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Abstract

This work seeks to interpret Solar modulation under the terms of Plasma Physics, study its im-

pact on the cosmic ray flux and characterize the AMS-02 Ring-Imaging Cherenkov Detector (RICH)

detector. This is achieved by estimating the Solar magnetic field (from a Solar wind hypothesis) and

deducing the corresponding particle transport equation. The transport equation in question includes

diffusion, particle drifts and the three-dimensional Heliospheric Current Sheet (HCS). Several solu-

tions to the transport equation are presented (Force-Field, 1D and 2D), the corresponding numerical

models are then explained and their results shown. These showed a strong agreement with AMS-02

proton flux. After Solar modulation is interpreted and duly simulated, the AMS-02 RICH detector is

studied in order to estimate its velocity resolution. Finally, from the results of RICH resolution study, a

particle estimator, is created in order to help particle identification and data selection. The simulations

revealed to be in good agreement with the estimated proton flux from AMS-02 data and exhibited the

expected high energy behaviour. The model for the RICH velocity resolution described the expected

shape. By making use of Monte Carlo data, the estimator proved to be a good tool to identify protons

at low rigidities (P < 15GV) but falls short at high rigidities in the discrimination aspect since the pdf

functions between the different particles merge together for high velocity values. A cut was developed

in order to keep the proton contamination lower than 1/100 for an electron selection. Using a new

statistical variable, the model proved to have great discrimination power in the working regime.
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Resumo

Este trabalho procura interpretar a modulação Solar dentro dos termos da Física de Plasmas, es-

tudar o seu impacto no fluxo Galáctico de raios cósmicos e caracterizar o detector RICH de AMS-02.

Este fá-lo através do cálculo do campo magnético Solar e da dedução da equação de transporte da

densidade de raios cósmicos. A equação de transporte inclui difusão, deriva e a folha de corrente

neutra heliosférica (HCS). Vários métodos foram usados para a resolução da equação de transporte

(Force-Field, 1D e 2D), os correspondentes modelos numéricos foram deduzidos e os seus resul-

tados discutidos. Os resultados das simulações revelaram um forte acordo com o fluxo de protões

estimado a partir de dados de AMS-02 e exibe o esperado comportamento de altas energias. Em

seguida, o detector RICH é estudado recorrendo ao fluxo de protões e estimar a sua resolução de

medição. Finalmente, baseando-se nos resultados do estudo da resolução do RICH, um estimador

de particulas, é criado para ajudar a separar partículas para ser usado em selecção de dados. O

modelo do RICH estimou a resolução da velocidade com a forma esperada. Usando dados de Monte

Carlo, o estimador provou ser uma ferramenta capaz de separar electrões de protões a baixa rigidez

mas degenera para valores mais altos (P > 15 GV) dado que as diferentes funções de densidade de

probabilidade fundem-se. Foi estimado também um corte em probabilidade que mantenha a contam-

inação de protões menor que 1/100 numa selecção de electrões. Usando ainda uma nova variável

estatística, o modelo revelou ter grande poder de discriminação, dentro do regime de funcionamento.

Palavras Chave

AMS-02, Modulação Solar, modelo Force-Field, modelo 1D, modelo 2D, resolução do RICH
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1. Introduction

1.1 Introduction

The study of Astroparticle Physics and Cosmology is made by studying the bi-products of the
reactions and phenomena of cosmological events. As these cosmic rays traverse the heliosphere to
get to Earth’s upper atmosphere, they change in energy, direction and may even be absorbed along
the way. In order to get an accurate reading on the radiation that is emitted from the Galaxy and the
rest of the universe, it is imperative that the propagation mechanisms that lead the cosmic rays to the
Solar system is understood.

This thesis seeks to study and simulate the mechanism that governs Solar modulation of galactic
cosmic rays and develop a proton/electron (or positron) separation tool that would allow to select
particles using the AMS RICH detector.

Solar modulation is the process by which the plasma emitted by the Sun interferes with the entry
of Galactic cosmic rays into the Solar system, thereby altering the intensity and energy of the cosmic
ray flux detected at Earth.

The study of Solar modulation began with the classical paper made by Parker [51]. In his paper
he described how it was possible to have a radial wind of hot gas streaming outwards from the Sun.
This interpretation of the Solar wind and the derivation of the magnetic field trapped in it marked the
beginning of Solar modulation study.

This work begins with a small introduction to cosmic ray physics, after which a theoretical approach
is taken in order to understand the Solar plasma. Still in line with plasma physics, and aided by a
Solar magnetic field model, the Parker transport equation is deduced and the Parker model of the
Solar plasma is presented in order to establish the framework in which it will be solved.

Several approaches were taken when trying to solve the cosmic ray transport equation. Some
of these approaches required aid from numerical methods and the methodology behind developing
them was then presented. After establishing the simulation premisses, the results were shown and
discussed. In the current literature, only the simulation results are presented and most of the deriva-
tions are usually skipped. In this work, all the derivations and simulation details (including models and
numerical schemes) are shown and explained in detail.

As a next step, the AMS-02 experiment was presented and the second part of the work began.
On the line of estimating a flux based on data, a C++ framework was developed around the

AMS-02 Ring-Imaging Cherenkov Detector (RICH) and Silicon Tracker (TRK). From AMS-02 data
and official AMS-02 Monte Carlo simulations of the detectors, the behaviour of the RICH and TRK
measurement resolutions were studied in order to develop a statistical model that correctly estimates
RICH velocity resolution.

The results were shown and used towards the final part of the thesis, the development of an esti-
mator based on the independent measurements of both RICH and TRK in order to identify particles
species, based around a mass hypothesis, for low rigidity events (P < 15 GV).
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2. Cosmic Rays

2.1 Introduction

The Particle Data Group (PDG) offers a definition of cosmic ray as all the cosmic radiation incident
at the top of the terrestrial atmosphere, which includes all stable charged particles and nuclei with
lifetimes of order 106 years or longer[38].

Beginning with a brief historic introduction, this chapter will give an overview of the cosmic ray
spectrum, chemical composition and mechanisms responsible for its origin.

2.1.1 Brief History of Cosmic Rays

With the discovery of X-rays in 1895, Röntgen opened the way to the study of radioactivity moving
towards the twentieth century.

In 1909, the dominant theory towards ambient radiation was that ionizing radiation would come
from the rocks and soil. To test this theory, Theodor Wulf [70] measured the rate of ionization at the
bottom and at the top of the Eiffel tower (300 m), using a series of electroscopes of his own design
(shown in figure 2.1). He expected an exponential decrease in the rate of ionization measured as he
got farther from the ground but this decrease was only of about half of that measured at the surface,
contradicting his expectations.

Figure 2.1: Scheme of Wulf’s electroscope, drawn by wulf himself.

Victor Francis Hess took the next big step by taking electroscopes in balloon flights. Even though
he was not the first to do so [27], he was the first one with the interpretation that lead to the discovering
of cosmic rays.

Hess, in 1912, showed, from his balloon flights, that as the altitude increased, the radiation de-
creased until it reached a minimum, starting to increase again rapidly above 1400 m, as can be seen
in figure 2.2. This was a major breakthrough since it proved that the ionizing radiation origin could not
be terrestrial, it had to come from above. He also found that the radiation had hourly variations but
he did not find a reduction of the radiation’s intensity during the night or during a Solar eclipse, thus
concluding that the origin of the radiation could not be the Sun, it had to be from outside the Solar
System.
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2.1 Introduction

This discovery of the natural source of high-energy particles coming from outside the Solar System
won him the Nobel Prize in Physics in 1936.
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Figure 2.2: Hess balloon electroscope observations [30].

Hess’ discoveries were corroborated by later balloon experiments such as those made by Kol-
hörster [41].

The term cosmic ray was coined by Robert Millikan in the 1920’s.
In 1927, J. Clay discovered the geomagnetic effect by measuring a variation of cosmic ray intensity

with latitude [16].
In 1930, Bruno Rossi predicted a difference between the intensity of cosmic rays arriving from the

east and the west, depending on the charge of the primary particles, the East-West Effect [58]. His
prediction was later proven right by several experiments [3, 33, 59].

After deriving the differential cross-section of the scattering of positrons by electrons (the Bhabha
scattering),Homi Bhabha, together with Walter Heitler, published in 1937 an article describing how
cosmic rays interact with the upper atmosphere to produce particles observed at ground level [7].
They explained cosmic ray shower formation as a cascade production of γ-rays and positron-electron
pairs. This discovery was fundamental towards the study of high energy cosmic rays since by studying
these air shower, it is possible to use the atmosphere as part of a large detector system (detection
principle used in Pierre-Auger Observatory and other experiments).

Figure 2.3: Schematic view of the beginning of an electromagnetic shower.
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2. Cosmic Rays

Further study of cosmic rays lead to the discovery of several new particles among which were [6]:

• 1937 - Muon discovery by Neddermeyer (mistaken for a pion until proven wrong in 1947 by
Conversi, Pancini and Piccioni)

• 1947 - Pion discovery by Lattes, Occhialini and Powell

• 1947 - Kaon discovered by Rochester and Butler

• 1951 - Λ discovered by Armenteros

In 1949, Enrico Fermi proposed a model explaining how cosmic particles could be accelerated up
to relativistic speeds, allowing them to reach Earth [23]. This phenomenon is now known as Fermi
acceleration.

As time went by, the study of cosmic rays developed from ground-based study to balloon experi-
ments and, lastly, to upper atmosphere and spacial detectors.

The discovery of this cosmic radiation together with an appropriate interpretation, allows for a
deeper understanding of the Universe and the physical phenomena that lead to its current state.

2.2 Cosmic Ray Spectrum

The main difference between a primary and a secundary cosmic ray is that the first is accelerated
by astrophysical sources and the latter is produced by interactions of the primaries with the interstellar
gas.

These primaries are bi-products of stellar nucleosynthesis. The study of cosmic rays such as
antiprotons and positrons is still up for debate and constitutes one of the objectives of AMS-02 exper-
iment, which will be described further on.

2.2.1 Energy distribution and Composition

Most particles that reach Earth’s upper atmosphere come (apart from Solar flares) from outside
the Solar System and are modulated by the expanding magnetized plasma generated by the Sun.
This plasma decelerates and partially excludes the lower energy Galactic cosmic rays [38]. Solar
activity is also known to be anti-correlated with the intensity of cosmic rays at low energies as well,
the Forbush decrease phenomenon.

After passing through the Solar plasma, these Galactic cosmic rays have to overcome another
barrier, the geomagnetic field. This magnetic field will cut out any low energy radiation. These two
phenomena combined give any cosmic ray on the GeV energy range a dependency on both time and
space.

The intensity of primary nucleons in energy range from the GeV to 100 TeV is approximately given
by the following power law,

IN (E) ≈ 1.8× 104

(
E

1 GeV

)−α [
nucleons

m2 s srGeV

]
, (2.1)

where α is the differential spectral index of the cosmic ray flux and varies with the energy region in
the following way, 

α ≈ 2.7, if E < 1015eV
α ≈ 3.0, if 1015 < E < 1018eV
α ≈ 2.8, if E < 1015eV

(2.2)
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2.2 Cosmic Ray Spectrum

The complete spectrum for different particles, as measured by several experiments [1, 5, 19, 22,
28, 29, 39, 44, 45, 60, 63, 67], is shown in figure 2.4.

Figure 2.4: Fluxes of nuclei of the primary cosmic radiation [38].

The composition and energy spectrum of nuclei are interpreted using propagation models in which
the sources are located within the Galaxy and these travel towards the Solar System by traversing
through the Galactic magnetic field. This gives rise to a complex spectrum (detailed in figure 2.4) that
shows the average chemical composition, given by table 2.1.

Z Element F
1 H 540
2 He 26

3-5 Li-B 0.4
6-8 C-O 2.20
9-10 F-Ne 0.30

11-12 Na-Mg 0.22

Z Element F
13-14 Al-Si 0.19
15-16 P-S 0.03
17-18 Cl-Ar 0.01
19-20 K-Ca 0.02
21-25 Sc-Mn 0.05
26-28 Fe-Ni 0.12

Table 2.1: Relative abundances F of cosmic-ray nuclei at 10.6 GeV/nucleon normalized to oxygen (≡ 1) [38]

Cosmic rays display a nearly isotropical structure at most energies but some experiments (such
as Milagro and IceCube), showed some anisotropy at very high energies (TeV-PeV scales), that might
be correlated to nearby sources.
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2. Cosmic Rays

The spectrum from figure 2.4 extends into higher energies (up to 1020 GeV) if the study of cosmic
ray showers is taken into account as well (it is very difficult to directly measure particles with such high
energies). In this case, the atmosphere is used as part of the detector. A very high energy cosmic
ray will interact with the atmosphere and generate a shower of particles that will then be detected in
the ground. By studying shower development in air, it’s possible to estimate the energy and direction
of the primary particle that generated the shower.

Figure 2.5: The all-particle spectrum as a function of energy-per-nucleus from air shower measurements[38].

Figure 2.5 shows the extended cosmic ray spectrum up to 1020 eV.
Observing this more complete spectrum reveals another structure, instead of having just one

power law it is possible to identify two more powers law (with different indexes, as shown in expression
2.2), each being separated by a knee, and having a so-called ankle in the end of the entire spectrum.

2.3 Cosmic ray Origin and Composition

Cosmic rays are divided into three categories, depending on their origin: Galactic Cosmic Rays
(GCR), Solar Cosmic Rays (SCR) and Anomalous Cosmic Rays (ACR).

GCR are the most typical cosmic rays, being comprised of ∼ 90% protons, 9% alpha particles
and 1% electrons, these extend to energies up to 1020 eV. They are accelerated by supernovae
remnants[43] in a process called Fermi Acceleration. A star, upon turning supernova, will leave
behind remnants, capable of lasting up to thousands of years. According to the supernovae remnants
cosmic ray hypothesis, particles are accelerated by the shock front of the supernova and then further
accelerated by the magnetic fields.

SCR, as their name tells, are particles originating from the Sun. They mostly consist of protons,
electrons and helium ions with energy ranging from a few keV up to GeV. They can originate from
energization at a Solar flare site or by shock waves associated with coronal mass ejections.

