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Resumo

O
continuo crescimento de informação em formato digital tem tornado impossı́vel manter sus-

tentável um processo de catalogação tradicional. Os sistemas de classificação automática

têm sido alvo de muito trabalho de investigação, e têm sido desenvolvidas novas técnicas para

dar resposta a este crescimento de informação. Uma forma de fazer a classificação de documen-

tos envolve o uso de uma hierarquia de tópicos. Desta forma, é possı́vel organizar conteúdos

desde classes mais genéricas até classes especificas.

Vários autores dedicaram-se ao estudo de técnicas para realizar tarefas de classificação hierár-

quica automática de forma eficiente, mas têm-se deparado na generalidade com os mesmos

problemas. As classes em nı́veis mais baixos são frequentemente pobres em exemplos posi-

tivos, o que dificulta a tarefa de caracterizar documentos pertencentes a essas classes. Além

disso, também é difı́cil tornar um sistema de classificação hierárquica escalável, não só con-

siderando o aumento de documentos para treino como também o um aumento de nı́veis e

classes na hierarquia a considerar.

Nesta tese de Mestrado são propostas técnicas para a realização de tarefas de classificação

hierárquica, as quais tentam reduzir os tempos de treino reduzindo o número de documentos.

Essa redução foi feita comparando dois métodos para selecção de documentos, o primeiro sim-

ples e ingénuo em que é desprezada a forma como os documentos possam estar organizados na

hierarquia, o segundo método de selecção tem em consideração a forma como os documentos

estão organizados na hierarquia. Além de reduzir o tamanho da amostra de treino, foi proposta

uma extensão da tradicional estratégia de classificação top-down em que além da classe mais

provável é também considerada a segunda classe mais provável em cada nı́vel.

Os resultados validaram a extensão proposta à estratégia top-down conseguindo melhorias no

desempenho dos classificadores em duas colecções de documentos distintas. A redução do

número de documentos para treino não revelou ter o impacto desejado, os resultados são baixos

e não é garantido que o tempo gasto para treinar os classificadores reduza.
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Abstract

With the continuous growth of information in digital form, it has become impossible to main-

tain a sustainable process of traditional cataloging said. Since this automatic classifi-

cation systems has been investigated and new classification techniques developed to meet this

growth of information. One way to make the classification of documents make it respecting a

hierarchy of topics. This way you can organize content from a more general class to a specific

class, the class from which the document can be an example.

Several authors have devoted themselves to the study of techniques for performing an automatic

hierarchical classification task efficiently, but have faced often with the same problems. The

classes at lower levels are not traditionally rich in positive examples, which makes it difficult to

characterize a class. Furthermore, it is difficult to make a scalable hierarchical classification

system, not only considering the increase of the documents for training as well as the increased

levels and classes in the hierarchy to consider.

In this master thesis we develop approaches capable of performing hierarchical classification

tasks, which attempt to reduce training time by reducing the number of documents. This reduction

was done by comparing two methods for selecting training documents, the first simple and naive

as it ignores how the documents can be organized in the hierarchy, and the second selection

method taking into account how the documents are organized in the hierarchy. Besides reducing

the size of training sample, this MSc thesis proposes one extension to the traditional top-down

classification approach, where in addition to the most likely class the system also considers the

second most probable class at each level of the hierarchy of classifiers.

The proposed extension to the traditional top-down approach was validated. The classifiers

achieve better results with two distinct document collections. The document selection performed

to reduce the time spent to train the classifiers do not show the desired impact, the qualiity of the

results decreases and it is not guarantted that the time to train the classifiers will reduce.
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Chapter 1

Introduction

Automatic document classification is the general task of assigning one or more categories

to an electronic document (Sebastiani, 2002). This task is usually addressed through

machine learning techniques, with basis on a compact representation of the document contents.

Machine learning algorithms such as Support Vector Machines (SVM) or Naive Bayes are usually

used. These algorithms are based on a vectorial representation of the documents. Recently,

several authors have explored automatic classification in the context of Web documents (Ceci &

Malerba, 2007; Dumais & Chen, 2000; Xhemali et al., 2009).

There are different types of document classification tasks. The simplest one is binary classifi-

cation, where documents are assigned to either a positive or negative class. Another task is

multi-class classification, where documents are assigned to one of several possible classes, and

which can be solved through a combination of binary classifiers (e.g., one for each class).

Classification tasks can also be flat or hierarchical. In the hierarchical case, the lower classes

represent a specialization of the upper classes. Hierarchical classification tasks can be solved

through a number of different approaches. We can, for instance, have a flat classifier for each

level of the hierarchy, or we can flatten the hierarchy, this way transforming a hierarchical classi-

fication problem into one of flat classification.

In text classification problems, documents are most often characterized by the terms that they

contain. Consequently, the representation of textual data is of a very high dimensionality. An

important aspect of text classification, particularly in the case of hierarchical classification, is thus

feature selection. However, to the best of our knowledge, there are few empirical demonstrations

of the effect of feature selection in hierarchical classification tasks.

3
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Common information retrieval measures are normally used to evaluate the performance of doc-

ument classification systems. Previous works have proposed extensions of traditional metrics,

such as Precision or Recall, to the cases of multi-class and hierarchical document classification.

1.1 Thesis Proposal and Validation Methodology

In my MSc thesis, I propose an extension of the traditional top-down hierarchical classification

approach, allowing classifiers to test an alternative path in the hierarchy. This extension considers

the two most probable classes in each level of the hierarchy. Another objective of my MSc project

is to find a method to reduce the time spent to train the classifiers. Two methods were proposed to

perform document selection in order to reduce the size of the training dataset. The first method, is

relatively naive because it does not consider the distribution of the documents over the hierarchy.

The second document selection method is more refined because, when the document selection

is performed, the distribution of the documents over the hierarchy is considered. Finally, a third

objective of my MSc thesis is to compare different feature vector approaches namely, the bag of

words with all the text tokens of the documents, and simple feature selection techniques such as

stopword removal and lemmatization. To support the training and validation of the classification

models, two different document collections were used, namely the 4Universities dataset and the

dataset that was made available to the participants of the first edition of the Pascal Challenge1

1.2 Contributions

The main contributions of my MSc thesis are as follows:

• Evaluating the impact of using different feature selection strategies when building the fea-

ture vectors, for hierarchical classification;

• Evaluating the impact of reducing the number of training documents;

• Evaluating an extension of the traditional top-down classification approach, which considers

more than one path over the tree of classification decisions.

1http://lshtc.iit.demokritos.gr/

http://lshtc.iit.demokritos.gr/
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1.3 Results

The results achieved with the experiments performed, are not conclusive about the feature selec-

tion methods used to estimate the feature vectors, The two hierarchical classification approaches

achieved their best results when performed different feature selection methods. The document

selection methods brought a significant reduction over the time spent to train the classifiers, but

the quality of the results also decreased significantly.

Experimental results also show that the proposed extension to the traditional top-down classifica-

tion approach is valid. System achieved an accuracy of 59,77% and f-measure achieved a score

of 33,47%, against the 54,39% accuracy and the 24,44% f-measure achieved with the traditional

top-down classification approach.

1.4 Document Outline

The rest of this dissertation is organized in four chapters.

Chapter 2 presents the main concepts and related work in the field of document classification. We

describe concepts such as document representation and classification and common measures

used to evaluate automatic classifiers. We also survey the current state-of-the-art in hierarchical

document classification.

Chapter 3 details the chosen approaches to solve the hierarchical classification problem.

Chapter 4 describes the validation plan. We have a description of the datasets used to test

the hierarchical classifier, the preprocessing operations performed to turn data readable for the

classifier, and the results of the experiments performed to validate the hypothesis.

In Chapter 5 we have a general analysis of the developed work. The chapter discuss the main

problems that emerged along the course of the work, and presents directions for future work.
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Chapter 2

Concepts and Related Work

I
n this chapter we will introduce and discuss some of the main concepts related to automatic

text classification, document representation, types of classification tasks and measures to

evaluate the results of classification systems. We will also present two well known classification

algorithms, namely Naı̈ve Bayes and Support Vector Machines. Finally, we describe related work

in the field of hierarchical classification that, at the time of my research, represented the state-of-

the-art in hierarchical classification.

2.1 Concepts

In this section we will introduce and discuss some of the main concepts related with text rep-

resentation, text categorization and evaluation of text categorization systems. These concepts

will be described not only for simple classification tasks, such as binary classification, but also in

terms of how they can be extended to support in hierarchical classification tasks.

2.1.1 Text Representation Schemes

In order to make a document understandable to a classifier, the document first needs to be

preprocessed, i.e., transformed into a feature-vector (Salton & Buckley, 1988). A feature-vector

is a vector where each dimension corresponds to a separate feature, usually a token from the

text. A text token can be a single word or an n-gram (i.e., a subsequence of n words or characters

from the text). A simple implementation of feature-vectors is to set the value of each dimension as

one or zero, according to the presence or absence of a specific token in the document. Another

7



8 CHAPTER 2. CONCEPTS AND RELATED WORK

simple approach consists of using the occurrence frequency of the feature (i.e., a token) in the

document to weight each dimension in the vectorial representation.

