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Resumo

Hoje em dia os servigos de armazenamento na nuvem sao uma mais-valia que permitem
aos utilizadores guardar dados persistentemente, aceder a esses dados em qualquer lado e par-
tilha-los com os seu amigos ou colegas. No entanto, devido ao acumular de contas em diversos
servigos e a inexisténcia de ligagao entre as contas dos diferentes servicos, a gestao e a partilha
destes dados na nuvem sao um pesadelo para muitos utilizadores. Para minimizar este problema,
surgiram sistemas agregadores de diferentes servigos de armazenamento na nuvem de forma a
fornecer aos utilizadores uma visao global dos seus ficheiros espalhados pelos diferentes servigos.
No entanto, estes sistemas tém limitacoes de seguranca: nao sé nao fornecem privacidade ponto-
a-ponto a partir dos servigos na nuvem como obrigam os utilizadores a dar privilégios totais de
gestao sobre cada conta de armazenamento na nuvem. Esta tese apresenta o Storekeeper, um
servigo agregador de contas de armazenamento na nuvem que preserva a privacidade e permite
partilha de ficheiros entre utilizadores com diversas contas de diferentes servigos de armazena-
mento na nuvem, mantendo a confidencialidade dos dados entre os servigos de armazenamento
na nuvem e o servigo agregador. Para fornecer esta propriedade, a légica da maioria dos servigos
agregadores é descentralizada pelo Storekeeper para o lado cliente permitindo que as fungoes
sensiveis de seguranca sejam realizadas apenas nos pontos confidveis do cliente. Esta descen-
tralizagao acrescenta novos desafios como a propagacao de atualizagoes dos ficheiros, controlo

de acessos, autenticacao de utilizadores, e gestao de chaves que sao tratados pelo Storekeeper.






Abstract

Cloud storage services are currently a commodity that allows users to store data persistently,
access the data from everywhere, and share it with friends or co-workers. However, due to
the proliferation of cloud storage accounts and lack of interoperability between cloud services,
managing and sharing cloud-hosted files is a nightmare for many users. To address this problem,
specialized cloud aggregator systems emerged that provide users a global view of all files in their
accounts and enable file sharing between users from different clouds. Such systems, however,
have limited security: not only they fail to provide end-to-end privacy from cloud providers, but
they require users to grant full access privileges to individual cloud storage accounts. This thesis
presents Storekeeper, a privacy-preserving cloud aggregation service that enables file sharing
on multi-user multi-cloud storage platforms while preserving data confidentiality from cloud
providers and cloud aggregator service. To provide this property, Storekeeper decentralizes
most of the cloud aggregation logic to the client side enabling security sensitive functions to
be performed only on the trusted client endpoints. This decentralization brings new challenges
related with file update propagation, access control, user authentication, and key management

that are addressed by Storekeeper.
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Introduction

Over the past years, cloud storage has become an invaluable resource for consumers. Cloud
storage services such as Dropbox!, Google Drive?, or Microsoft OneDrive? have been widely
adopted by many users for storing personal documents, photos, videos, etc., and sharing files
with their friends. Oftentimes, given that many companies have limited storage resources,
personal cloud storage accounts end up being used also for professional purposes, for example,

to store work-related files, collaborate with co-workers, or back up corporate data.

Several factors concur to make cloud storage services so popular among consumers. Firstly,
cloud providers put a lot of effort in making such services highly available, allowing users to
access their files anytime everywhere (as long as there is network connectivity). Multiple file
replicas are stored in the cloud, assuring higher fault tolerance than storing files locally on users’
desktops or servers. Furthermore, users are provided with friendly interfaces that allow them
to access their files and share them with friends. Through a typical Web interface, users can
access all their files from a simple browser. All users have to do is to log into their accounts by
providing username and password before they can navigate through their files and open them.
To improve user experience, many services allow files to be directly opened within the browser
through built-in applications that can interpret rich document formats such as Word, Excel,
PDF, and others. Cloud storage services provide remote APIs that allow a client application
installed on the users’ devices to mount cloud accounts as remote drives accessible through the
local file system. Client applications maintain a local cache of the user’s files and provide for
adequate file synchronization between the local cache and the cloud replicas to resolve possible
inconsistencies in the event of write operations. And last but not the least, cloud storage services

offer free storage space, which constitutes a great incentive for many users to adopt such services.

"https://www.dropbox . com/
*nttps://drive.google.com/
3https://onedrive.live.com/


https://www.dropbox.com/
https://drive.google.com/
https://onedrive.live.com/

1.1 Motivation

As users’ dependency on cloud storage services increases, managing and sharing cloud-hosted
files becomes more cumbersome. One reason for this to happen is the relatively small storage
capacity per user account. In fact, to save costs, many users use only the default amount of
free space offered by the cloud providers. Such space is normally in the order of tens or less
of gigabytes (e.g., 2GB in Dropbox? and 15GB in Google Drive®), which is relatively small for

the amount of data produced by a single user®

. To accommodate growing storage demands,
users end up signing up for multiple accounts, sometimes with different cloud providers (e.g.,
Dropbox and Google Drive), others within the same service provide under a different username
and/or email. This entails a multiplication of accounts that need to be maintained. To worsen
things up, cloud storage services have incompatible interfaces. For example, a Dropbox user is
not allowed to share a file and edit it jointly with a Google Drive user. Because of this lack of
interoperability, sharing files across different services becomes quite involved. To overcome this
limitation, users tend to create accounts on a common cloud provider so that they can work on
the same set of files. Thus, even the users that can afford to pay for larger storage space are
normally forced to maintain multiple accounts in order to collaborate with other users. As a

result, user files tend to become scattered across several accounts, making file maintenance and

navigation a nightmare.

To overcome these file management issues, a new kind of services have been placed in the
market implementing cloud storage aggregation. Services such as Cloudfogger [1], Odrive [5],
and others [2,3,9,10] run on dedicated servers and implement an intermediate multi-user multi-
cloud layer between the users and cloud storage providers. Cloud storage aggregators expose
to the users a unified view of all files located in their individual accounts and some enable
seamless file sharing across cloud accounts, for example between a Google Drive user and a
Dropbox user. Users simply endorse such services so that they can access the files located in the
users’ cloud accounts, and the cloud aggregator provides mediated access between files across
cloud provides so as to overcome existing incompatibilities. However, in spite of a considerable
usability improvement, with existing cloud aggregator services, users incur additional security

risks. In particular, in all these systems users have to grant to the cloud aggregator full access

‘https://www.dropbox.com/plans
*https://support.google.com/drive/answer/65587hl=en
Shttp://cloudtweaks.com/2015/03/surprising-facts-and-stats-about-the-big-data-industry/
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permissions to users’ cloud storage accounts so that the cloud aggregator can automatically
exchange file updates between different cloud storage backends. Furthermore, with the exception
of Cloudfogger, users have no native protection of data confidentiality from the cloud providers,
since the files are not encrypted at the client endpoint. As a result, users must give away
their privacy to a cloud aggregator in order to enjoy a better integration between cloud storage

services.

In spite of all the research that has been done over the past years on cloud security, the prob-
lem of providing secure cloud storage aggregation has been overlooked. Systems like BlueSky [28§]
provide a security layer for file systems, but focus on single-user single-cloud platforms, i.e.,
the system simply encrypts file system data before storing it back on a single cloud service.
SPORC [17] also interposes an encryption layer between the user’s client and the cloud provider,
and additionally allow for secure file sharing between users. However, since both BlueSky and
SPORC focus on single clouds, they lack the mechanisms to enable secure exchange of files
between multi-clouds. Multiple clouds have been handled by systems such as DepSky [12] and
SCFS [13], but these systems are conceptually different from cloud storage aggregators. Dep-
Sky and SCFS combine multiple clouds into a conceptually unique cloud called cloud-of-clouds
(CoC). A CoC can then be used by a single user (or by a set of users) to automatically main-
tain multiple file replicas in different cloud backends in order to increase fault tolerance or file
availability. Users are oblivious to the actual location of each file. For example, in CoC if Alice
shares a file with Bob, what both Alice and Bob see is a common administrative domain where
files are located, without being aware of where files are located. In contrast, in cloud storage
aggregators, users do not share a common set of cloud accounts. Instead, each user manages an
individual pool of cloud accounts where her files are located, and freely he can exchange such
files with other users. Thus, cloud storage aggregation requires the maintenance of independent
administration domains that are individually controlled by their respective users, who demand

to be aware of where their files are located and retain the access control to their files.

1.2 Contributions

This dissertation presents the design, implementation, and evaluation of Storekeeper, a
security-enhanced cloud storage aggregation service. Storekeeper comprises a client application

(akin to a Dropbox client) to be installed on the users’ computers and a centralized cloud



aggregator server. Users sign up to the server and register their individual cloud storage accounts
from Dropbox or Google Drive. Storekeeper provides a unified file namespace, where users can

seamlessly browse files located in different accounts and share files with other users.

A key technical contribution of Storekeeper it its novel design, which provides privacy-
preserving cloud aggregation by decentralizing the security-sensitive logic of the service. That
logic is pushed from the cloud aggregator to trusted clients’ endpoints, reducing the cloud
aggregator to only a limited set of functions for storing meta-data that is shared between the
users. For security reasons, Storekeeper preserves files in their respective owners’ accounts and
protects the confidentiality of files from both the cloud providers and cloud aggregator server.

In particular, the server has no privileges on any of users’ accounts.

When compared with a typical centralized cloud aggregator, Storekeeper’s decentralized ar-
chitecture introduces new challenges. First, there is the problem of user authentication and key
management. Normally, different clouds manage different user identities. Storekeeper includes
mechanisms to handle user identities from different cloud providers, bind encryption keys to
their respective users, and provide key management and storage solution that are easy to use by
the users. Secondly, it is necessary to devise an adequate security model that masks the hetero-
geneity of file permission models across cloud providers. Storekeeper defines a simple overarching
permission model and implements it using encrypted ACLs. Thirdly, there is the problem of how
to enable secure read and write operations to shared files located in different cloud accounts.
Storekeeper needs to incorporate specific mechanisms in order to securely propagate file updates

without introducing privilege escalation vulnerabilities against potentially malicious users.

We envision Storekeeper’s cloud aggregator to be deployed internally by companies in order
to enable file sharing between their employees without considerable investment. A company
needs only to maintain a Storekeeper server and manage the user base of the system. Storage

space will be fully contributed by the users as they sign up and register their cloud accounts.

1.3 Results

In summary, the results of this work are enumerated, as follows:

1. Design of a cloud aggregator platform that enables secure file sharing between users of

6



heterogeneous storage cloud services;

2. Implementation of a system prototype that demonstrates the effectiveness and viability of
our design for supporting file sharing between two popular cloud services: Dropbox and

Google Drive;

3. Experimental evaluation of this system using micro-benchmarks.

1.4 Structure of the Document

The rest of this document is organized as follows. Chapter 2 provides an overview of the
related work. Chapter 3 describes the architecture of our system and the algorithms implemented
by Storekeeper, and Chapter 4 presents the implementation details of our software prototype.
Chapter 5 presents the results of the experimental evaluation. Finally, Chapter 6 concludes this

document by summarizing its main achievements and future work.






Related Work

In this chapter, we present the related work. We start by providing a general historical
overview of the security mechanisms that have been progressively introduced into traditional
file systems in order to provide data confidentiality (Section 2.1). Then, we focus specifically
on the cloud: firstly, we present secure cloud storage systems targeting a single-cloud setting
(Section 2.2); and, secondly, we cover the systems that are mostly concerned with the multi-
cloud setting (Section 2.3), and thus more consonant with the main goal of this thesis. Lastly,

we make a comparative analysis of the state of the art (Section 2.4).

2.1 Securing Traditional File Systems

In traditional computer systems, user data is persistently stored on hard disks and main-
tained by local file systems such as NTFS, FAT, Ext, etc. Networked file systems such as NFS
and AFS make files accessible to remote computers, which is crucial within the context of or-
ganizations, for example. Although both kinds of file systems were build with security in mind
(e.g., implement file access control mechanisms), the underlying assumption in their design is
that the storage medium is trustworthy, and thus the raw file system data (and meta-data)
can be stored on disk unencrypted. However, in certain cases, this assumption does not hold
any more: an attacker with physical access to the storage medium can extract users’ data and
compromise its confidentiality. To mitigate such attacks, systems emerged that use encryption
to prevent unauthorized interpretation of raw file system data. Since some of such techniques

can be used also in the cloud, we make an overview of some representative systems.

2.1.1 Cryptographic File System

One of the first file systems to guarantee file privacy is the Cryptographic File System
(CFS) [14]. CFS pushes file encryption services into the file system: performs the file encryption

9



and key management functions and leaves the rest to the underlying file system. CFS runs at
user level on the client machine. CFS aims to present the user with a secure file service that
works in a seamless manner like a “normal” file system. This file service, where the encrypted
files reside, can be any file system (local or remote). With CFS, users can associate a key with
a directory (the key is created using a pass-phrase entered by the user), all files and metadata
in there are encrypted with that key. The granularity of encryption is at the directory level,
making CFS not completely transparent to the user: the user has to remember a pass-phrase
for all encrypted directories. CFS uses a combination of ECB (electronic codebook) and OFB
(output feedback) cipher modes. ECB is suitable for random data access however, with this
mode, a plaintext block is always encrypted into the same ciphertext block (thus it does not
hide data patterns). Therefore, ECB is combined with OFB. OFB generates keystream blocks
that are XORed with the plaintext blocks to get the ciphertext blocks, each keystream block
depends on all previous generated ones. Access control to the encrypted directories is done using
the UNIX file protection mechanisms. CFS is not proper to file sharing since it does not assure
integrity and does not include any key distribution mechanism. Also, since keys are created from
pass-phrases, in case of password compromise, changing a pass phrase for a directory results in

re-encrypting all files located in that directory. However, CF'S does not support such mechanism.

2.1.2 Transparent Cryptographic File System

The Transparent Cryptographic File System (TCFS) [16] is similar to CFS, but, unlike CFS,
also makes file encryption transparent to users and allows file sharing between a group (UNIX
group) of users. File encryption is transparent to users in a way that the file system knows if a
file is ciphered or not, by maintaining one bit information with each file indicating whether the
file is ciphered or not. Users only have to maintain one password, a master-key, that encrypts
all file-keys, rather than a password per directory with CFS. The master-key is encrypted with
the login password of the user. Users also have the ability to select which encryption algorithm
will be used by TCFS (that later ciphers file blocks in CBC mode - cipher block chaining mode).
The granularity of encryption is at the file level, each random file-key is encrypted with the
master-key and stored in the file-key field of the file header stored along with each file. A block-
key is created per block of a file by hashing the result of the concatenation of the file-key and
the block number, then the block is encrypted using the block-key in the CBC mode. With each

10



encrypted block is stored an authentication tag, which is the hash of the concatenation of block
data and block-key, this assures the integrity of blocks. As stated, TCFS allows file sharing
within a UNIX group by a threshold. To achieve this a group-key is created to encrypt all file-
keys of the files belonging to that group. To acquire this group-key, a threshold number of share
holders must be available on the same machine. To be able to decrypt the group-key, at least the
threshold number of users must be online at the same time. This threshold information and the
group members have to be defined by the file system administrator. The group creation utility
generates the random group-key and gives a share of the key to each group user, each user’s
share is encrypted with the user’s password. This means that the group creation utility should
have the users’ password in clear-text, which is a big vulnerability. Also, data is not protected
from system administrators. In case of a password change, TCFS decrypts the master-key with
the old password and re-encrypts it with the new password. However, in case of password
compromise it is not enough to change the password and the master-key, the attacker could
have collected all file-keys. The solution is to decrypt all files using their old-key and re-encrypt
them with fresh keys. In this case, in a group sharing the system administrator has to create
a new group-key and redistribute the shares, but it is not clear how TCFS handles this issue.

TCFS security is guaranteed by means of the DES algorithm which is easily breakable.

