
Volatility Models in Option Pricing

Miguel Ângelo Maia Ribeiro

Thesis to obtain the Master of Science Degree in

Engineering Physics

Supervisors: Prof. Cláudia Rita Ribeiro Coelho Nunes Philippart
Prof. Rui Manuel Agostinho Dilão

Examination Committee

Chairperson: Prof. Maria Manuela de Sousa Mendes
Supervisor: Prof. Cláudia Rita Ribeiro Coelho Nunes Philippart

Member of the Committee: Claude Yves Cochet

October 2018



ii



To my parents and sister

iii



iv



Acknowledgments

I would like to begin by giving a special word of appreciation to Claude Cochet from BNP Paribas for all

his help in the development of this work, providing not only a crucial insider knowledge but also some

truly useful advice, and for always finding some time in his busy schedule to guide me.

I would also like to thank my two supervisors, Professor Cláudia Nunes and Professor Rui Dilão,
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Resumo

Volatilidade é um dos tópicos mais importantes em matemática financeira, graças não só ao seu im-

pacto nos preços de opções, mas também à sua indefinição. Nesta dissertação estudamos alguns

dos modelos mais utilizados para prever esta variável, nomeadamente o modelo de volatilidade local de

Dupire, bem como os modelos de volatilidade estocástica de Heston e Static/Dynamic SABR. Treinamos

estes modelos com dados de volatilidade implı́cita de algumas opções, tornando-os capazes de replicar

o comportamento do mercado. Descobrimos que, quando apenas são usadas opções com uma única

maturidade, o modelo Static SABR é o que melhor se ajusta aos dados, enquanto que quando se usam

múltiplas maturidades, o modelo Heston supera o Dynamic SABR. Todos estes modelos têm um de-

sempenho vastamente superior ao do modelo de volatilidade constante, assumido em Black-Scholes.

De seguida, os modelos treinados são usados para avaliar opções europeias e de barreira, com o

método de avaliação numérica de Monte Carlo, com o qual somos capazes de prever com precisão

as volatilidades implı́citas para opções ”near-the-money”, falhando para opções de compra europeias

”deep in-the-money”.

Palavras-chave: Volatilidade, Avaliação de Opções, Dupire, Heston, Static SABR, Dynamic

SABR
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Abstract

Volatility is one of the most important subjects in all of quantitative finance, due not only to its impact on

the prices of options but also to its elusiveness. In this thesis we study some of the models most used

to forecast this variable, namely Dupire’s local volatility as well as Heston and Static/Dynamic SABR

stochastic volatility models. We train these models with some options’ implied volatility data, making

them able to replicate real market behavior. We find that, when dealing with options with a single matu-

rity, the Static SABR model is the one that best fits the data, while with multiple maturities, the Heston

model outperforms Dynamic SABR. All these models vastly outperform the constant volatility model,

assumed in Black-Scholes. We then use these trained models to price European and Barrier options

with the Monte Carlo numerical pricing method, which is able to accurately predict implied volatilities for

near-the-money options, failing for deep in-the-money European call options.

Keywords: Volatility, Option pricing, Dupire, Heston, Static SABR, Dynamic SABR
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Chapter 1

Introduction

1.1 Mathematical Finance

Mathematical finance, also known as quantitative finance, is a field of applied mathematics focused on

the modeling of financial instruments. It is rather difficult to overestimate its importance since it is heavily

used by investors and investment banks in every day transactions. In recent decades, this field suffered

a complete paradigm shift, following developments in computer science and new theoretical results that

enabled investors to better understand the mechanics of financial markets [Seydel, 2004].

With the colossal sums traded daily in financial markets around the world [World Federation of Ex-

changes], mathematical finance has become increasingly important and many resources are invested

in the research and development of new and better theories and algorithms [Bernstein, 2012].

1.2 Derivatives

Derivatives are currently one of the most studied subjects in all of mathematical finance. In finance, a

derivative is simply a contract whose value depends on other simpler financial instruments, known as

underlying assets, such as stock prices or interest rates. They can virtually take any form desirable, so

long as there are two parties interested in signing it and all government regulations are met.

The importance of derivatives has grown greatly in recent years. In fact, as of June 2017, derivatives

were responsible for over $542 trillion worth of trades, in the Over-the-Counter (OTC) market alone [Bank

for International Settlements, 2018], having started at only $72 trillion in June 1997, as can be seen in

Figure 1.1 (the OTC market refers to all deals signed outside of exchanges). This growth peaked in 2008

but stalled after the global financial crisis due to new government regulations, implemented because of

the role of derivatives in market crashes [Financial Times, 2016]. It is easy to see that mishandling

derivatives can have disastrous consequences. However, when handled appropriately, derivatives prove

to be very powerful tools to investors, as we will see shortly.
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Figure 1.1: Size of OTC derivatives market since July 1997.

1.3 Options

Of all classes of derivatives, in this master thesis we will focus particularly on the most traded type [Hull,

2009]: options.

As the name implies, an option contract grants its buyer the option to buy (in the case of a call type

option) or sell (for put options) its underlying asset at a future date, known as the maturity, for a fixed

price, known as the strike price. In other words, when signing an option, buyers choose a price at which

they want to buy/sell (call/put) some asset and a future date to do this transaction. When this date

arrives, if the transaction is favorable to the buyers, they exercise their right to execute it.

The description above pertains only to European options. In this thesis, this type of contracts will

be used for model calibration and validation. Other less common types, commonly known as Exotic

options, will also be studied in the following sections, with focus on one of the most common types,

known as Barrier options, a contract that behaves similarly to European options with the difference that

it only becomes valid if the stock price increases past a given threshold at any point until the maturity

(assuming a up-and-in Barrier option).

It’s important to emphasize the fact that an option grants its buyer the right to do something. If

exercising the option would lead to losses, the buyer can simply decide to let the maturity date pass,

allowing the option to expire without further costs. This is indeed the most attractive characteristic of

options.

1.3.1 Why Options are Important

Options are very useful tools to all types of investors. In simple terms, there exist two types of investors

in the market: hedgers and speculators.

To hedgers (i.e. investors that want to limit their exposure to risk), options provide safety by fixing

a minimum future price on their underlying assets - e.g. if hedgers want to protect themselves against

a potential future price crash affecting one of their assets, they can buy put type options on that asset.

2



With these, even if the asset’s value does crash, their losses will always be contained because they can

exercise the options and sell the asset at the option’s higher strike price.

Options are also very useful to speculators (i.e. investors that try to predict future market move-

ments). The lower price of options when compared to their underlying assets grants this type of investors

great leveraging capabilities and, with them, access to much higher profits if their predictions prove right.

The opposite is also true, and a wrong prediction can equally lead to much greater losses.

Due to all their advantages, and unlike some other types of derivatives, options have a price. Finding

the ideal price for an option is a fundamental concern to investors, because knowing their appropriate

value can give them a chance to take advantage of under or overpriced options. Finding this price can

be very difficult for some option types, however, and though a lot of research has been done towards

this goal, a great deal more is still required.

1.4 Volatility

Volatility is a quantity that greatly affects option prices and is used as a parameter in all pricing mod-

els. It’s very difficult to define it without the necessary financial background, so we will postpone this

description to chapter 3, where we will study it in great detail. For now, we can say that despite its

importance, and despite our great efforts to study it, this parameter remains as one of the most elusive

phenomena in all of quantitative finance. This elusiveness is mainly caused by our inability not only to

predict its future behavior but even actually to accurately measure it, which clearly gives rise to all sorts

of problems when using it in any option pricing model.

Due to its importance, many models have been developed throughout the years in an attempt to

model this parameter, with varying degrees of success. We will analyze in detail some of the most

famous ones in the following chapters, comparing them with one another.

1.5 Repository

In the development of this thesis we used many original code files, written in MATLAB language, from

which we obtained the results shown later. They are available in an online repository, which can be

accessed freely at https://github.com/Miguel-Ribeiro-IST/Thesis. The code is commented to

some degree, to ease the interpretation of all the steps taken.
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1.6 Objectives

The goal of this thesis is to study some of the most commonly used models to forecast volatility. We will

approach Dupire’s local volatility model and Heston, Static/Dynamic SABR stochastic volatility models.

We will begin by clearly defining each model and give some insight regarding their advantages and

disadvantages.

We will then train all models in a data set of real European option prices, so that they can best

replicate real market behavior.

Afterwards, we will implement each trained model on a Monte Carlo numerical pricer, to obtain some

simulated option prices. The models will also be compared with one another, to find which is the most

suitable in our case.

Finally, the Monte Carlo pricers will be modified to price Barrier options, as an application example

of the models.

1.7 Thesis Outline

In chapter 2 we begin by giving some financial background required to understand the posterior sections.

We will approach the options’ payoff and value functions as well as the Black-Scholes formula and

related results.

In chapter 3 we introduce the concept of volatility, implied volatility, and the Greek Vega. We then

describe the models to be used, namely Dupire’s local volatility model and Heston, Static/Dynamic SABR

stochastic volatility models.

Then, in chapter 4 we focus on how each model will be implemented, calibrated and validated. We

introduce the CMA-ES optimization algorithm, which we will use to calibrate the models, as well as the

Monte Carlo numerical pricer, used to estimate option prices with each calibrated model.

Afterwards, in chapter 5 we comment the results obtained with each of the models and compare

them to one another. We also apply these models to price Barrier options. At the end of this chapter we

also present some of the pitfalls found during implementation and how we solved them.

Finally, in chapter 6 we give a general overview of the work done and present some of the main

conclusions made and possible future work.
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Chapter 2

Background

2.1 Option Types

Before completely focusing on the mechanics of options, what influences their prices and how we can try

to predict their behavior, we should begin by clearly defining the main option types, their characteristics,

as well as their payoff functions. Not only will we approach one of the main types of options - European

- but we will also shortly introduce other less common types, commonly referred to as Exotic options,

focusing particularly on Barrier options.

2.1.1 European Options

European options are the most traded type of option in the OTC market [Investopedia, b]. They are not

only extremely useful to investors, but also very simple to study and comparatively easy to price. For all

these reasons, they have been the subject of much research and are deeply understood. Furthermore,

because of their high availability, they are very useful in model calibration and validation.

As stated before, call and put European options enable their buyers to respectively buy and sell the

underlying asset at the maturity for the fixed strike price.

To understand the payoff function of such contracts, we’ll use an example. In the case of a European

call option, if at the maturity the market price of its underlying asset is greater than the strike, investors

can exercise the option and buy the asset for the fixed lower strike price. They can then immediately go

to the market and sell the asset for its higher value. Thus, in this case, the payoff of the option would

be the difference between the asset’s price and the option’s strike price. On the other hand, if at the

maturity the price of the asset decreases past the strike, the investor should let the option expire, since

the asset is available in the market for a lower price. In this case, the payoff would be zero. The same

reasoning can be made for European put type options, such that the payoff function of both option types
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can then be deduced as

PayoffEuro, call(K,T ) = max (S(T )−K, 0) ; (2.1a)

PayoffEuro, put(K,T ) = max (K − S(T ), 0) , (2.1b)

whereK is the option’s strike price and S(T ) is the asset’s price, S(t), at the maturity, T . These functions

are represented in Figure 2.1.

K

S(T)

P
ay

of
f

Call
Put

Figure 2.1: Payoff functions of European call and put options.

Along with European, American options are the other most common type of derivative. While Euro-

pean options dominate the OTC market, their American counterparts are the most traded type of option

in exchanges [Investopedia, a]. Because of their great importance, many models have been developed

to find the prices of these options [Longstaff and Schwartz, 2001]. American options grant the right to

buy/sell (call/put) the underlying asset at any point in time until the maturity date. Though they will not

be used in this work, they will be briefly mentioned in later sections.

2.1.2 Exotic Options

While European and American options are, by far, the most traded types, Exotic options should not be

neglected. Exotic options are derivatives that differ from European in terms of the underlying asset or

the payoff function [Investopedia, c]. Not only does there exist a great number of Exotic option types, but

these are also highly customizable, making this type of derivatives ideal for unconventional investment

strategies. Due to their high complexity, these options are only traded in the OTC market, and not in

exchanges. We will explore one of the most common types of Exotic options - Barrier options - though

many others exist.
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Barrier Options

A Barrier option behaves similarly to a European option with the difference that it only becomes active

(or becomes worthless) if the value of its underlying asset reaches a particular value, called the barrier

level, B, at any point in time until the option’s maturity.

There are four main types of Barrier option:

• up-and-out : the asset’s price starts below the barrier (i.e. S(0) < B). If it increases past this

threshold, the option becomes worthless;

• down-and-out : the asset’s price starts above the barrier (i.e. S(0) > B). If it decreases past this

threshold, the option becomes worthless;

• up-and-in: the asset’s price starts below the barrier (i.e. S(0) < B). Only if it increases past this

threshold does the option become active;

• down-and-in: the asset’s price starts above the barrier (i.e. S(0) > B). Only if it decreases past

this threshold does the option become active.

Because all of the previously described Barrier option types are handled similarly, we can easily

adapt the models from one type to another. Thus, for simplicity, we will henceforth assume that all

Barrier options are of the up-and-in type.

We now deduce the payoff function of this type of Exotic contract. Using the up-and-in Barrier option

type as an example, if the asset price, S(t), remains below the barrier level B throughout the whole

option duration, even if at the maturity the asset’s value is higher than the strike price, the option’s payoff

would nonetheless be zero. On the contrary, if this threshold was surpassed at any point during this

period, the option’s payoff would be similar to that of its European equivalent. The payoff function of this

type of option is therefore given by

PayoffBarr, call(K,T ) =

max (S(T )−K, 0) , if ∃ t < T : S(t) > B

0, otherwise

; (2.2a)

PayoffBarr, put(K,T ) =

max (K − S(T ), 0) , if ∃ t < T : S(t) > B

0, otherwise

. (2.2b)

Before simulating Barrier options and studying their behavior, we can deduce empirically the effect

of the barrier level B on the overall price of the option. For an up-and-in Barrier option, if the barrier level

is too high, the price of the option will be very low. This is due to the fact that the likelihood of a stock

price increasing enough to surpass such a high barrier level, activating the option, is very low. On the

other hand, if the barrier level is very close to S0, the probability of the stock price reaching this threshold

is very high. Thus, the price of such an option would be very similar to that of its European equivalent.

With these two examples, we can conclude that the higher the barrier level, the lower the Barrier option

price.
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From eq.(2.2) we can furthermore conclude that the prices of Barrier options are always smaller than

or equal to those of their equivalent European counterparts (i.e. with same strike and maturity). This

should be straightforward, since the Barrier option becomes equal to its European equivalent only if the

Barrier threshold is surpassed and is worthless otherwise.

Though Exotic options are used by banks and investors every day, we will mainly focus on Euro-

pean options: not only are these the most common type of option traded, as we mentioned before, but

data is also readily available for many different maturities and strike prices, making European options

ideal for model calibration and validation, which will be the main goal of this thesis. Barrier options will

nonetheless be implemented and studied, though no data will be used to verify the models’ validity in

this case.

2.2 Option Prices and Payoffs

It is important to emphasize the difference between an option’s payoff and its profit for investors. Because

options grant the right to buy/sell some asset, no investors would exercise an option if this action was

disadvantageous to them (i.e. negative payoff value). Thus, the payoff of an option is always positive (it

can also, obviously, be zero). This might sound like an arbitrage possibility (i.e. the chance of making

profit without risk, which is very unlikely to occur [Wilmott, 2013]), but in reality, as we mentioned before,

options have a price that investors have to pay to acquire them. This means that even if the option’s

payoff is positive, if this value is lower than the price an investor paid to buy the option, that investor will

actually lose money. The profit of an option is thus the difference between its payoff and its price, which

can be negative. With this concept in mind, we can price options by setting their expected profit to be

the same as a risk-neutral investment, (e.g. bank deposit). The price of an option can thus be deduced

as it’s expected future payoff, discounted back to the present

Price(K, t∗) = e−rt
∗
E [Payoff(K, t∗)] , (2.3)

where t∗ denotes the time at which the option is exercised and r corresponds to the risk-free interest

rate, which we will approach in section 2.3. In particular, with eqs.(2.1) in mind, the price functions of

European call and put options are clearly given by

C(K,T )Euro = e−rTE [max (S(T )−K, 0)] = e−rTE
[
(S(T )−K)1{S(T )>K}

]
; (2.4a)

P (K,T )Euro = e−rTE [max (K − S(T ), 0)] = e−rTE
[
(K − S(T ))1{S(T )<K}

]
, (2.4b)

with C(K,T ) and P (K,T ) being the values (i.e. prices) of European call and put options, respectively,

and E[·], 1{·} corresponding to the expected value and indicator functions, respectively.

When selling or buying options, investment banks add some premium to this zero-profit price, to

account for the risk taken. Though this premium is important to define, it is besides the scope of this

work and will not be considered here.
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2.2.1 Put-Call Parity

One important aspect of option prices is known as put-call parity. It can be easily shown that the prices of

call options are inherently related to the prices of put options with the same strike prices and maturities.

This relationship is given by

C(K,T ) = S(0)−Ke−rT + P (K,T ), (2.5)

where S(0) denotes the stock price at inception (i.e. when the option is bought). Because of this duality,

we can always easily obtain the prices of put options from the prices of call options with the same

underlying asset, maturity and strike. For this reason, some of the results presented in later sections

only apply to call options, though we can just as easily find their put option equivalent.

