
Universal Verification Methodology
for Power Management Unit

Márcio Éder Sequeira Soares

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Marcelino Bicho dos Santos
Prof. Jorge Manuel Dos Santos Ribeiro Fernandes

Examination Committee

Chairperson: Prof. Teresa Maria Canavarro Menéres Mendes de Almeida
Supervisor: Prof. Marcelino Bicho dos Santos

Member of the Committee: Prof. Fernando Manuel Duarte Gonçalves

November 2022

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

ii

To my parents...

iii

iv

Acknowledgments

First of all I would like to thank my supervisors Professor Marcelino Bicho dos Santos and Jorge

Fernandes for their counselling and support but also for their availability during this dissertation.

This work is dedicated to my parents, Valdemar da Cruz Soares and Marcelina do Rosário Sequeira.

Everything I’ve ever accomplished in my life is because of them. Their unconditional love, their guidance,

sacrifice and commitment to family made me into the person I am today. I want to thank my brother and

sister, Odracir Almeida and Maura Soares for their love and for always checking up on me during good

and bad times. Thank you Irineu Justino Delgado, Anabela de Melo, Alberto Monteiro, Eunice Matos

and Gustavo Almeida for embracing me throughout all these years.

I would like to thank all the people at SiliconGate for all the teachings and all the shared moments. To

João Lucas Munhão, thank you for everything. I cannot express how deeply thankful I am for everything

he’s done for me. I thank him for his patience, for all the teachings, and above it all for being my friend.

A special thank you for Tiago Moita, André Agostinho, Válter Sádio and Bruno Santos.

To all my friends, thank you for always making me feel at home. I wish a special thank you to Carlos

Santos for being by my side throughout my journey at Instituto Superior Técnico. His confidence and

commitment served as example and made me work hard every single day.

And last but certainly not least, to Dânia dos Reis, thank you for always being by my side and for

always pushing me to be the best version of myself. Thank you for all the love, all the advice, all the

comforting and, above it all, thank you for being my partner.

This work was supported by national funds through FCT, Fundação para a Ciência e a Tecnologia,

under project UIDB/50021/2020 and pAvIs, PENTA Project n. 20016.

v

vi

Resumo

Atualmente, circuitos de sinais mistos existem em larga escala na indústria dos semicondutores.

Validação de circuitos de sinais mistos introduz complexidade no processo de verificação, dificultando

a validação funcional. A Universal Verification Methodology (UVM) representa a metodologia padrão

para verificação de circuitos digitais e de sinais mistos. Real Number Modelling permite a descrição de

circuitos mistos através duma linguagem de alto nı́vel. Esta abordagem introduz limitações no processo

de verificação mas constrói alicerces para a verificação orientada a cobertura e verificação funcional. A

Universal Verification Methodology aplicada a circuitos baseados em Real Number Modelling potencia

a criação de ambientes de verificação robustos diminuindo significativamente o tempo de simulação,

antecipando a introdução no mercado. Neste trabalho, propõe-se a implementação de um ambiente

UVM para teste e verificação de reguladores de tensão e uma unidade de gestão de energia no âmbito

do projeto pAvIs. Este novo método de verificação é então integrado no processo de design e teste da

SiliconGate.

Palavras Chave

Universal Verification Methodology, Unidade de Gestão de Energia, Verificação orientada a cobertura,

teste de circuitos de sinais mistos, reguladores de tensão

vii

viii

Abstract

Nowadays, mixed signal applications are widespread in the semiconductor industry. Mixed signal vali-

dation adds complexity to the verification process, which difficults functional verification Universal Ver-

ification Methodology (UVM) is the current standard methodology for verifying digital and mixed-signal

designs. Real Number Modelling allows the description of mixed-signal designs using a High-level

verification language. This approach imposes limitations upon the verification process but builds the

foundation for coverage-driven verification and functional verification. Universal Verification Methodol-

ogy applied to models based on Real Number Modelling allows for robust verification environments while

significantly reducing simulation time and time-to-market. In this work, a UVM testbench environment

is proposed for voltage regulators and a power management unit verification, under the scope of pAvIs

project. This new verification solution is integrated in the design and test flow of SiliconGate.

Keywords

Universal Verification Methodology, Power Management Unit, Coverage-driven Verification, mixed-signal

testing, voltage regulators

ix

x

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives and Deliverables . 5

1.3 Thesis Outline . 5

2 PMU architecture 7

2.1 Analog SV-RNM . 9

2.2 pAvIs PMU Architecture . 10

2.3 pAvIs Digital core . 11

2.4 pAvIs Analog core . 11

2.4.1 APC RNM model . 12

2.4.2 LDO RNM model . 13

2.4.3 CP RNM model . 14

2.4.4 Remaining PMU blocks . 15

2.5 Model validation . 15

2.5.1 Verification techniques . 15

2.5.2 SV’s covergroup and coverpoint . 16

2.5.3 Coverage-driven constrained-random verification 16

2.6 Benefits of verification with UVM . 17

2.6.1 Verification plan . 18

2.6.2 Used tools . 18

3 Introduction to UVM 21

3.1 Overview . 23

3.2 The systemVerilog UVM Class library . 23

3.3 UVM testbench and environment . 24

3.4 Transaction-level Modelling (TLM) . 31

xi

4 Implementation of UVM 35

4.1 Reusable Universal Verification Components . 37

4.1.1 Digital UVC . 37

4.1.2 Power UVC . 39

4.1.3 Regulator UVC . 39

4.2 Voltage regulators’ UVM environment . 40

4.2.1 Sequence description . 41

4.2.2 Scoreboards and reference models . 42

4.3 Digital core UVM environment . 43

4.3.1 Considered UVC’s . 43

4.3.1.A Digital UVC . 43

4.3.1.B SPI UVC . 43

4.3.1.C JTM, APC and ILIM UVC . 43

4.3.1.D General input and general output UVCs 43

4.3.1.E Regulator UVC . 44

4.3.2 Sequence description . 44

4.3.3 Scoreboard and reference model . 44

4.3.4 Proposed UVM environment architecture for the digital core 44

4.4 Power management unit UVM environment . 45

4.4.1 PMU start-up sequence . 45

4.4.2 Proposed environment architecture for the PMU 46

5 Results 49

5.1 Voltage regulator results . 51

5.1.1 LDO’s considered coverpoints and crosses . 51

5.1.2 CP’s considered coverpoints and crosses . 51

5.2 Digital core results . 52

5.3 PMU core results . 53

5.3.1 Edge Cases . 53

5.3.2 Edge cases results . 53

6 Conclusion 57

6.1 Conclusions . 59

6.2 System Limitations and Future Work . 59

Bibliography 61

xii

A UVM Code 63

A.1 Top modules . 63

A.1.1 UVM top module for voltage regulators . 63

A.1.2 Hardware top module for voltage regulators . 64

A.2 Testbench class for voltage regulators . 66

A.3 Digital UVC . 67

A.3.1 Digital UVC environment class . 67

A.3.2 Digital sequence-item class . 67

A.3.3 Digital driver run-phase task . 68

A.3.4 Digital monitor run-phase task . 68

A.4 Power UVC . 69

A.4.1 Power UVC environment class . 69

A.4.2 Power sequence-item class . 69

A.4.3 power driver run-phase task . 70

A.4.4 power monitor run-phase task . 70

A.5 SPI UVC . 71

A.5.1 SPI UVC environment class . 71

A.5.2 SPI sequence-item class . 71

A.5.3 SPI driver run-phase task . 72

A.5.4 SPI monitor run-phase task . 72

A.6 Example Interfaces . 73

A.6.1 Example Interface for digital UVC . 73

A.6.2 Example Interface for power UVC . 74

A.6.3 Example Interface for SPI UVC . 75

A.7 Other relevant code listings . 77

A.7.1 Virtual Sequences class example . 77

B VCS URG coverage report 79

xiii

xiv

List of Figures

1.1 PMU architecture. 4

2.1 Design flow with RNM models. 9

2.2 PMU architecture. 10

2.3 Single master to single slave Serial Peripheral Interface (SPI) example communication. . 11

2.4 Advanced Power Control (APC) block diagram. 12

2.5 Low-dropout Regulator (LDO) block diagram. 13

2.6 Charge Pump (CP) block diagram example. 14

2.7 A CDV example in a UVM environment. 17

2.8 Considered UVM-based verification plan. 19

3.1 Typical UVM architecture . 24

3.2 UVM phasing mechanism. 25

3.3 Agent block diagram. 26

3.4 Typical UVM architecture with virtual sequencer flow. 29

3.5 Stimulus generation and driving in the scope of UVM. 29

3.6 TLM graphical notations for producer and consumer . 32

3.7 Canonical diagram for TLM connections. 33

3.8 TLM connections example inside an agent. 33

3.9 Monitor analysis port connection to scoreboard component. 34

4.1 Universal Verification Methodology (UVM) environment for voltage regulator testing. . . . 41

4.2 Block diagram of the validation. 42

4.3 UVM environment for digital core testing. 45

4.4 PMU’s start-up sequence. 46

4.5 UVM environment for PMU core testing. 47

5.1 PMU’s start-up sequence. 54

xv

5.2 Edge cases for maximum and minimum LDO1 output voltage. 55

5.3 Edge cases for maximum and minimum LDO3 output voltage. 55

xvi

List of Tables

1.1 PMU Specifications. 4

2.1 Considered power modes for the LDO. 14

2.2 CP power modes. 15

4.1 Common digital interface signals . 37

4.2 Common output interface signals . 39

5.1 Coverage results for coverpoints and crosses of the LDO. 52

5.2 CP coverage results. 52

5.3 Digital core coverage results . 53

xvii

xviii

List of Code Segments

2.1 Covergroup example. 16

3.1 UVM agent example code. 26

3.2 UVM sequence item example source code. 27

3.3 UVM driver’s run phase task. 28

3.4 UVM monitor’s run phase task. 30

3.5 General UVM component source code. 31

A.1 UVM top module. 63

A.2 Testbench top module for charge pump. 64

A.3 Testbench top module for LDO. 65

A.4 Testbench example for charge pump. 66

A.5 Digital UVC class . 67

A.6 Digital UVC sequence-item class . 67

A.7 Digital driver’s run phase task . 68

A.8 Digital monitor’s run phase task . 68

A.9 power UVC class . 69

A.10 power UVC sequence-item class . 69

A.11 power driver’s run phase task . 70

A.12 power monitor’s run phase task . 70

A.13 SPI UVC class . 71

A.14 SPI UVC sequence-item class . 71

A.15 SPI driver’s run phase task . 72

A.16 SPI monitor’s run phase task . 72

A.17 Digital interface. 73

A.18 Power interface. 74

A.19 Power interface. 75

A.20 Virtual sequence example. 77

xix

xx

Acronyms

ADC Analog-to-Digital Converter

APC Advanced Power Control

API Application Programming Interface

CDV Coverage-driven Verification

CP Charge Pump

DCIS Conference on Design of Circuits and Integrated Systems

DUT Device Under Test

EDA Electronic Design Automation

HB H-bridge Regulator

HVL High-level Verification Language

ILIM Current Limiter

IO Input-output

IP Intellectual Property

JTM Junction Temperature Measurement

LDO Low-dropout Regulator

MCU Microcontroller Unit

MISO Master In Slave Out

MOSI Master Out Slave In

MRI Magnetic Resonance Imaging

pAvIs Patient and Environment Aware Adaptive Intelligent Sensor Systems

PMU Power Management Unit

RNM Real Number Modelling

RTC Real Time Clock

xxi

RTL Register-transfer Level

SoC System-on-a-chip

SPI Serial Peripheral Interface

SV System Verilog

TLM Transaction-level Modeling

URG Unified Report Generator

UVC Universal Verification Component

UVM Universal Verification Methodology

xxii

1
Introduction

Contents

1.1 Motivation . 3

1.2 Objectives and Deliverables . 5

1.3 Thesis Outline . 5

1

2

1.1 Motivation

Advances in fabrication technology and increasing time to market pressure alongside physical effects

of shrinking the process technology impose greater challenges in design and testing of System-on-a-

chip (SoC)s. Modern SoCs encompass both digital and analog blocks and require pre-silicon verification

to validate their integration [1]. This approach is mandatory as multiple issues can be detected at early

stages, aiming for first-time right silicon, saving time and resources. Analog and digital simulation exist

in different domains [2]. Analog verification is an ad-hoc complex procedure that performs computation

of large data structures with no obvious signal flow pattern, therefore lacking of a standardized method-

ology [2]. On the other hand, digital verification is powered with versatile tools that allow for testbench

automation, constrained-random stimulus generation, coverage collection and much more. To improve

the accuracy of the analog model representation, Real Number Modelling (RNM) is used to quantify

analog behavior in the relevant wires. Analog behavior is described as real data, where floating point

numbers are used. This approach relies on a digital solver to achieve near-digital verification speeds

and improves the pre-silicon verification time when compared to transistor-level simulation. By adopt-

ing this methodology, full-chip verification is facilitated for a large scale of mixed-signal designs and the

methodologies applied for digital testing can be ported and adapted to fit a mixed-signal design. These

behavioral models are also important as they are rapidly produced and independent of the process

technology.

Innovation and frequent new projects that benefit from reusability of previously designed Intellectual

Property (IP) generate situations where test environments can be easily adapted and ported to new

projects. Universal Verification Methodology (UVM) provides the infrastructure to explore this methodol-

ogy. UVM proves to be an improvement for traditional mixed-signal and digital verification methods as it

provides constrained-random coverage-driven test environments. It allows for test automation granting

high configurability, interoperability and Coverage-driven Verification (CDV). Directed tests can also be

explored by UVM as it provides a robust methodology for test generation. Testbenches can be designed

for reusability reducing the effort when migrating components for different projects.

Combining UVM and RNM enables high-performance mixed signal SoC verification. RNM is limited

for analog verification, but excels when integrated in a verification environment based on functional and

coverage-driven verification. In a mixed-signal design, one can use it to imitate the analog counterpart of

the SoC which enables extensive testing and increased simulation speeds. This verification level would

not be possible for a pure embedded analog design.

Patient and Environment Aware Adaptive Intelligent Sensor Systems (pAvIs) European project [3]

aims to develop innovative approaches in improving the electronics and intelligent sensor systems for

professional healthcare diagnosis. Magnetic Resonance Imaging (MRI), computed tomographic and

ultrasound imaging are some of the examples. The objective of this effort is to improve the current one-

3

size fits all paradigm, to sensor-based systems capable of diagnosing diseases, monitoring or enabling

the restoration of physiological functions, or treating adverse medical conditions. This approach pro-

vides greater adaptability to an individual patient and the operating environment, providing personalized

diagnosis and treatment.

SiliconGate and Instituto Superior Técnico are designing a Power Management Unit (PMU) (Figure

1.1) of an intelligent sensor system for a MRI machine with mixed-signal processing IPs at its core for the

pAvIs project. These sensors will be embedded in an environment with strong electromagnetic fields,

which require specialized design and testing techniques to obtain a fully functional and robust integrated

circuit.

LDO
180 mA

Vi CP1
1/2@35 mA

CP2
1/3@105 mA

CP3
1/2@150 mA

CP5
1/3@300 mA

LDO2
35 mA

Vout3

LDO3
25 mA

CP4
(-1)@5 mA

Vout1a

Vout1b

LDO4
150 mA

Vout2

ILIM
300 mA@1.3v

H-Bridge Vout4

DIGITAL CORE

REGISTER
BLOCK

SPI
SLAVE

JTM

PMU

JTM
digital
core

spidin

ANALOG CORE

APC
Vref
Ibias
clk

Vcc1 Vcc2 Vcc3

Vcc5 Vcc4

Figure 1.1: PMU architecture.