ACR arise mainly from neutral interstellar atoms which are swept into the heliosphere by the
motion of the Sun through the interstellar medium[65]. These items then become singly ionized either
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2.3 Cosmic ray Origin and Composition

by photoionization by Solar UV photons or by charge exchange collisions with Solar wind protons.
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3. Solar Modulation

3.1 Introduction

The temporal variation of the cosmic-ray intensity in the heliosphere is called Solar Modulation of
Galactic cosmic rays [47].

This definition is based on the observation of periodical changes to the cosmic-ray flux measured
in Earth, correlated with Solar activity. There are several periods for these variations and the most
notorious are the 11-year cycle, due to change in Solar activity, and the 27-day cycle, due to the Sun’s
rotation. The reasons why there would be these two periodicities will become clearer in the sections
ahead.

3.2 Solar Wind and the Heliosphere

In 1951, by observing the tails of comets (as seen in figure 3.1), Biermann [8, 9] suggested that
their odd shape was not due to the pressure of the Solar radiation on the molecules in the comet’s tail
but rather by a gas streaming outwardly from the Sun. His suggestion was that this gas was flowing
radially in all directions from the Sun and had to have velocities ranging from 500 to 1500 km/s.

Figure 3.1: Comet trail and tail, evidence of the existence of a Solar wind [49].

This phenomenon is known as Solar wind and its characteristics are essential in understanding
Solar Modulation. It permeates the entire Solar system creating the Heliosphere.

In 1958, Parker tried to understand the consequences of having this outward stream of hot gas
coming from the Sun. In his famous article [51], he showed that there should be no hydrostatic
equilibrium solution for the Solar wind and thus tried to estimate what sort of steady expansion could
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3.2 Solar Wind and the Heliosphere

be expected from the Solar corona.
He started by assuming that the temperature distribution was modelled by a function of only dis-

tance, T (r), and then tried to see the consequences of this expanding corona by having the following
equation of motion (both assuming a spherical corona and that it is a hot enough so that the gas is
fully ionized, thus ensuing a gas pressure given by 2NkT ),

NMv
dv

dr
= − d

dr
(2NkT )−GNMM� (3.1)

and the following equation of continuity,

d

dr
(r2Nv) = 0. (3.2)

He then derived the expansion velocity of a spherically symmetric and isothermal Solar corona,
as can be seen in figure 3.2.

Figure 3.2: Spherically symmetric hydrodynamic expansion velocity of an isothermal Solar corona, with
a = 1011 cm.

He then hypothesised that if there were no field-free regions in the Sun from which the gas could
be emitted, the stream of outward flowing fully-ionized gas, and according to the Alfvén’s frozen-flux
theorem, should carry the magnetic field force lines. This area of study is known as Magnetohydro-
dynamics (MHD).

If there is a region defined by r = b, around the Sun, after which the ejected gas has a completely
spherical symmetry, the magnetic field lines should have the same structure.

Assuming a 1/r2 radial Solar magnetic field (due to spherically expanding density of field lines)
and a constant outward velocity Vw for the Solar wind, the Solar wind velocity should be (as seen from
a reference frame co-rotating with the Sun at a frequency of ω),

vr = Vw, vθ = 0, vφ = ω(r − b) sin θ, (3.3)

thus having the streamline given by

r

b
− 1− ln

(r
b

)
=
Vw
bω

(φ− φ0), (3.4)
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3. Solar Modulation

which in turn leads to the, later known as, Parker Solar Magnetic Field (shown in figure 3.3),

Br(r, θ, φ) = B(θ, φ0)

(
b

r

)2

Bθ(r, θ, φ) = 0

Bφ(r, θ, φ) = B(θ, φ0)

(
ω

Vw

)
(r − b)

(
b

r

)2

sin θ.

(3.5)

Figure 3.3: Projection onto the Solar equatorial plane of the lines of the force of the magnetic field. Dashed line
is r = 1AU, Earth’s orbit around the Sun.

We now begin to see the crucial role of the Solar wind as the agent behind both the existence of
the heliosphere and the shape of the magnetic field inside of it since it will transport the magnetic field
lines all across the Solar System.

Even though the idea of a constant speed Solar wind is only an approximation, the first measure-
ments of the mean interplanetary magnetic field at Earth’s orbit, made by Ness et al. [50] showed rapid
fluctuations (∆B ∼ B). Despite that, they were able to estimate a mean field of B ∼ 0.6× 10−4 Gauss

inclined to the expected spiral angle (ψ = arctan(rω/Vw)) of 30− 45◦ [52].
After Parker’s original work, there have been numerous theoretical enhancements. In the cur-

rent understanding of the heliosphere, the plasma keeps expanding until its outward pressure equal-
izes with the Local Interstellar Medium (LISM)’s pressure and it becomes a boundary called the he-
liopause. Before this boundary, another boundary can be defined, the Termination Shock. It is
the point after which the Solar wind slows down and becomes subsonic [18]. Spacecrafts were sent
across the Solar system to evaluate the behaviour of the heliosphere and the Solar wind. Voyager 1,
in 2004, and Voyager 2, in 2007, traversed the Termination Shock.

It is important to note how the influence of the LISM flow in the shape of the heliopause, as is
shown figure 3.4.
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3.3 Solar Magnetic Field

Figure 3.4: Schematic diagram of the current best understanding of the heliosphere’s interstellar interaction [18].

Even though the heliosphere has a very complex shape on its furthest regions, close to Earth
(r = 1 AU) , the radial Solar wind (even if it has variable speed) is usually a good start when it comes
to the analysis of the magnetic field.

3.3 Solar Magnetic Field

The Sun’s plasma displays a highly complex structure of motion. The interaction between the
plasma and a magnetic field can be modelled using the principles of MHD in which plasma is treated
as a continuous medium.

The Sun also exhibits a differential rotation , spinning faster in the equator than it does in the poles,
as depicted in figure 3.5.

Figure 3.5: Differential rotation of the Sun and magnetic instabilities.

The complex flow of the Sun’s plasma gives rise to several physical phenomena such as the global
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3. Solar Modulation

magnetic field (dipole), Sunspots and prominences.

3.3.1 Structure and Solar Activity

The main Solar magnetic field component is the dipole created from a major MHD dynamo.
This magnetic dipole inverts its polarity with a periodicity of 11 years, changing the entire spacial

environment inside the Solar system. It is known as the Solar Activity Cycle. A direct correlation
between this cycle, the angle of the Solar magnetic dipole with the rotation axis (known as tilt angle
and henceforth shown as α) and the number of observed sunspots was found (as can be seen in
figure 3.7). Figure 3.6 shows these sunspots in dark. As the Sun gets closer to flipping its magnetic
dipole, the more twisted the magnetic field lines become, creating more areas of instability and Solar
sunspots start to emerge in its surface.

Figure 3.6: Photo of the sun showing solar activity, sunspots and a solar flare[49].

The existence of Sunspots has been known since at least the fourth century B.C. These can be as
large as 20000 km and have temperatures of 3000-4500 K, constrasting with the surrounding 5780 K.
They are caused by intense magnetic activity which inhibits convection, thus allowing it to cool down
[40]. These Sunspots usually appear in pairs of opposing polarities but can also take place under
other configurations.

With the increase in Solar activity and magnetic field instability, prominences and their rupture
become more frequent. These ruptures originate Coronal Mass Ejection (CME) which in turn will
give rise to a decrease in the observed galactic cosmic ray, a Forbush decrease. This jet of plasma
will change the shape of the magnetic field abruptly and increase the geomagnetic cutoff energy
(energy required for a charged particle to not be trapped in the geomagnetic field, if the particle has
lower energy than the cutoff, it begins gyrating with a very small radius and becomes trapped, never
reaching the Earth). This effect is only felt on Earth a few days after the Solar event.

During the Solar Activity Cycle the direction of the dipole changes and the angle it makes with the
rotation axis goes from its minimum at ∼ 10◦ to its maximum at ∼ 70◦, by which time the magnetic
field starts degrading and after a time it will start going from the maximum to the minimum but this
time with an inverted polarity.
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3.3 Solar Magnetic Field

Figure 3.7: Correlation between neutron monitor counts, Sunspot number and tilt angle.

These events all have major significance to the modelling of the Sun’s magnetic field. The
Sunspots and CME’s can create fluctuations in the magnetic field but these are not periodical.

Apart from the 11-year cycle and its effect on the change in the flux, the 26-day rotation of the Sun
is also responsible for variations in the magnetic field as a consequence of the tilt angle (α).

The fact that the Sun’s magnetic field is mainly a dipole implies the existence of a plane that
separates the two major magnetic domains, perpendicular to the dipole direction. This plane is called
the Heliospheric Current Sheet (HCS).

By assuming that the magnetic field is reasonably stable across several Solar rotation periods it is
possible to describe the topology of this magnetic field. The wind will flow continuously and propagate
the magnetic field lines according to the Solar dipole configuration by the time of leaving the corona.
The field lines will flow outward continuously and create a peculiar shape, Parker described this
phenomenon as a ballerina skirt.
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3. Solar Modulation

Figure 3.8: Artistic depiction of the Heliospheric Current Sheet. Black arrow indicates the axis of Solar rotation
and the red arrow indicates the magnetic dipole direction.

Any point in the Sun’s surface is transported through the heliosphere by the Solar wind according
to the following equations written in the Sun’s coordinate system (one where the rotation axis is
aligned with the Z direction),

r(t) = Vwt+ r0,

θ(t) = θ(t = 0),

φ(t) = −ωt+ φ0,

(3.6)

where Vw is the Solar wind speed and ω is the Sun’s angular frequency for rotation.

Figure 3.9: Diagram depicting the coordinates of the HCS in the Sun’s coordinate system. The blue line repre-
sents the Solar system plane and the orange is the HCS plane at the Sun’s surface.

In the case of a null tilt angle (α = 0), all the points in the HCS are at the same θ = θHCS = π/2.
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3.4 Solar Modulation

The fact that there is a non-zero tilt angle demands that θ0 = θHCS = f(φ0). In all calculations that
follow, the usage of θ′ refers to the angle shown in figure 3.9, which relates to the angle of the point in
spherical coordinates as θ′ = π

2 − θHCS.
Refering to figure 3.9, we can start by calculating the spherical coordinates of a point that lies in

the HCS plane with respect to the Sun’s coordinate system,

tan θ′ =
y

x
y

x sinφ0
= tanα

(3.7)

which in turn leads to,

tan θ′ = tanα sinφ0 ⇒ tan
(π

2
− θHCS

)
= tanα sinφ0 (3.8)

The only substitution left is to parametrize φ0 as a function of r and φ, so we can propagate it
across space. This is done by making use of expression 3.6,

φ0 = φ− ω(r − b)
vw

, (3.9)

which when inserted into 3.8 gives us θHCS(r, φ),

θHCS =
π

2
− arctan

[
tanα sin

(
φ− ω(r − b)

vw

)]
(3.10)

Now that we know how the HCS behaves we can derive the full Parker magnetic field from those
shown in equation 3.5, by including the wavy neutral current sheet,

B(r, θ, φ) =
±B0r

2
0

r2

(
er −

(r − b)ω
vw

sin θ eφ

)
[1− 2H(θ − θHCS)], (3.11)

where B0r
2
0 is a constant which comes from the definition of the magnetic field and H is the Heaviside

step function. The ± sign is there to characterize the Solar cycle modelled as being a positive, with
fields lines coming out from the northern hemisphere or negative.

Now we understand what is the heliosphere and how it propagates the magnetic field. The next
step is understanding how charged particles interact with this magnetic field.

3.4 Solar Modulation

When charged particles pass through a magnetic field they interact with the field lines, shifting
their trajectories and changing their energies. The motion of the particle in the magnetic field is
characterized by the circular motion around a point (guiding centre) and the movement of that point.
The radius of the circular motion is known as gyroradius and is defined as

rg =
P

Bq
, P =

pc

Ze
, (3.12)

where P is known as magnetic rigidity, p is the momentum of the particle, c is the speed of light, Z is
the charge of the particle in electron charge units and e is the unitary charge of the electron.

This gyroradius is essential towards understanding the effect of the magnetic field on particle since
irregularities smaller than it do not affect the particle in measurable way but, if the dimension of the
irregularities is the same as the gyroradius, the particle will begin a random walk process called
diffusion.
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3.4.1 Counting Particles

The transport equation is the equation of motion of a differential density through phase space[47].
Starting with considering an infinitesimal box of volume d3r = r2 sin θdrdθdφ containing N =

nd3r particles inside. We also wish to characterize this density in a given interval of kinetic energy
(T, T + dT ), so we define the differential density, UT , such that all particles inside the volume are also
in the same kinetic energy interval,

dN = UT d3r dT = UT r
2 sin θ dr dθ dφ dT. (3.13)

This differential density can be defined as a function of rigidity or momentum as well (Up, UP ), with
the appropriate transformations (UP = (βc/A)UT ).

This definition of differential density assumes an isotropic distribution of particles. The problem is
that detectors do not measure differential densities, they measure differential intensities, so we must
see how many of the particles in our volume will go through an infinitesimal area dA at any given time
(as depicted in figure 3.10).

Figure 3.10: Intensity of particles going through the ring. [47]

The number of particles that go through the detector at some given time were moving towards the
detector at a speed of v at a time prior to the detection(grey area in figure 3.10) is given by

dn′ = UT d3r dT = UT r
2 sin θ vdtdθ dφdT. (3.14)

.
Since these particles are going in all directions, the fraction of them that will actually go through

the detector is dA| cos θ|/4πr2, making the total number of particles from the previous volume that go
through the detector after a time dt be,

dn′′ = dn′
(

dA| cos θ|
4πr2

)
= UT

(
dA| cos θ|

4πr2

)
r2 sin θ vdtdθ dφdT. (3.15)

.
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Integrating the previous expression over θ and φ, we get that the number of particles passing
through the detector per unit of area, per unit of time, per unit of kinetic energy interval, is

jT =

¨
dn′′dθdφ =

v UT
8π

=

(
A

8Ze

)
UP . (3.16)

Since it is common practice to think in terms of the particle distribution function rather than in
terms of differential density U , the number of particles in any given point can be written as dn =

F (r, p, t) d3r d3p and, from that, we can define our directional average of the distribution function as,

f(r, p, t) =

´
Ω
F (r, p, t)dΩ´

Ω
dΩ

=
1

4π

ˆ
Ω

F (r, p, t)dΩ (3.17)

3.4.2 Cosmic Ray Transport Equation

Beginning from the continuity principle, we can now develop Parker’s transport equation,

dN

dt
= −

˛
S · dA+Q, (3.18)

which, according to the divergence theorem,
¸
S · dA =

´
(∇ · S)dτ , where dτ is the volume element

within the surface
¸

da, and noting that N =
´
ndτ , we can write out the differential form of the

equation as,
∂f

∂t
+∇ · S = q′, (3.19)

where q’ is the source/sink function per unit of volume.
The physics of the problem is contained in processes that cause a given flux S [47]. In our case,

this flux consists for two parts, a diffusive flux and a convective flux.