2.1.3 Encrypting File System

The Encrypting File System (EFS) [25] has the same functional properties than TCFS, but
as opposed to TCFS that works on top of UNIX, EFS works on top of Windows. For each
user, EFS creates a public/private key pair and obtains a certificate on the public key from
the CA (Certification Authority), configured by the system administrator, to sign the public
key (if a CA is not present, EFS self signs it). In EFS, encryption can be at directory or file
level using symmetric keys. On file (or directory) encryption, EFS generates a file encryption
key (FEK) and encrypts the file (or directory). That FEK is then encrypted with the public
key of the user and stored along with the encrypted file on a special EFS attribute called Data
Decryption Field (DDF). The operations of decrypt/encrypt of files are transparent to the user,
EF'S automatically gets the FEK (by decrypting it using the private key of the user), and uses it
to decrypt/encrypt the file. When a file (or directory) is shared among multiple users, the FEK
is encrypted with the public key of each user (present on the ACL) and the list of encrypted

11



FEKSs is stored in the DDF (encrypting the FEK for each user incurs a lot of overhead on the
client side). To access an encrypted file, the EFS client acquires the file’s FEK (by decrypting
it with the private key of the user) and then decrypts/encrypts the file. Revoking the access of
some user to a file is done using a CRL (Certificate Revocation List) and removing the DDF
entry for that user. EFS does not re-encrypt the file with a different FEK, meaning that on
physical access the revoked user can still decrypt the file. EFS supports file recovery, that is, if a
user loses his private key, he can send the encrypted file to a recovery agent. Recovery agents are
configured by the system administrator, are assigned a public/private key-pair and the public
key is used to cipher the FEK and added to encrypted files in the special attribute called Data
Recovery Field (DRF), like the DDF attribute . The recovery agent can then decrypt the file
and send it back to the user. Any attacker that gains access to a local administrator account,
for example by hacking the Administrator account using third-party tools, can see all protected
files transparently decrypted. Also the keys for EFS are protected on disk by the user account

password so are therefore susceptible to most password attacks.

2.1.4 Cepheus

Since TCFS and EFS have serious security flaws, Cepheus [18] appeared as one of the first
secure file sharing schemes. It uses a group server that stores (and delivers) public keys of
users and the encrypted group-key associated with each UNIX group. The group-key is created
by the group owner and encrypted for each member of the group using the public key of each
member. On file creation, or while changing the ACL of the file, the owner creates the file-key,
a unique symmetric key using RC5 in CBC mode. This file-key is encrypted for the group
using the group-key and is also encrypted for the owner using the his public key. These two
encrypted file keys are placed in the file inode. On file writing, a keyed-hash (HMAC) [24] is
generated by the writer on the root of the hash tree of file blocks and metadata to ensure file
integrity (using the file-key). To reduce the amount of encryption for file writes, Cepheus uses
a delayed encryption policy for newly-written blocks. Whenever a user accesses a file, the user
first downloads the encrypted group-key from the group server, decrypts it using his private key,
fetches the encrypted file-key from the inode and decrypts it using the group-key, verifies the
HMAC and if the HMAC can be verified correctly, decrypts the file using the file-key. The group

server authenticates the client by verifying his signature. On revocation, all files associated with
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the group require re-encryption. To reduce the significant delay caused by re-encrypting possibly
thousands of files, Cepheus performs delayed re-encryption. To evoke delayed re-encryption, the
group owner first marks the cryptographic dirty bit of the file and sets up a new file-key in a
lock box, then any group member can later re-encrypt the file and clear the dirty bit (the file
does not need re-encryption until someone makes a change to the file). After Cepheus appeared
two systems (almost at the same time), SiRiUS and Plutus. This systems are very similar to

Cepheus but provide a distinction of members with read and write access.

2.1.5 SiRiUS

SiRiUS [21] is a user-level file system. SiRiUS is designed to operate over other file system,
in this case insecure network file systems like NFS, or P2P file systems. SiRiUS aims to improve
the security of the underlying file system without making any changes to it. SiRiUS ensures
confidentiality, integrity of data and some integrity of metadata. All files encrypted by SiRiUS
are stored in two parts: a data file, d-file, with the encrypted data and a metadata file, md-file,
with the access control information. Also, in each directory there is a metadata freshness file,
mdjf-file which is the root of the hash tree of all mdf-files associated with sub-directories. The root
mdf-file is signed from time to time by the owner (using his private key) to ensure freshness of the
metadata. Both types of metadata files are hidden to the user. Each user has a public/private
key-pair and with each file are associated two keys: a symmetric AES File Encryption Key
(FEK) and an asymmetric DSA File Signing Key (FSK). A d-file is encrypted using the FEK
and is signed by the writer using the FSK. The possession of FEK gives read only access to the
file, the possession of both FSK and FEK gives read and write privileges to whomever has the
keys. The root of hash-tree that is stored in the root mdf-file is built by hashing each mdf-file
and concatenating with the md-files of each subdirectory (with SHA-1). The owner can verify it
by regenerating the mdf-file in some directory and comparing with the current mdf-file. All this
ensures integrity of metadata, however, SiRiUS does not consider privacy of metadata. To share
some file, the owner adds an entry for every user in the md-file, each entry contains the FEK (for
read access) and the FSK (if the user also has write access) encrypted with the public key of the
user. It is assumed the existence of a key distribution mechanism to obtain the authenticated
public keys of users. The md-file also contains the public key of FSK (to allow readers to verify
the signature on the d-file), the relative filename (to prevent file-swapping attacks), hash of the
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metadata signed by the owner (to ensure integrity of metadata) and the time-stamp of the last
modification. On file read and/or write operations, a user gets both d-file and md-file, verifies
the signature on the d-file (using the owner’s public key of FSK), decrypts FEK and/or FSK and
then performs the desired operation. File revocation is similar to file creation: the owner creates
new FEK and FSK keys, encrypts the new keys with the public key of the remaining users and
signs the md-file and mdjf-files. The re-encryption of the FEK and FSK for all remaining users
adds some performance overhead, therefore SiRiUS is good only for small user groups. The
authors of SiRiUS have suggested the use of the NNL broadcast encryption algorithm [26] to
encrypt the FEK of each file instead of encrypting it with each individual user’s public key, thus

reducing the performance overhead.

2.1.6 Plutus

Plutus [23] is, similarly to SiRiUS, an abstraction over some file system. A prototype of
Plutus was built over OpenAFS, an implementation of AFS. Plutus has minimal trust on the
storage server and enables end-to-end confidentiality and integrity of data and metadata (as
stated, SiRiUS does not provide confidentiality of metadata). This system also provides secure
file sharing. Key management and distribution is handled by the client. In Plutus, files are
grouped with other files with identical sharing attributes, forming a file-group (containing per-
missions for the file-group and the list of members). This is because different classes of files (with
different sharing attributes) is small. For each file-group, Plutus associates a unique symmetric
key, the lockbox-key, and each block of a file is encrypted with a unique 3DES symmetric key, the
file-block key (automatically created during block creation). The lockbox-key is used to encrypt
all file-block keys belonging to one file-group. To share files with other user, a user creates a
file-group (which contains permissions and a list of members) and the corresponding lockboz-key,
which has to be distributed by the creator of the file-group to the members of the file-group.
Associated with each file-group there is an RSA key pair: the private part is the file-sign key and
the public part is the file-verify key. Readers receive only the lockboz-key whereas writers receive
also the file-sign keys. Like in SiRiUS, the possession of signing key distinguishes writers from
readers. The file-sign key is verified by writers using the corresponding file-verify key, proving
to the readers that the file is being modified by authorized writers and also ensuring integrity of

data and meta-data. Since the file-sign key is shared with all writers, it is not possible to verify
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the last modifier of a file. Revocation is expensive because it requires re-distribution of keys,
re-encryption of the data accessible to the revoked user and re-signing of the revoked data. To
overcome these issues, Plutus exploits the concept of lazy revocation (proposed in Cepheus [18],
discussed below) and key rotation. Briefly, lazy revocation delays re-encryption until a file is
updated. When a user is revoked, the file-group keys are changed by creating a new file-group.
So, the non-revoked users should have access to keys of both the revoked file-group and the new
file-group. This is done with key rotation: when the new file-group is created, the creator creates
a new lockbox-key by encrypting the current lockbox-key using his private key. Any member of
the group can get older versions of the lockboz-key by recursively decrypting it with the creator’s

public key. Both file-sign keys and file-verify keys are rotated in the same fashion.

2.1.7 Discussion

All previous secure file sharing approaches require the owner of the files/group to securely
share the key with other users (done either by encrypting the key with each user’s password
or each user’s public key). While using passwords is insecure, using public-keys has a big
computational overhead for large groups (because of the need to encrypt the key with each
user’s public key). To reduce this overhead there is another approach using proxy-based re-
encryption techniques or the NNL broadcast encryption algorithm. Proxy-based re-encryption
techniques started with atomic proxy re-encryption [15], in which a semi-trusted proxy converts
a cipher-text computed under Alice’s public key into a cipher-text that can be opened by Bob’s
secret key, without seeing the underlying plain-text. Atomic re-encryption has been prevented
by considerable security risks. To offer security improvements over earlier approaches, came
Improved Proxy Re-encryption Schemes with Applications to Secure Distributed Storage [11],
that makes proxy re-encryption a reliable method of adding access control to a file system.
The NNL [26], or Naor-Naor-Lotspiech, introduces the subset-sum framework of schemes for
broadcast encryption, which is concerned with efficient transmission of a message to a group of

receivers whose membership is not fixed.

The discussed traditional file systems are not a solution for the problem related to this
thesis. For example, assuming that SiRiUS or Plutus are running on a computer with access to
some public cloud storage provider such as Dropbox (via the file system plugin of Dropbox), a

user U could not share his files with other users. This is because other users do not have access
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Figure 2.1: BlueSky proxy (by Vrable et al. [28]).

to the cloud provider where U has his files located. Moreover, SiRiUS and Plutus need to be

always online, which is not the case of users accessing free public clouds.

2.2 Securing Single-Cloud Storage

Moving now from how files are secured in traditional file systems, in this section we focus
on the state-of-the-art of security systems for the single-cloud setting. A common use for single-

cloud storage clouds is to replace dedicated in-house storage servers with a cloud storage backend.

2.2.1 BlueSky

BlueSky [28] focuses on replacing existing services, like the traditional client-server applica-
tion, to the services offered by cloud providers. In particular, how a traditional file service can be
replaced with commodity cloud services. BlueSky acts like a local storage server that backs up
data to the cloud (Figure 2.1). It is assumed that the end-system software will be unchanged, so
BlueSky focuses on a proxy-based solution, where a dedicated proxy server provides the illusion

of a single traditional file server (translating requests into appropriate cloud storage APT calls).

This system is very focused on the enterprise setting. Therefore, outsourcing of data storage
makes security a primary consideration. All client data is individually encrypted (with AES)
and protected with a keyed message authentication code (HMAC-SHA-256) by the proxy before
sending it over the network, so the cloud provider cannot read private data. Data stored at

the provider also includes integrity checks to detect any tampering by the storage provider.
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BlueSky relies in the cloud provider for data availability. BlueSky prevents a provider from
selectively rolling back file data by authenticating pointers between objects starting at the root.

The provider can only roll back the entire file system to an earlier state, which users can detect.

The BlueSky file system is composed of 4 types of objects: data blocks, inodes, inode
maps and checkpoints. The first two represent data and the latter represent metadata. Data
blocks store file data, files are broken apart into 32 KB blocks. Inodes include basic metadata:
ownership, access control, timestamps and a list of pointers to data blocks with the file contents.
Inode maps list the locations in the log of the most recent version of each inode. Checkpoints
determine the root of a file system snapshot: contains pointers to the locations of the current
inode map objects. Data objects are encrypted while metadata objects are not. The keys for
encryption and authentication are not shared with the cloud and the authors assume that users
keep a safe backup of these keys for disaster recovery. The proxy uses its local disk storage to
implement a write-back cache. It ensures that data is safely on disk before telling clients that
data is committed and then writes are sent to the cloud provider asynchronously. The proxy
also keeps a cache on disk to satisfy many read requests without going to the cloud. The proxy
is fully trusted. File sharing is not discussed in the paper, but since the proxy operates over a

distributed file system it surely uses the sharing scheme of the file system.

2.2.2 SPORC

SPORC [17] approaches the problem of fully trusting cloud providers, with potentially
sensitive and important data, when cloud services are used to collaboratively edit some shared

document by multiple users. SPORC is a flexible framework that allows a group of users who
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trust each other to collaboratively edit some document with the help of a central untrusted

server whose sole purpose is to order and store client-generated operations.

SPORC has the following goals: propagate modifications of the shared state quickly, keep
data confidential from the central server and unauthorized users, tolerate slow or disconnected
networks, detect a malicious server and recover from it. Figure 2.2 shows the architecture of this
system, that is composed of a central untrusted server and clients. Clients exchange two types of
operations: document operations, which represent changes to the content of the document, and
metadata operations, which represent changes to document metadata such as the document’s
ACL. Every operation is labeled with the name of the user that created it and is digitally signed
by that user’s private key (every user has a public/private key pair and it is assumed that clients
have a secure way to verify the public keys of other users). The central untrusted server sole
propose is to order and store client-generated operations, maintaining all documents as a set of
ordered operations. The server stores the operations in its encrypted history so that new clients
joining a document or existing clients that have been disconnected can request the operations

they are missing (allowing quickly propagation of modifications, only for existing clients).

To ensure that the server is well behaved, clients use sequence numbers and a hash chain
to ensure that operations are properly serialized. Every operation has two sequence numbers:
a client sequence number cintSeqNo (assigned by the client that submits the operation), a
global sequence number seqNo (assigned by the server) and a global sequence number of the
last committed operation prevSeqNo along with the corresponding hash chain value prevHC.
On receiving an operation, a client verifies that the operation’s clntSeqNo is one greater than
the last clntSeqNo seen by the submitting client and that the operation’s seqNo is one greater
than the last seqNo seen by the client. On uploading a new operation to the server, the client
sets the prevSeqNo and the prevHC' fields. A client who receives a new operation compares its
prevHC with his own hash chain over the committed history of the same document. If they
match, fork* consistency is guaranteed. A misbehaving server cannot modify the prevSegNo
andprevHC fields because they are covered by the signature of the client that submits the
operation. If they do not match, the server is a malicious/misbehaving server. SPORC assumes
there exists some alternative server to switch to. Once a client validates a received operation
from the server, there may exist conflicts between the new operation and other operations in

his committed history and pending queue. This conflicts happen for two reasons: the server
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may have committed additional operations since the new operation was generated or the client’s
local state might reflect uncommitted operations that reside on the client’s pending queue that
other client do not yet know about. To resolve this conflicts, a client must use OT. Operational
Transformation (OT) provides a general model for synchronizing shared state while allowing
each client to apply local updates. When clients generate new operations, they apply them
locally before sending to others. To deal with conflicts that inevitably incur, each client first
transforms the operations he receives from others before applying his new operations to his local
state. If all clients transform incoming operations appropriately, OT guarantees that they will

eventually converge to a consistent state.

Data confidentiality is achieved by encrypting all operations under a symmetric key, un-
known to the central server. When a document is created, only the creator has access to it.
The creator can then change the document’s ACL by submitting meta-operations. The ACL of
documents is sent to the server in clear text (every client maintains its own copy of the ACL
and does not apply meta-operations that come from unauthorized users). When creating a new
document, the creator generates a random AES key, encrypts it under his own public key and
then writes the encrypted key to the document’s initial create meta-operation. To add users
to a document’s ACL, the creator of the document submits a meta-operation that includes the
document’s AES symmetric key encrypted under the public key of each new user. To remove
a user from a document’s ACL, the creator of the document generates a new random AES key,
encrypts it under the public keys of the remaining participants and then submits those encrypted
keys as a new meta-operation. This meta-operation also includes an encryption of the old AES

key under the new AES key to enable later users to decrypt old operations.

As stated above, for a new client to a reach the latest state of some document, he must
download and apply the entire history of committed operations. This causes a lot of overhead.
The authors suggest the use of checkpoints, a new client instead of downloading the entire history,
downloads a checkpoint of operations and then only apply individual committed operations since
the last checkpoint. To support checkpoints, each client from time to time uploads a compacted
version of a document to the server, encrypting it under the current key of the document, as if it
was a new meta-operation on the document. SPORC considers only a single cloud, the central
untrusted server, and requires the cloud to have the ability to run code. Our intended system

does not contemplate such kind of clouds.
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2.2.3 Scheme by Fu and Sun

Fu and Sun [19] propose a Scheme of Data Confidentiality and Fault-tolerance in Cloud
Storage that aims to ensure confidentiality of data, recovery of loss data and repair of error
data. Data confidentiality is achieved by encrypting the data before being stored, unsing a boot
password. This boot password is generated by a password (input by the user) and the file name.
It avoids the difficulty of managing encrypted keys. By requiring the user to input the password
several times, it makes the system less ubiquitous. Recovery of the lost data is done by dividing
the original data into m blocks and encoding it into n blocks (where n > m) by an erasure
code: tornado code. Recovery of the error data has two steps: detect whether the data has been
tampered and recover it identically to the recovering of loss data. To detect whether the data
has been tampered, each data block is stored with an hash of itself (hashed with a keyed-hash

function using the data and the boot password).

