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 A B S T R A C T

Consider a population of size 𝑁 where each element has an independent probability 𝑝 of being a success. By 
sampling this population without replacement, how many elements need to be drawn to find all successes? 
This paper describes this discrete distribution, derives its main properties, and validates the results through 
simulation.
1. Introduction

A population of 𝑁 elements is considered, where each element has 
an independent probability 𝑝 of being a success and a probability 1 − 𝑝
of being a failure. Elements are drawn individually without replace-
ment until all successful elements are identified, resulting in a total 
of 𝑘 draws. The proposed catch-all distribution, denoted as (𝑁, 𝑝), 
represents the discrete distribution of 𝑘.

The description of this distribution is motivated by the Trash Picker
game [1], which itself is inspired by Mitchell’s Robby’s World [2]. In 
this game, a robot collects trash on a rectangular grid with 𝑁 cells, 
where each cell has a probability 𝑝 of containing trash. Assuming the 
robot can observe and pick up trash from any cell without revisiting 
the same cell (a simplification of the actual game rules), the catch-all 
distribution models the number of steps required for the robot to collect 
all the trash. Since the game is turn-based, the expected value of the 
random variable 𝐾 ∼ (𝑁, 𝑝) can, for example, help determine the 
maximum or optimal number of turns for the game.

The proposed distribution models scenarios where the goal is to 
sample from a finite population until all individuals with a specific 
binary characteristic are identified. This includes computational prob-
lems such as binary cellular automata and practical applications like 
disease surveillance—e.g., determining the number of individuals that 
must be tested in a population until all infected individuals are iden-
tified, assuming each individual is infected with probability 𝑝—and 
defect detection—e.g., calculating the number of products that must be 
inspected in a batch until all defective items are found, given that each 
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product has a defect with probability 𝑝. Understanding the properties 
of this distribution is therefore important for accurately analyzing such 
processes and supporting decision-making in these and similar practical 
scenarios.

The remainder of this paper is organized as follows: Section 2 
presents the distribution’s properties, with an alternative derivation 
described in Section 3. Section 4 details the distribution’s empirical 
validation, and Section 5 concludes with a brief discussion, potential 
applications, and open questions.

2. Properties

2.1. Cumulative distribution function (CDF)

The probability that all successes are included within the first 𝑘
observations is equivalent to the probability that the final 𝑁 − 𝑘
observations contain no successes. This probability is given by:
𝐹𝐾 (𝑘) = (1 − 𝑝)𝑁−𝑘

However, this expression is not valid when 𝑘 = 𝑁 and 𝑝 = 1
simultaneously. While the expression holds for 𝑝 < 1, the edge case 
where 𝑘 = 𝑁 requires an adjustment, as exactly 𝑁 draws are needed 
to capture all 𝑁 successes. Thus, the expression can be generalized as 
follows: 

𝐹𝐾 (𝑘) =

{

(1 − 𝑝)𝑁−𝑘 for 0 ≤ 𝑘 < 𝑁
1 for 𝑘 = 𝑁

(1)
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Expression (1) represents the CDF of the distribution, indicating the 
probability that the random variable takes a value less than or equal to 
𝑘.

2.2. Probability mass function (PMF)

The PMF, 𝑓𝐾 (𝑘), defines the probability of obtaining exactly 𝑘 draws 
to capture all successes. It can be derived from the CDF using finite 
differencing [3], specifically, 𝐹𝐾 (𝑘) − 𝐹𝐾 (𝑘 − 1). Two edge cases must 
be considered: (1) For 𝑘 = 0, we have 𝐹𝐾 (𝑘 − 1) = 𝐹𝐾 (−1), which is 
assumed to be zero, as the probability of drawing all successes in fewer 
than zero draws is zero—it is impossible to have a negative number of 
draws; and, (2) For 𝑘 = 𝑁 , which is an edge case in the CDF itself. 
Therefore, the PMF is given by:

𝑓𝐾 (𝑘) =

⎧

⎪

⎨

⎪

⎩

𝐹𝐾 (0) − 0 for 𝑘 = 0
𝐹𝐾 (𝑘) − 𝐹𝐾 (𝑘 − 1) for 0 < 𝑘 < 𝑁
𝐹𝐾 (𝑁) − 𝐹𝐾 (𝑁 − 1) for 𝑘 = 𝑁