Table 1.1: PMU Specifications.

Symbol Min Typ Max
Vin 10 V 12 V 14 V
freq - 540/145 MHz -
out1a 2.7 V 2.8 V 2.9 V

0 mA 13 mA 20 mA
out1b -2.9 V -2.8 V -2.7 V

0 mA 1 mA 5 mA
out2 1.3 V 1.4 V 1.5 V

0 mA 100 mA 150 mA
out3 3.2 V 3.3 V 3.4 V

0 mA 25 mA 35 mA
out4a -9.9 V -11.9 V 13.9 V

0 mA 0.1 mA 1 mA
out4a 1.3 V 2 V 2.6 V

0 mA 160 mA 300 mA
aout4 output has two modes of operation.

4

A UVM-based architecture for a RNM model of PMU and its components is presented in this thesis

using the pAvIs project as an example. This architecture is used for the validation of voltage regulators

and digital core within the model and their integration to fit the specification of the PMU, described in

table 1.1. The implementation, previously defined for the PMU, is presented in Figure 1.1.

1.2 Objectives and Deliverables

The purpose of this work is to implement a functional UVM environment for testing and validation of a

RNM model of voltage regulators and to validate their integration in a PMU presenting, as an example,

the pAvIs project.

The work developed in this thesis resulted in a paper accepted for poster presentation in the XXXVII

Conference on Design of Circuits and Integrated Systems (DCIS) proceedings.

1.3 Thesis Outline

Chapter 2 introduces RNM design flow and describes the PMU architecture. RNM models are described

for analog core components. Constrained-random and CDV concepts are also described. Conventional

model validation approaches are assessed, showing their limitations and the advantages of adopting

UVM.

Chapter 3 presents an overview of UVM and previous studies and applications. Furthermore it dis-

plays an introduction to UVM concepts and their roles in the model verification environment. Transaction-

level Modeling (TLM) concepts are also introduced.

In Chapter 4, the implementation of the UVM architecture is explained for voltage regulators and

digital cores. An environment to test the whole PMU is also described.

Chapter 5 shows the results and comparisons to the adopted standard System Verilog (SV) flow.

Chapter 6 presents the conclusions of this work, identifies limitations of UVM and lists encountered

problems. Suggestions for future work on the matter are outlined.

5

6

2
PMU architecture

Contents

2.1 Analog SV-RNM . 9

2.2 pAvIs PMU Architecture . 10

2.3 pAvIs Digital core . 11

2.4 pAvIs Analog core . 11

2.5 Model validation . 15

2.6 Benefits of verification with UVM . 17

7

8

2.1 Analog SV-RNM

When designing mixed-signal circuits it is essential to perform a translation from the specification to

the real transistor-level implementation. A verilog model of the mixed-signal circuit is also frequently

designed using RNM for key parameters. SV RNM models are of extreme importance for this transition

between specification and transistor-level design, as they are responsible to ensure that the design fits

the specification and that the integration of digital and analog counterparts is properly implemented.

The verilog model of mixed-signal circuits can be designed in two different contexts. This first one

(Figure 2.1(a)) depicts the scenario where the RNM model is built for the first time, only based on

the datasheet specification. In this case the RNM model is only built to meet the specification. The

analog design team develops the transistor-level circuit to be in accordance with the RNM model and,

consequently, in accordance with the datasheet specification.

The second scenario (Figure 2.1(b)) is the one where the RNM models and transistor-level designs

are independently ported from a previously existing project. In this scenario, design features and param-

eters must be updated to fit the new project’s datasheet for both RNM model and transistor-level design.

At the end both design must present the same behavior.

Datasheet
specification

RNM Model

Transistor-level
(TL) design

Designs
match? Fix discrepancies

Finnish

Design
fulfills
specs

0

1

0

1

((a)) Design flow for first case.

Previous
model/Previous

design

Ported
RNM model

Ported transistor
-level (TL) design

Designs
match?

Finnish

1

Designs
fulfills specs?

Datasheet
specification

1

Fix
discrepancies

0

0

((b)) Design flow from porting.

Figure 2.1: Design flow with RNM models.

When the transistor (or gate) level schematic already exists, the extraction of the corresponding

9

schematic is very useful for the verilog model design since it contains the high level structure of the

design. Moreover digital cells are already automatically converted to SV logic function and need no

further changes. The analog behaviour is the one to model as analog signals are described using a

discrete representation, defining the analog counterpart as a signal flow event-driven model. For the

scope of behavioral verification information such as supply verification and threshold values, evolution of

the output voltage through an output capacitance model (when applicable) and definition of other output

signals, RNM provides an accurate representation of each component functional behavior. All these

features are described with SV primitives. Analog signals are driven as 64 bit floating point numbers,

and converted to real numbers to perform computations ($bitstoreal and $realtobits serve as conversion

tools).

As stated in section 1.1, verilog models introduce an abstraction layer in the design, loosing certain

details of analog behavior and complexity. This enables extensive high-speed simulation that, when well

explored, results in a more robust validation mechanism.

2.2 pAvIs PMU Architecture

A PMU is the circuit responsible for power management of an SoC. Its main roles consist of generating

reference voltages, controlling power modes, battery charging, DC to DC conversion and other auxiliary

functions to control the power flow. Generally, SoCs powered by a PMU require multiple voltage domains

and can also be supplied from multiple power sources which define multiple requirements for operation

of the PMU. The architecture of the pAvIs PMU is displayed on Figure 2.2.

LDO
180 mA

Vi CP1
1/2@35 mA

CP2
1/3@105 mA

CP3
1/2@150 mA

CP5
1/3@300 mA

LDO2
35 mA

Vout3

LDO3
25 mA

CP4
(-1)@5 mA

Vout1a

Vout1b

LDO4
150 mA

Vout2

ILIM
300 mA@1.3v

H-Bridge Vout4

DIGITAL CORE

REGISTER
BLOCK

SPI
SLAVE

JTM

PMU

JTM
digital
core

spidin

ANALOG CORE

APC
Vref
Ibias
clk

Vcc1 Vcc2 Vcc3

Vcc5 Vcc4

Figure 2.2: PMU architecture.

10

2.3 pAvIs Digital core

The pAvIs PMU possesses a digital core that encapsulates a register bank to store and configure digital

control bits for the IPs inside the analog core. The digital core also receives input signals from the analog

core to ensure observability and awareness of the status of the PMU internal voltages. The register bank

is composed of thirteen 32-bit registers, that store configuration bits for each IP and other PMU control

bits.

SPI protocol

The Serial Peripheral Interface (SPI) protocol [4] is a synchronous communication interface. It adopts a

master-slave architecture, usually with one master and with one or multiple slaves. The master controls

read and write operations on a register bank.

To begin communication the master defines the clock frequency, selects the slave with the chip

select bit and initiates the serial communication through the Master Out Slave In (MOSI). The slave

reads the bit and and sends it through the Master In Slave Out (MISO) interface resulting in a full-duplex

communication. Figure 2.3 exemplifies a generic block diagram of an SPI communication protocol with

one master and one slave.

The SPI protocol is used to establish the communication from the PMU interface and the top module.

The PMU digital core defines a module which handles the implementation of the protocol, acting as the

slave component.

SPI
Master

SPI
slave

SCLK SCLK
MOSI MOSI
MISO MISO
~CS ~CS

Figure 2.3: Single master to single slave SPI example communication.

The implemented SPI communication protocol for the PMU starts with the master sending an opera-

tion selector bit (read operation as logic low and write as logic high), followed by the chip select bit. Then

the 6-bit address bus is driven through the MOSI interface followed by the 32-bit data bus.

2.4 pAvIs Analog core

The pAvIs analog core is composed of an Advanced Power Control (APC), four Low-dropout Regulator

(LDO)s, five Charge Pump (CP)s), a Junction Temperature Measurement (JTM) regulator, a Current

11

Limiter (ILIM) and an H-bridge Regulator (HB).

2.4.1 APC RNM model

The APC generates control signals that coordinate the start-up sequence and overall functionality of

the PMU, representing the backbone of the PMU. It generates enable signals reference voltages, bias

currents and other control signals. Each regulator start-up is complete when it returns the power good

(pg) indicator to the APC. Only after this bit is held high is the APC allowed to enable the next regulator.

Generated reference voltages and currents can be digitally trimmed for increased performance.

A representative block diagram for pAvIs APC is shown in Figure 2.4.

Figure 2.4: APC block diagram.

The APC model is designed as a SV behavioral Register-transfer Level (RTL) description combined

with extracted views of a ring oscillator for clock generation, a bandgap circuit, and a clock division block.

This inevitably results in a simplified description of the analog design. To emulate the time related with

12

the rising of reference voltages, debouncer circuits, or propagation of combinational logic, expected time

stamps are considered, which suffices in the scope of behavioral verification. Reference voltages and

currents are defined as real numbers with a 64-bit representation for each regulator with the respective

trimming features. Enable output signals are generated taking into account the startup sequence, and

respective power good indicators (pg), which culminate in the release of the porz (power on reset, active

low) signal, which enables the system level converters. A test block is also designed with the purpose

of adding controllability and observability to internal APC nets.

2.4.2 LDO RNM model

The LDO is a regulator that provides a constant output voltage, even when the supply voltage is close

to the output voltage. LDO’s, and voltage regulators in general, include configurable features that are

controlled through a digital port. A block diagram for the LDO is displayed in Figure 2.5.

Figure 2.5: LDO block diagram.

The LDO model is a pure behavioral RTL design. The definition of the programmable output voltage

is configured at the digital input di.

In table 2.1, the considered power operating modes of the LDO model are presented. The output pin

pg is set to high when the output voltage reaches 95% of the programmed voltage. pg is reseted when

the output voltage is lower than 90% of the programmed value.

13

Table 2.1: Considered power modes for the LDO.

enavdd enzdvdd dislvl pg/pgdvdd power
0 x x 0/0 power down
1 x 1 normal/0 enabled w/def. settings
1 0 0 normal/normal enabled
1 1 0 0/0 power down

2.4.3 CP RNM model

The charge pump is a switched capacitor circuit that regulates the output voltage using predefined ratios

of the input and/or output voltage. It possesses a digital control logic that acts on switches to explore

charge transfer between capacitors. A block diagram for the CP is displayed in Figure 2.6.

Figure 2.6: CP block diagram example.

The charge pump model top representation is extracted from the design schematic. The control

block and generation of non-overlapped switching clocks consist of logic gates which are converted in

SV logic representation. The power, voltage divider, and comparator blocks are replaced by simplified

RNM behavioral models which implements the relevant behavior at a high level of abstraction.

The power block represents the backbone of the charge pump. For each topology, the model defines

the switching configuration. For each configuration, the model explicitly computes the capacitor currents

taking into account resistive losses through bond wires and switches and current limitation features.

The currents serve as input of SV capacitor models (flying capacitor and output capacitor) that describe

the evolution of the output voltage. The pg and pgdvdd functionality is the same as the LDO. For the

different power modes pg and pgdvdd are expected to have the values represented in table 2.2. A test

14

block is also included in the CP.

Table 2.2: CP power modes.

endvdd dislvl pg/pgdvdd power
x 1 0/0 power down
0 0 0/0 power down
1 0 normal/normal enabled

The PMU analog core has three different charge pump topologies (see Figure 2.2). Charge pumps

2 and 5 implement a division by 3. Charge pumps 1 and 3 implement a division by 2 and charge pump

4 implements an inverter topology.

2.4.4 Remaining PMU blocks

The JTM is a high resolution Analog-to-Digital Converter (ADC) for temperature, voltage and current

monitoring.

The HB specifies two modes of operation for one of the outputs of the PMU (see table 1.1). A current

mode, where the model outputs a current through the pin and a voltage mode where it defines a positive

or a negative voltage through the output pin.

The ILIM IP limits the current capping the output current for the HB current mode to 300 mA.

These regulators and the APC were not individually tested with UVM. Instead, they were tested with

traditional SV flow.

2.5 Model validation

2.5.1 Verification techniques

The most basic SV verification environment consists of stimuli being driven to the Device Under Test

(DUT) with the intention of performing a self driven verification by the engineer. The verification process

relies on viewing waveforms through a wave viewer software and individually verifying every output of

the design.

An improved version of this methodology explores an implementation of self-checkable processes

which makes use of SV features such as the wait() statement and verification of parameter thresholds

with printed messages upon failure. Currently at SiliconGate self-checkable processes are commonly

used for functional verification.

Both verification approaches depend solely on the thoroughness of the verification plan and the

individuals responsible for the development of the test environment. Given a certain specification for a

certain IP, the test engineer generates a set of stimuli to functionally exercise the DUT.

15

UVM aims to consolidate the verification process, providing a robust verification environment with

a well defined structure purposely built to explore extensive coverage-driven, constrained-random and

self-sufficient testbenches. It possesses specialized tools to automate test generation and systematize

self-checkable processes and coverage collection mechanisms.

2.5.2 SV’s covergroup and coverpoint

SV defines covergroups as a user-defined type built to define the specification for a coverage model. A

covergroup contains coverpoints that specify a certain statement to be covered, a set of cross coverage

between coverage points, an event that defines when to sample the covergroup and other options to

configure the object. When a coverpoint is defined, a set of bins is generated, which contain all possible

combinations for the considered coverpoint variable. For instance, a ”n” bit coverpoint variable results in

2n automatically generated bins. It is also possible to explicitly define bins for a coverpoint. When the

user crosses two coverpoints all combinations of bins for both coverpoints are generated. An example

covergroup is defined in source code 2.1.

Source Code 2.1: Covergroup example.

covergroup cover_example;

enable_dvdd : coverpoint pkt.enable;

enable_dissink : coverpoint pkt.dissink;

enable_mode : coverpoint pkt.mode {

bins b1[] = {[0:1]};

}

cx_test : cross enable_dvdd, enable_dissink;

cx_test_all : cross enable_dvdd, enable_dissink, enable_mode;

endgroup : cover_example

In the cover example covergroup, 3 coverpoints are defined. For the enable mode coverpoint, an

explicit bin is represented, defining considered modes for the coverage model.

2.5.3 Coverage-driven constrained-random verification

Coverage-driven verification (CDV) is a verification methodology based on defining a strategy for verifi-

cation. As the name implies, it is based in coverage control as building a verification plan beforehand

diminishes the time needed to successfully verify a design. Figure 2.7 illustrates a coverage collection

example in UVM. The monitors capture transactions from the DUT interfaces and alongside pre-defined

SV coverage model, assess if all test scenarios were exercised on the DUT.

16

DUT

MONITOR

SCOREBOARD

TESTS STIMULUS
GENERATION DRIVER

MONITOR

Figure 2.7: A CDV example in a UVM environment.

The goal of constrained-random is to create transactions that allow the DUT to operate in meaningful

scenarios where results can be used to improve the current constraints aiming for a coverage goal and

validation of the correct behavior of the DUT. CDV is useful as it thoroughly stresses the DUT and, when

coupled with a scoreboard validation, results in a robust verification mechanism as all considered test

scenarios are validated.

2.6 Benefits of verification with UVM

Standard SV test implementation is not the most effective, as directed tests are adopted and specifi-

cally made to validate the behaviour of design features lacking of coverage collection mechanisms and

standardized ways of finding unexpected behaviour of models. UVM is introduced in chapter 3.

The verification process is not automated and porting test environments from previous projects is an

exhaustive and repetitive process.

UVM provides the infrastructure to automate testbench generation, benefiting from its predefined

Universal Verification Component (UVC)s. The scoreboard component alongside monitors and a refer-

ence model, validate the outputs of the DUT during run-time, generating UVM reports for miscompares

and detailing the input stimuli which resulted in unexpected results. Detailed coverage reports are gen-

erated with the Unified Report Generator (URG) VCS tool, which accelerates the process of reaching

coverage goals (Annex B shows an example coverage report). Some IPs are not as thoroughly tested

as others, hence, this standardized building mechanism allows for conventional and robust test environ-

ments, granting the same level of verification for all DUTs.