Keeping user data confidential against untrusted servers in cloud computing is done by en-
crypting data through certain cryptographic primitive(s) and disclosing decryption keys only to
authorized users. This general method has been widely adopted by existing works. These exist-
ing works resolve this issue by introducing a per file access control list (ACL) or by categorizing
files into several filegroups. However, as the systems scales, the complexity of the ACL-based
scheme would be proportional to the number of users in the system and the filegroup-based

scheme is only able to provide coarse-grained data access control.

2.2.4 Scheme by Yu et al.

Yu et al. [31] address this open issue and propose a secure and scalable fine-grained data
access control scheme. The authors have observed that in practical application scenarios each
data file can be associated with a set of attributes which are meaningful in the context of interest:
the access structure of each user thus can be defined as a unique logical expression over these
attributes to reflect the scope of data files that the user is allowed to access (see an example
scenario in Figure 2.3). Each attribute has a public key component, data files are encrypted
using the public keys corresponding to their attributes and user secret keys are defined to reflect
their access structures so that a user is able to decrypt a cipher text if and only if the data file

attributes satisfy his access structure.
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Figure 2.3: Exemplary case of attributes access control (by Yu et al. [17]).

This new design brings about the efficiency benefit that was lacking in other works: the
complexity of encryption is just related to the number of attributes associated with a data
file (thus is independent to the number of users) and operations of data file creation/deletion
and new user grant do not involve system-wide data file update or re-keying. However on user
revocation, re-encryption of data-files accessible to the leaving user is inevitable and also may
need update of secret keys for all the remaining users. This introduces heavy computation to
the data owner, so the authors propose to delegate this task of data file re-encryption and user

secret key update to cloud servers.

The authors uniquely combine Key Policy Attribute-based Encryption (KP-ABE) [22,30],
Proxy Re-encryption (PRE) [15] and Lazy Re-encryption. As stated, each data file is associated
with a set of attributes and each user is associated with an expressive access structure defined
over the attributes. This kind of access control is done with KP-ABE to escort data encryption
keys of files, such construction enables fine-grainedness of access control. However, this would
introduce heavy computation overhead on the operation of user revocation (requires the data
owner to re-encrypt all files accessible to the leaving user and to update secret keys for the re-
maining users). To overcome this issue, the authors combine PRE with KP-ABE thus enabling
the data owner to delegate the computation intensive operations to cloud servers without dis-
closing the underlying file contents. To further reduce overhead on cloud servers, authors adopt

lazy re-encryption allowing cloud servers to ”aggregate” computation tasks.

e On system setup, the data owner creates the system public key PK and the system master
key MK, then the data owner signs PK and sends it to cloud servers. On file creation

the data owner assigns a unique ID to the file, randomly creates a symmetric encryption
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key DEK and encrypts the data file using DEK. Then the data owner defines a set of
attributes I for that file and encrypts DEK with I using KP-ABE. Finally, uploads the

file to cloud servers.

e On adding a user to the system, the data owner assigns an access structure P and the
corresponding secret key SK to this user. Then signs and encrypts the tuple (P, SK, PK)
with the public key of the user. Next, the after owner signs and sends this encrypted
tuple with the ID of the user and the secret key component of each attribute to cloud
servers. On receiving, cloud servers verify the signature of the owner, if correct store the
ID of the user and the secret key component of each attribute in the system user list UL
and forwards the encrypted tuple (P, SK, PK) to the user. On receiving, the user first
decrypts it with his private key, then verifies the signature and if correct accepts the tuple

as his access structure, secret key and system public key.

e On user revocation, the data owner first determines a minimal set of attributes without
which the leaving user’s access structure P will never be satisfied. Next, the data owner
updates these attributes by redefining their corresponding PK and MK. Then, the data
owner updates user secret keys accordingly for all the remaining users. Finally, DEKs of
affected data files are re-encrypted with the latest version of PK. As stated before, this
introduces a heavy computation overhead so the tasks of data file re-encryption and user

secret key update is delegated to cloud servers.

e On file access, cloud servers first verify if the requesting user is valid in UL, if true cloud
servers send updated secret key components as well as the encrypted data file to the user.
On receiving, the user first verifies if the received version of each attribute is newer than
the current version he knows and, if so, decrypts the DEK and then decrypts the data file
using DEK'’s.

e File deletion can only be performed upon request by the data owner; the owner sends the

file’s ID along with his signature on this ID to cloud servers.

This work has similarities with systems discussed previously in this thesis. Plutus, a cryp-
tographic file system, groups files with similar sharing attributes as a file-group and associates
each file-group with a symmetric lockbox-key. Each file is encrypted using a unique file-block

key which is further encrypted with the lockbox-key of the file-group to which the file belongs.
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When the owner wants to share a file-group, he just delivers the corresponding lockbox-key to
users. The complexity of key management is proportional to the number of file-groups, since the
number of file-groups can be huge, Plutus is not suitable for fine-grained access control. SiRiUS,
a layer over an existing file system such as NF'S that provides end-to-end security, attaches each
file with a metadata file that contains the file’s access control list (ACL), each entry of which
is the encryption of the FEK using the public key of an authorized user. SiRiUS has the same

complexity in terms of each metadata file’s size and encryption overhead, thus is not scalable.

2.2.5 Scheme by Zhao et al.

Zhao et al. [33] propose a system for trusted data sharing over untrusted cloud providers.
First by encrypting the data before storing on the cloud. Second, on sharing the data, by re-
encrypting it without being decrypted first (the re-encrypted data will then be cryptographically
accessible to the authorized user only). This process does not reveal the clear data to the
cloud provider at any stage. The cloud storage provider helps to enforce the authorization
policy for data access, this enforcement should not reveal any information to the cloud storage
provider. In order to allow a piece of data to be encrypted multiple times and be decrypted in a
single operation, the authors propose a progressive encryption scheme based on Elliptic Curve

Cryptography: the Progressive Elliptic Curve Encryption (PECE).

The sharing scenario is as follows. Alice has a piece of data that is kept on the cloud and
wants to share it only with Bob. First, Alice encrypts her data with her private secret key and
keeps the data on a cloud storage provider. Second, Bob sends a request to Alice asking for
access permission to the data (sends his public key). Third, Alice sends a credential to the cloud
storage provider for the re-encryption of the data and sends a credential for Bob to decrypt the
re-encrypted data with his private key. Fourth, Bob acquires the re-encrypted data from the

cloud storage provider and decrypts it.

The algorithm and protocol proposed by the authors requires a large amount of computation.
This work assumes an active cloud storage provider able to re-encrypt data and send it to the

authorized users. It is not clear how public keys are distributed nor how revocation is performed.
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Figure 2.4: CloudSeal overview (by Xiong et al. [29]).

2.2.6 CloudSeal

CloudSeal [29] is an end-to-end solution for secure content storage and delivery via the public
cloud, it ensures content confidentiality and content forward and backward security. CloudSeal
is composed of a centralised storage service, a content delivery network (both provided by a
cloud provider), a content provider and end users as subscribers. The content provider provides
content to groups of subscribers using cloud based service from the cloud provider to store and
distribute content. A group of subscribers are able to access a set of encrypted content stored
in the cloud if the user successfully subscribes to the content provider (and can then decrypt

delivered content).

The content provider encrypts content locally and then publishes the encrypted content
to the public cloud-based storage. The content encryption performed is dual encryption with
symmetric encryption at the first level and proxy-based encryption at the second level. The dual
encryption enables CloudSeal to protect content confidentiality and uniquely bridge the proxy-
based encryption scheme [11] and the secret sharing scheme [27]. The content provider has a
public/private key pair (PK and SK). For each group of users the content provider randomly

chooses the initial uk, the shared secret key for a group.

When the content provider wants to publish some content to the public cloud, it performs
the dual encryption scheme as follows. First it encrypts the content M with a symmetric data

encryption key DEK and then it further encrypts the content with the secret key SK. The
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resulting encrypted content is stored in the cloud-based storage service by the application service.
After publishing, to allow content to be retrieved by subscribers, the content provider generates
a content re-encryption key rk with her secret key SK and the current decryption key uk.
Then the application service obtains the newest rk from the content provider and re-encrypts
the target encrypted content. After this the application server stores encrypted content in the
cloud storage service and allows downloads from subscribers. Once a user obtains the encrypted
content, the users decrypts the content with the current key uk. The key uk is obtained from

the content provider when the user joins a group or is computed by the user.

When a subscriber is revoked, it requires key revocation operations in the group based on
the k-out-of-n threshold secret sharing scheme. The content provider broadcasts this user’s
share of the secret key uk to the entire group so that the remaining users are able to generate
the new secret key uk’ autonomously. When a user joins a group, he has access to protected
content. To prevent new users from accessing content published before they join (for forward
secrecy), the key revocation process is required to be executed and the content provider issues
the shares of future secret keys as well as the current secret key so the new user can compute

the new secret key uk.

Similar security concerns in outsourcing data to untrusted cloud service have been discussed
by Yu et al. in [31] and discussed above. In their approach data is encrypted by a symmetric key
while the access to this symmetric key is controlled by KP-ABE algorithm. To manage dynamic
user groups, they delegate rekey operations to the cloud and let the cloud server update secret
keys of users and re-encrypt data without revealing the underlying plaintext. CloudSeal is
different, CloudSeal only allows a content provider to perform rekey operation and the proxy

re-encryption is performed directly on part of the encrypted content.

2.2.7 K2C

K2C, proposed by Zarandioon et al. [32], provides a secure and scalable access control pro-
tocol that supports easy sharing and revocation on hierarchically organized resources. Existing
solutions reduce re-encryptions required as part of access revocation by using the lazy revocation
technique. To support lazy revocation, cryptographic access control protocols need to use a key-
updating scheme which provides key regression. Key regression enables a user holding a new key

to derive an older key. However, these key-updating schemes are inefficient and not scalable as
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Figure 2.5: K2C Protocol (by Zarandioon et al. [29]).

they require complex data structures that need to be updated after each revocation. The authors
introduce a new key-updating scheme called AB-HKU which is scalable, supports access hier-
archies without requiring complex data structures and also enables support of lazy revocation
without requiring any code to be executed on the cloud. AB-HKU, attribute-based hierarchical
key-updating scheme, is a concrete construction for hierarchical key-updating (HKU) scheme.
AB-HKU is realized on top of the Key-Policy Attribute-Based Encryption scheme (KP-ABE),
used by Yu et al. in [31] (already discussed). K2C also introduces an attribute-based signature
scheme called AB-SIGN which enables the verifier to ensure that a signature is produced by a

user whose access policy is satisfiable by a set of attributes without learning the signer identity.

K2C runs between the root user, en-users and the cloud providers. The root user may be
a system administrator who can specify access privileges of end-users. End-users may further
delegate their access privileges to other users for easy sharing. Cloud providers in K2C are
composed of two repositories: Metadata Directory and Data Store. The Metadata Directory is
a cloud-based database such as Amazon SimpleDB! that provides all metadata associated with
hierarchies and data objects, each object in the Metadata Directory has two properties: read
access revision (RAR) and write access revision (WAR). The Data Store is a cloud key-value
based storage system such as Amazon S3 and contains the actual content of each data object
(the key is hierarchical path name of the data object and wvalue is the actual content of the
corresponding data object). Users keep a Key-store with all read/write access keys in their

secure local machine. As illustrated in Figure 2.5.

"https://aws.amazon.com/simpledb/
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The root user (system administrator) setups the K2C system. First signs up for the could
services required to host the Metadata Directory and Data Store. Then uses AB-HKU scheme
to generate public parameters and the master key and saves them in his Key-store. Next the
root user shares the public parameters with the cloud providers that support K2C request
authorization. Finally the root user defines the root directory by creating an entry in Metadata
Directory with RAR and WAR initialized to zero. K2C request authorization enables cloud
providers to block unauthorized requests based on the fact that each request is signed by user’s

access key for the target object using the AB-SIGN operation.

To write into a specific data object, a user needs to have the required write access key in
his local Key-store. Then the user queries Metadata Directory to get RAR of the target object.
The retrieved RAR and its path are encrypted using AB-HKU scheme and then signed with his
write access key using AB-SIGN scheme. Finally the user constructs a key-value pair, formed
by the path of the data object and the encrypted data (with the corresponding signature), and
send the pair to Data Store. Data Store validates the request signature by querying Metadata
Directory to get the WAR of the data object, if the signature is valid stores the data object.

To read a specific data object, a user needs to have the required read access key in his
local Key-store. Then the user requests the data object from Data Store. Data Store validates
the signature of the request and if valid sends the encrypted data to the user. Then the user
decrypts the data, using AB-HKU scheme and the read access key, and validates the signature,
using AB-SIGN scheme, to ensure that the data was produced by a user with proper write
access. K2C treats sharing as a delegation operation where a user can authorize another user
to a subset of his own access privileges. First the user needs defines the resource and access
type (read/write) he wants to give to another user and gets the matching access key from his
local Key-store. Then the user queries Metadata Directory to get the RAR/WAR for the target
resource. Finally the user uses AB-HKU scheme to generate the required access key and sends
it to the other user. To revoke a user’s access on a specific data object, a user needs to make a

request to Metadata Directory to increase the corresponding access revision number.

2.2.8 Discussion

The discussed single-cloud systems are not a solution for the problem related to this dis-

sertation. They all rely on cloud service providers with the ability to run code. Other systems
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Figure 2.6: DepSky architecture (by Bessani et al. [12]).

that focus on access control techniques, such as CloudSeal and K2C, seem to provide a system

that handles revocation more efficiently but the results prove otherwise.

2.3 Securing Multi-Cloud Storage Services

There are several works that provide a solution to better evaluate and manage free avail-
able store provided by different public clouds: aggregating different clouds in the same sys-
tem/application. This systems are mainly commercial and do not provide confidentiality or
when they do, they do not provide a way to transparently share files. In this section, existing

systems are evaluated in terms of functionality and security guarantees.

2.3.1 Cloud of Clouds (CoC)

DepSky [12], illustrated in Figure 2.6, is a virtual storage cloud system that addresses
the availability and the confidentiality of data stored using multiple cloud providers. Data is
stored by combining a Byzantine quorum system [20] protocols and information-efficient secret
sharing scheme (that combines symmetric encryption with a classical secret sharing scheme and

an optimal erasure code). DepSky is located in the clients’ machines as a software library to
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communicate with each storage cloud, so there are no code being executed in the clouds. The
DepSky library allows reading and writing operations with the storage clouds. Consequently,
the DepSky system model contains: readers, writers and cloud storage providers (where readers
and writers are the client’s tasks). To control which readers are able to access the data stored,

DepSky reuses the access control of the cloud provider itself.

The DepSky protocol guarantees availability because the data is stored by replicating it
on several providers. Data is partitioned in a set of blocks using an optimal erasure code, in
such a way that clients that have authorization to access the data will be granted access to
the shares of (at least) f + 1 different clouds and will be able to rebuild the original data. To
ensure confidentiality, the data is encrypted before being stored on the clouds. To do so without
requiring a key distribution mechanism, DepSky employs a secret sharing scheme: a special
party called dealer distributes a secret to n players, where each player gets only a share of this
secret; at leat f + 1 < n different shares are needed to recover the secret. This secret sharing
scheme is integrated on the replication protocol: each cloud provider receives just a share of the
secret, ensuring that no individual cloud will have access to the secret being stored. DepSky
prevents individual clouds from disclosing the data: encrypts the data, stores the encryption
key on the clouds without f faulty clouds being able to reconstruct it (using the secret sharing
scheme) and reduces the size of the data stored in each cloud (using erasure codes). DepSky

requires each client to have access to the same cloud providers.

2.3.2 Cloud Storage Aggregators

The systems discussed below aggregate all popular public clouds like GoogleDrive, Dropbox
and OneDrive. They all require read and write permissions over user’s files. Some provide a

sharing mechanism.

Odrive [5] provides a file system plugin, like any other directory. When linking a cloud storage
account to Odrive, the user gives read and write permissions on all user’s files stored in the
cloud, however Odrive does not store or see any user credentials (authentication is done against
the cloud’s API), the cloud authorization token is stored locally. Files of each linked account
are placed in a directory named after the corresponding cloud provider inside Odrive’s directory.