Substituting the terms, we obtain:

𝑓𝐾 (𝑘) =

⎧

⎪

⎨

⎪

⎩

(1 − 𝑝)𝑁 − 0 for 𝑘 = 0
(1 − 𝑝)𝑁−𝑘 − (1 − 𝑝)𝑁−(𝑘−1) for 0 < 𝑘 < 𝑁
1 − (1 − 𝑝)𝑁−(𝑁−1) for 𝑘 = 𝑁

This leads to the final expression for the PMF: 

𝑓𝐾 (𝑘) =

⎧

⎪

⎨

⎪

⎩

(1 − 𝑝)𝑁 for 𝑘 = 0
𝑝(1 − 𝑝)𝑁−𝑘 for 0 < 𝑘 < 𝑁
𝑝 for 𝑘 = 𝑁

(2)

For 𝑘 = 0, the PMF simplifies to (1 − 𝑝)𝑁 , which is the probability 
that all elements in the population are non-successes. For 𝑘 = 𝑁 , the 
PMF equals 𝑝, reflecting the probability that the last drawn element is 
a success. Additionally, the expression 𝑝(1 − 𝑝)𝑁−𝑘 reduces to 𝑝 when 
𝑘 = 𝑁 and 𝑝 < 1.

2.3. Hazard rate function (HRF)

The HRF represents the conditional probability that the process ends 
at step 𝑘, given it has persisted until step 𝑘 − 1 [4]. For the Catch-All 
distribution, the HRF denotes the conditional probability that the final 
success is obtained on the 𝑘th draw, given that it has not yet occurred 
by the (𝑘 − 1)th draw. This characterization is particularly relevant for 
potential uses cases of the Catch-All distribution. For example, the HRF 
can inform on the expected effort or stopping rules in processes such 
as disease testing or defect detection.

As discussed by Barlow and Proschan [4], the HRF for a discrete 
random variable 𝐾 can be defined in terms of its PMF and CDF, as:

ℎ𝐾 (𝑘) =
𝑓𝐾 (𝑘)

𝑆𝐾 (𝑘 − 1)
=

𝑓𝐾 (𝑘)
1 − 𝐹𝐾 (𝑘 − 1)

where 𝑆𝐾 (𝑘−1) = 1−𝐹𝐾 (𝑘−1) is the survival function at 𝑘−1, i.e., the 
probability that all successes have not been caught before 𝑘.

Given the piecewise definitions for the PMF and CDF, the HRF must 
be likewise determined for different values of 𝑘. For 𝑘 = 0: 

ℎ𝐾 (0) =
𝑓𝐾 (0)

1 − 𝐹𝐾 (0 − 1)
=

(1 − 𝑝)𝑁

1 − 0
= (1 − 𝑝)𝑁 (3)

For 0 < 𝑘 < 𝑁 , we have: 

ℎ𝐾 (𝑘)
0<𝑘<𝑁

=
𝑓𝐾 (𝑘)

1 − 𝐹𝐾 (𝑘 − 1)
=

𝑝(1 − 𝑝)𝑁−𝑘

1 − (1 − 𝑝)𝑁−(𝑘−1)
=

𝑝(1 − 𝑝)𝑁−𝑘

1 − (1 − 𝑝)𝑁−𝑘+1
(4)

Finally, for 𝑘 = 𝑁 : 

ℎ𝐾 (𝑁) =
𝑓𝐾 (𝑁)

1 − 𝐹𝐾 (𝑁 − 1)
=

𝑝
1 − (1 − 𝑝)𝑁−(𝑁−1)

=
𝑝

1 − (1 − 𝑝)1
= 1 (5)

However, the HRF also yields 1 when setting 𝑘 = 𝑁 in (4):

ℎ𝐾 (𝑘) =
𝑝(1 − 𝑝)𝑁−𝑘

=
𝑝(1 − 𝑝)0

=
𝑝
= 1
𝑘=𝑁 1 − (1 − 𝑝)𝑁−𝑘+1 1 − (1 − 𝑝)1 𝑝

2 
Thus, considering that (4) and (5) are equivalent for 𝑘 = 𝑁 , the final 
expression for the HRF can be obtained by combining (3) and (4): 