Besides, the randomization of test sequences allows the environment to exercise the DUT with input

stimuli which were not considered in the verification plan. This approach is prone to identifying defects

in the model, which can be reported to the design team.

In short, UVM verification provides the following advantages when compared to traditional SV verifi-

17

cation:

1. Modularity and reusability: The methodology defines modular components enabling easier re-

placement policies within the components of the same type (same level of abstraction) and across

projects (from single IPs to PMUs), as well as across projects.

2. Separating tests from testbenches: Generated sequences (stimuli set) are defined inside the

encapsulated environment and can be reused across different projects.

3. Sequence generation methodology: This methodology provides control on how stimuli is gen-

erated. E.g., sequences can be randomized, directed, layered and included in virtual sequences.

4. Configuration: The UVM hierarchy is deep and well defined. The configuration mechanism pro-

vides a standardized well structured way of configuring different testbench components.

2.6.1 Verification plan

The verification plan is shown in Figure 2.8. The datasheet allows the generation of the SV model,

reference model and verification plan. Based on this information the designer defines the constrained-

random stimuli set and covergroups to assure that all considered test scenarios are exercised. Test

sequences are generated for each input variables with aim to achieve full functional verification and 100

% code coverage. Fully pseudo-random test sequences are also described and included in the verifica-

tion process. The scoreboard, reference model and monitors determine the success of the verification

plan, aiming for coverage milestones and clean scoreboard UVM reports.

2.6.2 Used tools

Accelera provides an Application Programming Interface (API) standard for UVM and a reference imple-

mentation which constists of a class library defined with SV.

Cadence® Virtuoso™ and Synopsys® Custom Compiler™ Schematic Editors are tools that allow the

design of integrated circuits capable of genererating SPICE netlists and extracting SV models based on

pre-built libraries.

Synopsys® VCS™ functional verification solution is the engine used for compilation.

Synopsys® WaveView ™ is a waveform visualizer, useful for debugging purposes.

18

Datasheet / Specification

Build verification plan

Define design
requirements

Define constrained random
stimuli set

Define covergroups and
coverpoints (coverage)

Write test sequences

Build UVM test
environment

Run tests

Coverage goal
achieved

Clean
Scoreboard

results

Add directed tests,
increase samples or

change seed

Assess miscompares and
unexpected outputs

Build Scoreboard and
Reference model

Verification complete

0

0

1

1

Figure 2.8: Considered UVM-based verification plan.

19

20

3
Introduction to UVM

Contents

3.1 Overview . 23

3.2 The systemVerilog UVM Class library . 23

3.3 UVM testbench and environment . 24

3.4 Transaction-level Modelling (TLM) . 31

21

22

3.1 Overview

RNM [5] allows the description of mixed-signal designs analog behaviour [6, 7], enabling signal flow

event-driven models using High-level Verification Language (HVL). This approach inevitably imposes

limitations, but builds the foundation for Coverage-driven Verification (CDV), [8], [9] and functional verifi-

cation. Functional verification consumes a significant time of the project, [10]. Additionally, when aiming

for functional verification, several test scenarios might not be considered.

UVM is the current standard methodology for verifying digital and mixed-signal designs. With its

structured library classes, it allows the creation of constrained-random coverage-driven environments

benefiting from SV object-oriented features, [11]. It has become the industry standard for hardware

verification as it is supported by the main Electronic Design Automation (EDA) vendors and adopted

worldwide for digital and mixed-signal IP testing.

An example application of UVM for a RNM design was presented for an ADC [12]. In this work, the

use of UVM alongside RNM is illustrated for the validation of an ADC and its components.

UVM has been used to test the supply module of a Microcontroller Unit (MCU) inside a Real Time

Clock (RTC) to enter or exit the ultra-low power modes [13] . However, in this work, only the RTC

functionality was targeted with the UVM validatio, and no voltage regulation IP cores were tested. In

the previous publication based on this thesis work [14], an application of UVM to test voltage regulators

was implemented. The use of UVM to validate verilogAMS models was also addressed in [15] and [16].

The reliability of these approaches was also assessed [16], where advantages and disadvantages were

explicitly defined.

Another relevant project explores a UVM CDV environment to test the implementation of a SPI pro-

tocol [8], as a similar approach is considered for validating the same SPI communication protocol inside

the pAvIs’ PMU core.

Combining RNM with UVM for mixed signal IP verification [12], [17], enables testbench automation,

coverage collection and increased simulation speeds.

3.2 The systemVerilog UVM Class library

The UVM class library has several predefined classes, utilities and macros required for verification. It

eases the development and reusability of verification environments [18], [19]. Components are derived

from these base classes and inherit their properties, granting them great configurability and a standard-

ized coding style.

As stated in [18], there are two great advantages when adopting the UVM class library:

• The encapsulation of important verification features such as, printing, copying, test phases, factory

23

methods, and more.

• The possibility to derive all components displayed in figure 3.1 from these pre-defined classes,

increasing readability of the code and granting a robust and well defined hierarchical structure.

The UVM class library also provides a shared database to ease configurability (uvm config db), a

user-controllable messaging utility for failure reporting, a standard communication infrastructure (TLM)

and a flexible construction mechanism (UVM FACTORY).

3.3 UVM testbench and environment

A typical UVM testbench architecture is displayed in Figure 3.1.

UVM SEQUENCER UVM
AGENT

UVM
ENVIRONMENT

UVM TEST

UVM TESTBENCH

UVM
AGENT

UVM
ENVIRONMENT

UVM
SCOREBOARD

DUT

SEQUENCES

UVM ENVIRONMENT

CONFIG/FACTORY
OVERRIDES

Figure 3.1: Typical UVM architecture

To briefly introduce UVM, some important concepts are explained below.

• Testbench top module - The testbench represents the top level of the hierarchy. It instantiates the

UVM test environments, interfaces, DUT and other key components and coordinates the testing

procedure. Annex A.1 shows examples for the considered top modules of this project.

• Test - Specifies the test scenario for the testbench. It instantiates the environment (uvm env) and

environment configuration properties [12]. An example UVM environment is shown in annex A.2.

Several test environments can be instantiated for the same DUT.

24

• UVM environment - Derived from the base class uvm env, it is a key building block of UVM test

environment and system verification. The uvm env provides a set of features that allow the re-

usability and flexibility of the environment. The environment may have multiple agents for different

interfaces, a common scoreboard, a functional coverage collector and even other environments.

It is responsible to integrate all the henceforth described components and coordinate sequence

generation, monitoring and coverage checking of the DUT.

• UVC - A UVC represents a self contained, plug’n’play verification environment for a specific in-

terface or a generic IP. It consists of one or more configurable agents with a predefined set of

sequences that translates to test stimuli, coverage model and comprehensive failure report proto-

col based in UVM. Annex A.3 shows an example UVC.

• Phase - UVM controls the creation, configuration and execution of a simulation run using phases.

Figure 3.2 shows a graphical representation of UVM phases. Phasing acts as a synchronization

mechanism. Only after each component successfully finishes their execution in a phase, is the

control flow allowed to proceed to the next phase. This creates a very structured and intuitive set of

events. All phases can be grouped into three main phases: build-time phases, run-time phases and

clean-up phases. The build, connect, end-of-elaboration and start-of-simulation phases are entry

Figure 3.2: UVM phasing mechanism.

level phases that are responsible for creating, connecting and configuring the test environment.

The run phase, is the only phase that consumes simulation time, executing stimuli on the DUT.

Parallel to the run-phase, UVM provides optional runtime sub-phases to give more control over

stimuli during the run-phase.

The phases extract, check, report and final are exit phases which run at the end of the simulation

to check scoreboards and report results.

Phasing functions have to be explicitly described under a class scope so that their execution is

considered during a simulation run.

25

There are components in the hierarchy that concentrate their execution under specific phases, e.g.

the scoreboard examines results in the check-phase and and ouputs information in the report-

phase.

• Agent - The agent, derived from the uvm agent class, encapsulates a driver, a sequencer, a mon-

itor and a collector(when applicable). By doing so, it binds these components together to drive,

monitor and collect coverage from the DUT or specific ports of the DUT. This represents an es-

sential abstraction layer as it eases the integration of these components in the environment. An

Agent can be active, if it drives signals to the DUT, or passive, if it only monitors the ports of the

DUT. For this purpose the agent possesses a variable called is active which is accessible from

the UVM environment. When set to UVM ACTIVE the agent is set to active and is composed of

a driver, sequencer and a monitor. If the variable is set to UVM PASSIVE, the agent is set to be

passive and only has a monitor. A representative block diagram for a generic active agent and its

flow is displayed in Figure 3.3.

PPP P

Sequencer

DriverMonitor

Agent

seq_item_export

seq_item_port

DUT

interface

P

P P P

Sequence 2

Sequence 1

Config:
is_active = UVM_ACTIVE

UVM_ENV

virtual interface virtual interface

Figure 3.3: Agent block diagram.

The sequence (represented as P in Figure 3.3) exemplifies a pattern of signals (sequence-items)

to be driven to the DUT. The sequencer retrieves, randomizes and sends sequence-items to the

driver on demand. The driver implements the protocol to drive signals to the DUT and communi-

cates a item done flag to the sequencer once the data transfer is done.

The Source Code 3.1 represents an example UVM code for a generic agent.

Source Code 3.1: UVM agent example code.

26

class example_agent extends uvm_agent;

driver example_driver ;//handles

monitor example_monitor ;

sequencer example_sequencer;

function void build_phase(uvm_phase phase);

super.build_phase(phase);

monitor = output_monitor::type_id::create("monitor", this);

if(is_active == UVM_ACTIVE) begin

driver = output_driver::type_id::create("driver", this);

sequencer = output_sequencer::type_id::create("sequencer", this);

end

`uvm_info("MSG", "Agent build_phase",UVM_HIGH)

endfunction : build_phase

function void connect_phase(uvm_phase phase);

if(is_active == UVM_ACTIVE)

driver.seq_item_port.connect(sequencer.seq_item_export);

endfunction : connect_phase

endclass

The connect phase function implements the TLM connection between driver and sequencer. TLM

is analyzed in detail in section 3.4.

• Sequence-item - Derived from the uvm sequence item base class, sequence-items represent stim-

uli and transactions of the UVM environment. A set of attributes, constraints and methods can be

defined for the sequence-item for it to fit the needs of the DUT or the transaction type and mold

the data. An example sequence-item class is presented in source code 3.2.

Source Code 3.2: UVM sequence item example source code.

class example_packet extends uvm_sequence_item;

rand int anatestbus ;

rand bit anatestreq ;

function new (string name = "example_packet") ;

super.new(name) ;

endfunction : new

// Enable automation of the packet's fields

`uvm_object_utils_begin(example_packet)

`uvm_field_int (anatestbus , UVM_ALL_ON)

27

`uvm_field_int (anatestreq , UVM_ALL_ON)

`uvm_object_utils_end

// Define packet constraints

endclass: example_packet

• Sequence - A sequence, derived from the uvm sequence class, describes a bundle of transactions

(sequence-items) or other sequences. To generate sequences, UVM provides a set of macros that

implement the standard flow of transaction generation. These macros encapsulate a set of meth-

ods in a single call and cover different possible scenarios for sequence generation, easing the

process. Sequences are type-parameterized to a sequence item which represents the transac-

tion to be generated by the sequencer. Annex A.7.1 depicts an example application for virtual

sequences.

• Sequencer - A sequencer, derived from the uvm sequencer class, is responsible for sequence

generation and controls the items to be sent to the driver. It generates data on-demand and

returns them to the driver, as one can see in Figure 3.3). The randomization process can be

controlled by setting constraints in the sequence-item model. Sequencers can exist inside agents,

where their scope is local for the agent, or inside test environments as virtual sequencers. A virtual

sequencer has handles to other sequencers of the environment, as shown in Figure 3.4. In this

case it provides a centralized sequence generation mechanism, coordinating different elements of

the environment.

• Driver - The driver, derived from the uvm driver class, is connected to the DUT via a virtual interface

and drives stimuli to its ports. Similarly to the sequencer, the driver is type-parameterized to a

sequence-item that possesses the information to be driven to the DUT. During the run phase task,

the driver decodes the transaction to obtain the signals and consume simulation time to forward

the data. A generic example for a driver’s run phase task is displayed in source code 3.3.

Source Code 3.3: UVM driver’s run phase task.

task run_phase(uvm_phase phase);

//req is a handle which represents the transaction

seq_item_port.get_next_item(req);//pull item from the sequencer

send_to_dut(req);//drive function

seq_item_port.item_done();//communicate item done to the sequencer

endtask : run_phase

These method calls implementation (source code 3.3) is detailed in Figure 3.5. Create item creates

the sequence-item. Wait for grant is a blocking method which blocks execution until it receives the

28

UVM TEST

UVM TESTBENCH

UVM
SCOREBOARD

DUT

UVM ENVIRONMENT

SEQUENCER

DRVMNT

AGENT1_SEQR ENV1_SEQR

AGENT2_SEQR

SEQUENCER

DRV

MNT

UVM
ENV1

UVM VIRTUAL SEQUENCER

AGENT1 INTERFACE AGENT1 INTERFACE ENV1 INTERFACE

AGENT1

AGENT2

Figure 3.4: Typical UVM architecture with virtual sequencer flow.

get next item request from the driver. The sequence-item is then randomized and forwarded to

the driver that translates to verilog synthesizable logic signals and drives them to the DUT. Finally,

item done signals the end of the transaction.

create_item

wait_for_grant

randomize

send_request

wait_for_item_done

Sequence
Arbitration get_next_item

Drive DUT signals

item_done

Req to sequencer

REQ FIFO

item_done item_done

Send sequence item

Granted sequence

DUT
Drive interface

SEQUENCE SEQUENCER DRIVER

Request sequence_item

Send sequence item

Figure 3.5: Stimulus generation and driving in the scope of UVM.

• Monitor - The monitor is a passive component in the environment. It retrieves signals from the DUT

(or, in some cases, from a collector) and sends them to a scoreboard or other UVM components to

perform behavioural and procedural validation. Monitors are also used to perform coverage control

in order to cover several test scenarios. During the run phase, the monitor collects data from the

interface and performs housekeeping to proceed with data validation and coverage assessment.

29

Similarly to the driver, the connection to the DUT is made via a virtual interface.

In Figure 3.4, monitors inside active agents connect to a scoreboard component sending transac-

tions that were previously retrieved from the virtual interface. A generic example for a monitor’s

run phase task is displayed in source code 3.4.

Source Code 3.4: UVM monitor’s run phase task.

task run_phase(uvm_phase phase);

collect_transaction();

send_to_scoreboard();

update_coverage();

endtask : run_phase

• Virtual Interface - The virtual interface represents an abstraction layer as it represents a pointer

to an actual interface. It allows the defined classes to access the DUT ports while promoting

reusability. Annex A.1.1 shows and example of a UVM top module where the connection of virtual

interfaces to an actual interface are estabilished. Annex A.6.1 depicts an actual SV interface.

• Scoreboard - The scoreboard, derived from the uvm scoreboard class, verifies if the DUT outputs

the expected results. It retrieves information from monitors and, alongside a reference model,

checks the correctness of the DUT outputs. The uvm scoreboard is built with robust failure report-

ing features. UVM provides a set of report macros that, when correctly implemented, can exten-

sively monitor the execution of the simulation run. This reporting mechanism takes into account

severity, verbosity and simulation handling behavior, being each of them independently specified

and controlled. It is intended to make the scoreboard as self-governing as possible, outputting

detailed information when needed. The most commonly used macros are uvm info, uvm warning,

uvm error and uvm fatal. Severity, as the name implies indicates importance, verbosity indicates

filter level and simulation handling refers to the action taken by the simulator which depends on the

severity being produced on the verification environment.