2.3 Black-Scholes Formulae

Due to their high importance, options have been studied in great detail in the past. Probably the most

important result in this field came from Fischer Black, Myron Scholes and Robert Merton, who developed

a mathematical model to price European options - the famous Black-Scholes (BS) model [Black and

Scholes, 1973] - still in use in present days [Wilmott, 2006].

This model states that the price of a European (call or put) option follows the partial differential

equation (PDE)
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (2.6)

where V is the price of the option, S is the price of the underlying (risky) asset, r is the risk-free interest

rate and σ is the stock price volatility. The underlying asset is commonly referred to as stock, so these

terms will be used interchangeably in the following sections.

Proof Itô’s Lemma can be applied to our option price V , which depends on the (stochastic) stock

price S and time t, so that we obtain

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
(dS)2. (2.7)

We now assume that the stock price S follows a geometric Brownian Motion,

dS(t) = rS(t)dt+ σS(t)dW (t), (2.8)

where {W (t), t > 0} is a Brownian motion process.

It can be shown that (dW )2 = dt, (dt)2 = 0 and (dt).(dW ) = 0. With these properties in mind, we

can substitute eq.(2.8) into eq.(2.7), giving

dV =
∂V

∂t
dt+

∂V

∂S
(rSdt+ σSdW ) +

1

2
(rSdt+ σSdW )

2 ∂
2V

∂S2

=

(
rS
∂V

∂S
+
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW.

(2.9)
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We now construct a portfolio where we sell one option and buy an amount ∂V/∂S of stocks. The

value of such a portfolio would be

Π = −V +
∂V

∂S
S. (2.10)

From this equation we can easily derive the change of the portfolio’s value, dΠ, in the time interval dt

as

dΠ = −dV +
∂V

∂S
dS

=

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
dt.

(2.11)

Because the portfolio’s value doesn’t depend on the Brownian motion process {W (t), t > 0}, it

follows that it must be riskless. To avoid any arbitrage possibilities (i.e. making profit without risk, which

is very unlikely to happen), the value of this portfolio must be the same as any risk-free asset. The value

of a portfolio with such an asset would change with time as

dΠ = rΠdt. (2.12)

Substituting eqs.(2.10) and (2.11) into eq.(2.12) gives

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.13)

�

The risk-free interest rate (or simply interest rate), r, is the interest an investor would receive from

any risk-free investment (e.g. treasury bills). No investor should ever invest in risky products whose

expected return is lower than this interest (e.g. the lottery), since there’s the alternative of obtaining a

higher (expected) payoff without the disadvantage of taking risks. In general, this rate changes slightly

with time and is unknown. Black et al., in their original model (eq.(2.6)), assumed that this rate is a

known function of time. Some authors have suggested solutions to deal with this shortcoming, providing

stochastic models to replicate the behavior of interest rates [Heath et al., 1992], but because option

prices do not significantly depend on this value [Wilmott, 2006], in the remainder of this thesis we shall

set this rate to some constant.

As for the stock price volatility, σ, since we will explore it to great extent in chapter 3, suffice it to say

for now that it is a measure of the future stock price movement’s uncertainty.

Some companies decide to grant their shareholders a part of the profits generated, known as divi-

dends. This action decreases the company’s total assets, which decreases the value of stocks, changing

option prices. Because this occurrence is based on human behavior, it is extremely hard to model. Usu-

ally, for simplicity, it is assumed to be a constant negative rate, having the exact opposite impact as the

risk-free interest rate. Furthermore, Black et al. assumed in their models that no dividends were paid

throughout the option’s duration. For both these reasons, we will set dividend payment to zero in all our

models.
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One other important assumption of the BS model is that stock prices follow a stochastic process,

known as Geometric Brownian Motion, defined as

dS(t) = rS(t)dt+ σS(t)dW (t), (2.14)

with {W (t), t > 0} defining a one-dimensional Brownian motion and where we define S0 = S(0) as the

stock price at inception (i.e. t = 0). An example of such processes is represented in Figure 2.2.

Observing market behavior, we can see that stocks prices seem to behave stochastically. To model

them, we should use some diffusion process. Many diffusion processes exist, and choosing the GBM

to model stock prices, as done by Black et al., might seem a bit arbitrary, but there is actually a good

reason behind it: changes in the stock price are geometric and not arithmetic. If a stock with price 1000e

changed by 9e, we would barely take notice. If another stock with price 10e changed by 9e, the drop

would be quite surprising, even though the change was the same in both assets. This seems to indicate

that changes in the stock price depend on the stock price itself and justifies the choice made by Black et

al. to model stock prices using a Geometric Brownian Motion process.

0 0.2 0.4 0.6 0.8 1

Time(yr)

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 2.2: Example of three Geometric Brownian Motion processes with maturity T = 1yr, interest rate
r = 0.01yr−1, volatility σ = 0.1yr−1/2 and initial stock price S0 = 1e.

With this result, pricing options is fairly straightforward - we simply need to solve the PDE in eq.(2.6)

as we would for the diffusion equation’s initial value problem [Dilão et al., 2009]. The results published

originally by Black et al. state that call and put options can be valued as

C(K,T ) = N(d1)S0 −N(d2)Ke−rT ;

P (K,T ) = −N(−d1)S0 +N(−d2)Ke−rT ,

(2.15a)

(2.15b)

where N(·) is the cumulative distribution function of the standard normal distribution and where d1, d2

11



are given by

d1 =
1

σ
√
T

[
log

(
S0

K

)
+

(
r +

σ2

2

)
T

]
;

d2 = d1 − σ
√
T .

(2.16a)

(2.16b)

In Figure 2.3 we represent the values of call and put options at both the inception (t = 0) and at

maturity (t = T ). Notice how at maturity the value functions tend to the payoff functions, shown in

Figure 2.1 (take into account that the x-axis in Figure 2.1 represents S(T ) and in Figure 2.3 we have

K/S0, so they are inverted).

0.4 0.6 0.8 1 1.2 1.4 1.6

K/S0

0

0.1

0.2

0.3

0.4

0.5

0.6

Call (at Inception)
Put (at Inception)
Call (at Maturity)
Put (at Maturity)

Figure 2.3: Call and Put option values at inception and maturity with T = 0.5yr, interest rate r = 0.01yr−1,
volatility σ = 0.3yr−1/2 and initial stock price S0 = 1e.

Eqs.(2.15) are a very important result that can be used to precisely price European options, so long

as all the parameters are exactly known and remain constant throughout the option’s duration. Both

assumptions are never true for any real market option, though.
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Chapter 3

Volatility

As mentioned before, volatility is a measure of the uncertainty of future stock price movements. In other

words, a higher volatility will lead to greater future fluctuations in the stock price, whereas a stock with

lower volatility is more stable. This phenomenon is exemplified in Figure 3.1, where we can see the

greater fluctuations of the high-volatility process (red line) compared to the much smaller variations of

the low-volatility process (orange line), using the same driving Brownian motion.

0 0.2 0.4 0.6 0.8 1

Time(yr)

0.8

0.9

1

1.1

1.2

=0.05 yr -0.5

=0.1 yr -0.5

=0.2 yr -0.5

Figure 3.1: Example of three identical GBM processes with different volatilities. We used a maturity of
T = 1yr, an interest rate r = 0.01yr−1 and an initial stock price S0 = 1e. To emphasize this effect, the
underlying Brownian Motion {W (t), t > 0} used to generate all three paths was the same.

3.1 Why Volatility is Important

Volatility is of the utmost importance when trading options because it heavily impacts the option price:

volatility is very desirable to investors when buying options, which means that the higher the volatility

of a stock, the higher the price of its corresponding option. To understand why this occurs, we can
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note that high volatility means that there is an increased probability that the stock price will increase or

decrease very significantly. In the case of a call option, if the stock price increases considerably, the

investor earns a large amount of money. If the price decreases considerably, the investor may let the

option expire, thus avoiding further losses. Thus, we see that a higher volatility creates a greater chance

of (unlimited) profits with a limited potential downfall. We thus conclude that a higher volatility increases

the value of an option. Furthermore, of all the parameters in the BS formula (eq.(2.6)), volatility is the

only one we can’t easily measure from market data. Finally, forecasting volatility is even more difficult

since this quantity changes with time [S&P Dow Jones Indices]. These three factors make volatility one

of the most important subjects in all of mathematical finance and thus the focus of much research.

3.2 Estimating Volatility

Usually, volatility can be estimated empirically from the standard deviation of the historical rate of log-

returns [Hull, 2009]. We begin by measuring the stock price at fixed time intervals (e.g. daily, monthly),

such that Si corresponds to the stock price at the end of the ith interval. We define the log-return rate,

ui, as

ui = log

(
Si
Si−1

)
. (3.1)

We can then calculate the standard deviation, s, of this rate as

s =

√√√√ 1

n− 1

n∑
i=1

(ui − u)2, (3.2)

assuming we have n+ 1 observations and denoting u as the average value of the log-return rates. The

volatility (measured yearly) can be estimated with

σ̂ =
s√
τ
, (3.3)

where τ defines the time interval length measured in years. As an example, if we only have monthly data

for the Si prices, the time interval would obviously be one month, which, measured in years is equal to

1/12, which corresponds to τ . The volatility can also be measured in other time periods: we can define a

monthly or a daily volatility, instead of a yearly volatility as we defined before, but these are less common

and will therefore not be used.

We are now able to estimate the volatility of any given asset at the present moment. With this result,

we could assume that the volatilities remain constant over time and use today’s volatility to price options

with maturities in the future. The clear problem with this approach is that, when observing market data,

we can see that volatilities change over time, so that even if we had the exact value of this parameter

in the present, it can, and will, change in the future. If we try to price options assuming a constant

volatility, our options will become mispriced, causing potential losses. Our goal is therefore to model the

instantaneous volatility (i.e. the volatility at a given point in time) and, with this model, predict its future
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behavior, using this knowledge to better price options. We begin by introducing the concept of implied

volatility, crucial to fully grasping the concepts used later. Afterwards, we will introduce four models

to replicate volatility: one using local volatility (Dupire’s formula), where we assume that the volatility

depends on the stock price and time (i.e. σ = σ(t, S(t))), and three others using stochastic volatility

(Heston and Static/Dynamic SABR), where the volatility also depends on a Brownian motion process

(i.e. σ = σ(t, S(t),W (t)), with the Brownian motion process {W (t), t > 0}).

We should note that other very common models exist. The GARCH model [Bollerslev, 1986] (Gen-

eralized Autoregressive Conditional Heteroskedasticity) along with all its many variations (EGARCH,

NGARCH, ...) is particularly popular among econometricians. However, this model is mostly used to

forecast volatility, and performs poorly when used to price derivatives [Chourdakis, 2008]. Because pric-

ing is our objective, GARCH will not be covered in this work. We will also study the constant volatility

model, as done by Black et al., and use it as a benchmark for the quality of our models.

3.3 Implied Volatility

Implied volatility can be defined as the value of stock price volatility that, when input into the BS pricer

in eq.(2.15), outputs a value equal to the market price of a given option. In other words, it would be the

stock price volatility that the seller/buyer of the option used when pricing it (assuming the BS model was

used).

We can also relate the implied volatility to the volatility of the stock price as

σimp =

√
1

T

∫ T

0

(σ(t))2dt, (3.4)

where σimp denotes the implied volatility and σ(t) is the instantaneous volatility of the stock price. Thus,

the implied volatility can be thought of as the (root mean square) average of the instantaneous volatility.

Because eq.(2.15) is not explicitly invertible w.r.t. σ, we need to use some numerical procedure (e.g.

Newton’s method) to find the value of implied volatility that matches the market price with the model

price, i.e. we must find, numerically, the solution to the equation

C(σimp) = Cmkt, (3.5)

where C(σimp) corresponds to the result of eq.(2.15) using σimp as (implied) volatility and Cmkt cor-

responds to the price of the call option observed in the market (it could also be the call option price

resulting from a model or simulation).

We deduced in section 3.1 that the relation between implied volatility and option price is a monotonous

increasing function. This means that we can obtain the implied volatility of an option from its price and

vice versa (i.e. the relationship is bijective). This duality is so fundamental that investors often disclose

options by providing their implied volatility instead of their price [Wilmott, 2013], as is indeed the case for

the data we will use later to calibrate the models.
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One important property of implied volatility is that, in the real-world, it depends on the strike price

and the maturity. This should not occur in the ”Black-Scholes world”. Because the volatility is a property

of the stock, if investors really used the BS model to price their options, two options with the same

underlying stock should have the same implied volatility, regardless of their strike prices or maturities

(i.e. the same stock can’t have two different volatilities at the same time). However, when observing real

market data, this is in fact what is observed.

The implied volatilities’ dependence on the strike price can take one of two forms, known as smile

and skew. An implied volatility smile presents higher volatilities for options with strikes farther from the

current stock price (i.e. the shape of a smile). A skew, on the other hand, only presents higher volatilities

in one of these directions, either for strikes greater or smaller than the current stock price (i.e. the shape

of a skew). Both phenomena are represented in Figure 3.2.
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Figure 3.2: Representation of the implied volatility smile (left) and skew (right) functions.

Because of their higher implied volatility, we can conclude that, if we observe a smile in the data,

options with strikes different from the current stock price are overpriced. The reason behind this odd

market behavior is related to the simple demand-supply rule [Wilmott, 2006]. On the one hand, some

investors are risk-averse and want to hedge their losses in case of a big market movement (as explained

in subsection 1.3.1). They don’t mind paying a higher price for an option if this means they would be rel-

atively safe from potentially devastating price changes. For this reason, the demand of call options with

lower strikes increases, driving their prices and, consequently, their implied volatilities up. On the other

hand, other investors are risk-seekers and want to take advantage of possible sudden price movements,

buying the stocks after the possible price increase for the lower strike prices. They don’t mind paying

higher prices for the chance of earning high profits and this drives the prices of high strike call options

and, consequently, their implied volatility up. This fear-greed duality gives rise to the observed volatility

smile. In the case of the volatility skew, only one of the two phenomena described occurs.

The presence of a smile in the data instead of a skew, and vice-versa, is determined by the type

of product serving as underlying asset - Forex market options usually exhibit volatility smiles whereas

index and commodities options usually show a volatility skew or a skewed smile [Wilmott, 2006].
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The dependence of the implied volatility on the maturity date is more complex, but in general it

decreases with the maturity.

In Figure 3.3 we plot an example of an implied volatility surface, along with its contour plot, which we

obtained from real market data. This surface is again represented in section 5.2.

(a) Implied Volatility Surface (b) Implied Volatility Contour Plot

Figure 3.3: Representation of an implied volatility surface and its respective contour plot.

As we can see from Figure 3.3 in this case we have a mixture of a smile and a skew behavior and

the implied volatility does decrease with maturity, as expected.

It can also be shown that the implied volatility is the same for calls and puts [Hull, 2009], though the

causes of the volatility smile/skew for put options are the opposite of the ones described before for calls.

3.4 Option Price Sensitivity and Vega

When studying volatilities, as is our case, one of the most important aspects to consider is the sensitivity

of the option price to the volatility. In other words, we should try to understand how a small variation in

the volatility of a given option affects its price. This sensitivity can be considered for other parameters,

such as the interest rate or the maturity, but it is particularly important for the volatility because we don’t

actually know the exact value of this parameter. Therefore, if the option price is very sensitive to the

volatility and we have a bad estimation for this parameter, we will have severe mispricing problems and

possibly lose high amounts of money.

This sensitivity has been deeply studied in the literature and is usually called Vega, or V. It is defined

as

V =
∂V

∂σ
, (3.6)

where V denotes the option price. In particular for European calls, this value can be shown to be [Hull,

2009]

V = S0

√
TN ′(d1), (3.7)
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where d1 is given in eq.(2.16) and N ′(·) is the probability density function for a standard normal distribu-

tion. If we plot this quantity against option strikes, we obtain the curve shown in Figure 3.4.
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Figure 3.4: Relationship between the Vega and the respective options’ strike prices, for different matu-

rities. The parameters used were interest rate r = 0.01yr−1, initial stock price S0 = 1e and a constant

volatility of σ = 0.3yr−1/2.

As we can see, the Vega peaks when the strike equals the option price. This means that, at such

strikes, a variation in the volatility will produce the largest variation on the corresponding strike price.

Furthermore, we can see that this peak is more pronounced for later maturities.

Despite its usefulness, the Vega doesn’t quite grasp the whole picture. As we said before, prices

behave geometrically and not arithmetically - a change of 0.01e in an option with price 0.5e is quite

different from the same change in an option with price 0.02e. A derivative (such as Vega) assumes

arithmetic variations i.e. ∂A/∂B = 0.1 means that a change of 0.1 in B produces a change of 1 in

A. This doesn’t contain any information on the relative change of A (i.e. if A was an option price, we

wouldn’t know if it changed by 10% or 0.1%). To solve this shortcoming, we can simply define the relative

change as

Relative Change =
∂V

∂σ

σ

V
, (3.8)

which we plot in Figure 3.5, for call options, against their strike price. As an example, if we have a relative

change of 5, this means that a variation of 1% in the volatility will produce a variation of 5% in the option

price. This relationship is represented in Figure 3.5.
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Figure 3.5: Relationship between the (call) option price’s relative change (w.r.t. volatility) and the respec-

tive strike prices, for different maturities. The parameters used were interest rate r = 0.01yr−1, initial

stock price S0 = 1e and a constant volatility of σ = 0.3yr−1/2.

