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A B S T R A C T

Metal-organic frameworks (MOFs) are highly valued for their electronic and optical capabilities in food sample 
analysis. Implementing MOF-based sensors is crucial for public health safety. This review centers on electro
chemiluminescence (ECL) MOFs for monitoring food samples, highlighting signal changes from combining MOFs 
with Ru(bpy)3

2+, TPrA, nanomaterials, and biomolecules. It systematically reviews the development, mecha
nisms, signal pathways, and findings related to ECL MOF food sensors. Notably, immobilizing ZIF-8 and various 
metals with transducers like gold nanoparticles enhances ECL signals, enabling effective monitoring across media 
types. Moreover, MOFs excel in co-reactant processes, resonance energy transfer, and catalytic redox reactions 
for detecting analytes in food, presenting opportunities for advanced sensory analysis and the creation of cost- 
effective, sensitive signal transducers for food safety and quality control.

1. Introduction

Metal-organic frameworks (MOFs) are materials with highly cus
tomizable porosity and well-defined structures, making them versatile 
for a wide range of applications. Due to their unique properties, MOFs 
are used in various fields, such as energy storage, environmental 
remediation, food packaging, drug delivery, and medical diagnostics 
(Abánades Lázaro et al., 2024; Baumann et al., 2019; Mohan et al., 
2024). Their tunable pore sizes and high surface areas are ideal candi
dates for gas storage, catalysis, and separation technologies. Further
more, their structural diversity allows for the design of MOFs specifically 
tailored for different applications, demonstrating great potential in 
addressing various societal and industrial challenges (Duan et al., 2024; 
Mohan et al., 2022; Perl et al., 2023; Shi & Zhao, 2024; Xue et al., 2022). 
The coordination of the metal center and ligands resulted in stable MOF 
crystalline structures that can be easily fabricated using both inorganic 
and organic materials (Connolly et al., 2019). With their organized 
building blocks, MOFs have been used to address societal issues such as 
food and water quality analysis. The growing population and demand 

have led to contamination of food sources due to human activities, in
dustrial processes, and climate change. It is crucial to find a solution to 
ensure food quality at the grassroots level for food contaminants 
detection, including regular chemicals, metal ions, and organic and 
inorganic substances with different electronic properties (Hou et al., 
2023; Liang et al., 2023; Onyeaka et al., 2024; Saidon et al., 2024).

The development of electrochemiluminescence (ECL) techniques for 
monitoring contaminants has been driven by the desire to ensure food 
quality (Niu et al., 2024; Yang, Wang, Zhang, et al., 2024). Electro
generated ECL is photon emission from a luminophore due to an electron 
transfer process triggered by an electrochemical reaction. ECL began in 
the 1920s and evolved in the 1960s with works by Professor Allen J. 
Bard (Geske & Bard, 1959). It quickly became a powerful electroana
lytical technique with the development of the sensor. Molecular elec
trochemistry is crucial for understanding ECL generation mechanisms 
and studying new luminophores (Fiorani et al., 2018; Zhen et al., 2024). 
Furthermore, ECL materials sensors have various applications across 
various industries, including medical diagnostics, environmental 
monitoring, and food safety (Yang, Tian, Song, et al., 2024; Yang, Zheng, 
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Wang, et al., 2024). These sensors can detect small amounts of sub
stances with great accuracy and precision, making them an excellent 
choice for sensitive detection.

The consumption of low-quality food that lacks essential nutrients 
has been linked to the development of serious chronic diseases such as 
heart disease, diabetes, and obesity. Therefore, researchers must prior
itize the thorough analysis of the food consumed and implement effec
tive monitoring techniques to ensure its quality and nutritional value 
(van Dijk et al., 2021; Wang, Dou, et al., 2023). Food contaminants, 
including chemicals and biological and physical substances, can enter 
the food supply chain through various pathways from the farm to the 
table (Suzuki et al., 2020). Many different forms of contamination pose a 
threat to the safety of our food supply. These include bacteria, heavy 
metal ions, pesticides, and insecticides. When these contaminants enter 
the food supply chain, they can cause a range of illnesses and infections 
in the body, posing a severe risk to public health (Kebede et al., 2024; 
Wang, Walker, et al., 2020).

The global food industry has over 350,000 registered chemicals and 
mixtures. These food additives make their way into the food chain 
through various food products. Regulatory bodies like the European 
Food Safety Authority and the Food and Drug Administration (FDA) in 
the U.S. must approve food additive ingredients. However, there are 
currently no specific labeling regulations for food additive concentra
tion. Generally, low concentrations are considered safe (Dinu et al., 
2020; Tralau et al., 2021). In addition, soil quality is a significant factor 
for agriculture-based foods, in addition to food additives. Approximately 
13 % or more of the grain grown in acidic soils causes food toxicity, 
which can affect human health. Soil can also negatively impact and 
imbalance metal oxides and hydroxides through interactions with other 
substances, leading to low bioavailability (Lei, Cheng, et al., 2024; Li, 
Chen, et al., 2023).

Recently, a promising focus has been on developing materials to 
analyze contaminants in food samples. Various techniques like electro
chemical, spectroscopic, phase extraction, and spectrometric methods 
have been used with specially designed metal, carbon, and silica-based 
porous materials, nanomaterials, carbon materials, covalent, hydrogen, 
and coordination metal organic frameworks have emerged as promising 
candidates for contaminant analysis (Huo et al., 2024; Li, Cai, et al., 
2024; Li, Jin, et al., 2024; Lu, Luo, et al., 2024; Mirzaei Karazan et al., 
2024; Salamat & Soylak, 2024). A critical report has highlighted the use 
of the ECL sensors system, which combines a triple helix structure with 
CRISPR/Cas12a to detect trace pesticides using ZIF-8. This approach 
uses an aptamer with auxiliary sequences to form a target converter, 
exposing the aptamer for binding. Upon binding, rolling circle amplifi
cation (RCA) was initiated. The RCA product was then encoded with a 
DNAzyme/substrate unit, activating the CRISPR/Cas12a system and 
serving as quenching probes for signal output. This method shows strong 
selectivity and sensitivity in detecting acetamiprid (Li, Chen, et al., 
2024). In an example, 3, 4, 9, 10-perylenetetracarboxylic acid (PTCA) 
was selected as the luminophore, and a terbium metal-organic gel 
(MOG) was prepared to act as a co-reaction accelerator. The MOG 
provided a large surface area for PTCA immobilization, which catalyzed 
the reaction with potassium persulfate (K2S2O8) to generate sulfate 
radical anions. This process accelerated the electron transfer rate, 
improving ECL efficiency. However, due to the specific binding effect 
between the patulin aptamer and patulin , the ECL signal was quenched 
in patulin presence. This relationship allowed for measuring a wide 
range of PAT concentrations (Xiang et al., 2023). ECL sensors are 
recognized for their high electron transfer capabilities when interacting 
with analytes. In a biocathode-reducing oxygen system, electron transfer 
originates from E. coli O157:H7 bacteria due to their electrochemical 
activity. Microbial fuel cells facilitate the reduction of oxygen in an ECL 
system, allowing for the monitoring of E. coli O157:H7 levels in food 
(Chen, Tao, et al., 2023). The ECL sensing system has proven to be more 
efficient than other techniques, such as fluorescence and spectrometry in 
various analytical applications. This enhanced efficiency can be 

attributed to its unique mechanism, which allows for high sensitivity 
and specificity in detecting analytes. By integrating MOFs with the ECL 
system, researchers have the potential to develop highly sensitive 
analytical tools specifically designed for food sample analysis due to 
tuned properties providing better interaction with the target molecules.

In recent years, researchers have shown particular interest in MOF 
materials with significant potential across various sectors of the food 
industry, including food packaging, sensing, flavor additives, and more 
(Cheng et al., 2021; Leelasree et al., 2020; Sharanyakanth & Radhak
rishnan, 2020; Zhang, Lou, et al., 2021). The particular focus on MOF 
sensors for food, environment, and clinical samples has been explored 
based on spectroscopic and electrochemical activities (Kathuria et al., 
2023). In addition, nanomaterials and carbon-based materials such as 
electrochemical, luminescence, and ECL sensors have been studied with 
insights into sensing mechanisms, selection of the analytical parameters, 
and stabilities (Abedi-Firoozjah et al., 2024; Lu, Zhang, et al., 2024). 
Vidic et al. provided essential insights on ECL sensing for water pollut
ants and industrial chemicals, including organic compounds, pharma
ceuticals, and cyanotoxins (Sentic et al., 2023). Our previous review 
discussed luminescent and electrochemical monitoring of food con
taminants (Mohan et al., 2023). It has been observed that review studies 
on ECL MOF food sample analysis have gained limited attention, while 
microfluidic ECL approaches and ECL reactions in solutions and on the 
surface of microbeads have been discussed (Kirschbaum & Baeumner, 
2015; Wang & Su, 2021). This review focuses on the current demand for 
food sample analysis using MOF ECL sensors, one of the unrevealed 
areas with new findings and challenges that will open a gate for re
searchers. It will inspire the development of reusable and stable MOF 
food sample monitoring tools with high sensitivity under moisture, hy
drothermal, and pH conditions, potentially revolutionizing the food 
industry. The review highlights a set of excellent works that have been 
developed to create MOF ECL sensors for analyzing food samples with 
precision. It offers a detailed comparison of metal and carbon materials 
with MOF ECL sensors, focusing on the material science aspect of food 
sample analysis. Moreover, this research addresses the urgent need for 
cost-effective, rapid, and highly responsive devices for monitoring 
contaminants in the complex matrices found in food products. The 
findings of this investigation have significant potential value for aca
demic and industrial purposes in enhancing the quality of analytical 
tools used in food testing protocols.