3.4.3 Particle Diffusion and Drifts

When a particle encounters sudden changes in the magnetic field lines, its gyroradius abruptly
changes (can get either squeezed by a stronger magnetic field or enlarged bye a weaker one). This
causes the particle to attach itself to a neighbouring line. Since this is a random process, it leads to a
diffusive flux perpendicular to the background magnetic field.

Diffusion parallel to the background magnetic field is studied under the so-called quasi-linear the-
ory of scattering, which holds true for weak fluctuations. This theory goes back to the paper of Jokipii
[34].

We can then write the diffusive flux as Sd = k‖∇n‖+k⊥∇n⊥ (Fick’s law), where both k’s represent
the respective diffusion coefficients. Usually k⊥ � k‖. This is called the weak-scattering limit. The
upper limit for the diffusion coefficients is when k⊥ = k‖, in which case the fluctuations in the field
are so high that they become as large as the background value, making the notion of a well-ordered
background disappear and the diffusion becomes isotropic [47].

Another way to study this phenomenon is by studying the gradient and curvature drifts. It is
possible to describe the drifts of particles, under the weak-scattering condition, using the following
general expression, as given by Jokipii and Levy [37],

〈vd〉 =
βP

3
∇× B

B2
, (3.20)

giving rise to a flux of the form,

Sd =
βP

3B2
B ×∇n. (3.21)
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For the Parker field, the drift velocity becomes [56],

〈vd〉 =
2pv(r − b)

±B0r2
03q(1 + γ2)2

[1− 2H(θ − θHCS)]

[
− γ

tan θ
er + (2 + γ2)γeθ +

γ2

tan θ
eφ

]
, (3.22)

where γ = (r − b)ω sin θ/Vw, q is the charge, p the momentum and v the velocity.
The drift motion of particles in a magnetic field can be included into the diffusion formalist pre-

sented in the beginning of this section by writing it as an antisymmetric element of the cosmic ray
diffusion tensor in the following way

k = kij =

k‖ 0 0
0 k⊥ −kT
0 kT k⊥

 , (3.23)

where kT = βP/(3B), thus contracting the drift flux and the anisotropic diffusion into a single term,
−k · ∇n. This treatment of the drift effect is completely equivalent to direct usage of equation 3.20.
This formalism was first used by Jokipii and Levy [37].

We can now simply write our flux as,

S = V n− k · ∇n, (3.24)

with V n as the simple convective drift of the Solar wind.
This leads us to ∂n/∂t+∇ · (V n− k · ∇n) = q′ or, equivalently, ∂f/∂t+∇ · (V f − k · ∇f) = q.
After taking this result into consideration and combining it with both the divergence of the flux in

momentum space and the adiabatic cooling (this due to the act that particles ride with the fields in
the wind and that these fields expand due to the positive divergence of the wind speed at a rate of
change of momentum of 〈ṗ〉 /p = −(1/3)∇ · V ) he reached the final form of the transport equation,

∂f

∂t
+∇ · (V f − k · ∇f)− 1

3p2
(∇ · V )

∂

∂p
(p3f) = q, (3.25)

which has the simplest form (and the one we will be using further on)

∂f

∂t
+∇ · (V f − k · ∇f)− 1

3
(∇ · V )

∂f

∂ ln p
= q. (3.26)

As a final remark, the existence of a neutral current sheet, a discontinuity in the magnetic field,
generates a drift of particles that follow it if they get close enough that their gyroradius intersects it,
as depicted in figure 3.11. This drift is parallel to the surface and perpendicular to the magnetic field.
Our calculation assumes that the HCS is locally flat enough to use the approximation of the drift over
a flat surface, as was done by Burger et al. [11]. Our expression for this drift then becomes,〈

Vd

〉
=

2pv(r − b)
±B0r2

03q(1 + γ2)
δ(θ − θHCS)(γer + eφ), (3.27)

where γ = (r − b)ω sin θ/Vw, q is the charge, p the momentum and v the velocity. Burger [12]
introduced a parametrization that requires a calculation of the normal to the HCS at every point and
the distance to it, which can be quite cumbersome. We shall use the first one in our simulations.
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Figure 3.11: Trajectories of positively charged particles in and near a neutral plane [11].

Lastly, another approach was suggested by Potgieter and Moraal [57]. In their paper they studied
the 2D model (r and θ) and, due to simetry, the study was only done in 0 < θ < π/2. He suggested
that a transition function could be created so that it was simpler to compute the numerical model near
the HCS. This function introduces a drift so that the nothern hemisphere of the heliosphere is defined
not with a wavy bottom (due to the HCS) but instead with a flat surface. The required drift velocity had
the form〈

Vd

〉
=
KT sin Ψ

r

[
−

(
2 cos2 Ψ cot θ +

ḟ

f

)
er + 2(cos2 Ψ + 1)eθ −

(
2 sin2 Ψ cot θ +

ḟ

f

)
eφ

]
, (3.28)

where Ψ = arctan(rω/Vw), known as the Parker spiral angle, the f , the smoothing function, is defined
as

f(θ) =
1

α
arctan

[(
1− 2θ

π

)
tanα

]
,

and α is
α = arccos

(
π

2θ1/2
− 1

)
.

This method was not used in this work but, for completude sake, had to be mentioned.

3.5 Solutions to the Transport Equation

Now that the mechanism behind Solar modulations is understood, ways to solve the transport
equation can be sought.
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Three methods will be used to solve the transport equation: the Force-Field aproximation, the 1D
numerical solution and the 2D numerical solution, which will include the drift due to the wavy neutral
current sheet (HCS).

Expanding equation 3.26 in 3 dimensions gives

∂f

∂t
= krr

∂2f

∂r2
+
kθθ
r2

∂2f

∂θ2
+

kφφ

r2 sin2 θ

∂2f

∂φ2

+
kθr + krθ

r

∂2f

∂r∂θ
+
kφr + krφ
r sin θ

∂2f

∂r∂φ
+
kφθ + kθφ
r2 sin θ

∂2f

∂θ∂φ

+

(
2krr
r

+
cot θkθr

r
+

1

r sin θ

∂kφr
∂φ

+
1

r

∂kθr
∂θ

+
∂krr
∂r

)
∂f

∂r

+

(
krθ
r2

+
cot θkθθ
r2

+
1

r2 sin θ

∂kφθ
∂φ

+
1

r2

∂kθθ
∂θ

+
1

r

∂krθ
∂r

)
∂f

∂θ

+

(
krφ

r2 sin θ
+

1

r2 sin2 θ

∂kφφ
∂φ

+
1

r2 sin θ

∂kθφ
∂θ

+
1

r sin θ

∂krφ
∂r

)
∂f

∂φ

−
(
Vwr

∂f

∂r
+
Vwθ
r

∂f

∂θ
+

Vwφ
r sin θ

∂f

∂φ

)
+

1

3

(
2

r
Vwr +

cos θ

r sin θ
Vwθ +

1

r sin θ

∂Vwφ
∂φ

+
1

r

∂Vwθ
∂θ

+
∂Vwr
∂r

)
∂f

∂ ln p

(3.29)

If only the r and θ directions are considered and the Parker model for the magnetic field (i.e. radial
Solar wind and dipole magnetic field) is assumed we get,

∂f

∂t
= krr

∂2f

∂r2
+
kθθ
r2

∂2f

∂θ2

+

(
2krr
r

+
cot θkθr

r
+

1

r

∂kθr
∂θ

+
∂krr
∂r

)
∂f

∂r

+

(
krθ
r2

+
cot θkθθ
r2

+
1

r2

∂kθθ
∂θ

+
1

r

∂krθ
∂r

)
∂f

∂θ

− Vwr
∂f

∂r
+

2Vwr
3r

∂f

∂ ln p

(3.30)

From equation 3.20 we can see that,

(∇ · kT )r =
1

r

∂kθr
∂θ

+
cot θ

r
kθr = Vgr,

(∇ · kT )θ =
∂krθ
∂r

+
krθ
r

+
1

r sin θ

∂kφθ
∂φ

= Vgθ,

(∇ · kT )φ =
1

r

∂kθφ
∂θ

= Vgφ,

(3.31)

which makes equation 3.30 become,

∂f

∂t
= krr

∂2f

∂r2
+
kθθ
r2

∂2f

∂θ2
+

(
2krr
r

+
∂krr
∂r
− Vwr + Vgr

)
∂f

∂r

+

(
cot θkθθ

r
+ Vgθ

)
1

r

∂f

∂θ
+

2Vwr
3r

∂f

∂ ln p
.

(3.32)

These drift velocities were calculated in 3.22.
Since the diffusion tensor was defined in terms of the parallel and perpendicular directions to

the magnetic field lines, the coordinate transformation from the spherical referential to the magnetic
field referential has to be calculated. As can be seen in equation 3.11, the magnetic field has no θ

component. This simplifies the problem since we can start by defining the θ direction as e⊥θ, making

24



3.5 Solutions to the Transport Equation

e‖ = B
B and the third as perpendicular to the other two,

e‖ = cos Ψer − sin Ψeφ

e⊥θ = eθ

e⊥r = e‖ × e⊥θ.

(3.33)

This gives out the following change of coordinates between the two systems,krr krθ krφ

kθr kθθ kθφ
kφr kφθ kφφ

 =

k‖ cos2 Ψ + k⊥r sin2 Ψ −kT sin Ψ (k⊥r − k‖) cos Ψ sin Ψ
kT sin Ψ k⊥θ kT cos Ψ

(k⊥r − k‖) cos Ψ sin Ψ −kT cos Ψ k‖ sin2 Ψ + k⊥r cos2 Ψ,

 (3.34)

where tan Ψ = ω(r−b) sin θ
Vw

. This transformation was the same used in Burger et al. [13].
The coefficient chosen in this work was the one used by Pei et al. [55]. Even though there is

still constant debate over the general form of the diffusion coefficient, one of the most used as a
benchmark [10, 35, 42] (which comes from Quasi-Linear Theory (QLT) of plasma) is

k‖ = k0βP
B�
B
, (3.35)

where B� is the Solar magnetic field measured near Earth.
For the perpendicular diffusion coeficient, a common choice is k⊥/k‖ = 0.1. Ways to determine the

appropriate diffusion coefficient usually envolve the study of turbulence models based on spacecraft
measurements [54, 71], which is out of the scope of this work.

Some times the following simpler version is used [36, 47],

k‖ = k0βP. (3.36)

3.5.1 The Local Interstellar Flux

The Solar modulation of Galactic cosmic-rays is an initial-value problem, one must somehow know
what the Galactic cosmic ray spectrum is before we can estimate how the Solar magnetic field affects
it. The initial spectra used in the solutions to follow were those introduced by Webber and Higbie [68].
They were created using a Monte-Carlo Diffusion model and a Leaky Box Model for the propagation
in the Galaxy and based on data provided from the Voyager 1 experiment (as can be seen in figure
3.12). Their forms are given by

JProton
LIS (T ) =

dN

dT
=

18.9
(

T
1 GeV

)−2.79

1 + 6.75
(

T
1 GeV

)−1.22
+ 1.30

(
T

1 GeV

)−2.80
+ 0.0087

(
T

1 GeV

)−4.32 ,

JHelium
LIS (T ) =

dN

dT
=

0.99
(

T
1 GeV

)−2.77

1 + 4.14
(

T
1 GeV

)−1.09
+ 0.65

(
T

1 GeV

)−2.79
+ 0.0094

(
T

1 GeV

)−4.20 .

(3.37)
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Figure 3.12: Local Interstellar primary cosmic ray flux for protons and helium nuclei [68].

3.5.2 Force-Field Solution

In 1968, Gleeson and Axford [25] proposed a solution to the cosmic ray transport equation, the
Force-Field solution. Due to its simplicity, this is the most used approximation to describe the Solar
modulation phenomenon. It takes the final form of

J(r, E)

E2 − E2
0

=
JLIS(E + Φ)

(E + Φ)2 − E2
0

, (3.38)

where J is the observed intensity, E is the total energy and Φ is the so-called Force-Field energy loss
that particles suffer as they propagate inwards into the heliosphere.

In the literature, the most commonly used modulation parameter is not Φ but φ which comes from
φ = Φ/(Ze). Since Φ represents an energy lost, the φ represents a modulation potential. In this view,
Gleeson and Urch [26], in 1973, re-derived the Force-Field solution in a more transparent way, which
will be presented here.

This solution comes from assuming that the Solar wind is constant, the diffusion coefficient is
isotropic, the solution is spherically symmetric, that there is no drift and, in addition, that the solution
is stationary (df

dr = 0) and steady-state, which leads to

V P

3

∂f

∂P
− k∂f

∂r
= 0. (3.39)

The solutions of 3.39 are characteristic curves where f is constant in the (r, P ) plane since

df

dr
=
∂f

∂r
+
∂P

∂r

∂f

∂P
= 0, (3.40)

which in turn implies,
∂P

∂r
=
V P

3k
. (3.41)

If k = k0βP , which is one result of QLT, we get

∂P

∂r
=

V P

3k0βP
, (3.42)

or
β
∂P

∂r
=

V

3k0
, (3.43)
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which amounts to
∂E

∂r
=

V

3k0
, (3.44)

since dE/dP = β. Integrating both side in dr from some distance r up to the heliosphere (rH ), we get

E(r = rH)− E(r) = ΦSM
rH − r

rH − 1(AU)
, ΦSM =

ˆ rH

1AU

V

3k0
dr = V

rH − 1

3k0
. (3.45)

Finally, since f is constant along the characteristic curve

f(1AU,E(rH)− ΦSM ) = f(rH , E(rH)) =⇒ JT (1AU,E(rH)− ΦSM )

(E(rH)− ΦSM )2 −m2)
=
JT (rH , E(rH))

E2(rH)−m2
, (3.46)

or, rearranging the terms and making them clearer, so that the flux becomes a function of energy
measured in Earth instead of original energy,

JT (1AU,E) = JLIS(E + ΦSM )
E2 −m2

((E + ΦSM )2 −m2)
. (3.47)

Typical values range from 0.2 GeV to 1.3 GeV [66]. It is important to emphasize that this is only
valid in the case where k ∝ P .