Each individual dimension of feature vector can also be weighted according to more sophisticated

schemes than the simple use of occurrence frequency. The term frequency-inverse document

frequency heuristic (tf-idf) is the combination of two heuristic measures, namely term frequency tf

and inverse document frequency idf. The first one is the ratio between the number of occurrences

of a feature in a document and the total number of features in the same document. The second

is obtained through the log of the ratio between the total number of documents in the collection

and the number of documents where the feature appears. The intuition is that terms that occur

frequently in a document should be more important, but terms that occur in most documents are

less important in discriminating between them. For a feature i, the individual tf and idf scores

are given by Equation 2.1 and Equation 2.2, respectively.

tfi =
ni∑
k nk

(2.1)

idfi = log
|D|

1 + | { d : fi ∈ d } |
(2.2)

The tf-idf is finally obtained multiplying tf with idf (Equation 2.3).

tf-idfi =
ni∑
k nk

× log
|D|

1 + | { d : fi ∈ d } |
(2.3)

In long documents we can have many different features, resulting in vectors with tf-idf values

different from zero for many different features. The longer the documents, the more likely they are

to contain a specific feature. To circumvent this effect, the feature’s weights can be normalized.

A possible normalization procedure is the cosine normalization that explained in Singhal et al.

(1995), where the individual feature weights are divided by the Euclidean length of the tf-idf

weighted document vector.

normalized tf-idfi =
tf-idfi√∑

i tf-idfi
(2.4)

When the feature-vector is computed, we can consider all the features present in the document or

we can perform some filtering operations to discard features that do not add any semantic value to

the representation of the document. Those features normally correspond to stop-words (common

words like adverbs or prepositions), which are not related with the theme of the document, but

instead with the sentence structure (Ceci & Malerba (2007); Dumais & Chen (2000)). Stopword
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removal is therefore a common preprocessing step of feature selection.

Other common feature selection approaches are based on thresholding the values of individual

features. Document Frequency (DF) and Information Gain (IG) are examples of metrics that are

commonly used to perform automatic feature selection. Document Frequency is the number of

documents where a feature occurs. Features that have Document Frequency values lower than a

first threshold and higher than second threshold are not considered. This assumes that both rare

and very common features are not informative enough to perform a good classification. Informa-

tion Gain represents an estimation of the number of bits of information obtained for class predic-

tion by knowing about the presence or absence of a feature in a document. One possible way to

estimate Information Gain is the one used by Yang & Pedersen (1997). Let C = (C1, C2, ..., Cm)

be the set of m possible classes to witch we can assign each document, and let P the probability

of occurrences for a class Ci. We then have that the information gain of a feature t estimated by

the following formula:

IG(t) =−
m∑
i=1

P (ci) logP (ci)

+ P (t)

m∑
i=1

P (ci | t) logP (ci | t)

+ P (t)

m∑
i=1

P (ci | t) logP (ci | t)

(2.5)

Another technique used for preprocessing text is reducing words to their stems (Ceci & Malerba

(2007); Porter (1997)). The stem of a word is a representation of the concept that is related to

that word. Applying stemming algorithms to a document results in having document represented

in terms of concepts, avoiding the presence of a word in many different morphological variants

(e.g., a verb written in different tenses). With stemming, we can also reduce the dimensionality

of the feature-vector.

2.1.2 Text Classification

There are different types of document classification tasks. Figure 2.1 represents a taxonomy that

illustrates the relationship between different types of classification problems.

First, a classification task can be binary or multi-class. In binary classification, the classifier

verifies if a document belongs or not to a certain class. In the multi-class case the classifier

assigns the document into one of several classes.
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Figure 2.1: Illustration of how document classification is organized.

To perform the multi-class classification one of two strategies is usually followed, namely: one-

against-all or one-against-one. In one-against-all the set of classes is divided in two sets namely,

class cj and its complement c̄j . This way, the classifier performs a simple binary classification

task and estimates if the document belongs or not to class cj . In the one-against-one strategy

several comparisons are performed for each class, i.e. each class is tested against all the other

classes. Only after performing all the possible comparisons does it become possible to decide

which class is assigned to a document.

The previous classification tasks assign one class to each document, corresponding to what

is called single-label classification tasks. Another possibility is a multi-label classification, where

several classes can be assigned to a document. Normally, assigning a single class per document

is done by assigning the class that gets the highest probability. In multi-class classification, the

assignment criteria can be one of two, namely (i) classes that obtained a probability higher than

a minimum threshold, or (ii) the n-classes with the highest probability values.

Multi-class classification tasks can also be flat or hierarchical. In the hierarchical scenario,

classes are grouped by topics and the lower classes represent a specialization of upper classes

(e.g. music and literature could be descendant of a general class like entertainment). The hierar-

chy of classes can be represented in different ways. We can have a tree, where each class has

only one parent node, like in Fig. 2.2(a). In this case, documents can either be only in the leaf

nodes (virtual category tree) or documents can be at any level of the hierarchy (category tree).

We can also have a Directed Acyclic Graph (DAG), where a node can have more than one parent
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node (Fig. 2.2(b)). The DAG structure can also have documents only in the leaf nodes (virtual

Directed Acyclic Graph) or in any any node (Directed Acyclic Graph).

(a) (b)

Figure 2.2: Examples of hierarchical structures: (a) tree structure, (b) DAG structure.

There are several approaches to implement hierarchical classifiers. Common approaches are

(i) flatten the hierarchy, (ii) use a multi-class classifier in each level of the hierarchy, (iii) use a

top-down strategy or (iv) use the “big bang” strategy.

In the flat hierarchy strategy we transform a hierarchical classification task into a multi-class

classification task. This transformation is obtained with a multi-class classifier with all the classes

in the hierarchy that have any document, e.g., the leaf nodes in a virtual category tree scenario.

In this case any possible relation between classes will not be considered.

We can also use multi-class classifiers for each level of the hierarchy. With this strategy, we also

lose the relation between classes, although the number of classes for each classifier is potentially

smaller.

Another way to implement hierarchical classification is with a top-down strategy. This consists in

a tree of classifiers, with a classifier in each node. It allows the usage of different classification

models in each node of the hierarchy, but if an error occurs in a higher level of the hierarchy, that

error will be propagated to the lower levels.

A more complex strategy is the “big bang” approach. This strategy is similar to the flatten hier-

archy approach, as it uses a multi-class classifier. However, in the “big bang” approach, each

class represents a possible node in the hierarchy, whereas the flat hierarchy approach is only

appropriate for problems where the classes correspond to leaf nodes.
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Table 2.1: Confusion matrix for binary classification tasks.

Predicted
true false

Expected positive tp fp
negative fn tn

2.1.3 Evaluation Metrics

The performance and behavior of a classifier can be assessed in terms of the quality of the pro-

duced classifications. One way to visualize the behavior of a classifier is with a confusion matrix,

showing in the rows the expected classification results and in the columns how the documents

where actually classified. For instance, if we have a binary classification task, we obtain a con-

fusion matrix with dimensionality 2 × 2. The matrix separates documents that are true positives

(i.e., documents classified as true that are positive), false positives (i.e., documents classified as

false that are positive), false negatives (i.e., documents classified as true that are negative) and

true negatives (i.e., documents classified as false that are negative).

Once the values of the elements in the confusion matrix are identified, we can compute mea-

sures like accuracy, Precision or Recall. Accuracy represents the percentage of documents that

were correctly classified in the dataset (Equation 2.6). Precision is the percentage of positive

documents that were classified as true (Equation 2.7). Recall is the percentage of documents

classified as true that are really positive examples (Equation 2.8).

Accuracy =
tp+ tn

tp+ fp+ fn+ tn
(2.6)

Precision =
tp

tp+ fp
(2.7)

Recall =
tp

tp+ fn
(2.8)

These measures are only defined for binary classification problems. To evaluate a multi-class

classifier, they can be replaced by micro and macro averages. To calculate the micro-averages

we assume that Ci is the number of documents in class i, C ′
i is the number of documents that

were classified as class i documents and n is the number of possible classes to assign each

document. We then have that:

Micro-average Precision =

∑n
i=0 Ci ∩ C ′

i∑n
i=0 C

′
i

(2.9)
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Micro-average Recall =

∑n
i=0 Ci ∩ C ′

i∑n
i=0 Ci

(2.10)

Macro-averages are the mathematical averages of Precision and Recall. Let Pi and Ri be re-

spectively Precision and Recall of class i. We then have that:

Macro-average Precision =
1

n

n∑
i=0

Pi (2.11)

Macro-average Recall =
1

n

n∑
i=0

Ri (2.12)

Usually, research results do not discuss Precision and Recall in isolation (Bennett & Nguyen

(2009); Sebastiani et al. (2000); Xue et al. (2008)). Instead, both measures are combined into

a single evaluation measure, the F1-measure, which is the weighted harmonic mean between

Precision and Recall (Equation 2.13).