This system uses progressive sync to avoid the overhead of syncing and downloading tons of files
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the user does not need right away. Files and folders can be synced and unsynced as needed.

There is no sharing mechanism available.

CloudHQ [3] is similar to Odrive but is instead a web application that whenever a user stores
a new file in any of the linked clouds, replicates it to all other linked clouds. Also, no sharing

mechanism is provided.

ZeroPC [9] is a web/mobile application that requires users to register in the system and provides
a read only sharing mechanism between users. Similarly, CloudFuze [2] is an application that
also requires users to register in the system. CloudFuze provides three sharing mechanisms: by
creating a workspace with other users of CloudFuze, by sharing a file with another CloudFuze’s
user or by giving a link to a file to someone. The workspace serves to share files (stored in
any linked cloud) with a group of users only with read permissions. Sharing a file directly with
someone gives only read permissions to whom has the link, this link can be password protected,
have an expiry data and maximum download count. Sharing a file with another user can be
with read or write permissions, with write permissions the file is uploaded to CloudFuze servers

and then it is updated by CloudFuze directly in the owner’s cloud.

Podio, Otixo, and CloudKaf share the notion of a workspace to share files (with read only
permissions). Podio [7] is a collaborative web application that allows users to link their cloud
accounts so they can easily share file with other users. Otixo [6] is a web/mobile application
that also allows users to move files between different clouds without downloading them: the file
is instead cached to Otixo servers and deleted once the operation is completed. CloudKafé [4]

is a web application only with workspace type of sharing which they call baskets of files.

SME [8] is a virtual cloud file system that can encrypt files before uploading to the cloud
storage. Sharing of files can be done by workspace collaboration or via URL. Both cases are
read access only. When accessing a shared encrypted file, the user needs to enter a password.

No details are provided.

CloudFogger [1] is a desktop/mobile application that encrypts files with AES 256-bit where
each file has its own unique key. Unlike other systems discussed in this section, CloudFogger does
not aggregate clouds in itself, instead, uses local cloud applications of Dropbox, GoogleDrive

and OneDrive (when installed by the user). Each user is assigned with an asymmetric RSA key
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pair. To share a file with another user, the application encrypts the file’s AES key with the
other user’s public key and appends it as an header to the file. Access and privileges to the file
is done by the owner within the cloud. This kind of sharing mechanism is not convenient to the

user.

The systems discussed in this section only provide an aggregator of clouds and sometimes
a mechanism to share files with other users, however none provides a transparent file sharing

with write permissions.

2.4 Summary and Comparative Analysis

All the systems discussed along the present section are summarized in Table 2.1 to easily
correlate the properties of each work. The systems are compared in terms of confidentiality and

integrity of data and metadata, existence of a data sharing mechanism and key distribution.

When data to be shared among hosts with some access permissions defined by the system
administrator. This systems trust on the storage server(s) and the administrator(s), all players
are in a trusted domain. Once data is stored in a not so trusted domain, concerns arise regarding
data confidentiality. First appears CFS that encrypts directories but since it does not have a
key distribution mechanism, it does not allow sharing of data (unless the owner manually gives
the key to another player whom has access to the corresponding host). TCFS, EFS, SiRiUS,
Plutus and Cepheus emerged to guarantee both sharing and confidentiality of data.. TCFS
allows sharing of data within groups by creating a group-key that encrypts all file-keys of the
files belonging to that group, the group-key is distributed by a threshold. EFS allows sharing of
data by encrypting the file encryption key (FEK) with each public key of users that will have
access to the file, stored along with the encrypted file. SiRiUS is much like EFS but does not
rely on the underlying file system to access control permissions to files, uses read-write keys. On
revocation, TCFS, EFS and SiRiUS immediately re-encrypt all affected keys and files. Plutus

and Cepheus use lazy re-encryption on revocation to avoid some performance overhead.

Storage on distributed file systems started to be replaced with services offered by cloud
providers where data is stored on untrusted domains. BlueSky appeared as a solution to sub-
stitute local storage servers with a proxy that provides the illusion of a single traditional server

backing up data to the cloud. The authors do not provide any details about data sharing.
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SPORC achieves all security properties desirable for Storekeeper however relies on the cloud to
run code and trusts it to operate correctly (even though clients can detect a misbehaving server).
Teapot is an implementation of Depot that provides guarantees of consistency and availability
using multiple servers, it does not provide data confidentiality. This multiple servers are not the
same as multi cloud support, it simply uses multiple Amazon S3 servers. SPORC, like EFS and
SiRiUS, on revocation needs to perform re-encryptions as much times as the number of users
remaining with access to some file. CloudSeal and K2C, both based on previous works by Yu
et al. and Zhao et al, try to provide a fine-grained access control scheme that will not increase
in complexity as the system scales. The experimental results reveal that their solutions are not

as good as they seem. Also like SPORC they rely on clouds with the ability to run code.

With the existence of many public cloud’s storage, systems emerged to provide a central-
ized access to all different accounts. Odrive and CloudHQ only provide this centralized access
(CloudHQ also replicates files across the different accounts). ZeroPC, Podio, Otixo, CloudKafé
and SME also provide a way to share files in a read-only access. CloudFuze provides a share
with write access but the file is uploaded to CloudFuze’s server to allow someone else to modify
the file. No confidentiality of data is assured. SME provides confidentiality of data against the
cloud providers but not against SME servers. CloudFogger provides the same confidentiality as

SME but does not have innate support of data sharing and cloud storage.

DepSky is the most complete system: provides data confidentiality, keys are distributed
securely through the clouds (no need of other servers) and ensures integrity and availability of
data, however is not appropriate for transparent data sharing. Data access is done by the clouds

and all users in the system need to have accounts in all pre-defined cloud providers.

As comparison reference with the systems in Table 2.1, Storekeeper falls in the multi-cloud
category fully satisfying the properties of data sharing, data confidentiality, key distribution
and data integrity, and some metadata confidentiality. The next chapter describes how such

properties are achieved.
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Storekeeper

In this chapter, we present the design of Storekeeper, a security-enhanced cloud storage
aggregator. Firstly, we outline the goals and principles that guided the design of our system
(Section 3.1). Next, we make an overview of the system by presenting its high-level architec-
ture, describing its functionality, and clarifying our assumptions and threat model (Section 3.2).
Then, we focus on the specific design details of our system: file namespace (Section 3.3), manage-
ment of user identities and authentication (Section 3.4), consistency semantics of file operations
(Section 3.5), access permission model (Section 3.6), file operations (Section 3.7), and lastly

scalability and fault tolerance techniques (Section 3.8).

3.1 Design Goals and Design Principles

Our central goal is to design a system that can provide a secure cloud storage aggregation
service. A user should be able to register her cloud accounts in the service and have a unified
view of all her files irrespective of the specific account where files are actually located. A user
should also be allowed to share her files with other users of the service, and possibly revoke
access to previously shared files. The aggregation service should not demand for specific access
to the user’s cloud accounts and data confidentiality must be preserved. Note that, in this work,

we are not focusing on preserving the integrity or availability of files.

In designing such a service, we follow three main principles:

P1: Users are allowed to write only on their accounts. Normally, individual users of
cloud storage services tend to be frugal in terms of how they utilize the storage capacity
available in their accounts. This is because most users are restricted to a few gigabytes of
storage per account before they need to pay for extra storage space. To reflect this concern
when designing a multi-user cloud storage aggregator, we restrict users from writing data

on cloud-backed accounts that they do not own. By ensuring that each user can only store
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content in their own accounts, we prevent abuses from users willing to “highjack” the cloud
storage space owned by other users. This principle differs from Cloud of Clouds (CoC) in
which there is a common pool of shared cloud-backed accounts. Users freely contribute to
that pool knowing that the resulting combined storage space is shared and can be used
by any other user to store content. In contrast, in a cloud storage aggregator (CSA), the

cloud accounts of each user must be managed independently and isolated from each other.

P2: Users must have their files physically located on their accounts. Since in a
CSA system, cloud accounts must be managed independently per user, it is important to
ensure that users keep control of their files, even if they share it with others. Thus, by
constraining the location of files to reside in cloud accounts contributed by the owners of
such files, users retain the control of their files. In other words, their files will always be
located in their own accounts, in spite of sharing a file with a user and possibly revoking
access to that file in the future. In contrast, CoC aims to offer to their users complete file
location independence and let it be controlled. Location independence provides a good
abstraction for CoC because they were primarily designed to provide fault tolerance and
offer the illusion of a single cloud repository, whereas in CSA, it is necessary to preserve

independent storage domains for individual users.

P3: Users must not need to maintain persistent state at the client side. One of
the factors that make cloud storage services so convenient for users is that all persistent
state is stored online. All users need to remember to access their files is their username
and password. This feature makes these services very convenient for users and also more
robust to data loss or to security breaches than if the user was required, for example, to
manage private keys or other sensitive cryptographic material. Similarly, to preserve these
properties, a CSA system must take care not to require the user to maintain critical data
on the client side. CoC systems, on the other hand, were not designed with usability in
mind. For that reason, users are required to maintain cryptographic keys and provide for

their adequate distribution in order to allow for file sharing.

Together, these principles constitute guidelines to the design of Storekeeper: P1 and P2

ensure that aggregated cloud space is isolated between users, and P3 preserves usability.
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Figure 3.1: System overview.

3.2 System Overview

This section presents an overview of Storekeeper, a security-enhanced cloud storage aggrega-
tor that follows the design principles stated above. Storekeeper consists of two main components:
a client application and the Storekeeper Directory Server (SDS). The client is an application
that runs on the users’ devices and serves as an interface to the system. Similarly to the Dropbox
client application, the Storekeeper client maintains a local cache of the user files persistently
stored on cloud-backed stores. Stores represent cloud accounts hosted by cloud services such as
Dropbox or Google Drive and are contributed by the users. The SDS is the heart of Storekeeper.
This component runs on a dedicated server and manages the meta-data associated with users,

files, and stores. Files themselves are not stored in the SDS, but on stores provided by users.

Figure 3.1 illustrates the architecture of the system using a simple deployment scenario.
Consider that Alice and Bob are faculty that work in the same university. Their university
decided to deploy Storepeeker in order to allow its faculty to collaborate using their personal
cloud accounts. To enable this, the IT designated an administrator who is responsible for
installing the SDS on an internal server. Since Alice and Bob are two faculty members, the
administrator creates user accounts in the local Storekeeper deployment and sends them access

credentials (e.g., to their professional email accounts). Using these credentials—a username and
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password—Alice and Bob can log into the system and register any personal cloud accounts they
may have. In this case, Alice has two personal accounts in Dropbox and Bob has one account
in Google Drive. By adding these accounts to the system, Storekeeper will interpret them as
stores where files can be located and shared between users, Alice and Bob can have a unified
view of all their files. Alice will see an aggregation of all her files from accounts 1 and 2, and

Bob all files from account 1. This unified view that each user sees is named workspace.

Each user can then share files with each other, independently of whether or not they have
accounts on the same cloud provider. For example, Alice can share a file which is located in
Dropbox with Bob, who does not have any cloud in Dropbox. Storekeeper will provide that
the file will be mounted on Bob’s workspace. Depending on the permissions that Alice grants
to Bob, he will be able to read or write the file’s contents. At any point in the future, Alice
can revoke access permissions that were previously granted to Bob, point at which he will not
be allowed to access the file any longer. In all this process, Storekeeper ensures that Alice and
Bob can write only on their accounts (P1). If Bob edits a shared file owned by Alice, the file
updates performed by Bob are staged in one of Bob’s accounts and then transparently fetched
by Alice’s client and incorporated in Alice’s primary file version. We call this technique file
homing (see Section 3.7.4). Storekeeper also provides that each users files reside in their owner’s
accounts (P2) and that all critical data and meta-data is stored both in stores and in the SDS
so as to avoid burdening the user with state maintenance (P3). Files are encrypted at the client
endpoint. The SDS is not entrusted with credentials that allow for direct access to users’ cloud
accounts. Instead, access to cloud stores is performed at the client side only, ensuring that users

retain exclusive control of their accounts.

Storekeeper is designed to provide end-to-end data confidentiality. We consider cloud
providers and SDS administrators to be honest but curious. This means that both these parties
can passively listen to all exchanged messages and may try to learn information about users’
files, but follow the protocols and do not launch active attacks. We assume that cloud providers
and SDS administrators are not malicious, case in which they could actively attempt to extract
information, e.g., bengaging with the user using social engineering. Note that it is not the
focus of this work to preserve the integrity and availability of data. In particular, we do not
prevent intentional modification of data or meta-data by SDS or cloud providers. Our focus is

on confidentiality protection only. Nevertheless, we assume that the communication channels
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are insecure. They can be actively eavesdropped or manipulated by external malicious agents.

We do not mitigate side-channel attacks and assume that cryptographic algorithms are sound.

3.3 File Namespace

We now describe the design of Storekeeper in more detail starting with its file namespace.
In a cloud aggregator service like Storekeeper, it is necessary to define how the files physically
located on heterogeneous cloud-backed storage are exposed to the user under a common file
naming scheme. In addition, it is necessary to map such names to the identifiers that cloud
services use to uniquely identify user files. In doing so, we need to overcome low-level differences
in cloud service APIs regarding the way how files are identified. For instance, in Google Drive
REST API, files have names, but are uniquely identified by a long string ID internally generated
by the service. As a result, there can be two files in the same directory with the same name. In
Dropbox, however, files are uniquely identified by its absolute path which means that multiple
files reside in the same directory if they have identical names. Storekeeper must handle this

heterogeneity and provide users a consistent file naming semantics.

Another aspect that needs to be addressed when aggregating cloud accounts is how to handle
filename collisions. If files with the same name exist in two different stores, when such stores
are joined, it is necessary to avoid collisions. Similarly, if a user shares a file with another user,
care must be taken in order to avoid collision between the name of the newly shared file and
the name of files that previously exist in a user’s store. Lastly, it is possible for single users
to join multiple deployments of the Storekeeper system, managed by different organizations or
departments. Therefore, it is necessary to prevent name collisions between files with similar

names that are located in different Storekeeper accounts.

To illustrate how Storekeeper addresses these issues, we leverage the usage scenario intro-
duced in Section 3.2. Figure 3.2 represents (1) the aggregated files (workspace) that Alice and
Bob see mounted in their local devices, on the left, (2) the way these files are physically main-
tained on the cloud accounts (stored), on the right, and (3) how the file names in the workspace

are mapped to the file names in the users’ stores, represented by the arrows.

The first important aspect is the notion of domain name. Every deployment of Storekeeper is

given a unique name. This name is associated with the SDS server where the system is deployed
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Figure 3.2: File name mapping in Storekeeper.

and is determined by the SDS administrator. To make this name unique, the SDS administrator
may leverage the DNS name of the hosting organization. The domain name of this example is
sds.tecnico.ulisboa.pt. Its purpose is to avoid name collision between different Storekeeper
deployments while providing the user a complete view of all her files managed under Storekeeper.
Collusion avoidance is achieved by using the domain name to mount / create unique folders on
the workspace / stores of a given user. Aggregated files for each Storekeeper domain are then
placed in such folders according to their respective domain name (see Figure 3.2). Storekeeper
creates domain folders for each store. Each folder contains two directories: data and staging,

which contain all user’s data files and pending file updates, respectively (see Section 3.7.4).

To uniquely manage files in cloud-backed stores and overcome cloud API differences, file-
names are assigned a unique identifier which we call File ID (FID). This identifier is not exposed
to the user and is used internally by the Storekeeper client to fetch files from their respective
cloud stores. To access a file, the Storekeeper client uses a URL that is provided by each specific
cloud hosting service. In addition to FID, each file has a human-readable filename, which is the
name that will be shown to the user. This name will then be mapped to the corresponding FID.
If someone shares a file whose name matches the name of a file already present in the user’s
workspace, Storekeeper resolves this naming conflict by simply adding the prefix “shared-” to

the shared file. Since FIDs are globally unique, conflicts are not expected to occur.
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3.4 User Credentials

Storekeeper defines specific user credentials as a basis to overcome two challenges. The first
challenge involves user authentication when accessing cloud stores. In order to access a cloud
store s through the respective API, a typical third-party application (including the Storekeeper
client) needs to authenticate itself towards the cloud service by providing a specific credential
named access token (AT). Access tokens are provided by the cloud service to allow for secure
authentication without the need for the user to interactively input username and password. Since
the leakage of such tokens would allow for unrestricted access to users’ stores, Storekeeper needs
to maintain them securely. In particular, to prevent users from accessing accounts from each
other, access tokens must be strictly associated with their respective owner and read-protected
from the remaining users. Read protection must also cover the SDS server, otherwise a curious

SDS administrator can gain unrestricted access to users’ cloud accounts.