This analytical solution is a good way to parametrize the problem in broad terms, it describes
the entire Solar modulation phenomenon as a simple mean energy loss suffered by Galactic cosmic
rays as they traverse the heliosphere. This simple solution does not take into account the particular
shape of the magnetic field and assumes a diffusion coefficient proportional to k ∝ P . Since Parker’s
transport equation does not have an analytical solution in its most complex form (taking into account
complex drifts, diffusion coefficients and the general shape of the magnetic field), the only way to
properly include all effects is to solve it numerically, which will be the focus of the sections to come.

3.5.3 Finite Difference Method

Numerical resolution of differential equations involves a discretization of space and the corre-
sponding approximation to all derivatives. These are known as the Finite Difference Methods.

The discretization chosen was
ri = i h+ r0

θj = j l + θ0

pn = p0 e
−nk,

(3.48)

where the minus sign in pn was chosen since the solution will be taken as walking from the maximum
momentum to the minimum.

The most general numerical method for solving differential equations is the Euler method which
makes use of the first order approximation of Taylor series expansion. The 1D numerical solution
demands the usage of another scheme, the Crank-Nicolson scheme.

Going from forward Euler method to Crank-Nicolson consists of taking the average between the
derivative at time n+ 1 and at time n, leading to the following discrete first and second derivatives,

∂f

∂x

∣∣∣∣n
i

≈
fn+1
i+1 − f

n+1
i−1 + fni+1 − fni−1

4∆x

∂2f

∂x2

∣∣∣∣n
i

≈
fn+1
i+1 − 2fn+1

i + fn+1
i−1 + fni+1 − 2fni + fni−1

2∆x2
,

(3.49)

Crank-Nicolson scheme creates an implicit solution to the problem. Instead of having an explicit
system in which the next iteration f(i, j, n + 1) is a function of only previous iterations in time (or
momentum), f(i, j, n + 1) = g[f(i, j, n), f(i + 1, j, n), ...], in the implicit case the next iteration is a
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linear combination of several steps from both the current and the next iteration. This demands the
solving of a linear system of equations (as seen in figure 3.13).

Figure 3.13: Comparison of the computational molecules between forward Euler method and Crank-Nicolson.

The 2D equation will use an alternative method, the Alternating Direction Implicit method

3.5.4 1D Numerical Solution

The one-dimensional solution to the Parker transport equation stands on some of the same ap-
proximations as the Force-Field equation, it takes into consideration a flat Solar wind speed, a solution
variable with r, adiabatic energy lost, and particle drifts. Aside from a complex diffusion coefficient
that varies with the magnetic field, this solution, same as in the Force-Field, does not take into account
the complex structure of the magnetic field.

Considering solely the r direction we can rewrite the Parker equation as

∂f

∂t
= krr

∂2f

∂r2
+

(
2krr
r

+
∂krr
∂r
− Vwr + Vgr

)
∂f

∂r
+

2Vwr
3r

∂f

∂ ln p
. (3.50)

By defining redefining the first and second derivative operator, with respect to X, as δX and δXX ,
respectively, the steady state Parker transport equation for one dimension can be rewritten as

a δrrf + b δrf + c δln pf = 0, (3.51)

by making use of the following substitutions,

a = krr,

b =

(
2krr
r

+
∂krr
∂r
− Vwr + Vgr

)
,

c =
2Vwr

3r
.

(3.52)

As seen previously, passing equation 3.51 to the finite difference framework in a Crank-Nicolson
scheme gives rise to

a
fn+1
i+1 − 2fn+1

i + fn+1
i−1 + fni+1 − 2fni + fni−1

2∆x2
+ b

fn+1
i+1 − f

n+1
i−1 + fni+1 − fni−1

4∆x
+

+c
fn+1
i+1 − f

n+1
i−1 + fni+1 − fni−1

4∆ ln p
= 0.

(3.53)

The equation can be made adimensional by dividing the variable r (since θ is adimensional al-
ready) by a scale factor, meaning

r = sr r
∗ =⇒ ∂f

∂r
=

1

sr

∂f

∂r∗
. (3.54)

This allows for a reduction in truncation error and for a better understanding of how stability changes
with the parameters of the equation.
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Making the apropriate substitutions we can see that equation 3.53 can be rewritten in the following
fashion,

Ci︷ ︸︸ ︷(
a

2h2
+

b

4h

)
fn+1
i+1 +

Bi︷ ︸︸ ︷(
− a

h2
+
c

k

)
fn+1
i +

Ai︷ ︸︸ ︷(
a

2h2
− b

4h

)
fn+1
i−1 =

=

(
− a

2h2
− b

4h

)
fni+1 +

( a
h2

+
c

k

)
fni +

(
− a

2h2
+

b

4h

)
fni−1︸ ︷︷ ︸

Di

(3.55)

which, when written in a matrix form, is simply
B0 C0 0 · · · 0
A1 B1 C1 · · · 0
0 A2 B2 C2 0
...

...
...

. . .
...

0 0 0 Aimax
Bimax




fn+1
0

fn+1
1

fn+1
2
...

fn+1
imax

 =


D0

D1

D2

...
Dimax

 (3.56)

For each momentum step, n, the matrix system has to be solved for all radial positions, i. The
tridiagonal matrix in the left is evaluated at momentum step n + 1 while the vector with the elements
named Di is evaluated for step n. By solving this matrix in a loop, and using the solution from the
previous iteration, the next iteration can be calculated.

These sort of systems are very particular and involve only first neighbours of the current point
(n, i) being evaluated, making the matrix one with three diagonals and zeros elsewhere. This simple
matrix can be rewriten based on each row in the following way,

Aifi−1 +Bifi + Cifi+1 = Di, i = 0, 1, ..., imax

A0 = 0

Cimax = 0.

(3.57)

This way of writing it will be useful for solving it in an optimized way.
To solve this matrix we can make use of the Tridiagonal Matrix Algorithm, also known as Thomas

algorithm (named after Llewellyn Thomas), which consists of the following steps,

C ′i =

{
Ci
Bi

i = 0
Ci

Bi−AiC′i−1
i = 1, 2, ..., imax − 1

D′i =

{
Di
Bi

i = 0
Di−AiD′i−1

Bi−AiC′i−1
i = 1, 2, ..., imax − 1

fimax
= D′imax

fi = D′i − C ′ifi+1, i = imax − 1, imax − 2, ..., 1, 0

(3.58)

Because this is a parabolic equation, we need an initial condition and two boundary conditions.
Solar modulation is a phenomenon that affects low energy particles, high energy particles are less
affected by magnetic fields since their rigidity becomes very high. If the flux measured is JT = p2f ,
as we saw in section 3.4.1, for a big enough p we have that

JT (r, pmax) = JLIS(pmax). (3.59)

This is our initial condition and we are going to go down in energy from the arbitrary maximum of the
simulation. This is a good aproximation if we choose a momentum high enough.

The boundary conditions are at r = b (place after which the Solar wind becomes radial, as seen
in section 3.2), and at r = rheliopause (after which the Solar plasma should end). Since we are working
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with the densitiy of cosmic rays, the flux S = 4πp2
(
Vw − k ∂f∂r

)
must vanish at the origin (r = b). The

other boundary condition comes from the fact that there should be no modulation in the absence of
plasma, meaning that,

∂f

∂r

∣∣∣∣
r=b

= 0

JT (rmax, p) = JLIS(p).

(3.60)

The 1D resolution included a flat Solar wind speed of Vw = 400kms−1er and a diffusion coefficient
of the form

k‖ = k0βP
B�
B

with k0 = 4.56× 1022cm2s−1 (3.61)

3.5.5 2D Numerical Solution

The two-dimensional solution to the Parker transport equation uses almost all the same approx-
imations as the 1D solution but, besides including variation in θ coordinate, includes the complex
particle drifts due to gradient and divergence in the Parker magnetic field and the HCS drift. Same as
in the 1D solution, the 2D solution will also be calculated in the steady state regime (∂f∂t = 0).

Solving a 2D in space equation using the Crank-Nicolson method generates a very complex set of
equations. An alternative to solving a parabolic equation with two dimensions in space was developed
by Peaceman and Rachford [53]. This method has the particularity that it is unconditionably stable
for any ∆t chosen (which in our case is ∆ ln p). This stability criteria does not apply to the other
coordinates, which was duly demonstrated by the number of steps needed to be employed in order to
get a stable solution (for protons, around 400 steps in momentum, 2000 steps in R and 400 steps in
θ). If the models have faster varying derivatives in the coefficients or some of the constants change,
a more abundant number of steps has to be employed.

Figure 3.14: Scheme showing the computational molecules of the ADI method.

Same as before, the system goes from the analytical form

∂f

∂t
= krr

∂2f

∂r2
+
kθθ
r2

∂2f

∂θ2
+

(
2krr
r

+
∂krr
∂r
− Vwr + Vgr

)
∂f

∂r

+

(
cot θkθθ

r
+ Vgθ

)
1

r

∂f

∂θ
+

2Vwr
3r

∂f

∂ ln p
,

(3.62)
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to the simplified form,
a δrrf + b δθθf + c δrf + d δθf + e δln pf = 0

a = krr,

b =
kθθ
r2
,

c =

(
2krr
r

+
∂krr
∂r
− Vwr + Vgr

)
,

d =

(
cot θkθθ

r
+ Vgθ

)
,

e =
2Vwr

3r
.

(3.63)

This equation is far more complicated to solve, it involves solving an equation with two spacial
dimensions and one momentum dimension. To solve this type of system a method was used where
the iteration n→ n+1 is taken in two half steps n→ n+1/2→ n+1. This method is called Alternating
Direction Implicit (ADI) and it’s a two step numerical scheme which involves solving a forward in time
centred in space finite difference system twice. Its particularity is that the forward in time derivation is
done for one of the spacial coordinates at a time, as is shown in figure 3.14.

Rewriting expression 3.63 in the ADI finite difference scheme gives

1) aδrrf
n+1/2 + bδθθf

n + cδrf
n+1/2 + dδθf

n + eδln pf
n = 0

2) aδrrf
n+1/2 + bδθθf

n+1 + cδrf
n+1/2 + dδθf

n+1 + eδln pf
n+1/2 = 0.

(3.64)

Substituting the finite difference derivatives and solving the resulting system (same as in the 1D
case), one gets
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As expected, instead of one matrix system to solve, there are two,
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In general terms, we first calculate the entire solution for a given P in slices of constant r, running
over θ, after which, we run those values over the second system of equations in slices of constant θ,
running over r.

Similarly to the 1-dimensional case, we have a parabolic equation but, in this case its 2-dimensional
in space and 1-dimensional in time. This requires us to have one initial value and four boundary con-
ditions. The boundary conditions in r will be the same as 1D but the θ coordinate demands we take
another two in consideration.

As before, since Solar modulation is a phenomenon that affects low energy particles, meaning
that our initial condition in P = Pmax will again be

JT (r, θ, pmax) = JLIS(pmax). (3.67)

The boundary conditions at r = b and at r = rheliopause is as before

∂f

∂r

∣∣∣∣
r=b

= 0

JT (rmax, θ, p) = JLIS(p).

(3.68)

Due to a φ-symmetry, we can consider that at θ = 0 and at θ = π, the gradient of the density
function in the θ direction should be 0 since,

φ− symmetry =⇒ f(r, θ, φ) = f(r, θ, φ+ δ),∀δ
f(r, 0− ε, φ) = f(r, 0 + ε, φ+ π) = f(r, ε, φ)

f(r,−ε, φ) = f(r, ε, φ) =⇒ ∂f

∂θ

∣∣∣∣
θ=0

= 0

(3.69)

The same exact logic can be applied to the other pole of the sphere, thus showing our other two
boundary conditions,
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∣∣∣∣
θ=0

= 0

∂f

∂θ
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θ=π

= 0

(3.70)

The diffusion coefficient, magnetic field and Solar wind used were the same as in the 1D case.
The tilt angle used was α = 30 deg. This two dimensional simulation included additionally the drift by
the heliospheric neutral current sheet as given by〈

Vd

〉
=

2pv(r − b)
±B0r2

03q(1 + γ2)
δ(θ − θHCS)(γer + eφ), (3.71)

where γ = (r − b)ω sin θ/Vw, q is the charge, p the momentum, v the velocity and θHCS as given by

θHCS =
π

2
− arctan

[
tanα sin

(
φ− ω(r − b)

vw

)]
. (3.72)

3.6 Results from numerical simulation

3.6.1 Force-Field and 1D numerical solutions

We now present the results for the numerical simulations for a maximum momentum of 100 GV
(even though the plots are shown in terms of kinetic energy per nucleon since those are the units
commonly used in the field) and a heliosphere of 90 AU radius.
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3.6 Results from numerical simulation

Figure 3.15: Simulation of the Solar modulation of galactic cosmic protons, comparison of 1D solution with
force-field solution, the thin dashed red line represents the Force-Field solution while the others are 1D solution
at different radii, black line representing the R = 1 AU solution and orange representing R = 90 AU.

Figure 3.16: Simulation of the Solar modulation of galactic cosmic protons, comparison of 1D solution with
force-field solution, scaled, the thin dashed red line represents the Force-Field solution while the others are 1D
solution at different radii, black line representing the R = 1 AU solution and orange representing R = 90 AU.
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3. Solar Modulation

Figure 3.17: Simulation of the Solar modulation of galactic cosmic α particles, comparison of 1D solution with
force-field solution, the thin dashed red line represents the Force-Field solution while the others are 1D solution
at different radii, black line representing the R = 1 AU solution and orange representing R = 90 AU.