2. ECL food samples analysis system

The food analysis process starts with lab samples and moves to real 
sample analysis applications using suitable techniques and materials. 
Real sample analysis is necessary to determine analyte concentration in 
food samples (Ghasemi et al., 2024). It follows sample collection, 
grinding, and enzymatic and non-enzymatic hydrolysis to obtain an 
extract used for sensing. Hydrolysis has the advantage of stability and 
intends to mimic the biochemical and physical processes in the human 
digestive system compared to strong acid and high-temperature micro
wave digestion (Fig. 1) (Jain et al., 2024; Santana et al., 2024).

ECL food sensors have been designed with various porous, metal, and 
carbon-based materials for tuned electronic and multifunctional sites 
suitable to interact with analytes. This is for designing real-time analysis 
of food samples (Fig. 2). ECL food sensors function by applying elec
trical potential to electrodes within an electrochemical cell. This cell 
contains luminescent species, including polycyclic aromatic hydrocar
bons, metal complexes, quantum dots, and nanoparticles. These lumi
nescent species interact with the applied potential to facilitate the 
detection and analysis of various components within food samples, 
providing valuable insights into food quality and safety (Kuang, Li, Ji, 
et al., 2024). ECL sensors with donor materials can choose the quenching 
effect in resonance energy transfer system (RET) and sensitivity (Li, Cui, 
et al., 2021). The typical donor materials are metal-based nanoparticles 
and carbon-based modified composite nanomaterials. Combining these 
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nanomaterials with MOFs makes the susceptible materials suitable for 
the ECL platform. Graphene oxide (GO) and silver and gold nano
materials can also be used as composite materials to enhance specific 
surface areas and compatibility. The immobilization can help in spectral 
overlapping in the ECL-RET process between labeling materials (Fan 
et al., 2023; Li, Ma, et al., 2021).

It is a challenging task that requires sensitivity and selectivity, as 
well as expensive instruments and specific handling procedures for 
monitoring food samples and analyzing their safety. To develop 
affordable and fast analysis devices, researchers must address certain 
limitations, such as sensitivity, speed, selectivity, and handling (Xie 
et al., 2024). It is essential to explore various ECL sensing platforms to 
understand the ECL sensing system comprehensively. These platforms 
are developed using different materials, including conductive polymers, 
metal nanoparticles, and biomolecules, such as proteins and nucleic 

acids. Additionally, incorporating enzymes can enhance sensitivity and 
specificity, making the sensors more effective in detecting target ana
lytes. Nanomaterials also play a crucial role by providing larger surface 
areas and improving the overall performance of the sensors. By exam
ining these components in detail, researchers can better appreciate the 
intricacies and capabilities of ECL sensing systems.

2.1. Tris(bipyridine)ruthenium(II) (Ru(bpy)3
2+)-based ECL system

Tris(bipyridine)ruthenium(II) (Ru(bpy)3
2+)-based ECL system utilizes 

ruthenium complex Ru(bpy)3
2+ as the luminophore, which undergoes 

redox reactions to emit light. This system is widely used in bioanalytical 
applications due to its high sensitivity and selectivity. The loading of Ru 
(bpy)3

2+ with metallic materials enables the rapid activation of the 
sensing platform while ensuring reproducibility (Li, Jin, et al., 2024). 

Fig. 1. Schematic representation of sample preparation procedure and analysis.

Fig. 2. A schematic representation of materials used for ECL sensing of food samples.
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Researchers are showing interest in using materials-based ECL sensing to 
analyze food samples. New sensors using co-reaction promoters Ru 
(bpy)3

2+/tri-n-propylamine system to enhance ECL signals with 
CdSe@ZnSe and CNTs have been used as ECL sensors to detect low levels 
of melamine in milk samples with limit of detection (LOD) of 3.3 ×
10− 12 M (Q. Wu et al., 2024).

A recent report demonstrated the strong anodic ECL emission of Ru 
(bpy)3

2+ at an electrode modified with an ionic liquid, specifically N- 
butyl pyridinium tetrafluoroborate, without requiring any additional co- 
reactant. Notably, methylene blue (MB) effectively absorbs energy from 
the ECL of Ru(bpy)3

2+, establishing a robust ECL RET system. This 
interaction significantly reduces the ECL signal, which is pivotal for 
accurate glucose detection (Wang, Jia, et al., 2024). In another example, 
Yang et al. utilized a system comprising Ni-MOF@Ru(by)3

2+ and Au 
NPs@TiO2, where Tripropyl Amine (TPrA) served as the luminescent 
signal. In this setup, Ni-MOF acted as a carrier for the luminescent re
agent, while gold nanoparticles facilitated electron transport. Addi
tionally, TiO2 enhanced luminescence through its interaction with Au 
NPs, enabling the detection of permethrin in vegetable samples with an 
ultra-trace detection limit of 3.3 × 10− 12 mol/L (Yang, Tian, Fu, et al., 
2024).

2.2. Luminol-based ECL system

The Luminol ECL method, discovered in 1929, uses luminol’s 
chemiluminescent properties to emit light (Harvey, 1929). In this pro
cess, luminol is mixed with hydrogen peroxide (H2O2), which acts as an 
oxidizing agent, and a catalyst like copper or iron speeds up the reaction. 
This oxidation generates a blue light, useful for forensic analysis and 
biochemical assays. Interestingly, mild anodic luminol ECL can occur 
without H2O2, but its instability limits the luminol/H2O2 system. Re
searchers are exploring more stable co-reactants, such as 3-amino
phthalhydrazide (TPrA) (Sornambigai et al., 2021). Recently, Xia et al. 
presented luminol-based ECL ultrasensitive and selective detection of 
aflatoxin B1 (AFB1) using amino-functionalized 3D graphene hydrogel 
(NGH). In contrast, luminol–palladium–graphene oxide (lum–Pd–GO) 
acted as the marker for AFB1 antibodies. The mechanistic insights 
revealed that π–π interaction between luminol and GO enhances the ECL 
signal, making it approximately 8.5 times greater than conventional 
luminol ECL, led the low detection of AFB1 of 5 × 10− 3 μg/kg (Xia et al., 
2022).

Recently, the catalytic impact of nanoparticles has been demon
strated in luminol-based ECL immunosensors. A microflower-like 
structure of Co/Ni-MOF nanosheets significantly enhanced ECL effi
ciency in detecting alpha-fetoprotein. The Co/Ni-MOF structure showed 
increased surface area, prevented particle aggregation, and exhibited 
excellent catalytic efficacy. Atomically dispersed cobalt and nickel ions 
in the ultrathin Co/Ni-MOF played a crucial role in catalyzing the ECL 
reaction (Wang, Wang, et al., 2020). Further, Zhang et al. explored a 
luminol-based system featuring a biofunctional Cu-MOF that exhibits 
enzyme-mimicking activities. This was integrated into an ECL immu
nosensor through a self-cascade antioxidant reaction. The CuMOF 
demonstrated superoxide dismutase and catalase activity capabilities 
and eliminated hydroxyl radicals (⋅OH), showcasing synergistic antiox
idant effects and minimal pro-oxidant activities. The nanoconfinement 
effect provided by layered double hydroxide also ensured a stable ECL 
signal, which showed variations in response to the target molecule 
aflatoxin B1 (Zhang, Zhang, et al., 2024).

2.3. Nanomaterial-based ECL system

Nanomaterials, which range in size from 1.0 to 100.0 nm in at least 
one dimension, display unique physical and chemical properties that 
enhance their electrochemical and optical characteristics. In ECL sen
sors, these materials serve multiple roles, such as electrode modifiers, 
aptamer carriers, catalysts, and luminescent reagents. They significantly 

boost the sensitivity, specificity, and response time of ECL aptasensors, 
making them an important area of research for detecting trace sub
stances. Common types of nanomaterials used in this context include 
noble metal nanomaterials, carbon nanomaterials, quantum dots (QDs), 
magnetic nanoparticles, and innovative organic nanomaterials (Li, Gao, 
et al., 2023). Nanomaterial-based electrogenerated ECL systems use the 
unique properties of nanomaterials to greatly improve ECL signals in 
biochemical reactions. Researchers are increasingly interested in using 
nanomaterials such as QDs, silicon, carbon, and metal materials that are 
helpful to boost ECL sensitivity. The ECL sensing mechanism creates 
reduced and oxidized species on the electrode surface. Additionally, the 
co-reactant mechanism involves a reaction between the luminophore 
and an added reagent. The reaction between the luminophore and re
agent results in the electrode potential variation and output signals 
(Feng et al., 2022; Zhai et al., 2017).

Nanoparticles significantly enhance the available surface area and 
reactivity in the ECL system with their exceptional physical and chem
ical properties. A prime example is using covalent organic framework 
(COFs) composites based on 3-thiophene acetic acid as molecularly 
imprinted polymer (MIP) materials in ECL sensors. These materials 
unequivocally demonstrate remarkable ECL behavior when combined 
with CsPbBr3 quantum dots and gold nanoparticles (AuNPs) associated 
with the ligand. The properties of these composites showcase strong ECL 
characteristics, positioning this platform as an effective sensor for benzo 
(a)pyrene (BaP). Additionally, the composite’s structure provides a 
substantial specific surface area and optimal imprint recognition sites, 
further enhancing its functionality (Chi et al., 2023). The success of ECL 
sensors centers significantly on emission through aggregation-induced 
emission (AIE), which can cause a spectral overlap in the donor and 
back hole quencher. In the ECL-RET system, the overlap of spectra with 
the donor and black hole quencher as the acceptor, upon introducing 
analytes, will trigger the detachment of BHQ from the electrode surface, 
thereby leading to the recovery of the ECL signal (Chen et al., 2024).

The success of metal-based materials over conventional single-signal 
ECL sensors lies in their ability to provide ultra-sensitive and accurate 
monitoring of food samples. Metallic materials’ conducting properties 
enable them to capture electrons and accelerate chemical reactions at 
numerous active sites. This acceleration of chemical reactions can 
improve ECL stability, activity, and the emission of luminophores 
(Kuang, Li, Chen, et al., 2024). For example, in an electro
chemiluminescence assay designed to detect analytes, the integration of 
gold nanoparticles can dramatically amplify the emitted light signal. 
This occurs because gold nanoparticles can facilitate electron transfer 
processes and increase the local concentration of reactive species, 
thereby enhancing the overall luminescence output. Recently, Yue et al. 
described europium ion-doped gadolinium trioxide nanocrystals 
(Gd2O3:Eu3+ NCs) as ECL sensors for organophosphorus pesticide 
detection. An ECL intensity comparison of pure Gd2O3 doped with Eu3+

ions revealed the intensity of the stable signal even in an analysis of 
vegetable samples (Yue et al., 2024).