ℎ𝐾 (𝑘) =

⎧

⎪

⎨

⎪

⎩

(1 − 𝑝)𝑁 for 𝑘 = 0
𝑝(1−𝑝)𝑁−𝑘

1−(1−𝑝)𝑁−𝑘+1 for 0 < 𝑘 ≤ 𝑁
(6)

Note that the HRF is undefined at 𝑝 = 0, as the survival function 
in the denominator, 𝑆𝐾 (𝑘 − 1), is zero—i.e., the probability that all 
successes have not been caught before 𝑘 is zero, as there are no 
successes to catch. Although it is possible to obtain an expression for 
the HRF at 𝑝 = 0, in particular by taking the limit 𝑝 → 0 for the general 
case (0 < 𝑘 ≤ 𝑁), such expression does not represent a physically or 
empirically meaningful quantity.

2.4. Expected value

The expected value (mean) of 𝐾 ∼ (𝑁, 𝑝) can be determined 
using the standard formula for the expected value [3]:

𝐸[𝐾] =
𝑁
∑

𝑘=1
𝑘 ⋅ 𝑓𝐾 (𝐾 = 𝑘)

For the edge case 𝑘 = 𝑁 , the PMF expression 𝑝(1 − 𝑝)𝑁−𝑘 is used, 
since it is valid for 𝑘 = 𝑁 when 𝑝 < 1. The case where 𝑝 = 1 will be 
analyzed separately at the end of this section. Substituting the terms 
specific to this problem:

𝐸[𝐾] =
𝑁
∑

𝑘=1
𝑘𝑝(1 − 𝑝)𝑁−𝑘 (7)

= 𝑝(1 − 𝑝)𝑁
𝑁
∑

𝑘=1
𝑘(1 − 𝑝)−𝑘 (8)

Defining 𝑟 = (1 − 𝑝)−1, the summation in (8) becomes:
𝑁
∑

𝑘=1
𝑘𝑟𝑘

To simplify this summation, the sum of the first 𝑛 terms of the arithme-
tico-geometric series can be used [3]:
𝑁
∑

𝑘=1
[𝑎 + (𝑘 − 1)𝑑] 𝑏𝑟𝑘−1 =

𝑎𝑏 − (𝑎 +𝑁𝑑)𝑏𝑟𝑁

1 − 𝑟
+

𝑑𝑏𝑟(1 − 𝑟𝑁 )
(1 − 𝑟)2

Setting 𝑎 = 𝑑 = 1 and 𝑏 = 𝑟 aligns the summations:
𝑁
∑

𝑘=1
𝑘𝑟𝑘 =

𝑟 − (1 +𝑁)𝑟𝑁+1

1 − 𝑟
+

𝑟2(1 − 𝑟𝑁 )
(1 − 𝑟)2

Substituting this into the expected value expression, with 𝑟 = (1 − 𝑝)−1, 
gives:

𝐸[𝐾] = 𝑝(1 − 𝑝)𝑁
[

(1 − 𝑝)−1 − (1 +𝑁)(1 − 𝑝)−𝑁−1

1 − (1 − 𝑝)−1
+

(1 − 𝑝)−2(1 − (1 − 𝑝)−𝑁 )
(1 − (1 − 𝑝)−1)2

]

Simplifying further:

𝐸[𝐾] =
𝑝
(

𝑁 − (1 − 𝑝)𝑁 + 1
)

+ (1 − 𝑝)𝑁 − 1
𝑝

= 𝑁 − (1 − 𝑝)𝑁 + 1 +
(1 − 𝑝)𝑁 − 1

𝑝

= 𝑁 +
𝑝 − 𝑝(1 − 𝑝)𝑁 + (1 − 𝑝)𝑁 − 1

𝑝

= 𝑁 +
(1 − 𝑝)𝑁 (1 − 𝑝) − (1 − 𝑝)

𝑝

= 𝑁 +
(1 − 𝑝)𝑁+1 − (1 − 𝑝)