Figure 3.18: Simulation of the Solar modulation of galactic cosmic α particles, comparison of 1D solution with
force-field solution, scaled, the thin dashed red line represents the Force-Field solution while the others are 1D
solution at different radii, black line representing the R = 1 AU solution and orange representing R = 90 AU.

As can be seen in the previous figures the Force-Field solution gives out a very close approxima-
tion to the 1D resolution of the equation at R = 1AU and for large energies. As the observer moves
farther away from the earth, the Force-Field solution starts to deteriorate rapidly for lower energies.

For low rigidities, the solution deviates from the flux very rapidly as distance increases. Figure
3.19 depicts this effect by showing a more detailed simulation where the flux is shown for radii ranging
from 89 AU to 89.9 AU.
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3.6 Results from numerical simulation

Figure 3.19: Simulation of the Solar modulation of galactic cosmic protons, comparison of 1D solution with force-
field solution, the thin red line represents the Force-Field solution while the others are 1D solution at different
radii, black line representing the R = 1 AU solution and orange representing R = 90 AU. In yellow, the solution is
detailed for R=89.0,...,89.9.

3.6.2 2D numerical solutions

We now present the results for the numerical simulations for a maximum momentum of 100 GV
and a heliosphere of 90 AU of radius, where the function may vary when going from 0 to π as well.

Figure 3.20: Simulation of the Solar modulation of galactic cosmic protons in the 2D solution at different radii.
Black line represents flux at Earth, orange line the LIS flux and the red dots are AMS-02 2013 proton flux[61].

As can be seen in figure 3.20, the simulation shows great agreement with the measured flux by
AMS-02. The solution diverges a bit from data at the low-end. That might entice a small error in the
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3. Solar Modulation

parameters that go into the simulation. The data points on the plot were not scaled to fit the numerical
solution. Other datasets from other experiments are available but they are commonly probes that
travel across the Solar system, changing their position with time. This entails that for every data point,
a simulation had to be done since it is a snapshot in time.

Even though 2D solution presents a very similar behaviour to the previous for high and low mo-
menta, in the middle range, close to the maximum, it has a structure that is a little different from the
other simulations. This is related to the shape of the diffusion coefficient, as was shown by Caballero-
Lopez and Moraal [14] and to the HCS drift used. Their two dimensional shape creates a particle
drift that is not present in the simpler 1D simulation. The diffusion coefficient is still under study and
open for debate by the scientific community as different methods are used to estimate its shape and
dependency on basic variables such as velocity, rigidity and the magnetic field itself [46, 54].

The convergence, at higher energy, with the interstellar flux is one of the expected limits for Solar
modulation. Solar modulation is a low energy process and should, therefore, have little to no effect on
high energy particles, making the flux remain unchanged.

The next step in the study would be the usage of AMS-02 to estimate the cosmic ray flux and,
from it, extract the parameters required. These parameters are time dependent and require that the
simulation is done for several periods of time and with high enough data. The particle flux is also
charge dependent, different species will be modulated differently, thus requiring a very accurate data
selection. Unfortunately this was not done due to time constraints.

Even though a flux was not calculated, a framework of detector analysis was established and
selection tools were developed in order to be able to do so in the future. This will be the focus of the
next chapters.
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4. The AMS-02 Experiment

4.1 Introduction

The Alpha Magnetic Spectrometer (AMS) (as shown in figure 4.1) is a state-of-the-art particle
physics detector mounted on the International Space Station (ISS). It was built, tested and is being
operated by an international collaboration of 56 institutions from 16 countries, under the sponsorship
of the United States Department of Energy.

It was installed in the ISS by National Aeronautics and Space Administration (NASA) and is de-
signed to operate during the remainder of the station’s lifetime.

Figure 4.1: Photograph of the AMS-02 detector on the International Space Station.[4]

4.1.1 Brief History

AMS-02 is the second iteration of the Alpha Magnetic Spectrometer proposed by Samuel Ting in
1995. Under Professor Ting’s direction, the prototype, AMS-01, was built and made a 2 day flight in
orbit in June 1998.

AMS-01 proved that the prototype worked in space and was a fundamental step towards the
building of the AMS-02. In addition, it was able to establish an upper limit of 1.1 × 10−6 for the
antihelium to helium flux ration [2].

In 16 May of 2011, the Space Shuttle Endeavour carried AMS-02 into space, in the flight STS-134.
AMS-02 was installed 3 days later, beginning its data acquisition and, counting over 53 billion events
up to September 2014.

4.1.2 Scientific Goals

The AMS experiment has several goals: the detailed measurement of the cosmic ray spectrum,
the search for cosmological antimatter and the indirect search for dark matter signals. It is also able
to detect γ-rays using its electromagnetic calorimeter and its Silicon Tracker.

4.2 Sub-detectors

The AMS-02 detector is constituted by several sub-detectors and sub-systems (as seen in figure
4.2). As a whole, it’s designed to make independent measurements of several physical properties
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4.2 Sub-detectors

(electric charge, rigidity, velocity and energy) in order to identify the particle species and be able to
determine a precise cosmic ray spectrum.

(a) Full View (b) Detailed View

Figure 4.2: Detailed schematic representation of the AMS-02 detector [4, 64].

4.2.1 Transition Radiation Detector

The Transition Radiation Detector (TRD) is a sub-detector specialized in particle identification.
When a charged particle crosses a boundary between two media with different dielectric constants, it
emits photons. This radiation is known as transition radiation and is on the X-ray range.

At high energies, photon production is highly dependent on the Lorentz factor, γ. Due to its mass
being ∼ 1836 times that of an electron, a proton with kinetic energy 1TeV, would behave like a 0.5 GeV
electron in terms of transition radiation. This differentiation is the core of TRD’s detection principle.

The TRD is constituted of several of these interfaces together with several straws with a thin wire
in the centre and filled with a Xe− CO2 mixture which will then ionize as the particle goes through, as
shown in figure 4.3. The electron/positron case will have a greater component of X-rays.

Figure 4.3: Depiction of one layer of the straw system used in the Transition Radiation Detector in AMS-02[69].

The TRD then makes use of a likelihood function which takes into account the contribution of each
tube fired by the particle making the geometric average of the different probabilities estimated from
each tube (L = n

√∏n
i=0 Pi). This likelihood estimator is then used to estimate the probability of a

particle being of a given mass.
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4. The AMS-02 Experiment

4.2.2 Time-Of-Flight Detector

The Time-of-Flight System (TOF) is a detector designed to measure the times of impact with the
different planes and from them estimate particle velocity.

Figure 4.4: Schematic view of the Time-of-Flight detection system[31].

It also plays a fundamental role as a key integrand of the AMS trigger system (particle has to leave
a signal in 3 of the 4 planes).

It is composed of 4 planes of scintillation counters, 2 above and 2 below the magnet, containing
8-10 scintillator paddles (8,8,10,8 from top to bottom) with Photomultiplier Tube (PMT)’s on both sides.
Each TOF plane consists of paddles aligned along the x and y coordinates, respectively, as depicted
in figure 4.4.

4.2.3 Magnet

In the centre of the detector lies a Neodimium-Iron-Boron permanent magnet. This magnet sur-
rounds most of the TRK making possible rigidity measurement. It is fundamental in AMS since it is the
only sub-detector to allow for a direct electric charge sign measurement (particles of different electric
charge signs bend in different directions).

4.2.4 Silicon Tracker Detector

The Silicon Tracker Detector (TRK) consists of a series of planes made up of 2264 double-sided
silicon sensors.

With a position resolution of 10 µm in the bending direction, the TRK is responsible for measuring
the particle’s rigidity.

By making use of the hits from each plane, the TRK is able to measure rigidity by estimating
the curvature in the particle’s trajectory inside AMS’s permanent magnetic field. It is also possible
to extrapolate the particle’s trajectory, allowing for a precise estimation of the particle’s entry point
in the different sub-detectors (RICH depends on this estimation in order to make its own, as will be
explained later).
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4.2 Sub-detectors

Figure 4.5: Photography of the Silicon Tracker being cabled on AMS-02 magnet.

The TRK is kept aligned by the Tracker Alignment System (TAS). This device is used to periodically
keep track of the TRK’s mechanical deformations due to temperature changes (ISS has an orbital
period of ∼ 93 minutes, changing rapidly from daylight to darkness depending on the orbit).

4.2.5 Ring-Imaging Cherenkov Detector

The RICH is a sub-detector of AMS capable of measuring both velocity and charge of the travers-
ing cosmic ray by making use of the Cherenkov radiation phenomenon. It allows for the best velocity
measurement of AMS.

A more detailed description will be given in the next chapter.

4.2.6 Electromagnetic Calorimeter

At the bottom of AMS-02 lies Electromagnetic Calorimeter (ECAL). The ECAL consists of a series
of 9 super-layers, each with a thickness of 18.5 mm and composed of 11 grooved, 1 mm thick lead
foils interleaved with layers of 1 mm diameter scintillating fibbers, glued together with epoxy resin.

The detector’s imaging capability is obtained by stacking super-layers with fibres, alternatively
parallel to the x-axis (4 layers) and y-axis (5 layers). The detector has an average density of 6.9
g/cm3 for a total weight of 496 kg.

As the cosmic ray passes through ECAL, it creates a shower of particles whose shape is related
to the nature of the primary particle (electromagnetic shower for fermions and hadronic shower for
hadrons). ECAL is then able to reconstruct a 3D shower profile at 18 different depths, thus identifying
the species and direction of the incident particle. The sum of all layer signals in ECAL is proportional
to the particle’s deposited energy. It also allows for the AMS γ-ray measurement.

4.2.7 Anti-Coincidence Counter

The Anti-Coincidence Counter is a system built around the inside of AMS’s magnet in order to
reject particles which would transverse the detector from the side. These particles would interfere
with the detection of other particles.
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4. The AMS-02 Experiment

Figure 4.6: Photography of the Electromagnetic Calorimeter [48].

With this brief introduction to the detector’s composition and basic functioning, the road is paved
towards the detailed study of RICH.

42



5
RICH Resolution Study

Contents
5.1 The RICH Detector in AMS-02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 RICH Resolution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Particle Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

43



5. RICH Resolution Study

5.1 The RICH Detector in AMS-02

This chapter will be dedicated to the understanding the basic functioning principles behind the
RICH detector. It will begin with the estimation of the velocity measurement resolution and end with
the development of an estimator of particle species to be used in data selection (namely, proton/electron-
positron separation).

The process of selecting particles from a dataset consists of establishing a set of rules and then
making the decision of whether of not a particle is of a given species. The decision is made by
comparing the measurements of the different detectors (keeping in mind their resolutions and uncer-
tainties) against particle properties. Due to the innate imperfection associated with a measurement,
every selection rule (commonly known as a selection cut) will have a given efficiency. This efficiency
is the estimation of how the rule affects data, how many good events are being accepted against
all the good events present in the dataset. It is then essential to properly understand the detec-
tor being used, a bad estimation of a detector resolution may lead to inaccurate selection cuts and,
consequently, to a bad estimation of the physical quantity being studied.

As the name would indicate, RICH detection principle is based around Cherenkov radiation.

5.1.1 Cherenkov Radiation

When fast particles traverse a dielectric medium with a velocity greater than the speed of light in
that medium, coherent light in a characteristic conical pattern is created. This is known as Cherenkov
radiation.

Cherenkov radiation was discovered experimentally in 1934 by P. A. Cherenkov, under the su-
pervision of S. I. Vavilov [15]. This phenomenon was later theoretically interpreted by I. E. Tamm
and I. M. Frank [24] which, in 1958, were awarded the Nobel Prize in Physics for the discovery and
interpretation of the Cherenkov effect.

As charged particles pass through a dielectric medium they polarize the medium. This polarization
stays close to the particle as it moves along the medium and relaxes after a short time, emitting
radiation. If the speed of the particle is lower than the speed of light in the medium, cn = c/n, the
spherically symmetric wavelets generated around the particle never meet. On the other hand, if the
speed of the particle is higher than cn, the wave-fronts meet, interfere constructively and coherent
radiation is generated, as can be seen in figure 5.1.
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5.1 The RICH Detector in AMS-02

Figure 5.1: Diagram depicting Cherenkov radiation and the process by which it is created [32].

These waves propagate at the speed of c/n from the point from which they were emitted. After
a time t passes, all the wave-fronts are in a cone (as can be seen in figure 5.1) around the particle.
The direction of propagation of this shock wave (exterior normal vector to the conic surface) is the
direction angled with θC , which can be calculated using trigonometry,

cos θC =
ct/n

βct
=

1

βn
. (5.1)

The Cherenkov angle relates to the velocity via this principle, as shown in figure 5.2.
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Figure 5.2: Cherenkov angle as a function of velocity and rigidity, in Aerogel, for protons.

Frank and Tamm [24] were able to calculate the energy lost as a function of the crossed distance
in the material and of photon frequency, ω,

d2E

dldω
=
Z2α~
c

ω

(
1− 1

β2n2(ω)

)
, (5.2)

which when converted to photons of energy Eγ = ~ω becomes,

d2Nγ
dldEγ

=
2πZ2α

hc

(
1− 1

β2n2(ω)

)
, (5.3)

Using this principle, a RICH detector is able to measure the Cherenkov angle and estimate particle
velocity from it. It is also possible to determine the charge of the particle by studying the number of
measured photoelectrons.
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This method of identifying and measuring particles was first proposed by Jacques Séguinot and
Tom Ypsilantis in 1977 [62].

As it was seen in chapter 4, AMS-02 contains a RICH detector. This detector will be the main
focus of the sections to follow.

Figure 5.3: Cross-cut view of the RICH detector in AMS-02 [21].

5.1.2 RICH Velocity Measurement

As seen in the previous section, it is possible to estimate the particle’s velocity by determining the
Cherenkov radiation angle, θC .

The RICH detector in AMS-02 consists of a matrix of PMT surrounded by a conic mirror surface,
closed off by a dual radiator at the top made of a sodium fluoride central square section (n = 1.33 and
thickness 0.5 cm), surrounded by Aerogel (n = 1.05 and thickness 2.5 cm), as can be seen in figure
5.3. This radiator configuration was chosen to increase ring acceptance since it allows for wider rings
near the centre of the detector, where the hole in the PMT matrix due to the ECAL lies.