F1-measure = 2× Precision×Recall
Precision+Recall

(2.13)

All the previous measures deal with different types of errors in the same way. However, when we

analise a hierarchical classifier, the errors can occur due to different reasons and they can have

either severe or very light impacts on the quality of the results.

Previous works, like those of Costa et al. (2007) and Sun & Lim (2001), presented metrics specif-

ically designated to evaluate hierarchical classifiers. Four kinds of measures were identified,

namely: (i) distance based measures, (ii) depth based measures, (iii) semantic based measures

and (iv) hierarchy based measures

Distance based measures assume that a mismatch between close classes in the hierarchy is

not as severe as a mismatch between far classes. The distance between classes is usually

measured through the number of edges in the path from one class to another. These distance

based measures do not make distinguish along hierarchy depth, and while we go deeper in

the hierarchy the number of documents per class gets lower, becoming harder to do a correct

classification. Thus, distance based measures can be extended to depth based measures. In

the case of depth-based measures, the edges between classes have an associated weight that

considers the depth in the hierarchy, so that the deeper in the class hierarchy the lower is the

weight associated to the edges.

The previous measures based on distance assume that mismatches between similar classes

are not severe. Instead of distance or depth considerations, we can also evaluate a mismatch
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classification based on the semantic similarity between classes. Similarity between classes can

be estimated according to the feature vectors that describe classes Ci and Cj . Sun & Lim (2001)

used the cosine distance between the feature vectors to estimate the semantic similarity between

classes (Equation 2.14).

Ci = {w1t1, w2t3, ..., wN tN}

Cj = {v1t1, v2t3, ..., vN tN}

ClassSimilarity(Ci, Cj) =

∑N
n=1(wn × vn)√∑N

n=1 w
2
n ×

∑N
n=1 v

2
n

(2.14)

Finally we can also evaluate the performance of an hierarchical classifier with basis on the hierar-

chical level. These measures have two possible approaches, as we can (i) consider the descen-

dants, or (ii) consider the ancestors of the predicted and the true classes. In the descendants

approach we consider the subtrees rooted in the true class and in the predicted class. The calcu-

lation of hierarchical Precision and Recall, is based on the intersection between the previous sub-

trees. Consider Descendant(Cp) the subtree rooted in the predicted class and Descendant(Ct)

the subtree rooted in the true class. Precision is obtained by dividing the number of common

classes by the number of classes in the subtree rooted in the predicted class (Equation 2.15).

hP =
| Descendant(Cp) ∩ Descendant(Ct) |

| Descendant(Cp) |
(2.15)

Recall is obtained by dividing the number of common classes by the number of classes in the

subtree rooted in the true class (Equation 2.16).

hR =
| Descendant(Cp) ∩ Descendant(Ct) |

| Descendant(Ct) |
(2.16)

When we consider the ancestor classes of the predicted class and true class, we calculate the

number of common classes that are ancestors of the predicted class and the true class. We have

that Ancestor(Cp) is the set of classes that are ancestors of the predicted class and Ancestor(Ct)

is the set of classes that are ancestors of the true class. If we divide the number of common

classes by the number of ancestors of the predicted class we have Precision (Equation 2.17).

hP =
| Ancestor(Cp) ∩ Ancestor(Ct) |

| Ancestor(Cp) |
(2.17)

If we divide the number of common classes by the number of ancestors of the true class we have
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the value for Recall (Equation 2.18).

hR =
| Ancestor(Cp) ∩ Ancestor(Ct) |

| Ancestor(Ct) |
(2.18)

2.2 Text Classification Algorithms

Automatic text classification is usually seen as a supervised machine learning problem. Figure

2.3 illustrates the automatic classification process, where in a training stage we start by gener-

ating a classification model based in some previously classified examples, also known as the

training set (steps 1 and 2). Once generated, the classification model can then be tested. A

second set of documents is classified and measures like Precision, Recall and Accuracy are

calculated to estimate the classifier performance (steps 3 and 4). Finally, the model can be used

to classify a previously unseen document, returning the predicted class for that document (steps

5 and 6). We have different families of classification algorithms including boosting algorithms like

Ada Boost, decision tree approaches like ADTree, probabilistic algorithms like Naı̈ve Bayes, or

statistical algorithms like Support Vector Machines. In this document we will discuss the last two.

Figure 2.3: General approach for automatic document classification.
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2.2.1 Naı̈ve Bayes Classifiers

Naive Bayes is a probabilistic classification algorithm that builds a classification model based on

the presence or absence of specific features. Using the Bayes theorem, Naive Bayes classifiers

estimate the probability of class ci given a document x, as shown in Equation 2.19. In the formula,

ci is the i-th class of the set of classes C and X is the variable that assumes the values of the

feature vector x = (x1, x2, ..., xm) representing a document.

P (C = ci | X = x) = P (C = ci)×
P (X = x | C = ci)

P (X = x)
(2.19)

These classifiers assume that features are independent, i.e., the presence or absence of a feature

is unrelated to the presence or absence of another (Rish (2001)). This assumption allows us to

calculate the probability of a document x given a class c by Equation 2.20, where fj represents

the j-th feature in the document collection.

P (X = x | C = ci) =

m∏
j=0

P (fj | C = ci) (2.20)

Once all the possible values for Equation 2.19 are computed, the Bayes classifier performs the

class assignment following the decision function given by Equation 2.21, where the assigned

class is the one with the highest probability.

argmax
i

(
P (X = x | C = ci)

P (X = x)
P (C = ci)) (2.21)

The decision rule in Equation 2.21 can also easily be extended to multi-label classification tasks,

following one of the multi-label classification strategies presented in Section 2.2.

Naive Bayes classifiers are easy to understand and their implementation is simple and fast, due

to the feature independence assumption (Rennie et al. (2003)). This fact makes Naive Bayes

classifiers a common baseline for document classification (Lewis (1998)).

2.2.2 Support Vector Machines

Support Vector Machines (SVMs) are a binary classification method proposed by Vladimir Vapnik

with basis on statistical learning theory (Vapnik (1982)).

SVM classifiers produce a separation between classes through an hyperplane estimated in the

training stage. SVMs predict to each one of the two classes a new document belongs, based
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(a) (b)

Figure 2.4: Examples of possible binary classification tasks: (a) classes that are linearly separable, (b) classes that are
not linearly separable.

on which side of the hyperplane the given document is placed. The resulting hyperplane is also

called the optimal hyperplane, because it is the one that separates classes with the maximum

possible margin (Cristianini & Shawe-Taylor (2000)).

It is interesting to notice that not all classification problems are linearly separable through an

hyperplane - see Figure 2.2.2. SVMs address this issue by mapping the objects from the input

feature space to a high-dimensional space, where the objects are linearly separable. This is done

through the use of a kernel function. Some of the well-known kernel functions are shown bellow,

where xi and xj are two objects from the input space, d is the degree of the polynomial function

and γ a parameter to control the shape of the separating hyperplane.

• Linear kernel: K(xi, xj) = xTi xj .

• Polynomial kernel: K(xi, xj) = (xi · xj)d.

• Radial basis function kernel: K(xi, xj) = exp(−γ ‖xi − xj‖2).

More formally, consider a dataset D, with a set of n points, where ci is either 1 or -1, representing

the class that each point xi belongs to. Each xi is a n-dimensional vector. We can define any

hyperplane as the set of points x that satisfies the Equation:

〈w · x〉+ b = 0 (2.22)

D = {(xi, ci) | xi ∈ Rn, ci ∈ {−1, 1}}ni=1

In Equation 2.22, w is a normal vector perpendicular to the hyperplane, and b is the distance

between the origin and the hyperplane. This equation divides the space in two regions: (i) one

where 〈w · x〉+ b < 0, and (ii) one where 〈w · x〉+ b > 0. As a decision function f(x) we can have



18 CHAPTER 2. CONCEPTS AND RELATED WORK

the signal function given by Equation 2.23.

f(x) = sign(〈w · x〉+ b) (2.23)

The process to estimate the optimal hyperplane is better explained by Cristianini & Shawe-Taylor

(2000). Here we present only the final equation of the optimal hyperplane w. The optimal hyper-

plane can be obtained through Equation 2.24, where αi is the i-th Lagrange multiplier.

w =

n∑
i=1

αicixi, αi ∈ R (2.24)

Thus, we can replace w in Equation 2.23, resulting in

f (x) = sign

(
n∑

i=1

αici 〈x · xi〉+ b

)
. (2.25)

In order to address problems that are not linearly separable, we include a kernel function that

given an input of two vectors returns the dot product of the images in the feature space.

k(x, xi) = 〈φ(x) · φ(xi)〉 (2.26)

Considering the kernel function together with the decision function, we finally get:

f (x) = sign

(
n∑

i=1

αicik(x, xi) + b

)
. (2.27)

2.3 Related Work

The information retrieval and machine learning literature is rich in approaches designed specifi-

cally to take advantage of class taxonomies in document classification. This section presents a

survey on these previous works, which during the development of this work represented the state

of the art in hierarchical Web documents classification.