𝑝
For 𝑝 = 1, this expression simplifies to 𝑁 , which is consistent, 

as 𝑝 = 1 implies that 𝑁 successes exist, and 𝑘 = 𝑁 draws are thus 
necessary to capture all successes.
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However, 𝐸[𝐾] cannot be directly obtained for 𝑝 = 0 using the 
previous expression. This can be determined by setting 𝑝 = 0 in (7) 
or (8), or by taking the limit of the previous expression as 𝑝 →
0, as demonstrated in the moments notebook in the supplementary 
material, yielding 𝐸[𝐾] = 0 in both cases. Empirically, 𝑝 = 0 implies 
no successes exist, so all successes are considered caught at 𝑘 = 0, 
i.e., before any draw occurs. Therefore, the expected value for the 
catch-all distribution is given by (9): 

𝐸[𝐾] =

{

0 for 𝑝 = 0

𝑁 + (1−𝑝)𝑁+1−(1−𝑝)
𝑝 for 0 < 𝑝 ≤ 1

(9)

2.5. Variance

To determine the variance of 𝐾 ∼ (𝑁, 𝑝), the general expression 
for variance can be used [3]: 
Var[𝐾] = 𝐸[𝐾2] − 𝐸[𝐾]2 (10)

For 𝑝 > 0, this results in:

Var[𝐾] =
𝑁
∑

𝑘=1
𝑘2𝑝(1 − 𝑝)𝑁−𝑘 −

(

𝑁 +
(1 − 𝑝)𝑁+1 − (1 − 𝑝)

𝑝

)2

=
(𝑝 − 1)

(

𝑝(2𝑁 + 1)(1 − 𝑝)𝑁 + (1 − 𝑝)2𝑁+1 − 1
)

𝑝2
(11)

The complete derivation of (11) is presented in the moments note-
book in the supplementary material. As with the expected value, (11) 
is not valid for 𝑝 = 0. However, both terms in (10) are zero when 𝑝 = 0, 
and taking the limit in (11) as 𝑝 → 0 also yields zero (as calculated 
in the moments notebook). Therefore, the variance for the catch-all 
distribution is given by (12): 

Var[𝐾] =

⎧

⎪

⎨

⎪

⎩

0 for 𝑝 = 0
(𝑝−1)

(

𝑝(2𝑁+1)(1−𝑝)𝑁+(1−𝑝)2𝑁+1−1
)

𝑝2
for 0 < 𝑝 ≤ 1

(12)

3. Alternative PMF derivation

The catch-all distribution PMF can be derived by combining a neg-
ative hypergeometric-like distribution with the binomial distribution. 
The former assumes a fixed number of successes 𝑚, while the latter 
models 𝑚 based on the probability of achieving exactly 𝑘 successes in 
𝑛 independent Bernoulli trials, each with an independent probability 𝑝.

The probability of drawing all successes within exactly 𝑘 draws, 
with the final draw being the last success, relates to the negative hy-
pergeometric distribution, which counts the number of failures before 
reaching a specified number of successes. Although the problems are 
similar, deriving this negative hypergeometric-like distribution from 
first principles can be simpler.

To generalize the solution for a population of 𝑁 elements, where 𝑚
are successes and the remaining 𝑁 −𝑚 are non-successes, the goal is to 
determine the probability that all 𝑚 successes are drawn in exactly 𝑘
draws, with the 𝑘th draw being the final success. Assuming the actual 
number of successes, 𝑀 , is a constant 𝑚:
Pr(𝑚 successes in 𝑘 draws ∣ 𝑀 = 𝑚) =

Pr(𝑚 − 1 successes in ≤ 𝑘 − 1 draws) ⋅ Pr(𝑘th draw is a success)

To calculate Pr(𝑚−1 successes in ≤ 𝑘−1 draws), i.e., the probability 
of drawing exactly 𝑚−1 successes in the first 𝑘−1 draws, the following 
formula is used, assuming 𝑘 ≥ 1:

Pr(𝑚 − 1 successes in ≤ 𝑘 − 1 draws) =
𝑚 ⋅

(𝑁−𝑚
𝑘−𝑚

)

( 𝑁
𝑘−1

)

where:
3 
• ( 𝑚
𝑚−1

)

=
(𝑚
1

)

= 𝑚: Number of ways to choose 𝑚 − 1 successes from 
𝑚;

• (𝑁−𝑚
𝑘−𝑚

)

: Number of ways to choose 𝑘 − 𝑚 failures from 𝑁 − 𝑚;
• ( 𝑁

𝑘−1

)

: Number of ways to choose 𝑘 − 1 elements from 𝑁 , as the 
𝑘th draw is not yet included, assuming 𝑘 ≥ 1.

