystem’s state cannot be represented independently

of the states of the other subsystems, e.g., an entangled state |ψ⟩AB of subsystems A and B cannot be

represented as |ψ⟩A ⊗ |ψ⟩B , where |ψ⟩A is the representation of the state of system A independently of

the state of system B, and vice-versa. Therefore, we can only make assertions about the system as

a whole, even if the subsystems are physically separated by large distances. Moreover, performing a

measurement in one subsystem affects the others in such a way that, if an eavesdropper, Eve, intercepted

one subsystem, she would alter the total system. Thus, this would reveal her presence and even the

amount of information she obtained.

From a mathematical perspective, an EB-QKD protocol is a CPTP map, composed of local operations

and classical communication, which takes a bipartite quantum state ρAB and either aborts due to

interference or outputs two classical binary strings kA and kB [22].

A notable example of EB-QKD is the Bennett-Brassard-Mermin (BBM92) protocol [28]. A major

family of DV-EB-QKD protocols, based on the BBM92 protocol, can be parametrized by the following

parameters [22]:

• Block length, m ∈ N, the number of individual quantum systems shared between Alice and Bob. It

defines the maximum length of the bit strings used in the protocol;

• Parameter estimation tuple, pe = {k, δ}, where k ∈ N, k ≤ m is the number of quantum systems

used for parameter estimation, and δ ∈ (0, 12 ) is the tolerated error rate. We will use n = m− k to

denote the number of systems used for key generation;

• Error correcting tuple, ec = {r, synd, corr, t,Hec}, where r ∈ N is the bit length of the error-

correction syndrome, i.e. the bit string which is the description of which qubits are corrupted;

synd : {0, 1}n → {0, 1}r is the function which outputs the syndrome; corr : {0, 1}n×{0, 1}r → {0, 1}n

is the function which uses the syndrome to output a corrected string; t ∈ N is the bit length of

the hash used for verifying the corrected string; and Hec = {hec : {0, 1}n → {0, 1}t} is a universal2

family of hash functions;

• Privacy amplification tuple, pa = {l,Hpa}, where l ∈ N, l ≤ n is the bit length of the final secret key,

which is extracted from one block of measurement data, and Hpa =
{
hpa : {0, 1}n → {0, 1}l

}
is a

universal2 family of hash functions.

The ratio of the key length to the block length l
m is a performance indicator designated by key generation

rate.

This family of EB-QKD protocols is defined by the steps:

1. Input: Alice and Bob generate a bipartite entangled quantum state ρAB with a possibly-untrusted

source, where A and B are each composed of m joint quantum systems of finite dimension. They

also define two orthogonal bases for measuring the quantum systems and assign the bits 0 or 1 to

the two possible measurement outcomes in each basis;
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2. Randomization: Alice and Bob generate and share uniformly-random seeds over the authenticated

public channel. The following random seeds are generated:

• Random string ϕ ∈ {0, 1}m: defines the sequence of bases for measuring the m quantum

systems of each party;

• Random subset Π ∈ {π ⊂ {1, ...,m} : |π| = k}: defines the k quantum systems whose mea-

surement bits will be used for parameter estimation. The remaining n quantum systems will be

used to generate a key;

• Random hash function Hec ∈ Hec: hash function to use in the error-correction step;

• Random hash function Hpa ∈ Hpa: hash function to use in the privacy-amplification step;

3. Measurement: Alice and Bob measure their m quantum systems according to bases defined by ϕ.

Then, they each store their k outcome bits corresponding to the systems defined by Π in strings vA

and vB, respectively, which will be used for parameter estimation, and the remaining n outcome

bits in strings xA and xB , respectively, for error correction;

4. Parameter estimation: Alice sends vA to Bob over the authenticated public channel. Bob then

compares it with vB and assesses the fraction of errors, given by

∆(vA,vB) =
1

k

k−1∑
i=0

1(vA,i ̸= vB,i), (2.14)

where vA,i and vA,i are the bit i of strings vA and vB , respectively, and 1 is the 0-1 indicator function

which outputs 1 when its argument is true and 0 when it is false. If ∆(vA,vB) > δ, Bob sets the

interference flag F pe = 1 and aborts the protocol. Otherwise, he sets F pe = 0 and they proceed to

the next step;

5. Error correction: Alice sends the error syndrome z = synd(xA) to Bob over the authenticated

public channel. Then, Bob computes the corrected string x̂B = corr(xB , z). In order to verify that

the error correction succeeded with high probability, Alice computes the hash Hec(xA) and sends

it to Bob over the public channel. Bob computes Hec(x̂B) and compares it with Hec(xA). If the

hashes differ, he sets the interference flag F ec = 1 and aborts. Otherwise, he sets F ec = 0 and they

proceed to the next step;

6. Privacy amplification: Alice and Bob compute the secret hashes kA = Hpa(xA) and kB =

Hpa(x̂B), respectively, both of length l. These hashes become the final secret key.

Besides the BBM92 protocol, which uses two orthogonal measurement bases, another well-known

example of DV-EB-QKD is the E91 protocol [29], which uses three non-orthogonal bases and relies on a

generalization of Bell’s theorem, known as the CHSH inequality [30], to detect eavesdropping.
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2.2.2 Prepare-and-measure QKD

The second main category are PM-QKD protocols. These protocols take advantage of the probabilistic

nature of quantum systems, usually referred to as quantum uncertainty or quantum indeterminacy, to

detect any eavesdropping [5]. Since eavesdropping necessarily involves measuring the quantum systems,

it changes their states and, consequently, the probability distribution of the following measurement

outcomes of their observables, which can reveal Eve’s presence along with the amount of disclosed

information.

In PM-QKD protocols, Alice and Bob do not start with an entangled state. Instead, they have access

to an quantum channel, which may be untrusted. Since maintaining a shared entangled state at long

distances is very challenging in practice, EB-QKD protocols are generally considered idealized versions

of PM-QKD protocols [22]. The latter are often called realistic protocols.

Mathematically, a PM-QKD protocol is identical to an EB-QKD protocol, except it takes a quantum

channel as input instead of a bipartite quantum state [22].

A notable family of DV-PM-QKD protocols, based on the BB84 protocol, can be parametrized by the

same parameters of the above EB-QKD-protocol family, with the addition of [22]:

• Number of states prepared and sent through the quantum channel by Alice, M ∈ N, M ≥ m.

The secret-key generation rate in these protocols is now l
M , which is m

M smaller than in the equivalent

EB-QKD scheme. This illustrates the necessary trade-off between ease of implementation and degree of

security.

This family of PM-QKD protocols is defined by the steps:

1. Input: Alice and Bob setup a quantum channel NA→B capable of transmitting M quantum systems

from Alice to Bob. Additionally, they define two orthogonal bases for measuring the quantum

systems and assign the bits 0 or 1 to the two possible measurement outcomes in each basis, as in

the EB-QKD case;

2. Randomization: Alice generates the following uniformly-random seeds:

• Random string ϕA ∈ {0, 1}M : defines the sequence of bases in which to prepare her M

quantum systems;

• Random string r ∈ {0, 1}M : defines the sequence of bits to encode in her M quantum systems,

by preparing them in the corresponding states of the bases defined by ϕA;

• Random subset Π ∈ {π ⊂ {1, ...,m} : |π| = k}: as in the EB-QKD case, defines the k quantum

systems to use for parameter estimation. The remaining n = m− k quantum systems will be

used for key generation;

• Random hash function Hec ∈ Hec: hash function to use in the error-correction step;

• Random hash function Hpa ∈ Hpa: hash function to use in the privacy-amplification step.

Bob generates the uniformly-random seed:
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• Random string ϕB ∈ {0, 1}M : defines the sequence of bases for measuring the M systems

sent by Alice.

3. State preparation: Alice prepares a quantum state ρϕA,r
A , composed of M joint quantum systems

of finite dimension, by encoding r in the bases defined by ϕA;

4. State distribution: Alice sends ρϕA,r
A to Bob over the quantum channel. In practice, Alice can send

the systems individually, using the quantum channel M times;

5. Measurement: Bob measures the M quantum systems in the bases defined by ϕB. Then, he

stores the outcome bits in string u, denoting the inconclusive outcomes by ∅. He also registers

the subset Ω = {i ∈ {0, ...,M − 1} : ui ̸= ∅}, which indicates which measurement outcomes were

conclusive. When using photons to encode the transmitted qubits, inconclusive measurement

outcomes could be due to photon loss or dark counts, for instance. Photon loss occurs when none

of Bob’s detectors registers a photon, and dark counts occur when more than one of his detectors

register a photon;

6. Randomness distribution: Bob sends ϕB and Ω to Alice over the authenticated public channel,

and Alice sends Π, Hec and Hpa to Bob.

7. Sifting: Alice computes the set Σ = {i ∈ Ω : ϕA,i = ϕB,i}, which indicates which conclusive

measurements used the same basis. If |Σ| < m, she sets the flag F si = 1 and aborts the protocol.

Otherwise, she sets F si = 0, randomly chooses a subset Λ ⊆ Σ with cardinality m, and sends Λ to

Bob over the authenticated public channel. Then, Alice and Bob respectively generate strings r′

and u′ by discarding the bits of r and u which do not correspond to the measurements defined by Λ.

As in the EB-QKD case, the k bits of r′ and u′ corresponding to the measurements on the systems

defined by Π are stored in strings vA and vB, respectively, to be used for parameter estimation.

The remaining n bits are stored in strings xA and xB , respectively, for error correction;

8. Parameter estimation: equal to the EB-QKD case;

9. Error correction: equal to the EB-QKD case;

10. Privacy amplification: equal to the EB-QKD case.

This family of PM-QKD protocols can be reduced to the family of EB-QKD protocols presented in

section 2.2.1, as shown in [22]. This implies that, if one of the families of protocols is proven to be secure,

the other one must also be.

Some well-known examples of DV-PM-QKD are:

• the above-mentioned BB84 protocol, which uses two orthogonal bases;

• the B92 protocol [31], which is a simplified version of the BB84 which uses only two non-orthogonal

quantum states;
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• the six-state protocol [32], which is another variant of the BB84 which uses six quantum states and

three orthogonal bases. This extra basis choice allows for more noise in the quantum channel and

increases the probability of detecting an eavesdropper;

• the SARG04 protocol [33], which only differs from the BB84 in the sifting step, but is more robust

against photon-number-splitting (PNS) attacks, described in section 2.3.1.

It is important to note that most of these protocols have also been adapted to EB-QKD versions [5].

2.2.3 Security of QKD

All the above-mentioned protocols have been proven to be information-theoretically secure [5]. In fact,

multiple versions of security analyses have been proposed for various QKD protocols. Here, we describe

what we consider the main breakthroughs in QKD security analysis.

Common assumptions

While information-theoretical security implies that no condition is imposed on the resources available

to an eavesdropper, different assumptions must be made about the implementations of Alice and Bob.

Some of the most common assumptions of the proofs mentioned below are:

• Alice and Bob have sealed spatially-separated laboratories so that they control exactly what

information they release from their laboratory and we can model each quantum system shared

between them as a tensor product of the their respective local Hilbert spaces;

• Alice and Bob have access to ideal uniformly-random seeds produced by a trusted quantum

random-number generator, for instance;

• Alice and Bob are able to securely authenticate their public classical communication channel;

• for DV-QKD protocols, Alice and Bob share finite-dimensional quantum systems;

• for CV-QKD protocols, Alice and Bob share infinite-dimensional quantum systems;

• The states of the quantum systems leak no information to Eve about the basis choice in which they

were prepared;

• for EB-QKD protocols, Alice and Bob’s measurements commute, i.e., the order in which they

measure their quantum systems does not affect the resulting outcome distribution. In other words,

their measurement devices have no memory effects. This is a common assumption of QKD with

trusted measurement devices;

• for PM-QKD protocols, instead of commuting measurements, it is usually assumed that the state of

each quantum system does not depend on the preparation of the other quantum systems;
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• for protocols such as the ones of the EB-QKD family defined in section 2.2.1, Alice’s measurements

are assumed to either be perfectly complementary or sufficiently complementary, i.e., their average

overlap c must satisfy

c(m,n) = max
Π∈{π⊂{1,...,m}:|π|=n}

(∏
i∈Π

ci

) 1
n

< 1,

with ci = max
x,y∈{0,1}

∥∥∥∥M0,x
Ai

(
M1,y

Ai

)†∥∥∥∥2
∞
, (2.15)

where Alice’s i-th measurement with basis ϕi is modeled by the binary generalized measurement{
Mϕi,x

Ai

}
x∈{0,1}

, with x denoting the outcome. For instance, ideal measurements in the compu-

tational and the Hadamard bases are perfectly complementary, with ci = 1
2 , ∀ i ∈ {1, ...,m}. The

average overlap in an implementation can be measured experimentally even if the Kraus operators

are not known [34];

• for protocols such as the ones of the PM-QKD family defined in section 2.2.2, analogously to the

assumption of measurement complementarity, it is usually assumed that the prepared states are

either perfectly complementary or sufficiently complementary, i.e.,

c′ = max
i∈{1,...,M}

c′i < 1

with c′i = max
x,y∈{0,1}

∥∥∥∥√ρ0,xAi
X−1

√
ρ1,yAi

∥∥∥∥2
∞
,

X =
∑

x∈{0,1}

ρ0,xAi
=

∑
y∈{0,1}

ρ1,yAi
, (2.16)

where ρϕi,x
Ai

represents the state of the i-th quantum system when prepared in the basis ϕi and

encoding the bit x. Perfectly-complementary states have c′ = 1
2 .

Main breakthroughs

One of the first rigorous proofs of the information-theoretical security of QKD was given in [35], where it

was considered the asymptotic limit of infinite exchanged quantum systems over arbitrarily-long distances

and unbounded classical computing power. The proof considered a DV-EB-QKD protocol which used

fault-tolerant quantum computers for parameter estimation and error correction. It also considered noisy

state-preparation and measurement devices, in which the initial bipartite quantum state was shared over

a noisy untrusted quantum channel. Then, it reduced the noisy quantum protocol to a noiseless classical

protocol, which was tackled with classical probability theory to prove that, whenever Eve’s attack had

a non-negligible probability of remaining unnoticed, the final-key information she obtained decreased

exponentially with the increase in the key length. Nevertheless, this proof has the drawback of requiring

fault-tolerant quantum computers, a technology which is not yet available.
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Later, [36] rigorously proved the security of the BB84 protocol by first proving the security of a DV-

EB-QKD protocol using the same methods as [35] and then showing that protocol could be reduced

to the BB84 protocol. Shortly after, [37] presented a security proof for the BB84 protocol which also

considered noisy quantum channel and measurement devices. This proof is based on an earlier

version [38] which some consider the first rigorous proof of the information-theoretical security of QKD.

Both [36, 37] considered the same limit of infinite exchanged quantum systems and unbounded classical

computing power as [35]. However, both assumed ideal single-photon sources as state-preparation

devices. Therefore, their proof does not hold in case Alice sends two or more identical photons at a time.

[39] addressed this issue by proving the security of more practical implementations of the BB84 proto-

col against individual attacks, i.e., attacks based on interacting with and measuring each quantum system

independently. These implementations used realistic sources, such as parametric-down-conversion

sources or multi-photon sources which emit weak coherent pulses. However, information-theoretical secu-

rity implies resistance against the most general attacks, namely coherent attacks, in which Eve interacts

with and measures all quantum systems jointly based on knowledge from all the classical-postprocessing

communication [5]. Afterwards, [40] combined the model in [39] with the proof of [37] to show that such

realistic implementations can also have information-theoretical security. Nevertheless, it has also been

shown that the security of similar protocols, which use multi-photon sources, is always threatened if the

loss in the quantum channel is sufficiently high [41]. Based on works such as [39, 40], [42] proposed

a general framework for analysing QKD protocols with realistic devices. This framework consists in

characterizing the imperfections in physical devices by comparing their output with the one expected from

ideal devices. Those imperfections are taken into account in the security analysis by tagging the outputs

which differ from the ideal case and treating them differently than the rest. Thus, this framework describes

how to extract secure bits from a mix of reliable and unreliable bits. It can be applied to protocols with

imperfect sources, quantum channels and measurement devices. Some examples of these imperfections

are photon sources which occasionally emit weak coherent pulses, weak basis-dependent biases in both

sources and measurement devices, and misalignment of source and measurement devices.

The early security proofs in [35–37] use techniques related to quantum error correction, which, at first,

couple the initial error correction and the privacy amplification steps in the security analysis. By noting

that the initial error correction is not necessarily related to quantum laws in the security analysis, i.e.,

Alice and Bob may generate insecure identical keys by simply sharing classical states, [43] proposed a

security-analysis framework which uses an entropic form of Heisenberg’s uncertainty principle, known

as generalized entropic uncertainty relations [44]. This framework does not require us to use quantum-

error-correcting codes. Thus, it decouples the error correction step from the privacy amplification step in

the security analysis from the beginning, simplifying the proofs. It also applies to implementations with

imperfect devices. Very recently, an equivalence between the approach with quantum-error-correcting

codes and the entropic approach was established [45].

Based on the entropic approach, [46] proposed a simplified security-analysis framework which relies

on the complementarity of the measurement bases. This framework also does not require the use of

quantum-error-correcting codes. Its key idea is to consider the errors produced by imperfect devices,
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i.e, bit differences between Alice and Bob even when they use the same measurement bases, and treat

them separately, depending on the basis they use. It can be applied to the BB84 protocol and any variant

which uses complimentary bases, such as the six-state protocol.

All the above works limited their analyses to to the case of Alice and Bob having infinite resources. In

practice, their resources are necessarily finite, i.e., they exchange a finite number of quantum systems

and have a limited amount of classical computing power available, which leads to secret keys with

finite length. In this regime of finite resources, perfect security is no longer achievable and a notion

of approximate security is needed. [47, 48] accomplished this by bringing the concept of universal

composability [49] from classical cryptography to the QKD setting. A cryptographic protocol is said to

have universally-composable security if it remains secure in any arbitrary context, even when used within

a more complex system. Then, the keys generated by a QKD protocol with universally-composable

security may be safely used within any application, such as message encryption and communication. This

form of security is usually assessed by the distance of a real cryptographic protocol to an ideal protocol,

which is perfectly secure. We define an ideal QKD protocol as one which either aborts without generating

a secret key or generates an ideal secret key, i.e., a uniformly-random bit string shared between Alice

and Bob and independent of any information Eve might have collected.

According to this definition, a QKD protocol, described by the CPTP map composed of local operations

and classical communication QKDreal, is said to be β-secure if

∥QKDreal −QKDideal∥⋄ ≤ β, (2.17)

where QKDideal describes its equivalent ideal protocol. According to equation (2.11), we can express

this condition in terms of the output of the protocols with

sup
ρABE

∥QKDreal (ρABE)−QKDideal (ρABE)∥tr ≤ β, for EB-QKD, (2.18)

sup
NA→BE

∥QKDreal (NA→BE)−QKDideal (NA→BE)∥tr ≤ β, for PM-QKD, (2.19)

where ρABE ranges over all possible input quantum states shared between Alice and Bob and its

extensions to an auxiliary system held be Eve, and NA→BE ranges over all quantum channels from

Alice to Bob and Eve. Then, establishing security implies showing that the trace distance is small for all

possible protocol inputs. Moreover, condition (2.19) for a PM-QKD protocol is equivalent to condition

(2.18) for its idealized EB-QKD version [22].

As shown in [50], this condition may be split into two conditions corresponding to correctness and

secrecy. The correctness condition relates to the probability of Alice and Bob sharing an identical key. It

corresponds to an upper bound on the probability of the protocol not aborting, but outputting distinct final

keys for Alice and Bob. A QKD protocol is said to be ϵcor-correct if, for every protocol input,

P
(
kA ̸= kB ∧ F abort = 0

)
≤ ϵcor ∈ [0, 1), (2.20)
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where F abort is the flag which indicates the protocol aborted if it is set to 1. The secrecy condition relates

to the probability of the final keys being independent of any information Eve obtained. It corresponds to

an upper bound on the trace distance between the output of the real protocol when the final keys are

identical and the protocol did not abort and the output of an ideal protocol which also did not abort. A

QKD protocol is ϵsec-secret if, for every protocol input,

∥∥QKDreal | kA=kB ∧ Fabort=0 ( • )−QKDideal | Fabort=0 ( • )
∥∥
tr
≤ ϵsec ∈ [0, 1), (2.21)

where • indicates the protocol input according to the category of QKD protocol. Note that both of these

conditions consider only the cases when the protocol did not abort, since the output of the real and ideal

protocols when they abort are identical. Then, a QKD protocol is β-secure with β = ϵcor + ϵsec if it is

ϵcor-correct and ϵsec-secret. This framework allows us to establish trade-offs between protocol parameters

such as block length, secret-key length and tolerated error rate, and the security parameters ϵcor, ϵsec

and β.

[50] also introduced generalizations of the von-Neumann entropy, called smooth min- and max-

entropies. As with the von-Neumann entropy, these measures provide ways of quantifying the uncertainty

that an observer has on the state of quantum system. The smooth min-entropy quantifies how much

uniform randomness can be extracted from a quantum system and the smooth max-entropy corresponds

to the minimum number of bits needed to encode the system’s state in a way that it can be recovered

without errors, being related to data compression. Based on the notion of universal composability and

using the smooth min- and max-entropies, they proposed a general framework for analysing the security

of QKD protocols with finite resources. In this framework, the conditions for universally-composable

security can be satisfied by deriving a sufficiently-strong lower bound on the smooth min-entropy of Alice

and Bob’s corrected key conditioned on Eve’s side information. They also established the first security

proof in that regime, providing trade-offs between protocol and security parameters. This was the first

rigorous framework applicable to CV-QKD protocols.

The trade-offs in [50] were significantly improved in works such as [22, 51, 52]. The latter works

finally provided sufficiently-tight proofs, i.e., proofs which ensure information-theoretical security of QKD

protocols with realistic parameters and implementations. In particular, [22, 51] used a generalization of

the entropic uncertainty relations to smooth min- and max-entropies [53], which is now the most common

approach in QKD security analysis [5]. [22] provided the best parameter trade-offs to date for the families

of protocols presented in sections 2.2.1 and 2.2.2. According to their analysis, for a version of the above

family of EB-QKD protocols where both parties already share an entangled state at the beginning, we

can bound the conditions (2.20) and (2.21) by

ϵcor = 2−t, (2.22)

ϵsec = inf
ν∈(0, 12−δ)

ϵpe(ν) + ϵpa(ν),

with ϵpe(ν) = 2 exp

(
− (m− k)k2ν2

m(k + 1)

)
and ϵpa(ν) =

1

2

√
2−(m−k)(log2( 1

c )−H(δ+ν))+r+t+l, (2.23)
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respectively, where H(x) = −x log2(x)− (1− x) log2(1− x) is the binary Shannon entropy and c is the

average overlap of Alice’s measurements, as described above in the common assumptions of these

analyses. The parameter ν can be optimized numerically. We note note that ϵcor vanishes asymptotically

as we increase the length t of the hash used for error correction, which should increase with the block

length m. ϵsec also vanishes as we increase m, for specific choices of protocol parameters. In particular,

the optimal choice of parameters allows us to achieve the asymptotically-optimal key rate of

l

m
= log2

(
1

c

)
− 2H(δ). (2.24)

This is the largest key rate for which the above expressions still vanish for large m. Since they also

proved that the defined family of PM-QKD protocols can be reduced to this version of the family of

EB-QKD protocols, these trade-offs also apply to the former, with two modifications: c is replaced by the

complementarity measure of the prepared states c′ and the key rate is given by l
M = m

M
l
m . Therefore, if a

such an EB-QKD protocol, parametrized by m, pe, ec, pa, is β-secure with average measurement overlap

c, then a protocol of the PM-QKD family parametrized by M,m, pe, ec, pa, with state-complementarity

parameter c′ = c, is also β-secure. The factor m
M may be increased by optimizing the sifting step of these

protocols with strategies which do not fix M in advance, as discussed in [54].