2.4. ECL aptamers & immunosensors

ECL aptamers are specialized single-stranded DNA or RNA molecules 
that exhibit a high affinity for specific target molecules (Song et al., 
2024). On the other hand, ECL immunosensors are innovative devices 
that employ antibodies to selectively detect specific target molecules, 
providing remarkable specificity and sensitivity. These sensors function 
by integrating electrochemiluminescence with aptamers or immunoas
says (Manzoor et al., 2024). ECL enzyme sensors are designed to monitor 
biochemical reactions in food products by measuring the electrolumi
nescent signals generated from these reactions. Depending on their core 
structure, these sensors can function as on-off switches to detect specific 
analytes in food samples. In a study conducted by Gong et al., a 
composition was developed that included gold nanoparticles and boron 
nitride quantum dots (BN QDs) to facilitate the ECL detection of lead 
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ions (Pb2+). This detection method utilizes the RET effect, which is 
achieved through the DNAzyme cleavage reaction of the substrate chain 
(Gong et al., 2024).

Consider using hybrid materials as ECL sensors for more accurate and 
sensitive analysis in food safety. For example, combining Ti3C2 QDs and 
1T/2H MoS2, the resulting nanocomposite aptasensor exhibited 
improved structural and compositional properties, leading to three 
times the ECL performance of QDs alone. These hybrid materials func
tioned as an ECL sensor for extremely low levels of lincomycin in milk. 
The composition of the material significantly enhanced conductivity and 
electrocatalytic activity, enabling more precise milk analysis (Du et al., 
2024). It has been observed that Zr-MOF exhibited aggregation-induced 
emission from ligands, acting as high-performance signal modulators by 
encapsulating ZnS QDs. Meanwhile, NH2-SiO2 served as ECL quenchers, 
and ATP biomolecule aptamers functioned as gatekeepers through 
electrostatic interaction (Li, Xi, et al., 2024). Lv et al. developed an ECL 
immunosensor for detecting aflatoxin B1 (AFB1) with LOD of 50 fg/mL, 
using luminol-AgNPs and mesoporous carbon (AgNPs@MC). The sensor 
was created by modifying a glassy carbon electrode (GCE) with the 
luminol-AgNPs@MC composite and anti-AFB1 antibodies. This 
approach of using luminol-AgNPs@MC in immunosensors is advanta
geous because it enhances sensitivity. During the electrode fabrication, a 
decrease in ECL intensity was observed, confirming the successful 
modification of the electrode surface. Electrochemical impedance 
spectroscopy (EIS) results indicated changes in electron transfer resis
tance and the diffusion process. Bare electrodes exhibited low electron 
transfer resistance, while the assembly of anti-AFB1-luminol- 
AgNPs@MC resulted in an increased electron transfer resistance (Lv 
et al., 2014).

Table 1 compares food sensors and details the use of ECL materials 
for food sample analysis. In addition to these materials, MOFs contain 
metal centers, porosity, and multifunctional sites that allow them to be 
used for fabrication, immobilization, and composition with metal and 
nonmetallic ECL active materials. This hybridization results in an 
advanced structural platform for analysis applications. The hybrid MOFs 
enable accelerated chemical reaction signal generation through electron 
conduction.

3. MOF design and signal generation mechanism

3.1. MOFs design

MOFs are considered advanced materials due to metal and organic 
moieties, porosity for loading various entities, multifunctional 

interaction sites, and large surface area for electrode formations (Liu 
et al., 2019). A diverse array of ligands and linkers are employed in 
synthesizing MOFs. These encompass carboxylate ligands (-COOH) with 
robust metal ion coordination, nitrogen-containing ligands like pyridine 
or imidazole derivatives, and phosphonate linkers known for their 
strong metal coordination properties (Lin et al., 2023; Luo, Fu, et al., 
2023; Wang, Gu, et al., 2023). Furthermore, various MOF architectures 
with distinctive properties and applications are developed using addi
tional ligands such as bipyridine, terpyridine, and benzene-1,4- 
dicarboxylate. Several techniques, including solvothermal, hydrother
mal, microwave-assisted, mechanochemical, electrochemical, and layer- 
by-layer assemblies, are routinely used to design and synthesize MOFs 
(Sun, Qin, et al., 2023; Yuan et al., 2023; Zhai et al., 2023). Additionally, 
advancements in methods such as spray pyrolysis, vapor phase pro
cesses, mechanochemical approaches, templating techniques, hybrid 
methods, and crystal engineering have been leveraged to shape MOFs 
into highly efficient platforms (Fig. 3) (Chen, Gliemann, & Wöll, 2023; 
Guo et al., 2024). These methods can change the physicochemical 
properties of MOF derivatives. For example, pyrolysis involves the high- 
temperature decomposition of organic ligands, forming metal oxides. 
Sulfuration creates metal sulfides, while phosphorization modifies the 
electronic structure of the materials. Selenylation results in the forma
tion of distinct metal selenides. Understanding these relationships is 
essential for customizing materials with specific functionalities, which 
contributes to scientific advancements and the innovative applications 
of MOFs (Fu et al., 2023; Wang, Gao, et al., 2023). Controlling the 
crystalline orientation of MOF pore channels can lead to anisotropic 
properties and enhanced diffusion (Linares-Moreau et al., 2024). The 
relationship between the various preparation methods used for MOF 
derivatives and their physicochemical properties plays a critical role in 
enhancing ECL sensing applications. Understanding how different syn
thesis techniques influence properties such as surface area, porosity, and 
chemical stability is vital for optimizing the performance of MOFs in ECL 
sensors. By tailoring these preparation methods, researchers can develop 
MOF derivatives that exhibit improved sensitivity and selectivity in 
detecting target analytes, thereby advancing the capabilities of ECL 
sensing technologies (Dai et al., 2023; Zhao, Wang, Wang, Fan, et al., 
2023).

Recently, Zr-MOFs have been designed with model support for uni
form arrays that feature MOF-node-grafted metal-oxy and metal‑sulfur 
clusters. These MOFs possess 12 connected unoccupied sites, which 
could be effectively utilized for various applications (Lu et al., 2020). It 
can be observed that MOFs have shown that they can alter the oxidation 
states of their metal parts when subjected to an outside influence. This 

Table 1 
ECL sensing materials and their analytical performances for food samples analysis.

Materials Analytical LOD/ 
Sensitivity

Linear range Mechanism insights Sample 
source

Ref.

CdSe@ZnSe and 
CNTs

melamine 3.3 × 10− 12 

M
1.0 × 10− 11 −

1.0 × 10− 7 M
co-R & ER; Ru(bpy)3

2+ and TPrA adsorption onto the 
electrode led oxidized to products

milk (Wu et al., 
2024)

COF-300-Au-based 
MI

BaP 4.1 × 10− 15 

M
10− 14 to 10− 5 M co-R & ER; oxidation of quinones generated followed ECL 

quenching through energy transfer
Soybean, 
rapeseed & 
olive oil

(Chi et al., 
2023)

Pdots As(III) 5.8 pM/0.4 
ppt

10 pM to 500 
nM

overlap of spectra employed ECL-RET system rice grain (Chen et al., 
2024)

Mn2SnO4 

nanocubes
RBV 0.85 ng/mL 1–2000 ng/mL co-R & ER; luminophores Mn2SnO4 ECL emission in the 

co-reactants K2S2O8 presence
milk and 
chicken

(Kuang, Li, 
Chen, et al., 
2024)

Gd2O3:Eu3+ NCs organophosphorus 
pesticides

0.12 pM 1 nM to 1 pM co-R & ER; Eu3+ ions caused enhanced ECL, H2O2 

quenched the ECL intensity
vegetable 
samples

(Yue et al., 
2024)

AuNPs- BN QDs Pb2+ 2.6 × 10− 13 

M
10− 12–10− 5 M co-R & ER; RET effect between AuNPs and BN QDs and 

the recognition of Pb2+
Water (Gong et al., 

2024)
Ti3C2 QDs-1 T/2H 

MoS2 nano- 
hybrid

lincomycin 0.02 ng/mL 0.05 ~ 100 μg/ 
mL

co-R & ER; first electrochemical reduction, then reduction 
of co-reactant, and transforming by the electron-transfer 
annihilation between Ti3C2 QDs•--1T/2H MoS2 and SO4

•-

Milk (Du et al., 
2024)

Covalent organic framework composite (COFs), Molecularly imprinted (MI), polymer dots (Pdots), europium ion-doped gadolinium trioxide nanocrystals (Gd2O3:Eu3+

NCs), boron nitride quantum dots (BN QDs), benzo(a)pyrene (BaP), ribavirin (RBV), CO-reactant (co-R), electron redox (ER), resonance energy transfer (RET)
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transformation happens as the linker photoisomers switch between +2 
and +1 oxidation states. This distinct quality allows the MOF to display 
improved conductivity, cyclic voltammetry, and electronic magnetic 
properties (Martin et al., 2022). Anemone-like Cu-MOFs loaded with 
AuPd nanoparticles and polyethyleneimine-reduced graphene oxide/ 
AuAg nanosheet composites (PEI-rGO/AuAg NSs) have a large surface 
area and excellent electrical conductivity. This allows for efficient 
detection of T-2 toxin (T-2). The modified MOF, combined with nano
materials and graphene oxide, acts as a triple helix molecular switch and 
enables signal amplification by a swing-arm robot (Zhang et al., 2023). 
When developing MOF ECL sensors for food analysis applications, uti
lizing multifunctional ligands and employing a suitable synthetic 
approach is imperative. Carefully selecting ligands with multiple func
tional groups is essential for achieving high sensitivity and selectivity in 
detecting target analytes in complex food samples. Also, choosing a well- 
suited synthetic approach is crucial to ensure the precise formation of 
MOF structures that exhibit optimal electrochemical and optical prop
erties for effective sensing in food analysis.