Previous works (Cai & Hofmann, 2004; Labrou & Finin, 1999) to solve the hierarchical document

classification problem tried to directly adapt known classification algorithms, although Liu et al.

(2005) and Madani et al. (2007) have proven that this approach it is infeasible for a large-scale

hierarchies.
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Dumais & Chen (2000) tried to take advantage of an hierarchical structure of classes to clas-

sify documents in a large collection of very heterogeneous Web content. An hierarchy with two

levels was considered, using the first two levels present in the LookSmart Web directory1. The

authors used Support Vector Machines and two different classification approaches were tested.

In the first, a classifier learns to distinguish second level categories between other second level

categories with the same top level category (hierarchical case). In a second approach, the clas-

sifier learns to distinguish second level categories within all the 150 second level categories (flat

non-hierarchical case). Results showed small advantages in the F1 accuracy score for the hier-

archical models, when compared with a baseline flat non-hierarchical model. This suggests that

its easier to distinguish between a restrict number of classes related to the same top level class,

than between all the classes in the same hierarchy level.

As previously noted, a common approach in hierarchical text classification involves associating

independent classifiers with nodes in the category hierarchy and classifying text documents in a

top-down manner. With this approach, documents can be wrongly rejected by the classifiers at

higher-levels, this way never being passed to the classifiers at lower-levels. Sun & Lim (2001)

proposed three methods to address the problem:

• Threshold Reduction, which is based on the principle that using lower thresholds for the

upper subtree classifiers will allow more documents to be passed to the classifiers at lower-

levels (i.e., it relaxes the decision functions of subtree classifiers along the hierarchy, allow-

ing more documents to pass through). Nonetheless, higher classification accuracy will now

be required for the classifiers at lower-levels to prevent misclassification.

• Restricted Voting, which gives low-level classifiers a chance to access documents before

they are rejected by the subtree classifiers of their parent nodes. This method allows the

local classifier of a node to receive documents from the subtree classifier of its grandparent

node if they are accepted by a secondary classifier associated with the grandparent node.

• Extended Multiplicative, which is derived from the multiplicative method proposed by Du-

mais & Chen (2000). In this method, a document is accepted by the local classifier of a

node if the combined probabilities of i) the local classifier, and ii) its hierarchical ancestor

classifiers, is above a given threshold defined empirically.

Experiments with SVM classifiers on the Reuters-21578 collection have shown that all the three

methods described above can improve the results in terms of accuracy, with the restricted voting

method performing best (Sun & Lim (2001)).

1http://www.looksmart.com

http://www.looksmart.com
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Using the approach based on associating independent classifiers with nodes in the category hi-

erarchy, it is also important to note that the different classifiers can (i) be based on the same

learning method, although constructed using different sets of features, or (ii) be based on dif-

ferent learning methods with the same or different feature sets. Sun & Lim (2001) proposed an

heuristic to select training instances for individual Bayes classifiers associated with each of the

nodes of the category hierarchy. Other authors have experimented with the use of feature se-

lection mechanisms for each of the independent classifiers, showing that, locally, using only a

small number of discriminative features is sufficient to achieve reasonable classification accuracy

(Dumais & Chen (2000); Koller & Sahami (1997); Mladeni’c & Grobelnik (1998)).

Xue et al. (2008) proposed a new approach to classify documents in a large scale hierarchy,

similarly to Sun & Lim (2001). The motivation of the proposed approach was also reduce the

error propagation from the top levels in the hierarchy to the lower levels. The authors proposed

a two stage based approach. The first stage is called the search stage, and the second is called

the classification stage. In the search stage, the hierarchy is organized into flat categories, where

the algorithm performs a search process over the large-scale hierarchy and retrieves the related

categories for a given document. This stage prunes the large scale hierarchy to a smaller subset

of categories. The retrieved categories are ranked and the most related categories are seen as

category candidates. In the classification stage, a classification model is trained on the category

candidates. This classification model will be trained in a smaller subset of categories, reducing

training time and computational cost.

Both stages, search stage and classification stage, were tested with distinct strategies. In terms

of strategies for the search stage, the authors experimented with:

• Document based: This strategy compares the relevance between the given document

and the documents in the training set. In the end, the top N most similar categories are

retrieved.

• Category based: This strategy represents each category by a feature-vector with term

frequencies. The feature vector is build with basis on the positive examples of each class in

the training set. A given document is compared with each category and again the N most

similar categories are retrieved and selected has candidate categories.

In both cases, the authors used the cosine distance to measure similarities. The classification

stage was also experimented with two distinct strategies:

• Flat Strategy: In this strategy all the category candidate were considered as a flat structure,

without considering the category information of their ancestors.
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• Pruned Top-down Strategy: In this strategy the authors considered hierarchy information

following two observations. First, the training data from the category candidate can be

insufficient, especially in a deep category. Second, although the training data from its

higher up ancestors may be too general to detect characteristics of a deeper category, we

can borrow data from the ancestors. This should not be done for ancestors that are too

high up, and common to more than one of the retrieved candidate category.

To access the results of the proposed methods, three algorithms were compared over a dataset

collected from the Open Directory Project. The three tested algorithms were (i) hierarchical

SVM, to represent a top-down classification algorithm, (ii) search based strategy, as described

previously and similarly to a nearest neighbor approach, and finally (iii) the deep classification

method proposed by Xue et al. (2008).

The time complexity was estimated like in Yang et al. (2003) and results shown that the proposed

algorithm is scalable and can achieve 77.7% improvement, over the top-down SVM classification

algorithm, in the 5th level on the large scale hierarchies. Results also shown that a low num-

ber of candidate categories brings better results in upper categories, but poor results in lower

categories. Increasing the number of candidate categories reduces the performance in upper

categories, but the gain in lower categories is higher than the loss in upper categories.

Bennett & Nguyen (2009) also developed an approach to solve the error propagation issue, sim-

ilar to that of Xue et al. (2008). Not only the error propagation was the motivation for this work

but also the increasingly complex decision surfaces, also called nonlinearity. This nonlinearity is

a question related with the upper classes in the hierarchy that often contain general concepts,

e.g., Kids & Teens, that are difficult to discriminate because they cover very diffuse topics. To

solve the problem related with the error propagation, the authors proposed a strategy called Re-

finement, which consists in modifying the training set. Instead of the standard training set, used

in hierarchical document classification, a cross-validation over the training was performed and

the predicted labels are used to filter the training data to a node. This filtering would remove

some false negatives from the training data and classification results would probably suffer some

degradation. Once the quality of the classification results depend more from the positive exam-

ples than the number of examples. The training data was composed by a union of the standard

training data with the predicted errors.

To deal with the nonlinearity issue Bennett & Nguyen (2009) adapted the methods of meta-

classification and combination of classifiers, used by Bennett et al. (2005). Predictions from the

lower levels in the hierarchy were introduced as meta-features to the higher levels. This was

done by training linear classifiers at the leaf nodes, using cross-validation over the training data,
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and then using the predictions over the training data gathered during cross-validation as meta-

features available at the next higher level. The amount of information for each node was restricted

to predictions from a node’s children and their cousins.

The previous approach together with Refinement suggests a bottom-up training pass, that helps

drive documents down the right branch, followed by a top-down training pass that prevents the

error propagation. This method was called Refined Experts because the bottom-up training pass

is seen as a passing up guesses from specialized classifiers.

The two classification methods, proposed by Bennett & Nguyen (2009), were compared against

a baseline classifier, namely hierarchical SVM. Results showed that Refinement outperforms the

baseline classifier and Refinement Experts outperforms both with macro-F1 values about 36%

and micro-F1 values about 46%.

Some documents are not easy to classify, e.g., when we use a SVM classifier the document

ends placed very close of the estimated hyperplane in the training stage. When such thing

happens probability of a false positive is higher. To improve classification results we can make

use of auxiliary classifiers (ying Jia et al. (2009)). ying Jia et al. (2009) proposed a technique

that consists in having a main classifier that returns a predicted class with some confidence

interval. If the confidence interval is lower than a desired threshold an auxiliary classifier is used

to see if the initial prediction is correct or not. The authors tested a setup with two classifiers

(i) a centroid based method as the main classifier and a K Nearest Neighbor and a SVM as

auxiliary classifiers and (ii) a centroid based as the main classifier and SVM as auxiliary classifier.

Experiments results showed that this classification approach achieves better performance than

single classifiers, not only in flat classification but also in hierarchical classification. The increase

in time complexity is small.