The detector is built in such a way that fast enough particles that traverse the radiator will create
a ring of photoelectrons in the PMT matrix below, which will then serve to estimate the Cherenkov
angle. The mirror helps increase ring acceptance by reflecting back onto the matrix any rings that
would be too close to the sides to have the full ring inside the detector.

In order to reconstruct the velocity of the particle, the LIP AMS group [20] developed a complex
algorithm that takes into account an average emission point in the radiator, the impact point of the
cosmic ray in the PMT matrix and the uniformity of the hit distribution in the ring (keeping in mind
the deformation of the intersection of the Cherenkov cone with the matrix). Figure 5.4 shows the
trajectory of a particle inside the detector and the formation of a Cherenkov ring. The algorithm is
based in calculating the probability that a given hit in the matrix belongs to a ring, turning the problem
into one of finding the ring that maximizes a likelihood function L(θC),

L(θC) =

Npe∏
i=1

Pwi(ri(θC)) (5.4)

where Npe is the number of hits in the event (except those associated with the impact point of the
particle in the matrix), wi is the hit’s weight and ri is the linear distance of the hit to the ring pattern
being tested. Figure 5.5 depicts a reconstruction of a ring.

A very basic way of understanding this reconstruction is that the track extrapolated from the silicon
Tracker measurement gives particle direction and impact point in the radiator and the hits give the
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5.1 The RICH Detector in AMS-02

Figure 5.4: Diagram depicting the geometry of the RICH sub-detector in the AMS-02 overall scheme.

cone aperture. In order to do so, it was determined that at least three hits in the PMT matrix were
required to be able to measure the Cherenkov angle accurately [20].

5.1.3 Proton Data Analysis

The RICH velocity measurement can be studied by making use of the the large amount of proton
data collected by AMS. These protons have to be selected from the complete dataset.

A dataset was created from 2 years of data (2011 to 2013) in order to study RICH performance.
The following selection criteria were applied to every event in this dataset.

• Pre-selection

1. Have a level 1 trigger (TOF based)

2. Have a DAQ event

3. No Hardware errors

4. Detector livetime larger than 0.65 for the acquisition second

5. Particle rigidity larger than the geomagnetic cutoff rigidity

• General Selection

1. Have only one particle track reconstructed coherent with the different sub-detectors (TRK,
RICH, TOF,...)

2. Have only one RICH ring

3. Have only one TRK track

• Species Cut

1. Particle rigidity > 0

2. Being selected as a proton by the TRD estimator

3. Having a charge measured by the silicon Tracker between 0.5 and 1.5
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Figure 5.5: Reconstruction of simulated proton in Aerogel in RICH. [20]

• Tracker Cuts

1. Have at least the complete Inner Tracker (planes inside the magnet) to reconstruct rigidity

2. Track fit reconstruction χ2 < 10 in the bending direction

• RICH cuts

1. Particle track extrapolation in RICH acceptance

2. Ring from Aerogel radiator

3. particle track extrapolation pass within 1 cm of the radiator tile border

4. Kolmogorov test > 0.1 (hit distribution flatness along the ring)

5. Ring acceptance higher than 0.4

6. Number of hits not used in the reconstruction has to be smaller than those used

These cuts were done keeping in mind that they can be applied to both Monte-Carlo and real data.
Since the Monte-Carlo used was a pure proton sample, only the General Selection, the Tracker Cuts
and the RICH Cuts were applied to it. When being used in the C++ analysis code, the order of the
cuts was optimized for the analysis, the existence of a RICH ring was demanded before anything else.

The AMS data production used on both Monte-Carlo and ISS data was B800 and the results are
presented in figures 5.6 and 5.7.
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5.1 The RICH Detector in AMS-02

Figure 5.6: RICH velocity measurement for Aerogel, as a function of rigidity, for a real data proton sample.

Figure 5.7: RICH velocity measurement for Aerogel, as a function of rigidity, for a Monte-Carlo proton sample.

Looking at figures 5.6 and 5.7, we can see that the main curve is the proton curve while the signal
to the left (remembering that protons in Aerogel only starts radiating at ∼ 2.5 GV) are secondary
particles that are created when the primary passes through the detector. A mass cut could be used
here (in this case, a mass cut would constitute of choosing only particles in a certain band around the
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proton curve, for example P±0.5P ∧ β±0.01β). It was chosen to not do cut the secondaries off with a
mass cut for two reasons: they constitute a very small part of the data (they are very localized to small
momenta and to velocities very close to unity) and cutting them off might adulterate the resolution.

Now that it is known how many particles pass the selection, how these are measured will be the
next subject in focus.

5.2 RICH Resolution Model

As shown in the previous section, proton data will be organized in bins of momentum and ve-
locity (dp,dβ).To each slice in momentum, the velocity distribution was fitted according to a normal
distribution. The width of fitted the distribution is shown in 5.8.

Figure 5.8: Velocity distribution width using a Gaussian fit function, applied to AMS-02 data.

This velocity resolution does not reflect the RICH velocity resolution, it includes both the velocity
resolution and the spread caused by the contribution of particles from rigidities outside the momentum
bin considered.

The arbitrary choice of a bin [p1, p2] does not mean that every particle within it had their true
momentum lie between p1 and p2. Taking into account the spread of momentum measurement, the
particle’s true momentum lies in a bin with the width given by

∆p0 ∼ (p2 − p1) + 6σp. (5.5)

This expression means that the measured resolution is a function of both momentum and velocity
resolution and that the following relation can be written,(

σβ
β

)
=

(
σβ
β

)
p

⊕
(
σβ
β

)
RICH

=
1

(p0/m)
2

+ 1

(
σp0

p0

)
p

⊕
(
σβ
β

)
RICH

. (5.6)

To estimate RICH resolution from this dataset, a likelihood function was built, L(β). This function
is used to calculate the probability, P = L(β)dβ, that a given velocity measurement β, comes from a
particle whose measured momentum lies with the momentum bin, [p1, p2]. It takes into account that
a particle with a measured momentum lying in the interval [p1, p2] has its true momentum belong to a
larger range, p1 − 3σp < p0 < p2 + 3σp, as shown previously.
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5.2 RICH Resolution Model

Defining L(p0) as the probability of having a particle of momentum p0 belong to the interval [p1, p2],
defining g(β, β0) as the probability that a true velocity β0 is measured as a velocity β and integrating
over true momentum p0, one can write the likelihood function L(β) as

L(β, σβ , σp) = A

ˆ p2+3σp

p1−3σp

dp0Φ(p0)L(p0, σp)g[β, β0(p0,m), σβ ]. (5.7)

Assuming velocity measurement is given by a normal distribution, one can write

g[β, β0(p0,m), σβ ] =
1√

2πσβ
exp

[
−1

2

(
β − β0

σβ

)2
]
. (5.8)

The two missing elements come from the parametrization of the smearing in rigidity measurement
(L(p0)) and the estimation of the primary flux.

5.2.1 Tracker Resolution Study

In order to calculate L(p0), one must first understand how momentum is measured and with what
uncertainty. As it was seen previously, the sub-detector responsible for the rigidity measurement is
the Tracker. The process of reconstructing the particle’s rigidity is based on estimating the sagitta of
the trajectory, a value proportional to 1/R, where R is the curvature radius of the trajectory inside the
magnetic field, as depicted in figure 5.9. From electromagnetism it is known that, R = mv⊥/(|q|B) =

P/B, where P is the particle’s rigidity, given by P = p/q. From this it can be deduced that the
sampled variable is proportional to the inverse of rigidity, 1/P , henceforth known as X. Additionally, it
is convenient to start working in rigidity instead of momentum. This will not constitute a great change
in the expressions but since it is the natural variable in this particular problem, it will be the used
variable.

Figure 5.9: Diagram depicting particle interaction with the Tracker detector and track extrapolation.

One can now calculate how relative error in rigidity relates to the relative error in inverse rigidity by
doing

X =
1

P
=⇒ dX =

∣∣∣∣−1

P 2

∣∣∣∣dP =⇒ dX =

∣∣∣∣−XP
∣∣∣∣dP =⇒ dX

X
=

dP

P
. (5.9)
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Since relative errors are the same one can study the relative resolution of inverse rigidity and
use it the same way relative rigidity resolution would be. The likelihood function L(P0) can now be
calculated and inserted into expression 5.7

L(P0, σp) =

ˆ P2

P1

fP (P, P0) dP =

ˆ X2

X1

fX(X,X0) dX =

ˆ X2

X1

1√
2πσX(P0)

exp

[
−1

2

(
X −X0

σX

)2
]

dX

= 0.5

[
Erf

(
X2 −X0√

2σX

)
− Erf

(
X1 −X0√

2σX

)]
.

(5.10)
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Figure 5.10: Plot highlighting the smearing effect of rigidity measurement by showing the contribution of a 6 GV
cosmic ray to the bin 7-8.

The way L(P0) estimates the probability that a cosmic ray’s measured rigidity lies in a given bin is
shown in figure 5.10. For a cosmic ray of true momentum of 6 GV, the value of L(P0) is calculated by
integrating the rigidity distribution function over the interval [7, 8] GV. This smearing effect will produce
a range of true rigidities larger than the interval in question, as is depicted figure 5.11 where L(P0) is
plotted as a function of true rigidity, for a resolution of 11%.
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Figure 5.11: Plot showing the contribution of every rigidity to the bin 7-8 GV.
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In order to estimate rigidity migration, one can make use of the AMS-02 Monte Carlo simulation
but, in order to do that, a new variable has to be defined, tX = X−X0

X0
. It can be shown that 〈tX〉 =

〈X〉 −X0 and that var(tX) = var(X)/X2
0 . It is then easy to show that if X is Normally distributed tX

will also be normally distributed (which data will also show that it is). This implies σtX = σX/X0.
Using the proton sample from the official AMS Monte Carlo simulation of the detector, it is possible

to estimate relative rigidity measurement resolution from tX ’s resolution (shown in figure 5.12) by
fitting a normal distribution to slices of figure 5.12.

Figure 5.12: Inverse rigidity relative shift as a function of rigidity, for a MC proton sample.

With the purpose of verifying rigidity resolution dependency with inverse resolution, two different
distributions were used to fit to this dataset, the first was a double Gaussian with two different averages
and two different standard deviations, while the second was a single Gaussian. Figure 5.13 shows
the comparison between the results for resolutions in the main Gaussian of both models. These were
applied to the Monte Carlo sample.
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Figure 5.13: Comparison between the sigma of one Gaussian model versus the sigma of the main Gaussian in
the two Gaussian model, as fitting functions.

For clarity, a slice in rigidity, from 6.5 to 7 GV, was taken from the histogram in figure 5.12 and
displayed in figure 5.14.

Figure 5.14: Inverse rigidity relative shift fit to slice 6.5-7 GV.

As can be seen in 5.15, the weight of the second Gaussian is very small. Due to this fact, it was
decided to only use the single Gaussian distribution during the following studies.
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5.2 RICH Resolution Model

Figure 5.15: Relative weight between the two Normal distributions fitted to rigidity resolution.

For completeness sake, figure 5.16 shows the standard deviation for the second Gaussian in the
two Gaussian model.

Figure 5.16: σP /P for the second gaussian in the two gaussian model for the rigidity resolution, as a function of
particle rigidity.

5.2.2 Primary Cosmic Ray Flux

The next and final step towards the complete elaboration of the RICH resolution model is the
comprehension of the term Φ(P0) from the likelihood function in expression 5.7, the flux of primaries
that generates the dataset being studied.

5.2.2.A Local Interstellar Spectrum

One can start with the primary cosmic ray flux. This is the number of particles (in this case protons)
reaching the Solar system per unit of time, per interval of rigidity, per unit of transverse area and per
unit of angular aperture,

dN0

dTdAdΩds
(T ) =

dN

dT
=

18.9T−2.79

1 + 6.75T−1.22 + 1.30T−2.8 + 0.0087T−4.20
. (5.11)

This is the same flux as used on chapter 3, but on different units (more appropriate for this study),
and is depicted in figure 5.17.
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Figure 5.17: Local interstellar primary proton flux[68].

5.2.2.B Solar Modulation

If there were no other effects, the previous flux would have been enough, but this is not the case,
there are three elements that must also be taken into consideration, the first being Solar modulation.
As it was shown previously, low energy cosmic rays (P < 40 GV) have their energy shifted when they
cross the heliosphere. To take this effect into consideration the simplest model was used (in order to
improve computational performance), the Force-Field model, which takes the form

JT (1AU,E) = JLIS(E + ΦSM )
E2 −m2

(E + ΦSM )2 −m2
, (5.12)

as seen previously, and is depicted in figure 5.18.

Figure 5.18: Solar modulation Force-Field factor by which the flux is multiplied.

5.2.2.C Geomagnetic Cutoff

The second phenomenon to take into account is the geomagnetic rigidity cutoff. As mentioned in
section 3.3.1 the Earth’s magnetic field will trap particles with momentum lower than the cutoff value.
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5.2 RICH Resolution Model

In order to estimate the probability that a particle with a given rigidity surpasses Earth’s magnetic
field, an histogram was made. For any given position of the ISS, the cutoff rigidity was estimated and
to every bin after the cutoff, one count was added to it. This means that at one particular time, only
particles with a larger rigidity than the cutoff would be detectable by AMS.

Filling the histogram with a large number of ISS orbits (3 months) and normalizing it so that when
P0 → +∞, Pcutoff(P0) = 1, it then becomes the probability that a particle with a given rigidity is
detectable by AMS-02. The result can be seen on figure 5.19.

Figure 5.19: Probability that a particle of rigidity P is able to reach ISS, through the Earth’s magnetic field,
averaged out over 3 months.

the parametrization of this effect is essential if the objective is the study of low energy Galactic
cosmic rays. If particles with rigidity lower than the cutoff rigidity are detected, those particles had to
be trapped in Earth’s magnetic field, making their origins uncertain.