• Reference model - The reference model emulates the behaviour of the DUT generating the correct

output for a specific input. These results are afterwards used by the scoreboard to evaluate the

DUT’s output.

• Factory - The UVM factory provides a standardized way of replacing an existing class by any of

its inherited child classes. Upon creation, objects are registered in the factory with UVM defined

macros. Once registered, the factory provides flexibility allowing the user to override certain types

and instances of class objects by its child types. To enable the factory’s full functionalities, the

30

create static method must be used on the creation of the object instance. Then the user can call

one of the set type override macros to perform the replacement.

A typical UVM component is defined in the Source code 3.5.

Source Code 3.5: General UVM component source code.

class example extends uvm_component;

`uvm_component_utils(example)//utility macro

function new (string name, uvm_component parent);//constructor

super.new(name,parent);

endfunction : new

type example_type; //handle for object creation

function void build_phase(uvm_phase phase);//phasing

super.build_phase(phase);

example_type = type::type_id::create("example_type"

, this);

`uvm_info("MSG", "Example of how to implement a print in UVM",UVM_HIGH)

endfunction

endclass : example

Classes are extended from predefined classes and inherit their features. In this example, the

uvm component utils() macro enables automation and registers the class to the uvm factory. All classes

must have a constructor which is responsible for creating the object instance and building the hierarchical

structure (new function). The user can add functions required to mold the data or collect information

while performing tests.

The build phase represents a UVM pre-defined function which is related to the phasing schema.

Inside this function, there is an example of how to create a new object that complies with the uvm factory

requirements. There is also an example of a uvm info macro that prints UVM compliant messages. The

third argument of the uvm info macro defines verbosity. Verbosity is used to filter what is printed during

a run in order to only output relevant information to keep track of the execution phases or to aid in the

debugging process.

3.4 Transaction-level Modelling (TLM)

UVM benefits from TLM [18], [19], as it provides an intuitive level of abstraction as stimuli is thought on

the transaction-level instead of signal-level stimuli. This leads to faster simulation time as transactions

simulate faster than RTL models, also benefiting from broader reusability as transactions tend to be more

31

flexible. Combined with UVM and its flexible, phased infrastructure, TLM promotes great interoperability

between components and more coherent replacement policies.

UVM ports and exports are used to send transaction objects cross different levels of testbench hierar-

chy. UVM ports initiate and forward packets to upstream layers and exports accept and forward packets

from top layers to destination. TLM provides a graphical notation for different types of communication

(Figure 3.6). The transaction can happen on the direction producer to consumer or vice-versa. In the

first case the data flow happens in the same direction of the control flow (push connection example in

Figure 3.6) and in the latter, the data flows in the opposite direction of the control flow (pull connection

example in Figure 3.6).

ConsumerProducer

Export/ImpPort

Pull

Push

port
export/imp

ProducerConsumer

Port Export/Imp

Figure 3.6: TLM graphical notations for producer and consumer

As an example, consider the Figure 3.7, that represents a canonical diagram for TLM connections.

On the left hand side (Env A), ports and calls to a push connection going up the hierarchy are illustrated.

On the right hand side, exports are illustrated with a push connection going down the hierarchy.

Exports differ from imps as they provide a way point in a series of TLM calls whereas the imp provides

the end of the line of a TLM connection where the call will actually be implemented. This is depicted

on the right hand side of Figure 3.7 (Env B). Hence, if the component implements an export, it passes

the transaction to a child component. If the component has an imp it must itself provide an implemen-

tation of the correspondent task or function. Connection from environment A to B illustrate peer-to-peer

connections, therefore require ports to exports.

In UVM, transactions extend from the uvm sequence item class. Transactions contain all the infor-

mation to model a communication in the environment. Besides the information, other methods can be

defined in order to to operate at the transaction level.

The connect phase method connects the driver to the sequencer via TLM, where the driver’s seq item port

is connected to the sequencer’s seq item export. This is shown in Figure 3.8. Seq item port implements

a get/pull which defines the scenario where control and data flow in the opposite directions (see Figure

32

Port Port Port Export Export Imp

ENV A ENV B

COMP A COMP B

Subcomp A Subcomp B

Figure 3.7: Canonical diagram for TLM connections.

3.5 where the method calls for this connection are analized in detail). This is a peer-to-peer connection

as driver and sequencer exist inside the agent.

UVM also provides a uvm analysis port which is a specialized TLM based class that contains a list

of analysis exports that are connected to it. This acts as a broadcast feature as it implements the

transaction in multiples components that are connected to it. In Figure 3.8, the monitor inside the agent

implements a uvm analysys port push/put connection defining the scenario where data and control flow

in the same direction. This is a child to parent connection as the agent is the parent component of the

monitor. Analysis port multiple receivers’ feature is also represented as a scoreboard and a subscriber

component receive the broadcasted packet from the agent. Analysis ports do not require a receiver, and

can be left unconnected.

Sequencer

Driver

Monitor

Agent

Scoreboard Subscriber

Export

Port

Pull

Push

1/N

uvm_analysis_port

uvm_analysis_port

uvm_analysis_export

Child -> parent

Peer to peer

port
export
analysis_port

Figure 3.8: TLM connections example inside an agent.

Figure 3.9 shows multiple monitors forwarding packets through an analysis port connected to a ex-

port/imp inside the scoreboard. The scoreboard is the final destination and consumes the transaction

with a write function.

33

UVM ENV

ACTIVE AGENT

MONITOR

SCOREBOARD

UVM ENV

ACTIVE AGENT

MONITOR

UVM ENV

PASSIVE AGENT

MONITOR

PORT

IMP

PACKET1_IN

PACKET2_IN

PACKET1_OUT

PACKET1_OUT

PACKET3_IN PACKET3_OUT

Figure 3.9: Monitor analysis port connection to scoreboard component.

34

4
Implementation of UVM

Contents

4.1 Reusable Universal Verification Components . 37

4.2 Voltage regulators’ UVM environment . 40

4.3 Digital core UVM environment . 43

4.4 Power management unit UVM environment . 45

35

36

4.1 Reusable Universal Verification Components

First and foremost, reusable UVM enviroments are described. These will be building blocks of the IP’s

UVM environments. These environments are designed for reusability, aiming for validation automation.

Testbenches are designed to implement a verification plan based on thoroughly stressing the DUT with

directed and pseudo-random stimuli, following a set of crossed SV’s coverpoints, with scoreboard vali-

dation.

All voltage regulators have an input and output voltage pin and require an input reference voltage and

a dedicated input for sensing the output voltage for feedback purposes. They also possess an enable

input and digital inputs to control the output voltage. They also possess a digital interface responsible

for control and configuration of the IP and an analog interface responsible for providing the current and

voltage references and controlling the output voltage. As these interfaces are common to the majority of

the regulators (LDOs, DCDC or switch-capacitor based) it is possible to create a parameterized reusable

UVM environment, that runs a pre-defined set of tests to validate their correct implementation with

respect to each regulator. Power and output interfaces also possess ports that exist in all regulators

making it possible to generalize a UVM environment for each.

4.1.1 Digital UVC

Voltage regulators have a digital interface ports that are grouped into a generic digital UVC. Table 4.1

shows the digital interface signals of the components of the PMU.

Table 4.1: Common digital interface signals

Digital UVC LDO CP Digital core
dis enzdvdd disdvdd dis

dissink dissink dissink dissink
dislvl dislvl dislvl -
dislvlz dislvlz dislvlz -
vprog1 di mode vprog1

test test test test
vprog2 fastboot swilim vprog2
vprog3 iomread - vprog3
vprog4 vfbread - vprog4
vprog5 iomsw dttrim vprog5

A digital UVC is generalized and encapsulated with default test sequences for each variable (Annex

A.3 shows the implementation of this UVC). The agent inside this UVC can be set to active, driving

stimuli to the DUT, or passive only acting as a listener of an interface. The passive implementation will

be useful when testing the PMU digital core as this UVC can be replicated to sample the output of the

registers for each regulator.

37

The sequence-item component possesses the following signals:

• dis - The dis pin is used to enable and disbable the regulator.

• dislvl - dislvl disables level converters and forces the regulator to ignore all driven digital signals

and assume default values. It is used to disable the interface core when digital supply is not present

or before the release of power-on-reset by the APC.

• dissink - When held high it disables the sink resistors that perform a pull down of the output voltage,

if the core is disabled.

• vprogn - The vprogn bits are connected to interface bits to program certain features of the regulator.

For example, vprog can be used to define the output voltage, to perform current or voltage trimming

or to define operating modes of a regulator.

• test - The test interface represent control pins used to force testing modes for characterization and

production test. Test modes can provide controllability and observability of internal signals through

the anatestbus output pin.

Specific LDO ports are described below.

• fastboot - The fastboot pin acts on the start-up time of the regulator. When set to high it doubles

the start voltage slope to reduce the start-up time.

• iomread and vfbread - When set to high, the output load internal current mirrors and the output

voltage dividers are activated. The mirrored current and divided voltage can be read from the iatb

and vatb output pins, respectively.

• iomsw - iomsw acts as a ratio selector for the load current mirror.

• di - di acts as a 4 bit voltage programmer. It defines the output voltage of the regulator.

Specific CP ports are described below.

• dttrim - The dttrim pin acts on the dead time between the switching phases of the regulator.

• swilim - swilim programs the current limitation on the CP switches. Input and output current limita-

tions are closely related to switch current limitation.

• mode - mode controls the modes of operation of the CP.

To coordinate tests, functional test sequences are developed for each regulator.

Constraints are also set inside the sequence-item class, and enables CDV for a more thorough

verification. These can be called from all environments that possess a digital UVC in a plug and play

fashion.

38

4.1.2 Power UVC

Similarly to the digital interface, all regulators have a power interface that is generalized to a generic

power UVC. The agent inside this UVC is set to active as it provides supply voltages for the regulators.

Different sequence-item classes are generated for each regulator and can be selected on higher levels

of the test environment. By taking advantage of UVM object oriented features, the user can perform con-

straint layering, which allows the definition of new constraints for voltage margins and other parameters.

Annex A.4 shows the implementation of this UVC.

Generic power interface sequence-item signals:

• vref - Reference voltage.

• avdd - Supply for analog circuits referenced to agnd.

• vcasn - Supply for analog circuits referenced to agnd.

• dvdd - Supply for the digital cells and level converters.

• ibp1u0 - Bias current for internal current mirrors.

• agnd, dgnd - Analog and digital ground supply.

4.1.3 Regulator UVC

All voltage regulators have an output interface that is also generalized and encapsulated inside a regu-

lator UVC. This UVC is used for the validation of voltage regulator and digital core (see table 4.2).

Table 4.2: Common output interface signals

Regulator UVC LDO CP Digital core
vo vo vo vo
pg pg pg pg

pgdvdd pgdvdd pgdvdd pgdvdd
anatestbus anatestbus anatestbus anatestbus
anatestreq anatestreq anatestreq anatestreq
rl vprog1 iatb cp1 rl vprog1
rl vprog2 vatb cn1 rl vprog2
rl vprog3 - cp2 rl vprog3
rl vprog4 - cn2 rl vprog4

The correspondent agent is configured as active in the first case, and set to passive in the latter

where test sequences are generated. The sequence-item component possesses the following signals:

• vo - Regulated output voltage.

39

• pg - Power good indicator. It is set to high when the output voltage reaches 95% of the programmed

voltage.

• pgdvdd - pg converted to digital domain.

• anatestbus - Output test bus.

• anatestreq - Output bit that is held high in test modes.

• rl vprogn - Adaptable output real signal.

Specific LDO ports are described below.

• iatb - Output for internal current mirrors.

• vatb - Output for internal voltage dividers.

Specific CP ports are described below.

• cp1 - Flying capacitor positive pin.

• cn1 - Flying capacitor negative pin.

4.2 Voltage regulators’ UVM environment

The proposed architecture for a generic voltage regulator UVM environment is displayed in Figure 4.1.

This environment will be used to validate the CP and the LDO.

To provide reusability, separate UVM environments to test the digital and power ports are designed

and encapsulated. These can be instantiated in other UVM voltage regulator environments. Alongside

these environments, a configuration environment is also considered to generate and drive specific ports,

define load variables and other parameters.

The testbench has four agents, one for each environment. The agents inside the power, configura-

tion and digital environment are set to active and drive transactions to the DUT. The agent inside the

regulator environment is set to passive and only samples the output interface of the DUT.

A virtual sequencer coordinates the generation of the constrained random stimuli for the sequencers

on the active agents.

During run phase, input packets are driven to the DUT and the output port is sampled for each bundle

of input signals. Each combination of input and corespondent output are orderly saved locally in queues

as these will later be used to generate a reference model for comparison purposes.

Analog signals, inside the power UVC (see Annex A.4.2) are declared as 32 bit integers, as UVM

does not support randomization of real values. These generated integer values are henceforth converted

into a 64 bit floating point number to fit the model’s real signal representation.

40

VIRTUAL
SEQUENCER

UVM_TEST

TESTBENCH TOP MODULE

REGULATOR
ENVIRONMENT

VO
LT

AG
E

R
EG

U
LA

TO
R

 R
N

M
 M

O
D

EL

DIGITAL
ENVIRONMENT

D
IG

IT
AL

IN

TE
R

FA
C

E
O

U
TP

U
T

IN
TE

R
FA

C
E

CONFIG
ENVIRONMENT

C
O

N
FI

G

IN
TE

R
FA

C
E

POWER
ENVIRONMENT

PO
W

ER

IN
TE

R
FA

C
E

SCOREBOARD

UVM ENVIRONMENT

Figure 4.1: UVM environment for voltage regulator testing.

Annex A.1 show the top modules for UVM configuration and Annex A.1.2 defines the top module

where the DUT and interface for each UVCs are instantiated. Annex A.2 depict the testbench UVM

environment shown in figure 4.1. UVCs are declared alongside a virtual sequencer and a scoreboard

component. As stated, digital and power UVCs are shown in Annexes A.3 and A.4 and run-phase calls

to interface task for monitor and driver are represented. These interface calls implementation are shown

in the interface source code (Annex A.6.1). The CP and LDO digital, power and output interface are

shown in sections 4.1.1, 4.1.2 and 4.1.3.

4.2.1 Sequence description

For each voltage regulator, test sequences are encapsulated inside the sequences class. These se-

quences aim for functional verification of the voltage regulator model. Therefore directed test are con-

sidered and described for active UVCs. The digital UVC defines control signals that control the voltage

regulator. The validation process results in exercising all relevant input combinations of these con-

trol bits and verify if the DUT responds accordingly. Amongst these directed oriented stimuli, pseudo-

random sequences are also defined. These are only limited by the constraints explicitly defined inside

the sequence-item class.

For the LDO and CP, there are independent test sequences to enable and disable the regulator,

sweeps of variables such as the test selector bus and di for output voltage regulation. Once these

sequences are defined, the virtual sequencer on the top level of the environment (see Figure 3.4) is

41

programmed to coordinate generation of stimuli for all UVC’s.

This level of granularity allows the user to create complex test scenarios focusing on functional veri-

fication with directed tests, fully pseudo-random scenarios or a combination of both.

4.2.2 Scoreboards and reference models

During the check and report phases, validation metrics are generated from the UVM test environment.

These contain information regarding simulation status, unmatched comparisons, coverage collection

and detailed information about the test execution.