The methods discussed above are all based on transforming the hierarchical classification prob-

lem into a set of multi-class (or binary) classification problems, where an independent training

process is used for each of the simpler classification tasks. However, several authors have no-

ticed that this may lead to suboptimal discrimination, since the classifiers are finally operating

in a specific architecture that combines their output based on heuristics. Previous works have,

for instance, proposed kernel based methods (e.g., generalizations of Support Vector Machines

exploring the hierarchical structure of the classes) that directly address the hierarchical classifica-

tion problem (Rousu et al. (2006), Cai & Hofmann (2004) and Liu et al. (2005)). However, these

methods are often associated with an increased complexity, and there are few readily available

software packages that implement them. Moreover, the quality of the results obtained with these

methods is also far from optimal, and data sparsity remains an important issue (Liu et al. (2005)).
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2.4 Summary

Chapter 2 surveyed the literature concerning the development of classification systems able to

classify documents accordingly to a topic hierarchy.

One important task in the field of the automatic classification is the representation of the docu-

ments, and typically documents are represented by feature vectors. The dimensions of those vec-

tors represent the individual features from the document collection (e.g., the words or n-grams),

and thus they are often of high dimensionality. The dimensions of those vectors can be weighted

according to many approaches, such as tf*idf or just counting the number of occurrences in each

document.

The literature concerning the hierarchical classification of documents describes three general

possible approaches, each one of it with their advantages and issues. The approach traditionally

used by the research community is the top-down approach. This approach creates a hierarchy

of classifiers where, typically, each classifier represents a node in the hierarchy. One advantage

of this approach is that we reduce a complex task, that is the hierarchical classification of a

document, into several multi-class tasks.

We saw that some authors tried to directly adapt flat classification techniques to hierarchical clas-

sification problems (Cai & Hofmann, 2004; Labrou & Finin, 1999), but this approach is not feasible

in hierarchical classification over large-scale hierarchies. In the work related to the hierarchical

classification of documents, we have works like that of Dumais & Chen (2000) that compared flat

strategies with hierarchical strategies and the results showed that the hierarchical strategies can

achieve better results.

As previously noted, a common approach in hierarchical text classification involves associating

independent classifiers with nodes in the category hierarchy and classifying text documents in

a top-down manner. With this approach, documents can be wrongly rejected by the classifiers

at higher-levels, this way never being passed to the classifiers at lowerlevels. Authors like Sun

& Lim (2001) and Xue et al. (2008) proposed classification methods to address that issue. In

the first (Sun & Lim, 2001), were proposed methods that (i) based on the principle that using

lower thresholds for the upper subtree classifiers will allow more documents to be passed to

the classifiers at lowerlevels, and (ii) gives low-level classifiers a chance to access documents

before they are rejected by the subtree classifiers of their parent nodes. Xue et al. (2008) divided

the classification problem in a two stage based approach, A search stage the classification stage,

where the hierarchy is organized into flat categories, and the algorithm performs a search process

over the largescale hierarchy and retrieves the related categories for a given document. And the

second stage, the classification stage, where the classifier assigns to a document one of the
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categories that were retrieved in the search stage.

Bennett & Nguyen (2009) also tried to solve the nonlinearity problem, that is related with the

upper classes of the hierarchy, where we have classes that often contain general concepts, e.g.,

Kids & Teens, that are difficult to discriminate because they cover very diffuse topics. To address

this issue Bennett & Nguyen (2009) proposed an approach that adapted the methods of meta-

classification and combination of classifiers, used by Bennett et al. (2005). Predictions from the

lower levels in the hierarchy were introduced as meta-features to the higher levels. This was

done by training linear classifiers at the leaf nodes, using cross-validation over the training data,

and then using the predictions over the training data gathered during cross-validation as meta-

features available at the next higher level. The amount of information for each node was restricted

to predictions from a node’s children and their cousins.

Like in the work of the previous authors, in this MSc thesis we will have also a top-down approach

to solve a hierarchical classification problem, having an independent classifiers in each node of

the hierarchy. We will have classifiers that are able to assign more than one class to a document.

The classifiers will follow the multi-label classification assigning the two most probable classes to

a document, at each level of the hierarchy. Then we will expand each node and finally when the

system achieves only leaf classes it decides for the most probable class.
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Chapter 3

Hierarchical Classification of Web

Documents

The classification of text documents has been focus of the research of many authors (Ben-

nett et al., 2005; Sebastiani, 1999), but there are differences when we deal with hierar-

chical Web document classification tasks. For start, the traditional text classification is typically

performed with structured documents, in the sense that they contain to certain styles (e.g., news

articles) and are grammatically correct, while Web documents typically do not have such property.

In the context of this MSc thesis, we proposed three approaches to perform hierarchical classifi-

cation tasks. In the first approach we wanted to see if the classification results improve when we

perform simple feature selection while the system estimates the feature vectors. One motivation

for this MSc thesis was to reduce the time spent to train the classifiers, an issue already noticed

by other authors. To respond to this issue, we tested two methods that reduce the number of

training documents. Another issue related to hierarchical document classification is the error

propagation, caused by the misclassification in higher levels. To address that issue we proposed

an extension to the traditional top-down approach that considers the two most probable classes

in each level of the hierarchy.

In this chapter we have a description of the methods that were proposed to solve hierarchical

classification problems. Section 3.1 presents the classification approaches that we want to test

with this work, the traditional top-down approach and the proposed extension. Section 3.2 an-

nounces the feature selection methods that were followed at the time to estimate the feature

vectors. Finally, Section 3.3 presents the two methods proposed to reduce the training data.

27
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3.1 Classification Approaches

To classify the documents accordingly to the hierarchies represented at each dataset, we have

some similarities. First, we start the classification over the higher levels of the hierarchy until we

reach a leaf node. Second, the classification algorithm, used at each node of the hierarchy, is

the same in both approaches. We used the Support Vector Machines implemented by Chang &

Lin (2011). As kernel function we use the radial basis function kernel and the parameters C and

γ had the default values of 0 and 1/number of features, respectively.

3.1.1 Traditional Top-Down Approach

When we want to solve a hierarchical classification problem, this is usually the starting point. This

approach simplifies the complex task, that is the hierarchical classification of documents, reduc-

ing it to several multi-class classification tasks where we have a reasonable among of classifiers

already studied. This approach is also the baseline classification approach of this work. This

(a) (b)

(c) (d)

Figure 3.5: Illustration of the traditional top-down hierarchical classification approach: (a) initial hierarchy tree; (b) result
of the classification over the first level; (c) result of the classification over the second level; (d) final classification path.
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classification approach starts by classifying a document D at the root node to decide each one is

the first level class. After that, the chosen node is expanded to decide between the second level

classes. This process is repeated until the system achieves a leaf node of the hierarchy.

Figure 3.5 illustrates how the traditional top-down classification is processed. In Sub-Figure

3.5(a) we have the initial hierarchy where the system will expand the root node. Sub-Figure

3.5(b) shows the root node expanded, in yellow, and the decision for class B, in light orange.

After this, the system finished the process over the root node, in the Sub-Figure 3.5(c) marked

with green, expands the node B of the hierarchy, in yellow, and performs the classification over

the second level of the hierarchy. Finally, we have processed the root and the node B of the

hierarchy and the system will expand the node B1, the light orange circle in Sub-Figure 3.5(c).

Once the node B1 is a leaf node the system will assign the class B1 to document D.

3.1.2 Alternative Top-Down Approach

A common issue in hierarchical classification tasks is the error propagation. This issue is caused

by misclassifications in higher levels. When we use the traditional top-down approach we do

not anticipate this issue and it is possible that the classification results stay far from desired.

To address this issue, I propose a classification method that always considers the two most

likely classes for each non-leaf level of the hierarchy of classes, i.e., instead of the continuous

expansion of one node in each level of the hierarchy, the classifier will expand the two most

probable nodes in the hierarchy. In order to classify a document D, the classifier will find the two

classes in the first level that are most likely to correspond to document D. After finding these two

classes, the nodes in the hierarchy to which they correspond will be jointly considered in the next

classification decision, which will be made with basis on the two child classed from both parents

that are more likely to correspond to document D. This process is repeated for each level in the

hierarchy until the classifier reaches leaf classes. At that moment, the most likely class will be

the one signed to document D.

Figure 3.6 illustrates how the nodes in a hierarchy are expanded during the classification process

of this hierarchical classification approach. To classify a document D over a hierarchy like the one

present in Sub-Figure 3.6(a), the system will expand the root node returning the two classes, in

the first level, that most fit to the given document, Sub-Figure 3.6(b) yellow and light orange nodes

respectively. After this, the system considers the root node as a processed node, green node in

Sub-Figure 3.6(c), and expands the two previously returned classes to classify the document D

at the second level of the hierarchy, yellow nodes at Sub-Figure 3.6(c). The system will again

consider the two classes that most fit, now at the second level, light orange node in Sub-Figure
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Illustration of the alternative top-down hierarchical approach: (a) initial hierarchy tree; (b) classification over
the first level; (c) nodes to be expanded in the first level; (d) classification over the second level of the hierarchy; (e) nodes
to be expanded in the second level of the hierarchy; (f) final classification path.
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3.6(d). After the system founds the two classes, at the second level, that most fit to the document

the system tries to expand those nodes, yellow nodes in Sub-Figure 3.6(e), because the two

nodes are leaf nodes the system will assign, between the two classes, the class that most fits to

the document D.