More recently, [55] proposed a new analysis technique based on entropy accumulation. This technique

uses the fact that the smooth min-entropy of the total quantum system accumulates in each round of a

QKD protocol and approximates it by the sum of the von-Neumann entropies of its individual subsystems.

This technique has been mainly used to prove the tight finite-resource security of DI-QKD protocols [56],

which are discussed in section 2.3.1. Nevertheless, these trade-offs are still not as strong as the ones

achieved with entropic uncertainty relations [5], even though they have been recently improved in [57].

Various authors [5, 22, 58] believe there is room for improving the best current trade-offs through

further collaboration between theory and experiment. Specifically, there are many protocols for which

techniques such as entropic uncertainty relations or entropy accumulation do not currently yield optimal

key rates. Some examples are the six-state protocol and DI-QKD protocols [5]. There is also room for

refinement of the mathematical models behind security proofs to better describe the quantum hardware

used in implementations.

2.2.4 Implementations of QKD

As mentioned in section 2.2.3, the security of a QKD protocol is often related to its implementation.

The crucial components of a QKD implementation are the source, the encoder, the quantum channel, the

decoder and the measurement device. Here, we describe the most common physical implementations of

DV-QKD, along with the main algorithms for classical postprocessing, focusing on error correction and

privacy amplification. We also delve into classical and quantum repeaters as a way of extending the

transmission distance of QKD implementations.

18



Physical implementations

Photons are the most-commonly-used particles for encoding qubits in QKD, since they are fairly

robust to decoherence due to noise and travel at a high speed [58]. Qubits are most often encoded in the

polarization states of photons or in the relative phase between superposition states of a photon. The

former scenario is usually known as polarization encoding and the latter goes by several names such as

phase, path, interferometric or time-bin encoding [5, 58]. Examples of implementation schemes for both

encodings are shown in figures 2.1a and 2.1b. These implementation schemes can be used for multiple

variants of the BB84 protocol, for instance. Some implementations also encode qubits in the relative

phase between sidebands of a central monochromatic pulse, which is known as frequency encoding [59].

However, these implementations are much less common.

(a) A polarization-encoding QKD implementation.

(b) A phase-encoding QKD implementation.

Figure 2.1: Examples of basic schemes for polarization- and phase-encoding PM-QKD implementations.
PolM: polarization modulator; PM: phase modulator; PBS: polarization beam splitter; BS: beam splitter;
SPD: single-photon detector.

Source The source used in DV-PM-QKD protocols is usually modeled as a single-photon source [58].

However, the practical realization of such a source is still a difficult experimental challenge. Therefore,

sources which emit weak coherent states with varying number of photons are usually used in implemen-

tations. For DV-EB-QKD, it is common to use sources which use parametric down-conversion to produce

entangled photon pairs [6]. In these sources, each high-frequency photon generated is converted into an

entangled pair of low-frequency photons.

Encoder In PM-QKD, after the quantum systems are generated by the source, classical bits are

encoded into their quantum states by a modulator. In a typical polarization-encoding implementation, a

polarization modulator (PolM in figure 2.1a) is used set the desired polarization of each photon. Most

state-of-the-art implementations use electro-optic modulators which change a photon’s polarization

when a specific voltage is applied [60]. Instead of a polarization modulator, some polarization-encoding

implementations use multiple sources which already emit photons in the desired polarizations [6]. In each
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round, only one of these sources is triggered, according to the chosen basis and classical bit, and the

source outputs are then combined into one channel with beam splitters (BS). In a usual phase-encoding

implementation, the photons go through a beam splitter and enter a superposition of states going through

two different paths [60]. One of the paths has a phase modulator (PM) which usually uses electro-optics to

change the optical path length of that path with great precision. This introduces a phase between the two

states. The two paths then recombine in another beam splitter so that the photons enter a superposition

of states with the desired relative phase between them, which encodes the selected bit. This encoder

setup corresponds to an unbalanced Mach-Zehnder interferometer [61].

Quantum channel In a rigorous security analysis, Eve is assumed to fully control the quantum

channel. Therefore, a protocol’s security does not depend on the physical implementation of the quantum

channel. However, the channel’s quality, i.e, its loss, does affect the protocol efficiency. In a typical optical

PM-QKD experiment, the key rate is expected to be l
M = ηl

2m , with η being the overall transmittance of the

quantum channel [22]. The most-commonly-used quantum channels are standard to ultra-low-loss optical

fibers [7] and free space [62]. Since polarization states are not very robust to decoherence in optical

fibers due to their high polarization dispersion, most implementations with fibers use phase encoding [58].

On the other hand, free-space implementations commonly use polarization states as qubits, which are

particularly robust to decoherence in that medium.

Decoder The role of the decoder setup is to apply a measurement on the received quantum

systems according to a chosen basis. In polarization-encoding implementations, a polarization modulator

is commonly used to project the incoming photons into a state with a randomly-chosen polarization

basis [60]. In case the encoding basis is chosen, the polarization modulator does not alter the photon’s

state. The photons then go through a polarization beam splitter (PBS) which directs them through two

paths according to their polarization. These paths are connected to single-photon detectors (SPD) whose

detection corresponds to a particular classical bit. In some implementations, instead of a polarization

modulator, the basis measurement can be applied through a sequence of beam splitters and waveplates

which rotate the photons’ polarization by a predefined amount [6]. In usual phase-encoding implemen-

tations, the decoder setup also corresponds to an unbalanced Mach–Zehnder interferometer [60]. A

phase modulator in one of the paths is configured so that the interferometer applies a measurement in

the randomly-chosen phase basis by adding an additional relative phase to the superposition state of a

photon. The second beam splitter of the interferometer is connected to two single-photon detectors which

detect each photon according to a probability dependent on the relative phase of its state.

Detectors Ideal single-photon detectors are also an experimental challenge [58]. The commonly-

used detectors are avalanche photodiodes and superconducting single-photon detectors [60]. In

avalanche photodiodes, an incident photon triggers an electron-avalanche effect which produces a

detectable voltage pulse. In superconducting single-photon detectors, an incident photon hits a supercon-

ductive wire, making that section of the wire non-superconductive and producing a voltage spike. These

detectors usually act as threshold detectors, only being able to distinguish the vacuum state from single-

and multi-photon states. However, there are also photon detectors capable of measuring the number of

photons per state [63]. As mentioned before, all these detectors are subject to both photon loss and dark
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counts.

We note that several other implementation setups have been proposed and realized, such as phase-

encoding implementations based on Michelson interferometers with Faraday mirrors [64], implementations

which use phase encoding and polarization decoding [65] and plug-&-play phase-encoding implementa-

tions [66], which automatically compensate for both polarization and phase drift in optical fibers.

Such implementations are used to perform all quantum processing of most QKD protocols. The

remaining processing, particularly error correction and privacy amplification, is currently classical.

Error correction

The error-correction step of a QKD protocol, also known as information reconciliation, is used to

correct differences between the raw keys of Alice and Bob so that they share identical corrected keys.

Classical error correction is performed over the authenticated public channel. Thus, it is essential to

leak the minimum amount of information about the raw keys. This is done by sharing only redundant

information, such as bit-parity data, i.e, the parity of the number of ones in chosen key blocks. In

practice, the most-commonly-used algorithms for error correction are the cascade protocol [67] and

forward-error-correction (FEC) codes.

Cascade protocol The cascade protocol is a highly-interactive protocol, i.e., it involves two-way

communication between the parties in multiple steps. It uses a primitive, first described in [68], which

consists in an interactive binary search which detects a single-bit error in two strings with an odd number

of errors by exchanging the parity of specific substrings. For strings of length n, this primitive detects

a single-bit error by exchanging at most ⌈log2(n)⌉ bits over the public channel. In each iteration of the

cascade protocol, the raw keys are shuffled, equally divided into blocks of an agreed length and the

parity of each block is computed. Then, Alice sends her parities to Bob, which compares them with his.

They run the interactive binary search in each block pair where their parities differ and Bob corrects

the errors found in each of his blocks. For each corrected bit, the blocks from previous rounds which

contained it will then have their parity switched. Thus, the same binary search must also be performed on

all those previous blocks. This procedure is repeated recursively for blocks where the parity between

Alice and Bob differs. Therefore, each bit correction leads to a cascade of bit corrections, which is also

known as traceback step or cascade effect and gives the name to this protocol. The protocol usually runs

for a predefined number of iterations and Alice and Bob end up with identical corrected keys with high

probability.

The block length for each iteration is usually also determined before executing the cascade protocol

and tends to be related to the estimated error rate of the quantum channel Q. For instance, the original

version of the cascade protocol empirically proposed four iterations and block lengths n1 =
⌈
0.73
Q

⌉
for the

first iteration and ni = 2ni−1 for the following [67]. This choice makes the probability of a block containing

an error decrease exponentially with the increase in the number of iterations.

Several optimizations of the cascade protocol have been proposed in the last two decades, either

focusing on improving the choice of parameters [69, 70] or on modifying the protocol steps [71–73].

21



Nevertheless, the modifications analysed and proposed in [71–73] offer trade-offs between the number of

public-channel uses and the computational resources of both parties. Other interactive protocols have also

been proposed as an alternative to the original cascade protocol, such as the Winnow protocol [74], which

reduces the required number of public-channel uses and simultaneously performs privacy amplification.

Various FEC codes were also proposed as an alternative to the cascade protocol.

FEC only requires Alice to send one error syndrome to Bob, greatly reducing the public-channel use

in comparison to interactive protocols [58]. Nevertheless, this syndrome contains a lot more information

about the key than the bits exchanged in one round of interactive protocols. FEC was used in the families

of QKD protocols defined in sections 2.2.1 and 2.2.2. The most-commonly-used FEC codes in QKD are

low-density parity-check (LDPC) codes [75].

LDPC codes LDPC codes are linear codes which can be defined by a sparse parity-check matrix. In

the QKD scenario, a parity-check matrix is a binary matrix which describes the parity of specific substrings

of the keys allowed by the LDPC code. A LDPC code described by a (n − d) × n parity-check matrix

is known as a [n, d] LDPC code. The set of n− d linear relations described by the parity-check matrix

may also be represented by a bipartite graph, also known as Tanner graph [76], where a n-node set

represents the columns of the parity-check matrix, a (n − d)-node set represents its rows and edges

between two nodes represent its non-zero entries. For instance, the parity relations
k0 + k1 + k3 = 0 mod 2

k1 + k2 = 1 mod 2

k0 + k4 = 0 mod 2

⇐⇒


k0 + k1 + k3 = 0 mod 2

k1 + k2 + 1 = 0 mod 2

k0 + k4 = 0 mod 2

(2.25)

between the bits ki of the allowed keys can be used to build the parity-check matrix
1 1 0 1 0 0

0 1 1 0 0 1

1 0 0 0 1 0

 (2.26)

and its corresponding Tanner graph, shown in figure 2.2.

Figure 2.2: Tanner graph corresponding to the parity-check matrix (2.26).
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A key allowed by a LDPC code with parity-check matrix H can be used to build a vector k which

satisfies

H · k = 0 mod 2, (2.27)

where the modulo refers to the value of each entry of the resulting vector. In coding theory, such vectors

are known as the codewords of the code [77]. A key which is not allowed by the code relations will

generate a vector k′, which will differ from one of the codewords k by a few entries such that we can write

k′ = k + e mod 2. Then, a syndrome of vector k′ is given by

H · k′ = H · (k + e) = H · e mod 2. (2.28)

Therefore, exposing the syndrome will not reveal which codeword, and consequently which raw key, Alice

has.

For QKD, the choice of parity-check matrix is crucial to maximize the efficiency of error correction and

minimize the information leakage [77]. The length of the codewords, the number of non-zero entries in

the parity-check matrix and the parity relations should be chosen according to the average error rates of

the quantum channel and measuring devices. One of the most successful algorithms for constructing

sparse parity-check matrices is known as progressive edge growth [78] and was improved in [79].

In a QKD protocol using LDPC codes, Alice and Bob first estimate the error rate of the quantum

channel and generate a sparse parity-check matrix H . Then, Alice generates a vector k′ from her raw key

according to the rules defined by the LDPC code and sends the syndrome H · k′ mod 2 to Bob over the

public channel. With his raw key and Alice’s syndrome, Bob uses a suitable decoding algorithm to obtain

a corrected key identical to Alice’s. This can be done using iterative belief-propagation algorithms [80],

also known as sum-product algorithms, which can decode Alice’s raw key with high probability in time

proportional to the number of non-zero entries in the parity-check matrix. Bob runs such algorithm until

his key is identical to Alice’s with high probability or until he reaches a predefined number of iterations,

after which he aborts the protocol.

Several optimizations of LDPC codes adapted to the QKD scenario have been proposed, from which

we highlight a few. In [81], an optimization of LDPC codes to a specific type of quantum channel, known

as binary symmetric channel, was proposed. [77] proposed a protocol which adapts to changes in the

error rate of the quantum channel in each round by using puncturing techniques, which correspond to

removing bits from the codewords, and shortening techniques, which correspond to predefining some of

the bits of every codeword, thus removing them from the encoding process. This protocol also includes

a final interactive step which is meant to increase its success rate. [82] adapted the techniques of the

protocol in [77] to short codeword lengths, making it feasible for practical hardware implementations. It

also turned the protocol into a blind protocol, i.e., a protocol which does not need an initial estimation of

the quantum-channel error rate, thereby saving additional bits of the raw key. [83] improved the efficiency

of the previous blind protocol based on the symmetry of its operations. Finally, [84] extended the protocol

in [83] to use multiple parity check matrices, and therefore multiple syndromes, which provides better

estimations of the quantum-channel error rate, reduces the number of iterations needed for decoding and
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has a higher success rate. Alternative FEC codes have also been proposed, such as turbo codes [85]

and polar codes [86].

In general, the cascade protocol leaks less bits than LDPC codes for low quantum-channel error

rates, while the opposite is true for high error rates [87]. The main limitation of LDPC codes is the high

computational cost of the iterative decoding. Thus, it is usually performed with graphics processing

units [58]. Nevertheless, the low latency ensured by the reduced use of the public channel makes FEC

codes suitable candidates for commercial QKD implementations.

We note that, after using one of the above algorithms for error correction, Alice and Bob can verify the

success of the procedure with a hash function from a universal2 family, as described in section 2.2.1.

Privacy amplification

The error-correction process necessarily leaks information about the corrected key to Eve. Moreover,

she may also have obtained additional information by eavesdropping on the quantum channel. Therefore,

a procedure is required to extract only the secret bits from the corrected key. This distillation of a

secret key from a partially-exposed key is called privacy amplification and was first introduced in [88]. It

directly relates to the secrecy condition (2.21) of universally-composable security for QKD protocols. As

with classical error correction, classical privacy amplification is performed over the authenticated public

channel.

Using universal2 families of hash functions for privacy amplification, as done in the QKD protocols

of sections 2.2.1 and 2.2.2, was first proposed in [88], where it was considered the case in which

Eve obtained deterministic classical information about the corrected key. [89] extended the privacy-

amplification framework to the case where Eve obtained probabilistic classical side information about the

corrected key. Later, [50] generalized this framework to the case where Eve has a quantum memory, i.e.,

she is allowed to keep her information in the form of a quantum state, which she can entangle with Alice

and Bob’s qubits, and she can measure it at the end of the QKD protocol, after knowing Alice and Bob’s

choice of hash function. Finally, [90] extended this framework to the use of δ-almost universal2 families

of hash functions, which allow the use of shorter random seeds and can lead to a speedup in practical

implementations at the expense of a very small reduction in the size of the final secret key.

In general, linear privacy amplification, such as matrix hashing, is commonly used in QKD due to

its low computational complexity [58]. Let hM (x) = M · x mod 2 be the logical multiplication of a

matrix M ∈ {0, 1}l × {0, 1}n and a vector x ∈ {0, 1}n. Then, the set {hM}M is a universal2 family of

hash functions [23] and could be used for privacy amplification. However, since these functions are

parametrized by l × n values, a random seed for such a function which extracts l bits from n bits would

have l × n bits. We can obtain other much smaller universal2 families by imposing specific restrictions on

the entries of these matrices. In QKD, the most-frequently-used universal2 hash functions are based on

binary Toeplitz matrices [91].
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A Toeplitz matrix has entries which are constant along each of its diagonals. Thus, a l × n Toeplitz

matrix has the form

T =



a0 a−1 a−2 . . . a−n+1

a1 a0 a−1

a2 a1 a0
...

...
. . .

al−1 . . . al−n


. (2.29)

It can also be written concisely as Ti,j = ai−j , where Ti,j is the entry (i, j) of T . Such a matrix can be

parametrized by only l + n− 1 values, leading to similar hashing with much shorter seeds.

More recently, [92] showed that the concatenation of a Toeplitz matrix with an identity matrix, commonly

referred to as modified Toeplitz matrix, also forms a universal2 family of hash functions. With this family,

in order to extract l from n bits, we would generate a l × (n− l) binary Toeplitz matrix T and concatenate

it with a l × l identity matrix I as (T , I), for instance. Thus, we only need to generate a random seed with

n− 1 bits to choose a modified Toeplitz matrix.

In a QKD protocol using Toeplitz matrices, Alice and Bob first estimate an upper bound on the side

information that Eve may have on the corrected key. Let the corrected key have n bits and that upper

bound be n− l bits. Then, they randomly choose a l × n binary (modified) Toeplitz matrix T and share

it over the authenticated public channel. Then, by applying the chosen matrix on their corrected keys,

xA and xB, they will get identical secret keys, kA = T · xA mod 2 and kB = T · xB mod 2, with high

probability.

Repeaters

As mentioned before, simple QKD implementations are still fairly limited in transmission distance due

to quantum-channel losses. These losses lead to decoherence of the transmitted quantum systems,

which become noisy and lose their information. In order to overcome this, repeaters may be used along

the communication channels. In classical communications, repeaters work by amplifying the classical

signal. This requires copying the signal. However, quantum states cannot be determined, and thus

cannot be copied. Such an attempt requires measuring the state and therefore collapses it, destroying its

information. This is known as the no-cloning theorem [93] and is also the reason Eve cannot eavesdrop

on the quantum channel without being detected. Thus, QKD repeaters must work differently.

Classical repeater The simplest type of QKD repeater is a trusted classical repeater [8], which is

composed of a receiver and a sender device. Instead of transmitting qubits over long distances, these

repeaters work by key composition. In a QKD network with one trusted classical repeater between Alice

and Bob, the following protocol is performed:

1. Alice and the repeater perform the QKD protocol to generate the shared key kAR;

2. Bob and the repeater perform the QKD protocol to generate the shared key kRB ;

3. The repeater encrypts kAR with kRB , for instance as m = kAR + kRB mod 2, and sends it to Bob;

25



4. Bob decrypts the received key by performing kAR = m+ kRB mod 2 and now shares the key kAR

with Alice.

The key is secure from Eve as long as the repeater is trusted, since it also knows the key kAR. This

trust can be relaxed with the use of DI-QKD protocols [94], which are discussed in section 2.3.1. The

above protocol is easily generalizable to the multiple-repeater case. There have been multiple real-world

implementations of QKD networks with trusted classical repeaters, such as [95–97].

Quantum repeater Another form of QKD repeater is an untrusted quantum repeater [9]. These

repeaters can be used to transmit qubits over long distances and are mostly designed for EB-QKD.

Quantum repeaters can be seen as small quantum computers which usually rely on entanglement

distillation, also known as entanglement purification, to correct for the decoherence of the quantum

channel. This consists in transforming a large number of qubit pairs, which became less entangled due

to noise, into a smaller number of qubit pairs with higher entanglement through local operations and

classical communication. It is done by entangling Alice’s qubits with qubits on the repeater and entangling

another set of qubits on the repeater with Bob’s qubits. Then, local operations are performed on all qubits

of the repeater, and the results communicated to Bob, such that Alice’s qubits become entangled with

Bob’s qubits. This is also referred to as entanglement swapping [98]. Networks with multiple quantum

repeaters may perform entanglement swapping in a nested fashion [9]. Since these repeaters establish

entanglement directly between Alice and Bob, and this entanglement can be tested for with specific

measurements, the security of networks with such repeaters does not rely on the repeaters.

Quantum repeaters can also rely on quantum-error-correction codes [99]. However, such repeaters

would require a very large amount of entangled qubits and are currently impractical.

The recent proof-of-concept experiment performed by [100] is the first physical realization of a quantum

repeater. However, there are no networks with quantum repeaters implemented outside a laboratory

yet [5].

2.3 Side channels

Even though QKD is information-theoretically secure, its implementations may not be. As mentioned

in section 1.1, this occurs due to unintended side-channel leakages in the physical devices used in the

protocols being correlated with the internal state of such devices, which is itself related to the generated

key. By interacting with and exploiting these physical side channels rather than the abstract protocol,

Eve can obtain information about the generated key without being detected. Hence, all cryptographic

implementations must take the possible side-channel attacks into account to guarantee security.

In classical cryptographic implementations, commonly exploited side channels are the power consump-

tion, or power trace, of the used devices [10], the electromagnetic radiation emanated from them [11],

the sound produced by them during the protocol [12], their cache state during the protocol [101] and

the time taken to perform specific steps of the protocol [102], for instance. In QKD, the most exploited

side channels are related to the quantum processing of the protocols, namely the state preparation,

distribution and measurement [5]. Nevertheless, the devices used in most steps of a QKD protocol, from

26



state preparation and measurement to error correction and privacy amplification, may also be vulnerable

to the side channels common in classical implementations, even though these are not taken into account

often. As mentioned in section 1.1, we will refer to the latter as classical side channels and to the ones

related to the quantum processing of QKD protocols as quantum side channels.

Since side channels are directly related to the devices used in implementations, side-channel attacks

are generally implementation specific. Side-channel attacks can be divided into two phases [103]. The

first is an optional preparation phase in which Eve profiles and characterizes the leakages with a possibly-

simulated device similar to the one on which she intends to perform the attack. The second phase is the

exploitation phase in which she performs the attack on the real target device with the intent of extracting

information about the secret key.

In general, when the key length is large, fully characterizing the leakages usually requires processing

very large amounts of data. Since this is typically unfeasible, a sample of those leakages is commonly

used to design a side-channel attack [103]. The best way to characterize a side channel from a sample of

leakages is still an open problem.

An attack based on a probability distribution built from a sample of leakages is known as a template

attack [104] and is assumed to be the strongest type of side-channel attack. Therefore, these are

commonly used to evaluate the security limits of devices with leakages.

2.3.1 Side-channel attacks in QKD

Here, we review some of the main side-channel attacks demonstrated in QKD implementations and

proposed countermeasures. We start with quantum-side-channels attacks due to chronological order.

Quantum-side-channel attacks and countermeasures

There have been several quantum attacks proposed in the literature, targeting both source and

detection components. Let us start with a description of some of the main source-targeting quantum

attacks and their countermeasures.

Photon-number-splitting attack The first proposed attack to target source components was the

PNS attack [41]. In a PNS attack, Eve takes advantage of the coherence of multi-photon sources. She

first measures each photon pulse sent through the quantum channel to know its photon number. If the

pulse contains a single photon, she blocks it. Otherwise, she keeps a few photons of each pulse stored

in a quantum memory. Since Bob only measures undisturbed photons, she remains undetected. After

all the classical communication is performed, Eve can measure her stolen photons according to the

information disclosed through the public channel to obtain information about the secret key. For instance,

in the BB84 protocol, Alice reveals all measurement bases, so Eve can use them to obtain the raw key

and perform the same postprocessing as Alice and Bob to acquire their secret key.

As mentioned before, the SARG04 protocol was proposed as PNS-resistant protocol. In it, instead of

directly revealing her bases, Alice reveals pairs of non-orthogonal states in which her bits might have been

encoded. This way, Eve does not know which bases to use for her photons. Another countermeasure
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to the PNS attack are protocols which use decoy states to detect it [105]. In these protocols, Alice

prepares pulses with varying intensity on purpose. The pulses with higher intensity contain more photons

and are decoy states. After Bob measures the pulses, Alice reveals the intensities she used for each

pulse and Bob can compute the detection rate for each intensity. If Eve performed a PNS attack, she

blocked single-photon pulses, therefore changing the detection rates for signal and decoy states differently.