As we can see in Figure 3.5, the relative change of the option price w.r.t. volatility is very large for

call options with high strikes. We can therefore conclude that the prices of options with high strikes are

very sensitive to the value of volatility. This implies that a very slight (relative) change in the volatility will

produce a very large (relative) change in the option price. It also means that the volatility is very robust

w.r.t. the option price, i.e. a very large (relative) variation in the option price will barely affect the volatility.

We will observe this effect in later sections.

The opposite effect is found for call options with lower strikes - we can see that the relative variation

of the option price w.r.t. the volatility is extremely small in these cases, meaning that the option price

is extremely robust to the volatility, i.e. a change in the volatility will affect the option price only very

slightly. It also implies that the volatility is extremely sensitive to the option price, meaning that a very

slight (relative) change in the price of a call option with low strikes will dramatically change its volatility.

This observation will become very important in later sections.

Furthermore, we can also observe that the relative change of the option price w.r.t. the volatility is

greater for options with smaller maturities, which will also become important later.

For future reference, the value of relative change of the option price w.r.t. the volatility is approxi-

mately 1 when K = S0 for all maturities.
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3.5 Local Volatility

In their original work, Black et al. assumed that volatility is constant throughout the whole option dura-

tion [Black and Scholes, 1973]. From market data, it can be clearly seen that this is not the case [S&P

Dow Jones Indices]. There may be times when new information reaches the market (e.g. the results of

an election) and trading increases, driving volatility up. It is equally true that shortly before this informa-

tion is known, trading may stall due to expectancy, and volatilities go down.

The constant volatility BS model is therefore clearly insufficient to completely grasp real-world trad-

ing. We should use a model where volatility is dynamic, measuring the uncertainty on the stock price

movement at any point in time. However, as we saw in section 3.3, the market’s view of volatility also

depends on the stock price itself. The volatility should therefore be a function of both time and stock

price: σ(S(t), t). We call this model local volatility and the geometric Brownian motion from eq.(2.14) is

transformed into the new diffusion process

dS(t) = rS(t)dt+ σ(S(t), t)S(t)dW (t), (3.9)

where σ(S(t), t) is a function of S(t) and t, with certain properties, which we omit as they are only used

to ensure the strong solution of this SDE (i.e. σ(S(t), t) is ”well behaved”).

This local volatility model implies that we have a nonlinear deterministic volatility surface, σ(S(t), t),

which can be thought of as the market’s expectation of future volatility at time t if the stock price is S(t)

at that time.

Because we can’t directly measure the local volatility of a stock from market data, we need some

models to estimate it. One of the most used of these is known as Dupire’s formula, which we explain

next.

3.5.1 Dupire’s model

One of the most famous results in the modelling of the local volatility function was obtained by Dupire [Dupire,

1994]. In his article, this author derives a theoretical formula for σ(S(t), t), given by

σ(S(t), t) =

√√√√√√
∂C

∂T
+ rS

∂C

∂K
1

2
S2 ∂

2C

∂K2

, (3.10)

where C = C(K,T ) is the price of a European call option with strike price K and maturity T . All the

derivatives are evaluated at K = S(t) and T = t.

Proof

We begin by assuming that the stock price S(t) follows a dynamic transition probability density func-

tion p(S(t), t, S′(t′), t′). In other words, by integrating this density function we would obtain the probability

of the stock price reaching a price S′ at a time t′ having started at price S at time t.

The present value of a call option, C(K,T ), can be deduced as its expected future payoff, discounted
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backwards in time, which results in

C(K,T ) = e−r(T−t)E [max (S′ −K, 0)] = e−r(T−t)
∫ ∞

0

max (S′ −K, 0) p(S, t, S′, T )dS′

= e−r(T−t)
∫ ∞
K

(S′ −K)p(S, t, S′, T )dS′,

(3.11)

where S′ denotes the stock price at maturity.

Taking the first derivative of this result with respect to the strike price K, we obtain

∂C

∂K
= −e−r(T−t)

∫ ∞
K

p(S, t, S′, T )dS′. (3.12)

The second derivative results in
∂2C

∂K2
= e−r(T−t)p(S, t,K, T ), (3.13)

assuming p(S, t,∞, T ) = 0.

We now make a brief digression to derive the Fokker-Planck equation (following the procedure shown

in Wilmott [Wilmott, 2006]), which we require for the next steps. This equation is widely used in stochastic

calculus and is applicable to stochastic processes in general. To make its proof simpler, we make a

simplification assuming that the stochastic process is a stock price following a trinomial model: at each

time step δt, the stock price can only increase or decrease by an amount δS, with probabilities φ+(S, t)

and φ−(S, t), respectively, or remain the same, with probability (1 − φ+(S, t) − φ−(S, t)). The resulting

equation still works, however, for any general stochastic process.

Assuming the trinomial model, the expected value of the change is given by

φ+δS + (1− φ+ − φ−).0 + φ−(−δS) = (φ+ − φ−)δS, (3.14)

and its variance is approximately given by

(δS)2(φ+ + φ− − (φ+ − φ−)2) ≈ (φ+ + φ−)(δS)2 (3.15)

where we take only the first order terms. The expected value of the change of a Geometric Brownian

Motion can be thought of as its drift term (i.e. rSδt), and the variance is its stochastic term squared (i.e.

(σSdW )2 = σ2S2δt), so that we have

rSδt = (φ+ − φ−)δS; (3.16a)

σ2S2δt = (φ+ + φ−)(δS)2, (3.16b)

from which we can derive the probabilities φ+ and φ− as

φ+(S, t) =
1

2

δt

δS2
(rSδS + σ2S2); (3.17a)

φ−(S, t) =
1

2

δt

δS2
(−rSδS + σ2S2). (3.17b)
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We can now move backwards and derive the probability of reaching the price S′ at time t′ having

started at the previous time t′ − δt with some (unknown) price S, which could be either S′ + δS, S′ − δS

or S′ (assuming a trinomial movement). Applying the same logic as before, the probability of reaching S′

at time t′, having started at S at time t, is the same as the probability of being at S′−δS at time t′−δt and

moving up, plus the probability of being at S′ + δS at time t′ − δt and moving down plus the probability

of being at S′ at time t′− δt and remaining at the same value, since these three cases cover all possible

paths leading to S′ at time t′. We can thus derive the transition probability density, p(S, t, S′, t′) as

p(S, t, S′, t′) =φ−(S′ + δS, t′ − δt)p(S, t, S′ + δS, t′ − δt)

+ (1− φ+(S′, t′ − δt)− φ−(S′, t′ − δt))p(S, t, S′, t′ − δt)

+ φ+(S′ − δS, t′ − δt)p(S, t, S′ − δS, t′ − δt)

(3.18)

If we expand each term on its Taylor series around point (S′, t′), we get

p(S, t, S′, t′) = φ−(S′ + δS, t′ − δt)
(
p(S, t, S′, t′) + δS

∂p

∂S′
+

1

2
(δS)2 ∂

2p

∂S2
− δt ∂p

∂t′

)
+ (1− φ+(S′, t′ − δt)− φ−(S′, t′ − δt))

(
p(S, t, S′, t′)− δt ∂p

∂t′

)
+ φ+(S′ − δS, t′ − δt)

(
p(S, t, S′, t′)− δS ∂p

∂S′
+

1

2
(δS)2 ∂

2p

∂S2
− δt ∂p

∂t′

)
,

(3.19)

from which, collecting all the terms, we can derive the famous Fokker-Planck equation [Wilmott, 2006]

(with rather sloppy notation) as
∂p

∂T
=

1

2

∂2(σ2S′2p)

∂S′2
− ∂(rS′p)

∂S′
. (3.20)

where we have used t′ = T .

From eq.(3.11) we can easily obtain the first derivative w.r.t. time

∂C

∂T
= −rC + e−r(T−t)

∫ ∞
K

(S′ −K)
∂p

∂T
dS′, (3.21)

where, for simplicity, we drop the terms of the transition probability density, p.

Using the Fokker-Planck formula in eq.(3.20), we can transform this relation into

∂C

∂T
= −rC + e−r(T−t)

∫ ∞
K

(S′ −K)

(
1

2

∂2(σ2S′2p)

∂S′2
− r ∂(S′p)

∂S′

)
dS′. (3.22)

We now split the terms in the integral to evaluate them independently. We integrate the second term

by parts as

∫ ∞
K

(S′ −K)

(
−r ∂(S′p)

∂S′

)
dS′ = −r(S′ −K)(S′p)

∣∣∞
S′=K

+ r

∫ ∞
K

S′pdS′

= r

∫ ∞
K

(S′ −K)pdS′ + rK

∫ ∞
K

pdS′

= er(T−t)rC − rK ∂C

∂K
,

(3.23)
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where in the first step we assumed that p and its first derivative w.r.t. S go sufficiently fast to zero when

S goes to infinity and where in last step we used eqs.(3.11) and (3.12).

Turning now to the first term of the integral, we integrate twice by parts as

∫ ∞
K

(S′ −K)

(
1

2

∂2(σ2S′2p)

∂S′2

)
dS′ =

1

2
(S′ −K)

∂(σ2S′2p)

∂S′

∣∣∣∣∞
S′=K

− 1

2

∫ ∞
K

(
∂(σ2S′2p)

∂S′

)
dS′

= −1

2
σ2S′2p

∣∣∞
S′=K

=
1

2
σ2(K,T )K2p(S, t,K, T )

=
1

2
er(T−t)σ2(K,T )K2 ∂

2C

∂K2
,

(3.24)

where in the last step we used eq.(3.13) and again assumed that p goes to zero sufficiently fast.

Collecting all the terms, we obtain

∂C

∂T
=

1

2
σ2(K,T )K2 ∂

2C

∂K2
− rK ∂C

∂K
. (3.25)

from which, by rearranging all the terms and applying the variable change σ(K,T ) =⇒ σ(S, t), we get

σ(S(t), t) =

√√√√√√
∂C

∂T
+ rS

∂C

∂K
1

2
S2 ∂

2C

∂K2

. (3.26)

assuming all the derivatives are evaluated at K = S(t) and T = t.

�

As can be seen, we need to differentiate the option prices with respect to their strikes and maturities.

To achieve this, we need first to gather, from the market, a large number of prices for options with

different maturities and strikes. We then implement some interpolation on these values to obtain an

option price surface (with K and T as variables). Finally, we calculate the gradients of this interpolated

surface and input them into eq.(3.10) to obtain the local volatility surface. We can then sample from this

surface to obtain the local volatility for any stock price S(t) at any time t.

A major problem can be pointed out in eq.(3.10). For options far in or far out of the money (i.e. with

strikes much greater or much smaller than S0), it can be shown that the option price depends almost

linearly on the strike. This means that the second derivative of the price w.r.t. the strike is extremely

small in these regions. Because this value is in the denominator of eq.(3.10), the local volatility will

explode in such cases, which is unrealistic.

One possible solution to this problem is to relate our local volatility with the implied volatility surface

instead of the option price’s [Wilmott, 2013]. The relation obtained is

σ(S(t), t) =

√√√√√√√√
σ2
imp + 2tσimp

∂σimp
∂T

+ 2r(S(t))tσimp
∂σimp
∂K(

1 + (S(t))d1

√
t
∂σimp
∂K

)2

+ (S(t))2tσimp

(
∂2σimp
∂K2

− d1

(
∂σimp
∂K

)2√
t

) , (3.27)
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where d1 is given by

d1 =
log(S0/S(t)) +

(
r + 1

2σ
2
imp

)
t

σimp
√
t

, (3.28)

with S0 being the stock price at t = 0. We define σimp = σimp(K,T ) as the implied volatilities of options

with maturity T , and strike K. Furthermore, σimp and all its derivatives are evaluated at K = S(t) and

T = t. This formula can be obtained from eq.(3.10) by applying the transformation from call prices to

implied volatilities.

We now need to generate the implied volatility surface to obtain the gradients needed in eq.(3.27)

to generate the local volatility. Again, this surface can be obtained by interpolating between market

data for several implied volatilities. The problem with this approach is that we only have access to

market data for a very limited set of implied volatilities. This model is therefore very much ill-posed

(i.e. a small change in the input generates a very different output) and the resulting local volatility

surface might look unrealistic [Wilmott, 2013]. Furthermore, this procedure is heavily dependent on the

interpolation/extrapolation method chosen, which is problematic.

As an advantage, we note that because we are directly using the market data, the implied volatil-

ity surface is nonparametric and therefore no fitting procedure is required. To ease the problem of

ill-posedness, we could heuristically choose some functions to model this surface, fitting their param-

eters to better replicate the market data, and finally replacing these functions in eq.(3.27), as done by

Dewynne [Dewynne et al., 1998]. However, this approach depends heavily on the functions chosen

(heuristically) and will not be considered.

Three other problems can be identified in Dupire’s local volatility model. First, it can be shown that

the local volatility surface changes with time [Wilmott, 2013]. This means that the whole interpolation

procedure must be done regularly for the model to work properly. Secondly, some authors have pointed

out that the volatility smile obtained from Dupire’s local-volatility model doesn’t follow real market dynam-

ics [Hagan et al., 2002]: it can be shown that when the price of the stock either increases or decreases,

the volatility smile predicted by Dupire’s model shifts in the opposite direction. The minimum of the

volatility smile would therefore be offset and no longer correspond to the local stock price (i.e. the spot

price). The volatility smile dynamics obtained from the local-volatility model would thus be actually worse

than if we assumed a constant volatility model, where the surface doesn’t shift at all. Finally, the gradi-

ents used in eq.(3.27) have to be generated numerically. This numerical differentiation is very unstable,

especially when done on our rough interpolated surface, which will lead to errors in the local volatility

obtained.

As an example, in Figure 3.6 we show a local volatility surface, obtained by applying Dupire’s for-

mula to real data, along with its corresponding contour plot. This surface will again be represented in

section 5.2 and studied with greater detail there.

Despite its problems, Dupire’s formula is still very much used by practitioners and performs surpris-

ingly well, as we will see in chapter 5.
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Figure 3.6: Example of a local volatility surface and corresponding contour plot.

3.6 Stochastic Volatility

As stated before, the volatility is not constant, is not observable and is very unpredictable, despite our

attempts to model it. This seems to indicate that volatility is itself also a stochastic process [Rebonato,

2004]. Some research has been done into this hypothesis, and many models have been developed to

replicate real-world volatilities with this assumption.

We assume that the stock price follows the diffusion process

dS(t) = rS(t)dt+ σ(S(t), t)S(t)dW1(t), (3.29)

and we further hypothesize that the volatility follows

dσ(S(t), t) = p(S(t), σ(S(t), t), t)dt+ q(S(t), σ(S(t), t), t)dW2(t), (3.30)

where p(S(t), σ(S(t), t), t) and q(S(t), σ(S(t), t), t) are functions of the stock price S(t), time t and of the

volatility σ(S(t), t) itself.

We also assume that W1 and W2 are two Brownian motion processes with a correlation ρ(t), i.e.

dW1(t)dW2(t) = ρ(t)dt, ∀t > 0, (3.31)

which is usually assumed constant, i.e. ρ(t) = ρ. This correlation coefficient can be explained by the

relationship between prices and volatilities [Chourdakis, 2008]. Historically, we can see that high volatility

periods usually occur when the market is under stress due to low returns (i.e. stock prices decrease).

On the other hand, whenever the market stabilizes and returns increase, the volatility goes down. These

factors seem to indicate the existence of a negative correlation between stock prices and volatilities.

Thus, to fully grasp market behavior, this correlation must be taken into account.

25



Choosing the appropriate functions p(S(t), σ(S(t), t), t) and q(S(t), σ(S(t), t), t) is very important

since the whole evolution of the volatility and, consequently, also the stock price depends on them.

All stochastic volatility models present a different version of these functions, and each may be more

adequate for some types of assets. Furthermore, these functions have some parameters that we have

to calibrate to best fit our model to market data, as we will see later.

Many stochastic volatility models exist, such as Hull-White [Hull and White, 1987] and Stein-Stein [Stein

and Stein, 1991]. However, the Heston model is by far the most popular of these [Chourdakis, 2008].

Another model, known as SABR, is also widely used by practitioners, especially in the interest rate

derivative markets (i.e. derivatives whose underlying asset is an interest rate). For these reasons, both

models will be studied in this work.

3.6.1 Heston Model

The Heston model was developed in 1993 by Steven Heston [Heston, 1993] and it states that stock

prices satisfy the relations

dS(t) = rS(t)dt+
√
ν(t)S(t)dW1(t),

dν(t) = κ(ν − ν(t))dt+ η
√
ν(t)dW2(t),

(3.32a)

(3.32b)

with ν(t) corresponding to the stock price variance (i.e. the square of the volatility, ν(t) = (σ(t))2) and

where W1(t) and W2(t) have a constant correlation ρ. We furthermore define ν0 as the initial variance

(i.e. variance at time t = 0). The original model used a drift parameter µ instead of the risk-free

measure drift r presented here, but a measure transformation, using Gisarnov’s theorem, can be easily

implemented [Rouah, 2013].