A second challenge is related with confidentiality protection of user files. In order to provide
end-to-end confidentiality covering both cloud providers and SDS, file must be encrypted at the
client side with a symmetric key — a file encryption key (K F') — before sending the file to a cloud
store. The natural approach to protect this key while assuring that the file owner alone can
access it is to use PKI: the user generates a public-key pair that represents a user key (KU) and
encrypts K F with the public key (KU™). By ensuring that the user’s private key (KU ™) remains
secret, access is restricted since only the user can decrypt the file encryption key using KU ™.
The problem with this approach, however, is that the user is burdened with the responsibility

to maintain the private key securely, which contradicts principle P3 (see Section 3.1).

Access tokens and user keys constitute Storekeeper’s user credentials. To provide secure
storage support for user credentials by encrypting access tokens and user keys with a symmetric
key — login key (K L) — which is a function of a username w and a password p: KL = h(ul|p),

where represents concatenation. The username corresponds to a domain-specific user iden-

L£| |77
tity (e.g., alice@sds.tecnico.ulisboa.pt) which is created at the Storekeeper server by the
SDS administrator. To use the system, the user must first sign up to the Storekeeper service
with the username assigned by the SDS administrator and provide a password. When read-
ing username and password from the user, the Storekeeper client calculates the login key KL,

generates a new user key KU, and encrypts the username u and private key KU~ with K L.

The resulting ciphertext {u, KU~} is sent to the SDS along with the user’s public key KU ™.
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Note that, to prevent disclosure of the user key, neither the login key nor the password are sent
to the SDS. Every time the user needs to recover the user key, it can download the ciphertext
from the SDS, generate the login key from his login credentials (username and password), and

decrypt the ciphertext, yielding the private part of KU.

Similarly, access tokens required to access each of the user accounts can be stored encrypted
in the SDS based on the login key. Whenever the user adds a new cloud store s to the service,
the Storekeeper client obtains the respective access token (ATy) directly from the cloud provider
and encrypts the token and username with the password-dependent symmetric key K L. The
resulting ciphertext {u, ATs} k1 can be safely provisioned to the SDS and recovered to the client
whenever the access token is required by the Storekeeper client to access each account. Note
that the access token is never sent in clear text to the SDS. Thus, the SDS can avoid burdening

the user with key management responsibilities by keeping user credentials encrypted:

u, {u, KU }kr, {u, ATso}kr, s {tt, ATsn } 1]

This tuple corresponds to: username u, encrypted user key, and list of encrypted access
tokens ATy, one for each store s (from 0 to n) that the user has registered in the server. Later

in this chapter, we explain how user keys and access tokens are used in Storekeeper.

3.5 Consistency Semantics

In systems such as Storekeeper, there can be multiple replicas of the same file located
both in cloud stores and in client-side caches. As opposed to systems such as Depsky [12]
and SCFS [13], which maintain multiple file replicas on the cloud for fault tolerance reasons,
Storekeeper is primarily focused on cloud storage aggregation and therefore maintains a single
file replica on the cloud. To enforce compliance with principle P2 (see Section 3.1), the primary
file replica is physically preserved in one of the cloud stores registered by the owner of the
file. We name home store the cloud store where a given file is located. As Storekeeper users
deploy local clients on their devices, the client application downloads copies of user files from the
files’ respective home stores into a local cache. As writes are performed to the local file copies,
potential inconsistencies may arise between local copies and the primary file version maintained

in the cloud, inconsistencies that Storekeeper must resolve.
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Many consistency schemes have been proposed in the literature targeting specific use cases.
In the context of multi-cloud services, systems such as SCFS [13] were designed to provide strong-
consistency guarantees. Strong consistency prevents conflicting modifications to file replicas and
it is suitable for usage scenarios where network connectivity is high, for instance within a same
company. However, cloud services such as Dropbox and GoogleDrive were designed to operate
under different assumptions. Although they benefit from a highly connected environment, typical
cloud storage services manage to operate well when devices are frequently disconnected from the
network. To support such scenarios, a local client application operates in disconnected mode in
which file copies are maintained in a local cache, local write operations are tracked, and when
devices reconnect, a reconciliation mechanism takes place in order to resolve any conflicting
writes to common files. This consistency model is broadly called eventual consistency in which
users are allowed to read or write local copies which are eventually delivered and reconciled in
the cloud. Given that eventual consistency favours file availability and is already familiar to

users, we opted to adopt eventual consistency in the design of Storekeeper.

To provide eventual consistency semantics in Storekeeper, each file has a wversion number
which is centrally managed by the SDS. The version number of a file starts in 1 and is incremented
whenever the file is updated to its home store, hence we refer to this version number as vy,
When a file copy is created into the user’s local cache, the Storekeeper client keeps a record
containing (1) the file’s local version number (v;), which corresponds to vy, at the time the file
was downloaded from the home store, and (2) a dirty flag, which tells whether or not the local
file copy has been modified by the user. If the user modifies the local file replica, the client
sets the dirty flag and places the file in a queue to be propagated to the SDS. This means that
file updates are not immediately forwarded to home store and external user caches; local copies
maintained by each client can be stale and may be need to be updated later. From a user’s
perspective, Storekeeper implements a read-your-own-writes semantics with respect to the local

replica. In other words, local writes performed by the user are visible by local reads.

Periodically, provided that there is connectivity to files’ home stores, the client contacts the
SDS in order to synchronize the local cache with home stores. Synchronization involves checking
both (1) if the local files are outdated (i.e., someone has updated the file) and (2) if the home
files are outdated (i.e., the local user has written the file). Checking for file outdates is achieved

by comparing the version numbers of local (v;) and remote copies (vy). If the dirty bit is clear,
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no changes were performed to the local replica. Thus it is only necessary to check if there is a
most recent version of the file in the cloud (v; < vp) and refresh the local cache. However, if the
dirty bit is set two situations can happen. If v; = v, then nobody else has submitted a new file
version to the home store. Therefore, the client can simply send the new file version and tell the
SDS to increment vy,. However, if v; < vy, a conflict has occurred since a concurrent write was
performed to the file. To resolve this conflict, the local copy is put in quarantine in a special
directory so that the user can perform manual reconciliation. This behavior is similar to what

users are accustomed to today in popular cloud storage services, namely Dropbox.

3.6 Access Permissions Model

Existing cloud storage services allow files to be shared between internal users: users that
have local accounts in the cloud service. The semantics of how file accesses can be performed is
normally defined by an access permission model which is specific to each service. For example,
Dropbox users can share files with other users and set access permissions. Read permissions are
permitted to individual files, but write permissions are not. Write permissions can be granted
only to the directories. Thus, to share a file with write-permission with another user, the
file owner needs to share the directory where the file is located. This entails granting to the
beneficiary user the privilege to create new files or read / write / delete any other files located in
that directory. Google Drive, on the other hand, provides a finer permission setting granularity.
It is possible to share individual files or directories in read-only or read-write modes. Read-write

permission includes the privilege to delete a file / directory.

However, cloud storage services implement different access permission restrictions for in-
ternal and for external users: external users do not have local accounts in the cloud service.
External users have access to files via URL and tend to have less privileges than internal users.
For example, in Dropbox and Google Drive, external users can access individual files or direc-
tories with read permissions only; writes are not allowed. Given that different services offer
different access permission semantics, Storekeeper needs to define an access permission model
that can accommodate this heterogeneity. Furthermore, to provide fine-grained sharing capabil-
ity, we require that users can set access permissions at the file level (similarly to Google Drive).

Since directories can be seen as a special files, we focus primarily on file access permissions.
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We design Storekeeper’s access permission model to satisfy these requirements. In Store-
keeper, every file has a file owner. The file owner has full access privileges over a file, which
include: reading the file, writing the file (i.e., modifying or deleting it), and setting / clear-
ing access permissions of the file. Modifying access permissions of a given file entail granting
or revoking access privileges to a given user — the grantee — depending on the specific access
permission that has been given to the user. A grantee can be given one out of three possible
access permissions: read (R), write (W), and share (S). Read permission allows the grantee to
read the content of a file. Write permission allows users to read the file, or modify / delete it.
Share permission accumulates the privileges of write permission with the ability to share the
file with other users. This means that a share permission grantee can set access permissions of
other users to that file. Note, however, that such a grantee can never restrict the privileges of
the file owner. The file owner retains full control of his files; at any time, a file owner is allowed

to revoke any privileges that have previously been given to some grantee.

ACLy : up, [(u1, R), (ug, W), (uz, S), ...)]

Above, we see the basic data structure responsible to support Storekeeper’s access permission
model: an Access Control List (ACL). For each file f, the SDS contains an ACL that identifies
the file owner (u,) and a list of descriptors containing the file permission (R, W, or S) granted to
each grantee (u;). An empty list means that the file is not shared; it is private to the file owner.
In the example above, users w1, ug, and ug have read (R), write (W), and share (S) permission,
respectively. File permissions are enforced by a combination of access control mechanisms at the
SDS and cryptographic protocols. Table 3.1 shows, on each row, the file operations supported
by Storekeeper and the respective authorization result yielded to a grantee based on his access
permissions (columns 2-4). File read operations are allowed under R, W, or S permissions.
Creating, updating, or deleting a file are permitted with W or S permissions. Changing file
permissions (chperm) is allowed with S permission only. Whenever file operation is performed
to Storekeeper, the SDS must always authorize the operation by checking the ACL against
the identity of the user who is performing the operation. Next sections explain how ACLs are

managed as we present the details or Storekeeper’s file access operations.
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Operation R W S

read yes 1o  no
create yes yes no
update yes yes no
delete yes yes 1o
chperm yes yes yes

Table 3.1: Storekeeper’s access control matrix.

3.7 File Operations

This section presents the algorithms responsible for the implementation of Storekeeper’s
file operations: create, read, update, delete, and chperm (see Section 3.6). We start our

description by presenting a basic algorithm and then revisit it to address emerging challenges.

3.7.1 A Basic Algorithm

To present the basic file operations algorithm, ignore for now file operations involved in
granting or revoking access permissions (chperm). Consider for now that we have two types of
operations: read and write. Write operations comprise: create, update, and delete. Consider
also the use case depicted in Figure 3.2 in which Alice and Bob are Storekeeper users in domain
sds.tecnico.ulisboa.pt and share file file3.doc. Assume that Alice is the owner of this file

and that Bob has W privileges (i.e., he can read and write the file).

We start by presenting a basic approach to allow Alice and Bob to read / write the file while
providing end-to-end data confidentiality. When Alice creates the file, the client application
running on her device takes care to generate a file encryption key (K F'), then (1) encrypt the
file with this key and upload it to the file’s home store, and (2) encrypt K'F' with the public
part of Alice’s user key (KU) and send it to the SDS (see Section 3.4). In order to read the
file in the future, all that Alice’s client needs to do is to download the encrypted file from the
home store, fetch the encrypted K F' from the SDS, and then use the private part of Alice’s user
key (KU)) to decrypt the file key KF and then decrypt the file with KF'. File updates can
be performed by re-encrypting the new file and uploading it onto the home store. File delete
can be implemented deleting the file from the home store and updating the SDS’s internal data
structures. Since both the file and the respective encryption file are encrypted and can be read

by Alice alone, neither the SDS nor the cloud provider can read the file contents.
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To allow Bob to read or write the file, all that needs to be done is to securely share the
file key K F with Bob, which can be done by encrypting it with the public part of Bob’s user
key (K Ug). When Alice, the owner of the file, grants W permissions to Bob, in addition to
updating the file’s ACL with W on the SDS, the SDS receives from Alice’s client the file access
credential {KF'} KU} When Bob requests access to this file, the SDS forwards this credential

to Bob’s client, allowing the file key K F' to be recovered and the file operation to carry on.

3.7.2 Permission Enforcement and Revocation

In Storekeeper, permission enforcement is based on a combination of access control checks
performed at the SDS and cryptographic protocols implemented both by the client. The rele-
vant data structures required in this process are maintained in the SDS. Considering the basic
scenario described in the section above, the relevant data structures that control access to file

f (file3.doc) can be represented by tuple P:
Py, : (alice, {KF}KUX)v [(bob, W, {KF}KU;;)]

Essentially, Py, implements an ACL (Section 3.6) in which Alice is the owner of the file,
and Bob has writing privileges to the file. In order that Alice and Bob can decrypt the key for
reading and re-encrypt it for writing, the file key KF' is encrypted with the public part of their
respective user keys (see Section 3.4). Py, is verified every time a user performs a file operation

to f; if the user does not have adequate permissions, the operation is refused by the SDS.

However, while this simple approach works properly for write and change permission opera-
tions, it does not properly handle reading privileges. In particular, this naif approach is insecure
when read permissions are revoked. When Bob reads the file for the first time (which he can
because he has W permission), in addition to obtaining the file’s key K F', Bob’s client retrieves
also the file URL, which points to the persistent location of the file in Alice’s cloud store. If Alice
decides to unshare the file with Bob and revoke his permissions, tuple Py, is updated so as to
exclude Bob from the ACL and the SDS will no longer authorize file operations on f performed
by Bob. However, if Bob retrieves the key KF and file URL from the local client, it is still

possible to continue accessing the file, circumventing the mechanisms implemented by the SDS.

A commonly used approach to handle revocation is to re-encrypt the file whenever the

revocation operation takes place. Triggered by the chperms operation, the idea is to generate
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a new file key KF’ and re-encrypt the file with KF’. To allow users with reading privileges to
continue reading the file, the ACL needs to be updated to include the encrypted KF’ key and

exclude Bob from the ACL, as represented in the revised tuple:
Py, : (alice, {KF/}KUX)v I

According to this tuple, which represents the ACL after revocation takes place, only Alice
— the file owner — can read the file. Although Bob can still retrieve the encrypted file from the
home store (using the file URL), he cannot retrieve the new key KF’ with which the file has
been encrypted. Therefore, Bob will not be able to read future versions of the file. The main
downside of this approach, however, is the performance overhead of re-encrypting the file and

encrypting new file key with public keys of authorized users as defined in the ACL.

To overcome this problem and implement efficient revocation without the need to reencrypt
the file, we employ three techniques, enumerated below. To illustrate each step, we show the
tuple state when both Alice and Bob belong to the readset (P}Q), Bob’s permissions were revoked

(P,), and Alice submits new update (Pf)). Their differences are underlined.

1. Readers have access to a read key only: Instead of granting readers direct access to
the file key K F', they are given access to an intermediate symmetric key that is shared
between all users that can read the file. This key —named read key (K R) —is then encrypted
with readers’ public key and added into the ACL. The read key is then responsible for
encrypting the file key K'F', which effectively encrypts the contents of the file.

P}, : {KF}kr, (alice, {KR} i+ ), [(bob, W, {KR} 1;+)]

2. Revocation generates a new read key: Every time revocation occurs, a new read key
KR’ is generated and the ACL updated such that the new read set has access to the new
read key. This means that KR’ must be encrypted with readers’ public keys and ACL

updated with this information.
P/IQ : {KF}LRU (alice, {@}KUX)? H

3. Writes generate new file key per write: Every time a writer submits a file update,

instead of encrypting the file with the file key KF of the previous file version, the writer
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generates a new file key K F”, encrypts the file with the new key, and replaces the encrypted
file key K F with the new encrypted file key K F’, which must be encrypted with the read

key in order to allow readers of the ACL to continue reading the file.
P AKF  cw, (alice, {K R} ),

Intuitively, with this method, revocation introduces a disruption such that readers in the
old read set will not be allowed to see future writes performed by the new read set. Therefore,
next time a write operation is performed the file key of a new file version will be encrypted with
a new readers key which is inaccessible to the revoked user. In summary, this is achieved by
adding an indirection key (the read key), re-encrypting this key upon revocation, and refreshing
the file key every time a file is updated. As a result we manage to revoke access to the file

without re-encrypting it.