Therefore, she is forced to let most single-photon pulses pass to avoid being detected and cannot known

most key bits. Currently, most implemented QKD protocols use decoy states [58].

Phase-remapping attack In the phase-remapping attack on phase-encoding implementations [106],

Eve may use an optical delay line on the quantum channel to change the arrival time of pulses on the

phase modulators such that she can bias the encoded phase in each pulse. This allows her to intercept

and resend pulses while introducing an error rate small enough not to be detected. This way, Eve can

obtain most, if not all, of the secret key. Therefore, in implementations vulnerable to this attack, Alice and

Bob must decrease their allowed error rate to a value low enough to detect this attack. This leads to a

significant decrease in the key rate of the protocol.

Laser-seeding attack The laser-seeding attack [107] works on semiconductor-laser-diode sources,

which are the most used sources in both research and commercial QKD systems [58]. In this attack, Eve

injects photons from an external source into the setup source through the quantum channel. If these

external photons have enough energy, they trigger pulses from the setup source and are thus known as

seed photons. By controlling the phase of the injected photons, Eve can control the phase of the triggered

pulses. This violates the common assumption that the phase of generated pulses is uniformly random

and Eve can use this knowledge to obtain the secret key without being detected. A countermeasure is to

actively randomize the phase of the pulses after generating them.

In QKD implementations, detection components are generally more vulnerable than source de-

vices [58]. Most detector-targeting attacks are faked-state attacks [108]. These are a type of intercept-

and-resend attack which exploits detector imperfections. In them, instead of trying to reconstruct the

original state, Eve resends carefully-prepared states which allow her to infer the detection results. We

now describe some of the main quantum attacks targeting detection components.

Faked-state attack (1) This faked-state attack [109] exploits the detection-efficiency mismatch of

two detectors. A slight time-dependent mismatch is common in real implementations due to the finite

manufacturing precision in detection components. Such mismatch can also be induced by Eve during

calibration of the implementation [110]. In this attack, Eve intercepts each pulse from the source and

measures it in a random basis, obtaining a bit. Then, she resends a state encoding the opposite bit

prepared in the basis opposite to the one she chose. By carefully timing this process, she can send the

faked state when the detector which measures that opposite bit has a lower detection efficiency than

the other detector. This way, by increasing the rate of inconclusive measurements, Eve can lower the

error rate and obtain the full secret key without being detected. Thus, it is crucial to fully characterize the

detectors and either actively check the timing of incoming pulses or randomly shift the detection time

window of the detectors, for instance.
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Time-shift attack Based on the faked-state attack (1), the time-shift attack was proposed [111].

This attack is a simpler version of the faked-state attack (1) which also exploits the detection-efficiency

mismatch of two detectors. In it, Eve uses an optical delay line on the quantum channel to change the

arrival time of pulses such that they arrive when one of the detectors has a much lower detection efficiency

than the other. This way, if Bob reports a conclusive measurement, Eve will know which bit he measured

with high probability. Moreover, Eve can shift half of the pulses forward and half backward in time to

preserve the distribution of ones and zeros such that she is not detected. The same countermeasures for

the faked-state attack (1) can be applied for this attack.

Polarization-shift attack The polarization-shift attack [112] also exploits the detection-efficiency

mismatch, particularly of superconducting single-photon detectors in phase-encoding implementations.

These detectors have a polarization-dependent detection efficiency and a slight mismatch is common

due to the finite precision of real implementations. Thus, Eve can find two polarizations such that one

detector has a much higher detection efficiency than the other, and vice-versa. This way, she can use a

polarization modulator in the quantum channel to rotate the polarization of pulses to one of those two

polarizations. The rest of the attack proceeds similarly to the time-shift attack. A countermeasure is to

use a polarization filter in the decoder setup to filter out problematic polarization components.

Detector-blinding attack The detector-blinding attack [113] is another faked-state attack. In it, Eve

sends intense continuous light to the avalanche-photodiode detectors. This forces the detectors to work

in linear mode, where they do not detect single photons. In linear mode, these detectors produce currents

proportional to the intensity of the input pulses. This operation is called detector blinding. After blinding

the detectors, Eve intercepts each pulse from the source and measures it in a random basis, obtaining a

bit. Then, she resends a state encoding the opposite bit prepared in the basis opposite to the one she

chose, as in the faked-state attack (1). By carefully calibrating the pulse intensity, setting it in the order of

millions of photons, the following scenarios occur if Eve uses the same basis as Alice and detects the

correct bit:

• If Bob also chooses the same basis, then one of his detectors will register a photon and Alice, Bob

and Eve will share the same bit;

• If Bob chooses the opposite basis, the optical power of the pulse will be equally divided between the

two detectors and the voltage spike in both detectors will be below the detection threshold. Thus,

he will register a photon loss.

On the other hand, if Eve uses the basis opposite to Alice’s, then:

• If Bob chooses the same basis as Eve, he will have chosen the basis opposite to Alice’s;

• If Bob chooses the basis opposite to Eve’s, he registers a photon loss.

After sifting the bits and discarding inconclusive and opposite-basis measurements, Alice, Bob and Eve

will share similar raw keys and, after postprocessing, Eve will have obtained the secret key without being

detected. This attack is also applicable to superconducting single-photon detectors [114]. A possible
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countermeasure is to use a power meter to monitor the power of the pulses at the entrance of the decoder

setup.

After-gate attack This attack [115] is another faked-state attack which proceeds very similarly to

the detector-blinding attack and works on gated avalanche-photodiode detectors. However, instead of

exploiting the linear mode of the detectors with intense continuous light, Eve does it by carefully timing

the sending of the intensity-calibrated pulses. During the detection time window, the gate voltage of

these detectors rises, plateaus and falls. In this attack, Eve sends the pulses after the gate voltage of

the detectors falls and they enter linear mode but still register photons. The pulses must have a similar

intensity to the ones used in the detector-blinding attack and similar countermeasures may be applied.

Superlinear-detector attack This attack [116] is also similar to the last two. In it, Eve sends

the pulses during the rising or falling of the gate voltage, where the detectors are in superlinear mode.

In this mode, Eve can achieve the same results with pulses of much lower intensity, on the order of

10 to 100 photons. Thus, monitoring the power of these pulses is much harder than in the previous

two attacks. However, implementing this attack is also much harder due to the time precision required.

Superconducting single-photon detectors also have a superlinear mode and are thus vulnerable to this

attack [116]. Randomly shifting the detection time window of the detectors is a possible countermeasure.

Laser-damage attack Eve can go beyond blinding the detectors to damaging them with high-

intensity continuous light [117]. This can permanently change the detectors’ properties, leading to

multiple possible attacks. For instance, Eve may be able to remotely control the detection efficiency and

dark-count rate through damage, which violates the assumptions of most security proofs. Moreover,

by intentionally lowering the dark-count rate, which leads to a lower error rate, Eve can more easily

use faked-state attacks, for instance. Eve can also damage only one of the detectors to generate a

detection-efficiency mismatch, which can be exploited with the faked-state attack (1) or the time-shift

attack, for instance. Finally, Eve can use such intense light that it melts some components, creating an

open circuit. This can be used to destroy power monitors before employing a detector-blinding attack. A

possible countermeasure is to frequently characterize the implementation components during operation

to ensure the validity of their initial characterization.

Detector-dead-time attack Between detection events, detectors need a finite amount of time to

recover, in which they cannot register any photons. This is referred to as dead time. Eve can exploit the

dead time of the detectors by timing pulses such that they arrive during the dead time after the previous

detection [118]. This way, if both measurements were conclusive, they must be perfectly anticorrelated,

corresponding to opposite bit values. Eve can do this for long pulse sequences, correlating them such that

she only needs to guess the first bit of each sequence. This way, she is able to obtain a significant amount

of information about the key without being detected. A possible countermeasure is to disable all detectors

during the dead time of any of them. However, this is technically challenging at high transmission rates.

Another option is to monitor the dead time of the detectors and discard all bits obtained during the dead

time of any detector. In high-speed QKD, this can lead to a significant decrease in the key rate.

Detector-backflash attack After a detection event, avalanche-photodiode detectors have a probabil-

ity of emitting backflash fluorescence light [119]. Eve can measure these backflash pulses in the quantum
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channel to gain information about which detector registered a photon. Possible countermeasures are

using light filters to prevent the backpropagation of light with the typical properties of backflash light or

using other types of detectors [5].

Wavelength-dependent attack This faked-state attack [120] explores the wavelength dependence

of beam splitters used in the decoder setup. A calibrated beam splitter shows equal reflectivity and

transmittivity for photons with the chosen wavelength. However, these properties usually depend on

the wavelength of the photons, becoming highly unbalanced for certain wavelengths. Thus, Eve can

send photons of specific wavelengths such that she controls the path they take on the decoder with

high probability. This allows her to infer the raw key without significantly increasing the error rate. A

countermeasure is to use a wavelength filter on the entrance of the decoder setup. Moreover, instead of

passively relying on beam splitters, actively choosing the decoding measurement basis with a trusted

quantum random-number generator is also an option.

A well-known attack which can target either source or detection components is the trojan-horse

attack [121].

Trojan-horse attack The trojan-horse attack was initially known as large-pulse attack [122]. In it,

Eve sends intense pulses to either the encoder or decoder setup. Then, she measures the low-intensity

pulses that are naturally backscattered to know the basis choice of either setup or even which detector

has registered a photon. Similarly to some of the previous attacks, a countermeasure is to monitor

the power of the pulses entering the encoder and decoder setups. Another countermeasure is to use

carefully-timed optical isolators to prevent pulses from entering the encoder setup and backscattered

pulses from exiting the decoder setup. These isolators are usually wavelength dependent, so wavelength

filters should also be used.

Several other attacks and corresponding security patches have been proposed and analysed [5].

We note that most proposed countermeasures can only reduce the leaked information, not eliminate it

completely. Thus, the upper bound on Eve’s information used in privacy amplification should take into

account the possible remaining side-channel leakages. Moreover, security patches may introduce new

side channels in the implementation.

Besides specific security patches, other approaches have been proposed based on modifying the

QKD protocols themselves and refining the security proofs to remove as many side channels as possible

from implementations. As mentioned in section 1.1, a known class of protocols resulting from these

efforts is MDI-QKD [13]. MDI-QKD protocols are provably secure even with untrusted measurement

devices. Thus, they remove all quantum side channels from the detection components, leaving only

the source components possibly exposed. In MDI-QKD protocols, both Alice and Bob generate specific

states which they send to an untrusted relay. Then, this relay measures both states simultaneously and

shares the results with Alice and Bob through the public channel. These measurements are such that

their results do not reveal Alice and Bob’s shared bits. Moreover, Alice and Bob may verify the honesty of

the relay by simply comparing a subset of the measurement results. MDI-QKD can be implemented with

quantum channels as lossy and single-photon detectors as efficient as the ones used for standard QKD

protocols, such as the decoy-state BB84 protocol [58]. In fact, MDI-QKD has already been successfully

31



implemented in the real world [123]. While it yields considerably smaller key rates than standard QKD

protocols, they are sufficiently large for use in real-world communications [58].

Another class of QKD protocols which removes side-channels from implementations is the already-

mentioned DI-QKD [14]. These protocols are provably secure without the need to fully characterize the

various implementation components. Thus, they arguably remove all quantum side channels from all

implementation components. In DI-QKD protocols, self-testing of the devices is employed to guarantee

their honesty. These tests are designed such that they can only be passed if the devices execute the

protocol securely. In the most-well-known DI-QKD protocols, Alice and Bob assess security by testing an

appropriate Bell’s inequality, such as the CHSH inequality, for their entangled qubits. If this inequality

is violated, quantum correlations are still present and indicate no tampering by Eve. DI-QKD is still

highly impractical since it requires a nearly-lossless quantum channel and almost-perfect single-photon

detectors to guarantee security [58]. Moreover, DI-QKD protocols yield much smaller key rates than

MDI-QKD protocols [5]. The first proof-of-concept implementation of a DI-QKD protocol was realized over

2 meters of optical fiber only months ago [124].

Classical-side-channel attacks and countermeasures

There has been far less focus on preventing classical-side-channel attacks on QKD implementations.

Here, we describe all proposals of such attacks and countermeasures so far, according to the targeted

protocol step. Most of them are very recent.

Electromagnetic-radiation attack on state preparation There are two main categories of

electromagnetic-radiation attacks, simple electromagnetic analysis (SEMA) and differential electromag-

netic analysis (DEMA) [11]. SEMA involves interpreting the electromagnetic traces visually to determine

which patterns correspond to which bits. DEMA involves statistically analysing multiple traces for the

same purpose and is more robust against noise. In [18], they used SEMA to analyse the electromagnetic

radiation emanated from the encoder of the plug-&-play phase-encoding implementation of the BB84

protocol demonstrated in [125]. They captured a single electromagnetic trace from the encoder’s phase

modulator and were able to classify all subtraces into one of four classes corresponding to each phase

applied to the states. Thus, by identifying all prepared states, they devised an attack able to obtain the

full raw key without being detected. No countermeasures were provided. However, we suggest using a

shielding material of low permeability to reduce electromagnetic radiation and an electromagnetic jammer

to saturate any probe with noise.

Electromagnetic-radiation attack on state measurement In [19], they were able to detect radio-

wave signals radiated from avalanche-photodiode detectors after detection events. By first analysing the

specific signature of such signals with a source similar to the one used in the implementation, Eve can

identify which detector registered a photon during the execution of the protocol, thus obtaining the raw key.

The same countermeasures for the previous attack can be applied to detectors. Moreover, placing the

detectors as close to each other as possible also increases the interference of radiated electromagnetic

signals, decreasing their signal-to-noise ratio.
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Timing attack on sifting Some QKD implementations distinguish the signal photons from back-

ground noise by also measuring the arrival time of photons on the detectors. This timing information is

revealed during public communication for sifting purposes. In [15], by analysing the time distributions of

detection events on a setup with four avalanche-photodiode detectors, they were able to identify different

centroids for all detectors, with separations on the order of 10 to 100 ps. These were enough for Eve

to infer a reasonable portion of the secret key. This side channel can be easily addressed by careful

calibration of detection times and by truncating the reported time values to a precision which does not

disclose more than enough information to distinguish signal from background noise. The remaining

leakage should then be taken into account in privacy amplification.

Power-consumption attack on error correction There are also two main categories of power-

consumption attacks, simple power analysis (SPA) and differential power analysis (DPA) [10], analogous

to SEMA and DEMA. The same group of the electromagnetic-radiation attack in [18] also analysed the

power consumption of the error-correction step of the same plug-&-play implementation [16]. The error

correction was done with LDPC codes. They captured a single power trace of Alice’s system during her

syndrome computation. With SPA, they classified every subtrace into one of two classes corresponding

to a computation resulting in a bit 0 or 1. Since the parity-check matrix and the syndrome are known,

they were able to reconstruct the raw key. We note that, even if the syndrome was not public, this attack

would be able to reconstruct it too. Since Alice’s raw key is equal to the corrected key, they only needed

to perform the same privacy amplification as Alice and Bob to obtain the secret key. This attack is valid

for any implementation using LDPC codes. Their proposed countermeasure is to apply a secret random

permutation on the rows of the parity-check matrix to scramble the bits of the syndrome. However,

we note that Eve could still obtain some information from this attack. She would know the number of

zeros and ones of the syndrome, m0 and m1, respectively. Thus, for a syndrome of length m, instead of

having to guess the syndrome from a set of 2m possibilities, she would reduce that set to
(
m
m0

)
= m!

m0!m1!

possibilities. This should be taken into account in privacy amplification.

Later, the same group extended the attack to more general error-correction algorithms which compute

the parity of bit sequences, such as the cascade protocol, the Winnow protocol and LDPC codes [17].

Using a single power trace with a high signal-to-noise ratio and the public communication of Alice and

Bob, they were also able to obtain the full raw key for the cascade and Winnow protocols. Executing these

protocols with the public information disclosed by Alice and Bob, they could obtain the corrected key.

When they increased the noise present in the power trace, their success rate progressively decreased

from 100% to 78.4%. Their proposed countermeasures are to use dedicated circuits to generate noise in

parallel to the computation, execute dummy operations during computation to hide the real operations or

randomly shuffle the order of operations in parity computations. We note that random shuffling cannot be

easily applied to the cascade protocol since the interactive binary search requires the parity computations

to be performed in a specific order.

Cache attack on error correction Caches are small memories in processing units used to store

information for faster access. In [20], they developed a program-analysis software to analyse the

cache state of cryptographic software and upper bound the cache leakage. They used it to test the
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postprocessing software of an implementation of the BB84 protocol from [126]. Its error-correction

protocol uses LDPC codes. A significant cache leakage in the encoding step of error correction was

found. With it, they were able to reconstruct the entire raw key. Their proposed countermeasure is a

hybrid of software rewriting and increased privacy amplification to minimize the key rate decrease.

Cache side channel in privacy amplification The same group of the previous cache attack had

previously used another program-analysis software to analyse the cache state of a simplified version of

the privacy-amplification software of the same implementation [127]. This privacy-amplification software

uses Toeplitz matrices. They found that the cache state leaked no bits correlated to the secret key, so the

software is resistant to cache attacks.

We note that, while most articles on MDI- and DI-QKD argue that they remove most or all side

channels from an implementation, they are usually referring to quantum side channels. In fact, we claim

that these protocols may still be exposed to classical side channels.

In order to contribute to the research on classical-side-channel attacks on QKD implementations, we

will analyse simulated power traces from a privacy-amplification protocol, based on matrix hashing, using

machine-learning techniques.

2.4 Machine learning

Machine learning is a subfield of artificial intelligence which provides an automated way of doing data

analysis. It encompasses a set of methods which automatically detect patterns in data and use them to

predict new data or make decisions involving uncertainty [128].

There are three main approaches to machine learning which depend on the data available [128]:

supervised learning, unsupervised learning and reinforcement learning. In supervised learning, the

models receive a dataset with inputs and their desired outputs and their goal is to learn a mapping from

inputs to outputs. If the output variable, usually called target variable, is categorical or nominal, being

described by a finite set of values, the problem is known as classification. On the other side, if the output

variable is continuous, the problem is known as regression. In unsupervised learning, the models receive

only a dataset with inputs and no outputs and their goal is to find possibly-hidden patterns in their inputs.

Another less common approach, which falls between the last two, is semi-supervised learning. In it, only

part of the input data has an associated output. This approach is useful when it is not feasible to acquire

a large-enough dataset of output-labeled data. Finally, in reinforcement learning, the models learn which

decisions to make based on reward and punishment signals, also called positive and negative feedback.

Instead of receiving an input dataset, the models receive data by interacting with an environment and their

goal is to maximize their positive feedback. In our analysis, we will deal with a supervised classification

problem.
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2.4.1 Data in supervised learning

In a supervised-learning problem, the data consists of multiple individual samples, commonly called

records [129]. Usually, records are a set of variables, also called features. A dataset consisting of N

records, each with m features, is represented by a N × m matrix. At least one of the m columns is

considered a target feature. There are other types of records, such as images or text, but we will not deal

with them in our analysis.

There are multiple approaches when it comes to training the models [128]. The simplest approach is

splitting the records into training, validation and testing datasets. The training dataset is used to train

the models. Usually, multiple models are trained. Then, the validation dataset is used to evaluate those

models in order to choose the best model. Finally, the testing dataset is used to evaluate the chosen model

in order to measure its generalization ability, i.e., its performance when predicting outputs for previously-

unseen data. One should not use the validation dataset directly for measuring the generalization

performance of a model since we already use it to choose a model based on its performance on that

data compared to other models. Doing so would introduce a bias in the analysis, possibly leading to

an overestimation of the model’s general performance [128]. This is a type of information leakage,

which generally occurs when we use data already used in the training process for testing the model’s

performance, or when we use data in the training process which are generally not available at the time of

prediction of unseen data. Information leakage generally leads to an overestimation of the generalization

performance, and may even lead to choosing a suboptimal model due to decision bias.

Another approach to model training is to split the records into a training dataset and a testing dataset,

and use the training dataset in a process called cross validation, which is described in section 2.4.4. This

approach is more computationally expensive. Nevertheless, it is the recommended approach for most

problems since it allows us to use more data for training, which tends to result in a better-performing

model. Therefore, we chose this approach.

2.4.2 Preprocessing data

Before training the models, the data is usually preprocessed [128]. Preprocessing consists not only

in splitting the records, but also in removing redundant or irrelevant features and even errors. It is also

crucial to remove inconsistencies in the data.

A common way to split independent and identically-distributed data is to use a stratified random

sampler. This sampler splits the records randomly into sets containing approximately the same percentage

of records, for each value of the target feature, as the full dataset. Therefore, the training and testing

datasets are chosen without bias while any imbalance in the target-feature distribution is preserved.

Of the multiple possible transformations, we will only resort to scaling the data. The most common

scaling transformations include [129]:

• Scaling all features individually to a certain range, such as [0, 1];
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• Standardizing all features individually, i.e., centering them by subtracting their mean and scaling

them by dividing by their standard deviation. Thus, standardizing is scaling the data to have mean 0

and variance 1;

• Scaling all features individually by subtracting their median and dividing by the range between the

first and the third quartiles, also called the interquartile range. Then, all features will have median 0

and interquartile range 1.

We note that the first scaling may be a more robust transformation for features with very small standard

deviations, since it prevents values from becoming very large. On the other side, using the median and

interquartile range, instead of the mean and standard deviation, prevents extreme values, also called

outliers, from distorting the remaining values excessively, since the former metrics are more robust to

outliers than the latter.

We also note that, while these transformations are worthless for some models, such as tree-based

algorithms, which are based on variable partitioning and do not consider the variable magnitude, they

can be crucial for algorithms which depend on the variable distribution or on the relative scale between

variables, such as the logistic regression, the k-nearest-neighbours (kNN) algorithm and the support-

vector machine (SVM) [130]. All these models will be briefly described below, with more in-depth

mathematical descriptions provided in appendix A.

2.4.3 Models

Multiple models may be used in a classification problem. These models contain two types of

parameters [131]. We call parameters to the variables which are iteratively and automatically adjusted

during training so that the models improve their predictive ability, and hyperparameters to the variables

which we manually adjust before training each model. The hyperparameter space is composed of all

possible combinations of hyperparameters for each model. We usually refer to a model with a different

combination of hyperparameters as a different model. In practice, we test a finite number of points in the

hyperparameter space and use a validation dataset to choose the best one for each model [131].

Below, we briefly describe the models used in our analysis. We refer the interested reader to

appendix A, where we provide a mathematical description of these models in a reasonably self-contained

way, along with explanations of their respective hyperparameters.

Logistic regression The logistic regression [128], also known as logit regression, is a generalized

linear model used for classification, despite its name. Given a set of features and a corresponding target,

the logistic regression tries to predict the probability of the target values based on the features. It bases

its predictions on the logistic function

σ(x) =
1

1 + exp(−x)
, (2.30)

using as its argument the scalar product of the vector of input features with a weight vector which

describes how each feature influences the predictions.
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If our goal is to obtain a target-value prediction instead of a probability, we simply define a threshold

probability, such as 0.5, above which we consider the predicted target to be 1, and below which we

consider it to be 0 [130].

k-nearest neighbours (kNN) The kNN algorithm is a non-parametric supervised-learning model [132].

By non-parametric, we mean there is no set of parameters which summarizes the training procedure like

the final weights in a logistic regression. Instead, the model learning is based on memorization of the

training records, with a prediction obtained by comparing the new record with the memorized records.

Therefore, the cost of classifying new records can be higher than in parametric models, since most

computation takes place at the time of classification.

When classifying a new record, kNN finds the k training records closest to that record, according to

a specified distance metric, and classifies the new target according to the targets of those k records.