After drawing 𝑚 − 1 successes and 𝑘 − 𝑚 failures, there is exactly 
one success left among the 𝑁 − 𝑘 + 1 remaining elements. Thus, the 
probability that the 𝑘th draw is a success is:

Pr(𝑘th draw is a success) = 1
𝑁 − 𝑘 + 1

The overall probability is then determined as:

Pr(𝑚 successes in 𝑘 draws ∣ 𝑀 = 𝑚) =
𝑚
(𝑁−𝑚
𝑘−𝑚

)

(𝑁 − 𝑘 + 1)
( 𝑁
𝑘−1

)

This expression can be simplified as follows:
𝑚
(𝑁−𝑚
𝑘−𝑚

)

(𝑁 − 𝑘 + 1)
( 𝑁
𝑘−1

)
=

𝑚 (𝑁−𝑚)!
(𝑘−𝑚)!(𝑁−𝑚−(𝑘−𝑚))!

𝑁!(𝑁−𝑘+1)
(𝑘−1)!(𝑁−(𝑘−1))!

=
𝑚(𝑁 − 𝑚)!(𝑘 − 1)!

𝑁!(𝑘 − 𝑚)!

Thus, the final expression for the probability is: 

Pr(𝑚 successes in 𝑘 draws ∣ 𝑀 = 𝑚) =
𝑚(𝑁 − 𝑚)!(𝑘 − 1)!

𝑁!(𝑘 − 𝑚)!
(13)

Expression (13) represents the PMF for the event where all successes 
are drawn in exactly 𝑘 draws, with the last draw being a success. This 
calculation assumes 𝑚 ≤ 𝑘 ≤ 𝑁 , meaning at least 𝑚 draws are required 
to obtain all successes, and no more elements can be drawn than the 
total number of elements.

However, this distribution assumes a fixed 𝑚, while in the catch-
all distribution, 𝑚 is a random variable, with each element having an 
independent probability 𝑝 of being a success when drawn. Thus, 𝑚
follows a binomial distribution, where each draw is a Bernoulli trial. 
In this case, 𝑚 is replaced by 𝑀 ∼ Binomial(𝑁, 𝑝), and the probability 
of exactly 𝑚 successes is:

Pr(𝑀 = 𝑚) =
(

𝑁
𝑚

)

𝑝𝑚(1 − 𝑝)𝑁−𝑚 = 𝑁!
𝑚!(𝑁 − 𝑚)!

⋅ 𝑝𝑚(1 − 𝑝)𝑁−𝑚

Combining these using the law of total probability [3]:
Pr(𝑚 successes in 𝑘 draws) =

𝑁
∑

𝑚=0
Pr(𝑚 successes in 𝑘 draws ∣ 𝑀 = 𝑚) × Pr(𝑀 = 𝑚)

Considering that the expression inside the sum is zero when 𝑚 = 0
and that 𝑚 ≤ 𝑘, the overall expression expands to:
Pr(𝑚 successes in 𝑘 draws) = Pr(𝑚 in 𝑘) =

𝑘
∑

𝑚=1

(

𝑚(𝑁 − 𝑚)!(𝑘 − 1)!
𝑁!(𝑘 − 𝑚)!

)

⋅
𝑁!

𝑚!(𝑁 − 𝑚)!
⋅ 𝑝𝑚(1 − 𝑝)𝑁−𝑚

This can be simplified to the PMF presented earlier:

Pr(𝑚 in 𝑘) =
𝑘
∑

𝑚=1

(

(𝑘 − 1)!
(𝑚 − 1)!(𝑘 − 𝑚)!

)

⋅ 𝑝𝑚(1 − 𝑝)𝑁−𝑚

=
𝑘
∑

𝑚=1

(

𝑘 − 1
𝑚 − 1

)

𝑝𝑚(1 − 𝑝)𝑁−𝑚

=
𝑘−1
∑

𝑚′=0

(

𝑘 − 1
𝑚′

)

𝑝𝑚
′+1(1 − 𝑝)𝑁−(𝑚′+1) (assuming 𝑚′ = 𝑚 − 1)

= 𝑝(1 − 𝑝)𝑁−1
𝑘−1
∑

(

𝑘 − 1
′

)(

𝑝
)𝑚′
𝑚′=0 𝑚 1 − 𝑝
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Fig. 1. Theoretical (dashed line) and empirical (circle markers) catch-all PMF for 
𝑁 = 10 and different values of 𝑝 (depicted in different colors). Theoretical values 
were calculated with (2), while empirical results were obtained via simulation.