To perform validation, the queued input and output samples are sent to a reference model that gen-

erates a golden reference based on the input signals. The reference model is coded in SV. It is a

representation of the data sheet acting as a look-up-table that describes the output for all input combina-

tions. After verifying the supply, operating mode, test scenario, the programmed output voltage and other

output signals it generates the correct bundle of output signals. The output is then orderly compared to

this golden reference from each input packet during the check phase of the uvm scoreboard.

After a successful comparison, these packets are removed from the queues and the next packets

are assessed. Empty scoreboard queues indicates that the DUT performed as expected for all tests. A

representative block diagram of this flow is displayed in Figure 4.2.

REGULATOR MONITOR

POWER ENV
 MONITOR

DIGITAL ENV
 MONITOR

QUEUE 0

QUEUE 1

QUEUE 2

QUEUE 3OUTPUT MONITOR

DUT

REFERENCE
MODEL

COMPARE
LOGIC

SCOREBOARD

RUN_PHASE CHECK_PHASE

Figure 4.2: Block diagram of the validation.

42

4.3 Digital core UVM environment

4.3.1 Considered UVC’s

4.3.1.A Digital UVC

As stated in subsection 4.1.1, the digital UVC is set to passive in this verification environment. The

digital environment registers all digital control pins from all the IPs present in the analog counterpart of

the design. Hence, it is straight-forward to instantiate this digital UVC for each IP, as the digital UVC is

set to support interface signals of all IPs. As the agent in these UVCs are set to passive, only a monitor is

present. Driver, sequencer and sequences implementation are not considered, as the goal is to sample

the output of the digital core.

4.3.1.B SPI UVC

To send inputs to the digital core, a SPI UVC is designed. As displayed in Figure 2.2, the digital core

possesses a spidin input pin which acts as as MOSI interface and a spidout output pin, MISO pin. It

also possesses a chip select bit (spics) and an spiclk input port that serves as input clock for the SPI

protocol.

To provide greater controlability on stimuli generation, the SPI sequence-item has a 32 bit data bus, a

6 bit address bus and a chip select bit. The SPI interface class implements the write and read protocols,

driving the signals through the spidin serial input. Annex A.5 shows the implementation of the SPI UVC.

4.3.1.C JTM, APC and ILIM UVC

JTM, APC and ILIM UVCs encapsulate specific environments to test specific control bits for the current

limiter IP, the JTM and the APC.

4.3.1.D General input and general output UVCs

A general input UVC and a general output UVC are also designed. They possess specific signals to the

digital core that do not fit in the other UVCs encapsulation. The general input UVC encapsulates the

digital core reset bit, the power on reset bit, the muxin bit and JTM digital core input configuration bits.

The muxin allongside a muxinaddr 4-bit address bus define a multiplexer logic allowing the possibility to

overwrite control bits with the muxin bit trough the digital core.

The general output UVC encapsulates the spidout serial output bit, the muxout bit, and JTM digital

core output configuration bits.

43

4.3.1.E Regulator UVC

The analog core IPs output signals to the digital core so they can be monitored during run-time. These

signals are the power good indicator (pgdvdd) and the test output bit (digtestbus). These signals exist

in the regulator UVC described in subsection 4.2. Inside the digital core, these signals go through an

output demultiplexer logic controlled by an 4-bit address bus (muxoutaddr) and an output muxout bit.

This provides observability of these analog core output through the digital core. The regulator UVC is

then set to active and instantiated once for each IP.

4.3.2 Sequence description

Test sequences for the considered active UVCs (gen in, regulator and SPI) are randomly defined. The

SPI UVC generates pseudo-random addresses(constrained for the number of addressable registers)

and random data buses. Test sequences for writes and reads are implemented.

4.3.3 Scoreboard and reference model

The scoreboard implementation has a similar configuration as the one considered for the voltage regula-

tors. During run-phase Every input and output sequence-items are inserted in queues. Output samples

consist of stored digital control bits for each regulator that are sent to the analog core. The SPI databus

represents the reference model. To validate writes, output samples are concatenated given an address.

A mask is applied to the input SPI data bus and compared to the concatenated output bus. To validate

reads the input SPI data bus is compared to the spidout serial peripheral interface. During check and

report-phase, queued inputs are orderly compared with the queued outputs. After a comparison, pack-

ets are removed from the queues and the next packets are assessed. Empty scoreboard queues signal

the end of the check-phase. During report-phase scoreboard statistics are displayed.

4.3.4 Proposed UVM environment architecture for the digital core

The proposed architecture is displayed in Figure 4.3.

44

VIRTUAL
SEQUENCER

TESTBENCH TOP MODULE

OUTPUT
ENVIRONMENT

D
IG

IT
AL

 C
O

R
E

ACTIVE
GEN IN

ENVIRONMENT

SP
I

IN
TE

R
FA

C
E

ACTIVE
SPI

ENVIRONMENTSCOREBOARD

G
EN

 IN

IN
TE

R
FA

C
E

G
EN

 O
U

T
IN

TE
R

FA
C

E

OUTPUT
ENVIRONMENT

OUTPUT
ENVIRONMENT

OUTPUT
ENVIRONMENT

OUTPUT
ENVIRONMENT

OUTPUT
ENVIRONMENT

OUTPUT
ENVIRONMENT

ACTIVE
REGULATOR

ENVIRONMENT

O
U

TP
U

T
IN

TE
R

FA
C

E

(..
.)

UVM_TEST
D

IG
IT

AL

IN
TE

R
FA

C
E

(..
.)(..
.)

(..
.)

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT PASSIVE

DIGITRAL
ENVIRONMENT

PASSIVE
GEN OUT

ENVIRONMENT

PASSIVE
APC

ENVIRONMENTAP
C

IN

TE
R

FA
C

E

PASSIVE
ILIM

ENVIRONMENTIL
IM

IN

TE
R

FA
C

E

PASSIVE
JTM

ENVIRONMENT JT
M

IN

TE
R

FA
C

E

Figure 4.3: UVM environment for digital core testing.

4.4 Power management unit UVM environment

The purpose of this UVM environment is to test the start-up sequence of the PMU core and integration of

the digital core with the models inside the analog core. The configuration of each validation sequence is

sent through the SPI interface to program the registers and define control parameters on each regulator.

4.4.1 PMU start-up sequence

The established start-up sequence is shown in Figure 4.4. The start-up sequence is defined in order to

ensure that the following conditions are met:

• Voltage regulators that define important supply domains such as digital core dvdd or Input-output

(IO) voltages, power up first. This is key to the correct behavior of the PMU, as these reference

voltages connect to level converters which require well defined supply domains.

• The start-up sequence is assured by an external supply. In some cases voltage regulators that

generate high startup currents may lower the voltage of the external supply . Therefore the start-up

of different voltage regulators is sequenced in order to limit the simultaneous current demand.

45

LDO1
180 mA

CP1
1/2@35 mA

CP2
1/3@105 mA

CP3
1/2@150 mA

APC
porz

en1 en2 en3pg1 pg2 pg3

delay delay delay

Figure 4.4: PMU’s start-up sequence.

For the pAvIs PMU Voltages (see Figure 2.2) Vcc2 and Vcc4 represent the core reference voltages.

LDO1 is the first regulator to be enabled as it is the first in line on the hierarchy, being connected to

the input voltage (vi). After its pg indicator is released CP1 and CP2 are enabled. CP1 defines Vcc2

and CP2 generates CP3 input voltage. CP3 then defines Vcc4 which returns the last pg indicator. The

APC then releases the porz indicator, which concludes the start-up sequence. The remaining regulators

enable ports are connected to dislvlz, which represents a level converted porz indicator. This assures

that voltage reference in all domains are defined in the right sequence.

4.4.2 Proposed environment architecture for the PMU

The proposed architecture for PMU validation is displayed in Figure 4.5.

46

VIRTUAL
SEQUENCER

TESTBENCH TOP MODULE

OUTPUT
ENVIRONMENT

PM
U

 C
O

R
E

ACTIVE
GEN IN

ENVIRONMENT

SP
I

IN
TE

R
FA

C
E

ACTIVE
SPI

ENVIRONMENTSCOREBOARD

G
EN

 IN

IN
TE

R
FA

C
E

G
EN

 O
U

T
IN

TE
R

FA
C

E
OUTPUT

ENVIRONMENT
OUTPUT

ENVIRONMENT
OUTPUT

ENVIRONMENT
OUTPUT

ENVIRONMENT
OUTPUT

ENVIRONMENT
OUTPUT

ENVIRONMENT
ACTIVE
POWER

ENVIRONMENT

PO
W

ER

IN
TE

R
FA

C
E

(..
.)

UVM_ENV

O
U

TP
U

T
IN

TE
R

FA
C

E

(..
.)(..
.)

(..
.)

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT

ANALOG
ENVIRONMENT PASSIVE

REGULATOR
ENVIRONMENT

PASSIVE
GEN OUT

ENVIRONMENT

Figure 4.5: UVM environment for PMU core testing.

47

48

5
Results

Contents

5.1 Voltage regulator results . 51

5.2 Digital core results . 52

5.3 PMU core results . 53

49

50

5.1 Voltage regulator results

For the scope of this work, results are assessed for coverage metrics paired with scoreboard verification.

Coverage reports are obtained with URG Synopsys VCS tool while the scoreboard validates the outputs

given an input set.

The proposed architecture, described in section 4.2, was implemented. Directed stimuli is consid-

ered, to achieve functional coverage. Several random test scenarios are created and exercised on the

DUT in order to fully cover all the possible combinations of input signals for voltage regulation. A cov-

ergroup for the digital environment was assembled. It possesses a coverpoint for each variable of the

interface which were crossed to sample coverage of meaningful operating modes. The covergroup is

sampled when considering the current standard SV flow and compared with the UVM flow.

5.1.1 LDO’s considered coverpoints and crosses

Considered coverpoints, crosses and respective results are shown in table 5.1.

Considered crosses are explained below.

• cx test di - This cross is ment to test all programming codes for the output voltage (di) with enable,

dissink and dislvl bits of the LDO. The test coverpoint is not considered.

• cx test cases - The test cross assures that all relevant test scenarios are considered.

• cx iom vfb - This crosses iomread, vfbread and iomsw coverpoints with a dislvl low coverpoint.

iatb and vatb output signals are assessed for this cross.

Initially directed stimuli is considered to functionally verify the design. Therefore, a standard flow (SF)

test adopted at SiliconGate is replicated in the UVM test sequences, which resulted in a coverage score

of 86.58%. Crosses results are low as achieving certain input combinations require specific sequences

which were not considered for functional verification. For example, a di sweep is only conducted for

an enabled LDO and therefore several bins are not exercised for the cx test di cross. Unusual input

combination are prone to identifying unexpected behavior. Once the several pseudo-random stimuli are

introduced in the environment, 100% coverage is achieved.

For all tests, the scoreboard successfully validates the LDO RNM model behaviour.

5.1.2 CP’s considered coverpoints and crosses

Considered coverpoints, crosses and initial results are shown in table 5.2. The Considered cross is

explained below.

51

Table 5.1: Coverage results for coverpoints and crosses of the LDO.

Variable Conditions to cover Covered (SF) Covered (UVM) Cov. percentage(SF)[%] Cov. percentage(UVM)[%]
enzdvdd (coverpoint) 2 2 2 100 100

dislvl (coverpoint) 2 1 1 100 100
dissink (coverpoint) 2 2 2 100 100

iomread (coverpoint) 2 2 2 100 100
iomsw (coverpoint) 4 4 4 100 100
vfbread (coverpoint) 2 2 2 100 100

di (coverpoint) 11 11 11 100 100
test (coverpoint) 9 9 9 100 100
cx test di (cross) 88 15 88 17.05 100
cx iom vfb (cross) 32 7 32 21.88 100

Coverage Score 86.58 100

• cx test all - This cross is ment to test all test scenarios for all digital interface bits. The test

coverpoint is not considered.

Table 5.2: CP coverage results.

Variable Conditions to cover Covered (SF) Covered (UVM) Cov. percentage (SF)[%] Cov. percentage (UVM)[%]
disdvdd (coverpoint) 2 2 2 100 100

dislvl (coverpoint) 2 2 2 100 100
dissink (coverpoint) 2 2 2 100 100
mode (coverpoint) 2 2 2 100 100
swilim (coverpoint) 2 2 2 100 100
dttrim (coverpoint) 4 4 4 100 100
test (coverpoint) 12 12 12 100 100
cx test all (cross) 32 11 32 34.38 100

Coverage Score 93.44 100

Similarly to the LDO, directed stimuli is considered to functionally verify the design, as a standard

flow (SF) example testbench adopted at SiliconGate is replicated in UVM. The coverage score was

93.44%. Once again the cross presents low coverage results. Tests are conducted aiming for functional

verification and unusual input combinations are not exercised as these are not considered in the verifi-

cation plan. Once the several pseudo-random stimuli are introduced in the environment, 100% coverage

is achieved. An issue was found in the design of the CP. Anatestreq output bit is set to 1 when in test

mode. For a dislvl set to 1, level converters inside the model are expected to output default values. This

means that the start-up sequence is not complete (porz = 0) and reference voltages in all domains are

not well defined. Therefore anatestreq should be set to its default value of 0. This bug was corrected in

the RNM model.

5.2 Digital core results

The proposed architecture, described in section 4.3, was implemented. A covergroup for the SPI envi-

ronment was assembled. It possesses a coverpoint for spics variable and spi address variable. Con-

sidered coverpoints, crosses and respective results are shown in table 5.3. cx test all crosses both

presented coverpoints.

52

Once again the results are presented for a SV standard flow with a coverage score of 66.67%.

Several random test scenarios are then created and exercised on the DUT in order to fully cover all the

possible combinations of input signals for voltage regulation.

Table 5.3: Digital core coverage results

Variable Conditions to cover Covered (SF) Covered (UVM) Cov. percentage (SF)[%] Cov. percentage (UVM)[%]
spics (coverpoint) 2 1 2 50 100

spi address (coverpoint) 14 14 14 100 100
cx test all (cross) 28 14 28 50 100

Coverage Score 66.67 100

In the standard flow, tests such as writing with a high spics were not considered. In this scenario,

the input bus should not be driven to the registers as the slave is disabled. UVM enables this tests in an

extensive fashion with full coverage for the considered coverpoints. Alongside these write operations,

reads are also implemented immediately after for the same address. This ensures that reads and writes

are tested for all addresses for an enabled and disabled slave. The scoreboard validates the digital core

for all considered inputs.

5.3 PMU core results

The PMU architecture UVM environment (Figure 4.5) is implemented. As all voltage regulators and

digital core were thoroughly tested and verified, the integration and testing of the PMU is facilitated.

Directed sequences are considered to test the startup sequence. For this purpose default values are

written in all registers, and the APC is enabled in order to generate the enable signals for the regulators.

Figure 5.1 shows the start-up sequence, depicting enable signals and their respective pg indicator,

followed by the rise of the porz indicator. Voltage regulators output voltages are also shown.

5.3.1 Edge Cases

The purpose of these tests is to verify if the parameters edge cases are correctly implemented in the

voltage regulators of the PMU. Therefore maximum and minimum programming codes for control bits

are set to assess their impact. The LDO output voltage is programable with the di input digital variable.

Edge cases for di are assessed for LDOs that define input voltages for internal regulators (LDO1 and

LDO3).

5.3.2 Edge cases results

Figure 5.2 and 5.3 displays the vo output voltages for both LDOs (LDO1 and LDO3) and the output

voltages of the regulators connected to them.

53

Figure 5.1: PMU’s start-up sequence.

For the edge programming voltages, all subsequential regulators perceive these changes but still

operate normally, as expected.

54

Figure 5.2: Edge cases for maximum and minimum LDO1 output voltage.