The number of neighbours, k, is user-specified. A large k reduces the effects of noise, but makes the

classification boundaries less distinct.

The relative scale between the features dictates which features dominate the classification pro-

cess [130]. Therefore, as mentioned in section 2.4.2, it is crucial to preprocess the features by rescaling

them to prevent irrelevant features from dominating the model.

For high-dimensional input spaces, i.e., as the number of features increases, kNN’s performance

tends to deteriorate quickly [128]. This is because, generally, only a few of those features will be relevant

to describing the target. Therefore, the distance between records becomes dominated by the large

number of irrelevant features, turning into an unreliable metric.

Even though kNN is a simple model, with a good distance metric and enough training data, it can

work quite well. In fact, it was shown in [133] that, as the number of training records N →∞, the error

rate of a kNN with k = 1 is never more than twice the optimal error rate.

Naïve Bayes Naïve Bayes methods [128] are a family of supervised-learning algorithms which

"naively" assume conditional independence between every pair of input features, given the target value.

They use this assumption to simplify the computation of the probability of the target values based on the

features using Bayes’ theorem as

P (y|x) = P (y)P (x|y)
P (x)

≡ Posterior =
Prior× Likelihood

Evidence
. (2.31)

Different variations of naïve Bayes models may be used depending on the nature of the input

features [128]. These variations differ on the assumptions made about the distribution of the likelihood.

For continuous features, it is usual to assume the likelihood to be a product of Gaussian distributions and

the model is known as Gaussian naïve Bayes. For discrete features, it is common to use a multinomial

naïve Bayes, which assumes a multinomial likelihood distribution. This model is most-commonly used for

tasks such as text classification, where each feature is the number of times a specific word appears in a

text. However, its implementations also work with continuous variables [130]. As shown in appendix A.3,

it is interesting note that the multinomial naïve Bayes becomes a linear model when we want to find

the logarithm of the posterior probabilities. Finally, when dealing with purely categorical features, the
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categorical naïve Bayes is commonly chosen. This model assumes the likelihood to be a product of

categorical or multinoulli distributions. The implementations of this algorithm also tend to work with

continuous variables [130]. These three models are described mathematically in appendix A.3.

In practice, it might be useful to test all methods for some problems, since the categorical naïve Bayes

model can adapt particularly well to some continuous data, for instance [130].

It is worth noting that, even if the naïve Bayes assumption (A.5) is not true, the naïve Bayes approach

often produces classifiers which work well even with few training records [134]. This is due to the simplicity

of these models, which makes them relatively immune to overfitting the training data. The phenomenon of

overfitting is more precisely described in section 2.4.4. Nevertheless, even though these can be decent

classifiers, the predicted probabilities themselves are known to be poor estimates and should not be

considered seriously [135].

Support-vector machine (SVM) SVMs are another family of supervised-learning algorithms [136].

These are based on Vapnik-Chervonenkis (VC) theory [137], a form of statistical learning theory. The

goal of SVMs is to find the optimal hyperplane for separating the records according to their target value.

This is done by maximizing the minimum distance between the data points of each target value and the

hyperplane. This distance is also known as the margin. In general, the larger the margin, the higher the

generalization performance the SVM has.

The data points, of each target value, closer to the optimal hyperplane fully define its position and

orientation. These data points are known as support vectors. For a linearly-separable problem, these

data points sit on the margin boundaries. A representation of this case is presented in figure 2.3. If

the problem is not linearly separable, the support vectors are the data points on or within the margin

boundaries or on the wrong side of the hyperplane. Note that only the support vectors are needed to

build the SVM model, thus making it a memory-efficient model [128].

Figure 2.3: Example of the optimal hyperplane for a linearly-separable binary problem. The marked data
points are the support vectors.

In addition to linear classification, SVMs are also able to efficiently perform non-linear classification

by implicitly mapping the input features into higher-dimensional spaces. This is was proposed in [136]

and is done by applying a technique known as the kernel trick. In theory, we first transform the input-

feature space and then apply the linear SVM algorithm. This creates a linear model in the transformed
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input-feature space, but a non-linear one in the original input-feature space.

The feature mapping is defined by a kernel function, which takes the form

k(x,x′) = ϕ(x)Tϕ(x′), (2.32)

where its arguments are vectors of input features and ϕ(x) is a specific feature-space mapping.

Commonly-used non-linear kernel functions are the gaussian radial-basis function (RBF), polynomial

functions and the sigmoid function [128], all defined in appendix A.4. If we set k(x,x′) = xT · x′, we

obtain the linear SVM [128].

Since SVMs do not scale well to large training datasets, in order to speed up computation, it is

common to use kernel-approximation techniques, such as the Nyström method [138]. These techniques

numerically approximate the feature-space mapping ϕ(x) corresponding to a particular kernel function.

As is the case with kNN, SVMs are not scale invariant. Thus, it is highly recommended to scale the

input features with one of the methods presented in section 2.4.2 to obtain a good performance [130].

Although SVMs do not directly provide probability estimates, these can be computed with techniques

such as Platt scaling [139], in which a logistic regression is trained with the SVM’s target predictions using

a technique named cross validation, which is described in section 2.4.4. However, this approach can be

much more computationally expensive than the non-probabilistic one.

Despite requiring considerable computational resources for high-dimensional spaces, SVMs are known

to be effective even when the number of features is greater than the number of training records [131].

Nevertheless, a proper choice of kernel function and hyperparameters is crucial to prevent overfitting of

the model to the training data.

Decision tree Decision trees [128] are non-parametric models used in supervised learning. These

models recursively partition the input-feature space with axis-parallel splits, i.e, one feature at a time, and

assign either a target value or a probability to each subregion.

However, finding the optimal partitioning of the input-feature space is a NP-complete problem [140].

Thus, although the correctness of a solution can be verified quickly, in polynomial time, finding a solution

requires a brute-force search. This can quickly become unfeasible for high-dimensional feature spaces.

Therefore, this partitioning is usually done with a greedy algorithm, which performs locally-optimal splits.

Even though this algorithm cannot guarantee a globally-optimal solution, it finds a locally-optimal solution

in a reasonable amount of time.

It starts by choosing the input feature and splitting threshold which optimally divide the set of training

records into two subsets, according to their target value. This first decision can be represented in a

diagram by a decision node, known as the root node, and the chosen feature is the most informative input

feature for describing the target variable. The two resulting subsets are then divided recursively, using the

same procedure, until the final subsets fulfil certain stopping criteria. Each decision may be represented

by a decision node branching off from the previous decision node, and the final subsets are described by

nodes, known as leaves, branching off from the last decisions. The output prediction for a new record

may be obtained by starting from the root node and traversing the decision-tree diagram according to
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each decision criterion.

Since decision trees correspond to sequences of binary decisions applied to individual input features,

they can be easily visualized and are therefore easy to interpret. An example of a decision tree for a

problem in 2 dimensions is presented in figures 2.4a and 2.4b.

(a) Decision-tree diagram. (b) Input-feature space partitioned by decision tree.

Figure 2.4: Example of decision-tree model for a 2-dimensional problem.

The prediction value of a classification decision tree is either the most common target value of the

records in each leaf or the probability of a record classified into a leaf having a specific target value [130].

In regression decision trees, the prediction value is usually the mean or the median target value of the

records in each leaf.

Decision trees are very prone to overfitting the training data in high-dimensional spaces when we

have few training records [130]. Therefore, it is common to use stopping criteria to improve a decision

tree’s generalization ability. These are also called pre-pruning strategies [130]. A common one is to allow

the tree to grow only to a user-specified depth. The depth of a decision tree is defined as the number of

nodes in the longest one-way traversal of the tree from the root node to a leaf. Other common pre-pruning

strategies are limiting the total number of leaves, defining the minimum number of training records required

to be at a leaf or to be at a decision node for it to be split, and defining the minimum reduction in impurity

allowed for a split to happen. The impurity of a set refers to the target-value proportions of its records.

A set of records with the same target value is said to be pure. The reduction in impurity associated

with a split is mathematically defined in appendix A.5. Another strategy to improve the generalization

performance of a decision tree is to introduce randomness into the training process by considering only a

random subset of the input features when looking for the best split in each node.

Setting strict values for the pre-pruning strategies mentioned above may also lead to very sub-

optimal models. For instance, setting a large minimum reduction in impurity for a split to happen can

be counterproductive since it is often found empirically [131] that some optimal splits do not lead to

significant impurity decreases, but following splits do. For this reason, it is usual to use more tolerant

pre-pruning strategies and, at the end, employ a post-pruning strategy [131]. This may be done by testing

all decision-tree variations obtained by removing a subset of the internal decision nodes from the trained
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tree, and choosing the decision tree with the best generalization performance, for instance.

One advantage of decision trees is they require little data preprocessing, not needing any feature

scaling, for instance. Moreover, they are robust to irrelevant features, since only the most informative

features will be selected for a split. In fact, the hierarchy of decisions reflects the ability of the features to

explain the target variable, with the features associated with splits closer to the root node having greater

importance.

However, decision trees are known to be highly unstable, with a small change in the training data

potentially resulting in a completely different tree structure and, therefore, final predictions [128].

Random forest One way of reducing the instability of decision trees is by using them in ensem-

ble methods. These combine the predictions of multiple base models to improve that base model’s

generalization ability [128].

One such method is bootstrap aggregation, also known as bagging and proposed in [141]. In it, a

user-defined number of base models are trained with bootstrapped samples, i.e., a subset of the training

dataset randomly drawn with replacement. This introduction of randomness helps build a model with a

higher generalization performance. The final prediction of a bagging model is either given by a majority

voting or an average of the outputs of the base models. When the base model is a decision tree, the

ensemble method is known as random forest [142].

It is important to note that simply using bootstrapped training samples tends to create highly-correlated

models, since we draw the samples from the same training dataset. This limits the possible increase in

generalization performance. We can try to decorrelate the base models by also randomly selecting a sub-

set of the input features for training each model. This helps increase the bagging model’s generalization

ability [128]. Random forests have the advantage of introducing this additional randomness in the training

process by default, since decision trees usually only consider a random subset of the input features in

each split, as mentioned above.

The performance of a random forest typically increases with the number of decision trees until it stabi-

lizes [143]. Most often, there is a threshold number of trees after which there is no significant performance

gain unless there is a large amount of computational resources available, such as a supercomputer.

In [143], the analysis of 29 real medical-domain datasets showed no significant performance gain above

128 trees. In [144], it was shown there are very particular cases where the performance of a random

forest peaks and then decreases with the further increase in the number of trees. Nevertheless, the

results of their analysis of 306 datasets from the public database OpenML were in agreement with the

findings in [143], with the largest performance gain achieved when training the first 100 trees.

By using multiple decision trees, we lose the ability to easily visualize the model. However, feature

importance can still be estimated by taking into account the average fraction of records a feature splits

when it is used in each base model, as well as the average impurity reduction of those splits [130].

Gradient-boosting machine (GBM) Another ensemble method is boosting [145], in which a user-

defined number of models are trained sequentially in such a way that the training of each model focuses

more on the training records wrongly predicted by the previous model.

41



Boosting is particularly effective at creating strong models from a set of weak models [129], i.e.,

models with a performance only slightly better than the one achieved by random guessing. Hence, the

base models for boosting are commonly known as weak learners. In fact, it was proved in [145] that

boosting could arbitrarily increase the performance of a weak learner on a training dataset provided the

weak learner always performed slightly better than random guessing. Nevertheless, it was later shown

that boosting is also effective at increasing the performance of already-strong models [146].

The most popular variant of boosting is adaptive boosting, also known as AdaBoost and proposed

in [147]. AdaBoost works by reweighting the training records as the base models are trained. Therefore,

this approach requires a model which supports training with weighted records. Usually, the implementa-

tions of all models described above support record weights, except for kNN’s [130], but decision trees

are the most-commonly-used base model for boosting [128]. Record weights are taken into account by

multiplying the contribution of a record to a loss function by that record’s weight and replacing all statistical

measures by weighted measures [131]. Intuitively, when all weights are integers, training a model with

weighted records is equivalent to training it with a dataset where each original record has a number of

copies specified by its weight.

In AdaBoost, the first model is trained on the original dataset, where every record has the same

weight. Then, the weights are readjusted in such a way that wrongly-classified training records are given

larger weights than correctly-predicted ones, and a new model is trained with that reweighted dataset.

The same reweighting-and-training procedure is done for following models. This way, hard-to-predict

records gain increasing influence in the model training as iterations progress.

The record weights are updated according to a user-specified factor η ∈ (0, 1] named learning rate.

The smaller the learning rate, the more slowly the weights are updated. This leads to a trade-off between

the number of base models and the learning rate [130]. Generally, as we decrease the learning rate, we

need to train more models to achieve the same performance.

The final prediction of an AdaBoost model is an average of all base-model predictions weighted

according to the number of records wrongly predicted by each model. Models with larger error rates will

have a smaller contribution to the final prediction.

In [148], it was observed that boosting may be interpreted as an optimization problem with a particular

loss function. Later, [149] expanded on this view by showing how boosting could be extended to use

arbitrary differentiable loss functions. This approach became known as GBM.

In a GBM, the base models are regression models even in a classification problem. The most-

commonly-used base model in GBM are regression decision trees [128]. Instead of reweighting the

training dataset, these models are trained to predict the negative gradient of a loss function for each

record. In each training iteration, this loss function takes into account the predictions of the base models

trained up to that iteration, weighted in order to minimize the total loss on the training dataset. Using the

exponential loss function, defined in appendix A.8, reduces a GBM to the AdaBoost model [128].

The trade-off between the number of base models and the learning rate η present in AdaBoost also

exists for GBM [130]. Here, the learning rate controls the contribution of each base model by maintaining

or decreasing its effective weight in the ensemble after its respective training iteration. In turn, this affects
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the weights chosen for the base models trained in following iterations. Empirically, it was found that using

small learning rates usually leads to models with higher generalization ability than using η = 1 [150].

The final prediction of a GBM is a function of a weighted average of the base-model predictions.

Depending on the loss function used, the final prediction can either be the predicted target value or the

probability of the target being a specific value [128].

In [151], a variation of GBM called stochastic gradient-boosting machine was proposed. It follows

the GBM approach but trains each model with a random subset of the training dataset drawn without

replacement. As in bagging, this helps increase the generalization performance of the GBM model.

If the base model is a decision tree, feature importance can again be estimated as in random forests,

but by instead weighting the averages according to each tree’s contribution to the final model [130].

It is important to note that, since ensemble models require training a base model multiple times, they

usually demand significantly more computational resources than single models.

2.4.4 Hyperparameter optimization

It is essential to tune the hyperparameters of a model, since a particular choice of these variables may

lead to a very different performance on unseen data [131]. This is because the choice of hyperparameters

may lead to a model capturing noisy variations in the training data so that it performs better on that

data but performs poorly on unseen data. This is the already-mentioned phenomenon called overfitting

and leads to poor generalization performance. However, the opposite may also occur. A choice of

hyperparameters may lead to a model not capturing enough of the underlying structure in the training

data in a way that it performs poorly on both the training data and unseen data. This is called underfitting

and it means the model is too simple to properly represent data from that source.

The hyperparameters more closely related to overfitting are those which deal with model regulariza-

tion [131]. Introducing regularization helps prevent overfitting of a model to training data by reducing the

model’s complexity, thus improving its generalization ability. An example of the effects of regularization is

presented in figure 2.5. Both solution functions represent the given data points with zero loss. However,

the regularized solution, in green, likely generalizes better to new data points from the same source.

Figure 2.5: Example of the effects of regularization. The blue function is a non-regularized solution to
represent the data points. The green function is a regularized solution to the same problem.
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Keeping in mind that tuning hyperparameters is crucial to obtain optimal performance, we note that

optimal hyperparameter sets can be highly dependent on the data used for training [129].

Cross validation

Cross validation [128] is one of the most common approaches to hyperparameter testing. It is an

iterative resampling method which uses different parts of the data to train and validate a model in each

iteration. The most-commonly used type of cross validation is k-fold cross validation, whereby the data is

divided into k subsets, or folds. The process of splitting the data may also be stratified by using a stratified

random sampler. Then, in each iteration, k − 1 folds are used as the training dataset while the remaining

fold is used as the validation dataset. The process is repeated k times, with each of the k folds used

exactly once as the validation dataset. The validation results are then combined into a single estimate

of the model’s performance, most commonly by averaging. As mentioned before, this allows us to use

more data for training than simply using a single pair of training and validation datasets, which tends

to improve the model’s performance. Moreover, by averaging the estimates of a model on k different

validation datasets, it helps prevent selection bias by not allowing the characteristics of a particular pair

of training and validation sets to affect the performance estimate excessively. Nevertheless, it is more

computationally expensive than just using one pair of training and validation datasets since we must train

a model k times. A diagram of a 5-fold cross-validation process is shown in figure 2.6.

Figure 2.6: 5-fold cross-validation scheme.

It is important to note that the purpose of cross validation is not to build models but to guarantee

a fair assessment of a model’s generalization performance when selecting the best model. Therefore,

after using cross validation to test all sets of hyperparameters, we should retrain the final model with the

chosen set of hyperparameters on the full training set.

In order to help select the best hyperparameters for a specific model, we may use hyperparameter-

optimization techniques. There are multiple possible approaches, such as grid search, random search,
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Bayesian optimization, gradient-based techniques and evolutionary-based techniques [152]. Since the

most-common approach is to use grid search, we chose this technique.

Grid search

A grid search [152] is a brute-force hyperparameter-optimization approach which consists in exhaus-

tively training models with all combinations of hyperparameters allowed by the user, and choosing the

model which performs the best on a validation dataset. A robust way to estimate the models’ performance

is to use cross validation for each of the models.

Random search

Another very-common way to perform hyperparameter optimization is with a random search [153].

This method replaces the brute-force approach of grid search by randomly selecting points in the allowed

hyperparameter space and training models with those combinations of hyperparameters. This method can

be a less-computationally-expensive way of finding a well-performing set of hyperparameters. However,

it is not guaranteed to be the best-performing set of the allowed hyperparameter space. In the case

of continuous hyperparameters, random search can outperform grid search by testing hyperparameter

values outside the finite set which would be chosen by a user for performing a grid search.

Lower-fidelity approximation methods

Using a brute-force method like grid search can quickly require tremendous computational resources

if we allow large hyperparameter subspaces [152]. In turn, this leads to very long training times. In order

to tackle this issue, specially with the need to introduce machine learning into commercial productive

environments, research focused on developing model-selection approaches based on approximated

performance estimates, which decrease the amount of resources needed to perform hyperparameter

optimization.

In [154], a trade-off between the amount of data used to train a model and the fidelity of its performance

estimate was explored, with the author noting that testing models on a small subset of the data can be a

powerful and computationally-cheap approach to selecting a model. Subsequently-proposed techniques

involved iterative elimination schemes which dropped hyperparameter combinations: if they performed

poorly on subsets of the data [155]; if they performed poorly on just a few of the cross-validation folds [156];

if they performed worse than a group of top-performing hyperparameter combinations by a determined

factor [157]; if they performed worse than the best hyperparameter combination by a user-specified

factor [158]; and if an optimistic performance bound for those hyperparameter combinations was still

lower than the performance of the best known combination [159]. More recently, a state-of-the-art method,

called successive halving and originally introduced in [160], was proposed by [161] for hyperparameter

optimization.

Successive halving Successive halving, also referred to as SHA [162], also involves an iterative

elimination scheme. It starts the first iteration by training and evaluating models, with the n allowed
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hyperparameter combinations, in parallel and using only a fraction of a specified resource. This resource

is usually the number of records in the training dataset, but may also be the number of estimators in

ensemble methods, for instance. Then, according to a user-defined factor f , it keeps only the
⌈
n
f

⌉
top-performing hyperparameter combinations for the next iteration. In that iteration, it trains and evaluates

the kept models using f times as much of the chosen resource as in the previous iteration, keeping again

the
⌈
n
f

⌉
best-performing hyperparameter combinations. The iterations continue in this way until either the

resource is used in its entirety or there are only f hyperparameter combinations. The selected model is

the best-performing one in the last iteration.

Essentially, successive halving is a way of introducing an early-stopping criterion into either grid

search or random search. By periodically dropping low-performing hyperparameter combinations, this

approach focuses the computational resources on the most promising combinations. It can also be much

faster than grid search at testing the same hyperparameter subspace, allowing us to search much larger

subspaces with the same computational resources. In [161], successive halving outperformed both a

grid search with a uniform allocation of the same quantity of the chosen resource, and other lower-fidelity

hyperparameter-optimization methods.

Asynchronous successive halving Successive halving is a sequential algorithm which waits for

all models in a iteration to be trained and evaluated to keep the top-performing ones and move on to the

next iteration. This allows the possibility for particular hyperparameter configurations to create a large

computational bottleneck, thus slowing down the algorithm. In [162], asynchronous successive halving,

also referred to as ASHA, was proposed as a massively-parallel framework which removes the need to

evaluate and drop low-performing models synchronously, thus further speeding up the computations. In

this framework, instead of thinking of sequential iterations, we think of levels with the respective amount

of the chosen resource for training the models. Asynchronous successive halving starts by training, in

parallel, just enough models from the first level, the one with the smallest amount of the resource, so

that we are certain one of the hyperparameter combinations will be kept for the next level. We then

prioritize training the second-level model with that hyperparameter set over the remaining first-level

models. We continue in this bottom-up approach, prioritizing training models from higher levels and

always starting from the upper levels to look for possible hyperparameter-combination promotions to

the following levels. We apply the first promotion available and train that model in the next level. If no

promotions are available, we train a model with another hyperparameter set in the first level to be able

to promote more hyperparameter combinations to the upper levels. By performing all these trainings in

parallel, this ensures a near-maximal computational efficiency by fully utilizing the processor resources

most of the time.

We note that lower-fidelity methods are not guaranteed to select the best hyperparameter set of the

allowed subspace. Instead, they select an almost-optimal set with very high probability and much lower

use of computational resources. In order to be able search large hyperparameter subspaces in practical

time, for each of the used models, we opted for implementing and using a grid search with asynchronous

successive halving in our analysis.
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2.4.5 Evaluation metrics

In order to evaluate the models in the multiple steps of training and testing, evaluation metrics are

needed. Below, we detail the classification metrics we used.

Accuracy

The target accuracy [129] is the most-commonly used classification metric. It is defined as the fraction

of correct predictions. In other words, if we have N records, ŷl is the predicted output for record l and yl

is its real output, then the accuracy is defined as

Accuracy =
1

N

N∑
l=1

1
(
ŷl = yl

)
. (2.33)

In case of a dataset with similar proportions for each value of the target feature, a higher accuracy

indicates a superior model.

Hamming loss

The Hamming loss [130] is useful when we are dealing with multiple target variables at once. It is

defined as the Hamming distance between two sets of variables divided by the cardinality of those sets.

Thinking of the sets of variables as strings of symbols, the Hamming distance is the number of positions

at which the two strings have different symbols. For example, the Hamming distance between 00111

and 01011 is 2, and the corresponding Hamming loss is 2
5 . Then, the Hamming loss is the fraction of

wrongly-predicted outputs.

When evaluating multiple records at once, it is usual to consider the average Hamming loss of the

records. More precisely, for N records and m output variables, if ŷlj is the predicted value of the j-th

output for record l, and ylj is the corresponding real output, then the average Hamming loss is defined as

Hamming =
1

N ·m

N∑
l=1

m−1∑
j=0

1
(
ŷlj ̸= ylj

)
. (2.34)

Assuming all output variables are equally important, a lower average Hamming loss indicates a better

model.

Confusion matrix

In order to further evaluate a classification model, we may use a confusion matrix [129]. If the target

variable can take n values, let us assign a number from 0 to n− 1 to each of them. Then, the confusion

matrix can be built by assigning to the entry (i, j) the number of records with real target i and predicted

target j. The confusion matrix will thus be a n × n matrix. In the case of a binary target variable, we

usually denote each entry as in figure 2.7.
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Figure 2.7: Confusion matrix for a binary target variable.