5.2.2.D Ring Probability

The third and final requirement is no longer related to the physics of the cosmic rays but rather
to the detector in study, the RICH detector. As it was explained previously, in order to determine the
aperture angle of the Cherenkov ring, at least three hits in the matrix are required. This geometric
constraint can be parametrized by a function which gives the probability of having a RICH ring formed
for a given rigidity. In previous studies made by the LIP AMS-02 group [20], the average number of
photons emitted was estimated and parametrized as a function of particle’s rigidity, as shown in figure
5.20.
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Figure 5.20: Mean number of radiated photoelectrons for Aerogel radiator for vertical protons, as a function of
rigidity, in AMS-02.

Using this parametrization, it is possible to determine the probability that a particle with a given
rigidity has a well enough defined ring that it can be accurately measured (at least 3 hits).

Considering that the number of hits is approximately given by a Poisson distribution function with a
mean of Npe(P0) (Nhits ∼ Poisson(µ = Npe(P0))), the three hits requirement becomes P (Npe >= 3)

which is the same as having 1− P (Npe < 3). This probability can be calculated by doing

Pring(P0) =

2∑
i=0

µi

i!
e−µ = 1− (1 + µ+ 0.5µ2)e−µ, µ = Npe(P0). (5.13)

Figure 5.21 shows the result of the estimated ring probability in the Aerogel radiator for protons,
as a function of particle rigidity.

Figure 5.21: Cherenkov ring probability for AGL, as a function of rigidity, in AMS-02, for protons.

Careful observation of the ring probability function will show that the probability starts differing
from 0 near the 3 GV rigidity instead of the ∼ 2.84719 GV for a proton in Aerogel (n = 1.0529). This
is due to another imposition made by the reconstruction algorithm. As the cosmic ray passes through
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the detector, it also passes through the matrix, leaving a signal in the PMT’s in the matrix that does
not come from the Cherenkov cone of light. To prevent mistaking the signal ring from this central
gathering of this, an association distance larger than 5 cm is required by the algorithm. Since the
detector is 48 cm, this distance imposes then a new radiation threshold of ∼ 3.0173 GV.

5.2.3 The Full Model

All the necessary elements are now well understood and the model can be applied to both Monte
Carlo and AMS-02 data. The fully parametrized model can be written as

L(β, σβ , σX) = A

ˆ p2+3σX

p1−3σX

dP0Φ(P0)L(P0, σX)g[β, β0(P0,m), σβ ]

= A

ˆ p2+3σX

p1−3σX

dP0
dN0

dP0
(P0)Pring(P0)Pcutoff(P0)SM(P0)

0.5

[
Erf

(
X2 −X0√
2σX(P0)

)
− Erf

(
X1 −X0√
2σX(P0)

)]
1√

2πσβ(P0)
exp

[
−1

2

(
β − β0

σβ(P0)

)2
]
.

(5.14)

The full likelihood function, calculated for several rigidity bins, can be seen in 5.22.

(a) 4 - 5 GV (b) 7 - 8 GV

(c) 15 - 16 GV

Figure 5.22: Probability density function of velocity, under the full model, for different rigidity bins.
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This study has the goal of estimating RICH velocity resolution as a function of rigidity and, in doing
so, it will also estimate TRK resolution from data. This revealed to be a cumbersome task due to the
number of parameters and the models used to describe the individual detectors. This function was
evaluated numerically (numerical integration with Gauss-Legendre quadrature rule).

To recover both rigidity and velocity resolutions, the likelihood function from expression 5.14 must
be used as a fit function to rigidity slices of 5.7. Since both rigidity and velocity resolutions are
functions of the particle’s true rigidity, when data gets organized in bins, the smearing effect mentioned
in section 5.2 gains importance once more. The only way to be able to use expression 5.14 as a fit
function is to assume that the resolutions in the model are constants within the bin chosen. This
means that the estimated values are not a function of true rigidity explicitly but rather an average
of that variable over the bin. This is a necessary approximation due to the statistical nature of the
problem but this is not uncommon to do and the error is not high so long as the bins are chosen to be
narrow enough.

Now that the model is fully defined and all the inherent approximations and models are character-
ized, the likelihood function can be applied to data.

5.2.4 Results from Fit to Monte Carlo Data

The model was firstly applied to Monte Carlo data and the results are shown in figures 5.23.

(a) 4 - 4.2 GV (b) 8 - 8.2 GV

(c) 12 - 12.2 GV (d) 16 - 16.2 GV

Figure 5.23: Plot of the model fitted to Monte Carlo data, for several rigidity intervals.
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Gathering the results from the fits made throughout all the rigidity range, divided into bins of 0.2
GV width, yielded figures 5.25 and 5.24.

The fit function shows good agreement with the MC data sample.

Figure 5.24: Comparison of rigidity resolution between the full model fit, the single Gaussian fit to relative shift
and the double Gaussian fit to relative shift in rigidity (displaying only main Gaussian in the double Gaussian
case), applied to a Monte Carlo proton sample.

Figure 5.25: Aerogel velocity resolution, estimated for a Monte Carlo proton sample, using the full model as a fit
function.

Relative rigidity resolution, σP /P (figure 5.24), shows the expected behaviour but with a higher
slope.

RICH’s relative velocity resolution, σβ/β (figure 5.25), displays a similar behaviour to that of figure
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5.8 but, as expected, with lower values (from ∼ 3.00× 10−3 to a plateau of ∼ 1.25× 10−3).

5.2.5 Results from Fit to AMS-02 Data

The same model was then applied to AMS-02 cosmic ray data, yielding the following results pre-
sented in figure 5.26.

(a) 4 - 4.2 GV (b) 8 - 8.2 GV

(c) 12 - 12.2 GV (d) 16 - 16.2 GV

Figure 5.26: Plot of the model fitted to AMS-02 data, for several rigidity intervals.

Organizing the results into graphs once more and comparing them to the results obtained using
Monte Carlo gave the results shown in figures 5.27 and 5.28.

62



5.2 RICH Resolution Model

Figure 5.27: Rigidity resolutions, from full model, for Monte Carlo and AMS-02 cosmic ray data.

Figure 5.28: Velocity resolutions, from full model, for Monte Carlo and AMS-02 cosmic ray data.

Even though it appears that the model is quite sensitive to the velocity resolution, the estimation
of rigidity resolution is not perfect. This is due to the interaction between the shape of the flux and the
tracker resolution. Although the primary cosmic ray flux was included in the model, small fluctuations
between it and the real one can be masked as a larger contribution in rigidity resolution (instead
of having more cosmic rays at a smaller/larger rigidity than the considered, the model increases
the counting in that bin by making the resolution larger). Another contribution to this error lies in the
selection of data which might slant the flux due to its efficiency not being perfectly flat over all rigidities.

Another thing to keep in mind is that both the width in rigidity and the width in velocity contribute
to the width of the distribution. This entails that, to some degree, the two widths are correlated. Even
if this is the case, since the two distributions have such a different topology (one is symmetrical and
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the other is not), one can assume that with a big enough statistics, this correlation will eventually
disappear.

The model degenerates on both resolution estimations for the first values of the plot (∼ 3 GV), due
to not having much statistic near the Cherenkov radiation threshold for protons. Despite this, a fairly
good agreement was gotten between both resolutions for both datasets.

The model also showed another aspect that can be a theme of study in later works, the tails of
the distributions were not very well parametrized by our model when the effort was made to better
fit the peak and main body of the distribution. There are two big contributions to these tails, the
simplified model used to describe the Tracker resolution (AMS-02 studies indicate that the proper
resolution should have two Gaussian distributions overlapped on inverse rigidity to better cover the
tails of the distribution) and due to particle contamination which might slant the distribution. Particle
contamination happens both due to a compromise between cut efficiency and event number and to
particle interactions inside the detector that might interfere with the proper construction of a ring in
RICH.

The model revealed to be a success, giving, at the same time, an estimation of both the TRK’s and
RICH’s resolutions, as well as showing that even though bin migration is present in all measurements
it can be duly parametrized.

Now that velocity and rigidity resolutions are known, a study on how they affect particle discrimi-
nation can be done.

5.3 Particle Estimator

As a final step for this work, a particle estimator based around RICH’s great relative resolution
(∼ 1.25× 10−3) will be built. It will try to identify and discriminate particles up to ∼ 15 GV rigidity.

The problem of accurate particle identification is relevant in AMS-02 when trying to select electrons
(or positrons). In the positron case, the charge sign and absolute value is the same, forcing an
identification based on other physical properties as well. Due to the abundance of protons in the
primary flux, estimating the electron flux is as much about selecting electrons as it is trying to eliminate
the proton contamination.

5.3.1 Probability and Measurement

This estimator is based on the independent measurement of particle properties by different de-
tectors (RICH and TRK). From the previous study, both velocity and rigidity distributions are well
understood. Both velocity and inverse rigidity are normally distributed.

This estimator is constructed around the concept of measurement. As a particle’s rigidity is mea-
sured, one knows that the particle’s true rigidity has to lie somewhere around the measured value.
Knowing rigidity’s measurement distribution, one can say that the probability that a given X is the true
inverse rigidity is given by Prob = g(X,Xm, σX) dX.

After rigidity is measured, as the particle proceeds down the detector a RICH independent mea-
surement is made, a measurement in velocity. Since velocity and rigidity are connected, the indepen-
dent velocity measurement should be centred around the true velocity, β0, with a certain spread. This
means that every rigidity measurement represents an interval around which a true rigidity might lie
and that true rigidity will create a velocity measurement centred on the true velocity, as is depicted in
figures 5.29 and 5.30.
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Figure 5.29: Scheme depicting the construction of the particles velocity probability density function.

Following this line of thought, a probability density for velocity might be written as

dP = g(X,Xm, σX) dX︸ ︷︷ ︸
Prob. of X∈[X;X+dX]

g(β, β0(X,m), σβ) dβ, (5.15)

or, in a probability density function (PDF) form,

dP

dβ
=

ˆ +∞

0

dXg(X,Xm, σX) g(β, β0(X,m), σβ). (5.16)

This expression would be valid in the case that every rigidity measurement gave rise to velocity
measurement. This is not the case. Due to RICH detector detection principle, there is a probability
that a ring is formed for any given particle rigidity (as was shown in section 5.2.2.D). This implies that
the complete probability density function for velocity is given by

dP

dβ
=

ˆ +∞

0

dXPring(X,µ(X))g(X,Xm, σX) g(β, β0(X,m), σβ). (5.17)

Figure 5.30: Diagram depicting the interaction between the RICH and Tracker.
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By thinking in terms of measurements, one can create a probability density function for β and
attribute each measured value a different probability of it being compatible with the rigidity measure-
ment. A way to calculate this compatibility is done by integrating expression 5.17 in velocity from the
measured value to the closest infinity, away from the peak of the distribution, as is shown in figure
5.31. This area represents a probability of the measured velocity βm belonging to the distribution and
is peaked at 0.5, requiring a factor of two so that the function value ranges from 0 to 1.

Figure 5.31: Graph depicting the calculation of velocity probability.

The likelihood function that accurately represents the compatibility of rigidity and velocity mea-
surements (Xm, βm) is then given by

P (βm |Xm,m) = 2

ˆ +∞

0

dX0Pring(X0) g(X0, Xm, σX0) ·

{´ βm
0

dβg[β0(X0, m), β, σβ ] if βm < β0´ +∞
βm

dβg[β0(X0, m), β, σβ ] if βm < β0

= 2

ˆ +∞

0

dX0Pring(X0) g(X0, Xm, σX0) ·

0.5
[
Erf

(
βm−β0√

2σβ

)
− Erf

(
−β0√
2σβ

)]
if β < β0

0.5
[
1− Erf

(
βm−β0√

2σβ

)]
if β < β0

(5.18)
Now that the framework has been laid down, the resolutions have to be parametrized if one seeks

to properly identify particles. The AMS-02 software chain provides an error estimation for every rigidity
measurement. This error comes from in-depth studies of the entire TRK system and not only from
statistical dispersion alone (mainly from a geometrical stand-point - impact point, irregularities in the
magnetic field, ...), that error will be taken as a good estimation of where the cosmic ray should lie,
rigidity-wise.

In the case of velocity resolution, the estimation from the previous section will become useful.
A detail has been overlooked so far, the constraint between the two measurements, the mass

hypothesis. This parameter is crucial to the distribution since it relates the true value of both mea-
surements, causing different particles to have different estimators. The estimator gives the probability
that, given a certain rigidity measurement and a mass hypothesis, the velocity measurement belongs
to the distribution, in other words, it measures the probability that a measured (rigidity,velocity) pair
belongs to a particle of a given mass. Under Bayes’ formalism, one can even try to find out how likely
it is that a particle mass generated the dataset by doing

prob(hypothesis|data) ∝ prob(data|hypothesis)× prob(hypothesis), (5.19)
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but that calculation is outside the scope of this work since the following studies will be done in a Monte
Carlo pure proton sample, implying that prob(hypothesis) = 1.

5.3.2 Monte Carlo Studies

To study estimator’s performance, it was applied to a pure Monte Carlo sample of protons (same
used in the previous section), giving the results depicted in figures 5.32 and 5.33.

Figure 5.32: Probability that a particle is a proton as given by the estimator, as a function of rigidity, ran over a
Monte Carlo proton sample.

This result is highly influenced, rigidity-wise, by the relative abundance of events at different rigidi-
ties so a normalization was done in order to clarify the histogram,
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Figure 5.33: Probability that a particle is a proton as given by the estimator, normalized, as a function of rigidity,
ran over a Monte Carlo proton sample.

Looking at figure 5.33, an almost flat distribution arises, surrounded by a border. This would be
a somewhat unexpected result if put out of context. The border is created by the ring probability. It
creates a threshold probability, due to number of hits in the PMT matrix.

The near flatness of the distribution in probability is due to the way this probability is calculated. It
is estimated by integrating the distribution in velocity from from 0 to βm (or from βm to∞). This is the
calculation of the cumulative probability function.

Statistics show that when a variable x is distributed according to a PDF,

dN

dx
= f(x), (5.20)

if a new variable u(x) =
´ x
−∞ dx′ f(x′) is defined, it can be seen that

dN

du
=

dx

du

dN

dx
=

1

f(x)

dN

dx
= constant. (5.21)

Since the probability is constructed in the same way u was, if when calculating the integrated
probability of βm the distribution is flat, the PDF in study is in fact an accurate approximation of the
true distribution that generated the dataset.