3.2 Feature Selection

We experimented with three approaches to build the feature vectors. These approaches were (i)

the bag-of-words approach, where all the tokens in the text were considered, (ii) the stopword

removal approach, where a list of words that do not add any semantic value, to the representa-

tion of the document, were not considered when feature vectors were calculated (see Appendix

A), and (iii) the lemmatization approach, where besides stopword removal we have that all the

remaining tokens were reduced to their stem accordingly to the algorithm proposed by Porter

(1997).

The feature selection approaches were tested only in one of the two used datasets, the 4Univer-

sities dataset. Only in that dataset we had the source code of the html pages. After removed

the html tags, feature vectors were calculated with the API provided by the Weka Software (Hall

et al., 2009). To calculate the feature vectors we used the StringToWordVector filter. In the filter

configuration terms were weight following the tf-idf heuristic, all the data was normalized and the

text was tokenized by any punctuation or white space. Weka’s API was used in a command line

shell, were besides the input and output files also the configuration of each filter was defined.

The second dataset that was used in the experiments, the Pascal Challenge dataset, had already

estimated the feature vectors. Each dimension of these vectors was also weighted accordingly

to tf-idf heuristic.

3.3 Document Selection

The time spent in training a classifier is not only related with the number of classes and the

dimensionality of the feature vectors, but also with the number of training documents. Some of the

experiments performed in the context of this MSc thesis aimed at measuring the impact over the

results if we reduce the number of documents in the training set. This reduction was implemented

with two different methods. The first method, naive, ignores if in the selected documents we have

examples from all the child classes of the considered node. The second method, refined, ensures

that for each child class the training set will have at least one document.
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Both document selection methods follow a top-down approach, i.e., there were created sub

datasets that represent the sub trees from the hierarchy, those trees will rooted in each node

of the hierarchy that is not a leaf node.

3.3.1 Naive Document Selection

This was the first method proposed to perform the document selection. This method sets a limit to

the number of documents for each child of the considered sub tree of the hierarchy, i.e., when we

train the classifier for a non-leaf node Ni, we impose that the maximum number of samples taken

from each node Nj that is a child node of Ni will be x. This document selection is performed over

all the levels in the hierarchy for all the classes that are not leaf classes. The method is called

naive because during this operation we do not care if we have documents from all the children of

Ni or not.

To build the new training document collections the system considers each node in the hierarchy

that is not a leaf node. Then, the system counts the number of child classes and starts one

counter for each one of the children, each counter will control the number of documents per each

class. After collected the initial information the system reads the training file and will select any

document that belongs to one of the children classes of the considered node. A document is

selected only if the counter of the document class did not reach the limit of documents.

To implement the document selection method, proposed in this sub-section, and described on

the two previous paragraphs, the system makes use of a Java class that identifies the non-leaf

nodes of the hierarchy, counts the number of children for each class, starts the classes counters

and reads the input file sequentially. The input file is the text file made available to train the

classifiers, and follows the libSVM format, each line of the file is a feature vector that represents

a document.

3.3.2 Refined Document Selection

The second method proposed for document selection, refereed to as the refined method, not

only tries to have documents from all the nodes Nj that are descendants of node Ni, but we also

tries to have an equal number of documents in each child node. Imagine that we are training the

first level classifier over the hierarchy present in Figure 3.7. First, we present the classifier with

a number of examples equal to the suggested training sample size, e.g., fifty examples. In the

example of Figure 3.7, we have two child classes, namely literature and music, and so the number

of documents per each class will be the result of the division between the suggested number, fifty,



3.4. SUMMARY 33

and the number of children of the node, two. That will give us twenty-five documents per each

class at level two. For each child class of entertainment, which is not a leaf node in the hierarchy

of classes, we will do the same operation but this time the suggested number will be twenty-five.

The number of children of class literature is two, so we will divide twenty-five by two and we will

have the number of documents for classes romance and drama. This operation is repeated until

we reach only leaf classes. When result of the division is zero (i.e., the number of child classes is

bigger than the number of suggested documents) the system will set the number of documents

to one. Similarly to the first document selection method, this method is also performed for all the

levels in the hierarchy, for each class that is not a leaf node. Thus, after training the first level

classifier, the classifiers at the second level will repeat this operations with the initial suggested

training sample size.

Figure 3.7: Example of a hierarchy of classes.

To implement the method described previously the system makes use of a Java class that has

the same behavior of the class used to implement the naive document selection, but instead

of a counter for each child node, we have a counter for each descendant node that is a leaf

node. After started the counters, the system reads the input file sequentially and selects all the

documents that are descendants of the considered node. This selection is performed while the

counters did not reach the limit of documents for it class.

3.4 Summary

In Chapter 3, we describe a set of approaches to solve a hierarchical classification problem and

the motivations for that proposals.

We start by announcing the baseline classifier and its configuration, a top-down approach with

independent Support Vector Machines classifiers at each node of the hierarchy. The kernel func-

tion is the Radial Basis Function Kernel where the default values were assigned to parameters γ
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and C.

This proposals were motivated by problem of the error propagation and the time spent to train

the hierarchical classifiers, two issues reported by other authors. For the first issue we proposed

an extension to the traditional top-down approach that consider the two more probable classes

from each level of the hierarchy and in the end decides between the more probable leaf class. To

reduce the time spent to train the classifiers we proposed methods to reduce the training sample

and evaluate the impact of it, not only about the time spent to train the classifiers and classify a

document but also in the quality of the experiments results.

In Chapter 4 we have the description of all of the steps taken to validate the approaches proposed

in this chapter. That description includes a description of the used document collections, the

considered evaluation measures and finally the results achieved by each one of the experiments.
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Chapter 4

Validation Experiments

I
n this chapter we have a description of the experiments performed in order to validate the

proposed approaches. We describe the datasets used during the experiments and present

also the evaluation measures that were considered during the experiments. Finally, we present

and discuss the results of each experiment.

4.1 Evaluation Datasets

To validate the approaches proposed in this MSc thesis, we used two datasets. These datasets

are distinct in four dimensions, namely the number of documents, the dimensionality of the feature

vectors, the number of classes, and finally the maximum depth in the hierarchy. The two datasets

have also some similarities. The first similarity is the structure of the hierarchy, which is a tree,

i.e. each class of the hierarchy has only one parent class. Another similarity is the fact that

documents are only assigned to the leaf nodes. Table 4.2 details the differences between the two

datasets.

Table 4.2: Differences between the datasets.

Dataset Number of Number Number of Max path
documents of classes target classes size

4Universities 8282 42 35 2
Pascal Challenge 4463 2387 1139 5

37
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The first dataset is the 4Universities dataset1, which has been used in many previous document

classification experiments (Craven et al. (1998), Craven et al. (2000)). The second is the dataset

from the first edition of the Pascal Challenge on Document Classification2, a joint evaluation

effort related to hierarchical classification of Web documents according to large scale hierarchies

of classes.

In both datasets, that we used to validate the proposed classification approaches, we have that

the documents are ordered by class. Given this, when we perform the document selection in

the higher levels is very likely that we do not have documents from all of the leaf classes. This

would reduce the sample to a short number of classes and can result in misclassifications in

higher nodes. To avoid that, and before we start the train, we randomly choose the documents.

With this operation we expect to have represented all, or almost all, of the leaf classes when the

system trains the classifier.

4.1.1 The 4Universities Dataset

The 4Universities dataset is a dataset with a total of 8282 html documents collected from com-

puter science departments of various universities in United States at January 1997. The docu-

ments are organized in a two level hierarchy with 42 categories (35 of them leaf nodes). After

processing the documents, the dataset presented a vocabulary with 140000 features, including

all the words present in the text and the title fields of the html pages.

To build the feature vectors of the 4Universities dataset some preprocessing steps were taken.

First we need to extract the text and titles from the html documents. The extraction was per-

formed with a Java class. After extracting the desired information, text and titles from the html

documents were stored in a database table with the previously labeled class. After concluded

this preprocessing step, we build the feature vectors with the StringToWordVector filter available

in the Weka’s API. This data filtering was made accordingly to the proposed methods in Section

3.2. Three approaches to build the feature vectors, namely the bag-of-words approach, the stop-

words removal approach and the lemmatization approach were applied. To weight the features,

the tf-idf heuristic was the selected method. During construction of the feature vectors all the text

tokens were converted to lower case and the feature weights were normalized.

The 4Universities dataset has no distinguish between train documents and test documents. In

order to evaluate the performed experiments with the 4Universities dataset, we split the dataset

in 90% of the data to train the classifiers and 10% of the data to test the classifiers. The split is

1http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
2http://lshtc.iit.demokritos.gr/

http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
http://lshtc.iit.demokritos.gr/
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done with a Java class that reads the input file line by line and counts the number of documents

per each class. After the counting we read again the input file line by line and select documents

to the test set while the class limit is not reached. Once the class limit is reached the remaining

documents are selected to be part of the training set.