Figure 5.3: Edge cases for maximum and minimum LDO3 output voltage.

55

56

6
Conclusion

Contents

6.1 Conclusions . 59

6.2 System Limitations and Future Work . 59

57

58

6.1 Conclusions

UVM-based mixed-signal architectures were presented for a PMU and its constituents and compared

to traditional SV testing. Alongside RNM, UVM provides the infrastructure to test several scenarios in

an automatic fashion while simultaneously validating the behavior of the DUT and outputting meticulous

reports. Functional verification is simplified and, when aiming for coverage goals with random input

stimuli, unexpected misbehavior may be detected by the scoreboard component, as shown in the CP

model (section 5.1.2). This feature is much appreciated as finding these faults at earlier design stages

is crucial for the success of the project. UVM was implemented in SiliconGate’s test flow.

UVM UVCs were successfully reused throughout the verification process as they were intentionally

built for such purpose.

Voltage regulators (mixed-signal RNM models) were validated for all considered input combinations

of the digital interface ports. For the digital core, an exhaustive amount of tests were conducted. Be-

ing this design purely digital, tests simulate much faster when compared to RNM models. Coverage

was also assessed to ensure that all addressable registers were exercised for random input data. The

scoreboard component in these environments, alongside the reference model, play an important role

as validation automation is achieved, and allows the generation of self-checkable processes. Testing of

these components separately eased their integration in the scope of the PMU core. A start-up validation

was performed and edge cases internal voltages were verified.

6.2 System Limitations and Future Work

The UVM class library, although very flexible and well structured, is very complex. UVM is not recom-

mended for small projects as the overhead of building the environment is not justified by its gains. It

excels for big projects where a well-planned verification environment can be implemented to speed-up

the verification process. Besides, UVM does not provide a direct link from testbench sequences and

code running at the SoC level [11].

One of UVM’s main features is the standardized pre-built sequence generation mechanism. This

allows the programmer to seamlessly implement a CDV environment. The only approach to hit coverage

goals is to increase the number of samples or change the seed. A more robust sequence generation

mechanism could be explored in order to reduce the occurrence of repeated sequence-items, allowing

for better coverage-closure. An approach to this issue was assessed in [20].

A UVM register model will be considered as an extension of this work. The register model is a

hierarchical structure of objects that contains the description of the register on the DUT. This model can

store information of register fields such as address, size, reset value and access policy, that can be used

to validate correct register behavior.

59

Master-slave topologies will be considered. This allows the user to dynamically generate UVM envi-

ronments in a centralized fashion, granting an extra layer of controlability. Factory features and further

configuration with a the UVM configuration database will be explored as well.

60

Bibliography

[1] C. Sapsanis, M. Villemur, and A. G. Andreou, “Real number modeling of a sar adc behavior us-

ing systemverilog,” in 2022 18th International Conference on Synthesis, Modeling, Analysis and

Simulation Methods and Applications to Circuit Design (SMACD), 2022, pp. 1–4.

[2] S. Balasubramanian and P. Hardee, “Solutions for mixed-signal soc verification using real number

models,” in Cadence, Tech. Rep., 2013.

[3] Penta, “pavis - penta,” 2022, https://penta-eureka.eu/project-overview/penta-call-5/pavis/, Last ac-

cessed on 2022-09-16.

[4] A. N, G. Joseph, S. S. Oommen, and R. Dhanabal, “Design and implementation of a high speed

serial peripheral interface,” in 2014 International Conference on Advances in Electrical Engineering

(ICAEE), 2014, pp. 1–3.

[5] M. M. Ron Vogelsong, Ahmed Hussein Osman, “Practical rnm with systemverilog,” in

CDNLive2015, 2015.

[6] N. Georgoulopoulos and A. Hatzopoulos, “Real number modeling of a flash adc using systemver-

ilog,” in 2017 Panhellenic Conference on Electronics and Telecommunications (PACET), 2017, pp.

1–4.

[7] N. Georgoulopoulos, A. Mekras, and A. Hatzopoulos, “Design of a systemverilog-based vco real

number model,” in 2019 8th International Conference on Modern Circuits and Systems Technolo-

gies (MOCAST), 2019, pp. 1–4.

[8] B. Vineeth and B. B. Tripura Sundari, “Uvm based testbench architecture for coverage driven func-

tional verification of spi protocol,” in 2018 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), 2018, pp. 307–310.

[9] C. Elakkiya, N. Murty, C. Babu, and G. Jalan, “Functional coverage - driven uvm based jtag ver-

ification,” in 2017 IEEE International Conference on Computational Intelligence and Computing

Research (ICCIC), 2017, pp. 1–7.

61

https://penta-eureka.eu/project-overview/penta-call-5/pavis/

[10] T. M. Pavithran and R. Bhakthavatchalu, “Uvm based testbench architecture for logic sub-system

verification,” in 2017 International Conference on Technological Advancements in Power and En-

ergy (TAP Energy), 2017, pp. 1–5.

[11] K. Salah, “A uvm-based smart functional verification platform: Concepts, pros, cons, and opportu-

nities,” in 2014 9th International Design and Test Symposium (IDT), 2014, pp. 94–99.

[12] N. Georgoulopoulos, I. Giannou, and A. Hatzopoulos, “Uvm-based verification of a mixed-signal

design using systemverilog,” in 2018 28th International Symposium on Power and Timing Modeling,

Optimization and Simulation (PATMOS), 2018, pp. 97–102.

[13] Y. Liu, N. Tan, X. Xiao, J. Xia, W. Hu, and Y. Ding, “Design and uvm verification of an rtc subsystem

with temperature compensation,” in 2021 6th International Conference on Integrated Circuits and

Microsystems (ICICM), 2021, pp. 384–389.

[14] M. Soares, M. Santos, and J. Munhão, “Universal verification methodology for voltage regulators,”

accepted for poster presentation in XXXVII Conference on Design of Circuits and Integrated Sys-

tems, 2022.

[15] C. Liang, G. Zhong, S. Huang, and B. Xia, “Uvm-ams based sub-system verification of wireless

power receiver soc,” in 2014 12th IEEE International Conference on Solid-State and Integrated

Circuit Technology (ICSICT), 2014, pp. 1–3.

[16] W. Ramirez, H. Gomez, and E. Roa, “On uvm reliability in mixed-signal verification,” in 2019 IEEE

10th Latin American Symposium on Circuits & Systems (LASCAS), 2019, pp. 233–236.

[17] A. I. Cianga and C. Tepus, “Morphing digital functional verification to meet mixed signal challenges,”

in 2014 International Semiconductor Conference (CAS), 2014, pp. 219–222.

[18] Accelera, “Universal verification methodology (uvm) 1.1 user’s guide,” 2011.

[19] K. M. S. Rosenberg, “A practical guide to adopting the universal verification methodology (uvm),” in

Cadence Design Systems, 2nd edition, 2010.

[20] K. Fathy, K. Salah, and R. Guindi, “A proposed methodology to improve uvm-based test generation

and coverage closure,” in 2015 10th International Design & Test Symposium (IDT), 2015, pp. 147–

148.

62

A
UVM Code

A.1 Top modules

The UVM configuration top module is isolated from the hardware top module for accelaration purposes.

Therefore UVM top module builds and configures the UVM environment while the hardware top module

instantiates the DUT and interfaces.

A.1.1 UVM top module for voltage regulators

List of Code Segments A.1: UVM top module.
1 module top;
2 // import the UVM library
3 import uvm_pkg ::*;
4 // include the UVM macros
5 `include "uvm_macros.svh"
6

7 // import the UVC packages
8 import cp_pkg ::*;
9 import digital_pkg ::*;

10 import power_pkg ::*;
11 import output_pkg ::*;
12

63

13 // Include testbench , test library file , virtual sequencer file , virtual
sequences file and scoreboard file

14 `include "cp_mcsequencer.sv"
15 `include "cp_mcseqs.sv"
16 `include "scoreboard.sv"
17 `include "cp_tb.sv"
18 `include "cp_test_lib.sv"
19

20 initial begin
21 // Virtual interface connections to actual interfaces
22 cp_vif_config ::set(
23 null , // context is null because this is the top module
24 "uvm_test_top.tb.cp_uvc.cp_tx_agent .*",
25 "vif",
26 hw_top.in0
27);
28 output_vif_config ::set(
29 null , // context is null because this is the top module
30 "uvm_test_top.tb.output_uvc.output_tx_agent .*",
31 "vif",
32 hw_top.in1
33);
34 digital_vif_config ::set(
35 null , // context is null because this is the top module
36 "uvm_test_top.tb.digital_uvc.digital_tx_agent .*",
37 "vif",
38 hw_top.in2
39);
40 power_vif_config ::set(
41 null , // context is null because this is the top module
42 "uvm_test_top.tb.power_uvc.power_tx_agent .*",
43 "vif",
44 hw_top.in3
45);
46 run_test (); //run UVM
47 end
48 endmodule : top

A.1.2 Hardware top module for voltage regulators

List of Code Segments A.2: Testbench top module for charge pump.
1 module hw_top;
2

3 // Clock and reset signals
4 logic [31:0] clock_period;
5 logic run_clock;
6 logic clock;
7

8 real rl_iload ;
9

10

11 // YAPP Interface to the DUT
12 cp_if in0(clock);
13 output_if in1(clock);
14 digital_if in2(clock);
15 power_if in3(clock);
16

17 assign in1.out_data_ready = in0.in_data_vld;
18 // assign in2.in_data_vld = in0.in_data_vld;
19 assign in1.sample_out = in0.sample_monitor;
20

21 initial in0.in_data_vld = 0;
22

23 // CLKGEN module generates clock
24 clkgen clkgen (
25 .clock(clock),
26 .run_clock (1'b1),
27 .clock_period (32'd1000)
28);
29

30 charge_pump dut(
31 .clk (clock) ,
32 .en (in0.en) ,
33 .vcasn (in0.vcasn) ,

64

34 .digtestbus (in1.digtestbus) ,
35 .pgdvdd (in1.pgdvdd) ,
36 .pg (in1.pg) ,
37 .testreq (in1.anatestreq) ,
38 .anatestbus (in1.anatestbus) ,
39 .cn1 (in1.cn1) ,
40 .cp1 (in1.cp1) ,
41 .vo (in1.vo) ,
42 .vfb (in1.vo) ,
43 .dttrim (in2.vprog5) ,
44 .disdvdd (in2.dis) ,
45 .swilim (in2.vprog2) ,
46 .dislvl (in2.dislvl) ,
47 .dislvlz (in2.dislvlz) ,
48 .dissink (in2.dissink) ,
49 .mode (in2.vprog1) ,
50 .test (in2.test) ,
51 .vref (in3.vref) ,
52 .dvdd (in3.dvdd) ,
53 .ibp1u (in3.ibp1u) ,
54 .avdd (in3.avdd) ,
55 .pvi (in3.pvi) ,
56 .agnd ($realtobits (0.0)) ,
57 .dgnd ($realtobits (0.0)) ,
58 .refgnd ($realtobits (0.0)) ,
59 .pgnd ($realtobits (0.0)) ,
60 .sgnd ($realtobits (0.0)) ,
61 .sgnd2 ($realtobits (0.0))
62

63) ;
64

65 endmodule

List of Code Segments A.3: Testbench top module for LDO.
1 module hw_top;
2 // Clock and reset signals
3 logic [31:0] clock_period;
4 logic run_clock;
5 logic clock;
6

7 ldo_if in0(clock);
8 output_if in1(clock);
9 digital_if in2(clock);

10 power_if in3(clock);
11

12 // CLKGEN module generates clock
13 clkgen clkgen (
14 .clock(clock),
15 .run_clock(1'b1),
16 .clock_period (32'd10)
17);
18

19 LDO dut(
20 .agnd (in3.agnd) ,
21 .avdd (in3.avdd) ,
22 .dgnd (in3.dgnd) ,
23 .dvdd (in3.dvdd) ,
24 .ibp1u (in3.ibp1u) ,
25 .sgnd (in0.sgnd) ,
26 .refgnd (in0.refgnd) ,
27 .vi (in3.vi) ,
28 .vref (in3.vref) ,
29 .iomsw (in2.vprog5) ,
30 .iomread (in2.vprog3) ,
31 .vfbread (in2.vprog4) ,
32 .vfb (in1.vo) ,
33 .dislvl (in2.dislvl) ,
34 .dislvlz (in2.dislvlz) ,
35 .dissink (in2.dissink) ,
36 .enavdd (in2.enavdd) ,
37 .enzdvdd (in2.dis) ,
38 .fastboot (in2.vprog2) ,

65

39 .di (in2.di) ,
40 .test (in2.test) ,
41 .anatestbus (in1.anatestbus) ,
42 .anatestreq (in1.anatestreq) ,
43 .pg (in1.pg) ,
44 .pgdvdd (in1.pgdvdd) ,
45 .iatb (in1.iatb) ,
46 .vatb (in1.vatb) ,
47 .vo (in1.vo)
48) ;
49 endmodule

A.2 Testbench class for voltage regulators

List of Code Segments A.4: Testbench example for charge pump.
1 class cp_tb extends uvm_env;
2

3 `uvm_component_utils(cp_tb)
4

5 cp_env cp_uvc ;// config UVC
6 power_env power_uvc ;// power UVC
7 digital_env digital_uvc ;// digital UVC
8 output_env output_uvc ;// output UVC
9

10 //cp virtual sequencer
11 cp_mcsequencer cp_mcseqr ;// Vitual sequencer handle
12

13 //cp scoreboard
14 cp_scoreboard cp_sb ;// Scoreboard handle
15

16 // constructor
17 function new (string name , uvm_component parent);
18 super.new(name , parent);
19 endfunction
20

21 // Build phase function
22 function void build_phase(uvm_phase phase);
23 super.build_phase(phase);
24 cp_uvc = cp_env :: type_id :: create("cp_uvc" , this);
25 digital_uvc = digital_env :: type_id :: create("digital_uvc" , this);
26 power_uvc = power_env :: type_id :: create("power_uvc" , this);
27 output_uvc = output_env :: type_id :: create("output_uvc" , this);
28 cp_mcseqr = cp_mcsequencer :: type_id :: create("cp_mcseqr" , this);
29 cp_sb = cp_scoreboard :: type_id :: create("cp_sb",this);
30

31 `uvm_info("MSG", "Testbench build phase executed",UVM_HIGH)
32 endfunction
33
34
35

36 function void connect_phase(uvm_phase phase);
37 // Connect the TLM ports from the cp and output UVC to the scoreboard
38 cp_uvc.cp_tx_agent.monitor.item_collected_port.connect(cp_sb.sb_cp);
39 output_uvc.output_tx_agent.monitor.item_collected_port.connect(
40 cp_sb.sb_output);
41 digital_uvc.digital_tx_agent.monitor.item_collected_port.connect(
42 cp_sb.sb_digital);
43 power_uvc.power_tx_agent.monitor.item_collected_port.connect(
44 cp_sb.sb_power);
45

46 // connect mc sequencer references to UVC sequencer instances
47 cp_mcseqr.cp_seqr = cp_uvc.cp_tx_agent.sequencer;
48 cp_mcseqr.digital_seqr = digital_uvc.digital_tx_agent.sequencer;
49 cp_mcseqr.power_seqr = power_uvc.power_tx_agent.sequencer;
50 endfunction : connect_phase
51

52 endclass:cp_tb

66

A.3 Digital UVC

A.3.1 Digital UVC environment class

The environment for the digital UVC is shown in the code listing below. This environment instantiates a

digital agent.