3.2. Signal generation mechanism

ECL is an advanced transduction technique known for its high power 
level and strong outcome signals. The efficiency of ECL generation de
pends on various factors, including the materials used in the process, 
such as luminophores and co-reactants (Giagu et al., 2024; Zanut et al., 
2021). These materials are essential for improving ECL’s overall per
formance and effectiveness. It is undeniable that ECL is a potent trans
duction technique, and the signal strength relies on the overall efficiency 
of the mechanisms involving redox luminophores or co-reactants (Qi & 
Zhang, 2020; Zanut et al., 2020). The ECL phenomenon can be caused by 
various chemical systems, including materials such as Ru(bpy)3

2+ and 
luminol, as noted by luminophores. The understanding of mechanistic 
insights can differ based on the size, geometry, and emission properties. 
One of the most common ECL mechanisms is based on Ru(bpy)3

2+ and its 
derivatives due to their excellent photochemical properties. The com
mon route for ECL signals involves three steps: Ru(bpy)3

3+ and TPrA as 
co-reactants, the oxidative–reduction route, and electrochemical 
oxidation into Ru(bpy)3

3+ and TPrA+•. The process is followed by the 
conversion of TPrA+• to TPrA•, a strong reducing radical intermediate 
formed by losing a proton. In the next step, Ru(bpy)3

3+ converts to Ru 
(bpy)3

2+*, which is responsible for light emission (Rebeccani et al., 2022; 
Zanut et al., 2020).

Another mechanism route involves a luminol-based ECL system for 

signal generation. This mechanism, based on the luminol/H2O2 system, 
follows two common routes (Sun, Cheng, et al., 2023). First, H2O2 can be 
electrochemically oxidized and then trigger ECL reactions involved in 
electrode reactions acting as co-reactants and oxidants to oxidize sub
sequent reagents. Also, H2O2 is an oxidant with electrochemical oxida
tive production of luminol responsible for ECL signals. H2O2 as a co- 
reactant and electrochemical oxidation into superoxide anion radical 
(O2

–•) enriches the environment with radicals that react with in
termediates to generate excited 3-amino phthalate and finally emit blue 
fluorescence (425 nm). Two-step electron loss processes lead to depro
tonated H2O2 that reacts with products of luminol after two-step elec
tron loss processes (Zhou et al., 2022). Additionally, nanomaterial-based 
ECL systems benefitting from the emission wavelength and quantum size 
effect showed electrochemical and optical properties (UV to NIR region) 
with advantages of large Stokes shift and long lifetime fluorescence 
(Nikolaou et al., 2021). In brief, MOFs ECL food sensors work on a 
Luminol-based system, catalyzing the co-reaction, Oxidative-reductive, 
and Hybridization chain reaction system. The possible physical and 
chemical properties transformations due to different electrostatic, 
hydrogen, π-π stacking bonding, and molecular forces could be read out 
in output signal forms (Fig. 4) (Guo et al., 2023; Lai et al., 2023; Mehta 
et al., 2023).

Therefore, optimizing materials with MOFs can adopt any strategies 
based on Ru(bpy)3

3+, luminol, and nanomaterials (Jiang et al., 2024; Ma 
et al., 2024). MOF materials can adopt aggregation-induced emission 
(AIE)-active strategies, introducing donor-acceptor (D–A), resonance 
energy transfer-active moieties for ECL-based analytes monitoring. The 
incorporation of Ru(bpy)3

3+, luminol, and nanomaterials as intrinsic 
luminescent ctenophores provides an ideal ECL-active MOFs. MOFs’ 
micro and nanoscale porosity and tuned structure allowed various 
inorganic and organic materials for composition. Also, porphyrins and 
derivatives provide ECL activity due to unique molecular structures and 
electronic properties (Zhou et al., 2020). MOFs immobilized with 
photosensitive materials like inorganic semiconductors (e.g., ZnO), 
polyaniline, and methylene blue (MB) play key roles in light and elec
trical signal management through their donor and acceptor sites. ECL 
processes can involve signal enhancement and quenching. In NGQDs- 
Ru@SiO2, the ECL emission results in a shorter electron transfer dis
tance. Here, Ru(II) is oxidized to Ru(III) as NGQDs release an electron to 
form NGQDs•+. These charged NGQDs donate a proton to convert back 
to NGQDs•, allowing Ru(III) to revert to Ru*(II), which then emits light 
at 625 nm. The quenching efficiency of MB differs between NGQDs- 
Ru@SiO2 and Ru@SiO2, with NGQDs-Ru@SiO2 showing greater 

Fig. 3. A schematic representation of MOF design and fabrication for developing an efficient platform.
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quenching (Fig. 5) (Liu et al., 2023).
Photosensitive material based on these systems efficiently converts 

light energy into electrical signals. Following this approach, donor sites 

act as electron suppliers for photosensitive material, a backup that 
outputs stable photocurrent (Liu, Dong, et al., 2024). For example, a 
hollow copper‑cobalt MOF (Cu/Co-MOF) was loaded with luminol to 

Fig. 4. The schematic representation of MOFs ECL food sensors with mechanistic insights.

Fig. 5. (a) Ru@SiO2 and NGQDs-Ru@SiO2 quenching efficiency with varying concentrations of MB. (b) ECL spectra and UV–Vis absorbance of MB for Ru@SiO2 and 
NGQDs-Ru@SiO2. (c) NGQDs-Ru@SiO2 (Ru) time-resolved photoluminescence decay with and without MB. (d) Proposed quenching mechanism between the 
luminophore and MB. (e) NGQDs-Ru@SiO2 (NGQDs) time-resolved photoluminescence decay with MB. (f) Proposed quenching mechanism between the co-reactant 
and MB. Reproduced with the permission of (Luo, Liu, et al., 2023) © 2022 Elsevier B.V. All rights reserved.
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obtain an efficient ECL platform. Luminol significantly catalyzes H2O2 to 
produce more O2, enhancing ECL signals and efficient analysis of acet
amiprid and malathion in apple and tomato samples. The observed ECL- 
potential curves of electrodes need work in a particular potential range 
for strong ECL strength in bare and combined with nanomaterials to 
inject electrons through conduction bands (Liu et al., 2021). It can’t be 
denied that variations in electrical and optical activities significantly 
impact the outcomes and analysis of standard electrochemical and op
tical techniques. ECL has surged as an exceptionally robust analytical 
technique to counter these challenges, leveraging its dual electro
chemical and luminescence properties alongside additional ECL lumi
nophores. ECL-based analysis can seamlessly integrate with other 
methods, yielding a highly adaptable sensing platform. The integration 
of novel materials like nanomaterials, metal and organic frameworks, 
and covalent frameworks has led to the development of highly effective 
ECL sensors for analyzing ecological, food, and clinical samples, 
employing immunoassay and aptasensor strategies (Hao & Wang, 2016).

4. ECL MOF food sensors

MOF materials are promising candidates for analyzing food samples 
due to their high and uniform porosity, large surface areas, low density, 
customizable structures, and polar sites (Gao et al., 2024; Liu, Mu, et al., 
2024; Sun et al., 2024; Zhang, Han, et al., 2024). In addition, MOFs are 
promising hosts for various guest analytes through diverse grafting 
groups. MOFs can be modified by in-situ modification and fascinating 
sensing and adsorption characteristics. MOFs’ high crystalline and per
manent porosity allowed them to interact with different analytes 
through a significant change in their conductive, optical, catalytic, 
mechanical, and other properties, which can be observed in signal 
transductions. MOFs are suitable for promoting electrochemically 
generated intermediates suitable for ECL exergonic reaction for light 
emission upon relaxation to a lower energy state (Pan et al., 2024).

4.1. Mycotoxins detection

Mycotoxins are harmful substances produced by certain fungi that 
can contaminate food and feed, posing a threat to human and animal 
health (Moghadasi et al., 2024; Ozel & Karaca, 2024). One innovative 
method for detecting these mycotoxins is through ECL using MOFs. 
MOFs are porous materials with high surface areas, making them ideal 
for capturing and detecting mycotoxins. The ECL technique can accu
rately detect and quantify these toxins in food samples by functional
izing MOFs with specific receptors that bind to aflatoxins. Moreover, 
using MOFs in ECL detection offers advantages such as high sensitivity, 
rapid response, and low detection limits. These characteristics make this 
method a promising tool for screening mycotoxin contamination in 
various food products (Han et al., 2024).

Wang et al. constructed methylamine perovskite (MP) QDs loaded 
ZIF-8 for AFB1 ECL tracing with a LOD of 3.5 fg/mL. ZIF-8, with a 
confined cavity structure, provided a platform for MP QDs loading that 
helped achieve stable and robust ECL signals. The GCE with MP 
QDs@ZIF-8 composites was performed for AFB1 detection using 0.1 M 
TPrA as the co-reactant. MP QDs@ZIF-8 ECL peak cantered at 554 nm 
showed a redshift of 26 nm due to triggered electrons relaxation or hole 
injections that lead. In addition, potential scanning MP QDs@ZIF-8/GCE 
and MP QDs/GCE were applied, and they showed an anodic peak ~of 
1.4 V, attributing to the electrogenerated oxidized species. The real 
sample analysis of corn samples at different concentrations of AFB1 
showed recoveries of 107.0 %, 106.0 %, and 107.0 %, respectively, with 
precision ranging from 4.8 % to 7.1 % and 5.6 % to 9.7 %. The proposed 
electron and proton transfer mechanism follows the MP QDs@ZIF-8 to 
MP QDs+@ZIF-8 with electron loss, then TPrA to TPrA•+ with electron 
loss, and TPrA• with proton loss. Further, the MP QDs@ZIF-8 and TPrA•

convert to MP QDs-@ZIF-8; in the next step, MP QDs+@ZIF-8 and MP 
QDs-@ZIF-8 form an excited state for MP QDs*@ZIF-8 that responsible 

for ECL emission (Fig. 6) (Wang, Xiong, et al., 2023).
Huang et al. developed a dual-mode paper chip (DPC) ECL sensor 

using UiO-66-NH2. The sensor featured a patterned paper electrode and 
a colorimetric region treated with platinum nanoparticles for dual-mode 
outputs. The UiO-66-NH2 was loaded with 3,3′,5,5-tetramethylbenzi
dine (TMB) and controlled by a switch made up of CdS quantum dots- 
aptamer. When the target contaminant AFB1 was present, the MOF 
ECL sensor induced the release of TMB, enabling ultra-high sensitivity 
with a detection limit of 7.8 fg/mL, even in real corn samples. The 
performance of DPCs with an aptamer-gated TMB release system 
demonstrated dual-mode AFB1 detection through colorimetric and ECL 
signals. The AFB1-Apt-CdS on the ECL area and the released TMB small 
molecules reached the Pt NPs-treated colorimetric area for precise 
quantification of AFB1 level by portable DPCs (Fig. 7) (Huang et al., 
2024).