The parameters κ, ν and η are, respectively, the mean-reversion rate (i.e. how fast the variance

converges to its mean value), the long-term variance (i.e. the mean value of variance) and the volatility

of the variance (i.e. how erratic is the variance process).

One of the reasons why the Heston model is so popular is the fact that there exists a closed-form

solution for the prices of European options priced under this model. This closed form solution is given

by

CH(K,T ; θ) = e−rTE
[
(S(T )−K)1{S(T )>K} | θ

]
= e−rT

(
E
[
S(T )1{S(T )>K} | θ

]
−KE

[
1{S(T )>K} | θ

])
= S0P1(K,T ; θ)− e−rTKP0(K,T ; θ),

(3.33)

where CH(K,T ; θ) corresponds to the theoretical European call option price, with strike K and maturity

T , under the Heston model, assuming a parameter set θ = {κ, ν, η, ν0, ρ}. The variables P1(K,T ; θ) and

P2(K,T ; θ) are given by

P1(K,T ; θ) =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu logK

iuS0erT
φ(u− i, T ; θ)

)
du, (3.34)
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P0(K,T ; θ) =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu logK

iu
φ(u, T ; θ)

)
du, (3.35)

where i is the imaginary unit and φ(u, t; θ) is the characteristic function of the logarithm of the stock price

process (the characteristic function of a random variable is the Fourier transform of its probability density

function).

It is crucial to define the appropriate characteristic function φ(u, t; θ) to evaluate the integrals in

eqs.(3.34) and (3.35) and, with them, find the option price with eq.(3.33). In his original article, Hes-

ton proposed a solution to this very characteristic function [Heston, 1993]. However, some posterior

authors demonstrated that, for large maturities, some discontinuities appeared for the proposed solu-

tion [Kahl and Jäckel, 2005]. One possible alternative, proposed by Schoutens [Schoutens et al., 2004],

avoids this shortcoming and is given by

φ(u, t; θ) = exp

{
iu (logS0 + rt) +

κν

η2

[
(ξ − α) t− 2 log

(
1− ge−αt

1− g

)]
+
ν0

η2
(ξ − α)

1− e−αt

1− ge−αt

}
,

(3.36)

where we define

ξ = κ− ηρiu, (3.37)

α =
√
ξ2 + η2(u2 + iu), (3.38)

g =
ξ − α
ξ + α

. (3.39)

Proof We will follow the derivation presented in Gatheral [Gatheral, 2006] with slight changes of

variables, for consistency.

We begin by defining Itô’s Lemma for a function V (such as the price of an option) dependent on the

behavior of two diffusion processes X and Y (such as the stock price and variance processes, but also

applicable to two different stock price processes), which is given by

dV =
∂V

∂t
dt+

∂V

∂X
dX +

∂V

∂Y
dY +

1

2
σ2
X

∂2V

∂X2
dt+ ρσXσY

∂2V

∂X∂Y
dt+

1

2
σ2
Y

∂2V

∂Y 2
dt, (3.40)

where we have assumed that the two diffusion processes are defined as

dX = µX(X,Y, t)dt+ σX(X,Y, t)dWX ;

dY = µY (X,Y, t)dt+ σY (X,Y, t)dWY ,
(3.41)

where WX and WY have a correlation of ρ.

If we apply this lemma (as well as the usual non-arbitrage arguments) to the price of a call option’s

value, assuming the diffusion processes to be the stock price and variance defined in eqs.(3.32a) and

(3.32b), we arrive at

∂C

∂t
+

1

2
νS2 ∂

2C

∂S2
+ ρηνS

∂2C

∂ν∂S
+

1

2
η2ν

∂2C

∂ν2
+ rS

∂C

∂S
− rC + κ(ν − ν)

∂C

∂ν
= 0. (3.42)

We now define the forward price as F (t) = S(t)er(T−t), and introduce the variables τ = T − t and
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x(t) = log (F (t)/K). We furthermore denote C∗ as the future value to expiration of the option price (i.e.

C∗ = CerT ). The relation in eq.(3.42) reduces to

− ∂C∗

∂τ
+

1

2
ν
∂2C∗

∂x2
+ ρην

∂2C∗

∂x∂ν
+

1

2
η2ν

∂2C∗

∂ν2
− 1

2
ν
∂C∗

∂x
+ κ(ν − ν)

∂C∗

∂ν
= 0, (3.43)

which has a solution of the form [Duffie et al., 2000]

C∗(x, ν, τ) = CerT =
(
S0P1 − e−rTKP0

)
erT = K [exP1(x, ν, τ)− P0(x, ν, τ)] . (3.44)

Substituting the solution of eq.(3.44) in eq.(3.43) implies that P0 and P1 must satisfy

− ∂Pj
∂τ

+
1

2
ν
∂2Pj
∂x2

−
(

1

2
− j
)
ν
∂Pj
∂x

+
1

2
η2ν

∂2Pj
∂ν2

+ ρην
∂2Pj
∂x∂ν

+ (κ(ν − ν) + jνρη)
∂Pj
∂ν

= 0, (3.45)

for j = 0, 1 and subject to the terminal condition Pj(x, ν, τ = 0) = 1{x>0}.

To solve this problem, we use a Fourier transform technique. Defining P̃j as the Fourier transform of

Pj ,

P̃j(u, ν, τ) =

∫ ∞
−∞

e−iuxPj(x, ν, τ)dx, (3.46)

and substituting this result in eq.(3.45) produces

ν

{
ωjP̃j − βj

∂P̃j
∂ν

+
η2

2

∂2P̃j
∂ν2

}
+ κν

∂P̃j
∂ν
− ∂P̃j

∂τ
= 0, (3.47)

with

ωj = −u
2

2
− iu

2
+ iju, (3.48)

βj = κ− ρηiu− ρηj. (3.49)

Heston proposed that P̃j is a function of the form

P̃j(u, ν, τ) =
1

iu
exp {ζj(u, τ)ν + ψj(u, τ)ν} . (3.50)

We can therefore derive
∂P̃j
∂τ

=

{
ν
∂ζj
∂τ

+ ν
∂ψj
∂τ

}
P̃j , (3.51)

∂P̃j
∂ν

= ψjP̃j , (3.52)

∂2P̃j
∂ν2

= ψ2
j P̃j . (3.53)

Thus, eq.(3.47) is only satisfied if
∂ζj
∂τ

= κψj , (3.54)

∂ψj
∂τ

= ωj − βjψj +
η2

2
ψ2
j . (3.55)
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Integrating these solutions with terminal conditions ζj(u, 0) = ψj(u, 0) = 0, yields

ζj(u, τ) =
κ

η2

[
(βj − γj) τ − 2 log

(
1− gje−γjτ

1− gj

)]
, (3.56)

ψj(u, τ) =
1

η2
(βj − γj)

1− e−γjτ

1− gje−γjτ
, (3.57)

where we define

γj =
√
βj − 2ωjη2, (3.58)

gj =
βj − γj
βj + γj

. (3.59)

We finally arrive at the solution for Pj given by

Pj(x, ν, τ) =
1

2
+

1

π

∫ ∞
0

Re

(
exp {ζj(u, τ)ν + ψj(u, τ)ν + iux}

iu

)
du. (3.60)

A change of variables is possible, as shown by Crisostomo [Crisóstomo, 2015], such that the two

different characteristic functions for P1 and P0 can be transformed into a single one by defining

P1 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu logK

iuS0erT
φ(u− i, T ; θ)

)
du, (3.61)

P0 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu logK

iu
φ(u, T ; θ)

)
du, (3.62)

with the characteristic function φ(u, T ; θ) given by

φ(u, t; θ) = exp

{
iu (logS0 + rt) +

κν

η2

[
(ξ − α) t− 2 log

(
1− ge−αt

1− g

)]
+
ν0

η2
(ξ − α)

1− e−αt

1− ge−αt

}
.

(3.63)

�

The main problem with the characteristic function presented in eq.(3.36) is the fact that it is highly

nonlinear. Because we will apply some optimization procedure to minimize the difference between the

model and the market option prices (i.e. calibration), the optimizer is very likely become stuck in some

local minimum and not find the globally optimal solution. This shortcoming led some authors to propose

several modified versions of this function, such as Rollin et al. [del Baño Rollin et al., 2010]. Most

recently, Cui et al. [Cui et al., 2017] presented a characteristic function that not only doesn’t have the

previously mentioned discontinuities but also solves the nonlinearity problem, given by

φ(u, t; θ) = exp

{
iu (logS0 + rt)− tκνρiu

η
− ν0A+

2κν

η2
D

}
, (3.64)

with A and D given by

A =
A1

A2
, (3.65)

D = logα+
(κ− α)t

2
− log

(
α+ ξ

2
+
α− ξ

2
e−αt

)
, (3.66)
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where ξ and α are given by eqs.(3.37) and (3.38), respectively, and where we introduce the variables

A1, A2, given by

A1 = (u2 + iu) sinh
αt

2
, (3.67)

A2 = α cosh
αt

2
+ ξ sinh

αt

2
. (3.68)

With this result we are now able to find the prices of options under the Heston model for a given set

of parameters θ. We just need to calibrate the parameters to some market data to be able to model the

volatility process.

Negative Variance and Feller’s Condition

One last consideration is required for the Heston model. By analyzing eqs.(3.32a) and (3.32b) we can

see that the square root of the variance is used. This shouldn’t pose a problem, since the variance of

any process is always positive. However, because in our case this variable is itself stochastic, we must

guarantee that it doesn’t become negative, or else the square root would output imaginary numbers. To

ensure this, we can apply Feller’s condition [Albrecher et al., 2007] and force the parameters to obey

2κν > η2. (3.69)

However, this condition restricts the reachable space of our model. One possible alternative is to set the

variance to zero every time it becomes negative:

ν = max [ν∗, 0] , (3.70)

where ν∗ corresponds to the unrestricted variance and ν is the new (always positive) variance, ensuring

that the square root outputs a real number. Because this alternative allows any value for the parameters,

it will be adopted in our implementation of the Heston model.

3.6.2 Static SABR Model

One other very famous model for stochastic volatility was developed by Hagan et al. [Hagan et al., 2002]

and is known as SABR - we will henceforth refer to it by Static SABR, to distinguish it from the Dynamic

SABR model that we will see next. SABR stands for ”stochastic-αβρ” and in this model it is assumed

that the option prices and volatilities follow [Vlaming, 2011]

dS(t) = rS(t)dt+ e−r(T−t)(1−β)σ(t)(S(t))βdW1(t),

dσ(t) = νσ(t)dW2(t),

(3.71a)

(3.71b)

where we define α = σ(0) as the starting volatility and S0 = S(0) as the starting stock price. Further-

more, as before, the two Brownian motion processes W1(t) and W2(t) have a constant correlation of

ρ.
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The parameters β and ν correspond, respectively to the skewness (i.e. how the volatility smile moves

when the stock price changes) and the volatility of volatility (i.e. how erratic is the volatility process).

In the original article, the authors claim that β can be fitted from historical market data, but usually

investors choose this value heuristically, depending on the type of assets traded. Typical values used

are β = 1 (stochastic lognormal model), used for foreign exchange options, β = 0 (stochastic normal

model), typical for interest rate options and β = 0.5 (stochastic CIR model), also common for interest

rate options [Hagan et al., 2002]. Because we are trying to compare several models, no assumptions

will be made on the data used. Therefore, we will leave this parameter free when fitting the model to the

market data, using no heuristics.

One of the main limitations of the static SABR model is the fact that, unlike the Heston model, this

stochastic volatility model is not mean-reverting. This shortcoming enables the volatility to evolve un-

restrictedly, which is problematic - it may become negative, which is clearly absurd, or it may become

extremely large, which is troublesome. Labordère [Labordère, 2005] proposed a mean-reverting correc-

tion to static SABR, but we will study the original model by Hagan et al., as it is more commonly used. We

should still note that while negative volatilities make no sense in the real world, by examining eq.(3.71a)

we can see that this should pose no problem upon simulations, since this effect would be equivalent to

inverting the Brownian motion process (i.e. dW (t) =⇒ −dW (t)), which is obviously allowed.

One of the main reasons why static SABR is so popular is due to its quasi-closed-form solutions that

enable us to quickly find the implied volatilities of options priced under this model. With the corrections

done by Oblój on Hagan’s formula [Obloj, 2008], we can show that these implied volatilities are given by

σStatSABR(K, f, T ) ≈ 1[
1 +

(1− β)2

24
log2

(
f

K

)
+

(1− β)4

1920
log4

(
f

K

)] .(ν log (f/K)

x(z)

)

.

{
1 + T

[
(1− β)2

24

α2

(Kf)1−β +
1

4

ρβνα

(Kf)(1−β)/2
+

2− 3ρ2

24
ν2

]}
,

(3.72)

with z and x(z) defined as

z =
ν
(
f1−β −K1−β)
α(1− β)

, (3.73)

x(z) = log

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
, (3.74)

where we have used f = S0e
rT . The proof of this solution is quite lengthy and will not be replicated

here, though it can be found in the original article [Hagan et al., 2002].

For the particular case where f = K, evaluating eq.(3.72) produces a 0/0 indeterminate form. This

poses no problem because the closed form solution actually simplifies to [Hagan et al., 2002]

σStatSABR(K, f = K,T ) ≈ α

K1−β .

{
1 + T

[
(1− β)2

24

α2

K2(1−β)
+

1

4

ρβνα

K1−β +
2− 3ρ2

24
ν2

]}
. (3.75)

As with the Heston model, we again need to calibrate the parameters of this model to be able to

model the volatility process.
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3.6.3 Dynamic SABR Model

One of the main setbacks of the static SABR model is the fact that it should only be calibrated and used

on a set of options with the same maturity. The model behaves badly when we try to fit options with

different maturities [Hagan et al., 2002].

To solve this problem, Hagan et al. suggested a similar model known as Dynamic SABR [Hagan

et al., 2002]. It follows the same diffusion processes presented in eqs.(3.71a) and (3.71b) but with

time-dependent parameters ρ(t) and ν(t),

dS(t) = rS(t)dt+ e−r(T−t)(1−β)σ(t)(S(t))βdW1(t),

dσ(t) = ν(t)σ(t)dW2(t),

(3.76a)

(3.76b)

with the correlation between W1(t) and W2(t) now given by

dW1(t)dW2(t) = ρ(t)dt, ∀t > 0. (3.77)

where ρ(t) and ν(t) are now functions of time.

Hagan et al. derived again a quasi-closed-form solution for the implied volatilities of options priced

under this model. Osajima later simplified this expression using asymptotic expansion [Osajima, 2007].

The resulting formula is given by

σDynSABR(K, f, T ) =
1

ω

(
1 +A1(T ) log

(
K

f

)
+A2(T ) log2

(
K

f

)
+B(T )T

)
, (3.78)

where f = S0e
rT , ω = f1−β/α and where A1(T ), A2(T ) and B(T ) are given by

A1(T ) =
β − 1

2
+
η1(T )ω

2
, (3.79)

A2(T ) =
(1− β)2

12
+

1− β − η1(T )ω

4
+

4ν2
1(T ) + 3(η2

2(T )− 3η2
1(T ))

24
ω2, (3.80)

B(T ) =
1

ω2

(
(1− β)2

24
+
ωβη1(T )

4
+

2ν2
2(T )− 3η2

2(T )

24
ω2

)
, (3.81)

with ν2
1(T ), ν2

2(T ), η1(T ) and η2
2(T ) defined as

ν2
1(T ) =

3

T 3

∫ T

0

(T − t)2ν2(t)dt, (3.82)

ν2
2(T ) =

6

T 3

∫ T

0

(T − t)tν2(t)dt, (3.83)

η1(T ) =
2

T 2

∫ T

0

(T − t)ν(t)ρ(t)dt, (3.84)

η2
2(T ) =

12

T 4

∫ T

0

∫ t

0

(∫ s

0

ν(u)ρ(u)du

)2

dsdt, (3.85)

where ρ(t) and ν(t) are the functions chosen to model the time dependent parameters.
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We now need to empirically choose some appropriate functions for ρ(t) and ν(t). We can choose

these functions such that the integrals in eqs.(3.82)-(3.85) are analytically solvable, greatly simplifying

the calibration of this model. Hagan et al. showed that the volatility of volatility, ν, decreases with the

maturity (in the Static SABR model) [Hagan et al., 2002], which seems to suggest that the function ν(t)

should decrease with time. As for the correlation parameter, ρ, these authors claimed that its time-

dependent behavior is heavily dependent on the type of underlying asset traded. Using a stock index as

the underlying asset (which is also the underlying asset for which we have data, shown in Appendix A),

Fernandez et al. show that this parameter decreases (in absolute value) with maturity, indicating that

ρ(t) also decreases (in absolute value) with time [Fernández et al., 2013]. These authors thus suggest

that we define ρ(t) and ν(t) as

ρ(t) = ρ0e
−at, (3.86)

ν(t) = ν0e
−bt, (3.87)

with ρ0 ∈ [−1, 1], ν0 > 0, a > 0 and b > 0. In this particular case, ν2
1(T ), ν2

2(T ), η1(T ) and η2
2(T ) can be

exactly derived as

ν2
1(T ) =

6ν2
0

(2bT )3

[(
(2bT )2

2
− 2bT + 1

)
− e−2bT

]
, (3.88)

ν2
2(T ) =

12ν2
0

(2bT )3

[
e−2bT (1 + bT ) + bT − 1

]
, (3.89)

η1(T ) =
2ν0ρ0

T 2(a+ b)2

[
(a+ b)T + e−(a+b)T − 1

]
, (3.90)

η2
2(T ) =

3ν2
0ρ

2
0

T 4(a+ b)4

[
e−2(a+b)T − 8e−(a+b)T + (7 + 2T (a+ b)(−3 + (a+ b)T ))

]
. (3.91)

There are other possible functions for ρ(t) and ν(t). An example of such functions can be found in

Fernandez et al. [Fernández et al., 2013]. The main concern with these functions is that they usually

don’t have analytically solvable solutions for the integrals in eqs.(3.82)-(3.85), and these integrals need

to be computed numerically, which greatly increases computation time. For this reason, they will not be

considered in the present work.
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Chapter 4

Implementation

To apply the models described before, we first need to train them on some real data. This training

enables us to adapt each of our models to real market conditions, allowing us to forecast, to some

extent, how the volatility of some real stock will behave in the future. This training procedure will be

explained in the next sections.