List of Code Segments A.5: Digital UVC class
1 class digital_env extends uvm_env;
2 // utility macro
3 `uvm_component_utils(digital_env)
4

5 // Constructor
6 function new (string name , uvm_component parent);
7 super.new(name ,parent);
8 endfunction : new
9

10 digital_agent digital_tx_agent;// handle for agent
11

12 //build phase function
13 function void build_phase(uvm_phase phase);
14 super.build_phase(phase);
15 digital_tx_agent = digital_agent :: type_id :: create("digital_tx_agent",

this);
16 `uvm_info("MSG", "Agent build phase executed",UVM_HIGH)
17 endfunction
18

19 //start of simulation phase function
20 function void start_of_simulation_phase(uvm_phase phase);
21 `uvm_info(get_type_name () ,{"Start of simulation for " ,

get_full_name ()} , UVM_HIGH)
22 endfunction : start_of_simulation_phase
23

24 endclass : digital_env

A.3.2 Digital sequence-item class

The sequence-item class for the digital UVC is listed below.

List of Code Segments A.6: Digital UVC sequence-item class
1 class digital_sequence_item extends uvm_sequence_item;
2

3 rand bit dislvl ;
4 rand bit dislvlz ;
5 rand bit dissink ;
6 rand bit dis ;
7 rand bit vprog2 ;
8 rand bit vprog3 ;
9 rand bit [1:0] vprog5 ;

10 rand bit vprog4 ;
11 rand int packet_delay ;
12 rand bit [3:0] vprog1 ;
13 rand bit [3:0] test ;
14

15 bit pop_supply ;
16 bit pop_cp ;
17

18 function new (string name = "digital_sequence_item");
19 super.new(name);
20 endfunction : new
21 endclass: digital_sequence_item

67

A.3.3 Digital driver run-phase task

The digital driver’s run-phase task calls the task to drive DUT ports through a virtual interface. The

virtual interface points to a real interface (Annex A.6.1 shows the source code of an interface).

List of Code Segments A.7: Digital driver’s run phase task
1 task run_phase(uvm_phase phase);
2 forever begin
3 seq_item_port.get_next_item(req);
4 `uvm_info(get_type_name (), $sformatf("Sending Packet :\n%s",

req.sprint ()), UVM_HIGH)
5 begin
6 vif.send_to_dut(
7 req.dislvl ,
8 req.dislvlz ,
9 req.dissink ,

10 req.enavdd ,
11 req.dis ,
12 req.vprog1 ,
13 req.test ,
14 req.vprog3 ,
15 req.vprog5 ,
16 req.vprog4 ,
17 req.vprog2 ,
18 req.pop_supply ,
19 req.pop_cp ,
20 req.packet_delay
21);
22 end
23 `uvm_info(get_type_name (), $sformatf("Sending Packet :\n%s",

req.sprint ()), UVM_LOW)
24 num_sent ++;
25 // Communicate item done to the sequencer
26 seq_item_port.item_done ();
27 end
28

29 endtask : run_phase

A.3.4 Digital monitor run-phase task

The digital monitor’s run-phase task calls the task to sample DUT ports through a virtual interface.

List of Code Segments A.8: Digital monitor’s run phase task
1 task run_phase(uvm_phase phase);
2 forever begin
3 // Create collected packet instance
4 pkt = digital_packet :: type_id :: create("pkt", this);
5

6 vif.collect_packet(
7 pkt.dislvl ,
8 pkt.dislvlz ,
9 pkt.dissink ,

10 pkt.enavdd ,
11 pkt.dis ,
12 pkt.vprog1 ,
13 pkt.test ,
14 pkt.vprog3 ,
15 pkt.vprog5 ,
16 pkt.vprog4 ,
17 pkt.vprog2 ,
18 pkt.pop_supply ,
19 pkt.pop_cp ,
20 pkt.packet_delay
21);
22

68

23 `uvm_info(get_type_name (), $sformatf("Packet Collected :\n%s",
pkt.sprint ()), UVM_LOW)

24 num_pkt_col ++;
25

26 //write call to broadcast received packet to scoreboard
27 item_collected_port.write(pkt);
28 cover_digital.sample ();
29 end
30 endtask : run_phase

A.4 Power UVC

A.4.1 Power UVC environment class

The environment for the power UVC is shown in the code listing below. This environment instantiates a

power agent.

List of Code Segments A.9: power UVC class
1 class power_env extends uvm_env;
2 // utility macro
3 `uvm_component_utils(power_env)
4 // Constructor
5 function new (string name , uvm_component parent);
6 super.new(name ,parent);
7 endfunction : new
8
9 power_agent power_tx_agent;

10 function void build_phase(uvm_phase phase);
11 super.build_phase(phase);
12 power_tx_agent = power_agent :: type_id :: create("power_tx_agent", this);
13 `uvm_info("MSG", "Agent build phase executed",UVM_HIGH)
14 endfunction
15

16 function void start_of_simulation_phase(uvm_phase phase);
17 `uvm_info(get_type_name () ,{"Start of simulation for " ,

get_full_name ()} , UVM_HIGH)
18 endfunction : start_of_simulation_phase
19 endclass : power_env

A.4.2 Power sequence-item class

The sequence-item class for the power UVC is listed below. UVM does not support the randomization

of real values. Therefore variables are declared and randomized as 32-bit integers and a division con-

verts the number into 64 bit floating point representation. A real representation of each variable is also

considered for legibility. The conversion is done inside the interface model shown in Annex A.6.3.

List of Code Segments A.10: power UVC sequence-item class
1 class power_packet extends uvm_sequence_item;
2

3 rand int agnd ;
4 rand int avdd ;
5 rand int dgnd ;
6 rand int dvdd ;
7 rand int pvi ;
8 rand int vref ;
9 rand int ibp1u0 ;

69

10 rand int packet_delay ;
11

12 real agnd_rcv ;
13 real avdd_rcv ;
14 real dgnd_rcv ;
15 real dvdd_rcv ;
16 real pvi_rcv ;
17 real vref_rcv ;
18 real ibp1u0_rcv ;
19
20

21 function new (string name = "power_packet");
22 super.new(name);
23 endfunction : new
24 endclass: power_packet

A.4.3 power driver run-phase task

The power driver’s run-phase task calls the task to drive DUT ports through a virtual interface. The

virtual interface points to a real interface (Annex A.6.1 shows the source code of an interface).

List of Code Segments A.11: power driver’s run phase task
1 task run_phase(uvm_phase phase);
2 // Get new item from the sequencer
3 seq_item_port.get_next_item(req);
4 begin
5 vif.send_to_dut(req.agnd ,
6 req.avdd ,
7 req.dgnd ,
8 req.dvdd ,
9 req.pvi ,

10 req.vref ,
11 req.ibp1u0 ,
12 req.packet_delay
13);
14 end
15

16 `uvm_info(get_type_name (), $sformatf("Sending Packet :\n%s",
req.sprint ()), UVM_HIGH)

17 num_sent ++;
18 seq_item_port.item_done ();
19 endtask : run_phase

A.4.4 power monitor run-phase task

The power monitor’s run-phase task calls the task to sample DUT ports through a virtual interface.

List of Code Segments A.12: power monitor’s run phase task
1 task run_phase(uvm_phase phase);
2 forever begin
3 // Create collected packet instance
4 pkt = power_packet :: type_id :: create("pkt", this);
5

6 vif.collect_packet(pkt.agnd_rcv ,
7 pkt.avdd_rcv ,
8 pkt.dgnd_rcv ,
9 pkt.dvdd_rcv ,

10 pkt.pvi_rcv ,
11 pkt.vref_rcv ,
12 pkt.ibp1u0_rcv ,
13 pkt.packet_delay
14);

70

15

16 `uvm_info(get_type_name (), $sformatf("Packet Collected :\n%s",
pkt.sprint ()), UVM_LOW)

17 num_pkt_col ++;
18

19 //write call to broadcast received packet to scoreboard
20 item_collected_port.write(pkt);
21

22 end
23 endtask : run_phase

A.5 SPI UVC

A.5.1 SPI UVC environment class

The environment for the digital UVC is shown in the code listing below. This environment instantiates a

SPI agent.

List of Code Segments A.13: SPI UVC class
1 class spi_env extends uvm_env;
2 // utility macro
3 `uvm_component_utils(spi_env)
4

5 // Constructor
6 function new (string name , uvm_component parent);
7 super.new(name ,parent);
8 endfunction : new
9

10 spi_agent spi_tx_agent;
11

12 function void build_phase(uvm_phase phase);
13 super.build_phase(phase);
14 spi_tx_agent = spi_agent :: type_id :: create("spi_tx_agent", this);
15 `uvm_info("MSG", "Agent build phase executed",UVM_HIGH)
16 endfunction
17

18 function void start_of_simulation_phase(uvm_phase phase);
19 `uvm_info(get_type_name () ,{"Start of simulation for " ,

get_full_name ()} , UVM_HIGH)
20 endfunction : start_of_simulation_phase
21 endclass : spi_env

A.5.2 SPI sequence-item class

The sequence-item class for the SPI UVC is listed below. It possesses send and read variables for

address and data to coordinate driver and monitor execution. Hence, the driver can drive sequence-

items on a positive edge of the clock while the monitor samples the interface on the positive edge.

List of Code Segments A.14: SPI UVC sequence-item class
1 class spi_packet extends uvm_sequence_item;
2 rand bit [31:0] spi_send_data ;
3 rand bit [6:0] spi_send_addr ;
4 rand bit [31:0] spi_read_data ;
5 rand bit [6:0] spi_read_addr ;
6 rand bit spics ;
7 rand bit spisi ;
8 rand int packet_delay ;

71

9 function new (string name = "spi_packet");
10 super.new(name);
11 endfunction : new
12 endclass: spi_packet

A.5.3 SPI driver run-phase task

The digital driver’s run-phase task calls the task to drive DUT ports through a virtual interface. The

virtual interface points to a real interface (Annex A.6.3 shows the source code of an interface).

List of Code Segments A.15: SPI driver’s run phase task
1 task run_phase(uvm_phase phase);
2 forever begin
3 // Get new item from the sequencer
4 seq_item_port.get_next_item(req);
5 begin
6 vif.send_to_dut(
7 req.spi_send_data ,
8 req.spi_send_addr ,
9 req.spics ,

10 req.spisi ,
11 req.packet_delay
12);
13 end
14 `uvm_info(get_type_name (), $sformatf("Sending Packet :\n%s",

req.sprint ()), UVM_LOW)
15 seq_item_port.item_done ();
16 end
17 endtask : get_and_drive
18 endtask : run_phase

A.5.4 SPI monitor run-phase task

The digital monitor’s run-phase task calls the task to sample DUT ports through a virtual interface.

List of Code Segments A.16: SPI monitor’s run phase task
1 task run_phase(uvm_phase phase);
2 forever begin
3 // Create collected packet instance
4 pkt = spi_packet :: type_id :: create("pkt", this);
5 vif.collect_packet(
6 pkt.spi_read_data ,
7 pkt.spi_read_addr ,
8 pkt.spics ,
9 pkt.spisi ,

10 pkt.packet_delay
11);
12 `uvm_info(get_type_name (), $sformatf("Packet Collected :\n%s",

pkt.sprint ()), UVM_LOW)
13 //write call to broadcast received packet to scoreboard
14 item_collected_port.write(pkt);
15 cover_digital.sample ();
16 end
17 endtask : run_phase

72

A.6 Example Interfaces

A.6.1 Example Interface for digital UVC

List of Code Segments A.17: Digital interface.
1 interface digital_if (input clock);
2 timeunit 1ns;
3 timeprecision 100ps;
4

5 import uvm_pkg ::*;
6 `include "uvm_macros.svh"
7

8 import digital_pkg ::*;
9

10 // Actual Signals
11

12 logic dislvl ;
13 logic dislvlz ;
14 logic dissink ;
15 logic dis ;
16 logic [3:0] vprog1 ;
17 logic [3:0] test ;
18 logic vprog3 ;
19 logic [1:0] vprog5 ;
20 logic vprog4 ;
21 logic vprog2 ;
22

23 // Signal in_data_vld to synchronize sent and revceived packets
24 logic in_data_vld ;
25 logic sample_monitor ;
26

27 // pop_supply and pop_cp signals to coordinate sent packets and reference
model calculation

28 logic pop_supply ;
29 logic pop_cp ;
30
31

32 // Gets a packet and drive it into the DUT
33 task send_to_dut(input
34 bit dislvl_in ,
35 bit dislvlz_in ,
36 bit dissink_in ,
37 bit enavdd_in ,
38 bit dis_in ,
39 bit [3:0] di_in ,
40 bit [3:0] test_in ,
41 bit vprog3_in ,
42 bit [1:0] vprog5_in ,
43 bit vprog4_in ,
44 bit vprog2_in ,
45 bit pop_supply_in ,
46 bit pop_cp_in ,
47 int packet_delay_in
48);
49

50 repeat(packet_delay_in)
51 @(negedge clock);
52 @(negedge clock) begin
53 di = di_in ;
54 dislvl = dislvl_in ;
55 dislvlz = dislvlz_in ;
56 dissink = dissink_in ;
57 dis = dis_in ;
58 test = test_in ;
59 vprog5 = vprog5_in ;
60 vprog4 = vprog4_in ;
61 vprog3 = vprog3_in ;
62 vprog2 = vprog2_in ;
63 vprog1 = vprog1_in ;
64 pop_supply = pop_supply_in ;
65 pop_cp = pop_cp_in ;
66

67 end

73

68 in_data_vld <= 1'b0;
69 endtask : send_to_dut
70

71 // Collect Packets
72 task collect_packet(output
73 bit dislvl_in ,
74 bit dislvlz_in ,
75 bit dissink_in ,
76 bit dis_in ,
77 bit [3:0] di_in ,
78 bit [3:0] test_in ,
79 bit vprog3_in ,
80 bit [1:0] vprog5_in ,
81 bit vprog4_in ,
82 bit vprog2_in ,
83 bit pop_supply_in ,
84 bit pop_cp_in ,
85 int packet_delay_in
86);
87

88 @(negedge(in_data_vld))begin
89 sample_monitor = 1'b1;
90 @(posedge clock) begin
91

92 di_in = di ;
93 dislvl_in = dislvl ;
94 dislvlz_in = dislvlz ;
95 dissink_in = dissink ;
96 enavdd_in = enavdd ;
97 dis_in = dis ;
98 test_in = test ;
99 vprog5_in = vprog5 ;

100 vprog4_in = vprog4 ;
101 vprog3_in = vprog3 ;
102 vprog2_in = vprog2 ;
103 vprog1_in = vprog1 ;
104 pop_supply_in = pop_supply ;
105 pop_cp_in = pop_cp ;
106 end
107

108 sample_monitor = 1'b0;
109 repeat(packet_delay_in)
110 @(negedge clock);
111 end
112

113 endtask : collect_packet
114

115 endinterface : digital_if

A.6.2 Example Interface for power UVC

List of Code Segments A.18: Power interface.
1 interface power_if (input clock);
2 timeunit 1ns;
3 timeprecision 100ps;
4

5 import uvm_pkg ::*;
6 `include "uvm_macros.svh"
7

8 import power_pkg ::*;
9 // Actual Signals

10 logic [63:0] agnd ;
11 logic [63:0] avdd ;
12 logic [63:0] dgnd ;
13 logic [63:0] dvdd ;
14 logic [63:0] pvi ;
15 logic [63:0] vref ;
16 logic [63:0] ibp1u0 ;
17

18 // Signal in_data_vld to synchronize sent and revceived packets
19 logic in_data_vld ;
20 logic sample_monitor ;
21

22 // Gets a packet and drive it into the DUT
23 task send_to_dut(input int agnd_in ,

74

24 int avdd_in ,
25 int dgnd_in ,
26 int dvdd_in ,
27 int pvi_in ,
28 int vref_in ,
29 int ibp1u0_in ,
30 int packet_delay_in
31);
32 repeat(packet_delay_in)
33 @(negedge clock);
34

35 in_data_vld <= 1'b1;
36 @(negedge clock) begin
37 agnd = $realtobits(agnd_in / 10) ;
38 avdd = $realtobits(avdd_in / 10) ;
39 dgnd = $realtobits(dgnd_in / 10) ;
40 dvdd = $realtobits(dvdd_in / 10) ;
41 pvi = $realtobits(pvi_in / 10) ;
42 vref = $realtobits(vref_in / 10) ;
43 ibp1u0 = $realtobits(ibp1u0_in / 10) ;
44 end
45 in_data_vld <= 1'b0;
46 endtask : send_to_dut
47

48 // Collect Packets
49 task collect_packet(output real agnd_in ,
50 real avdd_in ,
51 real dgnd_in ,
52 real dvdd_in ,
53 real pvi_in ,
54 real vref_in ,
55 real ibp1u0_in ,
56 int packet_delay_in
57);
58 @(negedge(in_data_vld))begin
59

60 sample_monitor = 1'b1;
61 // Drive remaining signals
62 @(posedge clock) begin
63 agnd_in = $bitstoreal(agnd) ;
64 avdd_in = $bitstoreal(avdd) ;
65 dgnd_in = $bitstoreal(dgnd) ;
66 dvdd_in = $bitstoreal(dvdd) ;
67 pvi_in = $bitstoreal(pvi) ;
68 vref_in = $bitstoreal(vref) ;
69 ibp1u0_in = $bitstoreal(ibp1u0) ;
70 end
71 sample_monitor = 1'b0;
72 repeat(packet_delay_in)
73 @(negedge clock);
74 end
75

76 endtask : collect_packet
77

78 endinterface : power_if

A.6.3 Example Interface for SPI UVC

The spi write function implements the SPI protocol and drives data through the spidin input port.