From a confusion matrix, multiple metrics can be easily computed. For example, from figure 2.7, the

accuracy may be computed as

Accuracy =
True positives + True negatives

True positives + True negatives + False positives + False negatives
. (2.35)

If we are dealing with multiple target variables, we must build one confusion matrix for each target

variable.

2.4.6 Supervised-learning workflow

Let us finally summarize the workflow for this type of machine-learning analysis. In figure 2.8, we

present a flowchart of the typical supervised-learning workflow.

Figure 2.8: Flowchart of the usual supervised-learning workflow.

Firstly, we start by gathering the data and building the full dataset. Then, we split that dataset into a

training and a testing dataset. We perform the preprocessing separately on each dataset to prevent any

information leakage due to using statistics which depend on data from the other dataset, such as the

mean or the median of a feature. We subsequently define the hyperparameter subspace for each kind of

model we want to test and perform hyperparameter tuning using the training dataset and a technique

described in section 2.4.4, for instance. This will give us the best hyperparameter set for each of the

tested models, which we use to retrain that model with the full training dataset. Finally, we evaluate each

final model with the testing dataset and a chosen metric to assess its generalization performance.
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Chapter 3

Attack methodology

In this chapter, we present our proposed attack on the privacy-amplification step of a general QKD

protocol based on matrix hashing, using its power-consumption trace. In section 3.1.1, we detail the

implementation considered and how we simulated the power trace. The machine-learning techniques

used are specified in section 3.1.2, followed by a description of the attack scenarios and our approaches

in section 3.2.

3.1 Proposed attack on privacy amplification

Our proposed attack targets the privacy-amplification step of a general QKD protocol based on

matrix hashing. The goal is to estimate how many secret-key bits Eve can obtain by intercepting the

power-consumption trace of that step and extracting information from it. In order to perform that extraction,

we will use machine-learning techniques instead of the more-commonly-used SPA or DPA, mentioned in

section 2.3.1.

At the time of this thesis, there is no physical hardware, similar to that used in laboratory or commercial

QKD implementations, available to us, from which we would measure power consumption. Therefore, we

will simulate a physical system for privacy amplification. Then, we will run multiple privacy amplification

procedures and simulate their power traces so we can perform an analysis based on machine-learning

techniques.

To this end, for each scenario, we will first generate:

• a l × n binary modified Toeplitz matrix, generated by Alice and sent to Bob through the public

channel, for extracting a secret key with l bits from a corrected key with n bits;

• 10000 corrected keys with n bits.

Then, we run the privacy-amplification protocol for each corrected key, performing the logical multipli-

cation of the modified Toeplitz matrix and the corrected-key vector and simulating its power consumption

in a specific hardware implementation described in the next section.
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3.1.1 Power-consumption trace of privacy amplification

In order to properly simulate the power traces of these matrix operations, we will consider what

happens at the low hardware level. Firstly, a matrix-vector multiplication with bits can be decomposed

into bit multiplications and additions, like in algorithm 1. The power consumed by the initialization of the

output vector is redundant to our analysis, so we will ignore it. The remaining operations can be further

decomposed into the logic gates which are implemented by the hardware. There are several ways to

decompose bit additions and multiplications into logic gates. We will base our decomposition on the

logic gates whose power consumption was analysed by [163], namely the NOT, the 2-input NOR and the

2-input NAND gates.

Algorithm 1 Compute logical matrix-vector multiplication.

Input: l × n matrix M , n-vector x
Output: l-vector k

1: procedure MATRIX_VECTOR_MULTIPLICATION(M ,x)
2: for i← 0 to l − 1 do
3: ki ← 0 ▷ Initialization of each entry of the output vector to 0
4: for j ← 0 to n− 1 do
5: ki ← (ki +Mij · xj) mod 2 ▷ Bit multiplication followed by bit addition. Equivalent to the

logical scalar product of each row of M with the vector x
6: end for
7: end for
8: return k
9: end procedure

Let us describe the behaviour of these gates before presenting the decomposition. The NOT gate,

also called an inverter, takes one binary input and outputs its logical negation. The 2-input NOR gate

outputs the negation of the logical disjunction of the two binary inputs, or the negation of a OR gate. The

2-input NAND gate outputs the negation of the logical conjunction of the two binary inputs, or the negation

of a AND gate. Both the 2-input NOR and the 2-input NAND gates are functionally complete, meaning

only NOR or only NAND gates can be used to generate any other logical function [164]. The truth tables

and symbols of these gates are presented in tables 3.1a to 3.1c and figures 3.1a to 3.1c, respectively.

Table 3.1: Truth tables for the gates used.

(a) NOT gate

Input Output
A NOT(A)

0 1
1 0

(b) 2-input NOR gate

Input Output
A B NOR(A, B)

0 0 1
0 1 0
1 0 0
1 1 0

(c) 2-input NAND gate

Input Output
A B NAND(A, B)

0 0 1
0 1 1
1 0 1
1 1 0

Then, the multiplication of two bits, which may be described by an AND gate, can be decomposed into

A ·B : AND(A,B) = NOT(NAND(A,B)), (3.1)
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(a) NOT gate. (b) 2-input NOR gate. (c) 2-input NAND gate.

Figure 3.1: Symbols for the gates used.

and the addition of two bits, described by a XOR gate, can be decomposed into

A+B mod 2 : XOR(A,B) = NOT(A ⇐⇒ B) =

= NOT(AND(A→ B,B → A)) =

= NAND(A→ B,B → A) =

= NAND(OR(NOT(A), B),OR(NOT(B), A)) =

= NAND(NOT(NOR(NOT(A), B)),NOT(NOR(NOT(B), A))), (3.2)

where ⇐⇒ is equivalence and→ is implication. More explicitly, A ⇐⇒ B is 1 only when A and B are

equal, and A→ B is 0 when A is 1 and B is 0, and 1 otherwise.

When processing an addition, there are multiple orders in which the individual gates can be processed.

The logic diagrams of these multiplication and addition operations are shown in figures 3.2a and 3.2b,

with the chosen gate-processing order made explicit.

(a) Multiplication of 2 bits.

(b) Addition of 2 bits.

Figure 3.2: Logic diagrams of the operations used in the simulated implementation for privacy amplification,
time-ordered from left to right.

The power consumption of these gates varies according to their input and to the size of the transistors

which make them up, decreasing as the transistors become smaller [163]. We will base the consumption of

our simulated implementation on a simplified model of a commercial 0.35-µm-transistor CMOS technology

analysed in [163], taking only the dissipated static current into account. This dissipation component gains

an increasing importance as the devices become small, specially in the sub-micrometer range, while the

other components lose importance [163]. The dissipated static current assumed for the logic gates used

is presented in table 3.2, according to the gates’ input.
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Table 3.2: Static current dissipation of the NOT, 2-input NOR and 2-input NAND gates based on a
commercial 0.35-µm-transistor CMOS technology [163].

Gate Input Static current (pA)

NOT
0 6.73
1 7.45

NOR

0 0 13.50
0 1 12.80
1 0 7.93
1 1 5.93

NAND

0 0 5.79
0 1 7.00
1 0 11.77
1 1 14.91

It is clear that processing an addition consumes significantly more power than processing a multiplica-

tion. For instance, according to table 3.2, processing 0 · 0 would dissipate 5.79 + 7.45 = 13.24 pA while

processing 0 + 0 mod 2 would dissipate 6.73 + 6.73 + 7.93 + 7.93 + 6.73 + 6.73 + 14.91 = 57.69 pA.

For simplicity, we will assume each gate takes about the same time to be processed. Then, Eve is

able to obtain the power consumption of every gate by measuring the current dissipation at a constant

rate, as most devices do, thus acquiring the consumption of a single gate per data point. It is worth

noting that considering the power on a shallower level of processing, like the power per addition and per

multiplication, as the information present in the data points of a power trace would not be coherent since

a multiplication involves 2 gates while an addition involves 7. Therefore, it takes longer for the hardware

to process an addition of two bits, creating more data points in the power trace than a multiplication does.

The full logical matrix-vector multiplication is composed by several of these bit multiplications and

additions. In our case, there will be n multiplications and n additions per row i, counting the initial addition

of the secret-key bit ki, initialized to 0, and the bit resulting from the multiplication of the first entry of row i

of the modified Toeplitz matrix and the first entry of the corrected key. This leads to l ·n multiplications and

l · n additions in the full matrix-vector multiplication. As with the gates of a single bit addition, there are

also multiple orders in which the various multiplications and additions can be processed by the hardware.

We will assume an implementation where the operations are computed row by row, and, for each row, all

multiplications are computed before the additions. The block diagram of the implementation chosen to

process the logical scalar product of each hashing-matrix row with the corrected key is shown in figure 3.3,

with the operation-processing order made explicit.

All of these assumptions imply one underlying assumption: Eve must have access to the physical

implementation at some point, allowing her to characterize its internal structure and replicate it. We

should not discard the possibility of such scenario. In fact, this is specially feasible in QKD networks with

remotely-located repeaters, where constant surveillance can be difficult.

We should also note that a regular power trace usually has an overhead contribution from the other

processes running on the processor. This simulation assumes a constant overhead, which can be

removed from the power trace when processing the data. This may be achieved with DPA or other
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Figure 3.3: Block diagram of the implementation chosen to process the privacy-amplification operations,
namely the logical scalar product of each row i of the hashing matrix M with the corrected key x,
time-ordered from left to right.

statistical techniques, for instance, and is specially feasible when using simpler circuits dedicated to

processing the QKD protocol, such as field-programmable gate arrays (FPGA) or application-specific

integrated circuits (ASIC), commonly used in real-world QKD implementations [5].

Any real-world measurement is noisy. Therefore, we will also simulate an added noise component in

every data point. There are three main types of noise mechanisms in electronic systems [165]: thermal

noise, shot noise and 1
f noise. Thermal noise is always present at non-zero temperatures due to random

thermal vibrations of charge carriers. Shot noise, due to charge carriers crossing a potential barrier,

like in semiconductors, is highly dependent on the device type. Moreover, 1
f noise, also called flicker

noise and due to multiple effects such as property fluctuations of the device materials, depends on the

device material, manufacturing quality and semiconductor defects. Of all these, thermal noise is the

most encountered. Thermal noise is approximately a white noise, meaning it has similar intensity at

different frequencies. Its amplitude follows a Gaussian probability-density function. Thus, it is often

modeled as an additive white Gaussian noise, in which the values at any pair of times are identically

distributed, statistically independent and, therefore, uncorrelated. In fact, since the central limit theorem

indicates the sum of several statistically-independent random processes tends towards a Gaussian

distribution, it seems fair to assume most total noise in real-world systems to have such a distribution of

instantaneous amplitudes with time. Therefore, we will assume an additive white Gaussian noise of mean

zero and standard deviation σ chosen so that the mean absolute value of the noise in all data points ε has

appropriate dimensions for our scenarios. We note that this choice is also a common noise distribution

considered in template attacks [104]. The standard deviation may be computed by numerically solving

∫ ∞

−∞

|x|√
2πσ2

exp

(
− x2

2σ2

)
dx =

∫ ∞

0

2x√
2πσ2

exp

(
− x2

2σ2

)
dx = ε (3.3)

with respect to σ.
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When discussing our simulation process with academics to gain insights on what to consider for such

simulation, it became clear that the sampling rate of the instruments used to acquire side-channel traces

is a crucial factor to the success of a such a side-channel attack. Lower-quality instruments usually have

signal-sampling rates too low to detect side-channel traces of high-end hardware with enough detail.

Moreover, for each specific QKD implementation, there should be a lower bound on the sampling rate

below which the information about the secret key present in a side-channel trace is simply not enough to

succeed in an attack, even with perfectly-trained machine-learning algorithms. Therefore, we will also

consider instruments with different sampling rates. In order to consider values independent of a time

scale, we will use sampling intervals, in gates, instead of sampling rates. For instance, we could have an

instrument able to capture every gate processed, and another able to capture only one out of every three

gates. With an imperfect sampling, another problem arises: the quality of the machine-learning models

should depend on the subset of gates sampled. For example, in the case of an instrument with a sampling

interval of 3 gates, a model trained with the current dissipation of the first and fourth processed gates can

have a very different performance from a model trained on the current dissipated by the second and fifth

gates. In our case, we will assume all samplings start with the first gate processed in the protocol, i.e., the

NAND gate of the first multiplication involving the first row of the modified Toeplitz matrix. Nevertheless,

since the matrix has multiple rows and they are processed sequentially, there is a high probability that

samplings of the following rows do not start with the first gate of that row. We just need to make sure

the sampling intervals chosen do not divide the length of the corrected keys, n. This introduces enough

randomness in the models to mimic the fact that, in a real-world attack, we usually cannot choose which

gate to start sampling from, since it is not trivial to synchronize the measurements with the precise start

of the QKD procedure.

We will run the simulations in the Python language, implementing the following procedure:

1. For each corrected key generated, we will generate the current dissipated by the gates processed in

each bit multiplication and addition computed with the implementation shown in figure 3.3, according

to table 3.2. For a l × n matrix, this will generate 9 · l · n current values for each corrected key;

2. To each current value, we will add a random noise component sampled from an additive white

Gaussian noise model with mean zero and standard deviation appropriately chosen;

3. Then, we will downsample the data according to the sampling interval s of the instrument considered,

keeping only the first of every s data points. The discarded data points correspond to the processing

of the privacy-amplification operations done during the dead time of the acquisition instrument.

Thus, we will have simulated the signal acquisition.

After obtaining the power traces from the considered hardware implementation, we will proceed to the

next step of the attack, where we will use machine-learning techniques to try to extract information about

the secret key from the power traces.
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3.1.2 Machine-learning analysis

We will use the popular scikit-learn machine-learning library for Python [130], in which some of the

machine-learning algorithms used in this analysis are already implemented.

A record is the subset of data corresponding to a generated corrected key. We start by splitting the

data into a training and a testing dataset using a stratified random sampler. We will use 80% of the

records for training and the other 20% for testing. Each current data point of a power trace will correspond

to a particular feature in our models. That is, if we have k data points per corrected key, we will create

models with k input features. Then, we define the models we want to use and the hyperparameter

subspace we want to optimize our models in. As described in section 2.4.3, we will use the following

models:

• Logistic regression;

• k-nearest neighbours (kNN);

• Gaussian naïve Bayes;

• Multinomial naïve Bayes;

• Categorical naïve Bayes;

• Support-vector machine (SVM);

• Decision tree;

• Random forest;

• Stochastic gradient-boosting machine (GBM) with regression decision trees.

Since we will be dealing with evaluation metrics which use predicted target values, we will apply a

threshold probability of 0.5 on the models which return probabilistic outputs.

In tables 3.3a to 3.3g, we present the hyperparameter subspace allowed for each model. A clarification

of each hyperparameter is presented in appendix A. In the values used for the hyperparameter γ of the

SVM kernel, k is the number of input features and σ2 is the average variance of a training record. Note

that we had to reduce the number of hyperparameters for random forest and GBM due to the high time

consumption of these algorithms.

Besides optimizing the hyperparameters, we will also optimize the preprocessing done to the data by

allowing the following transformations before all models:

• No transformation;

• Scale all features individually to the range [0, 1];

• Standardize all features individually to mean 0 and variance 1;

• Scale all features individually to median 0 and interquartile range 1.
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Table 3.3: Hyperparameter subspace allowed for each model.

(a) Logistic regression

Hyperparameter Values

Solver L-BFGS, SAGA
Regularization None, L1, L2

λ 0.01, 0.1, 1, 10, 100

(b) kNN

Hyperparameter Values

Number of
neighbours

1, 3, 5, 7, 9, 11, 13, 15,
17, 19, 21

Neighbour
weight

Uniform, Inverse of
distance

Metric Manhattan, Euclidean,
Chebyshev

(c) Naïve Bayes

Hyperparameter Values

Prior Uniform, Target-value
prior probabilities

α 0, 0.001, 0.01, 0.1, 1,
10, 100, 1000

(d) SVM

Hyperparameter Values

Kernel Linear, Gaussian RBF,
Third-degree polynomial,
Fourth-degree polynomial,
Sigmoid

γ 1, 1
k , 1

σ2 , 1
kσ2

b -1, 0, 1
λ 0.01, 0.1, 1, 10, 100

(e) Decision tree

Hyperparameter Values

Loss function Gini impurity, binary
Shannon entropy

Maximum depth 5, 10, 20,∞
Maximum percentage
of features to consider

in each split

10%, 30%, 50%,
70%, 100%

Minimum number of
records in a leaf

1, 5, 10, 50, 100

Minimum impurity
reduction

0, 10−6, 10−4, 10−2

(f) Random forest

Hyperparameter Values

Number of trees 243
Loss function Gini impurity, binary

Shannon entropy
Maximum depth of

each tree
5, 20,∞

Maximum percentage
of features to consider

in each split

10%, 50%, 100%

Minimum number of
records in a leaf

1, 10, 100

Minimum impurity
reduction

10−6, 10−4, 10−2

(g) GBM

Hyperparameter Values

Number of trees 243
GBM’s loss function Exponential loss (AdaBoost),

Log loss (LogitBoost)
Learning rate 0.01, 0.1, 0.9

Subsample size for each tree 50%, 75%, 100%
Tree’s loss function MSE, MAE

Maximum depth of each tree 5, 20,∞
Maximum percentage of features to

consider in each split
10%, 50%, 100%

Minimum number of records in a leaf 1, 10, 100
Minimum impurity reduction 10−6, 10−4, 10−2
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Using these hyperparameter subspaces, we will run a grid search for each model with the training

dataset, using stratified 5-fold cross validation and asynchronous successive halving with f = 3. While

we will use the number of records as the halving resource for most models, in the ensemble methods,

namely random forest and GBM, we will use the number of trees as the halving resource instead of tuning

it, due to the findings of [143, 144] stated in section 2.4.3. We chose 243 trees since it is the smallest

multiple of f greater than 128. Then, there will be 6 halving iterations for ensemble methods, using 1, 3,

9, 27, 81 and 243 trees, respectively. For the other models, we will start with 100 records and increase

that number until we reach the limit of 8000 records.

After obtaining the combinations of hyperparameters for which each model performs the best on

the validation-set folds, according to a metric we will specify later, we will train the models with those

hyperparameters on the full training set. We will then evaluate the trained models with the testing dataset

and the chosen metrics and compare the model results to find the best-performing and most-generalizable

model.

All the code used for this thesis can be found on GitHub1, along with comments detailing the nuances

of its implementation.

3.2 Attack scenarios and approaches

In order to assess the robustness of this attack, we will use it to try to break privacy-amplification

protocols with different hashing-matrix sizes, measurement noise levels and instrument’s sampling

intervals. We will test the following scenarios:

• Modified-Toeplitz-matrix size: 8× 16, 16× 32, 32× 64;

• Mean absolute value of measurement noise: 0 pA (no noise), 0.1 pA, 1 pA;

• Instrument’s sampling interval: 1, 3, 5, 10, 20 and 30 gates.

Note that the noise levels were chosen to be near the order of magnitude of the current dissipation of

the gates considered. A high-enough noise level can always hinder the success of such a side-channel

attack.

We will also test different variations of the machine-learning analysis to assess the best approach for

Eve. We note that the goal of this analysis is not to empower possible eavesdroppers, but to understand

the worst-case outcome for Alice and Bob.

First of all, we will assess the ability of these machine-learning models to extract 1 bit of information

from the power traces. To this end, our target variable will be a flag which is 1 if the secret key has more

ones than zeros, and 0 otherwise. The goal will be to maximize the target accuracy, which will then be

used to compare the models. We will refer to these as 1-bit models.

Secondly, we will try to find the full secret key by assigning each of its bits to a different target. We will

then have l binary targets, making this a multi-label classification problem. In our case, this can be solved

1https://github.com/joaofbravo/Hacking_QKD_with_ML
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by training one model for each of the targets. Therefore, it is much more computationally expensive. The

goal will be to minimize the average Hamming loss of the predicted keys. We will address each ensemble

of l models used to predict one key as full-matrix model, since each individual model of the ensemble

receives input data generated from operations involving the full hashing matrix.

In order to try a less time-consuming approach, we will also split the dataset rows, which correspond

to full power traces, into subrows corresponding to the power trace of the logical scalar product of each

matrix row with the corrected key. Instead of 10000 records, we will have 10000 · l records. Since

the logical scalar product of a matrix row with the corrected key fully determines one bit of the secret

key, we will train models for each of the l secret-key bits with the 10000 subrows which correspond

to the operations determining that bit. Thus, the models will use much less features, which is less

computationally expensive. This approach also reduces the amount of unnecessary data provided to the

models, since the power trace corresponding to the computation of the other l − 1 bits is independent

of the target bit. This may increase the accuracy of predictions. One downside of this approach is that

scenarios with sampling intervals larger than 1 gate can lead to subrows with a different number of data

points. Specifically, there will be subrows with one less data point. Since the models need records with

the same number of variables, we solve this issue by adding a neutral data point of 0 pA at the beginning

of those subrows. While we hope the models learn how to differentiate these subrows by their first data

point, this can lead to a worse prediction performance in less flexible models. The goal will again be to

minimize the average Hamming loss of the predicted keys. We will address each ensemble of l models

used to predict one key as row model, since each individual model of the ensemble takes input data

generated from operations involving only one row of the hashing matrix.

This analysis is crucial to decide if it is necessary to apply countermeasures, either on the devices

used for sharing keys or on the protocol itself. These countermeasures may result in additional steps that

ensure the communication is secure, which can reduce the protocol’s key rate.
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Chapter 4

Results and discussion

In this chapter, we present and analyse our results. In section 4.1, we present and discuss aspects of

some of the generated power traces. In section 4.2.1, we analyse the results of the 1-bit-model test case.

In sections 4.2.2 and 4.2.3, we do the same for the full-matrix and row models, respectively. In section 4.3,

we compare the attack approaches, choosing the best approach depending on the attack scenario. Finally,

in section 4.4, we discuss some possible countermeasures to prevent similar side-channel attacks.

4.1 Power traces

From the multiple corrected keys, we generated power traces for each scenario. As an example, we

present the power trace of the logical scalar product of the first 8 × 16-matrix row with one corrected

key, using a noise level of 0.1 pA and a sampling interval of 1 gate, in figure 4.1. The initial current

peaks should correspond to the processing of the NAND gates of bit multiplications, with the highest

peaks corresponding to 1 · 1. The final higher current peaks should correspond to the last NAND gates

processed in each bit addition, while the smaller peaks can either correspond to NAND or NOR gates.

Figure 4.1: Power trace of the logical scalar product of the first hashing-matrix row with a corrected key,
for a 8× 16 matrix, noise level of 0.1 pA and sampling interval of 1 gate.

By lowering the resolution of the measuring instrument, therefore increasing the sampling interval,

Eve will collect fewer data points. In figure 4.2, the same power trace is shown as if it was measured by

an instrument with a sampling interval of 3 gates. Notice how a lot of information is lost. For instance, we

are only able to identify a few NAND(1, 1) operations.
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Figure 4.2: Power trace of the logical scalar product of the first hashing-matrix row with a corrected key,
for a 8× 16 matrix, noise level of 0.1 pA and sampling interval of 3 gates.

A large amount of noise can also destroy a lot of information. In figure 4.3, we present a power trace

similar to the one in figure 4.1, but with a measurement noise level of 1 pA. Notice how some peaks were

perturbed enough that some NAND(1, 1) operations, clearly identifiable in figure 4.1, now have current

dissipation similar to NOR(0, 0) operations, making them indistinguishable.

Figure 4.3: Power trace of the logical scalar product of the first hashing-matrix row with a corrected key,
for a 8× 16 matrix, noise level of 1 pA and sampling interval of 1 gate.

These information losses will affect the performance of the models in each considered scenario.

4.2 Model results

Here, we analyse the results of the models built from the generated power traces for the scenarios and

approaches described in section 3.2. A summary of all model results from the three studied approaches

can be found in appendix B.