4.2. Bacteria detection

The detection of bacteria using MOF ECL sensors has emerged as a 
promising technique in biosensors and food chemistry. MOFs, which 
have tunable properties, play a crucial role in enhancing both the 
sensitivity and selectivity of bacterial detection. For example, re
searchers have successfully combined MOFs with specific antibodies to 
target bacterial cell surface markers, allowing for the rapid and accurate 
identification of harmful bacteria in various samples. Additionally, the 
unique structure of MOFs enables the immobilization of enzymes or 
other biomolecules, which improves detection efficiency by amplifying 
the ECL signal when interacting with bacteria. This approach provides a 
method for real-time monitoring of bacterial contamination in food, 
water, and clinical samples (Li et al., 2016; Wu et al., 2025).

Staphylococcus aureus is a pathogen that causes health hazards. It has 
developed a two-component system that makes it more resistant to 
antimicrobial drugs (Firyal et al., 2019). Zhai et al. studied the use of 
ECL sensing to detect lead (Pb(II)) and Staphylococcus aureus (S.aureus) 
by employing Au@Ni-Co-MOFs. The authors developed a sensitive MOF 
ECL platform using Au@luminol and Cadmium sulfide (CdS) QDs with 
improved surface area and catalytic sites. Their research revealed that 
the urchin-like Au@luminol-DNA2 aptamer recognized Pb(II) through 
Au-S bonding. In contrast, the CdS QDs-DNA3 aptamer showed speci
ficity in recognizing S.aureus through catalyzed hydrogen peroxide 
reduction for ECL signals. They also provided insights into the mecha
nism, indicating that ECL biosensors Au@Ni-Co-MOFs catalyze the co- 
reaction buffer H2O2, resulting in the formation of HO2

• and O2
•− . The 

study demonstrated the use of luminol in electrocatalysis to produce free 
radicals and reduce CdS QDs to form CdS QDs•− through current exci
tation. ECL signals showed energy is released when the excited sub
stance returns to the ground state. The authors designed a MOF-based 
analysis model to detect Pb(II) and S in scallops and fish aquatic prod
ucts, with promising recoveries of 95.65 % –115.43 % and RSDs of 0.4 
%–2.17 % (Zhai et al., 2024).

The controllable properties of ECL MOF sensors allow for custom
ization according to specific requirements, enabling researchers to tailor 
the sensor’s performance to suit their needs. With ongoing advance
ments in technology and material science, ECL MOF sensors have an 
increasingly important role in analytical and sensing applications (Nie 
et al., 2023). Several amplification strategies, such as enzyme-based 
methods, polymerase chain reaction (PCR), rolling circle amplification 
(RCA), loop-mediated isothermal amplification (LAMP), and strand 
displacement amplification (SDA), have been established for food safety 
and environmental monitoring (Liu et al., 2023; Mohsen & Kool, 2016; 
Yao et al., 2021; Zhang, Liu, et al., 2021). In addition to enzyme-based 
amplification, non-enzymatic approaches have emerged as promising 
signal enhancement alternatives. However, signal amplification strate
gies face challenges such as background noise, nonspecific binding, and 
interference from complex matrices (Chen, Lan, et al., 2023; Xu et al., 
2021). To overcome these issues, various MOF materials-based 
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strategies have been promising to improve the selectivity and sensitivity 
of signal amplification (Zhu et al., 2023). For example, Wang et al. 
report Zr-MOF ECL sensor based on signal amplification strategy using 
bio-recognition element and CRISPR/Cas12a probe for the detection of 
Salmonella with LOD of 37 CFU/mL and linear range of 50 CFU/mL to 5 
× 106 CFU/mL through signal amplification strategy. The structure 
switching occurs in the presence of Salmonella on allosteric probes, 
which leads to hybridization with primers to trigger isothermal ampli
fication. CRISPR-gRNA subsequently recognized the release of Salmo
nella to initiate a reaction by dsDNA generation in the trans-cleavage of 

Cas12a following the electrode-bounded ssDNA cut for releasing ECL 
emitter porphyrinic Zr-MOF (PCN-224) and quenching in ECL signals. 
The designed MOF ECL sensor showed physical applicability to detect 
Salmonella. in milk samples with a recovery range of 107.8 % to 113.4 % 
(Fig. 8) (Wang, Zhang, et al., 2023).

Wei et al. developed a Faraday cage-type aptasensor for the dual- 
mode detection of Vibrio parahaemolyticus (VP). This sensor utilized 
electrogenerated ECL with a Pb2+-Ru-MOF@Apt2 as the signal unit. The 
authors demonstrated that Apt2 specifically recognizes VP, leading to 
the generation of both ECL and differential pulse voltammetry (DPV) 

Fig. 6. Schematic representation for the MPQDs@ZIF-8-based molecular imprinting that showed ECL intensity and was used for the detection of AFB1 in corn 
samples. (a) Synthesis of MPQDs@ZIF-8 and proposed ECL reaction, electron-proton transfer mechanism. (b) observed signal changes and responses of the ECL sensor 
to detect AFB1. Reproduced with the permission of (Wang, Xiong, et al., 2023) © 2022 Elsevier Ltd. All rights reserved.

Fig. 7. (a) Feasibility of proposed Paper Chips (DPCs) for AFB1 detection: Top: sDNA/UiO-66-NH2 loading with TMB for 0.5 ng/mL AFB1 detection. Middle: no AFB1 
target as a blank. Bottom: sDNA/UiO-66-NH2 loading without TMB for 0.5 ng/mL AFB1 detection. (b) Colorimetric photos of DPCs for detecting various AFB1 
standard concentrations. (c) A portable ECL detector analyzed ECL signals of DPCs for different AFB1 concentrations. Reproduced with the permission of (Huang 
et al., 2024) © 2024 Elsevier Ltd.
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signals. The Ru-MOF layered on the electrode, facilitated electron ex
change and enhanced sensitivity. The dual-mode detection method 
demonstrated improved accuracy and reliability while maintaining 
satisfactory stability and selectivity, ensuring food safety in the analysis 
of real seafood samples. In this setup, Ru-MOF acted as the ECL signal 
tag, and Pb2+ served as the electrochemical signal tag, simplifying the 
signal tags’ assembly process. Additionally, thiol-modified Apt1 
captured VP on the gold electrode, while Apt2 assembled the signal unit 
on the VP, further enhancing the signal intensity (Wei et al., 2020).

4.3. Insecticides/pesticides detection

Electrogenerated ECL is a powerful technique that has gained 
popularity for detecting insecticides and pesticides. MOFs are tailored 
for specific applications, offering advantages such as small size and 
excellent chemical stability. ECL MOF sensors, which incorporate 
luminol, aptamers, and Ru(bpy)3

2+ along with its derivatives, are well- 
studied for their luminescent properties. To achieve a strong ECL 
signal, co-reactants like oxalates and tris(2-carboxyethyl)phosphine 
(TPrA) are necessary (Wang, Ding, et al., 2023; Yan et al., 2019).

Heterostructure MOF materials are allowed to trap different mole
cules inside it due to material interaction with each other through 
various interactions. Due to this, MOF materials acted as a container for 
capturing various molecules through π-π interactions and hydrogen 
bonding that trigger an aggregation-induced emission (AIE) effect 
(Yang, Zhou, Wang, et al., 2024). Liu et al. designed a Eu3+-MOF- 
253@Au ECL sensor to detect carbaryl with LOD of 0.14 μg/L in the 
0.2–200 μg/L range. The Au NPs embedded inside Cu-MOF pore chan
nels provided a solution for enhancing catalytic activity to confer the 
ECL performance. Eu3+-MOF-253@Au actively catalyzed carbaryl into 
1-naphthol, and ECL signals were quenched. The real sample analysis for 
carbaryl in milk and soybean oil showed recoveries of 76.5–95.4 % (Liu 
et al., 2022).

The ECL MOF sensors have great electrochemistry and chem
iluminescence features that allow precise control, high sensitivity, and 

minimal background noise. Fang et al. recently designed a sensor based 
on gold‑copper doped Tb-MOFs (Au@Cu:Tb-MOFs) for detecting 
chlorpyrifos (CPF) at ultra-trace levels, with a LOD of 0.029 pg/mL in 
the range of 0.1–106 pg/mL. The authors modified the electrode sys
tematically with 4,7-bis(thiophene-2-yl)benzo[c][1,2,5]thiadiazole and 
chlorpyrifos through electropolymerization on the electrode surface to 
form MIP. The MIP enabled specific target analysis, validated with 
molecular docking through π-alkyl interaction. It was observed that the 
MIP film with 4,7-bis(thiophene-2-yl)benzo thiadiazole enhances 
sensitivity, while the Au@Cu:Tb-MOFs promote co-reaction for ECL 
emission signal for CPF detection (Fang et al., 2024).