List of Code Segments A.19: Power interface.
1 interface spi_if (input clock);
2 timeunit 1ns;
3 timeprecision 100ps;
4

5 import uvm_pkg ::*;
6 `include "uvm_macros.svh"
7

8 import spi_pkg ::*;
9

10 // Actual Signals
11 wire spidin ;
12 wire spics ;
13 wire spisi ;

75

14

15 // Signal sending_spi to synchronize sent and revceived packets
16 logic sending_spi ;
17 logic sample_monitor ;
18 logic start ;
19

20 // Gets a packet and drive it into the DUT
21 task send_to_dut(input
22 bit [31:0] spi_send_data

,
23 bit [6:0] spi_send_addr

,
24 bit spics_in

,
25 bit spisi_in

,
26 int packet_delay_in
27);
28

29 @(posedge clock) begin sending_spi <= 1'b1; sample_registers = 1'b0;
addr_send = spi_send_addr; end

30 spi_write(spi_send_addr , spi_send_data ,0,1);// write task with enabled
slave

31 @(posedge clock) sample_registers = 1'b1;
32 spi_write(spi_send_addr , spi_send_data ,0,0);// write task with disabled

slave
33 @(posedge clock) sending_spi <= 1'b0;
34 endtask : send_to_dut
35

36 // Collect Packets
37 task collect_packet(output
38 bit [31:0] spi_read_data

,
39 bit [6:0] spi_read_addr

,
40 bit spics_in

,
41 bit spisi_in

,
42 int packet_delay_in
43);
44 integer i;
45 @(negedge(sample_registers))begin
46 sample_monitor = 1'b1;
47 @(posedge clock) begin
48 spics_in = spics ;
49 write_read = spidin ;
50 end
51 for (i=0; i<=6; i=i+1) begin
52 @(posedge clock)
53 spi_read_addr[i] <= spidin;
54 end
55 for (i=0; i <=31; i=i+1) begin
56 @(posedge clock)
57 spi_read_data[i] <= spidin ;
58 end
59 @(negedge clock)
60 sample_monitor = 1'b0;
61 end
62 endtask : collect_packet
63

64 endinterface : spi_if

76

A.7 Other relevant code listings

A.7.1 Virtual Sequences class example

Virtual sequence require a declaration of a parent sequencer parameter that points to the regular se-

quencer (inside the agent) on which the sequence will run. Handles to local sequences are also defined

and the uvm do on macros coordinate the sequence generation process.

List of Code Segments A.20: Virtual sequence example.
1 class cp_mcseq_run_all extends cp_mcseq_base_seq;
2

3 // utility macro
4 `uvm_object_utils(cp_mcseq_run_all)
5

6 // Constructor
7 function new(string name="cp_mcseq_run_all");
8 super.new(name);
9 endfunction

10

11 // declare p_sequncer
12 `uvm_declare_p_sequencer(cp_mcsequencer)
13 // Handles to the UVC sequences to execute
14 //cp sequences
15 cp_1_seq cp_seq;
16 cp_resistive_maxload_seq cp_res_max_load;
17 cp_fixed_load_seq cp_fix_load;
18 cp_fixed_half_load_seq cp_fix_half_load;
19 cp_fixed_small_load_seq cp_fix_small_load;
20 cp_enable_low_seq cp_enable_low;
21

22 // digital sequences
23 digital_mode_seq digital_mode_seq;
24 digital_test_seq digital_test;
25 digital_di_seq digital_di_seq;
26 digital_pop_cp digital_pop_cp;
27 // digital_disable digital_dis;
28 digital_enable digital_en;
29 digital_disable digital_dis;
30 // digital pseudo -random sequence
31 digital_random digital_ran
32

33 //power sequences
34 power_1_seq power_seq;
35 // digital random sequence
36 digital_random digital_ran;
37

38 virtual task body();
39 // Configure en
40 `uvm_do_on(cp_enable , p_sequencer.cp_seqr)
41

42 // update load with pop logic
43 `uvm_do_on(digital_pop_cp , p_sequencer.digital_seqr)
44

45 // digital disable sequence
46 `uvm_do_on(digital_dis , p_sequencer.digital_seqr)
47

48 // digital sequence for mode sweep
49 `uvm_do_on(digital_mode_seq , p_sequencer.digital_seqr)
50

51 // digital sequence for test sweep
52 `uvm_do_on(digital_test , p_sequencer.digital_seqr)
53

54 // Configure CP packet for small load
55 `uvm_do_on(cp_fix_small_load , p_sequencer.cp_seqr)
56

57 // digital sequence for di sweep
58 `uvm_do_on(digital_di_seq , p_sequencer.digital_seqr)
59

60 // digital random sequence

77

61 `uvm_do_on(digital_ran , p_sequencer.digital_seqr)
62

63 // increase load to speed up discharge
64 `uvm_do_on(cp_fix_load , p_sequencer.cp_seqr)
65

66 // digital sequence to disable cp with endvdd
67 `uvm_do_on(digital_dis , p_sequencer.digital_seqr)
68

69 endtask
70

71 endclass : cp_mcseq_run_all

78

B
VCS URG coverage report

An example coverage report of a covergroup is presented. Results are generated for each coverpoint

and each cross. When no bin construct is defined, there is an implicit bin for all possible values of

a coverage point variable. Explicit bins (manually defined with the bin construct) define the possible

scenarios to fully cover a coverage point. For each coverpoint/cross a coverage score is presented

which are used to compute the overall coverage score. Covered and uncovered scenarios are detailed.

79

U
n

ified
 C

overage R
ep

ort :: G
rou

p
 ::

d
igital_p

k
g::d

igital_m
on

itor::cover_d
igital

<
usernam

e>

S
um

m
ary for V

ariable enable_dvdd

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

A
utom

atically G
enerated B

ins
2

0
2

100.00

A
utom

atically G
enerated B

ins for enable_dvdd

B
ins

S
um

m
ary for V

ariable enable_dvdd1

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

U
ser D

efined B
ins

1
0

1
100.00

U
ser D

efined B
ins for enable_dvdd1

B
ins

N
A

M
E

C
O

U
N

T
A

T
 L

E
A

S
T

one
13

1

S
um

m
ary for V

ariable enable_dsl

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

A
utom

atically G
enerated B

ins
2

0
2

100.00

A
utom

atically G
enerated B

ins for enable_dsl

B
ins

S
um

m
ary for V

ariable enable_dsl0

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

U
ser D

efined B
ins

1
0

1
100.00

U
ser D

efined B
ins for enable_dsl0

B
ins

N
A

M
E

C
O

U
N

T
A

T
 L

E
A

S
T

one
24

1

S
um

m
ary for V

ariable enable_dissink

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

A
utom

atically G
enerated B

ins
2

0
2

100.00

A
utom

atically G
enerated B

ins for enable_dissink

B
ins

S
um

m
ary for V

ariable enable_m
ode

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

U
ser D

efined B
ins

1
0

1
100.00

U
ser D

efined B
ins for enable_m

ode

B
ins

N
A

M
E

C
O

U
N

T
A

T
 L

E
A

S
T

b1_0
25

1

S
um

m
ary for V

ariable enable_sw
ilim

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

A
utom

atically G
enerated B

ins
2

0
2

100.00

A
utom

atically G
enerated B

ins for enable_sw
ilim

B
ins

S
um

m
ary for V

ariable enable_dttrim

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

U
ser D

efined B
ins

4
0

4
100.00

U
ser D

efined B
ins for enable_dttrim

B
ins

N
A

M
E

C
O

U
N

T
A

T
 L

E
A

S
T

b2_0
6

1

b2_1
7

1

b2_2
7

1

b2_3
6

1

S
um

m
ary for V

ariable enable_test

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T

U
ser D

efined B
ins

12
0

12
100.00

U
ser D

efined B
ins for enable_test

B
ins

N
A

M
E

C
O

U
N

T
A

T
 L

E
A

S
T

test_valid_0
11

1

test_valid_1
1

1

test_valid_2
1

1

test_valid_3
1

1

test_valid_4
1

1

test_valid_5
1

1

test_valid_6
1

1

test_valid_7
1

1

test_valid_8
1

1

test_valid_9
1

1

test_valid_a
1

1

test_valid_b
1

1

S
um

m
ary for C

ross cx_test_all

S
am

ples crossed: enable_dvdd enable_dsl enable_dttrim
 enable_sw

ilim
 enable_m

ode

C
A

T
E

G
O

R
Y

E
X

P
E

C
T

E
D

U
N

C
O

V
E

R
E

D
C

O
V

E
R

E
D

P
E

R
C

E
N

T
M

IS
S

IN
G

A
utom

atically G
enerated C

ross B
ins

32
21

11
34.38

21

A
utom

atically G
enerated C

ross B
ins for cx_test_all

E
lem

ent holes

enable_dvdd
enable_dsl

enable_dttrim
enable_sw

ilim
enable_m

ode
C

O
U

N
T

A
T

L
E

A
S

T
N

U
M

B
E

R

[auto[0]]
[auto[0]]

*
[auto[1]]

*
--

--
4

[auto[0]]
[auto[1]]

*
*

*
--

--
8

[auto[1]]
[auto[0]]

[b2_0]
[auto[1]]

*
0

1
1

[auto[1]]
[auto[0]]

[b2_2 , b2_3]
[auto[1]]

*
--

--
2

[auto[1]]
[auto[1]]

[b2_0]
*

*
--

--
2

[auto[1]]
[auto[1]]

[b2_1]
[auto[1]]

*
0

1
1

[auto[1]]
[auto[1]]

[b2_2]
*

*
--

--
2

[auto[1]]
[auto[1]]

[b2_3]
[auto[1]]

*
0

1
1

C
overed bins

enable_dvdd
enable_dsl

enable_dttrim
enable_sw

ilim
enable_m

ode
C

O
U

N
T

A
T

 L
E

A
S

T

auto[0]
auto[0]

b2_0
auto[0]

b1_0
4

1

auto[0]
auto[0]

b2_1
auto[0]

b1_0
2

1

auto[0]
auto[0]

b2_2
auto[0]

b1_0
4

1

auto[0]
auto[0]

b2_3
auto[0]

b1_0
3

1

auto[1]
auto[0]

b2_0
auto[0]

b1_0
2

1

auto[1]
auto[0]

b2_1
auto[0]

b1_0
3

1

auto[1]
auto[0]

b2_1
auto[1]

b1_0
1

1

auto[1]
auto[0]

b2_2
auto[0]

b1_0
2

1

auto[1]
auto[0]

b2_3
auto[0]

b1_0
2

1

auto[1]
auto[1]

b2_1
auto[0]

b1_0
1

1

auto[1]
auto[1]

b2_3
auto[0]

b1_0
1

1

82

	Titlepage
	Acknowledgments
	Resumo
	Resumo
	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	List of code segments
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives and Deliverables
	1.3 Thesis Outline

	2 PMU architecture
	2.1 Analog SV-RNM
	2.2 pAvIs PMU Architecture
	2.3 pAvIs Digital core
	2.4 pAvIs Analog core
	2.4.1 APC RNM model
	2.4.2 LDO RNM model
	2.4.3 CP RNM model
	2.4.4 Remaining PMU blocks

	2.5 Model validation
	2.5.1 Verification techniques
	2.5.2 SV's covergroup and coverpoint
	2.5.3 Coverage-driven constrained-random verification

	2.6 Benefits of verification with UVM
	2.6.1 Verification plan
	2.6.2 Used tools

	3 Introduction to UVM
	3.1 Overview
	3.2 The systemVerilog UVM Class library
	3.3 UVM testbench and environment
	3.4 Transaction-level Modelling (TLM)

	4 Implementation of UVM
	4.1 Reusable Universal Verification Components
	4.1.1 Digital UVC
	4.1.2 Power UVC
	4.1.3 Regulator UVC

	4.2 Voltage regulators' UVM environment
	4.2.1 Sequence description
	4.2.2 Scoreboards and reference models

	4.3 Digital core UVM environment
	4.3.1 Considered UVC's
	4.3.1.A Digital UVC
	4.3.1.B SPI UVC
	4.3.1.C JTM, APC and ILIM UVC
	4.3.1.D General input and general output UVCs
	4.3.1.E Regulator UVC

	4.3.2 Sequence description
	4.3.3 Scoreboard and reference model
	4.3.4 Proposed UVM environment architecture for the digital core

	4.4 Power management unit UVM environment
	4.4.1 PMU start-up sequence
	4.4.2 Proposed environment architecture for the PMU

	5 Results
	5.1 Voltage regulator results
	5.1.1 LDO's considered coverpoints and crosses
	5.1.2 CP's considered coverpoints and crosses

	5.2 Digital core results
	5.3 PMU core results
	5.3.1 Edge Cases
	5.3.2 Edge cases results

	6 Conclusion
	6.1 Conclusions
	6.2 System Limitations and Future Work

	Bibliography
	A UVM Code
	A.1 Top modules
	A.1.1 UVM top module for voltage regulators
	A.1.2 Hardware top module for voltage regulators

	A.2 Testbench class for voltage regulators
	A.3 Digital UVC
	A.3.1 Digital UVC environment class
	A.3.2 Digital sequence-item class
	A.3.3 Digital driver run-phase task
	A.3.4 Digital monitor run-phase task

	A.4 Power UVC
	A.4.1 Power UVC environment class
	A.4.2 Power sequence-item class
	A.4.3 power driver run-phase task
	A.4.4 power monitor run-phase task

	A.5 SPI UVC
	A.5.1 SPI UVC environment class
	A.5.2 SPI sequence-item class
	A.5.3 SPI driver run-phase task
	A.5.4 SPI monitor run-phase task

	A.6 Example Interfaces
	A.6.1 Example Interface for digital UVC
	A.6.2 Example Interface for power UVC
	A.6.3 Example Interface for SPI UVC

	A.7 Other relevant code listings
	A.7.1 Virtual Sequences class example

	B VCS URG coverage report