4.1.2 The Pascal Challenge Dataset

The Pascal Challenge dataset was made available to the participants of the first edition of the

Pascal Challenge, which required participants to solve a hierarchical classification problem. The

feature vectors were already computed by the organizers of the Pascal Challenge. As in the first

dataset, the documents were associated only to leaf classes in a hierarchy with a maximum of

five levels. In the Pascal Challenge dataset, the documents are already split in train and test

documents. To train the classifiers we have a total of 4463 documents distributed by a total 2387

classes where 1139 of them are leaf classes. The test dataset is composed by 1860 documents.

Table 4.8 presents more statistical information about the data available to train the classifiers in

the Pascal Challenge dataset.

Table 4.3: Number of classes per level in the Pascal dataset.

Level Number of Number of Number of Average documents
classes leaf classes documents per class

1 10 0 0 0
2 158 0 0 0
3 522 41 128 3.12
4 846 247 632 2.56
5 851 851 3703 4.35

4.2 Evaluation Metrics

In order to evaluate the proposed approaches to solve an hierarchical classification task we

performed a set of experiments using the datasets described in Section 4.1. Those experiments

were evaluated according to a set of evaluation measures. In this section we describe which

were those evaluation measures.

To compare the proposed classification approaches we use the standard measure Accuracy.

However, like reported by other authors on their research (Bennett & Nguyen, 2009; Sebastiani

et al., 2000; Xue et al., 2008), we discuss our results not only about the Accuracy score, but
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also about the weighted harmonic mean of Precision and Recall, the f-measure (Equation 4.30).

Like reported in Section 2.1.3 those measures need to be extended for multi-class classification

problems. They can be extended in micro and macro-averages. In this work, we used the macro

averages that are defined as follows in Equations 4.28 and 4.29. The definition is based on the

number of true positives (TP), false positives (FP) and false negatives (FN) for each class ci.

Macro-average-Precision =
1

n

n∑
i=1

tpi
tpi + fpi

(4.28)

Macro-average-Recall =
1

n

n∑
i=1

tpi
tpi + fni

(4.29)

In the equations, used as remainders of the formulas already presented in Section 2.1.3, n rep-

resents the total number of categories (i.e., classes). With the above definitions of precision and

recall, the F1 metric can be computed as shown in the formula bellow:

F1-measure = 2× Precision×Recall
Precision+Recall

(4.30)

The validation of the approaches proposed in this MSc thesis is obtained not only with an analysis

with the presented information retrieval measures but also measuring the time spent. This last

evaluation measure is obtained with the command line utility time.

All the experiments were performed in a personal laptop with the following configuration:

• CPU - Intel Core I5-520m Dual-Core;

• Ram - 4Gb DDR3 1333;

• Unix Kernel - 2.6 64bits;

• Hard Disk - 500Gb SATA (7200rpm);

• Java Machine - jre version - 1.6.0-24

4.3 Results

In this section we report the results achieved by the classifiers in the experiments performed

to validate the proposed classification approaches. Moreover, we discuss the results and try

to interpret their meaning. We also compare our results with previous works and analise the

differences between our work and the previous works.
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4.3.1 4Universities Dataset

Tables 4.4 and 4.5 show the results obtained over the 4Universities dataset, respectively with

the traditional top-down classification approach and with the extended top-down classification

approach. The tables have the results grouped by each considered feature selection method,

and then the results are grouped by each document selection method. The columns t-time and

t-test represent the time spent for training and testing the classifiers respectively. The column

DocSelection identifies the method used to make the document selection, having the value of

of none if we did not performed any document selection, naive for the first document selection

method and of refined for the second method. The column NumDocs presents the number of

documents to be selected in each method.

Table 4.4: Results over the 4 Universities dataset with the traditional top-down approach.

Experiments without feature selection

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test
none full 0.1155 0.0038 0.0333 0.0069 5m14s 26m41s
naive 100 0.2493 0.1598 0.1302 0.1435 1m36s 2m27s
naive 750 0.4177 0.0784 0.1244 0.0962 2m30s 10m55s

refined 1000 0.0835 0.0028 0.0333 0.0051 2m39s 1m04s
refined 4000 0.2482 0.0314 0.0707 0.0435 6m51s 10m18s

Experiments with stopwords removal

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test
none full 0.1155 0.0038 0.0333 0.0069 4m45s 22m49s
naive 100 0.2359 0.1598 0.1212 0.1378 1m22s 2m05s
naive 750 0.4128 0.0818 0.1230 0.0983 2m22s 10m25s

refined 1000 0.0835 0.0028 0.0333 0.0051 0m17s 2m21s
refined 4000 0.2297 0.0241 0.0662 0.0353 1m23s 10m19s

Experiments with stems

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test
none full 0.1155 0.0038 0.0333 0.0069 5m04s 21m38s
naive 100 0.2150 0.1647 0.1208 0.1393 1m32s 2m02s
naive 750 0.3821 0.0753 0.1143 0.0908 2m32s 9m48s

refined 1000 0.0835 0.0028 0.0333 0.0051 0m19s 2m25s
refined 4000 0.2396 0.0385 0.0683 0.0493 1m29s 10m12s

In a quick analysis over the results presented in Tables 4.4 and 4.5 we can see that the time

taken to train and test the classifier is directly related with the number of documents used to train

the classifiers, which corroborates the initial supposition. About the achieved f-measures it was
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Table 4.5: Results over the 4 Universities dataset with the alternative top-down approach.

Experiments without feature selection

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test
none full 0.8010 0.6429 0.6613 0.6520 25m30s 24m13s
naive 100 0.0159 0.0040 0.1333 0.0077 7m17s 2m04s
naive 750 0.5971 0.5123 0.6536 0.5744 11m44s 30m47s

refined 1000 0.3931 0.3149 0.5865 0.4097 1m04s 3m19s
refined 4000 0.6609 0.5251 0.6996 0.5999 6m51s 10m18s

Experiments with stopwords removal

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test
none full 0.8206 0.6694 0.6725 0.6709 22m47s 21m23s
naive 100 0.0160 0.0046 0.1333 0.0090 6m11s 1m49s
naive 750 0.5221 0.4563 0.5705 0.5071 10m54s 11m08s

refined 1000 0.4189 0.3652 0.5915 0.4515 0m53s 3m15s
refined 4000 0.6671 0.5183 0.6817 0.5889 6m02s 8m30s

Experiments with stems

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test
none full 0.7998 0.6466 0.6552 0.6509 25m08s 23m44s
naive 100 0.0897 0.1182 0.2962 0.1690 6m37s 2m07s
naive 750 0.4865 0.4384 0.6117 0.5107 11m43s 11m41s

refined 1000 0.3955 0.3398 0.5809 0.4288 0m59s 3m36s
refined 4000 0.6290 0.5021 0.6890 0.5809 7m12s 9m33s

expected that the scores get worst because of the reduction of training data, but when performed

the naive document selection results show improvements in the traditional top-down approach.

That can be related with the features included in the selected documents that could be highly

related to classes and that makes possible to better characterize each class.

When we compare the time spent to train the classifier between the feature selection methods we

do not observe significant differences. Which give us the idea that the feature selection method

does not implies a strong impact in the time spent and only in the behavior of the classifier.

The results achieved by the classifiers with the alternative top-down classification approach, pro-

posed in this MSc thesis, validate the proposed method, still the time spent to train the classifiers

increases in some cases five times, the f-measure achieves the score 0.6709 against the 0.1435

achieved in the traditional top-down approach.

Another observation that can be done with the results of Tables 4.4 and 4.5 is that feature selec-

tion do not imply results improvement. Feature selection can allow classifiers to achieve better
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results depending on the classification approach and probably depending on the dataset.

4.3.2 Pascal Challenge Dataset

Before the presentation of the results obtained in the experiments performed in the context of this

MSc thesis, is important to known what were the results announced by the organization of the the

first edition of the Pascal Challenge. The results achieved in terms of Accuracy and f-measure

are reported in Table 4.6 for the top five systems.

Table 4.6: Results announced by the organization of the Pascal Challenge, with participants systems ordered by Accu-
racy.

Participant Accuracy F1-Measure
alpaca 0.4676 0.3412
jhuang 0.4632 0.3549

arthur general 0.4433 0.3197
XipengQiu 0.4431 0.3367

Turing 0.4317 0.3232

In Table 4.7 we have the results achieved by the proposed classification approaches in the ex-

periments performed with the Pascal Challenge Dataset.

The results reported in Table 4.7 validate the proposed approach to extend the traditional top-

down classification. The results are better when compared with the traditional top-down ap-

proach, since this method reaches better f-measure scores.

Results also show some relation of the time spent to train the classifiers with the number of

documents, but there is one exception, which can be related with the CPU availability at the time

we perform the experiment, the difference is smaller than thirty seconds in a total time about the

thirty six minutes. There is also some increasing in the time spent to train the classifiers, when we

compare the traditional top-down approach with the proposed alternative top-down approach, but

there is also one exception, like the previous exception this can be related with the CPU available

at the time.