4.2.1 1-bit models

After splitting the data, optimizing the hyperparameters with grid search, retraining each model in each

scenario with the best hyperparameters and evaluating the accuracy of the final models, we summarized

the results and compared those models. As an example, in figures 4.4a to 4.4c, we show how the target

accuracy of the 1-bit models changes with the sampling interval and noise level, for a 8 × 16 hashing

matrix.
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(a) For no noise. (b) For a noise level of 0.1 pA.

(c) For a noise level of 1 pA.

Figure 4.4: Accuracy of 1-bit models by sampling interval, for each noise level, with a 8 × 16 hashing
matrix.

In these scenarios, GBM performed the best, always being able to extract 1 bit of information from

the power traces in noiseless environments even when sampling down to 1 out of every 5 gates. The

accuracy barely dropped with a sampling interval of 10 gates which may be surprising since each bit of

the hashing matrix is directly involved in 9 gate operations, 2 for its multiplication with the corresponding

corrected-key bit and 7 for the addition to the corresponding secret-key bit ki. Then, sampling intervals

larger than 9 gates should miss information about some of the bits of the hashing matrix. However, this

can be explained by the fact that ki can be fully determined by multiple small subsets of operations

involving row i, according to algorithm 1. For instance, it can be fully determined by the last addition

involving row i, or by the second to last addition and the last multiplication, which determine the last

addition and therefore ki, or by the third to last addition and the two last multiplications, and so on.

When introducing a noise level of 0.1 pA, the accuracy of GBM did not drop significantly for sampling

intervals up to 5 gates. However, it dropped around 3% for a sampling interval of 10 gates, which indicates

that the noise destroyed crucial information present in the gathered data points. However, an accuracy of

96.40% is still high enough to consider the bit extraction successful the vast majority of the time. When

introducing a large amount of noise, of the level of 1 pA, the accuracy dropped considerably for sampling

intervals larger than 1 gate, since a lot of operations became indistinguishable due to the noise itself.
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However, when sampling all gates, the accuracy did not drop because there was enough redundant

information to fully identify the target bit, despite the noise destroying part of the information.

Interestingly, sampling 1 out of every 3 gates usually led to worse results than sampling 1 out of every

5 gates. This is due to the problem addressed in section 3.1.1 about how the performance of a model

depends on the subset of gates sampled. The gates sampled in these two scenarios are mostly different,

and the subset sampled when measuring 1 out of every 5 gates clearly provided more information about

the target bit.

When sampling 1 out of every 20 or 30 gates, the accuracy dropped considerably since there was not

enough information to determine the target bit, even in a noiseless environment. Nevertheless, when

sampling 1 out of every 20 gates with a noise level of 0.1 pA, we were able to successfully extract 1 bit of

information 87% of the time.

In spite of this, GBM was always able to extract 1 bit of information from the power traces when

sampling all gates, independently of the noise level. This makes GBM a promising model for the other

approaches.

In these scenarios, SVM, logistic regression, random forest and decision tree all exhibited a worse

performance than GBM while still having a decent accuracy for smaller sampling intervals when there

was not a large amount of noise in the measurements. kNN and all naïve Bayes showed really poor

performance, independently of the sampling interval or noise level. kNN’s performance may indicate we

have too many irrelevant features, while naïve Bayes’ performance may also be attributed to the fact that

the features are clearly not independent. For instance, processing 0 · 0 always generates a data point

around 5.79 pA followed by another around 7.45 pA.

Lets us now compare these scenarios with the ones with larger hashing matrices. In figures 4.5a

and 4.5b, we present the target accuracy of these models for 16× 32 and 32× 64 hashing matrices, with

a noise level of 0.1 pA. The remaining scenarios, which can be found in appendix B.1, will also be briefly

analysed.

(a) For a 16× 32 hashing matrix. (b) For a 32× 64 hashing matrix.

Figure 4.5: Accuracy of 1-bit models by sampling interval, for 16× 32 and 32× 64 hashing matrices, with
a noise level of 0.1 pA.
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The size of the hashing matrix seems to have a great influence on the ability of the models to extract

a single bit, decreasing it as the matrix size gets larger.

Moreover, we note that both logistic regression and SVM performed better than GBM when sampling

all gates in these scenarios and when sampling down to 1 of 5 gates in the corresponding noiseless

scenarios. Nevertheless, we were always able to extract 1 bit with near-perfect accuracy when sampling

all gates, except with a high noise level of 1 pA. For sampling intervals of 5 gates or more and any noise,

GBM was again the better performing model.

In the scenarios of figures 4.5a and 4.5b, the best accuracy attained for a sampling interval of 3 gates

decreased from 99.15% to 92.55% and to 89.30% when using the larger-size hashing matrices. For a

sampling interval of 5 gates, the best accuracy decreased from 99.70% to 95.70% and to 89.25% for the

larger hashing matrices.

For the larger hashing matrices, only GBM, SVM and logistic regression exhibited a decent perfor-

mance, while the other models performed much worse, almost independently of the sampling interval.

Random forest and decision tree experienced the highest degradation in performance with the increase

of the hashing-matrix size. The worst results for each model were generally obtained for the scenario

with a 32× 64 hashing matrix and a noise level of 1 pA, as expected.

We note that some models showed a slightly higher accuracy with larger matrices. This can be due to

multiples causes, namely the stochastic nature of the model training for some of the models, the different

randomly-generated corrected keys for each hashing-matrix size, and the randomly-generated hashing

matrices themselves which, despite having been generated to have around half ones and half zeros, may

have slight biases towards a certain resulting bit in some of their rows.

We can further analyse each model by looking at the confusion matrix of its predictions. For instance,

with the confusion matrix of the logistic regression for the scenario with a 32× 64 hashing matrix, noise

level of 0.1 pA and sampling interval of 3 gates, shown in figure 4.6, we can conclude there were 901

true zeros, 885 true ones, 117 false zeros and 97 false ones. We can also conclude that there were more

zeros predicted by the logistic regression, which indicates it is a slightly-biased model.

Figure 4.6: Confusion matrix for a 1-bit logistic regression trained on the data acquired with a 32 × 64
hashing matrix, noise level of 0.1 pA and sampling interval of 3 gates.

After performing such a study, Eve could then decide to use the best model according to the particular

scenario of the attack. Let us then summarize the accuracy of the best 1-bit models for each scenario, by

sampling interval, and show it in figures 4.7a to 4.7c.
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(a) For a 8× 16 hashing matrix. (b) For a 16× 32 hashing matrix.

(c) For a 32× 64 hashing matrix.

Figure 4.7: Accuracy of the best 1-bit model by sampling interval, for each noise level and hashing-matrix
size.

It is now evident how increasing the noise and the hashing-matrix size degrades the performance

of 1-bit models. However, we note that there was no significant degradation when sampling all gates

if the noise level was around or below 0.1 pA and also when sampling 1 out of 3 gates in noiseless

environments. Again, the scenario with a 32× 64 hashing matrix and a noise level of 1 pA showed the

worst results, as expected.

Let us now assess how these models generalize their predictive power to predicting full secret keys.

4.2.2 Full-matrix models

We completed the same steps as in the 1-bit case, except we evaluated the performance of the

full-matrix models according to the average Hamming loss of their predicted keys. In figures 4.8a to 4.8c,

we show their average Hamming loss by sampling interval and noise level, for a 32× 64 hashing matrix.

In these scenarios, GBM was again the best-performing model, virtually always being able to predict

the full secret key for sampling intervals up to 5 gates and all noise levels. For smaller sampling intervals,

SVM and logistic regression showed a similar performance to GBM. However, GBM was the only model

capable of consistently predicting the full secret key in very noisy environments, for sampling intervals

larger than 1 gate.
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(a) For no noise. (b) For a noise level of 0.1 pA.

(c) For a noise level of 1 pA.

Figure 4.8: Average Hamming loss of the predicted keys of full-matrix models by sampling interval, for
each noise level, with a 32× 64 hashing matrix.

Some of the models showed again the importance of the sampled-gate subset, by performing better

with a sampling interval of 5 gates than with one of 3 gates.

When sampling 1 of every 10 gates, GBM predicted 8.27% of the secret-key bits wrongly with no

noise, 13.48% with a noise level of 0.1 pA, and 21.22% with a noise level of 1 pA. Again, for sampling

intervals of 20 and 30 gates, the information was not nearly enough to predict every bit of the secret key

and the performance dropped considerably.

Random forest and the categorical and Gaussian naïve Bayes had a generally-poorer performance,

followed by decision tree and the multinomial naïve Bayes, with kNN being the worst. We note that,

despite this, some of these models were still able to always predict the full secret key when sampling

all gates, for noises up to 0.1 pA, with the categorical naïve Bayes being an unexpected case since it is

designed for categorical variables as explained in section 2.4.3.

In order to assess how the hashing-matrix size affects the full-matrix models, we show the average

Hamming loss of the predicted keys of these models for 8 × 16 and 16 × 32 hashing matrices, with a

noise level of 0.1 pA, in figures 4.9a and 4.9b. We also briefly analyse the other scenarios, presented in

appendix B.2.

For sampling intervals up to 5 gates, GBM performed virtually flawlessly in every scenario. There was

a clear degradation of its performance for sampling intervals above 5 gates. In particular, for a sampling
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(a) For a 8× 16 hashing matrix. (b) For a 16× 32 hashing matrix.

Figure 4.9: Average Hamming loss of the predicted keys of full-matrix models by sampling interval, for
8× 16 and 16× 32 hashing matrices, with a noise level of 0.1 pA.

interval of 10 gates, it went from virtually no wrongly-predicted bits to 3.17% and 13.48% of predicted

bits incorrect for larger hashing-matrix sizes. Nevertheless, GBM was the best model in virtually every

scenario.

We note that decision tree and random forest are very affected by the hashing-matrix size, having the

greatest increase in Hamming loss as we increased the matrix size. The categorical naïve Bayes was the

least affected by the hashing-matrix size, showing the least change in Hamming loss.

When analysing the confusion matrices of the best models, we reach an interesting conclusion. For

instance, let us interpret the confusion matrices of the SVM for the scenario with a 8× 16 hashing matrix,

noise level of 0.1 pA and sampling interval of 20 gates, shown in figure 4.10.

Figure 4.10: Confusion matrices for a full-matrix SVM trained on the data acquired with a 8× 16 hashing
matrix, noise level of 0.1 pA and sampling interval of 20 gates.

This SVM has an average Hamming loss of 4.03%. We conclude that it can predict 7 of the 8 target

bits with virtual certainty, while it struggles when predicting the fourth bit of the secret key. This may be

an example of how noise can destroy information about a particular bit due to its stochastic nature.

By analysing such metrics, Eve can then know which bits her model can predict with near certainty.

Thus, when she tries to decrypt the messages shared between Alice and Bob, she can use brute force

and try all variations of the predicted key with a subset from the power set of the hard-to-predict bits
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inverted. We define the power set as the set of all subsets of those bits, ranging from the empty set to

the set of all hard-to-predict bits. For instance, in the scenario above using the SVM, she would try the

predicted key k0k1k2k3k4k5k6k7 and then the key k0k1k2¬k3k4k5k6k7, where ¬k3 denotes the inversion

of k3. In general, if Eve’s model has difficulty predicting k bits of a l-bit secret key, she will often only need

to test 2k key possibilities at most, instead of 2l. Thus, reasonably-performing models can reduce the

search space considerably, making a brute-force approach to secret-key discovery feasible.

From looking at the confusion matrices, we detect slight biases of the 8× 16 hashing matrix towards a

certain resulting bit in some of its rows, which can lead to slight performance biases, as mentioned in

section 4.2.1. Nevertheless, by inspecting the confusion matrices for the scenarios of each hashing-matrix

size, we conclude these should be practically negligible.

Let us now summarize the average hamming loss of the best full-matrix models for each scenario, by

sampling interval, in figures 4.11a to 4.11c.

(a) For a 8× 16 hashing matrix. (b) For a 16× 32 hashing matrix.

(c) For a 32× 64 hashing matrix.

Figure 4.11: Average Hamming loss of the predicted keys of the best full-matrix model by sampling
interval, for each noise level and hashing-matrix size.

There was no significant degradation with the increase of the hashing-matrix size for sampling intervals

up to 5 gates. In these scenarios, the degradation with the increase in noise level was only significant for

a sampling interval of 3 gates. Nevertheless, in those cases, having a noise level of 1 pA only slightly

increased the Hamming loss by around 1%. The degradation for sampling intervals above 5 gates was

much higher.

67



4.2.3 Row models

Completing the same steps as in the full-matrix case, but for the row models, we now present the

average Hamming loss of their predicted keys, by sampling interval and noise level, for a 32× 64 hashing

matrix, in figures 4.12a to 4.12c. The remaining scenarios are presented in appendix B.3, which we also

consider in the analysis below.

(a) For no noise. (b) For a noise level of 0.1 pA.

(c) For a noise level of 1 pA.

Figure 4.12: Average Hamming loss of the predicted keys of row models by sampling interval, for each
noise level, with a 32× 64 hashing matrix.

In most scenarios, the best performance was divided between GBM, random forest and decision tree.

While the results are generally not as satisfactory as in the full-matrix case, most models were able to

predict the full secret key when sampling all gates, and a few still succeeded when sampling 1 of every 3

gates for noise levels up to 0.1 pA. However, for instance, when we increased the noise level from 0.1

pA to 1 pA, with a 32× 64 hashing matrix and a sampling interval of 3 gates, the Hamming loss of the

best model, the random forest, increased from 0% to 7.54%. For sampling intervals above 5 gates, the

performance dropped substantially.

There was a large discrepancy in performance between the scenarios where we sampled all gates

and the ones we did not. For instance, in the scenarios above, the Gaussian naïve Bayes went from

correctly predicting the full secret key almost 100% of the time, when sampling all gates, to being as

useful as a coin flip for deciding each bit of the predicted key, for sampling intervals of 5 gates or more.
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Based on these results, it seems that, despite the reduction in irrelevant data fed to the models, the

introduction of the neutral data point in the subrows with one less data point, which happens for sampling

intervals larger than 1 gate, worsens the performance of the models considerably.

The worst-performing models across all scenarios with sampling intervals larger than 1 gate were the

Gaussian and multinomial naïve Bayes and logistic regression. We note that kNN and the multinomial

naïve Bayes were the only models not able to consistently predict the full secret key in any scenario, not

even when sampling all gates.

Let us examine the average Hamming loss of the predicted keys of the best row model for each

scenario, plotted by sampling interval and shown in figures 4.13a to 4.13c.

(a) For a 8× 16 hashing matrix. (b) For a 16× 32 hashing matrix.

(c) For a 32× 64 hashing matrix.

Figure 4.13: Average Hamming loss of the predicted keys of the best row model by sampling interval, for
each noise level and hashing-matrix size.

There was no performance degradation with the increase of the hashing-matrix size or noise level

when sampling all gates. The same was true for a sampling interval of 3 gates, when the noise level did

not go above 0.1 pA. In the remaining scenarios, the degradation with the increase of the hashing-matrix

size was not very substantial, while the degradation with the noise level was only significant for high noise

levels of 1 pA.

The problem of the sampled-gate subset is apparent for the 8 × 16 hashing matrix and low noise

scenarios, with the best models for a sampling interval of 20 gates having a worse performance than the

models for a sampling interval of 30 gates.
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4.3 Attack-approach comparison

We shall now compare the machine-learning approaches tested.

Firstly, we note that the full-matrix models were generally more successful at predicting the full secret

key than the 1-bit models were at extracting only 1 bit from the power trace. Moreover, the degradation

with the increase of the hashing-matrix size or noise level also appears to be less severe for the full-matrix

models than in the 1-bit test case. Nevertheless, we must account for the fact that the full-matrix models

are, in fact, ensembles of l models, each specialized in predicting one of the l bits of the secret key, while

the 1-bit models are single models which must extract information equivalent to knowing there are at least⌊
l
2 + 1

⌋
ones or zeros in the secret key to confidently predict which bit is more common. Therefore, while

a 1-bit model needs less information than the full-matrix model ensemble, it requires more information

than each individual model of that ensemble, which may explain the worse results of the test case.

GBM performed generally well in all approaches, with other models being marginally better in a few

scenarios. Thus, if there is a lack of time to perform a similar thorough analysis of a specific physical

implementation to know which model to use in a certain scenario, Eve would only use a GBM.

The full-matrix approach had generally better results than the row approach, with the row models

having more difficulty in distinguishing and classifying the power trace of a single logical scalar product

than the full-matrix models in classifying the full power trace. Furthermore, the full-matrix models were

able to fully predict the secret key with near certainty for sampling intervals of up to 5 gates while the row

models could only do it for sampling intervals up to 3 gates and only if the noise level was low. However,

the full-matrix approach is significantly more computationally expensive since the models are trained with

much more data. For instance, some of the full-matrix models took a full day to be trained on a computer

with a 4-core CPU and 8 Gb of RAM, while the row models took at most around 5 hours. Therefore, the

choice of approach usually implies a trade-off between the computational resources needed and the

attack performance.

Nevertheless, most of the row models were able to predict the secret key with virtual certainty when

sampling all gates, while only GBM, SVM and logistic regression were able to do it in the same scenarios

with the full-matrix approach. Thus, Eve could use the row approach if she is sure the measuring

instrument is able to sample all gates, since this approach works equally well or even better than the

full-matrix approach due to using less irrelevant data, and is less time consuming since the models use

much less features. If she was not able to sample all gates, then she would use the full-matrix approach,

provided she had enough computational resources.

We would like to note that we also tested the full-matrix approach with GBM for a privacy-amplification

protocol with a 32× 64 randomly-generated binary hashing matrix with no entry restrictions, noise level

of 0.1 pA and the same sampling intervals as the previous scenarios, and the results were similar to

the 32× 64 modified Toeplitz matrix scenarios with the same noise level. Thus, it is highly likely that this

attack can be successful for general binary hashing matrices.
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4.4 Countermeasures

The results of this analysis make it clear that a similar side-channel attack to the one we proposed

can often be successful, which renders any security proof obsolete, being equivalent to ϵsec → 1 in the

secrecy condition (2.21). Therefore, it is necessary to consider countermeasures for similar attacks.

As mentioned in section 3.2, countermeasures can either be applied on the devices of an implementa-

tion or on the protocol itself. The first case usually focuses on reducing the side-channel leakage, while

the second focuses on eliminating the correlation between the leakage and the secret key.

Noise insertion As mentioned before, a high-enough noise level can always prevent the success of

a side-channel attack similar to ours. Thus, a possible countermeasure to such an attack is to attach noise

sources to the vulnerable devices of an implementation and make them generate noise in parallel to the

main computations. However, it must be ensured that the noise level is high enough. Otherwise, statistical

techniques, such as DPA, can be used to isolate the signal from the noise. Moreover, a skilled-enough

Eve may be able to circumvent the noise sources if she has access to the implementation. Therefore,

proper shielding should also be used to prevent access to the internal circuitry of the implementation

devices.

Another option is to modify the protocol to perform randomly-timed dummy operations during the main

computations. This acts as noise and successfully hides the main computations from Eve without being

easily circumvented. However, it may also lead to a significant reduction in key rate.

Masking Masking is also known as secret sharing [166] in a more general context. It consists in

hiding secret data by not processing it directly. More specifically, Alice and Bob hide the secret key by

processing only a share of it at a time. In the context of privacy amplification with matrix hashing, this

consists in splitting the corrected key into d components as

x = x1 + x2 + ...+ xd mod 2, (4.1)

where each xi is called a share of the corrected key, and then multiplying the hashing matrix with each

share. The secret key can be reconstructed by logical addition of all the shares due to linearity of the

operations.

The most common use of this technique is called first-order masking [167] and consists in splitting the

key into two shares, known as the mask and the masked key.

It was shown in [166] that the share division can be made such that complete reconstruction of d− 1

shares reveals no information about the secret key. Thus, Eve would have to measure leakages from the

processing of all shares to be able to reconstruct the secret key.

Moreover, [167] showed that masking can be combined with noise to provide information-theoretical

security. They proved that, for a certain amount of noise in the leakages, the secret-key information which

Eve can obtain from all leakages of one protocol execution is upper bounded by a value which decreases

exponentially with the increase in the number of key shares.

As with simple noise insertion, proper shielding can be crucial for Eve not to circumvent the noise

sources.
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Randomization Randomization techniques consist in adding additional steps to the protocol which

randomly shuffle the order of operations to eliminate the correlation between side channels and the secret

key.

A possible randomization countermeasure for privacy-amplification protocols based on matrix hashing

is for Alice and Bob to apply independent secret random permutations on the rows of the hashing matrix

before its logical multiplication with the corrected key. This shuffles the order of the logical scalar products

corresponding to each row of the hashing matrix, which renders the full-matrix approach obsolete.

However, if Eve uses the row approach, she can still know the number of zeros and ones of the secret

key, l0 and l1, respectively. Then, her search space will be reduced from 2l possibilities to
(
l
l0

)
. Since this

attack targets the privacy-amplification step, no further key distillation can be performed to remove Eve’s

knowledge about the secret key.

Another randomization technique is for Alice and Bob to apply independent secret random permu-

tations on the columns of the hashing matrix and on the corrected key before computing their logical

multiplication. This effectively renders both approaches obsolete. All Eve can do is use brute force and

build a different machine-learning model for every possible permutation of either Alice or Bob. For a

corrected key with n bits, assuming all columns of the hashing matrix are different, she will have to build

up to n! models. This is usually a much larger quantity than the number of possibilities for the secret key,

2l. Thus, this countermeasure recovers the information-theoretical security of the QKD protocol, even

when considering attacks similar to ours, and should be preferred over the previous countermeasure.

However, it is possible Eve can circumvent it by measuring the power trace of the permutation operations

to gain knowledge on the permutation applied.

Even more aggressive measures are for Alice and Bob to independently apply a different random

permutation on the columns of the hashing matrix and on the corrected key for each row of the hashing

matrix, or for them to independently apply random permutations to both columns and rows of the hashing

matrix. However, these would not increase the security further and require them to generate and apply

multiple truly-random permutations, which can decrease the key rate unnecessarily.

Yet another countermeasure is to process multiple logical scalar products in parallel to scramble

side-channel leakages without necessarily decreasing the key rate.

Properly implementing these countermeasures might not be enough to deter potential eavesdroppers

from finding new side-channel attacks. Thus, constant surveillance of both the communicating parties’

setups and the multiple repeater locations in a QKD network is likely advisable to prevent any type of

unwanted access to the physical implementations.

Importantly, we note that, if security is the main priority, we should always rely on a countermeasure

which may potentially lead to a decrease in key rate rather than on a "large-enough" secret key, since

a powerful-enough computer may always be able to break our protocol in the latter case. Besides, the

advantage of using a QKD protocol is having information-theoretical security. By relying on a large

secret key without implementing adequate countermeasures, we may be again reduced to computational

security, as in public-key cryptosystems.
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Chapter 5

Conclusions

In this chapter, we conclude this thesis by describing our main achievements in section 5.1 and

discussing further considerations and possible future work in sections 5.2 and 5.3, respectively.

5.1 Achievements

In this thesis, we aimed to contribute to the research on classical-side-channel attacks on QKD

implementations, while also reviewing some of the main theoretical and experimental progress in the field

of QKD.