Fig. 2. Theoretical (dashed line) and empirical (circle markers) catch-all CDF for 
𝑁 = 10 and different values of 𝑝 (depicted in different colors). Theoretical values 
were calculated with (1), while empirical results were obtained via simulation.

Using the binomial expansion [3], (1 + 𝑥)𝑛 =
∑𝑛

𝑖=0
(𝑛
𝑖

)

𝑥𝑖, with 𝑛 =
𝑘 − 1, 𝑖 = 𝑚′, and 𝑥 = 𝑝∕(1 − 𝑝), we have:

Pr(𝑚 in 𝑘) = 𝑝(1 − 𝑝)𝑁−1
(

1 +
𝑝

1 − 𝑝

)𝑘−1

= 𝑝(1 − 𝑝)𝑁−1
(

1
1 − 𝑝

)𝑘−1

= 𝑝(1 − 𝑝)𝑁−1(1 − 𝑝)1−𝑘

= 𝑝(1 − 𝑝)𝑁−𝑘

which matches the PMF in (2) for 0 < 𝑘 < 𝑁 .

4. Empirical validation

The catch-all distribution was empirically validated through simu-
lation, where elements of a population were drawn until all successes 
were found. The complete simulation is available in the simula-
tion notebook, included in the supplementary material. This section 
summarizes the main results.

The first step in empirical validation involved running 10 000 sim-
ulation trials for various combinations of 𝑝 and 𝑁 . From these trials, 
empirical values for the PMF, CDF, HRF, expected value, and variance 
were calculated. Selected combinations are presented in Figs.  1–5, 
along with the corresponding theoretical values. As can be observed, 
the empirical and theoretical results are virtually identical.
4 
Fig. 3. Theoretical (dashed line) and empirical (circle markers) catch-all HRF for 
𝑁 = 10 and different values of 𝑝 (depicted in different colors). Theoretical values 
were calculated with (6), while empirical results were obtained via simulation.

Fig. 4. Theoretical (dashed line) and empirical (circle markers) expected values for 
the catch-all distribution with different values of 𝑁 (shown in different colors) and 𝑝
(along the 𝑥-axis). Theoretical values were calculated with (9), while empirical results 
were obtained via simulation.

Fig. 5. Theoretical (dashed line) and empirical (circle markers) variances for the catch-
all distribution with different values of 𝑁 (shown in different colors) and 𝑝 (along 
the 𝑥-axis). Theoretical values were calculated with (12), while empirical results were 
obtained via simulation.
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Fig. 6. Error between theoretical and empirical expected values for various values of 
𝑁 and 𝑝, obtained with expression (9) and simulation, respectively. Gaussian filtering 
with 𝜎 = 2 was applied in the log domain to highlight the decreasing error tendency.

In the second validation step, simulations with an increasing num-
ber of trials were conducted for various values of 𝑁 and 𝑝, and the 
resulting empirical expected value was compared to its theoretical 
counterpart. According to the law of large numbers, as the number 
of simulation trials increases, the empirical results should converge 
to the theoretical predictions, resulting in a decreasing error between 
them. This expectation is confirmed by the results depicted in Fig.  6, 
which illustrate a general trend of decreasing error with an increasing 
number of trials. Since the error decrease is not strictly monotonic, 
one-dimensional Gaussian filtering (with 𝜎 = 2) was applied in the log 
domain to smooth out non-monotonic variations, thereby emphasizing 
the overall decreasing trend.

5. Conclusions

Theoretical results for the proposed catch-all distribution were de-
rived and validated through simulation, with empirical observations 
closely matching the analytical expressions. This confirms the suitabil-
ity of the distribution to model scenarios involving sampling without 
replacement until all successes are identified. Potential applications 
include areas such as disease surveillance, defect detection in manu-
facturing, and related processes. Future work may explore additional 
5 
properties, including higher-order moments, skewness, and kurtosis, as 
well as extend the study to further application domains. Investigating 
its practical deployment and performance with real-world data also 
remains an open and relevant direction.
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