3.7.3 Staging Space

The basic algorithm described in Section 3.7.1 ignores several issues. One first aspect that
must be covered is how a grantee can access a file from the file’s home store. To access file3.doc,
Bob (the grantee) requires not only the file key KF in order to decrypt or re-encrypt the file
content, but also some mechanism provided by the cloud provider where the file is stored that
allows Bob’s client to retrieve the encrypted file from Alice’s account. Handing over to Bob the
access credentials (AT') of the cloud store is out of the question since it would give Bob full
control of Alice’s account. An alternative is to provide an external URL. Cloud providers allow
a file to be accessed externally by non-users for read-only operations. The external party only
needs to obtain an URL to the file generated by the cloud provider. With such an URL Bob’s
client can fetch the encrypted file from Alice’s account. However, this mechanism does not allow
for Bob to upload a new re-encrypted file to Alice’s account. For example, if a file is homed in
a Dropbox store, it is possible to obtain an URL to externally fetch the file, which would serve

the needs of read operations, but that URL cannot be used to submit file updates.

As discussed in Section 3.6, Dropbox does not allow files to be externally shared with write
permissions (i.e., with a non-Dropbox user). Consequently, in order to allow Bob’s client to send
file updates to a Dropbox account owned by Alice, the access token of Alice’s Dropbox account

(Section 3.4) would have to be shared with Bob so Bob’s client could impersonate Alice and
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Figure 3.3: Example scenario to illustrate the use of the staging space. Read / write operations
are represented in dashed / solid lines. First, Alice client writes the file in her account (1). Then,
Bob fetches the file from the file’s home account using a read-only URL (2). Bob updates the
file and places the file temporarily in the staging space (3). Finally, Alice retrieves the updated
file version from Bob’s staging space using a read-only URL (4).

then send file updates.This opens up a new avenue for security vulnerabilities. For example, Bob
could simply view, fetch, delete or modify any files located on that account or write arbitrarily

large amounts of data to Alice’s account.

Our goal is to support interoperability between cloud stores of different cloud providers
such that files can be shared at a file-level granularity while following the principles stated
in Section 3.1, in particular P1 and P2 which preserve isolation between user accounts. To
implement this behavior, the key insight is to entirely prevent direct writes on other users’
stores. In other words, Bob’s client will be able to read Alice’s file directly based on a URL
to the file’s home store, but will be restricted to writing on Bob’s own cloud stores. Whenever
Bob has pending writes, rather than submitting the new file version to Alice’s account via
impersonating Alice, the new file version is temporarily placed in a reserved area which we
call staging space. Staging space is nothing but a dedicated folder in Bob’s cloud stores where
pending updates to foreign files can be staged (see Figure 3.2). To let Alice access the new file
version, Bob’s staged file is set to be readable and a corresponding URL given to Alice allows
for the file to be pulled from Bob’s account. Figure 3.3 illustrates these concepts for a simple
scenario. By implementing a remote-read local-write policy, staging ensures interoperability and

security.
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3.7.4 File Homing

With the introduction of file staging, a few negative side effects emerge. In this section, we

list these side effects and then describe a technique to counter them: file homing.

e Dangling pointers: By following principle P2 (see Section 3.1), a file is always expected
to be found on its respective home store. The SDS keeps track of a public read-only URL
that points to the (encrypted) file and makes this URL available to users with valid access
permissions to the file. However, with the introduction of staging the location of the latest
version of the file may change. For example, in the scenario depicted in Figure 3.3, after
Bob finished updating the file (step 3) the latest file version is found not in the file’s home
store, i.e., Alice account 2, but in Bob’s staging space. As a result, the URL stored in the
SDS becomes stale. If a user reads the file from the URL stored in the SDS an old file
version is returned. To prevent this behavior, when writing the file in the staging space,
Bob’s client also updates the SDS with the new URL location of the file. This URL is
read-only and points to the (encrypted) file copy located in Bob’s staging space, which
becomes the file’s staged store. However, if Bob removes his account from Storekeeper or
deletes the staged file directly from the cloud store, the current URL becomes invalid and

thus the file inaccessible. This is called a dangling pointer situation.

e Lost updates: There is a second consequence if Bob removes the cloud store where the
pending file is staged. In such an event, not only a dangling pointer situation occurs, but
also the updates that were performed by Bob will be lost because the file version that
contains such updates was stored in Bob’s staging space which is no longer available. We
say that file updates were lost. The amount of lost updates can be even more serious.
Suppose that a file is shared with more users, for example Claire and Dan. As these
users collaborate on the file and submit updates, the file’s latest version will be relocated
to their respective staging spaces. If one of Bob, Claire, or Dan leaves Storekeeper all
the cumulative updates will be lost. Only when Alice performs a write, updates will be

reconciled into the file’s primary version located in Alice’s cloud store.

e Free riding: File staging can also lead to situations where a user is unconsciously con-
tributing to increasing the capacity of someone else’s aggregate cloud space. For example,

suppose that the latest file version is hosted in Bob’s staged space. If Alice revokes Bob’s

51



permissions to access the file, Bob could no longer access the file but the file would still
be provisioned from Bob’s store space. As a result, part of Bob’s storage space would be
reserved for hosting someone else’s files (in this case Alice’s) without bringing benefits for
Bob since he no longer is co-editing the file and the file is taking up some of his precious

storage space in the cloud. Alice would then “free riding” on Bob’s storage space.

To overcome these negative side effects, Storekeeper uses a technique which essentially con-
sists of relocating the staged file copy back to the file’s home copy; we call this technique file
homing. In the example depicted in Figure 3.3 this is translated into (a) copying the most recent
file version (file3.doc’) stored in Bob’s staged space to the file’s home store, i.e., Alice account
2, and (b) updating the current file URL to point to the primary version stored in the home
store. Thus, if Bob’s cloud store becomes inaccessible, dangling pointers and lost updates will
be avoided. This is because the file has been relocated back to Alice’s store: the file’s primary
replica has been updated to the new version and the file URL updated to point to the file’s
primary replica. By the same reasoning, if Bob’s permissions are revoked, free riding is also

prevented because the file is now served from Alice’s storage space.

The challenge of implementing file homing is how to push the update file from the staged
store back to the home store. File homing should ideally be performed by the time Bob submits
his file update. The longer it takes to relocate the staged replica, the higher is the likelihood that
the staged store is subtracted from the system, resulting in dangling pointer and lost update.
However, keep in mind that the user responsible for producing the staged file version (Bob) has
no privileges to write on the file’s home store (Alice’s account): only Alice (i.e., the file owner)

is authorized to perform that operation.

File homing must then be carried out by the file owner (or by some party entrusted by
the file owner). To avoid increasing the complexity of the system with distributed notification
mechanisms or require the SDS to be entrusted with users’ credentials in order to access their
accounts, we opted to trigger file homing events at the client endpoint. In other words, Alice’s
client is responsible for checking whether or not the file is staged and relocate it if necessary.
To detect if file homing is required, the SDS maintains an additional flag — staging flag. If Bob
submits an update, in addition to updating the file version and the file URL in the SDS, the
staging flag is also set to 1. Whenever Alice’s client needs to check if the file is staged all it has

to do is check this flag. It then clears the flag to 0 after finishing the file homing operation.
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Given that file homing is not synchronous with Bob’s file update operation, chances are that
Alice’s client triggers file homing after Bob’s store has been removed from the system. As a
result, the file URL in SDS would be invalid (dangling pointer) and the submitted update lost.

To address this problem we take three complementary techniques:

e Increase frequency of file homing events at the client side so as to reduce the like-
lihood of such problems. To avoid consuming too many resources at the client, staging
checks are piggybacked in periodic interactions with the SDS that the client already per-

forms in two occasions: when refreshing the local cache, and when submitting writes.

e Have a fallback mechanism so that if the staged store becomes available the (stale)
home version is returned instead. Rather than maintaining a single file URL and version
number, the SDS will now maintain two pairs: home URL - home wversion number, and
staged URL - staged version number. The home pair refers to the primary copy saved in
the home store. The staged pair refers to the staged replica maintained in the stage space
of another user. When such user submits a write, the SDS updates the staged URL and
staged version number. To perform file homing, client of the file owner must copy the file
from the staged URL into the home store and set the home version number equal to the
stage version number. If the staged store is removed before file homing takes place and a
client tries to access the file on the staged URL, an error will be generated. The client then
triggers an healing process to fallback to the home version by simply clearing the staging
flag. Although this process does not entirely prevent lost updates, it limits the amount of

lost information to the updates that were performed since the last file homing event.

e Perform garbage collection to claim stale file replicas from users’ stores. As a result
of staging and file homing, such replicas will likely be left on staging directories, taking
up precious storage space. To claim such space, Storekeeper includes a simple garbage
collection mechanism which deletes stale file replicas from staging directories. Since only
the owner of a given cloud store has the permission to delete such files, garbage collection
must be triggered by a Storekeeper client acting on behalf of the cloud store’s owner.
Periodically, each client reads the list of files from the staging space and queries the SDS
to determine whether such files are pending to be homed or not. Files that are not in such

condition (i.e., staging bit is 0) are deleted from the staging directory.
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3.8 Scalability and Fault Tolerance

In this section, we make some brief considerations about the scalability and fault tolerance of
Storekeeper. Regarding the first of these two properties, a potential bottleneck to the scalability
of the system can be caused by Storekeeper of a centralized architecture that depends on the
SDS server. As a result, the throughput of the system in terms of number of requests served per
unit of time will be limited to what a single SDS server can deliver. Similarly, the maximum of
users, cloud stores, and files will be bound by the memory and disk available on the server to

store the meta-data associated with that information.

As for fault tolerance, the SDS constitutes the most critical component in the system. Since
the client endpoints store ephemeral data only and cloud providers make sure that the content
of cloud stores is durable, failures that affect the correct behavior of the SDS can affect the
availability of the service and durability of the data. To improve availability, it is possible to
deploy multiple SDS servers operating in master-slave configuration so that failure of one of
the servers can gracefully fallback to another server. To assure the durability of the meta-data
maintained persistently by the SDS (e.g., in the case of hardware failures), replication can be

implemented using RAID, backups, or both.

3.9 Summary

In this chapter we presented the design of Storekeeper. Storekeeper is a cloud storage ag-
gregated system that provides end-to-end confidentiality of files. It enables seamless integration
of multiple cloud storage accounts and sharing files between users. Among the several unique
aspects involved in the design of this system, we highlight three. First, as opposed to many
existing storage systems, Storekeeper avoids the need to fully re-encrypt user files whenever re-
vocation of read permissions occurs. This is achieved using standard cryptographic techniques.
Second, to ensure proper isolation between cloud user accounts, Storekeeper ensures that users
can only submit writes to their own cloud accounts. This is achieved by incorporating a staging
technique into the design of the system. Third, as a result of staging, it is necessary to provide
secure exchange of updates between different cloud accounts. Storekeeper enables such exchange

through file homing. The next chapter describes our implementation of this system.
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Implementation

This chapter presents the implementation of Storekeeper. An introductory section provides
an overview of the components of our system and a few basic implementation details (Sec-
tion 4.1). Then, in Section 4.2, we present more in-depth explanations about the main data
structures that constitute the core of the system state, and in Section 4.3 a description of the
protocols that implement the most relevant operations supported by Storekeeper, such as adding

cloud stores, reading files, writing files, setting up file permissions, etc.

4.1 Implementation Overview
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Figure 4.1: Storekeeper components.

Figure 4.1 represents the components of our Storekeeper implementation. The colored boxes
highlight the parts that are specific to the system: the Storekeeper Daemon (SD) and the
Storekeeper Directory Server (SDS). The SD is a standalone process running on the user’s device
and is responsible for the implementation of the client-side logic. Written in Java, the SD

implements, on the one hand, an API to a client tool that allows the user to issue management
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commands (e.g., add a new account, login to the service, etc.), and, on the other hand, a periodic
monitoring service that synchronizes the local workspace with the cloud-backed stores. Although
the current client tool provides a command line interface, the API provided by the SD allows

for future satellite applications that can provide more friendly user interfaces.

The SDS is also implemented in Java and receives commands from the SD. The commu-
nication between SD and SDS takes place over SSL. By using SSL, we ensure that the SDS is
properly authenticated, which is important for users to be certain that they connect to an au-
thentic Storekeeper domain provider. SSL also provides integrity- and confidentiality-protected
message exchage capability between SD and SDS. Once an SSL channel is established, SD and
SDS exchange protocol-specific commands encoded in JSON. At the SDS side, persistence of
meta-data is achieved by serializing it into local XML files. The SDS also provides an command

line interface that allows the local administrator to manage the users of the system.

As also shown in Figure 4.1, the SD interacts with the cloud stores where user files are
located. For this interaction, the SD uses specific libraries provided by cloud services in order
to facilitate access to their respective REST APIs. Currently, the SD supports integration with
two cloud services: Dropbox (API version 1) and Google Drive (API version 2). To support
additional cloud services, the SD is internally designed in a modular fashion, such that adding
support for a new cloud service can be done by developing a new module which in turn uses a

service-specific library that acts like a proxy to the service.

To perform cryptographic operations we used the Java library provided by the JCA frame-
work (Java Cryptography Architecture). Regarding symmetric encryption, we use AES cipher
and generate 256-bit symmetric encryption keys randomly. For asymmetric encryption, we
use 1024-bit RSA asymmetric keys randomly generated. SHA1 is used for hashing. Next, we

describe the internal data structures of our system.

4.2 Data Structures

In order to implement the design described in the previous chapter, it is necessary to main-
tain important internal state. Since the state on the client side is ephemeral (i.e., it can be fully
reconstructed from the SDS and user-provided authentication information) and the state main-

tained on the cloud stores is relatively straightforward (i.e., consists of encrypted files placed
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Figure 4.2: Data structures implemented by the SDS for a given Storekeeper domain.

in data and staged folders), we focus our attention primarily on the state maintained by the
SDS. To manage this state, the SDS must not only represent this meta-data information, but
represent in a way that facilitates efficient processing of user requests. Figure 4.2 represents the

data structures of SDS, designed to serve both these purposes. We briefly describe them:

User Descriptor Table (UDT): Contains information about the users registered in
the system. Individual user information is stored in the User Descriptor data structure.
Implementation-wise, the UDT is implemented as a hash-map keyed by the user ID to speedup

user information lookup, which is required in all methods of the SDS service.

User Descriptor (UD): Keeps track of relevant information about a given user, namely:
the user ID, authentication info, list of user’s cloud stores, and list of workspace files. The
user ID (u) consists of a fully qualified name that includes the username appended with the
Storekeeper domain name (e.g., alice@sds.tecnico.ulisboa.pt). The authentication info
field (auth) corresponds to the private user key (KU ™) encrypted with the login key (KL), i.e.,
{u, KU~ } k1 (see Section 3.4). The list of cloud stores points to data structures that contain
information about the cloud stores to be aggregated by the system for that given user. Lastly,
the list of workspace files contain information about the files mounted on the user’s workspace

for that particular Storekeeper domain (e.g., sds.tecnico.ulisboa.pt).

Cloud Store Record (CSR): This data structure contains information about a given cloud

store. It includes an account ID (which is used for internal reference), the type, and the service
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settings. The type field indicates the identity of the cloud service where this store is hosted,
e.g., Dropbox, Google Drive, etc. The service settings fields is interpreted according to the type
of service. It contains the pieces of information that are required to access the cloud store,
in particular its access tokens. Note that, as explained in Section 3.4, access tokens (AT are

encrypted with the login key (K'L), e.g., {alice@sds.tecnico.ulisboa.pt, AT licc@dropbox | KL-

Workspace File Record (WFR): Contains information about a file that is mounted on the
workspace. It includes the file ID (FID), a pointer to the cloud account where the file is hosted
(i.e., the home store), and service-specific meta-data about the file. Essentially, the WFR is just
a wrapper to the File Record data structure that contains the details of the file. The goal of
this data structure is only to increase the efficiency of returning the list of files in the workspace

for a particular user.

File Record Table (FRT): Contains detailed information about all the files that have been
aggregated by the SDS for that particular Storekeeper domain. It is optimized to be searched

based on the file ID. Information about each individual file is contained in a File Record.

File Record (FR): This data structure contains relevant meta-data about a given file, namely:
the file ID (FID), the file name (as shown to the user in the workspace), an ACL, the home
URL, the home version, the staged URL, the staged version, staging bit, a hash of the file, and
the encrypted read key. The semantics of these fields has been covered previously: Section 3.3
covers the FID and file name, Section 3.7.4 discusses fields home URL, home version, staged

URL, staged version, and staging bit, and Section 3.7.2 focuses on ACL and encrypted read key.