Having trained our models, we should be able to price any option, using some numerical algorithms,

which we will approach at the end of this chapter.

4.1 Surface Interpolation (Dupire model)

To apply Dupire’s local volatility model, as shown in eq.(3.27), we need to generate the implied volatility

surface from the market data. Because we only have data for a finite set of maturities and strikes, the

implied volatility surface must be obtained with some form of interpolation and extrapolation. From this

interpolated surface we must also calculate the gradients needed for the local volatility formula.

One possible interpolation method is known as Delaunay triangulation [Amidror, 2002]. In short,

assuming a 2-dimensional data set, this interpolation algorithm generates a triangulation between points

P1, P2 and P3 if the circumscribed circle of these points contains no other points Pj inside. A scheme of

this interpolation method is shown in Figure 4.1.

Figure 4.1: Example of a Delaunay triangulation, where we connect the points for which the circum-
scribed circles (green) do not contain any other points inside. A circle for which this property does not
hold (orange dashed) is also represented, though no triangulation is possible in this case.
Adapted from: https://www.ti.inf.ethz.ch/ew/Lehre/CG13/lecture/Chapter%206.pdf
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We can easily adapt this algorithm to 3-dimensions (as is the case of our data), using spheres instead

of circles. The resulting interpolated surface will simply be a set of merged triangles, with the data points

serving as vertices. Though this is usually a good approximation, it will produce wrong results when

calculating the derivatives used in the local volatility formula (i.e. calculating the second derivative on

the triangular planes of the interpolation results in zero, since the gradient of a plane is constant). If we

used the first version of Dupire’s formula, shown in eq.(3.10), where we use the second derivative in

the denominator, the resulting local volatility surface would become highly unrealistic. However, since

we will use the formula in eq.(3.27), which is not so sensitive to this value, no significant problems are

expected.

The function scatteredInterpolant, implemented in MATLAB, applies this Delaunay triangulation to a

set of scattered data, and will therefore be used in the implied volatility surface generation. With this

function we are also able to perform extrapolation, which is important, since during the simulations it is

possible that some of the paths reach prices above/below the highest/smallest strikes for which we have

data. This extrapolation is done by calculating the surface gradient at the interpolation boundary and as-

suming that these gradients remain constant outside the boundary, thus extending the surface [MATLAB,

a].

From the interpolated surface obtained, we need to extract the gradients to be able to use Dupire’s

formula. These have to be obtained numerically, as we do not have an analytical formula for the surface.

To obtain them we use the formulas

∂σimp
∂K

=
σimp(K + ∆K,T )− σimp(K −∆K,T )

2∆K
(4.1a)

∂2σimp
∂K2

=
σimp(K + ∆K,T ) + σimp(K −∆K,T )− 2σimp(K,T )

(∆K)2
(4.1b)

∂σimp
∂T

=
σimp(K,T + ∆T )− σimp(K,T )

∆T
(4.1c)

where ∆K and ∆T are some (small) intervals for the strike and maturity, respectively. Note that the

derivative of the implied volatility w.r.t. maturity is different from the derivative w.r.t. strike. This is due to

the fact that negative maturities make no mathematical sense. If we used the same formula as for the

derivative w.r.t. the strikes, the case of T = 0 would require σimp(·, T −∆T < 0), which makes no sense.

We thus use the forward derivative in this case, as shown in eq.(4.1c). As for the strikes, since there is

no mathematical restriction for negative values (though they make no sense in financial terms), we are

allowed to use both σimp(K ±∆K, ·).

Having interpolated the implied volatility surface and obtained all the required gradients, we are able

to generate the local volatility surface. To do this, we evaluate the interpolated implied volatility surface

and all the required gradients at multiple points Kj , Ti to produce multiple local volatility values σ(Kj , Ti)

with eq.(3.27). The points should be uniformly spaced in a grid. Interpolating between these grid points

with Delaunay’s triangulation we are able to generate a surface for σ(K,T ). We now simply need to

make a variable change σ(K,T ) =⇒ σ(S, t) to be able to properly obtain the local volatility surface, as

presented in Figure 3.6.
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4.2 Model Calibration (Heston and SABR models)

Both SABR and Heston stochastic volatility models contain parameters that need to be calibrated to

appropriately replicate market option prices.

Calibrating the models’ parameters means finding the optimal values for these parameters such

that the difference between the prices of real market options and the prices of options under each of the

models’ assumptions is minimized. However, because we are modeling volatilities, it is more appropriate

to minimize the difference between the implied volatilities of market options and options priced under

each model.

4.2.1 Cost Function

This difference should be measured with a cost function, which we have to minimize, such as the least-

squares error, given by

Cost(θ) =

n∑
i=1

m∑
j=1

wi,j (σimp,mkt(Ti,Kj)− σimp,mdl(Ti,Kj ; θ))
2
, (4.2)

where we denote θ as the model’s parameter set, wi,j corresponds to some weight function and where

σimp,mkt(·) and σimp,mdl(·) correspond to the real-market and the model’s implied volatilities, respectively,

for maturities {Ti, i = 1, . . . , n} and strikes {Kj , j = 1, . . . ,m}. This will be the cost function used in the

calibration of the stochastic volatility models.

Weight function

The weight function wi,j should be chosen such that higher weights are given to options with strikes

closer to the current stock price S0, because these points have a higher influence in the shape of the

volatility smile than the others. One example of such a function is

wi,j =

(
1−

∣∣∣∣1− Kj

S0

∣∣∣∣)2

, (4.3)

where we assume strikes are restricted to K < 2S0. This function is represented in Figure 4.2. Many

other possible weight functions are also possible, taking into account the maturity date, for example, but

no other weight functions will be considered.

As we can see, the maximum weight value is given to the point where the strike equals the initial stock

price (K = S0) and less weight is given for points farther from this value.

Using the Closed-Form Solutions

To find the cost value of any given set of parameters we need first to price the options under each

model using those parameters. This could be done using some numerical method, such as Monte Carlo

simulation, which we will approach in the next section. However, such methods are usually relatively
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Figure 4.2: Weight function plot and significant weight values

slow to execute and using them to calibrate the models (which requires a large number of options to be

priced) would become too cumbersome.

Fortunately, as we mentioned before, both Heston and SABR have closed-form solutions, shown in

eqs. (3.33), (3.72) and (3.78), that we can use to directly price the options with each model’s parameters,

without the need to run any slow numerical pricers. With these closed-form solutions, we are able to find

the prices and respective implied volatilities extremely fast, which is extremely useful. The optimization

algorithms should then have no problem in finding optimal solutions for each model’s parameters.

4.2.2 Optimization Algorithms

There are many optimization algorithms able to find the parameter set that minimizes the cost func-

tion shown in eq.(4.2). Our main concern when choosing the best algorithm for this calibration is the

nonlinearity of our cost function. This is problematic because several local minima might exist, and

an unsuitable algorithm might get stuck in these points, causing the globally optimal solution to not be

found.

With this issue in mind, we selected a powerful algorithm known as CMA-ES [Hansen, 2006] (short

for Covariance Matrix Adaptation Evolution Strategy), which we will summarize below. It should be noted

that we will only provide a general idea of how this optimizer works. For detailed descriptions, the original

source should be consulted.

The optimization algorithm will search the D-dimensional sample space for the optimal solution, θ∗,

where D denotes the number of parameters of each model. Each point in this space corresponds to a

possible set of parameters, θ.
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CMA-ES Optimizer

The CMA-ES optimizer belongs to the class of evolutionary algorithms. These methods are based on the

principle of biological evolution: at each iteration (generation), new candidate solutions (individuals) are

generated from a given random distribution (mutation) obtained using the data (genes) of the previous

solutions (parents). Of these newly generated solutions (individuals), we select the ones where the cost

function is minimized (with the best fitness) to generate the candidate solutions of the next iterations (to

become the parents of the next generation) and we reject the others.

As for the CMA-ES in particular, the algorithm takes λ samples from a multivariate normal distribution

in the D-dimensional sample space, i.e. x ∼ N(m,C), with density function given by

N(x;m,C) =
1√

(2π)D|detC|
exp

(
−1

2
(x−m)TC−1(x−m)

)
, (4.4)

where m and C correspond to the distribution’s mean vector and covariance matrix, respectively. These

λ samples are our candidate solutions.

We classify each of these points according to their fitness (i.e. the cost function’s value for a given

point). We then select the µ samples with the lowest cost and discard the others. These new points will

be the parents of the next generation, i.e. they will be used to generate the new mean and covariance

matrix for the normal distribution.

At each iteration, the new mean is produced from a weighted average of the points, with the weights

proportional to each point’s fitness. The method for the covariance matrix update is rather complex

and depends not only on the µ best samples but also on the values of the covariance matrices used in

previous iterations. All the basic equations required for the implementation of this optimizer can be found

in Appendix B. For a more detailed explanation, as well as other aspects of the algorithm, see Hansen

[Hansen, 2016].

These sampling-classification-adaptation steps are repeated until some stopping criterion is met,

such as a fixed number of iterations or a minimum error threshold. When this stopping criterion is

verified, the mean vector of the last iteration is assumed as the optimal parameter vector, θ∗.

The number of candidate solutions generated at each step, λ, and the ones that remain after classi-

fication, µ, can be chosen arbitrarily, but an adequate heuristic is to choose λ = b4 + 3 logDc + 1 and

µ = bλ/2c+ 1.
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This optimization procedure is summarized in Algorithm 1.

Algorithm 1: CMA-ES Optimizer

Define mean vector m = θ0 /* Initial guess */

Define covariance matrix C = I

while Termination criterion not met do

Sample λ points from multivariate normal distribution N(x;m,C)

Calculate the cost for all generated points and keep the µ best. Discard the rest

Update the mean vector and covariance matrix (using eqs.(B.5) and (B.9))

end

Optimal parameters: θ∗ = m

The complexity of the covariance matrix updating process makes the CMA-ES a very robust opti-

mization algorithm, enabling it to find the global optimum of highly nonlinear functions [Dilão and Mu-

raro, 2013]. Furthermore, unlike many other optimizers, the CMA-ES is almost non-parametric. It simply

requires a starting guess, to generate the starting mean vector, and the algorithm is expected to con-

verge to a global minimum. As for disadvantages, because we have to generate a set of samples at

each iteration, if this generation process is slow (which isn’t our case, because we use the closed-form

solutions to price options), the convergence may stall significantly, particularly when many parameters

are used in the model. Other algorithms may perform faster than CMA-ES, but this optimizer is expected

to outperform them in terms of precision.

This optimizer was implemented by Hansen in MATLAB (as well as in other computer languages) as

a function named purecmaes [Hansen, 2014] and will be used almost unchanged (with only very slight

changes, to account for the volatility models used used).

We should note that several other optimization algorithms were used, namely Simulated Anneal-

ing [MATLAB, e], Multi Start [MATLAB, c], Pattern Search [MATLAB, d] and Genetic Algorithm [MATLAB,

b], all implemented in MATLAB, but CMA-ES not only greatly outperformed them in terms of accuracy,

always finding lower cost values that the others, but often also in terms of computation time. For this

reason, we chose CMA-ES for all implementations.
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4.3 Numerical Option Pricing

Having trained all the models on some real market data, we should now be able to price any European

options. These contracts only account for a share of the market, though, and the closed form solutions

introduced before don’t apply to Exotic options, which are also quite important. We thus need some

numerical method to price such contracts.

Currently, the two most used methods to computationally price options are known as finite differ-

ences [Hull, 2009] and Monte Carlo [Glasserman, 2004].

The finite differences method is an extremely fast procedure when used to price either European or

American-type options, making it very appealing in these circumstances. However, when we increase

the dimensionality of the problem (i.e. the number of underlying independent variables, such as S and

t), such as when dealing with options whose payoff depends on the past history of the stock price (e.g.

Asian options, which are derivatives that depend on the average value of the stock price until maturity),

the algorithm requires some considerable modifications that make it slower and more complex, which is

why we will not cover it in this thesis. The implementation of both Heston and SABR models (presented

before) using finite differences can nonetheless be found in deGraaf [de Graaf, 2012].

With the Monte Carlo algorithm, we begin by simulating a very large number of stock price paths

(e.g. 100 000 simulations). The option’s payoff is then calculated for each of these simulated paths

and averaged, providing a fairly good estimate of the option’s future payoff. The option’s price can be

extracted from its expected payoff, using eq.(2.3). This algorithm can be easily adapted to price path-

dependent options, making it very attractive in such cases. In the past, simulating all the stock price

paths took prohibitively long computation times and this method was often discarded for this reason.

However, with the recent advancements in computer hardware and new algorithmic developments, such

as GPU implementation, this shortcoming has been, to some extent, mitigated, making the Monte Carlo

algorithm quite popular in the present. For these reasons, the Monte Carlo method will be used for the

implementation and analysis of the models introduced in chapter 3, so this model will be studied to some

extent in the present chapter.

4.3.1 Simulating stock prices

As stated, to implement the Monte Carlo algorithm, one needs to simulate stock price paths. However,

by analyzing eq.(2.14), we can see that the stock prices depend on a Brownian motion process which,

due to its self-similarity, is not differentiable [Mikosch, 1998]. It follows that stock price paths can never be

exactly simulated. Despite this, we can approximate the movement of stock price paths by discretizing

the Brownian motion process in time, avoiding its self-similarity problem. We now introduce two of the

most common discretization procedures.
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Euler–Maruyama discretization

One of the simplest and most used discretization methods is known as Euler–Maruyama discretization,

which can be applied to stochastic differential equations of the type

dX(t) = a(X(t))dt+ b(X(t))dW (t), (4.5)

where a(X(t)) and b(X(t)) are given functions of the stochastic variable X(t) and where {W (t), t > 0}

defines a one-dimensional Brownian motion process. To apply this discretization, we begin by partition-

ing the time interval [0, T ] into N subintervals of width ∆t = T/N and then iteratively defining

Xn+1 = Xn + a(Xn)∆t+ b(Xn)∆Wn, n = 1, . . . , N, (4.6)

with X0 equal to the initial value of the stochastic variable X(t) and where ∆Wn = W (t + ∆t) −W (t).

Using the known properties of Brownian motion processes, it can be shown that ∆Wn ∼
√

∆tZ(t),

where Z(t) ∼ N(0, 1) defines a normal distributed random variable [Mikosch, 1998].

Applying this discretization to the Geometric Brownian motion followed by stock price paths, as seen

in eq.(2.14), we arrive at

S(t+ ∆t) = S(t) + rS(t)∆t+ σ(S(t), t)S(t)
√

∆tZ(t). (4.7)

Due to its simplicity, the Euler–Maruyama discretization method is the most common in the simulation

of stock price paths whenever we have constant or deterministic volatilities.

When using the constant volatility model, we simply need to replace σ(S(t), t) by a constant σ and

we can easily generate the GBM. As for Dupire’s local volatility, to simulate a stock price path we need to

sample the local volatility surface at the point σ(Si, tj) when we are at the time step tj of the simulation

with a stock price Si and assume that value as the local volatility, to be used on the generation of the

next stock price value, Si+1. We iterate this procedure for all time steps until we reach the maturity.

Milstein Discretization

For stochastic volatility models, such as Heston and SABR, where the volatility itself follows a stochastic

process, the Euler–Maruyama discretization may not be sufficiently accurate. In these cases, we can

apply the more precise Milstein method [Milstein, 1975], defined as

Xn+1 = Xn + a(Xn)∆t+ b(Xn)∆Wn +
1

2
b(Xn)b′(Xn)((∆Wn)2 −∆t), (4.8)

where b′(Xn) denotes the derivative of b(Xn) w.r.t. Xn. Note that when b′(Xn) = 0 (i.e. the volatility

doesn’t depend on the stock price), the Milstein method degenerates to the simpler Euler–Maruyama

discretization. This discretization should be applied not only to the stock price process but also to the

stochastic volatility.
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Applying this discretization to the stock price and variance processes of the Heston model produces

S(t+ ∆t) = S(t) + rS(t)∆t+ S(t)
√
ν(t)
√

∆t(Z1(t)) +
1

2
ν(t)S(t)∆t((Z1(t))2 − 1), (4.9)

ν(t+ ∆t) = ν(t) + κ(ν − ν(t))∆t+ η
√
ν(t)∆t(Z2(t)) +

η2

4
∆t((Z2(t))2 − 1), (4.10)

where Z1 and Z2 are two normal random variables with a correlation of ρ.