Liu et al. designed a hollow Cu/Co-MOF that was further loaded with 
luminol to catalyze the decomposition of H2O2, resulting in an increased 
production of O2− and enhanced ECL signals. This setup was utilized to 
detect acetamiprid and malathion, achieving LODs of 0.015 pM and 
0.018 pM, respectively, within a concentration range of 0.1 μM to 0.1 
pM. Additionally, luminol and graphite-like carbon nitride nanosheets 
(g-C3N4) were employed to develop dual ECL signal sensors operated at 
− 1.5 V and 0.6 V. In the analysis of real samples, 100 g of tomato and 
apple samples were broken down and dispersed in 0.1 L of 0.2 M 
phosphate-buffered saline (PBS) at pH 7.4. The results showed a relative 
standard deviation (RSD) of less than 4.28 %, with recoveries of 94 % for 
acetamiprid and 102 % for malathion detection. (Liu et al., 2021). ECL 
MOF sensors have been successfully applied for the analysis of pesticide 
residues in Chinese herbal medicines (CHMs) to address growing con
cerns. Li et al. developed an aptasensor for the trace detection of acet
amiprid (ACE) in Angelica sinensis and Lycium barbarum. This sensor 
utilized UiO-66 modified with amino groups, and gold nanoparticles 
(AuNPs) facilitated the catalysis of excited states of luminescent mole
cules by UiO-66-NH2. The designed model showed LOD of 0.8 pM as 
superior to traditional fluorescence detection methods. The mechanistic 
insight revealed that charge transfer resistance (Rct) increased pro
gressively after modifying the electrode with AuNPs@UiO-66-NH2, 
followed by aptamer. Furthermore, the ECL strength improved with Ru 
(bpy)3

2+ and multi-walled carbon nanotube (MWCNT) nanocomposites 

Fig. 8. (a) ECL signal intensity and changes with increasing Salmonella concentration [a (0 CFU/mL), b, c, d, e, f, and g (5 × (101, 102, 103, 104, 105, and 106) CFU/ 
mL)]; (b) ECL signal intensity and Salmonella concentration linear relationship; (c) Histogram for the specificity test: [(a) S. enteritidis (CMCC 50335), (b) S. enteritidis 
(CMCC 50041), (c) L. gasseri, (d) E. coli, (e) H. pylori, (f) S. aureus, (g) PBS]. The bacterial concentration is 1 × 106 CFU/mL; (d) Stability test under 10 consecutive 
cyclic potential scans. Reproduced with the permission of (Wang, Zhang, et al., 2023) © 2023 Elsevier Ltd. All rights reserved.
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but decreased after adding AuNPs@UiO-66-NH2, the aptamer, and 
subsequently BSA (Fig. 9) (Li et al., 2025).

4.4. Pharma and industrial residues detection

Detecting insecticides through ECL using MOFs is an innovative 
research area in food sample analysis. MOFs are ideal for sensing ap
plications that selectively detect specific insecticides in complex sam
ples. Functionalizing the MOF surface with molecules and ECL as a 
detection method offers high sensitivity and selectivity, making it suit
able for trace-level analysis of insecticides. This technique relies on light 
generation through electrochemical reactions, quantitatively measuring 
the insecticide concentration. MOFs offer exceptional selectivity, rapid 
response time, and cost-effectiveness for analyzing food safety and 
quality, making them the ideal choice for sample analysis (Lei, Yin, 
et al., 2024; Xu et al., 2024). Liu et al. developed a signal-on aptasensor 
using a combination of AuNPs, double-stranded DNA (dsDNA), and Ce- 
MOF for susceptible detection of sulfadimethoxine (SDM) through the 
aptamer-SDM complex, causing the dsDNA to dissociate. The ECL sig
nals increased after the release of the aptamer due to the combination of 
the capture probe (CP) with the tracer label. The designed aptamer 
demonstrated an ultra-trace detection limit of 1.28 fg/mL within a linear 
response range from 10.0 fg/mL to 100 ng/mL for SDM detection, even 
when applied for analyzing real milk samples. The results from cyclic 
voltammetry (CV) and ECL responses revealed that the bare GCE in 
phosphate-buffered saline (PBS) showed neutrality and exhibited no 
redox peak. The reduction peak of 1,3,6,8-tetra(4-carboxyphenyl) pyr
ene (H4TBAPy) linked Zn-TBAPy-MOF (ZPM) in PBS shifted with the 
introduction of co-reactant K2S2O8. Real sample analysis demonstrated 
the reliability of the MOF ECL aptasensor in detecting SDM in milk 
samples. Samples showed 97.9 % to 107 % recoveries with a relative 
standard deviation (RSD) of 1.75 % to 4.21 % (Fig. 10) (Liu et al., 2023).

Shan et al. designed a Ru@Zn-MOF/nafion modified GCE ECL sensor 
for the detection of brilliant blue FCF (BB) with LOD of 2.5 × 10− 8 M. 
Zn-MOF immobilized with Ru(bpy)3

2+ in solution phase differ from 
conventions solid. Ru@Zn-MOF/nafion exhibited significant quenching 
ECL intensity after adding BB as evidence of interactions. The observed 

ECL quenching in Ru@Zn-MOF/nafion/TEA intensity could be due to 
the redox reaction, i.e., Ru(bpy)3

2+, and TEA oxidized electrochemically 
to Ru(bpy)3

3+ and TEA•+, then α-deprotonation to form TEA• radical. 
The formed radical TEA• could radical Ru(bpy)3

3+ to Ru(bpy)3
2+*, 

responsible for ECL signals generation by radiative de-excitation. At the 
same moment, iminium ions formed to reduce TEA. The formed TEA•

radicals could consumed in redox for BB detection, responsible for 
quenching ECL intensity (Shan et al., 2019).

Wang et al. designed MOFs using Fe TCPP(Zn) with homogeneous 
catalytic sites. They utilized ferric-based metal ligands as co-reaction 
accelerators, which improved the efficiency of converting H2O2 on the 
MOFs’ surface and increased the concentration of •OH for self-enhanced 
ECL. They constructed an aptasensor for the specific detection of 
kanamycin (KAN) using Fe TCPP(Zn) MOFs as donors and AuNPs as 
acceptors, achieving a detection limit of 0.28 fM. This innovative ECL 
strategy expands MOFs’ applications to trace antibiotics analysis in food 
and the environment (Wang et al., 2024). The study investigated the 
impact of self-enhancement by recording ECL intensities of different 
MOFs in H2O2. The ECL emissions of Zn TCPP MOFs (curve a) and Fe 
TCPP MOFs (curve b) were weak, while Fe/Zn TCPP MOFs (curve c) 
exhibited significant ECL signals. Fe TCPP(Zn) MOFs (curve d) displayed 
ECL strength three times higher than Zn TCPP MOFs (Fig. 11a). The 
process illustrated the detailed luminescence process; Fe acted as a 
metal-linked ligand and co-reaction accelerator for self-enhanced ECL. 
The controllable synthesis method for bimetallic sites improved the ECL 
emission of MOFs, and the synergistic effect between bimetallic ligands 
enhanced ECL efficiency (Fig. 11b) (Wang et al., 2024 Zhao, Du, Zhang, 
Li, et al., 2023).

Food analysis applications involving MOF materials have attracted 
attention for developing physical and smartphone-connected devices 
that provide useful on-site and reliable data readouts (Tavassoli et al., 
2024). Lawati et al. conducted a study where they developed a Co-MOF 
on luminol-H2O2 on paper to create a chemiluminescence reaction with 
strong emission and high stability. They also used a smartphone oper
ating system to detect phenolic content in food samples. The hydroxyl 
radical in phenolic compounds can effectively reduce the luminescence 
emission of the luminol–H2O2–CoMOF system. The study found that the 

Fig. 9. (a) Schematic presentation of MOF sensor development. (b) The sensor’s detection results at 7 ACE concentrations (c) standard curve were obtained by 
projection on the YOZ plane. Reproduced with the permission of (Li et al., 2025) © 2024 Elsevier B.V. All rights are reserved.
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system had low detection limits for gallic acid (0.12 μg/mL), quercetin 
(0.28 μg/mL), catechin (0.46 μg/mL), kaempferol (0.85 μg/mL), and 
caffeic acid (1.23 μg/mL), demonstrating the practical application of the 
luminol–H2O2–CoMOF system with smartphones (Al Lawati et al., 
2021). The development of MOF ECL sensors has resulted in significant 
advancements in achieving a signal-off state. This progress can be 
attributed to the enhanced performance of the energy donor and 
acceptor sites within the sensor structure (Cheng et al., 2024). MOFs in 
ECL for real food sample analysis are effective when combined with co- 
reactant accelerators, electrocatalytic oxidation-reduction, and label- 
free sensing (Gloag et al., 2024). The metal sites, clusters, and organic 
ligands in MOFs can be customized to create luminescent materials. 
Feng et al. designed tris(2,2′-bipyridyl) dichloro ruthenium(II)hexahy
drate ((Ru(bpy)3

2+) loaded Ru-MOF in which Ru(bpy)3
2+ were introduced 

into the MOF for enhancing ECL activity. In single-factor analysis, the 
fabricated Ru-MOF used to detect melamine in dairy products showed 
an LOD of 3.8 × 10− 11 M in the 10− 10–10− 4 M concentration range. The 
oxidative-reductive system in Ru-MOFs for the ECL response revealed 
the redox reactions and oxidation of melamine. The Ru(bpy)3

2+ to Ru 
(bpy)3

3+ played an efficient role in the electron transfer, leading to the 
ECL intensities and melamine detection process. The practicality appli
cability of the designed ECL sensor for determining melamine in milk 
and infant formula powder showed recoveries in 98–104 % and 95–103 
%, respectively (Feng et al., 2018). The mechanism demonstrates the 
electron transfer and ECL emission production by [Ru(bpy)3

2+]*. The Ru 
(bpy)3

2+/tri-n-propylamine (TPrA) ECL system first the oxidation of Ru 
(bpy)3

2+ to Ru(bpy)3
3+ and melamine to melamine +• with loss of an 

electron. Then melamine+• to melamine⋅ with loss of a proton, further 

activated melamine⋅ and Ru(bpy)3
3+ to [Ru(bpy)3

2+]* responsible for ECL 
emission (Fig. 12) (Feng et al., 2018).