4.3 Protocols

This section presents the protocols responsible for the implementation of Storekeeper op-
erations and the role that these data structures play in such protocols. First, we describe the
procedure involved in the initialization of the system. Then, we focus on the protocols triggered

by the most important file operations issued by clients: read, write, delete, share, and revoke.
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4.3.1 System Initialization

The initialization of the system involves the execution of a set of procedures by both the
SDS administrator and clients. From the perspective of the SDS administrator, to bootstrap
the system it is necessary to perform a sequence of steps: (1) install the SDS software on a
server, (2) define a Storekeeper domain name for the service (e.g., sds.tecnico.ulisboa.pt),
(3) generate an SSL certificate to enable server authentication in the communication between
the SD and the SDS, and (4) register new usernames in the service (e.g., alice and bob), which
will update the UDT with new UD data structures, one per added user. At this point the service
becomes available for use. Clients can then start using the system. Their typical operations are

listed next:

1. Client software installation: Install the SD daemon on the device on which the Store-

keeper workspace will be mounted.

2. User sign-up: Using the username defined by the SDS administrator, the user signs up
for the first time and defines his password. Based on the username and password, the
client generates a 256-bit AES key using Hmac-SHA1. This key constitutes the login key
K L. The client also generates the user key, an RSA 1024 bit keypair. Based on both the
login key and the user key, the client generates the encrypted user key blob which will be
assigned to the auth field of the user’s UD data structure. In the blob generation, the

password is hashed with Blowfish block cipher.

3. User login: The user can now log into the system by providing username and password.
Based on these credentials the client re-generates the login key. Then retrieves the auth
field from the SDS and decrypts it with the login key, yielding the private part of the user

key, which will be maintained in memory by the client for future use.

4. Add a cloud store: The user can now add a new cloud store to his Storekeeper account.
The user selects the type of cloud (e.g., Dropbox or Google Drive), is redirected to a
browser to insert her user credentials on the cloud service’s web site, so that Storekeeper
client can access the account. The SD then obtains the access token (AT') for that account
and additional information that identifies that account (e.g., the associated email address),
and submits this information to the SDS, which creates a new CSR data structure for this

account. Note that AT is encrypted with the login key before being sent to the SDS.
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Once the user has added a cloud store to the system, it is possible to perform file management
operations. Next, we describe the protocols that implement the most relevant operations: read,
write, delete, share, and revoke. (Note that, share and revoke are in practice implemented by

the same user command chperms, and create is also implemented by the write operation.)

4.3.2 Read Protocol

The read protocol is triggered periodically by the Storekeeper Daemon. Its function is to
update a local file copy with the most recent version available on the cloud. The major steps

that are performed by this protocol are:

[a—

. Verify permissions: Check if the user has read permissions by consulting the ACL field

of the file’s FR data structure. Abort if does not have read permission.

2. Test if staged: Check check if the file is staged. If not, before proceed, activate the file

homing event, then proceed.

3. Check existence: See if a file copy already exists in the local cache. If not, download

the file, decrypt it with the respective readers key, and finish, otherwise proceed.

4. Test freshness: Check if the local file version is lower than the home version number. If

not, then the local file is recent, otherwise, download and decrypt the new file version.

4.3.3 Write Protocol

Just like the read protocol, the write protocol is also triggered periodically by the SD in

order to send local updates to cloud-backed stored. The write operation performs the steps:

1. Encrypt file: Generate a new file key and encrypt the file using that file key.

2. Create file if needed: If the file does not exist yet, the user is the file owner. Thus,
create a FR data structure for it on the file record table, assign the file to a cloud store,
upload the file to the cloud store, and finish. (This is possible because the file owner has

the access token to the cloud store.) If the file exists, proceed.
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3. Verify and resolve conflicts: Check for writing conflicts in the file. If conflicts exist,

them the file must be put into quarantine and the operation aborted. Otherwise, proceed.

4. Write as grantee: Check if the user is owner or a grantee. If grantee, it is necessary to
check the write permissions. If the user does not have write permissions, the operation is
aborted, otherwise proceed by writing the file in a staging directory, update the SDS data

structures, and conclude. If the user is owner, proceed.

5. Write as owner: If owner, upload the file to the file’s home store, and update the SDS

data structures accordingly. Done.

4.3.4 Delete Protocol

The delete protocol is triggered by the SD whenever it detects that a file was deleted from

the local cache. The steps executed are:

1. Check permissions: The owner can proceed, otherwise it is necessary to guarantee that

the user has writing privileges. If not, the operation is aborted.

2. File is staged: If the user is not the owner and the file is locally staged, the staged
version is set to -1 so as to tell that the file must be deleted. When file homing occurs,
-1 tells the owner’s client to delete the file from the home store and update the SDS data

structures accordingly.

3. User is owner: If the user is the owner, the client simply deletes the file from the home
store and updates the SDS data structures accordingly. This is performed no matter

whether the file is staged or not.

4.3.5 Share Protocol

The share protocol is very simple. Omitting some steps that are common to the previous
protocols, namely triggering the file homing procedure, the steps executed by this protocol are:
1. Obtain grantee key: Download the public part of the user key owned by the grantee.

2. Encrypt reader key: Encrypt the reader key with the public part of the user key.
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3. Update the ACL: Send the resulting key and the permission to be assigned (R, W, or
S) to the respective ACL in the SDS.

4.3.6 Revoke Protocol

Just like the share protocol, after triggering the file homing procedure, the revoke protocol

performs a simple sequence of steps:

1. Generate reader key: Generate a new reader key that will replace the current one.

2. Reencrypt the reader key: For each user in the new reader set (which excludes the

revoked user), re-encrypt the new reader key with the public part of the reader’s user key.

3. Update the ACL: Remove the entry of the ACL corresponding to the revoked user and

send the new encrypted reader keys to the SDS.

4.4 Summary

In this chapter, we have been enlightened about the implementation details of Storekeeper.
The current implementation was built in Java and supports the aggregation of popular cloud
services, namely Dropbox and Google Drive. The internal architecture of our system is modular,
enabling future extensions to provide support for additional cloud services. As far as the internals
of the system is concerned, we have covered both its data structures and protocols. Given
that the SDS performs a central role in maintaining the meta-data of the systems, we focused
primarily in the SDS data structures, which were conceived not only to maintain all necessary
information for SDS’s proper function but also to ensure efficient operation of the SDS. These
data structures are accessed and manipulated in the course of the execution of a set of protocols
implemented between clients and SDS as triggered by user operations, such as read, write, share,

etc. In the next chapter we present an experimental evaluation of our system.
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Evaluation

This chapter introduces the experimental evaluation made to Storekeeper which tries to
answer one main question: What is the additional performance cost in using our system over
storage clouds operations. The answer to such question is obtained by quantifying the impact
over the single use of storage clouds. Section 5.2 presents an overview on Storekeeper’s overall
performance regarding each supported operation, the performance of each operation is then
detailed in the following sections. In the end of this chapter there is a summary of the evaluation,

but first the experimental platform and used methodology are described.

5.1 Methodology

The evaluation of Storekeeper focuses on latency measurements that were obtained running
several micro-benchmarks. Micro-benchmarks differ from benchmarks: this evaluation was not
done by running a number of standard tests and trial against it, it was done by comparing this
system’s performance against the performance of cloud providers’ API. Each micro-benchmark
measures an operation provided by the Storekeeper API, such operations are sharing, access
revocation, write, read and delete. The operations of Storekeeper API have different parameters
of which their performance depend, as file size, cloud storage type and number of users. The
file size parameter was used with different data unit sizes of 1KB, 10KB, 100KB, 1MB, 10MB
and 100MB to be similar to the common file sizes found in cloud storages. The cloud storage
parameter was filled with two different types, Google Drive and Dropbox, and the number of
users parameter varied between 1 and 100 users. The time to take measurements was verified

and is negligible.

The micro-benchmarks were executed individually for 100 times and the obtained results
were analyzed with its mean time and correspondent standard deviation. All experiments have

been performed using a 1-core Intel Xeon Family 2.5 GHz machine with 1GiB memory and 8
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Figure 5.1: Lowest latency per operation and corresponding standard deviation.

GiB SSD, running Ubuntu Server 14.04 LTS. For all experiments the SDS was deployed in the
same machine as the micro-benchmark. These experiments took place during 1 month but the

values reported correspond to measurements done between September 15 and 20, 2015.

5.2 Overall Performance

In order to understand the performance of Storekeeper, the minimum possible latency for
each operation is shown in Figure 5.1, varying between 0,17 and 1,51 seconds. The minimum
possible latency corresponds to the value where the operation performs better regarding defined
parameters. As stated in the previous section, the operations of Storekeeper API have different
parameters and, according to that, their latency varies. Regarding the parameters impact on a
operation’s latency, an operation can be constant or variable. The operations with the lowest
minimum latencies are the share and revoke operations, both with 0,17 seconds of latency,
followed by the read operation with a latency of 0,55 seconds and the delete operation with 0,93
seconds. Lastly is the write operation with a latency of 1,51 seconds, which is the one with the
highest minimum latency. The share operation is the only with constant latency because its
parameters do not effect the operation’s latency as detailed in Section 5.3, however the latency
of the revoke operation is variable according to the number of users that remain in the file’s
ACL when revoking access to one user. In a situation where a file is shared with 100 users, the
revoke latency increases only 83% in comparison to the represented latency that corresponds to

a file that is available only to its owner (meaning a ACL of 1 user), this evolution is detailed
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in Section 5.4. The latency of the remaining operations of read, write and delete depend on
two parameters, file size and cloud storage type. For the three, the minimum latency values are
achieved with a file of 1IKB. The read and delete operations achieve the minimum latency along
with GoogleDrive cloud storage, discussed in detail in Sections 5.5 and 5.7 respectively. And
finally, the operation with the highest minimum latency achieves its minimum latency while
performing a write-create with Dropbox cloud storage. The write specifics are evaluated in

detail at Section 5.6.

5.3 Performance of Share Operation

“Get the read key from SDS

35% 33%

“ Get the user's public key from SDS

Decipher read key

/ ' “Cipher read key with user's public key
o%j -
1% Add user to file's ACL on SDS

Figure 5.2: Percentage of time spent in each step to execute a share operation.

In order to fulfill a share operation, there are five steps to be performed. In a situation where
Bob wants to share a file with Alice: (1) get the file’s read-key from SDS, (2) get Alice’s public
key from the SDS, (3) decipher that read-key with Bob’s private key, (4) cipher that read-key
with Alice’s public key, and (5) add Alice to the file’s ACL on SDS. Such steps are represented
in Figure 5.2 with the relative time spent in each step. This operation shares a file with one user
at a time and it involves only metadata, so the latency depends solely on network throughput
to the SDS and SDS processing times. Based on the results presented in the figure, several
points can be highlighted. First, only 1,2% of the whole execution is spent on cryptographic
operations. This is explained by the fact that the symmetric decipher deciphers only 256 bits
of content and the asymmetric cipher ciphers the same content (content is a 256-bit AES key),
coupled with the fact that the crypto library is cached on system initialization. Second, the

remaining 98,8% of execution time are spent on lookups to the SDS. Such lookups are to obtain
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the file’s read key, then to get the public key of the user who will get the file and finally to add
that user to the file’s ACL.

Steps Values
Get the file’s read-key from SDS 569 + 74
Get the user’s public key from SDS 528 + 7,2
Decipher file’s read-key 1.3 +0,6
Cipher file’s read-key with user’s public key 0,8 +£1,1
Add user to file’s ACL on SDS 60,8 + 17,1
Total | 172,8 =+ 27,1

Table 5.1: Average time (in milliseconds) spent in each step to perform a share operation, by
order of execution.

Complementing the discussed figure, in Table 5.1 is presented the absolute time values
by which were inferred the percentages for the figure. Based on the values in the table, it is
confirmed that the share operation is a constant operation, as stated in Section 5.2, that does

not depend on parameters such as file size or cloud storage type, and costs less than 0,2 seconds.

5.4 Performance of Revoke Operation

Steps Values %
Get file-key and file’s read-key from SDS 41,8 +£0,6 | 24,9
Remove user from file’s ACL on SDS 421 +£0,7| 251
Get users’ public keys on file’s ACL from SDS 416 =+ 0,5 24.8
Decipher file’s read-key 1,2 +04 0,7
Decipher file-key 0,1 =+0,3 0,1
Create new read-key 0,1 +0,3 0,1
Cipher file-key with new read-key 0,3 +0,5 0,2
Cipher new read-key with each public key 0,2 £04 0,1
Update file’s ACL on SDS 40,6 £08 | 24,1

Total | 167,9 + 2,2 | 100,0

Table 5.2: Execution times in milliseconds of a revoke operation that results in a ACL with 1
user.

As stated before in Section 5.2, the minimum latency of the revoke operation happens when
the file’s ACL stays with only one user upon revoking one other user. To fulfill this operation
eight steps have to be performed: (1) get file’s file-key and read-key from SDS, (2) remove user
from file’s ACL on SDS, (3) get the public keys of all users that remain in the ACL from SDS,
(4) decipher the read-key, (5) then decipher the file-key with the read-key, (6) create a new
read-key, (7) cipher the file-key with the new read-key, (8) cipher the new read-key for with the
previously retrieved public keys, (9) update the file’s read-key field and ACL on SDS. Such steps
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Figure 5.3: Evolution of revoke operation’s latency with increasing ACL size.

are detailed in Table 5.2 along with the absolute and relative times per step when the file’s ACL
has one user. Based on the results present in the table, the main bulk of time is spent with
SDS lookups, as it was discussed previously for the share operation. The three SDS lookups
take 98,9% of the total time. In this execution there are four cryptographic operations, twice as

much as on the share operation, and still such operations are close to negligible.

Upon revoking one user, the remaining number of users in a file’s ACL can have any value,
since the file can be shared with a number of users. Different micro-benchmarks were executed
to study the performance’s evolution on the revoke operation with an ACL up to 100 users.
The results of this experiment are present in Figure 5.3 with the latency’s evolution for different
ACL sizes, from 1 to 100 remaining users. In this figure one can spot two table lands where the
latency is more or less constant that result in two discontinuities, one around 60 and 65 users

and the other around 95 and 100 users.

Looking in detail to the experiments, the discussed discontinuities occur precisely between
63 and 64 users and then between 99 and 100 users. In Table 5.3 is detailed the execution times
per step on those discontinuities to understand what caused them. Starting with discontinuity 1,
based on the values there is a difference of 40 milliseconds between ACL’s size, that corresponds
to an increase of 23%. This increase is caused by the third step of obtaining the public keys
of all users that remain in the ACL from SDS, such step increases 93% varying from 41,9 to
81 milliseconds. The increase in the third step appears to be due the add of one more public

key in the SDS’s response that forces the SSL socket to perform another round-trip to the SDS.
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Together with the results from Table 5.2, the first table land represents a very small spread
of 4%. Looking at discontinuity 2, based on the values there is a difference of 64 milliseconds
between the ACLs of 99 and 100 users, which corresponds to an increase of 26%. This increase
results of two points, first by an increase of 119% while ciphering the new read-key with each
retrieved public key, and second by an increase of 37% in sending the new read-key and updated

ACL to the SDS. The second table land represents a spread of 13%, bigger than the first table

land.
Discontinuity 1 Discontinuity 2

Steps ACL=63 | ACL=64 | ACL=199 | ACL =100
Get file-key and file’s read-key from SDS 41,6 41,4 43,3 49,9
Remove user from file’s ACL on SDS 42,7 42,7 48,0 53,5
Get users’ public keys on file’s ACL from SDS 41,9 81,0 78,9 82,4
Decipher file’s read-key 1,1 1,0 1,2 2,2
Decipher file-key 0,0 0,0 0,1 1,0
Create new read-key 0,1 0,0 0,0 0,0
Cipher file-key with new read-key 0,0 0,1 0,0 0,3
Cipher new read-key with each public key 6,1 6,0 23,9 52,3
Update file’s ACL on SDS 41,9 42,8 47,8 65,6

Total 175,4 215,0 243,2 307,2

Table 5.3: Performance discontinuities of the revoke operation. Detailed execution times per
step, in milliseconds. Discontinuity 1 occurs between ACLs with 63 and 64 users and disconti-
nuity 2 occurs between ACLs with 99 and 100 users.