As for the SABR model, this discretization results in

S(t+ ∆t) =S(t) + rS(t)∆t+ e−r(T−t)(1−β)σ(t)Sβ(t)
√

∆t(Z1(t))+

+
β

2
e−2r(T−t)(1−β)σ2(t)S2β−1(t)∆t((Z1(t))2 − 1),

(4.11)

σ(t+ ∆t) = σ(t) + νσ(t)
√

∆t(Z2(t)) +
ν2

2
σ(t)∆t((Z2(t))2 − 1). (4.12)

For the Dynamic SABR model, the discretization is the same as its Static equivalent, replacing only

the variables ν and ρ with the functions ν(t) and ρ(t), respectively.

In all these models we need to generate two correlated normal variables, Z1(t) and Z2(t), with a

correlation of ρ(t). This can be easily achieved using

Z1(t) ∼ N(0, 1); (4.13a)

Z2(t) = ρ(t)Z1(t) +
√

1− (ρ(t))2Y (t), (4.13b)

where Y (t) ∼ N(0, 1) is a random variable independent of Z1(t).

Because it is more precise, the Milstein method will be used in the implementation of the Heston and

Static/Dynamic SABR stochastic volatility models. The simpler Euler–Maruyama discretization will be

assumed for both constant and Dupire’s local volatility.

To generate a stock price path in both the Heston and SABR models, at each time step we have to

solve eqs.(4.9)-(4.12), obtaining the values of S(t + ∆t) and σ(t + ∆t), which we will used in next time

step as S(t) and σ(t). We iterate this procedure until we reach the maturity.

It is important to note that, the smaller our subintervals ∆t are, the better is the approximation done

when discretizing the Brownian motion process. However, by decreasing ∆t we increase the number of

intervals needed and, with it, the number of calculations required to generate a stock price path. This

compromise between computation time and precision must be handled appropriately. In Figure 4.3 we

can see how the size of the subintervals influences the resemblance of a simulated GBM process to its

”continuous” version.

We should also note that this discretization is more problematic when we try to price Barrier options.

As we stated before, a Barrier option becomes activated/void if the stock price reaches a certain barrier

level B. When we discretize a continuous stock price process, we ignore any prices that this process

might have taken in the period between two time steps. However, it is perfectly possible that during

this interval the real stock price goes below/above this barrier level and back up/down, which is not
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Figure 4.3: Effect of the size of the subinterval ∆t on the GBM discretization, with maturity T = 1yr,
interest rate r = 0.01yr−1, volatility σ = 0.1yr−1/2 and initial stock price S0 = 1e. To emphasize this
effect, the underlying Brownian Motion {W (t), t > 0} used to generate all three paths was the same.

considered in the discretization. A barrier option might have crossed a barrier with a non-discretized

Geometric Brownian motion process and not with its discretization. Thus, Barrier options will always be

underpriced or overpriced (depending on the type of barrier contract) when the Monte Carlo method is

used. This problem can be mitigated by significantly increasing the number of time steps, reducing their

size, though this will increase computation time. Furthermore, reducing the step size merely diminishes

the severity of the problem and doesn’t actually solve it.

4.3.2 Pricing options from simulations

Now that we are able to simulate stock prices, to price options using the Monte Carlo algorithm, we

generate M paths by recursively calculating {Si(tj), i = 1, . . . ,M, tj = 0, . . . , T}, using either of the

discretization methods described before.

When the stock price at the maturity, Si(T ), is obtained for all paths, the option’s payoff for each path

is calculated using eqs.(2.1)-(2.2). We then average all these results and discount them back to the

present, obtaining the option’s value

C(K,T ) = e−rT
1

M

M∑
i=1

Payoffi,call(K,T ); (4.14a)

P (K,T ) = e−rT
1

M

M∑
i=1

Payoffi,put(K,T ), (4.14b)

where Payoffi,·(K,T ) denotes the payoff function of the chosen option type (e.g. European, Barrier, ...)

for the ith path.

The payoff function of a European option is quite trivial to obtain, we simply need to apply eq.(2.1) to
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the stock price at maturity of each simulation. Pricing barrier options is only very slightly more complex:

besides applying the discretization methods described before, we are also required to check at all sim-

ulation time steps whether each stock price process crossed the barrier level or not and, at the maturity,

only use those that did to calculate the option price using eq.(2.2).

Despite its versatility, the Monte Carlo method can lead to an erroneous estimate for the price of

options, particularly for European call options with very high strike prices or puts with very low strikes.

To understand this problem, notice that the payoff function of European call options is zero for stocks

below the strike. If we have a very large strike, very few of the simulated paths will actually cross the

strike at maturity and contribute to the calculation of the option’s price (all the other paths will contribute

with a payoff of zero). The averaging procedure shown in eq.(4.14) will therefore be performed on an

extremely small subset of paths, thus producing a very rough estimation for the option price. We could

counter this effect by simulating an even larger number of paths, so that we always have a significant

number of paths above any given strike contributing to the option’s price, though this comes at the cost

of increased computation times. Furthermore, on the limit, there will always be a strike high enough that

none of the simulated paths reach it, meaning that the option’s value for that simulation would be zero.

This does not hold in real life, since there is always a non-zero price for any option, even for extremely

high strikes. This problem is further aggravated for Barrier options, since only the paths that are above

the strike price at maturity and have crossed the barrier level contribute to the option price. This further

limits the subset of paths considered and is quite problematic for high barrier levels.

In short, the Monte Carlo method is very simple and quite versatile, though it must be used with some

care to work properly.
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Chapter 5

Results

Having described the implementation of all the models introduced in chapter 3 and the calibration and

interpolation methods referenced in chapter 4, in this chapter we study the results of the calibration and

compare all the models and respective simulations.

We will calibrate the SABR and Heston models’ parameters with a dataset of implied volatilities for

European options with different maturities and strike prices. This data is shown in Appendix A. As stated

before, the closed form solutions will be used in this calibration procedure. After the calibration, we are

able to produce a function from these closed-form solutions that relates the strike price with the implied

volatility, using the models’ calibrated parameters. This function - henceforth named theoretical function

- should, in principle, closely fit the implied volatility data.

To validate the SABR and Heston models’ closed-form solutions, after finding the optimal parameters

with the calibration procedure, we will input them into a Monte Carlo pricer, adapted to each model, and

calculate the simulated option prices of each calibrated model. This price will then be converted into

an implied volatility (using eq.(3.5)) for the simulation to be comparable to the data and the theoretical

function. To better grasp the behavior of the simulations we will repeat them a large number of times,

Nreps, averaging the results to produce a function also relating the strike price with the implied volatility

- henceforth named simulated function - and extracting from them the 95% confidence bands of the

simulations - these confidence bands are obtained by sorting the simulated implied volatilities for each

strike, and then extracting both the 97.5% highest and the 2.5% lowest, using these values as the upper

and lower bounds of the confidence bands, so that 95% of all observations are contained between them.

As for Dupire’s local volatility data, the required Delaunay triangulation introduced in section 4.1 will

be performed on the aforementioned data. The resulting interpolation will be used to obtain the local

volatility surface, which will be input into a Monte Carlo pricer to generate the option price under this

model’s assumptions. As done for the Heston and SABR models, we will run this pricer a large number

of times, Nreps, to obtain the average simulated function and the 95% confidence bands. Because no

closed-form solutions exist for this model, no theoretical functions will be displayed in this case.

For the models to be comparable, we need to make sure that the same global parameters are used

in all the adjustments and simulations, namely the initial stock price, S0, the risk-free interest rate, r, the
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number of Monte Carlo pricer repetitions (to be averaged, producing the expected simulated function

and the confidence bands), Nreps, and the time step size and the number of paths simulated, ∆t and

Npaths, both used in the Monte Carlo simulations. Their values are shown in Table 5.1.

S0(e) r(yr−1) ∆t(days) Npaths Nreps

1 0 0.5 100 000 100

Table 5.1: Global parameters used throughout all simulations.

The Monte Carlo pricers of each model will then be modified to price Barrier options instead of the

European options used in the calibration. These results will be studied with some detail but, due to a

lack of real market data, there is no way to corroborate their validity.

As a side note, we should also point out that, for the maturities, we used the typical market convention

of defining a month as having only 21 days, to account only for the days when exchanges are open.

Thus, we assume that a year has 252 (open market) days.

5.1 Constant Volatility Model

To find how well our models perform, we need some reference against which to compare them. One

clear possibility is to assume a constant volatility throughout the options’ duration, since this is the

simplest possible case - any other model should be able to outperform this one.

The equation that generates each stock price path is therefore given by

dS(t) = rS(t)dt+ σS(t)dW (t). (5.1)

With this constant volatility model, we can choose to fit the datasets with different maturities inde-

pendently of one another or together as an ensemble. In other words, we can do several independent

fits, one for each maturity, or a single ensemble fit, for all maturities together. The former will be useful

when benchmarking the Static SABR model, since for that model the adjustments will also be performed

independently (Static SABR performs badly for multiple maturities). The latter will be more appropriate

when studying the remaining models - Dupire, Heston and Dynamic SABR - since these fit the whole

implied volatility surface (i.e. multiple maturities together). Thus, both versions will be implemented

and briefly studied. To clarify, we will still represent all maturities for both adjustment types (indepen-

dent/dependent), but in the independent case the fits will be done independently for each maturity - a

different (constant) implied volatility will be fitted for each maturity - and in the dependent case a single

implied volatility will be fitted to the whole ensemble.
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5.1.1 Independent Fits

We begin by presenting the results of fitting a constant volatility function to the sets of data with different

maturities independently.

In Figure 5.1 we show the plots of each fitted implied volatility curve - the theoretical functions - along

with the provided market data. We also present the results of the Monte Carlo pricer - the simulated

functions - and the simulations’ confidence bands.

(a) T = 21 days (b) T = 42 days

(c) T = 63 days (d) T = 126 days

Figure 5.1: Implied volatility functions (red lines) fitted independently to the implied volatility data

(crosses) for different maturities under constant volatility model, plotted with their respective Monte Carlo

simulated functions (light-blue dot-dashed lines) along with their 95% confidence bands (blue region).
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The fitted parameter, which, in this case, is only the constant implied volatility, is presented in Ta-

ble 5.2 for each of the maturities, along with the respective cost function’s value (eq.(4.2)).

T (days) σimp,mdl (yr−1/2) Cost

21 0.3174 0.0635
42 0.2918 0.0282
63 0.2742 0.0164
126 0.2518 0.0069

Table 5.2: Fitted implied volatilities for each maturity (fitted independently) under constant volatility

model.

By observing the fit results in Table 5.2 we see that the cost function decreases with the maturity. This

is indeed what is expected, since the implied volatility surface becomes flatter as maturity increases, as

can be seen from the market data (and also as we can see in Figure 3.3). This makes the constant

volatility function a better approximation in such cases, which decreases the cost function’s value.

We should note that the fitted constant implied volatilities’ values are typical for what is usually ob-

served in the market, i.e. values around 0.25yr−1/2.

One other property that we can observe is that the constant implied volatility also decreases with

maturity. The reason behind this is the simple fact that earlier maturities contain higher implied volatilities

(for the strikes far from S0), which pull the fitted constant volatility function upwards.

We now focus on the results presented in Figure 5.1. First, we can see that the theoretical functions

(full red lines) clearly don’t represent the market data. This is indeed what is expected, since the constant

volatility model doesn’t cover the volatility smile phenomenon, which we explained before.

Secondly, by comparing the theoretical and simulated functions, we must note that the simulation

performs extremely well for strikes near S0. Notice that the simulated function (dot-dashed blue line)

perfectly follows the constant volatility theoretical result (full red line) in this region, and that the confi-

dence bands converge to the simulated function indicating that all simulations produced the same result.

This seems to suggest that the simulation is working as expected for this particular region.

Thirdly, we notice that on the earliest maturity (i.e. 21 days), for strikes much larger than S0 (e.g.

K/S0 = 1.5), the simulated implied volatilities go to zero, even though they should remain constant. The

reason behind this has already been discussed in subsection 4.3.2 and relates to the very, very small

number of paths that reach such high strikes and end up contributing to the option price (which is then

converted to an implied volatility). For the case of strike K/S0 = 1.5, and maturity T = 21 days, under

this constant volatility model the number of paths that reach the strike is indeed approximately 0.25 out

of 100 000 (i.e. one out of four Monte Carlo simulations of 100 000 paths contains a single path that is

able to reach such a high strike). This problem is not observed on the remaining maturities for the simple

reason that, because they are given more time to evolve, more paths are able to reach these high strikes

and contribute to the option price. To solve this problem, we could significantly increase the number of

simulations, so that the number of paths that are able to reach these high strikes is enough to produce

a good estimate of the option price. The problem with this solution is the very significant increase in the
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computation time required, which makes it impractical. If we lowered the number of simulated paths from

100 000 to any other smaller amount, the problem described before would become even more severe,

and the later maturities would eventually also display the problem observed in the earliest maturity.

Finally, we must discuss the large confidence bands for strikes much lower than S0 (e.g. K/S0 = 0.5),

occurring over all maturities. To explain this, we require the points made in section 3.4, particularly for

Figure 3.5, where we introduced the concept of relative change of the option price w.r.t. the volatility.

Repeating the example from before, a relative change of 5 means that a variation of 1% in the volatility

will produce a variation of 5% in the option price. We saw that for low strikes, this quantity was extremely

small. This means that the option price is very insensitive to the volatility (i.e. a change in the volatility

barely affects the price), but it also means that the volatility is very sensitive to the option price (i.e. a

small change in the price significantly affects its implied volatility). The reason why this observation is

important here is because we are calculating option prices from simulations and then converting them to

implied volatilities (solving eq.(3.5)). Even though the Monte Carlo pricer is expected to produce a very

good estimation of option prices with lower strikes (a very large number of paths contribute to the option

price, so the estimation will be very accurate, with very little variation - the opposite of what we described

before for high strikes), because there will always be some variation on different simulations, the pricer is

expected to produce some very slightly different results when executed multiple times, which is enough

to cause some of the generated implied volatilities to differ significantly from one another, some going

to approximately zero others increasing significantly, which explains the large confidence bands. This

is not observed in the higher strikes because the value of relative change is very small. Furthermore,

in the low strike regions, we can see that the confidence bands seem to decrease in size for the higher

maturities. This phenomenon was also expected from the conclusions made in Figure 3.5, where we

noted that the relative change decreased with the maturity, which attenuates the severity of the problem

posed before.

These two last problems are not only applicable to the constant volatility model and will also be

observed in all the other models, as we shall see next.
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In Table 5.3 we show the values of the implied volatilities fitted to the data for the different maturities,

along with their relative errors when compared to the provided implied volatility data, shown in Table A.1.

We also show the respective European option prices of said fitted volatilities and their corresponding

relative errors (when compared to the option prices of the provided data, also in Table A.1).

T (days) K/S0 σimp,mdl(yr−1/2) Errorσ(%) Cmdl(e) ErrorC(%)

21

0.50

0.3174

55 5.000× 10−1 0
0.75 31 2.500× 10−1 0
0.90 6 1.054× 10−1 1
1.00 31 3.654× 10−2 31
1.10 37 7.406× 10−3 206
1.25 18 2.501× 10−4 368
1.50 8 1.119× 10−7 81

42

0.50

0.2918

47 5.000× 10−1 0
0.75 25 2.503× 10−1 1
0.90 3 1.117× 10−1 1
1.00 19 4.749× 10−2 19
1.10 24 1.500× 10−2 76
1.25 16 1.575× 10−3 154
1.50 2 1.244× 10−5 21

63

0.50

0.2742

43 5.000× 10−1 0
0.75 21 2.508× 10−1 1
0.90 3 1.165× 10−1 1
1.00 14 5.465× 10−2 14
1.10 18 2.069× 10−2 46
1.25 12 3.331× 10−3 85
1.50 0 7.437× 10−5 3

126

0.50

0.2518

35 5.000× 10−1 0
0.75 15 2.534× 10−1 1
0.90 3 1.288× 10−1 1
1.00 10 7.094× 10−2 10
1.10 11 3.488× 10−2 22
1.25 8 9.977× 10−3 32
1.50 0 8.510× 10−4 1

Table 5.3: Fitted implied volatilities (fitted independently) and respective option prices along with their

corresponding relative errors w.r.t. the provided data under the constant volatility model.

One interesting property that we can extract from the data in Table 5.3 is that the relative errors of

the option prices, ErrorC , seem to increase with the strike. This is indeed expected from the conclusions

obtained in section 3.4: we saw that options with high strikes had a higher relative change on the option

price w.r.t. the volatility. This means that a small (relative) variation in the implied volatility causes a

very considerable (relative) change in the option price. Observing, for example, the data for the strike

K/S0 = 1.25 and the maturity T = 21 days, we see that even though the relative error for the implied

volatility is only 18%, the resulting relative error on the option price is 368%, which is a staggering
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difference. On the other hand, we also saw that for options with low strikes the value of relative change

was small, which means that even large (relative) changes in the implied volatility barely affect the price.