The next step is to evaluate the result of the estimator for the electron mass hypothesis, against
the same Monte Carlo sample of protons. This result is shown in figure 5.34.
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Figure 5.34: Probability that a particle is a electron as given by the estimator, normalized, as a function of rigidity,
ran over a Monte Carlo proton sample.

Figure 5.34 shows the expected behaviour for the electron probability, for small values of rigidity,
the electron PDF is so far away from the proton measurement that the probability is constantly zero.
The clear non-flat behaviour is another hint, it shows that the PDF associated with the electron does
not accurately describe the behaviour of the proton sample for such low values of measured velocity.

After P ∼ 7.5 GV , small values of probability start to appear as the two PDF’s intersect, up to
the point where they become nearly indistinguishable (for P > 15 GV). When the two PDF’s merge,
the probability of being a proton is almost identical to that of the electron and so, even for this Monte
Carlo proton sample, the electron probability starts displaying a near-flat behaviour as well (after
P ∼ 15 GV). These changes in behaviour can easily be seen in figures 5.35 and 5.36 where profiles
of both the proton and electron distributions are shown. Proton displays a regular behaviour where
the electron starts off with a very slant distribution up to a flat one at high rigidities.
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Figure 5.35: Profile of the probability distribution that a particle is a proton as given by the estimator, ran over a
Monte Carlo proton sample.

Figure 5.36: Profile of the probability distribution that a particle is a electron as given by the estimator, ran over
a Monte Carlo proton sample.

These results show good prospects for the estimator. Figure 5.37 displays two important be-
haviours, the predominance of the distribution near the Probe ∼ 0 and the lack of correlation between
the two variables (Probp 6= Probe). It also highlights the fact that the one instance where both prob-
abilities are somewhat correlated is when the measurement is bad and both probabilities return very
low values. Even though it does not happen very often, these kind of events have to be rejected due
to not being described by either of the two probabilities (populations) in this model. In real data, these
events could belong to either bad reconstructions or to a third population of particles.

Knowing how the estimator behaves for a pure sample is important but one wants to understand
the implications of using it in the process of selecting data.
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Figure 5.37: Probability that a particle is an electron as given by the estimator as a function probability of being
an proton, ran over a Monte Carlo proton sample.

5.3.3 Particle Separation and Contamination

The probabilities determined in the previous section can be used standalone or an hypothesis
test can be built to decide between two particle species.

This test [17] consists of choosing the different hypotheses (the null hypothesis and the al-
ternative hypothesis) and our test statistic. The test statistic is a choice of analysis variable that
parametrizes the problem, the variable used to study the problem. This choice is usually associated
with a simplification or dimensional reduction of the problem.

After the hypothesis are made, an appropriate cut must be selected. This cut (or decision bound-
ary) is associated with a decision to choose the first or the second hypothesis based on the fact that
the event being analysed lies on the region of value greater or lower than tcut

More often than not there is an overlap of the PDF’s and the choice of tcut implies a choice of how
much of the main signal is chosen and, consequently, how much of the background.

As stated previously, AMS-02 flux is primarily protons. When selecting electrons/positrons, there
is a high chance of having protons in the selection, a contamination. Using the Monte Carlo sample of
protons, and the decision framework presented, it is possible to calculate the theoretical contamination
of protons to a given particle sample.

The contamination, C can be calculated by doing

C =

´ 1

x
dProbS̄

dN
dProbS̄´ 1

0
dProbS̄

dN
dProbS̄

, (5.22)

where S represents the particle species in study.
This contamination may not be easy to calculate but can be determined through the Monte Carlo

proton sample.
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Figure 5.38: Contamination of protons as a function of Probe, for the rigidity bin 11-12 GV, estimated using a
proton Monte Carlo sample.

Figure 5.38 shows the contamination as a function of the cut for the bin 11-12 GV. It displays the
expected behaviour, for very light cuts, the contamination saturates, most protons are able to pass
that cut and contaminate the electron sample. On the other hand, if the cut is very high (tcut > 0.9),
the proton contamination stays low.

One can then calculate an optimized cut such that contamination is smaller than a given value.
Due to the abundance of protons in the AMS-02 measured spectrum, when selecting protons, one
would not want a contamination to be higher than the signal itself. With that in mind, a cut in Probe

was developed in order to keep the contamination lower than the electron relative abundance, 1/100.
This plot is shown in figure 5.39.

Figure 5.39: Cut in Probe/(Probp + Probe) that insures a proton contamination lower than 1%, as a function of
rigidity, estimated using a proton Monte Carlo sample.

Now that the contamination of a theoretical electron sample with protons is understood it is possi-
ble to calculate the efficiency of selecting electrons using the estimator presented. As shown by the
previous section, the distribution of the variable ProbS to a pure sample of the particle S (assuming
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the detector behaviour is well understood) is flat. This entails that dN
dProbS

= constant and, since the
efficiency is calculated from

ε =

´ 1

tcut
dProbS

dN
dProbS´ 1

0
dProbS

dN
dProbS

= 1− tcut, (5.23)

where tcut is simply the chosen cut on the variable ProbS .

5.3.4 Relative Probability

As a final step in the study, one would want to create a new variable that would express the be-
haviour of both the proton probability and the electron probability. The chosen variable was Probp

Probp+Probe
.

This variable reflects the development of proton probability relative to the electron probability. The re-
sult of this variable on the MC proton sample is displayed in figure 5.40.

The study of figure 5.37 showed a correlation that is relevant to this study, the low probability
regime for both probabilities. If both proton and electron probabilities are low, one has to say the
particle belongs to a third population (even if that population is the bad reconstruction population) and
can not use the new variable to select it. In this scenario, this variable would fluctuate around the 0.5
value without having any particular meaning, it would be a background centred around 0.5 in figure
5.40 for almost any rigidity. To counter this, an arbitrary cut was chosen, one of the probabilities had
to be larger than 0.01 if the ratio was to be calculated.

Figure 5.40: Probability that a particle is a proton as given by the estimator divided by the probability of being a
proton plus the probability of being an electron ( Probp

Probp+Probe
), ran over a Monte Carlo proton sample.

For clarification, slices of 2 GV width were taken of figure 5.40. These slices are presented in
figure 5.41 and allow for a clear visualization of how the two probabilities interact.
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(a) 3 - 5 GV (b) 5 - 7 GV

(c) 7 - 9 GV (d) 9 - 11 GV

(e) 11 - 13 GV (f) 13 - 15 GV

Figure 5.41: Slices in rigidity of Probp
Probp+Probe

, 2 GV wide, ran over a Monte Carlo proton sample.

In the first bins, the separation is complete, there are two very well separated peaks where par-
ticles are either identified as protons or as electrons. As rigidity grows, the two probabilities stay far
away from each other but some events start filling the space between them. After a certain rigidity,
P > 15 GV, the distribution starts displaying two populations that tend towards 0.5. The symmetrical
nature of the estimator, for high momenta, gives rise to this dual behaviour tending towards 0.5 which
reflects the merging of the PDF’s for both estimators.
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To study the low probability for low rigidity population, a plot on velocity versus rigidity was done for
all events with lower probability than 0.1. This plot is shown on figure 5.42. This plot clearly showcases
the bad probabilities at low rigidities. There are two obvious curves, a sample contamination and the
proton curve itself progressing towards the higher velocities (where it becomes hard to distinguish
the two probabilities). This contamination is due to low mass secondary particles generated by the
proton as it traverses the detector, generating the peak at low probabilities seen throughout the early
rigidities in figure 5.41.

Figure 5.42: Particle velocity as a function of rigidity for particles with Probp
Probp+Probe

< 0.1.

For rigidities lower than 15GV the estimator offers a great discrimination power since the distribu-
tion remains very asymmetrical and with a clear distinction between the peaks (the peak on the low
probabilities being a contamination in Monte Carlo for rigidities up to 5 GV). From the results given
by both estimators, one could assume that a pure electron sample would give a somewhat mirrored
distribution from this one. This shows high hopes for the estimator and its separation power.

Another application of the estimator comes from the asymmetrical nature of the result (in the
working regime), a technique called template fitting. From pure samples of particles, one extracts the
distribution for each species, for each bin in rigidity. In order to do this, one makes use of either Monte
Carlo or very pure samples of real data so that the template distributions are estimated as precisely
as possible. In real data, the total flux should have different contributions from different populations,
each with its own template. Knowing that real data is an overlap of these distributions with different
normalizations each, one can try to find out these normalizations (relative species abundance) by
fitting these templates to data additively. Even though this was not done due to time constraints, the
estimator shows great prospects in this area.

This estimator showed that it can be used as an additional tool when selecting cosmic rays from a
given dataset. It showed a good capability of particle discrimination for low rigidities (up to 15 GV).

In order to improve it, still using RICH, other properties dependent on particle species could be
added, such as charge. Remembering from equation 5.3 that there’s a Z2 dependency on number
of radiated photons, it would be possible to add charge to the estimator in order to make it more
complete but that leaves the scope of this work.
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6.1 Conclusions and Prospects

The main goal of this thesis was to study the Solar Modulation of Galactic cosmic rays using data
from AMS-02 and develop a particle separation tool that would allow to select particles using the AMS
RICH detector.

This thesis began by describing the theoretical model behind Solar modulation and the interaction
of cosmic rays with the highly conductive Solar plasma.

Under the assumption of isotropy in cosmic rays a density function was defined and a transport
equation was deduced. This equation revealed to be a parabolic equation 3-dimensional in space,
1-dimensional in time and 1-dimensional in momentum which entails a numerical resolution due to
the non-linearity of most of its coefficients. The choice of parameters used was based on the most
current approaches to solving the Parker transport equation and revealed to be in great agreement
with AMS-02 data.

In this work, three approaches were taken when attempting to solve the equation. The first ap-
proach take was the Force-Field solution, which tries to simplify the problem to one of a cosmic ray
traversing a dispersive medium, resulting on a single modulation coefficient that parametrizes the
whole phenomenon. It estimates an average effect of energy loss. The 1D and 2D solutions try
to solve the problem numerically, having the simplification of reduction of dimensions and assuming
steady state solutions ∂f/∂t = 0.

As a whole, all these simulations revolve around the knowledge of the shape of the diffusion
coefficients, the Solar wind, the Solar magnetic field and of the Local Interstellar flux. The estimation
of the diffusion coefficient is done under the area of QLT and diffusion models, the Solar wind comes
from Thermodynamics, Solar corona studies and modelling of data taken from probes such as the
SOHO, the complex Solar magnetic comes from MHD and, lastly, the Local Interstellar Spectrum (LIS)
flux comes from Monte-Carlo Diffusion models, Galactic propagation models and data taken from
probes such as the Voyager.

Solar modulation is a deep and complex area of study which still has many problems to resolve
and many phenomena to discover before it can claim the Solar plasma as understood.

After the Solar modulation phenomenon was duly parametrized and interpreted under propagation
models in Plasma Physics, the next appropriate step would be the comparison with data and param-
eter estimation. In this thesis, an intermediate step was taken instead, rather than calculating a flux
from pre-existing tools, a new tool was developed to help identify the particles that arrived at AMS-02
and, therefore, provide a more accurate reading of the actual measured flux.

AMS-02 constitutes a great asset to Astroparticle Physics due to its precision, acceptance and
long exposure to the cosmic ray flux. As capable as AMS-02 may be, it is still an instrument that
studies a complex object, the cosmic ray flux. Even though there are several estimations of the
chemical composition of the cosmic rays that arrive at Earth’s upper atmosphere, each individual
cosmic ray still has to be identified through analysis of the detector’s signals. AMS-02 is equipped
with a series of collinear detectors which provide a set of independent measurements that intersect
so that particle species and its properties may be properly identified.

The imposition of criteria to identify and discriminate these particles, as they come into the de-
tector, is what is a called a selection. As each events goes through the selection algorithm, it has to
pass the tests in order to be considered for analysis. Estimators can be developed in order to aid the
selection in being more accurate without losing too much efficiency in the process.

This lead to the next step of the thesis, the study of the RICH detector and the development of
an estimator of particle species. Using the RICH and the TRK present in AMS-02 as independent
instruments, a model was developed to describe the flux measured.

78



6.1 Conclusions and Prospects

It was rather difficult to fit the model to the Monte Carlo data but it revealed to be a success in the
end.

Even though the Tracker resolution study revealed to not be as precise as it was hoped, the results
were not so far away from each other that they could be considered unrelated. The ill estimation of
the flux reaching the detector caused an increased error in rigidity resolution estimation.

The velocity resolution appeared to not be as affected by such a phenomenon since it gave a very
consistent result to expectation, as the velocity goes up, the particles radiate a full ring, with more
photoelectrons, reaching a peak in accuracy (the plateau in the figure).

After the set up RICH and TRK was studied and model developed, an estimator was proposed to
identify particles based on this two detectors.

The estimator revealed to be quite capable of particle identification in our spectrum of particles
(from ∼ 3 GV to ∼ 15 GV). The estimator had the expected behaviour in a proton sample, it exhibited
a flat behaviour in proton probability and it was peaked at zero for low rigidities (P < 15 GV) in the
electron probability.

That accuracy degraded with the increase in rigidity (P > 15 GV). As the PDF’s merge at β = 1,
the accuracy of the estimator starts to not be able to properly distinguish between particles, but this
does not step away from predictions. A cut was estimated, as a function of measured rigidity, that
would minimize the proton contamination in an electron selection to bellow 1/100.

As a final step, a new relative probability variable was defined that displayed the good discrimina-
tion power of the estimator as a function of rigidity, showing good prospects to the application of the
estimator to AMS-02 data.

Even though this thesis did not estimate a flux of cosmic rays based on AMS-02 data, it set
down the tools to do so. All methods are implemented in C++ classes in the LxSoft and LxLipana
framework developed at Laboratório de Instrumentação e Física Experimental de Partículas (LIP). It
has methods based around the AMS-02 software chain and several analysis and selection tools were
developed.

As a next step, and already out of the scope of this thesis, a flux may be calculated, based on
the performance of both the model and the estimator, in order to estimate flux variations due to Solar
modulation.
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