Our main achievements were:

1. a brief review of some of the major theoretical and experimental advances in QKD, namely:

(a) a review of the main breakthroughs in security-analysis techniques;

(b) a description of the main components of QKD implementations, the most common DV-QKD

implementations and the main algorithms for classical postprocessing;

(c) a description of the use of classical and quantum repeaters for extending the transmission

distance in QKD;

(d) a comprehensive review of the main quantum- and classical-side-channel attacks demonstrated

in QKD implementations and their respective countermeasures;

2. an introduction to the field of machine learning in a mostly-self-contained way, focusing on super-

vised learning, to provide all the necessary background to understand our main contribution;

3. a new classical-side-channel attack on the privacy-amplification step of a general QKD protocol

based on matrix hashing, using its power-consumption trace;

Moreover, we presented frameworks for simulating the power trace of a protocol based on matrix

multiplication and for analysing a leakage with machine-learning techniques. We applied the latter

to the simulated power traces.
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We simulated our attack in multiple scenarios with different sizes of the modified Toeplitz hashing

matrix, measurement noise levels and sampling intervals of the measuring instrument, which

is a time-independent way of describing the instrument sampling rate. For all scenarios, we

tested different variations of the machine-learning analysis to assess the best approach for the

eavesdropper, Eve. We started with a test case in which we assessed the ability of the machine-

learning models to extract 1 bit of information from the full power trace. Then, we tried to recover

the full secret key by providing the machine-learning models with power traces corresponding to

operations involving either the full hashing matrix or just the row of the hashing matrix used in the

computation of the secret-key bit we were trying to predict. We then analysed the quality of the

generated power traces and the results of our three approaches to the machine-learning analysis

for each protocol scenario.

GBM was the best-performing model in virtually every scenario. It was able to recover the full

secret key for small-enough sampling intervals, equivalent to high-enough sampling rates, with any

hashing-matrix size and noise level tested.

Models provided with power traces corresponding to the full hashing matrix performed generally

better than models provided with power traces corresponding to individual rows of the hashing

matrix. However, the former models require more computational resources than the latter which

leads to a trade-off between the computational resources needed and the attack performance.

Within our simulated scenarios, there was no significant degradation of the performance of the

best model with the increase of either the hashing-matrix size or the noise level, provided the

sampling interval was small enough. However, we note that a high-enough noise level should

always be able to hinder an attack similar to ours. Moreover, it is possible that the performance of a

machine-learning model degrades for a large-enough hashing matrix.

We also determined that the sampling interval plays a major role in the performance of the models,

with larger sampling intervals sometimes leading to better-performing models due to the particular

sample of the power trace acquired by Eve.

Moreover, we devised a strategy, based on analysing the confusion matrices of the model, which

can make a constrained brute-force search for the secret key feasible in case of non-perfect models.

Finally, we also tested our analysis with a general binary hashing matrix and the results were similar

to the scenarios with a modified Toeplitz hashing matrix.

This demonstrates that machine-learning techniques can be used to robustly characterize the

leakages in a QKD implementation and generate powerful attacks.

4. Multiple countermeasures to attacks similar to the one we proposed, based on noise insertion,

masking and randomization techniques.

Some of the proposed countermeasures are capable of restoring the information-theoretical security

of the QKD protocol when considering attacks similar to ours, namely masking the key in combination

with noise, and applying a secret random permutation on the columns of the hashing matrix and on
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the corrected key before computing their logical multiplication.

Moreover, we note that the proposed countermeasures based on masking and randomization

techniques should also be successful at eliminating other potential side channels in classical-

postprocessing devices, such as emanated electromagnetic radiation.

This work also led to the paper [168], currently awaiting publishing.

5.2 Further considerations

A quantum cryptosystem whose security relies solely on quantum postulates is currently unrealistic.

Most physical implementations are imperfect and naturally present both classical and quantum side

channels. Our work reinforces that classical side channels in implementations must be taken into account

for practical use of QKD. This is specially true for QKD networks with multiple remotely-located repeaters,

since these can be particularly exposed to attacks.

We note that this argument remains relevant for MDI- and DI-QKD implementations. MDI-QKD

protocols treat the untrusted measurement relay as a true black box, such that any information leakage

from it cannot reveal significant information about the secret key. Thus, these protocols are also free from

classical side channels in the detection components. However, the source components used by Alice

and Bob can be vulnerable to both classical and quantum side channels. DI-QKD arguably eliminates all

quantum side channels from its implementations through device self-testing. However, their components

can still be vulnerable to classical side channels, since these do not destroy quantum correlations in the

shared systems.

We note that there may be a significant amount of exploitable side channels which have not yet been

discovered. Therefore, besides the numerous challenges and open questions regarding QKD currently

being explored [5], greater focus should be given to research on potential side-channel attacks if we hope

to consider QKD as a truly-secure technology in the future.

Nevertheless, we emphasize that QKD still has a clear advantage over classical systems based on

computational security, since the security of the former only depends on Eve successfully performing a

side-channel attack, while the latter can be broken either by side-channel attacks or by Eve saving the

encrypted messages until she has enough computational resources to decrypt them.

5.3 Future work

The attack in this work was performed on simulated power traces due to lack of access to physical

hardware. A natural next step is to use the same machine-learning framework to analyse power-

consumption traces from a physical implementation to verify the validity of our analysis. We believe that

this can only strengthen our argument for considering classical side channels in QKD implementations.

Moreover, a more in-depth study of the effects of the hashing-matrix size and noise level in similar

attacks would be useful to understand the strength of such attacks. More precisely, one could investigate if
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there is any performance degradation for the matrix sizes used in practical implementations and determine

the noise-level threshold above which it is no longer possible to extract useful information from similar

power traces.

It would also be useful to analyse the amount of information Eve can obtain from measuring the power

consumption of the permutation operations in the randomization countermeasure proposed to verify if

such countermeasure is easily circumvented.

Besides power consumption, our attack framework can be used to exploit other side channels, such as

electromagnetic radiation emanated from implementation devices and even their cache state throughout

the QKD protocol. We believe all potential side channels should be thoroughly explored.

Finally, it would be useful to perform a study on the strength of machine-learning-based side-channel

attacks and how they compare to template attacks, which are assumed to be the strongest type of

side-channel attack and are thus commonly used to evaluate the security limits of cryptographic imple-

mentations.
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Appendix A

Machine-learning models

In this appendix, we provide a mathematical description of the models used in our analysis. We

also describe their hyperparameters and how they influence each model. For each model, we assume

we have the input features x1, x2, ..., xn and a target y which takes values in {0, 1}. We focus on the

binary-target case, since we will only deal with that type of problems.

A.1 Logistic regression

In a logistic regression [128], given an input vector x with x0 = 1 for convenience and the remaining

entries as the input features, the probability of the target being 1 is assumed to be of the form

P (y = 1|x) = σ
(
wT · x

)
= σ

(
n∑

i=0

wixi

)
, (A.1)

where σ is the logistic function

σ(x) =
1

1 + exp(−x)
. (A.2)

w is called the weight vector and w0 is usually denoted as the intercept or bias term.

Then, it follows that the probability of the target being 0 is simply P (y = 0|x) = 1− P (y = 1|x).

Training the logistic regression with N records is an optimization problem of finding the best weight

vector for minimizing the a loss function. Specifically, it is

min
w

N∑
l=1

(
− yl log

(
P (yl = 1|xl)

)
− (1− yl) log

(
P (yl = 0|xl)

))
+ λr(w), (A.3)

where λ is a regularization constant, xl and yl are the input vector and the real output of record l,

respectively, and r(w) is a regularization term.

Setting r(w) = 0 amounts to no regularization. In that case, the optimization problem reduces to

minimizing the cross-entropy loss, also known as log loss, between the true target values and their
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predicted probabilities. This loss function takes the form

H(p, q) = −
∑
i

pi log(qi), (A.4)

where p and q are two distributions.

Introducing regularization helps prevent overfitting as described in section 2.4.4. A regularization

term imposes an additional penalty on the loss function, which also improves the numerical stability

of the optimization algorithm. In the optimization problem (A.3), the constant λ controls the amount of

regularization, with greater values corresponding to higher regularization. The forms of regularization

most commonly used in machine learning are L1-norm regularization, in which r(w) = ∥w∥1 =
∑n

i=0 |wi|,

and L2-norm regularization, in which r(w) = 1
2∥w∥

2
2 = 1

2

∑n
i=0 w

2
i [130].

In practice, there are multiple ways of solving the optimization problem (A.3). Usually the loss

function does not have a closed-form solution, so iterative optimization solvers are used. Common

ones are the L-BFGS [169], which applies a quasi-Newton method, and SAGA, which is a stochastic

average-gradient-descent method [170].

A.2 k-nearest neighbours

In kNN classification, a common approach to determining the target of a new record is majority voting

of the other k targets [130], which corresponds to averaging the targets and applying a 0.5 threshold

to the outcome. Another approach is performing the weighted average of the targets according to the

inverse of the distance of the training record to the new record, and applying the same 0.5 threshold to

the outcome. The latter approach attributes greater weights to closer records. With both approaches, k is

recommended to be odd to avoid ties.

The most-commonly used distance metrics are the Manhattan distance, d1(x,y) = ∥x− y∥1, the Eu-

clidean distance, d2(x,y) = ∥x− y∥2, and the Chebyshev distance, d∞ = ∥x− y∥∞ = maxi(|xi − yi|) [130].

A.3 Naïve Bayes

Naïve Bayes methods "naively" assume conditional independence between every pair of input features,

given the target value [128]. Mathematically, they assume

P (xi|y, x1, ..., xi−1, xi+1, ..., xn) = P (xi|y). (A.5)

For a vector of input features x, this allows us to write

P (x|y) =
n∏

i=1

P (xi|y). (A.6)
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Then, we can write Bayes’ theorem as

P (y|x) = P (y)P (x|y)
P (x)

=
P (y)

∏n
i=1 P (xi|y)
P (x)

≡ Posterior =
Prior× Likelihood

Evidence
. (A.7)

Since the evidence is a constant for a specific input vector x, only the numerator will determine the

predicted target value ŷ of a new record. Therefore, using

P (y|x) ∝ P (y)
n∏

i=1

P (xi|y), (A.8)

for binary-target problems, naïve Bayes methods use the classification rule

ŷ = argmax
y∈{0,1}

P (y|x) = argmax
y∈{0,1}

P (y)

n∏
i=1

P (xi|y). (A.9)

The priors can either be assumed to be uniform or estimated based on the target-value probabilities,

as P (y) = Ny

N , where Ny is the number of training records with target value y and N is the total number

of training records. The former assumption results in a maximum-likelihood estimation (MLE) problem

and the latter results in a maximum a-posteriori (MAP) estimation problem [128].

In the Gaussian naïve Bayes, we assume the likelihood to be a product of Gaussian distributions [128]

or, equivalently,

P (xi|y) =
1√

2πσ2
i,y

exp

(
− (xi − µi,y)

2

2σ2
i,y

)
, (A.10)

where µi,y is the mean of feature xi for records with target y and σ2
i,y is its variance. In practice, a

smoothing factor α can be added to the variances as a way of introducing regularization into the model

and stabilizing calculations.

As mentioned in section 2.4.3, the multinomial naïve Bayes is most-commonly used in text-classification

tasks, with each feature being the number of times specific words appear in a text. It assumes a multino-

mial likelihood distribution [128],

P (x|y) =
(
∑n

i=1 xi)!∏n
i=1 xi!

n∏
i=1

(Pi,y)
xi . (A.11)

In the text-classification example, Pi,y is the probability of the word corresponding to feature xi being

found in records with target y. More generally, it is the sum of the values the feature xi takes when

appearing in records with target y divided by the sum of all values of all features in those records,

Pi,y =

∑
Xy

xi∑
Xy

∑n
j=1 xj

, (A.12)

where Xy is the subset of records with target y.

Again, in text classification, when a new record has a feature xi the model has not seen before, Pi,y

becomes zero. This would make P (x|y) = 0, erasing all information about the other features. In order to
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account for feature values not present in the training data, Pi,y is computed as [130]

Pi,y =

∑
Xy

xi + α∑
Xy

∑n
j=1 xj + αn

, (A.13)

where n is the number of features and α is the smoothing factor which prevents null probabilities.

When α = 1, this is known as Laplace smoothing and, in the general case, it is known as Lidstone

smoothing [128].

It is interesting to look at this problem from another perspective. Since the terms with factorials are

constant for a specific input vector x, we have

P (y|x) ∝ P (y)
n∏

i=1

P xi
i,y (A.14)

=⇒ log(P (y|x)) ∝ log(P (y)) +

n∑
i=1

log(Pi,y)xi ≡ w0 +wT
y · x, (A.15)

where w0 = log(P (y)) and wi,y = log(Pi,y). As we can see, the multinomial naïve Bayes becomes a

linear model when we want to find the logarithm of the posterior probabilities.

Finally, the categorical naïve Bayes assumes the likelihood to be a product of categorical or multinoulli

distributions [128]. If each input feature xi has ki categories, let ji ∈ {1, ..., ki} represent a category

of xi. Then, the probability of the vector of input features x being equal to the vector of categories

j = (j1, ..., jn), given the target value y, is

P (x = j|y) =
n∏

i=1

P (xi = ji|y), (A.16)

where P (xi = ji|y) is the probability of feature xi having the category ji in the subset of records with

target y. In practice, this probability is computed as [130]

P (xi = ji|y) =
Ni,ji,y + α

Ny + αki
. (A.17)

Ni,ji,y is the cardinality of the subset
{
l ∈ {1, ..., N} : xli = ji, y

l = y
}

, with N being the number of training

records, xli the feature xi of record l and yl the output of that record. Then, Ni,ji,y is the number of

times the category ji appears in the feature xi of the records with target y. Ny is the cardinality of the

subset
{
l ∈ {1, ..., N} : yl = y

}
, which is the number of records with target y. The smoothing factor α

helps account for new categories and prevent null probabilities, just like in the multinomial case.

A.4 Support-vector machine

Let us consider a target feature y which takes values in {−1, 1} to simplify the notation. To build a

SVM with n input features, we want to find the (n− 1)-dimensional hyperplane [136]

wT · x+ w0 = 0, (A.18)
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where x is a vector of input features and parameters w and w0 are such that

yl
(
wT · xl + w0

)
> 0, ∀ l ∈ {1, ..., N}, (A.19)

where N is the number of training records. In words, we want to find a hyperplane which separates the

training records according to their target value. However, for some linearly-separable problems, multiple

such hyperplanes accomplish that task exactly. In order to build a model with the best generalization

performance possible, we choose the hyperplane which maximizes the margin. Since w is orthogonal to

the hyperplane, the margin m is defined as

m(w, w0) = min
l

yl
(
wT · xl + w0

)
∥w∥2

, (A.20)

where the expression to be minimized is the distance of data point xl to the hyperplane, and the data

points which are the solution to this minimization are the support vectors. Then, finding the optimal

hyperplane is equivalent to solving the constrained optimization problem

argmax
w,w0

m(w, w0) subject to yl(wT · xl + w0) > 0, ∀ l ∈ {1, ..., N}. (A.21)

Since the rescaling of the parameters w and w0 by any constant does not change the distance of any

data point xl to the hyperplane, it is common to consider a scaling such that we can use the canonical

representation of the hyperplane

yl(wT · xl + w0) ≥ 1, ∀ l ∈ {1, ..., N}. (A.22)

The support vectors lead to an equality in the inequation above. Thus, the constrained optimization

problem (A.21) reduces to

argmin
w,w0

∥w∥22 subject to yl(wT · xl + w0) ≥ 1, ∀ l ∈ {1, ..., N}, (A.23)

where we use the square of the norm for computational convenience.

In non-linearly-separable problems, there will be no solution to the optimization problem (A.23).

Therefore, a slack variable ξl ≥ 0 is introduced for each training data point [171]. If the data point xl is

on the correct side of the hyperplane and on or outside the margin boundary, then ξl = 0. Otherwise,

ξl =
∣∣yl −wT · xl + w0

∣∣. If 0 < ξl ≤ 1, the data point is on the correct side of the hyperplane but inside

the margin. If ξl > 1, it is on the wrong side of the hyperplane. Thus, the slack variables act as penalties

which increase with the distance of the data points to the correct side of the margin boundary. It can be

shown [171] that the optimization problem becomes

argmin
w,w0

∥w∥22 + λ

N∑
l=1

ξl subject to

y
l(wT · xl + w0) ≥ 1− ξl

ξl ≥ 0
, ∀ l ∈ {1, ..., N}, (A.24)
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with λ > 0 acting as a regularization parameter which controls the number of training mistakes we are

willing to tolerate. The lower its value, the more tolerable mistakes and the higher the regularization. This

is known as the soft-margin approach.

The constrained optimization problem (A.24) can be solved directly by methods such as sub-gradient

descent [172], or indirectly by techniques such as using the Lagrange-multiplier method to obtain the

simpler dual optimization problem as shown in [171]. The dual problem can then be solved with techniques

such as sequential minimal optimization (SMO) [173].

After determining w and w0 and therefore knowing the optimal hyperplane, a new record is classified

with

ŷ = sgn
(
wT · x+ w0

)
, (A.25)

where sgn is the sign function

sgn(x) =

−1, x < 0

1, x ≥ 0
. (A.26)

The method detailed above builds a linear model. In order to perform non-linear classification, we

must map the input features into a higher-dimensional space [136]. This is done using a kernel function,

which, as mentioned in section 2.4.3, takes the form

k(x,x′) = ϕ(x)Tϕ(x′), (A.27)

with ϕ(x) being a specific feature-space mapping. By first transforming the input-feature space and then

applying the linear SVM algorithm, equation (A.25) becomes

ŷ = sgn
(
wT · ϕ(x) + w0

)
. (A.28)

This is a linear model in the transformed input-feature space, but a non-linear one in the original input-

feature space.

Factorizing a kernel function can be quite difficult. In order to avoid doing that by working in the input-

feature space, we can work in the dual space. This can be achieved by applying the Lagrange-multiplier

method to the constrained optimization problem (A.24), as stated above. Then, it can be shown [136] that

the predicted target ŷ for a new record x takes the form

ŷ =

N∑
l=1

αlylk(x,xl) + w0 (A.29)

where αl is the Lagrange multiplier associated with the first constraint for the record l and k is the chosen

kernel function. This is known as the kernel trick. It can also be shown [136] that 0 ≤ αl ≤ λ, with αl = 0

if xl is not a support vector, which is congruent with the assertion that only support vectors are needed to

build a SVM.

As mentioned in section 2.4.3, besides the linear SVM, where k(x,x′) = xT · x′, commonly-used

non-linear kernel functions are the gaussian radial-basis function (RBF), polynomial functions and the
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sigmoid function [128].

A radial-basis function is a function which fulfils f(x) = f(∥x∥). The Gaussian RBF kernel function is

given by

k(x,x′) = exp
(
−γ∥x− x′∥22

)
, γ > 0. (A.30)

The d-th-degree polynomial kernel function takes the form

k(x,x′) =
(
γxT · x′ + b

)d
, γ, b ∈ R. (A.31)

The sigmoid kernel function is

k(x,x′) = tanh
(
γxT · x′ + b

)
, γ, b ∈ R. (A.32)

As mentioned before, a proper choice of kernel function and regularization parameter λ is crucial to

prevent overfitting.

A.5 Decision tree

Training a decision tree is done with greedy algorithms which perform locally-optimal splits of the

input-feature space [128]. These splits are represented by decision nodes in a diagram.

Let Nj be the subset of Nj records corresponding to node j. A candidate split (xi, tj), where xi is the

chosen input feature and tj is the chosen splitting threshold, partitions Nj into N left
j and N right

j such that

N left
j (xi, tj) = {(x, y) : xi ≤ tj} (A.33)

N right
j (xi, tj) = Nj \N left

j (xi, tj) (A.34)

where x = (x1, ..., xn). In order to determine the optimal split at node j, we define a loss function L which

is the weighted sum of a loss function H on each of the resulting subsets,

L(Nj , xi, tj) =
N left

j

Nj
H
(
N left

j (xi, tj)
)
+
Nright

j

Nj
H
(
N right

j (xi, tj)
)
, (A.35)

where N left
j and Nright

j are the number of records in subsets N left
j and N left

j , respectively. Then, the

optimal split is the solution to the optimization problem

argmin
xi,tj

L(Nj , xi, tj). (A.36)

The fraction of records with target value y at node j is

Pj,y =
1

Nj

∑
l∈Nj

1(yl = y). (A.37)

For a binary classification problem, commonly-used loss functions H are the Gini impurity, or Gini
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index,

H(Nj) = Pj,0 (1− Pj,0) + Pj,1 (1− Pj,1)

= 1− P 2
j,0 − P 2

j,1 (A.38)

and the binary Shannon entropy

H(Nj) = −Pj,0 log(Pj,0)− Pj,1 log(Pj,1). (A.39)

The binary Shannon entropy penalizes solutions containing subsets with low purity more than the Gini

impurity. As mentioned in section 2.4.3, the prediction of the final model is either the most common target

value of the records in each leaf or the probability of a record classified into leaf j having target value y,

which is given by Pj,y.

For a regression problem with a continuous target variable y, it is common to use either the mean

squared error (MSE) or the mean absolute error (MAE) as the loss function H [130]. The MSE loss

function is given by

H(Nj) =
1

Nj

∑
l∈Nj

(
yl − yj

)2
, (A.40)

where yj is the mean target value of the records in Nj . The MAE loss function is

H(Nj) =
1

Nj

∑
l∈Nj

∣∣yl − ỹj∣∣, (A.41)

where ỹj is the median target value of the records in Nj . When using the MSE loss function, the final

predicted value for leaf j is yj and, when using MAE, the final prediction is ỹj .

As mentioned in section 2.4.3, multiple pre-pruning strategies are commonly used to improve a

decision tree’s generalization ability, one of which is to define the minimum reduction in impurity allowed

for a split to happen. The reduction in impurity associated with a split at node j is defined as [130]

R(Nj , xi, tj) =
Nj

N
(H(Nj)− L(Nj , xi, tj)) , (A.42)

where N is the total number of training records.

Common algorithms which implement a greedy approach similar to the one described above, with pre-

and post-pruning strategies, are CART [174], ID3 [175], C4.5 [176] and its successor C5.0 [177], which is

faster than C4.5, more memory efficient, and creates smaller trees with the same performance results.

A.6 Random forest

As with any bagging model, the final prediction of a random forest is either given by a majority voting

or an average of the outputs of the base decision trees [130].
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A.7 Adaboost

In AdaBoost, M models are trained sequentially and the training records are reweighted as the training

iterations progress [147].

In AdaBoost, the first model is trained on the original dataset, where every record has the same

weight. Then, the weights are readjusted in such a way that wrongly-classified training records are given

larger weights than correctly-predicted ones, and a new model is trained with that reweighted dataset.

The same reweighting-and-training procedure is done for following models. This way, hard-to-predict

records gain increasing influence in the model training as iterations progress. The final prediction of an

AdaBoost model is an average of the M base-model predictions weighted according to the number of

records wrongly predicted by each model.

Let wl
m correspond to the weight of record l at iteration m. Then, for N training records, we start with

wl
0 =

1

N
, ∀ l ∈ 1, ..., N. (A.43)

After training the first model, we compute its weighted error rate ϵ1 on the training dataset with

ϵm =

N∑
l=1

wl
m−11

(
ŷlm ̸= yl

)
, (A.44)

where ŷlm is the predicted target value for record l by the m-th model and yl is its real target value.

If ϵm = 0, we stop the training iterations since the AdaBoost model has fully captured the underlying

structure of the training dataset.

The weight associated to model m in the weighted average of the final prediction is

αm = log

(
1− ϵm
ϵm

)
. (A.45)

As stated in section 2.4.3, models with larger error rates will have a smaller contribution to the final

prediction. We proceed by updating the record weights with

wl
m = wl

m−1 exp
(
ηαm1

(
ŷlm ̸= yl

))
, η ∈ (0, 1], (A.46)

where η is the user-specified learning rate. Effectively, this leaves the weights unchanged when a target

value is correctly predicted, i.e, ŷlm = yl, and multiplies the weights of the wrongly-predicted records by

exp(ηαm) =
(

1−ϵm
ϵm

)η
. Thus, wrong predictions by good models, i.e., models with a low error rate, lead to

large increases in the respective weights. On the other hand, when weak models make wrong predictions,

the respective weights are only slightly increased since weak models are less trustworthy. If a model has

ϵm ≥ 0.5, it is equal or worse than random guessing in the binary-target case. Since this would lead to

unchanged or even smaller weights for the wrongly-predicted records, we discard this model and retrain

a new base model.

After updating the record weights, we normalize them so that their sum is 1 and train the following
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base model with the reweighted dataset.