Observing now, for example, the data for the strike K/S0 = 0.75 on the same maturity, the relative error

on the implied volatility is 55%, significantly higher than before, but the respective relative error on the

option price is 0% (rounded off to the units).

Furthermore, we noted in section 3.4 that the value of relative change for strikes K/S0 = 1 was

approximately 1 throughout all maturities. This would mean that for such strikes, the relative errors in

the implied volatility would be approximately the same as the relative errors in the option price, which

is precisely verified in the data throughout all maturities (see, for example, the relative errors of 14% in

both the implied volatility and option price for the maturity T = 63 days and strike K/S0 = 1).

Finally, it is clear that the relative errors of the option price decrease with the maturity (e.g. for the

maturity of 21 days we have errors up to 368%, whereas for the maturity of 63 days they only go up to

85%). This phenomenon was also expected from the conclusions made before, where we noted that the

relative change decreased with maturity, which attenuates the high relative change phenomenon.

We can thus conclude that the results corroborate what would be expected from our predictions.
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5.1.2 Dependent Fits

We now present the results obtained from fitting constant volatility function to the ensemble with all

implied volatility data, regardless of maturity.

In Figure 5.2 we show the theoretical and simulated functions as well as the provided market data.

(a) T = 21 days (b) T = 42 days

(c) T = 63 days (d) T = 126 days

Figure 5.2: Implied volatility functions (red lines) fitted simultaneously to the implied volatility data

(crosses) for different maturities under constant volatility model, plotted with their respective Monte Carlo

simulated functions (light-blue dot-dashed lines) along with their 95% confidence bands (blue region).

The fitted implied volatility is represented in Table 5.4 as well as the cost function’s value.

σimp,mdl (yr−1/2) Cost

0.2838 0.1248

Table 5.4: Fitted implied volatility for all maturities (fitted simultaneously) under constant volatility model.

Regarding the plots in Figure 5.2 they look very similar to those in Figure 5.1, so not much more can

be added regarding their analysis.

As before, we now show the fitted implied volatility and its corresponding option prices as well as

their relative errors when compared against the data in Table A.1.
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T (days) K/S0 σimp,mdl(yr−1/2) Errorσ(%) Cmdl(e) ErrorC(%)

21

0.50

0.2838

60 5.000× 10−1 0
0.75 39 2.500× 10−1 0
0.90 5 1.036× 10−1 1
1.00 17 3.267× 10−2 17
1.10 23 5.191× 10−3 114
1.25 5 8.977× 10−5 68
1.50 17 7.031× 10−9 99

42

0.50

0.2838

49 5.000× 10−1 0
0.75 27 2.502× 10−1 1
0.90 1 1.108× 10−1 0
1.00 15 4.620× 10−2 15
1.10 21 1.402× 10−2 64
1.25 12 1.336× 10−3 115
1.50 4 8.299× 10−6 48

63

0.50

0.2838

41 5.000× 10−1 0
0.75 18 2.510× 10−1 1
0.90 7 1.179× 10−1 2
1.00 18 5.656× 10−2 18
1.10 22 2.227× 10−2 57
1.25 16 3.925× 10−3 118
1.50 3 1.087× 10−4 42

126

0.50

0.2838

27 5.000× 10−1 0
0.75 4 2.559× 10−1 0
0.90 16 1.361× 10−1 7
1.00 24 7.992× 10−2 24
1.10 25 4.317× 10−2 51
1.25 21 1.499× 10−2 98
1.50 13 1.967× 10−3 129

Table 5.5: Fitted implied volatilities (fitted simultaneously) and respective option prices along with their

corresponding relative errors w.r.t. the provided data under the constant volatility model.

As before, the relative errors of the option prices seem to increase with the strike, even though the

same behavior is not observed for the relative errors of the implied volatilities, which has already been

discussed.
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5.2 Dupire Model

The stochastic differential equation for the stock price paths under the local volatility model was hypoth-

esized to be given by

dS(t) = rS(t)dt+ σ(S(t), t)S(t)dW (t), (5.2)

where σ(S(t), t) can be obtained through Dupire’s model, defined in subsection 3.5.1, which is given by

σ(S(t), t) =

√√√√√√√√
σ2
imp + 2tσimp

∂σimp
∂T

+ 2r(S(t))tσimp
∂σimp
∂K(

1 + (S(t))d1

√
t
∂σimp
∂K

)2

+ (S(t))2tσimp

(
∂2σimp
∂K2

− d1

(
∂σimp
∂K

)2√
t

) , (5.3)

where d1 is defined as

d1 =
log(S0/S(t)) +

(
r + 1

2σ
2
imp

)
t

σimp
√
t

. (5.4)

As we mentioned in section 4.1, we must produce the implied volatility surface from the market

data using an interpolation algorithm. Applying the Delaunay triangulation defined earlier, we obtain the

implied volatility surface, shown in Figure 5.3 along with its contour plot. From this surface we can easily

extract (numerically) the gradients required for the local volatility formula.
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Figure 5.3: Implied volatility surface (left) and corresponding contour plot (right) of the function interpo-

lated linearly between the original data points (blue circles) using Delaunay triangulation.

Observing this interpolated surface, we see that its curvature decreases with maturity - the volatility

smile becomes less prominent for later maturities - which can also be observed in the provided data,

shown in Appendix A.

As we stated before in section 4.1, from the implied volatility surface we should generate a grid of

local volatilities, from which we will obtain the local volatility surface. This grid was obtained by defining

some limits on the strike prices and maturities, with Kmin and Kmax being the smallest and largest
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strikes in the grid, with intervals ∆K between the them, and with Tmin and Tmax being the smallest

and largest maturities, with intervals ∆T . The values for these quantities that we used throughout this

section are shown in Table 5.6.

Tmin(days) Tmax(days) ∆T (days) Kmin/S0 Kmax/S0 ∆K/S0

21 126 10.5 0.4 1.6 0.05

Table 5.6: Parameters used in the interpolation section of Dupire’s model.

The resulting local volatility surface is represented in Figure 5.4.
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Figure 5.4: Local volatility surface (left) and corresponding contour plot (right) of the function obtained

with Dupire’s formula (eq.(3.27)) from the interpolated implied volatility surface in Figure 5.3.

Though we can’t obtain any theoretical results, due to a lack of closed-form solutions in this model,

we are able to simulate stock prices using the method described in section 4.3.1 and with them obtain

the option prices. The results of these simulations are shown in Figure 5.5, along with the confidence

bands and the original market data. To prevent volatilities from becoming too high, we implemented a

maximum cutoff value of σmax=1.5yr−1/2, limiting the volatilities sampled from the surface.
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(a) T = 21 days (b) T = 42 days

(c) T = 63 days (d) T = 126 days

Figure 5.5: Implied volatility functions (light-blue dot-dashed) simulated with Monte Carlo under Dupire’s

local volatility model with their corresponding 95% confidence band, plotted against the original market

data (crosses).

As before, we now see the very large confidence bands for very low strikes. The cause of this

behavior was identified on the constant volatility model (with independent fits). We can also observe the

large confidence bands for high strikes in the earliest maturities, which has also already been discussed.

The great improvement of Dupire’s model over the constant volatility model is the presence of the

implied volatility smiles in the simulated implied volatilities. Furthermore, these smiles follow the market

data almost perfectly for strikes near S0. We can therefore conclude that this model is clearly more

adequate than the constant volatility model presented earlier, which is unsurprising.

The simulations shown in the plots of Figure 5.5 can be thought of as slices of a simulated implied

volatility surface. Ideally, this surface would look exactly like the one shown in Figure 5.3. However, in

the regions where the simulations behave badly (large strikes for early maturities and low strikes), we

expect there to be a very high amount of error in the simulations. This simulated surface is shown in

Figure 5.6, along with the simulated functions of the earlier plots and the market data. The respective

contour plot is also represented.
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(a) σimp surface (b) σimp contour plot

Figure 5.6: Implied volatility surface (left) and corresponding contour plot (right) simulated with Monte

Carlo under Dupire’s local volatility model plotted against the original market data (blue circles) and the

simulated functions shown in Figure 5.5 (red dot-dashed lines).

As expected, the amount of error is quite overwhelming in the regions where the Monte Carlo pricer

performs badly. For the regions where the strike approaches S0, the picture is quite different, and the

simulations closely follow the data, as expected.

For this model we do not show the table with the relative errors of the implied volatilities and prices,

as we did for the constant volatility models, for the simple reason that previously we used the theoretical

implied volatilities (i.e. red full lines in Figures 5.1 and 5.2) to calculate the relative errors and not the

simulated curves (i.e. dot-dashed light blue lines in the same figures) and with Dupire’s model there are

no theoretical lines, only simulations.
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5.3 Static SABR Model

As we saw before, in the Static SABR model stock prices and volatilities are governed by the stochastic

differential equations

dS(t) = rS(t)dt+ e−r(T−t)(1−β)σ(t)(S(t))βdW1(t), (5.5a)

dσ(t) = νσ(t)dW2(t), (5.5b)

with α = σ(0) and where W1(t) and W2(t) have a constant correlation of ρ.

The closed-form solution, shown in eq.(3.72), enables us to obtain the theoretical implied volatilities

of options priced under this model and will be used in the calibration process.

Before calibrating the model to the market data, we should study the influence of each parameter of

this model on the shape of the implied volatility curve, to better interpret the results. This influence is

represented in Figure 5.7, where we plot the theoretical function while varying one parameter at a time,

keeping all the others constant, thus directly observing that parameter’s influence.

We should note that the influence of the parameters is more complicated than we show here. On

the one hand, their impact depends on the maturity. However, for this effect to become evident, we

would have to repeat all the plots in Figure 5.7 for several maturities, which would simply become too

cumbersome. On the other hand, the parameters have combined effects on the curve shape. These

influences would be quite difficult to represent. Furthermore, they are discussed in the original article by

Hagan [Hagan et al., 2002], and will, for these reasons, not be discussed here. That being said, we can

still have a general view of each parameter’s impact on the curve.
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Figure 5.7: Dependence of the implied volatility curve on each of the Static model SABR parameters.

The default parameters used were S0 = 1e, T = 42 days and r = 0. Furthermore, on all plots, except

when the dependence on a parameter is represented, the parameters used were α = 0.2yr−1/2, β = 1,

ρ = −0.5 and ν = 1.5yr−1/2.

In Figure 5.7(a) we see that the parameter α, which corresponds to the initial value of the volatility

process, has quite an impact on the implied volatility curve. We can see that this parameter seems to

control the height of the curve. This is indeed expected, because the implied volatility and the stochastic

(local) volatility are inherently related. Increasing α is expected to shift the volatility process to higher

values, thus increasing the resulting implied volatility.

The influence of the parameter β, which is an exponent in the stock price process, is represented in

Figure 5.7(b). The impact of this parameter seems to be almost negligible. Indeed, at a single point in

time, the implied volatility curve barely depends on this value, but this parameter becomes very important

when time passes and the stock prices change. Hagan et al. [Hagan et al., 2002] show that β controls

how the curve shifts when the stock prices move: if the stock price increases, the implied volatility curve

at that time should shift to the right; for β = 0, the curve also shifts downwards, whereas for β = 1

it doesn’t, moving only horizontally. Despite this, because in Static SABR we are only fitting data for a

single maturity, this parameter should barely have any influence in the resulting implied volatility function,

though it will become quite relevant in the Dynamic SABR model, where maturity is taken into account.
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In Figure 5.7(c) is represented the effect of the parameter ρ, the correlation between the stock price

and the volatility processes. We can see that this parameter impacts the skewness of the implied volatility

curve. Because this parameter relates the stock price and volatility, in the case of a negative ρ when

the prices increase (decrease), the volatilities decrease (increase), so that options with higher (lower)

strikes have lower (higher) associated volatilities. This justifies why we have a lower implied volatility

for higher strikes and a higher implied volatility for lower strikes when the correlation is negative. The

inverse logic can be applied for the positive ρ curve observed.

Finally, the impact of the parameter ν, the volatility of the volatility process, is shown in Figure 5.7(d).

This parameter seems to control the curvature of the implied volatility curve. It should be clear that higher

values of ν result in greater changes in the volatility process, enabling, at times, the volatility to become

quite large. This allows the stock price process to evolve quite erratically, thus making it easier for stock

prices to reach higher values, making high strike options more valuable. This effect pushes their implied

volatility upwards. The inverse effect also holds and a low ν will force the stochastic volatility process

to become quite limited, preventing the stock prices from changing too much, and restraining them from

reaching high strikes, pulling the implied volatility curve downwards.
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We now present the results of the calibration as well as the simulations in Figure 5.8.

(a) T = 21 days (b) T = 42 days

(c) T = 63 days (d) T = 126 days

Figure 5.8: Implied volatility functions (red lines) fitted independently to the implied volatility data

(crosses) for different maturities under the static SABR model, plotted with their respective Monte Carlo

simulated functions (light-blue dot-dashed lines) along with their 95% confidence bands (blue region).

As mentioned before, the Static SABR model is only expected to work for data on options with a

single maturity. For this reason, we fitted the model to each maturity independently. The parameters

obtained in the calibration for each maturity are shown in Table 5.7.

T (days) α (yr−1/2) β ρ ν (yr−1/2) Cost

21 0.2381 0.3766 -0.3760 2.1022 0.0004
42 0.2434 0.7362 -0.3664 1.4451 0.0002
63 0.2375 0.7750 -0.3119 1.1420 0.0001
126 0.2267 0.8771 -0.2383 0.8215 0.0001

Table 5.7: Fitted parameters for each maturity (fitted independently) under static SABR model.

We now analyze the results of this model. Observing the plots in Figure 5.8 we see that the the-

oretical function (full red line), obtained by the closed form solution of the Static SABR model, fits the

data extremely well through the whole range of strikes and for each of the maturities, which is further
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corroborated by the extremely low cost values in Table 5.7.

Though the model seems to fit almost perfectly to the data, the fits may not be very robust. The

reason for this is the fact that we have an extremely small amount of data points (7 for each maturity) for

the comparatively large number of parameters used (4 parameters in total). This will cause our model

to overfit the data - for such a low amount of data (compared to the high number of parameters) we can

find many possible combinations of parameters that fit the data just as well as the parameters found by

the optimizer.

As for the simulated functions, we note that they very closely the theoretical curves in the regions

around S0, indicating that the Monte Carlo pricer implementation was done correctly. This feature doesn’t

hold at the high strike region in the first maturity and the low strike regions of all maturities for the same

reasons described earlier.

Examining now the calibrated parameters in Table 5.7 we first note that the parameter α doesn’t

seem to vary too much between maturities, which is expected, since it controls the height of the implied

volatility curve which doesn’t seem to change too much in the plots. Furthermore, we see that these

values are close to what is usually observed in the market.

The parameter β appears to change wildly between maturities, though this is unsurprising since, as

we saw, this parameter doesn’t significantly affect the shape of the implied volatility function, meaning

that different values of β would fit the data equally well (i.e. overfitting).

As for the parameter ρ, we first note that it is always negative, which is expected from reality. It also

seems to decrease with time which is expected for options with stock indices as underlying assets, as

we mentioned in subsection 3.6.3.

Finally, the parameter ν also seems to decrease with time. This should come as no surprise, since the

curvature of the implied volatility function is expected to decrease with time, with the function becoming

increasingly horizontal, as can be seen from the provided data and as we mentioned in subsection 3.6.3.

We should also note that the calibrated ν is quite large, which means that the volatility process evolves

quite erratically.
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The data of the fitted implied volatility and its respective option prices, along with their relative errors,

can be found in Table 5.8.

T (days) K/S0 σimp,mdl(yr−1/2) Errorσ(%) Cmdl(e) ErrorC(%)

21

0.50 0.7209 2 5.000× 10−1 0
0.75 0.4428 4 2.505× 10−1 0
0.90 0.3105 4 1.050× 10−1 1
1.00 0.2435 0 2.804× 10−2 0
1.10 0.2269 2 2.227× 10−3 8
1.25 0.2692 0 5.183× 10−5 3
1.50 0.3500 2 8.317× 10−7 45

42

0.50 0.5631 1 5.001× 10−1 0
0.75 0.3751 3 2.515× 10−1 0
0.90 0.2891 2 1.114× 10−1 1
1.00 0.2481 1 4.039× 10−2 1
1.10 0.2322 1 8.194× 10−3 4
1.25 0.2497 1 5.746× 10−4 7
1.50 0.3033 2 2.120× 10−5 34

63

0.50 0.4845 1 5.001× 10−1 0
0.75 0.3357 3 2.526× 10−1 0
0.90 0.2710 2 1.160× 10−1 1
1.00 0.2421 1 4.826× 10−2 1
1.10 0.2305 1 1.384× 10−2 3
1.25 0.2409 1 1.678× 10−3 7
1.50 0.2804 2 9.557× 10−5 25

126

0.50 0.3914 1 5.004× 10−1 0
0.75 0.2887 2 2.563× 10−1 0
0.90 0.2479 1 1.279× 10−1 1
1.00 0.2314 1 6.522× 10−2 1
1.10 0.2251 1 2.817× 10−2 2
1.25 0.2309 1 7.177× 10−3 5
1.50 0.2567 2 9.822× 10−4 14

Table 5.8: Fitted implied volatilities and respective option prices along with their corresponding relative

errors w.r.t. the provided data under the static SABR model.