According to the discussed results, the main bulk of time of the operation is on SDS accesses,
similarly to the share operation. However it varies with the number of users remaining in the
file’s ACL, which results in increased latency when getting the public keys of all remaining
users for more than 63 and when ”re-ciphering” the read-key for more than 99 users. The "re-
ciphering” step singularly increases from 0,2 milliseconds with 1 user to 52,3 milliseconds with
100 users, although this is an abysmal rise by percentage, it is not a bottleneck over the whole

operation, unlike similar systems of the related work.

5.5 Performance of Read

The latency of the read operation has two variables, the size of the file and the cloud storage
type. As stated before in Section 5.2 the minimum latency for this operation happens with a
file of 1KB stored in Google Drive. To fulfill the operation five steps are performed: (1) get
file’s metadata from SDS, (2) decipher file’s read-key, (3) decipher file-key with the deciphered
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Figure 5.4: Time spent per step while reading different file sizes stored in GoogleDrive.

read-key, (4) download the file, and (5) decipher the file. These steps are represented in Figure
5.4, following the minimum latency case for increasing file sizes. Note that files greater than
25MB cannot be directly read from Google Drive using the interface herein considered. As such,
these are herein not depicted. Solely based in the figure one can infer three points. First, that
there are three steps that are constant independently of file size: the SDS lookup and the key
decipherings (one asymmetric and other symmetric). For all file sizes, these three steps take
50 milliseconds but its weight decreases with increasing file sizes, for a 1KB file it represents
9% and for a 10MB file it represents 2% of the whole operation. Second, the latency of the
file deciphering step increases with increasing file sizes and does not depend on cloud storage
type. Deciphering a 1KB file takes 0,3 milliseconds, while deciphering a 10MB file takes 67,8
milliseconds and on the whole operation this has a slowly increased weight, for a 1KB file it
represents 0,1% and for a 10MB file it represents 2,7% of the whole operation. And third, the
main bulk of time is spent downloading the file which increases with increasing file sizes and its
latency depends on the cloud storage type. For the illustrated case that corresponds to a Google
Drive cloud storage type, the latency to download a file starts at 0,50 seconds for a 1KB file,
then stabilizes for 10KB and 100KB files very closely between 0,85 and 0,90 seconds, afterwards
increases for 1,2 seconds on 1MB file and at last takes 2,4 seconds to download a 10MB file.
With such latency values it is sure that the cost per MB becomes more efficient as file’s size

increase.

The discussed case represents reads when a file is stored on a Google Drive cloud storage.
When switching the cloud storage to Dropbox, 4 out of 5 steps keep the same latency values

exactly since those do not depend on the cloud storage, only the download step might change
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Figure 5.5: Reading comparison between cloud storage types.

its latency. The same experiments were performed for Dropbox cloud storage type and are
compared with Google Drive in Figure 5.5. From the smallest data unit size, with Dropbox
the latency of the operation is bigger than with Google Drive, as seen in the figure where the
difference between each pair of columns represent how much more costly it is to use Dropbox
over GoogleDrive. The whole operation takes 170% more time when reading a 1KB file from
Dropbox than GoogleDrive, then 68% more time for a 10KB file and 112% for a 100KB file, this
difference between reading 10KB and 100KB files is explained by the stabilization on Google
Drive that is not accompanied by Dropbox which keeps increasing its latency, this is justified by
the fact that for a 1MB file it takes 119% more over GoogleDrive. And finally Dropbox starts to
get closer with GoogleDrive when reading a 10MB file that takes 52% more time for Dropbox.
Regardless of the storage cloud type, in comparison to the previously discussed operations,
accesses to the SDS is no longer the main bulk of the latency of the operation and represents a

very small percentage almost negligable.

5.6 Performance of Write

Such as the read operation, the latency of the write operation also has the same two variables,
the size of the file and the cloud storage type. Moreover, the write operation is divided into
create file and update file. As stated before in Section 5.2 the minimum possible latency for the
write operation corresponds to the creation of a 1KB file stored in GoogleDrive. To fulfill the
operation, seven steps are performed: (1) get cloud credentials from SDS, (2) create file-key and
read-key, cipher file-key with read-key, (3) cipher read-key with user’s public-key, (4) cipher file
with file-key, (5) connect to cloud, (6) write file to cloud, and (7) add new file entry on SDS.
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These steps are represented in Figure 5.6, following the minimum latency case for increasing file
sizes. Based in the figure there are three highlights. First, such as the read operation, that there
are steps which are constant independently of file size: two SDS accesses, two key ciphers and
connecting to the cloud. Such steps take on average 0,47 seconds for all file sizes, where 26,8%
corresponds to SDS accesses, 0,2% for the key cipherings and 73% to the cloud connection. Since
it is constant, the weight of such steps decreases with increasing file sizes. Second, the latency
of file ciphering increases with increasing file size and does not depend on cloud storage type.
Ciphering a 1KB file takes 1,3 milliseconds, while ciphering a 100MB file takes 680 milliseconds
and on the whole operation this has an increased weight, for a 1KB file it represents 0,1% and for
a 100MB file it represents 11% of the whole operation. Comparing with file deciphering latencies
presented on the read operation, deciphering takes twice the time of ciphering. And third, the
main bulk of time is spent on file writing to the cloud which increases with increasing file size
and its latency depends on the cloud storage type. For the illustrated case that corresponds to
a Google Drive cloud storage type, the latency to upload a file is stable for files until 100KB for
around 1,1 seconds, then increases for 1,2 seconds on a 1MB file and 1,4 seconds for a 10MB
file, at last it takes about four times more for a 100MB file with 4,8 seconds. With such latency

values, the cost per MB becomes more efficient as file’s size increase.

The discussed case represents a file creation, in addition to creating files, there is updating

files which is pretty much the same as creating files, except that there is one more step in the
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Figure 5.7: Performance comparison between file creation and file update for different file sizes,
using GoogleDrive.

protocol which predates all steps of create. To accomplish an update operation there is one
more access to the SDS for lookup the file’s metadata to obtain the file’s read-key and the most
recent version number. Figure 5.7 presents a side-by-side comparison between the operations of
create and update with increasing file sizes, writing in GoogleDrive. For example, a file of 1MB
takes 1,8 seconds to create while it takes 1,9 seconds to update, the difference between them

correspond to the additional step required for the update operation.

Either for create or update operations, the latency of their steps do not vary in regards of
which cloud storage type the file is being written, except for the steps of cloud connection and
cloud writing. When switching cloud storage type, only such points might change its latency.
The last two figures discussed represent experiments writing on Google Drive cloud storage, the
same experiments were performed for Dropbox. Since file updates are more frequent that file
creations, Figure 5.8 presents the differences between cloud storage types for file updates. Based
on the figure, both cloud types have similar performance until 1MB files, however Dropbox is on
average 13% better than Google Drive until 100KB files and then Google Drive starts getting
better from 1MB, in this case 18% better. But, for larger files, it is clear that GoogleDrive is
more efficient than Dropbox with an abysmal difference, for example a 100MB file it takes 10
times more with Dropbox. It is noteworthy to take into consideration that Dropbox takes less
time to connect than GoogleDrive, which explains why Dropbox has better performance for files
until 100KB. This connection time is constant regardless of operation, having a mean time of
223 milliseconds for Dropbox against 313 milliseconds for Google Drive. Such connection times
do not matter for the read operation discussed in Section 5.5 since files are downloaded by URL

and not using its cloud APIL.
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Figure 5.8: File update comparison between different cloud storage types.

Impact of encryption to write efficiency. Similarly to Storekeeper, the different cloud
storage types also separate file writes between create or update. If there is such division, probably
clouds implement mechanisms to optimize updates, in other words, when updating a file the
cloud SDK would send only the binary-diff parts of a file’s content. Storekeeper cannot enjoy
such optimizations because in each write it performs a full file encryption with a different file-key,
making the ciphered content completely different between versions. Even though Storekeeper
cannot enjoy this possible optimization, it is relevant to analyze the impact of Storekeeper
over cloud’s update operation to better determine the Storekeeper’s overhead. To test this
possible optimization, the following experiments were performed using simply the cloud’s API:

(1) create a file and send to cloud, (2) change locally the first byte of that file’s content and

5
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Figure 5.9: Google Drive performance for different content updates for increasing file sizes.
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send to cloud, performing an update, (3) same as before but changing the byte on the middle
of the file’s content, (4) same as before but changing the last byte of the file’s content, and (5)
same as before but changing all bytes of the file’s content. These experiments were performed
for both cloud storage types and it was concluded that their behaviour is very similar though
with different values. In Figure 5.9 is a comparison between those different experiments on
GoogleDrive, with increasing file size, only for updates. Based on the results, two points are
highlighted. First, there is no pattern proving that a full update takes much more time than
the other updates, there are even cases where a full update is better, for example with a 1MB
file. Second, GoogleDrive does not implement the discussed write optimizations, thus using

encryption does not have a big impact on write efficiency. The same is valid for Dropbox.

5.7 Performance of Delete

Steps Values %
Get cloud credentials from SDS 52,7 +39 5,7
Remove file’s metadata from SDS 61,2 =+ 38,0 6,6

Delete file locally 20 £1,0 0,2
Connect to cloud 311,8 £ 20,2 | 33,8
Delete file from cloud 4949 £ 61,2 | 53,6

Total | 922,6 =+ 64,3 | 100

Table 5.4: Execution times in milliseconds of a delete operation for a 1KB file stored on Google
Drive.

Such as the read and write operations, the latency of the delete operation also has the same
two variables, the size of the file and the cloud storage type. As stated before in Section 5.2
the minimum possible latency for the delete operation corresponds to the deletion of a 1KB file
stored in GoogleDrive. To fulfill the operation five steps are performed: (1) get cloud credentials
from SDS of the cloud where the file is stored, (2) remove file entry from SDS, (3) delete file
locally from the user’s workspace, (4) connect to the cloud, and (5) delete file on cloud. These
steps are detailed in Table 5.4 for the minimum latency case with the values for each step along
with its weight on the whole operation. Based on the results, the main bulk of time is spent on
deleting the file on cloud. In accordance to previous discussions, the accesses to the SDS are
constant regardless of file size and cloud type, and in this case even for the smallest data unit it

only represents 12,3% of the whole execution.

The discussed case represents a delete when a 1KB file is stored on a Google Drive cloud
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Figure 5.10: Delete comparison between cloud storage types with increasing file sizes.

storage. When performing the experiment for different file sizes and different cloud storage
type, the latency of the operation has same changes. This experiments are represented in
Figure 5.10 that presents a comparison between cloud storage types for increasing file sizes.
Based on the results, there are two different patterns according to the cloud type. First, for
GoogleDrive, the latency is constant regardless of file size, on average it takes 0,91 seconds.
Second, for Dropbox, latency increases with increasing file sizes, initially is constant until 10KB,
then increases 13% until 10MB and then has a steeper increase of 20% forward. In short, the

difference of performance between both cloud storages is only considerable for files over 10MB.

5.8 Summary

In this chapter was introduced the experimental evaluation made to Storekeeper and its
results. First was presented the overall performance of the system regarding the five operations
offered by Storekeeper. Next, in each section, each operation was evaluated in more detail with
variable parameters of file size, cloud storage type and number of users sharing a file. The chapter
was organized like that for the purpose of answering the question introduced at the beginning:
What is the additional performance cost in using our system over storage clouds operations?
Storage clouds are not involved in operations of share and revoke, their cost correspond solely
to Storekeeper performance. Sharing a file is a constant operation that takes 0,17 seconds
to complete, such operation does not take into account the time it takes to read the file by

the user receiving the file. Revoking one user from accessing a given file takes 0,16 to 0,31
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seconds, from the case where the file’s owner shares a file with Alice and revokes access to
Alice, to the case where a file is shared between 101 users and one of them is revoked. Such
performance is better than the existent in related work. The answer to the question is obtained
over the operations of read, write and delete considering a range of file sizes between 1KB and
100MB and also considering both cloud storages Google Drive and Dropbox. Starting with
the read operation, it implies an overhead between 3% and 10%, the lowest overheads occur
when reading from Dropbox since it takes longer to download data thus decreasing the weight
of Storekeeper’s system. The overhead when reading from Dropbox is constant between 3%
and 4%, when reading from Google Drive for the smallest data unit has 10% of overhead and
then for increasing file sizes keeps constant between 5% and 6%. Such constant overheads are
caused by the increasing times of file deciphering. The write operation implies an overhead
between 1% and 13%, the lowest overheads occur when writing to Dropbox since it takes much
longer to upload data thus decreasing the weight of Storekeeper’s systems. When writing to
Google Drive the overhead is more or less constant (varying between 7% and 12%) regardless
the file size, because the increasing upload time is accompanied by the increasing file ciphering
time. The delete operation implies an overhead between 8% and 13%, such operation is more
or less constant among the storage cloud, in other words, when deleting from Google Drive the
overhead varies between 11% and 13% and when deleting from Dropbox it varies between 8%
and 10%. Overall, Storekeeper has an overhead of 1% to 13%, lower with bigger files and higher

with smaller files.

The next chapter finishes this thesis by presenting the conclusions regarding the work de-

veloped and also introduces some directions in terms of future work.
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Conclusions and Future
Work

6.1 Conclusions

This thesis presented the design, implementation, and evaluation of Storekeeper, a privacy-
preserving cloud aggregation service that enables file sharing on multi-user multi-cloud storage
platforms while preserving data confidentiality from cloud providers and cloud aggregator ser-
vices. Storekeeper is motivated by the fact that cloud storage services are currently a commodity
that allows users to store data persistently, access the data from everywhere, and share it with
friends or co-workers. However, due to the proliferation of cloud storage accounts and lack of
interoperability between cloud services, managing and sharing cloud-hosted files is a nightmare
for many users. To address this problem, specialized cloud aggregator systems emerged that
provide users a global view of all files in their accounts and enable file sharing between users
from different clouds. Such systems, however, have limited security: not only they fail to provide
end-to-end privacy from cloud providers, but they require users to grant full access privileges to

individual cloud storage accounts. Storekeeper aims to fill this gap.

In developing this work, a major finding was that building a privacy-preserving cloud ag-
gregation service entails addressing many technical challenges that arise mostly from the het-
erogeneity and lack of interoperability between cloud services. In fact, to build Storekeeper it
was necessary to devise adequate (1) file naming scheme, (2) user credentials, (3) consistency se-
mantics, (4) access permissions model and (5) file operations protocols. Storekeeper contributes

to the cloud storage landscape with an original design that provides solution to all these issues.

6.2 Future Work

For future work, there are several avenues that can be pursued in order to improve Store-

keeper. We briefly discuss some possible directions:
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1. Scale the centralized architecture: As mentioned in Section 3.8, the scalability of the
current architecture is limited by relying on a single server. The throughput and the storage
capacity of the service is limited by the amount of hardware resources available on that server,
namely network, processing power, memory, and disk. While for smaller organizations a single
server may suffice, for larger organizations the scalability properties of the current architecture
may be clearly limited, not only because of the higher amount of user requests and meta-data, but
also because larger organizations are typically located in multiple sites and run under different
administration domains. To accommodate to the reality of larger organizations, the current
centralized architecture of the SDS service may need to be re-thought by supporting a federated
network of SDS services possibly deployed in different locations and managed by independent
administrators. Such design introduces new technical challenges that need to be addressed, such
as: how to split file meta-data across such a distributed system of SDS servers, how to handle

migration of users across sites, how to handle network partitions, etc.

2. Devise a fully decentralized architecture: In addition to explore a system design where
the SDS server is decentralized, decentralization can be taken to another level by designing a fully
decentralized cloud aggregator service. In such an architecture no SDS server would be required
at all. Instead, its logic would need to be implemented in a distributed fashion entirely by the
Storekeeper clients in a peer-to-peer fashion. A peer-to-peer architecture allows for Storekeeper
to be used without requiring a dedicated infrastructure to work, which is convenient for usability
purposes. However, without having a semi-trusted component responsible for securely preserving
file meta-data, clients themselves must cooperate among themselves in order to provide that
service. To make it work, it will be necessary to study existing peer-to-peer systems and adapt
some of their techniques to make Storekeeper work under such environment. For example,

permission enforcement and revocation will be particularly challenging in this setting.

3. Provide stronger security properties: Lastly, orthogonally to the proposals for system
decentralization both in terms of scaling the SDS service or suppressing the SDS service, one
may also follow a path in terms of providing stronger security properties. The current Store-
keeper design is focused only on providing end-to-end data confidentiality, but other important
properties have been left out from the scope of this work, namely data integrity and service
availability. Enhancing Storekeeper to provide such properties constitutes a promising area for

future research.
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