Table 4.8 reports the Accuracy achieved by each proposed approach level by level, in this case

the environments where were achieved the best f-measure results. We can see that the misclas-

sifications at the higher levels are smaller with the alternative top-down approach. Resulting in a

more accurate classification of the documents.

Finally we are able to compare the results of our experiments with the results announced by the

organization of the first edition of the Pascal Challenge. The proposed approach achieves signif-

icantly better results in Accuracy, the best score announced is 0.4676, and in our experiments we
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Table 4.7: Results with the Pascal Challenge dataset.

Experiments performed with traditional top-down classification

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test

none full 0.5439 0.1955 0.3257 0.2444 32m07s 7m17s
naive 50 0.1459 0.0567 0.0921 0.0702 36m29s 1m58s
naive 100 0.2224 0.0766 0.1268 0.0955 36m56s 2m26s
naive 200 0.2919 0.1039 0.1688 0.1286 37m07s 3m23s
naive 300 0.3716 0.1365 0.2197 0.1684 37m33s 4m43s
naive 400 0.4642 0.1653 0.2676 0.2044 38m01s 5m21s

refined 100 0.2515 0.0454 0.0740 0.0563 37m00s 4m18s
refined 500 0.2698 0.0478 0.0759 0.0587 36m18s 4m21s
refined 1000 0.2709 0.0481 0.0758 0.0589 36m26s 4m26s
refined 2000 0.2876 0.0490 0.0762 0.0597 39m27s 4m36s
refined 3000 0.2967 0.0490 0.0765 0.0597 39m43s 5m58s

Experiments performed with alternative top-down classification

DocSelection NumDocs Accuracy Precision Recall F1-Measure t-time t-test

none full 0.5977 0.3969 0.3258 0.3347 34m55s 8m37s
naive 50 0.1836 0.0890 0.1248 0.1039 36m23s 2m59s
naive 100 0.2445 0.1139 0.1518 0.1302 37m12s 3m28s
naive 200 0.3183 0.1487 0.1990 0.1702 37m33s 4m15s
naive 300 0.4012 0.1979 0.2605 0.2249 38m39s 5m44s
naive 400 0.5024 0.2324 0.3163 0.2679 39m08s 6m32s

refined 100 0.2337 0.0505 0.0749 0.0603 37m03s 4m53s
refined 500 0.2693 0.0569 0.0764 0.0652 36m54s 5m11s
refined 1000 0.2784 0.0616 0.0814 0.0701 36m32s 5m23s
refined 2000 0.2924 0.0619 0.0812 0.0702 39m50s 5m57s
refined 3000 0.2983 0.0629 0.0812 0.0709 39m43s 5m58s

reach 0.5977. But the f-measure achieves lower scores, we have a maximum of 0.3347 and the

organization announces 0.3549. This makes us believe that classes with few training documents

are not well characterized by the classifier, to improve the classification results we would need to

tune the parameters of our classifier, or make use of another classifier that can achieve better re-

sults with smaller training samples. Still the achieved f-measure is not better that the announced

by the organization, the score 0.3347 would place our approach in the top four of the f-measure

scores.

The short papers written by the participants of the challenge, that are available at the Web site,

does not have the evaluation of the classifiers level by level, it would be interesting to see were the

classification approaches start to produce distinct results, if it is at the top levels of the hierarchy,

or if it is at the lower nodes.
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Table 4.8: Accuracy over the Pascal Challenge dataset, for each hierarchy level.

Traditional Top-Down Approach

DocSelection NumDocs Level 1 Level 2 Level 3 Level 4 Level 5

none full 0.9995 0.9575 0.8250 0.6809 0.6143
naive 400 0.8056 0.7728 0.6699 0.5766 0.5306

refined 3000 0.9892 0.9483 0.7891 0.6887 0.6181

Alternative Top-Down Approach

DocSelection NumDocs Level 1 Level 2 Level 3 Level 4 Level 5

none full 1.0000 0.9731 0.8595 0.7208 0.6606
naive 400 0.8045 0.7851 0.6903 0.5981 0.5723

refined 3000 0.9914 0.9515 0.8066 0.7305 0.6767

From the short papers available at the Web site of the Pascal Challenge we have the short paper

of jhuang, one of the participants that achieved better results than we. In his paper we have a

description of the approaches developed to solve the hierarchical classification task, proposed in

the Pascal Challenge. The approaches estimates a sparse matrix, called weight matrix. Accord-

ing to the author this matrix measures the relation if each feature with few classes. Authors report

that the estimation of the weight matrix requires several passes over the training data, making

us believe that is an approach that requires more resources than the approach proposed and

evaluated in this thesis.

4.4 Summary

This chapter presented and discussed the results of each one of the experiments performed to

validate the three proposed approaches to solve hierarchical classification problems. The main

findings were as follows:

• The methods proposed to estimate the feature vectors do not have a meaningful impact

in the classifiers behavior, the two classification approaches did not achieved the best re-

sults with the same feature vectors (vectors that were estimated following the same feature

selection method).

• The document selection methods, proposed to reduce the time spent to train the classifiers,

have a significant impact over that results dimension but the classification results can stay
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far from the results achieved when we use the entire training dataset.

• Results show that the proposed extension to the traditional top-down classification ap-

proach is indeed effective in hierarchical classification problems.
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Chapter 5

Conclusions

Automatic document classification is the general task of assigning one or more categories

to an electronic document. This task is usually addressed through machine learning tech-

niques, with basis on a compact representation of the document’s contents. Recently, several

authors have explored automatic classification in the context of Web documents.

In this MSc thesis the research focus was the automatic classification of Web documents ac-

cording to a topic hierarchy. The common issues related to hierarchical classification tasks are:

(i) time spent to train the classifiers, and (ii) the error propagation. To manage with these two

issues were proposed two approaches. To manage with the first issue we proposed two methods

to reduce the size of the training sample. To avoid the misclassification in the higher levels we

proposed an extension to the traditional top-down approach.

To reduce the size of the training sample the first method performs a naive document selection,

the system does not try to collect documents from all the leaf classes under the considered

node. The system just reads the input file line by line and selects the documents to each class

while the limit of documents per class is not reached. The second method to select the training

documents tries to get at least one document per each class that is under the considered node

in the hierarchy.

To avoid misclassifications in the higher levels we proposed an extension of the traditional top-

down classification approach that expands the two most probable nodes in each level of the

hierarchy, instead only the most probable like in the traditional top-down approach.

To evaluate the proposed approaches we considered the time spent during the experiments and

some information retrieval measures traditionally used in multi-class classification environments,

49
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namely Accuracy, Recall, Precision and f-measure. The three last by default do not support multi-

class classification environments, so we used the macro-averages extensions of those measures.

The results validate the proposed extension to the traditional top-down approach, when compared

with the results of the traditional top-down approach we see improvements in the experiments

performed with two different datasets.

5.1 Contributions

This MSc thesis proposed some techniques to solve hierarchical classification problems. Each

technique was individually and evaluated, producing the following main contributions:

• The results obtained in the experiments with both datasets validated, for the best of our

knowledge, a simple modification to a usually followed approach. The error propagation,

provoked by the misclassification in the higher levels of the hierarchy, one issue already

identified by other authors, is attenuated with the proposed modification improving the clas-

sification results in all the experiment environments.

• Since one of the issues related to hierarchical classification is the time spent to train the

classifiers with large scale hierarchies, to reduce the training time we proposed methods to

reduce the training set and evaluated the results. Results show that still the reduction in the

time spent. To the document selection were proposed two methods that in fact reduce the

training time spent but only for small hierarchies, for large scale hierarchies the classifier

needs even more time to be trained. The results do not validate this document selection

proposal, not only because it is not guaranteed that we reduce the time spent to train the

classifiers but also because the classification results suffer some degradation.

• One of the remaining challenges in automatic text classification is how to build the feature

vectors. The experiments with the 4Universities dataset show that different classification

approaches achieve better results with different feature vectors.

5.2 Future Work

The conclusions about the proposed classification approaches were achieved with small relatively

datasets, and it would be interesting to evaluate the developed system with bigger datasets,

like the dataset made available for the second edition of the Pascal Challenge on Large Scale

Hierarchical text classification.
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Currently the system makes use of a Support Vectors Machine has classification algorithm, the

classifier that is used by many authors in this research field, compare the results of the system

with this setup with the same classification approach but using another classifier, such as Naı̈ve

Bayes, Decision Trees or AdaBoost, will ensure if the proposed classification approach in fact

improves the classification results or not.
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Appendix A

List of stopwords

The list with the considered stopwords, to be removed when computing the feature vectors, is as

follows.

a able about across after all
almost also am among an and

any are as at be because
been but by can cannot could
dear did do does either else
ever every for from get got
had has have he her hers
him his how however i if
in into is it its just

least let like likely may me
might most must my neither no
nor not of off often on
only or other our own rather
said say says she should since
so some than that the their

them then there these they this
tis to too twas us wants

was we were what when where
which while who whom why will
with would yet you your

57
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