Using MOFs with MIP film, nanomaterials, and Ru(bpy)3
2+ has shown 

remarkable sensitivity in ECL. These components specifically target in
teractions and enhance the ECL signal when used as oxidative-reductive, 
hybridization chain reaction, and co-reaction promoters. This discovery 
is essential because ECL is an extremely sensitive analytical technique 
for analyzing food samples, ensuring more reliable results for ECL-based 
assays (Geng et al., 2024; Peng et al., 2024). Undeniable ECL MOF 
sensors are of great interest in food analysis applications. Table 2 lists 
the ECL MOF sensors for monitoring food samples and their analytical 
parameters.

5. Challenges & key findings

MOFs have attracted significant attention due to their unique attri
butes and chemical versatility. ECL sensing of food samples is very 
effective, but researchers face challenges in materials synthesis, cost- 
effectiveness, sensitivity, food sample preparation, and real analysis. 
Additionally, several challenges impact their practical applications. The 
sensitivity of the ECL signals depends on humidity, temperature, pH, and 
solvent, which limits the sensor’s applications. Bare MOFs are chal
lenging to design as ECL sensors, so they must be fabricated with bio
molecules and inorganic and organic materials. In the case of 
biomolecules such as antibodies, the direction strongly influences 
fabricated MOFs to develop ECL surfaces. The antibody’s direction could 
affect the analyte’s recognition in the solution. Therefore, the material 
choice for site-specific orientation is critical for developing ECL sensors.

Fig. 10. (a) The ECL intensity was observed with the increasing concentration of SDM FROM 0.0 fg/mL to 100 ng /mL (a → h). (b) The observed linear correlations 
between ECL intensity and the log[C] SDM with error bars representing standard deviation (n = 3). Reproduced with the permission of (Liu et al., 2023) © 2023 
Elsevier Ltd. All rights reserved.

Fig. 11. (a) The ECL curves of (curves a-d) Zn TCPP MOFs, Fe TCPP MOFs, Fe/Zn TCPP MOFs, Fe TCPP(Zn) MOFs in PBS containing 10 mM H2O2. (b) The 
mechanism of self-enhanced ECL. Reproduced with the permission of (Wang et al., 2024) © 2024 Elsevier B.V. All rights reserved.
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MOFs’ stable interaction with loaded nanoparticles is another chal
lenging task when developing a stable platform. Nanoparticles 
embedded inside the MOF framework must not alter inherent properties. 
Stable interactions are necessary to obtain stable and enhanced signals 
to avoid leakage. Any leakage of immobilized particles can affect sensor 
performance directly. In addition, modification in frameworks involves 
blocking agents directly to the electrode surface, and organic function
alities such as thiols, carboxylic acids, amine, etc., can involve nonspe
cific bindings for real sample analysis.

The role of redox mediators as active species for electron transfer 
plays a vital role; even with a moderator, good sensitivity, selectivity, 
and biocompatibility are still challenging. Moreover, poor stability and 
reversibility limited MOFs applications for their practical applications. 
Recycling and regeneration for ECL MOFs face difficulties that pose 
practical applications. The selectivity and capacity in different media 
still need to be achieved to develop acceptable ECL MOF sensors for food 
samples. To enhance the stability and reversibility of ECL sensors using 
MOFs, several strategies can be employed as follows: 

• Incorporating specific functional groups into the MOF structure can 
enhance stability and reversibility. For example, amino groups can 
improve the sensor’s sensitivity and selectivity.

• Surface modification techniques, such as coating the MOF sensor 
with polymers or thin films, can protect it from environmental fac
tors and improve its performance over time.

• Fine-tuning the synthesis parameters such as temperature, pressure, 
and solvent composition can lead to MOFs with better stability and 
reversibility for ECL sensing applications.

• Creating hybrid materials by combining MOFs with other nano
materials like carbon nanotubes or graphene can provide synergistic 
effects that enhance sensor performance and durability.

Fabrication costs cannot be ignored when developing ECL sensors; 
high fabrication costs hinder the MOFs’ applications. It is crucial to 
create cost-effective synthesis methods to make MOFs more accessible 
for practical applications. ECL MOF food sensor development faces 
challenges from materials development and needs to solve issues 

regarding food sample preparation. Foods have different varieties, and 
sample preparation is also complicated. Various foods may need 
different food sample preparation. Food’s physical state and biochem
ical behavior affect MOF-based ECL sensor development. MOFs offer 
exciting possibilities for food sample analysis, but these challenges are 
essential to unlocking their full potential in practical applications. Re
searchers continue to find innovative solutions to solve challenges and 
limitations with the benefits of MOF food monitoring tools. To reduce 
the design and fabrication costs of MOFs, several key strategies can be 
implemented as follows: 

• Optimizing the synthesis process by selecting cost-effective pre
cursors and minimizing the use of expensive reagents can signifi
cantly lower production expenses. Additionally, scaling up 
production volume can achieve economies of scale, reducing per-unit 
costs, especially for high-demand MOFs.

• Exploring alternative fabrication techniques and innovative pro
cesses may further enhance cost-effectiveness.

• Using simulated processes and collected data can also help reduce 
design and fabrication costs. Optimizing synthesis parameters 
through simulations to minimize waste and energy consumption can 
lead to more efficient production. Additionally, employing machine 
learning algorithms to analyze past fabrication data can help predict 
optimal process parameters, streamline future designs, and 
contribute to cost savings.

Common methods for scaling up the synthesis of MOFs include base- 
assisted synthesis, microwave synthesis, flow chemistry, electrochem
istry, and dry heating. BASF leads the commercial production of MOFs 
with its Basolite® brand, which employs electrochemical methods for 
large-scale manufacturing. Strem produces a variety of MOFs, including 
CAU-10H, ZIF-8, and UiO-66. In the UK, MOF Technology utilizes 
mechanochemical extrusion for cost-effective production. Start-ups like 
NovoMOF and NuMat Technologies offer customizable MOF synthesis 
solutions, while Framergy focuses on scaling the production of iron- and 
titanium-based MOFs (Crawford et al., 2017; Czaja et al., 2009). The 
methods for large-scale MOF production have evolved to include more 

Fig. 12. Effects of (a) The concentration effect of Ru-MOFs, (b) Effects of the amount of Ru-MOFs, (c) Effects of pH, and (d) Effects of scan rate on the ECL intensity in 
scanning range from 0.2 to 1.25 V for melamine concentration of 1.0 × 10− 5 M (e) Proposed mechanism for electron and proton transfer in the Ru-MOFs/melamine 
ECL system. Reproduced with the permission of (Feng et al., 2018) © 2018 Elsevier B.V. All rights reserved.
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effective technologies, like mechanochemical synthesis, which help 
reduce costs. However, commercially available MOF products are often 
limited to well-known archetypical MOFs due to the availability of 
organic linkers. It is worthwhile to explore the large-scale production of 
other promising types of MOFs, such as zirconium-based MOFs. Most 
MOFs tend to be unstable in water because of the hydrolysis of their 
bonds. Nevertheless, post-synthetic processes and conversion into 

functional carbon materials present new opportunities for commercial
ization. There are many possibilities for those interested in entering the 
MOF commercialization market (Paul et al., 2023; Teo et al., 2021).

It has been found that most bare MOF materials are not particularly 
selective in detecting or recognizing analytes from food samples. Using 
these materials alone may not be the most effective approach for 
designing new fabricated MOFs that can accurately sense and identify 

Table 2 
MOF ECL sensors for food samples analysis and their analytical performances.

MOFs Composite 
materials

analyte LODs Linear range Mechanism insights Sample 
source

Ref.

ZIF-8 MP QDs AFB1 3.5 fg/mL 11.55 fg/mL to 20 
ng/mL

Surface state passivation triggered electron 
relaxation or hole injections

Corn (Wang 
et al., 
2023)

UiO-66-NH2 CdS QDs- 
aptamer

AFB1 7.8 fg/mL 50 fg/mL to 5 ng/ 
mL

co-R, Radicals formed, persulfate lost 
electrons, persulfate anion radicals reacted to 
produce CdS QDs* and returned to ground 
state accompanied by light radiation

Corn (Huang 
et al., 
2024)

Ni-Co-MOFs Au@luminol 
and CdS QDs

Pb (II) and S.aureus 1.9 × 10− 3 

ng/L and 
1.3 CFU/mL

1 × 10− 3 - 1 × 106 

ng/L and 0–1 ×
107 CFU/mL

Catalyze the co-R; CdS QDs are reduced to 
CdS QDs•− . Free radicals form an excited state 
substance, which jumps to the ground state, 
releasing energy and light as ECL signals

Scallops and 
fish

(Zhai 
et al., 
2024)

Zr-MOF DNA Salmonella 37 CFU⋅m/L 50 CFU/mL–5 ×
106 CFU/mL

HCR; Aptamer switches probe, primer 
hybridization forms dsDNA. Salmonella 
release for signal amplification. ECL emitters 
PCN-224 attached to SH-DNA. Degradation of 
ssDNA detaches PCN-224, reducing ECL 
signal

Milk (Wang 
et al., 
2023)

MOF@Apt2 Pb2+ VP 1.7 CFU/mL 1 to 108 CFU/mL Pb2+ embed Ru-MOF binds to amino- 
modified Apt2. Dual-mode aptasensor has 
thiol-modified Apt1 on gold electrode. Ru- 
MOF size overlaps on VP. Ru-MOF aids 
electron exchange between electrode and 
Pb2+.