For the binary-classification case, the final prediction of an AdaBoost model is given by

P (y = 1|x) =
∑M

m=1 αmPm(y = 1|x)∑M
m=1 αm

(A.47)

if the m-th base model’s output is the probability of record x having target value 1, Pm(y = 1|x). In case

the base model’s output is the predicted target class, we simply replace the probabilities in the sum of

equation (A.47) with ŷlm. In order to obtain a target-value prediction, we define a threshold probability as

mentioned before.

A.8 Gradient-boosting machine

In a GBM, M regression base models are trained to predict the negative gradient of a loss function H

for each record [149]. The base modelMm is trained and weighted by a factor βm to minimize the total

loss on the training dataset. This is translated into the optimization problem

argmin
Mm,βm

N∑
l=1

H
(
yl, Pm−1(x

l) + βmMm(xl)
)

(A.48)

for each base model, whereMm(xl) is the prediction of modelMm for record l and

Pm−1(x
l) = P0 +

m−1∑
j=1

ηβjMj(x
l), (A.49)

with η ∈ (0, 1] being the user-specified learning rate. Then, Pm−1(x
l) is the prediction for record l of the

current base-model ensemble at iteration m − 1. The initial value P0 is chosen as the constant which

minimizes the total loss function on the training dataset.

As mentioned in section 2.4.3, the learning rate controls the contribution of each base model by

maintaining or decreasing its effective weight in the ensemble after the respective optimization. In turn,

this affects the weights βm chosen in following iterations.

The loss function H may be approximated to first order as

H
(
yl, Pm−1(x

l) + βmMm(xl)
)
≈ H

(
yl, Pm−1(x

l)
)
+ βmMm(xl)

∂H
(
yl, P (xl)

)
∂P (xl)

∣∣∣∣∣
P=Pm−1

. (A.50)

By using this first-order approximation in equation (A.48) and removing the constant terms at iteration m,

we have

argmin
Mm,βm

N∑
l=1

βmMm(xl)
∂H

(
yl, P (xl)

)
∂P (xl)

∣∣∣∣∣
P=Pm−1

. (A.51)

As stated above, the solution to this optimization problem is a model which is trained to predict a value

proportional to the symmetric of the partial derivative. Moreover, as the gradients are updated at each

iteration, this is akin to a gradient descent in a functional space as was shown in [178].
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Let us consider again a target feature y with values in {−1, 1} to simplify the notation. Then, two

commonly-used loss functions are the exponential loss [128]

H(y, P (x)) = exp(−yP (x)) (A.52)

and the log loss in the form

H(y, P (x)) = log(1 + exp(−yP (x))). (A.53)

The exponential loss attributes larger penalties to wrongly-predicted outputs than the log loss and is not

generalizable to the multiple-target-value case while the log loss is.

For both loss functions, the initial value P0 is

P0 =
1

2
log

(
γ

1− γ

)
, with γ =

1

N

N∑
l=1

1(yl = 1). (A.54)

A stated in section 2.4.3, using the exponential loss function reduces a GBM to the AdaBoost model.

However, we cannot recover reasonable probabilities from the gradient predictions for this loss [128].

Therefore, we directly obtain the predicted target value with

ŷ = sgn (PM (x)) . (A.55)

A GBM using the log loss is also called LogitBoost model [149]. With this loss, we can recover probabilities

from the base-model predictions with

P (y = 1|x) = σ (PM (x)) , (A.56)

where σ is the logistic function.
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Appendix B

All model results

In this appendix, we present a summary of all model results from the three studied approaches.

B.1 1-bit-model results

For the 1-bit models, their accuracy for each combination of noise level and sampling interval is

presented in tables B.1 to B.3, for 8× 16, 16× 32 and 32× 64 hashing matrices, respectively.

Table B.1: Accuracy of 1-bit models, by noise level and sampling interval, for a 8× 16 hashing matrix.

Accuracy (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 100.00 100.00 100.00 78.98 71.70 71.70 100.00 91.55 97.15 79.05 71.80 72.45 99.20 74.85 79.20 71.60 71.40 67.90

KNN 71.43 69.65 74.07 71.16 68.63 70.89 76.55 70.80 74.55 72.10 74.60 69.40 74.00 68.20 71.80 67.60 71.85 64.00

Gaussian
naïve Bayes 74.39 72.40 74.99 72.13 71.70 70.84 74.40 72.55 72.45 71.65 71.80 71.45 74.40 72.65 73.95 70.80 69.95 64.40

Multinomial
naïve Bayes 72.61 71.86 72.99 71.81 71.70 68.73 71.45 71.50 71.80 72.05 71.80 66.10 71.80 71.40 74.65 64.55 63.65 63.35

Categorical
naïve Bayes 74.77 71.59 73.58 72.02 71.70 70.89 72.95 71.25 71.60 71.75 70.45 71.70 72.50 70.60 63.65 66.20 63.65 65.75

SVM 100.00 100.00 100.00 90.08 75.53 73.64 100.00 91.25 98.80 89.00 86.75 73.80 99.10 79.65 86.80 75.15 79.65 68.35

Decision tree 100.00 98.01 99.73 90.13 76.17 71.70 97.00 84.70 85.80 81.55 77.15 71.85 96.60 74.00 79.20 72.35 74.95 68.40

Random forest 100.00 98.22 100.00 92.35 84.26 74.50 99.45 88.00 92.00 85.05 79.60 72.65 99.20 74.35 78.55 77.50 77.60 68.50

GBM 100.00 100.00 100.00 99.57 90.89 85.01 99.90 99.15 99.70 96.40 87.00 75.75 99.90 82.75 93.15 82.35 82.30 66.05
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Table B.2: Accuracy of 1-bit models, by noise level and sampling interval, for a 16× 32 hashing matrix.

Accuracy (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 100.00 100.00 99.00 73.60 69.75 60.50 100.00 92.25 88.30 73.15 69.50 60.40 96.75 70.45 75.25 67.15 66.70 61.05

KNN 61.30 60.00 62.20 61.15 61.55 61.10 61.35 59.75 61.05 60.45 61.50 60.80 61.15 60.50 61.25 59.95 59.75 61.05

Gaussian
naïve Bayes 70.80 67.20 68.00 60.25 61.10 59.60 70.70 67.85 68.05 65.05 64.40 59.60 70.70 61.35 68.15 63.45 63.65 59.65

Multinomial
naïve Bayes 62.05 61.85 64.30 63.50 64.70 59.60 62.05 62.80 64.25 63.60 60.65 60.45 62.10 63.45 64.15 60.50 59.60 59.60

Categorical
naïve Bayes 67.30 64.70 67.60 65.90 67.80 62.10 66.80 65.05 67.00 64.90 67.55 61.65 67.50 61.95 67.60 64.50 66.30 61.85

SVM 100.00 100.00 100.00 73.85 70.15 61.65 100.00 92.30 88.50 73.05 68.60 65.70 96.60 70.25 74.80 68.30 65.85 64.65

Decision tree 73.85 71.85 72.55 70.95 69.40 67.15 70.35 70.30 70.55 69.40 68.90 65.65 69.85 67.30 69.30 68.10 68.65 65.30

Random forest 78.80 72.40 72.70 71.95 70.80 67.25 76.85 71.95 73.65 70.90 70.70 66.75 76.55 68.10 72.65 68.40 68.70 64.60

GBM 96.20 91.65 95.15 85.35 78.15 70.75 97.35 92.55 95.70 83.45 77.40 68.30 97.00 74.10 88.30 74.55 74.20 64.10

Table B.3: Accuracy of 1-bit models, by noise level and sampling interval, for a 32× 64 hashing matrix.

Accuracy (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 99.95 98.05 87.45 71.85 66.95 60.00 99.25 89.30 86.10 71.20 66.00 60.95 93.55 68.15 75.35 65.70 65.20 60.40

KNN 57.15 57.55 56.20 55.85 57.55 57.55 57.95 56.35 56.75 55.00 56.05 56.55 57.75 56.40 58.10 56.35 57.50 55.65

Gaussian
naïve Bayes 65.30 59.55 65.30 58.40 58.95 57.55 65.30 59.80 65.25 59.15 60.50 57.55 65.30 57.55 65.20 58.55 59.40 57.55

Multinomial
naïve Bayes 65.00 59.00 64.70 59.25 61.15 57.60 64.80 58.60 64.80 60.10 60.40 57.55 64.85 59.20 64.25 59.05 58.40 57.75

Categorical
naïve Bayes 63.20 57.55 62.40 62.05 57.55 57.55 57.55 57.55 63.70 61.10 60.95 57.55 62.75 57.55 57.55 58.30 57.55 57.55

SVM 100.00 100.00 92.80 71.45 65.15 60.30 99.20 89.95 85.95 71.80 65.20 60.15 94.30 66.15 74.65 64.55 65.45 60.15

Decision tree 63.90 64.65 63.00 62.75 63.70 61.00 64.90 64.45 62.55 61.50 61.95 60.55 64.25 62.20 63.15 61.30 61.85 59.45

Random forest 77.15 70.00 72.10 66.20 65.50 62.95 75.90 68.70 70.30 65.50 65.40 62.45 75.10 63.65 69.80 64.95 65.55 60.25

GBM 89.30 83.05 88.10 78.10 69.65 63.70 91.25 83.60 89.25 74.55 68.00 61.10 91.55 70.65 81.20 67.15 67.80 59.00

For an easier analysis, figures B.1a to B.1i show their accuracy plotted by sampling interval, for each

hashing-matrix size and noise level.
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(a) For a 8× 16 hashing matrix
and no noise.

(b) For a 8× 16 hashing matrix
and noise level of 0.1 pA.

(c) For a 8× 16 hashing matrix
and noise level of 1 pA.

(d) For a 16× 32 hashing matrix
and no noise.

(e) For a 16× 32 hashing matrix
and noise level of 0.1 pA.

(f) For a 16× 32 hashing matrix
and noise level of 1 pA.

(g) For a 32× 64 hashing matrix
and no noise.

(h) For a 32× 64 hashing matrix
and noise level of 0.1 pA.

(i) For a 32× 64 hashing matrix
and noise level of 1 pA.

Figure B.1: Accuracy of 1-bit models by sampling interval, for each hashing-matrix size and noise level.
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B.2 Full-matrix-model results

For the full-matrix models, the average Hamming loss of the predicted keys, for each combination

of noise level and sampling interval, is presented in tables B.4 to B.6, for each hashing-matrix size

considered.

Table B.4: Average Hamming loss of the predicted keys of full-matrix models, by noise level and sampling
interval, for a 8× 16 hashing matrix.

Average Hamming loss of predicted keys (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 0.00 0.00 0.00 21.87 37.84 34.27 0.00 0.42 0.06 21.29 37.02 34.38 0.00 23.46 18.66 31.26 37.09 38.89

KNN 22.94 27.00 22.70 22.56 25.75 30.32 22.29 27.46 23.09 23.18 23.29 29.12 23.18 30.39 25.40 29.39 25.32 38.56

Gaussian
naïve Bayes 0.00 15.53 14.10 26.59 35.79 35.07 0.12 16.80 14.59 25.94 35.08 34.42 1.44 26.32 20.14 30.71 35.26 39.16

Multinomial
naïve Bayes 5.32 18.02 17.92 28.73 37.93 34.78 10.42 22.23 19.89 28.22 36.60 34.26 10.91 29.81 24.78 33.81 37.45 39.30

Categorical
naïve Bayes 0.00 19.47 10.59 22.81 31.93 34.87 0.00 19.89 11.19 22.15 30.63 34.11 0.50 28.28 18.84 28.81 33.01 39.77

SVM 0.00 0.00 0.00 3.07 4.15 23.30 0.00 0.62 0.01 2.56 4.03 27.32 0.00 14.41 5.73 14.49 10.47 36.19

Decision tree 0.00 0.05 0.00 2.35 14.37 24.86 0.00 1.01 0.31 4.23 16.03 28.52 0.09 13.14 7.83 15.64 16.34 39.12

Random forest 0.00 0.00 0.00 1.84 5.87 15.05 0.00 0.06 0.00 3.20 9.26 18.91 0.06 7.75 3.50 12.15 14.32 37.89

GBM 0.00 0.00 0.00 0.00 1.04 5.08 0.00 0.00 0.00 0.12 5.46 20.13 0.06 1.52 0.41 4.34 10.71 31.28

Table B.5: Average Hamming loss of the predicted keys of full-matrix models by noise level and sampling
interval, for a 16× 32 hashing matrix.

Average Hamming loss of predicted keys (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 0.00 0.00 0.00 28.59 35.98 46.93 0.00 0.27 2.87 28.51 35.85 46.73 0.00 25.87 20.72 35.39 38.64 46.68

KNN 38.21 40.99 38.24 39.65 39.13 40.77 38.24 37.24 38.25 40.38 39.60 40.72 38.31 41.74 38.36 40.72 40.22 41.29

Gaussian
naïve Bayes 0.00 14.17 17.33 32.53 36.59 46.08 3.39 18.07 18.30 32.91 36.52 46.11 6.29 33.29 24.11 36.66 37.37 46.17

Multinomial
naïve Bayes 9.83 21.91 23.47 36.05 39.68 46.98 21.27 29.92 25.15 36.57 39.95 47.04 18.04 38.32 29.78 40.67 40.67 46.87

Categorical
naïve Bayes 0.00 20.38 8.30 25.85 29.80 44.29 0.00 20.39 8.37 25.83 29.88 44.21 1.60 32.78 19.47 33.91 34.61 45.00

SVM 0.00 0.00 0.00 15.38 22.06 31.37 0.00 0.28 2.84 16.24 23.15 31.85 0.00 27.00 16.48 25.56 26.35 36.97

Decision tree 17.92 23.95 22.38 23.50 25.13 37.88 19.87 26.45 23.68 25.07 26.40 37.43 20.10 30.13 25.84 29.04 28.70 39.14

Random forest 0.00 12.79 2.69 12.15 18.04 31.54 0.00 12.09 2.89 7.37 19.59 34.27 0.03 27.32 11.44 23.35 22.75 38.43

GBM 0.00 0.00 0.00 2.00 11.72 25.67 0.00 0.02 0.01 3.17 18.35 28.96 0.03 1.69 0.56 14.65 20.74 34.94
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Table B.6: Average Hamming loss of the predicted keys of full-matrix models by noise level and sampling
interval, for a 32× 64 hashing matrix.

Average Hamming loss of predicted keys (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 0.00 0.00 0.00 27.03 36.39 44.68 0.00 0.38 4.49 27.05 36.65 45.15 0.00 27.12 19.70 34.76 38.00 45.91

KNN 44.05 46.64 44.29 46.14 45.48 48.00 44.07 46.54 44.28 46.33 46.05 47.97 44.18 47.60 44.43 46.48 46.03 48.17

Gaussian
naïve Bayes 1.19 15.01 16.36 32.57 37.68 45.18 9.10 19.70 18.95 33.95 37.80 45.36 11.92 38.34 24.76 37.85 38.40 46.27

Multinomial
naïve Bayes 12.43 25.82 27.18 37.16 40.05 45.78 29.71 37.92 30.53 38.65 39.67 45.91 28.39 41.85 31.65 42.12 40.92 46.72

Categorical
naïve Bayes 0.27 20.50 10.13 30.12 32.28 43.85 0.30 20.94 10.09 30.15 32.21 43.84 7.55 35.94 22.00 36.45 35.80 45.36

SVM 0.00 0.00 0.00 26.62 34.08 42.85 0.00 0.35 4.26 26.95 34.27 42.60 0.00 26.49 20.06 34.57 34.65 43.89

Decision tree 34.71 35.23 35.35 37.19 37.30 40.34 35.08 36.01 35.96 37.39 37.86 40.47 35.91 37.82 36.37 39.19 39.12 43.47

Random forest 0.01 28.15 23.61 23.80 28.20 37.88 1.89 28.23 21.65 24.93 27.95 35.93 2.71 35.22 21.91 30.20 30.39 42.09

GBM 0.00 0.00 0.00 8.27 15.20 31.34 0.00 0.01 0.00 13.48 29.10 28.56 0.02 0.83 0.50 21.22 32.64 41.12

Figures B.2a to B.2i show the average Hamming loss of the predicted keys of these models, plotted

by sampling interval, for each hashing-matrix size and noise level.

(a) For a 8× 16 hashing matrix
and no noise.

(b) For a 8× 16 hashing matrix
and noise level of 0.1 pA.

(c) For a 8× 16 hashing matrix
and noise level of 1 pA.

(d) For a 16× 32 hashing matrix
and no noise.

(e) For a 16× 32 hashing matrix
and noise level of 0.1 pA.

(f) For a 16× 32 hashing matrix
and noise level of 1 pA.

(g) For a 32× 64 hashing matrix
and no noise.

(h) For a 32× 64 hashing matrix
and noise level of 0.1 pA.

(i) For a 32× 64 hashing matrix
and noise level of 1 pA.

Figure B.2: Average Hamming loss of the predicted keys of full-matrix models by sampling interval, for
each hashing-matrix size and noise level.
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B.3 Row-model results

For the row models, the average Hamming loss of the predicted keys for each combination of

noise level and sampling interval is presented in tables tables B.7 to B.9, for each of the considered

hashing-matrix sizes.

Table B.7: Average Hamming loss of the predicted keys of row models, by noise level and sampling
interval, for a 8× 16 hashing matrix.

Average Hamming loss of predicted keys (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 0.00 0.00 33.48 44.33 43.22 43.57 0.00 3.45 31.80 42.15 43.75 43.70 0.00 25.95 32.05 43.40 45.10 43.80

KNN 2.41 6.68 6.98 21.29 30.72 30.12 3.35 13.25 11.35 22.25 30.75 28.45 5.10 20.90 16.05 29.50 33.10 37.55

Gaussian
naïve Bayes 0.00 15.71 37.90 43.98 45.08 43.42 6.00 20.20 37.10 43.45 44.10 43.70 8.25 27.90 37.80 43.05 43.40 43.70

Multinomial
naïve Bayes 9.64 22.29 37.70 44.83 44.53 42.82 22.90 26.00 37.35 43.80 44.10 43.25 23.35 29.55 37.30 43.65 45.25 43.50

Categorical
naïve Bayes 0.00 24.05 19.63 25.50 32.98 34.84 0.00 22.30 20.75 28.45 33.00 33.65 0.60 28.00 28.15 37.35 35.35 41.75

SVM 0.00 0.00 2.81 17.92 30.92 30.42 0.00 0.05 2.80 20.75 30.30 29.80 0.00 15.40 13.65 27.00 31.40 40.15

Decision tree 0.00 0.00 2.56 18.22 31.02 29.02 0.00 0.00 5.35 19.15 31.05 28.65 0.00 7.10 13.10 28.50 33.40 38.15

Random forest 0.00 0.00 3.01 18.67 30.87 29.52 0.00 0.00 3.55 18.70 31.35 29.00 0.00 5.15 11.15 26.20 31.85 37.50

GBM 0.00 0.00 3.61 17.42 30.67 28.92 0.00 0.00 3.25 19.00 30.90 28.95 0.00 5.30 11.40 27.25 33.55 39.05

Table B.8: Average Hamming loss of the predicted keys of row models by noise level and sampling
interval, for a 16× 32 hashing matrix.

Average Hamming loss of predicted keys (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 0.00 0.00 37.55 42.80 48.80 48.45 0.00 1.90 37.55 43.10 48.60 48.45 0.00 30.10 38.00 43.30 48.75 47.90

KNN 14.90 21.50 25.85 36.20 33.55 42.75 15.15 22.00 25.20 36.35 33.05 39.75 16.30 34.90 28.50 39.85 39.30 43.85

Gaussian
naïve Bayes 0.00 13.05 47.70 45.65 49.70 48.35 0.50 14.60 47.80 45.85 49.80 48.00 1.75 30.80 47.75 46.20 49.70 47.95

Multinomial
naïve Bayes 4.70 15.55 45.20 46.65 50.80 48.50 16.05 18.65 45.30 46.85 50.55 48.70 15.95 40.35 44.90 46.95 51.65 48.70

Categorical
naïve Bayes 0.00 22.10 20.40 33.35 32.70 45.70 0.00 22.25 23.30 35.45 33.40 46.20 0.50 33.95 34.70 42.20 39.90 48.95

SVM 0.00 0.00 10.05 26.40 29.20 42.50 0.00 1.00 10.90 26.80 29.40 41.50 0.00 27.15 19.80 36.10 35.45 43.20

Decision tree 0.00 0.00 6.80 22.65 31.05 42.10 0.00 0.00 6.80 23.55 30.05 40.45 0.05 14.00 15.50 33.50 34.55 41.50

Random forest 0.00 0.00 6.90 23.80 30.85 43.20 0.00 0.00 5.45 23.10 29.30 41.55 0.05 9.00 12.85 31.20 34.15 41.60

GBM 0.00 0.00 6.45 23.75 29.10 40.85 0.00 0.05 5.65 22.80 30.40 41.75 0.05 9.30 13.40 31.80 33.80 43.65
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Table B.9: Average Hamming loss of the predicted keys of row models by noise level and sampling
interval, for a 32× 64 hashing matrix.

Average Hamming loss of predicted keys (%)

Noise level
(pA)

0 0.1 1

Models

Sampling interval
(in gates)

1 3 5 10 20 30 1 3 5 10 20 30 1 3 5 10 20 30

Logistic
regression 0.00 0.00 37.65 43.11 50.05 47.52 0.00 3.67 38.34 45.54 50.79 47.62 0.00 31.05 38.05 44.00 50.25 48.12

KNN 25.99 30.95 33.13 39.98 38.14 45.83 26.59 32.74 33.28 42.21 38.69 46.63 26.24 39.34 33.68 42.26 39.98 46.92

Gaussian
naïve Bayes 0.00 15.97 49.65 50.25 50.25 50.25 0.50 18.95 49.80 50.25 50.25 50.25 2.23 33.68 50.30 50.25 50.25 50.25

Multinomial
naïve Bayes 5.70 21.48 42.56 47.52 51.74 48.91 18.95 22.92 42.66 47.42 51.69 50.30 19.59 41.91 44.44 47.02 51.24 50.20

Categorical
naïve Bayes 0.00 25.99 21.73 38.10 38.74 47.07 0.00 25.74 23.66 38.39 38.99 47.07 0.30 35.76 48.07 47.57 41.27 48.71

SVM 0.00 0.00 20.19 43.11 37.10 47.02 0.00 3.87 19.99 43.15 36.46 47.02 0.00 30.21 23.86 45.04 37.95 47.52

Decision tree 0.00 0.00 7.39 22.97 31.30 43.01 0.00 0.00 8.09 25.25 32.09 45.24 0.05 9.33 16.37 36.01 38.59 46.92

Random forest 0.00 0.00 7.04 23.66 32.69 46.97 0.00 0.00 7.29 24.65 33.38 46.92 0.05 7.54 15.53 34.42 34.67 47.77

GBM 0.00 0.00 7.49 24.50 32.69 44.35 0.00 0.00 6.85 24.11 32.74 46.68 0.05 9.13 13.59 33.18 36.26 44.44

Figures B.3a to B.3i show the average Hamming loss of the predicted keys of the row models, plotted

by sampling interval, for each hashing-matrix size and noise level.

(a) For a 8× 16 hashing matrix
and no noise.

(b) For a 8× 16 hashing matrix
and noise level of 0.1 pA.

(c) For a 8× 16 hashing matrix
and noise level of 1 pA.

(d) For a 16× 32 hashing matrix
and no noise.

(e) For a 16× 32 hashing matrix
and noise level of 0.1 pA.

(f) For a 16× 32 hashing matrix
and noise level of 1 pA.

(g) For a 32× 64 hashing matrix
and no noise.

(h) For a 32× 64 hashing matrix
and noise level of 0.1 pA.

(i) For a 32× 64 hashing matrix
and noise level of 1 pA.

Figure B.3: Average Hamming loss of the predicted keys of row models by sampling interval, for each
hashing-matrix size and noise level.
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