Oyster and 
seafood

(Wei 
et al., 
2020)

Eu3+-MOF- 
253

Au-NPs carbaryl 0.14 μg/L 0.2–200 μg/L Catalyze the co-R; electron transfer and 
generated Eu3+*, enhancement in ECL 
intensity

Milk and 
soybean oil

(Liu et al., 
2022)

Tb-MOFs Au-Cu CPF 0.029 pg/ 
mL

0.1–106 pg/mL co-R action promoters, doped Au and Cu 
acted as core reaction accelerators

Cabbage & 
apple

(Fang 
et al., 
2024)

Cu/Co-MOF g-C3N4 and 
luminol–H2O2

acetamiprid and 
malathion

0.015 pM, 
and 0.018 
pM

0.1 μM ~ 0.1 pM ER; Through cDNA-aptamer recognition, a 
double helix forms with signal probes. 
Luminol and g-C3N4 produce ECL signals, and 
the addition of pesticides causes DNA helix to 
unravel, probe to fall off, and ECL signal to 
decrease

Apple and 
tomato

(Liu et al., 
2021)

Ce-MOF AuNPs and 
dsDNA

sulfadimethoxine (SDM) 1.28 fg/mL 10.0 fg/mL to 100 
ng/mL

DA, co-R; First, ZPM and S2O8
2− are reduced to 

ZPM•− and SO4
•− . Second, ZPM•− and SO4

•−

reactions generate excited states (ZPM*), 
improving ECL emission.

Milk (Liu et al., 
2023)

Zn-MOF Ru(bpy)3
2+ brilliant blue FCF (BB) 2.5 × 10− 8 

M
≈ 1.0–7.0 μM ER; Ru(bpy)3

2+ and TEA oxidized to form Ru 
(bpy)3

3+ & TEA•+, respectively. TEA•+

converts to TEA•. Ru(bpy)3
3+ is reduced by 

TEA• to Ru(bpy)3
2+*, causing ECL emission 

TEA• reacts with BB, diminishing ECL 
emission

Juice (Shan 
et al., 
2019)

Fe TCPP(Zn) 
MOFs

AuNPs-Apt KAN 0.28 fM 1.0 × 10− 7–1.0 ×
10− 13 M

co-R, ECL-RET; In KAN, aptamers remove 
AuNPs probes from the electrode surface, 
inhibiting the RET system. A suppressed RET 
system enhances ECL signal restoration, 
allowing KAN detection.

Milk, 
honey, & 
pond water

(Wang 
et al., 
2024)

Co-MOF luminol–H2O2 gallic acid, quercetin, 
catechin, kaempferol, & 
caffeic acid

0.12, 0.28, 
0.46, 0.85, 
& 1.23 μg/ 
mL

0.12–1.23 μg/mL ER, CL emission of luminol–H2O2–Co-MOF Honey, 
molasses & 
tea

(Al 
Lawati 
et al., 
2021)

Ru-MOF Ru(bpy)3
2+ melamine 3.8 × 10− 11 

M
10− 10–10− 4 M Oxidative-reductive involves Ru-MOFs & 

melamine, producing ECL from redox 
reactions during melamine oxidation. 
Luminescence by [Ru(bpy)3

2+]* as it returns to 
ground state

Milk (Feng 
et al., 
2018)

AuNPs double-stranded DNA (dsDNA), cadmium sulfide (CdS), quantum dots (QDs), tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate (Ru(bpy)3
2+), carbon 

nitride nanosheet (g-C3N4), double-stranded DNA (dsDNA), methylamine perovskite quantum dots (MP QDs); chlorpyrifos (CPF), Vibrio parahaemolyticus (VP), 
Aflatoxin B1 (AFB1), kanamycin (KAN), donor-acceptor (DA), co-reactant formation (co-R) electrochemically redox (ER), hybridization chain reaction (HCR)
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specific compounds within food samples (Hendon et al., 2017). Instead, 
utilizing an array-based device or employing computational screening 
techniques may be more successful in developing new and improved 
MOFs. It is worth noting that traditional polymer-based materials used 
for food sample analysis have also lacked effectiveness. However, 
combining MOFs with other materials could provide a more suitable 
sensing platform for detecting and analyzing various compounds within 
food samples. Despite these challenges, there is a reason for optimism 
regarding using MOFs as food sensors. Recent experimental and 
computational screening investigations have yielded promising results, 
indicating that with further research and development, MOFs could 
become a valuable tool in food analysis and safety (Zhang, Meng, et al., 
2024).

Indeed, some key findings are related to MOFs and their ECL sensing 
applications for food sample monitoring. MOFs with crystalline struc
tures have been used diversely as ECL sensors. MOFs exhibited strong 
fluorescence, chemical functionality, and affinity for probes, enabling 
them to have promising applications for detecting various analytes 
(Shubhangi et al., 2024). Bare MOFs are less efficient and active in ECL 
compared to fabricated MOFs. The findings show that encapsulating a 
ruthenium(ii) complex into MOFs enhanced ECL activity. For example, 
tris(2,2-bipyridyl)dichlororuthenium(II) hexahydrate, Ru(bpy)3

2+

loaded Zn-MOF with large internal surface areas acted as ECL emitter for 
dopamine. The MOF loaded with Ru molecules inside and leakage could 
be prevented, which is responsible for stable and enhanced le ECL sig
nals (Li et al., 2018).

MOF ECL sensors use light and conductive properties to detect ana
lytes, and functionalities or composite materials can act as signal- 
amplifying agents (Chang et al., 2023). It is crucial to use photoactive 
materials as agents to increase the strength of signals and show various 
effects on signals, such as the antenna effect (Zhao, Wang, Wang, Fan, 
et al., 2023). This could be possible only with high-quality materials and 
advanced manufacturing techniques (Liang et al., 2024). For example, A 
Ru@MOF with Ru(bpy)3

2+ ECL is used as a sensing platform for kana
mycin A (KANA) designed with an Ag+-dependent DNAzyme. Interest
ingly, the stem-loop DNA (HP) quenched the ECL emission of MOF with 
the ferrocene (Fc). The DNAzyme dependence on Ag+ for KANA 
recognition through HP cleavage is released at the Fc end to restore the 
ECL signal (Zheng et al., 2024). As research emerges into MOF ECL 

sensors, there is a need to explore new ways to improve their perfor
mance and expand their capabilities, which can be tailored to specific 
applications by adding different chemical groups or functional units. 
The large surface area of MOFs allowed analytes to interact analytes 
with signal amplifiers, making them a vital tool for food sample analysis.

Moreover, developing MOF ECL food sensors involving and gener
ating hypothetical structures needs new strategies to fulfill the purpose, 
which could include combined results of computational and experi
mental outcomes (Zhiwei Lu et al., 2023; Long Zheng et al., 2023). The 
structural building blocks of MOFs closely resemble the chemical intu
ition, a combination of pore geometry and chemistry of metal nodes, 
ligands, and functional groups. For example, inserting a functional 
group can sometimes change pore shape, and properties may be inter
preted due to the pore-shape effect (Moosavi et al., 2020). To describe 
the development of nanoporous MOF materials for food analysis, pore 
geometry, including pore size and volume, must have structure-property 
relationships with fabricating materials by including all domains within 
an individual sample, metal-linker chemistry, and functional groups 
(Fig. 13).

6. Conclusion

In conclusion, MOF ECL sensors have shown excellent applications in 
food sample monitoring, but there is still much attention for improve
ment. Literature reports are subjected to MOF fabrication using tradi
tional methods for signal generation. However, ECL sensor development 
has been designed significantly beyond a limited approach due to signal 
transduction and high-sensitivity advances. Furthermore, ECL MOF 
sensors have significant applications in real food sample analysis, 
including grains, fruits, vegetables, meats, and beverages. Various 
lumiphores and organic and inorganic materials have enhanced MOF 
ECL sensitivity when developing food sensors.

Besides these advantages, several critical points have been observed 
during the study. When MOF materials synthesis is limited to only a few 
signal changes, approaches must apply new techniques to obtain 
particular structures. Due to suitable interfaces between frameworks 
and support surfaces, the new methods could help access different MOF 
structure length scales for ECL sensing applications. More biocompatible 
and environmentally friendly ECL reagents are highly desirable to fulfill 

Fig. 13. The combined work of computational and experimental research helps in crystal graph monitoring for improved ECL properties. (a) Understanding MOF 
diversity with computational studies, linker and functional-group graphs, the start atom (in green), and the nearby atom (in orange). Reproduced with the permission 
of (Moosavi et al., 2020) Copyright © 2020, The Author(s). (b) Schematic representation of MOF design by compositing with inorganic, organic, and biomolecule 
materials (c) Proposed high sensitivity of ECL signals and improved properties of MOFs. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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ECL analysis for the real samples analysis. MOFs-based ECL emitters rely 
on high positive or negative voltage for ECL reactions. They could also 
have side effects such as electrical damage to cells, hydrogen/oxygen 
evolution reaction, electrode passivation, electrical damage of cells, and 
hydrogen/oxygen evolution reaction. It can’t be denied that low- 
voltage-driven ECL luminophores need to be combined with other 
electro-generation techniques to generate MOF-based effective sensing 
platforms. Novel ECL MOF emitters detect weak bioelectricity from 
various highly sensitive activities for analyzing food samples. ECL MOF 
sensors provide significant opportunities for contaminant detection and 
analytical device development. Future ECL MOF research in food safety 
should focus on: 

• Designing new multifunctional ligands and developing MOFs with 
increased sensitivity for various analytes in food, especially in 
remote areas.

• Implementing machine learning and high-throughput techniques 
could lower design costs and time for industrial-scale MOFs. Using 
different metal ions may produce materials with unique sensing 
abilities; stability studies in real-world applications are essential.

• Combining MOFs with highly conductive materials will enhance ECL 
intensity. Conductivity durability studies are crucial for performance 
under different conditions. Understanding degradation factors over 
time is vital for reliability.

• ECL MOFs are promising for multi-analyte detection in complex food 
matrices. Designing MOF-based sensor arrays to detect multiple 
contaminants simultaneously will improve efficiency and accuracy. 
Exploring different immobilization strategies to integrate multiple 
recognition elements in a single MOF is essential for performance.
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