The phenomenon of high relative errors of the stock price for options with high strikes can be ob-

served here as well, and will not be discussed again.

Furthermore, we can see that the errors in the implied volatilities are, at most, only 4%, which is

extremely low, which further corroborates the low cost values shown in Table 5.7.
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5.4 Heston Model

The Heston model is defined as

dS(t) = rS(t)dt+
√
ν(t)S(t)dW1(t), (5.6a)

dν(t) = κ(ν − ν(t))dt+ η
√
ν(t)dW2(t), (5.6b)

where ν0 = ν(0) and with W1(t) and W2(t) having a constant correlation of ρ.

With the closed form solution of the Heston model, shown in eq.(3.33), we are able to find the

theoretical prices of options priced under this model, which we can easily convert to implied volatilities.

These last will be used in the calibration process.

As we did for the Static SABR model, we first study the influence of each parameter of the Heston

model on the shape of the implied volatility curve, represented in Figure 5.9.
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Figure 5.9: Dependence of the implied volatility curve on each of the Heston model parameters. The

default parameters used were S0 = 1e, T = 42 days and r = 0. Furthermore, on all plots, except when

the dependence on a parameter is represented, the parameters used were κ = 10yr−1, ν = 0.25yr−1,

ν0 = 0.04yr−1, η = 1yr−1 and ρ = −0.5.

The parameters κ, ν and ν0 are inherently related to one another and their influence can only be

understood if all are considered at the same time. The parameter ν is the mean value of the variance

(not the volatility! ν(t) = σ2(t)), ν0 denotes the initial variance, and κ is the mean-reversion rate, which

controls how fast the variance tends to its mean value.
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If the parameter κ is very large, we expect the variance process to converge very fast to its mean

value, ν. This means that the variance process ν(t) is not able to change significantly, as it is always

pulled strongly towards ν, remaining roughly constant around this value. For this reason, options priced

with such parameters would have an almost constant volatility, and their implied volatility curve would

tend to a horizontal line valued at the square root of ν (i.e. the mean volatility,
√
ν = σ).

On the other hand, if κ is very small, the parameter ν will barely have any influence on the implied

volatility curve, and the variance process is able to change almost without restrain. This means that the

parameter ν0 will have a large impact on the behavior of the variance process. A large ν0 enables the

variance process to reach higher values (because it starts at a higher value) so that the implied volatility

of options priced with these parameters is higher. A small ν0 would have the opposite effect, decreasing

the implied volatility.

If we now have a moderate value for κ, both parameters ν and ν0 are expected to have some impact

on the implied volatility curve.

By examining Figures 5.9(b) and 5.9(c), with a moderate value for κ, we see that the implied volatility

curves increase/decrease as we increase/decrease the parameters ν and ν0, which is precisely what

we expect. If we now look at Figure 5.9(a), we can confirm that a large value for κ (orange dot-dashed

line) will produce an almost constant implied volatility curve around the square root of ν (
√
ν =
√

0.25 =

0.5yr−1/2). For small values of κ (blue full line), the influence of the parameter ν0 becomes more apparent

- notice that the curve is pulled downwards since ν0 is lower than ν -, and we no longer see the horizontal

implied volatility curve from before, which is also expected.

The parameters η and ρ in the Heston model control the volatility of the variance process and the

correlation of this process with the stock price process, respectively. They are very much related to the

parameters ν and ρ of the Static SABR process, respectively, and their impact on the implied volatility

curve is the same. For this reason, they will not be discussed again here.

68



In Figure 5.10 we now show the results of the calibration and the simulations under this model.

(a) T = 21 days (b) T = 42 days

(c) T = 63 days (d) T = 126 days

Figure 5.10: Implied volatility functions (red lines) fitted simultaneously to the implied volatility data

(crosses) for different maturities under the Heston model, plotted with their respective Monte Carlo

simulated functions (light-blue dot-dashed lines) along with their 95% confidence bands (blue region).

The values of the calibrated parameters are shown in Table 5.9.

κ (yr−1) ν (yr−1) ν0 (yr−1) ρ η (yr−1) Cost

53.4355 0.0653 0.1046 -0.4086 6.2554 0.0025

Table 5.9: Fitted parameters for all maturities (fitted simultaneously) under the Heston model.

Examining the plots in Figure 5.10 we see that the theoretical curves fit the data surprisingly well

throughout all the maturities. This is especially surprising when we note that the adjustment is made for

the entire data set, with all the different maturities, unlike the Static SABR model, which was only fitted

for single maturities, which means that the overfitting problem is attenuated.

Analyzing the fitted parameters’ values, we begin by noting that κ is quite large, which means that

the variance process tends to its mean value ν quite fast. It also means that the initial variance, ν0, has

almost no influence on the shape of the fitted curves. We note furthermore that the mean variance, ν,

corresponds to a mean volatility of 0.2555yr−1/2 (
√
ν = σ), which is a typical value for volatilities observed
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in the market. The same applies to the initial variance, ν0. As for the correlation parameter, ρ, we note

that it is negative, which is indeed expected from market behavior. Finally, the volatility of the variance

process, η, is very large, which suggests that this process is very erratic.

Observing now the simulated curves and their respective confidence bands we again see that they

fit the closed-form solutions extremely well in the region around S0, indicating that the simulations agree

with the predictions of the closed form solutions. The large confidence bands described before for the

high strikes and early maturities and for the low strikes can also be found here. Because the phe-

nomenon is the same as before, they will not be described again.

Both the simulated and theoretical implied volatility curves shown in the plots of Figure 5.10 for

different maturities can be thought of as slices of implied volatility surfaces (one simulated, another

theoretical). Similarly to what we did for the Dupire model, we again represent these surfaces and their

respective contour plots in Figures 5.11 and 5.12.

(a) σimp surface (b) σimp contour plot

Figure 5.11: Implied volatility surface (left) and corresponding contour plot (right) of the function fitted si-

multaneously to the implied volatility data for different maturities under the Heston model, plotted against

the original market data (blue circles) and the fitted functions shown in Figure 5.10 (red lines).

70



(a) σimp surface (b) σimp contour plot

Figure 5.12: Implied volatility surface (left) and corresponding contour plot (right) of the function sim-

ulated using the Monte Carlo method with the fitted parameters shown in Table 5.9, under the Heston

model, plotted against the original market data (blue circles) and the simulated functions shown in Fig-

ure 5.10 (red dot-dashed lines).

The surfaces and contour plots shown in Figures 5.11 and 5.12 should, ideally, replicate the surface

and contour plot shown in Figure 5.3, since these last correspond to the real (interpolated) implied

volatility surface. The simulated theoretical surface mimics the real function very well, which is expected,

since the fits adjusted greatly to the data. As for the simulated surface, we can see the expected noisy

region for the low strikes. The simulations around S0 are very close to the ideal values, though, as we

can see from the comparison of the contour plots.
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As before, we show in Table 5.10 the implied volatilities and their respective option prices as well as

their relative errors.

T (days) K/S0 σimp,mdl(yr−1/2) Errorσ(%) Cmdl(e) ErrorC(%)

21

0.50 0.6886 3 5.000× 10−1 0
0.75 0.4604 1 2.506× 10−1 0
0.90 0.3216 8 1.056× 10−1 1
1.00 0.2346 3 2.702× 10−2 3
1.10 0.2316 0 2.429× 10−3 0
1.25 0.2935 9 1.243× 10−4 133
1.50 0.3759 10 2.958× 10−6 415

42

0.50 0.5422 2 5.000× 10−1 0
0.75 0.3781 2 2.516× 10−1 0
0.90 0.2873 2 1.112× 10−1 0
1.00 0.2366 4 3.852× 10−2 4
1.10 0.2205 6 7.021× 10−3 18
1.25 0.2463 2 5.203× 10−4 16
1.50 0.2979 0 1.661× 10−5 5

63

0.50 0.4709 2 5.001× 10−1 0
0.75 0.3420 1 2.528× 10−1 0
0.90 0.2748 3 1.166× 10−1 1
1.00 0.2392 0 4.768× 10−2 0
1.10 0.2224 5 1.265× 10−2 11
1.25 0.2310 5 1.312× 10−3 27
1.50 0.2649 4 4.968× 10−5 35

126

0.50 0.3784 2 5.003× 10−1 0
0.75 0.2993 1 2.573× 10−1 0
0.90 0.2626 7 1.312× 10−1 3
1.00 0.2439 6 6.870× 10−2 6
1.10 0.2314 2 2.973× 10−2 4
1.25 0.2248 4 6.453× 10−3 15
1.50 0.2324 8 4.446× 10−4 48

Table 5.10: Fitted implied volatilities and respective option prices along with their corresponding relative

errors w.r.t. the provided data under the Heston model.

We can see that the relative errors shown in Table 5.10 for the Heston model are higher than those

for the Static SABR model, in Table 5.8. This is expected from the comparison of their respective costs

and was discussed previously. Not much else can be added that hasn’t been observed and discussed

before.
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5.5 Dynamic SABR Model

We now consider the Dynamic SABR Model, for which the stock price and volatility processes were

assumed to follow

dS(t) = rS(t)dt+ e−r(T−t)(1−β)σ(t)(S(t))βdW1(t), (5.7a)

dσ(t) = ν(t)σ(t)dW2(t), (5.7b)

with the volatility of the volatility process, ν(t), and the correlation between W1(t) and W2(t), ρ(t), being

two functions of time.

To model these functions, we chose

ρ(t) = ρ0e
−at, (5.8)

ν(t) = ν0e
−bt, (5.9)

with ρ0 ∈ [−1, 1], ν0 > 0, a > 0 and b > 0.

The parameters used in the Dynamic SABR model are similar to those used in the Static SABR

model and an easy connection can be made between them. Their influence on the implied volatility

curve will therefore be the same and, for this reason, they will not be represented again here.

We fitted the Dynamic SABR model to the implied volatility data for all maturities. The fitted theoretical

curves (obtained with the closed-form solution in eq.(3.78)) and their simulated counterparts are shown

in Figure 5.13.
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(a) T = 21 days (b) T = 42 days

(c) T = 63 days (d) T = 126 days

Figure 5.13: Implied volatility functions (red lines) fitted simultaneously to the implied volatility data

(crosses) for different maturities under the dynamic SABR model, plotted with their respective Monte

Carlo simulated functions (light-blue dot-dashed lines) along with their 95% confidence bands (blue

region).

The calibrated parameters obtained from the fit are shown in Table 5.11.

α (yr−1/2) β ρ0 a (yr−1) ν0 (yr−1/2) b (yr−1) Cost

0.2540 0.6348 -0.4166 0 1.8673 41.6943 0.0108

Table 5.11: Fitted parameters for all maturities (fitted simultaneously) under the dynamic SABR model.

We now consider the adjustments above. Observing the theoretical curves in Figure 5.13 we can

see that they fit the market data relatively well, especially for the later maturities.

Analyzing the calibrated parameters in Table 5.11, we begin by noting that the value of α is typical

from market observations. As we mentioned previously, the parameter β controls how the implied volatil-

ity curve shifts when the stock prices move, and the calibrated value indicates that when the stock prices

increase, the curve not only shifts to the right but also downwards, though only slightly.

The parameter a being 0 implies that the correlation function, ρ(t), is stuck at ρ0 through time, and the

parameter b being very large means that the volatility of the volatility function, ν(t), goes to 0 extremely
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fast (e.g. at the end of the first month, this parameter is only ν(t = 1 month) = 0.0578yr−1). These results

are very inconsistent with what we observed in the Static SABR model, where ρ and ν tend (slowly) to

zero with time. This seems to suggest that the functions chosen to model these two parameters were

not appropriate.

Considering now the simulated curves, we see that they accurately follow the theoretical curves

for the regions around S0, behaving badly only for the low strike regions and for high strikes with low

maturities. This has been observed before in all models and is therefore expected.

As we did for the Heston model, we now present the theoretical and simulated implied volatility

surfaces of which the plots in Figure 5.13 are slices. These surfaces and their respective contour plots

are shown in Figures 5.14 and 5.15.
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(a) σimp surface (b) σimp contour plot

Figure 5.14: Implied volatility surface (left) and corresponding contour plot (right) of the function fitted

simultaneously to the implied volatility data for different maturities under the dynamic SABR model,

plotted against the original market data (blue circles) and the fitted functions shown in Figure 5.13 (red

lines).

(a) σimp surface (b) σimp contour plot

Figure 5.15: Implied volatility surface (left) and corresponding contour plot (right) of the function simu-

lated using the Monte Carlo method with the fitted parameters shown in Table 5.11, under the dynamic

SABR model, plotted against the original market data (blue circles) and the simulated functions shown

in Figure 5.13 (red dot-dashed lines).

As stated before, ideally the plots in these two Figures would perfectly mimic the surface shown in

Figure 5.3. This obviously doesn’t occur. The theoretical surface plot in Figure 5.14 seems to be flatter

than the actual surface in the regions around S0 (notice the wider contours in this region) whereas it

increases quite abruptly for low strikes. As for the simulated surface in Figure 5.15, in the regions where
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the simulations are expected to behave badly, a large amount of error can be observed, as is expected.

Finally, we show in Table 5.12 the implied volatility and price data for the fits presented before, along

with their respective relative errors.

T (days) K/S0 σimp,mdl(yr−1/2) Errorσ(%) Cmdl(e) ErrorC(%)

21

0.50 0.7625 8 5.000× 10−1 0
0.75 0.3765 19 2.501× 10−1 0
0.90 0.2843 5 1.037× 10−1 1
1.00 0.2540 5 2.924× 10−2 5
1.10 0.2410 4 2.858× 10−3 18
1.25 0.2454 9 1.760× 10−5 67
1.50 0.2944 14 1.857× 10−8 97

42

0.50 0.5788 4 5.001× 10−1 0
0.75 0.3337 14 2.507× 10−1 0
0.90 0.2740 3 1.099× 10−1 1
1.00 0.2538 3 4.131× 10−2 3
1.10 0.2445 4 9.490× 10−3 11
1.25 0.2455 3 5.072× 10−4 18
1.50 0.2736 8 4.721× 10−6 70

63

0.50 0.4980 4 5.001× 10−1 0
0.75 0.3150 9 2.518× 10−1 0
0.90 0.2695 1 1.158× 10−1 0
1.00 0.2537 6 5.057× 10−2 6
1.10 0.2460 6 1.619× 10−2 14
1.25 0.2455 1 1.868× 10−3 4
1.50 0.2642 4 4.810× 10−5 37

126

0.50 0.4050 4 5.005× 10−1 0
0.75 0.2935 1 2.568× 10−1 0
0.90 0.2645 8 1.317× 10−1 4
1.00 0.2537 11 7.147× 10−2 11
1.10 0.2477 9 3.382× 10−2 18
1.25 0.2452 5 9.051× 10−3 20
1.50 0.2528 0 8.775× 10−4 2

Table 5.12: Fitted implied volatilities and respective option prices along with their corresponding relative

errors w.r.t. the provided data under the dynamic SABR model.

By analyzing these results, we see that the relative errors increase when compared either with the

Heston model or the Static SABR model, which is expected and has already been discussed. Not much

else can be added to the analysis of the results.
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5.6 Model Overview

To round up all the results shown before and to facilitate comparisons between the models, in Table 5.13

we combine all the costs obtained from the training of all models. For the models where the training was

done on each maturity independently (Constant Volatility with independent fits and Static SABR), the

values shown denote the sum of the costs for all maturities, ΣCosts.

Model Cost ΣCosts

Constant Vol. (indep.) - 0.1150
Constant Vol. (dep.) 0.1248 -
Dupire - -
Static SABR - 0.0008
Heston 0.0025 -
Dynamic SABR 0.0108

Table 5.13: Comparison between the costs from the calibrated stochastic volatility models.

We begin by noting that under the Constant Volatility model, the cost from the dependent fits is

larger than the sum of the costs of the independent fits, which is unsurprising given that when fitting all

maturities at once, the optimizer will find the implied volatility that minimizes the cost for all maturities,

which will not necessarily be the one that minimizes the cost of each single maturity independently.

Regarding Dupire’s model, as we stated before no closed form solution exists for this model, meaning

that we aren’t able to calculate the cost function. However, we saw before that the simulations from the

Monte Carlo pricer presented the implied volatility smile phenomenon, suggesting that this model is

more adequate that the constant volatility.

As for the Static SABR model, it showed a very significant improvement of 99.3% over the cost of the

constant volatility model with independent fits. This is no surprise, since the constant volatility model

was expected to fit the data very badly and Static SABR fit it almost perfectly. These costs should be

considered carefully, though, due to the overfitting mentioned earlier.

Regarding now the Heston and Dynamic SABR models, we can see that they also present a consid-

erable improvement of 98.0% and 91.3%, respectively, over the constant volatility model with dependent

fits, which is also unsurprising for the same reasons as before.

Comparing now the cost resulting from the Heston model with that from Dynamic SABR, we see

that even though both models fit the same data on a range of different maturities, Heston outperforms

the Dynamic SABR quite significantly. This is further corroborated by the comparison of the theoretical

functions in Figures 5.10 and 5.13, from which it is clear that the Heston model’s curves better fit the

data.

Finally, we can compare the sum of the costs from Static SABR with the costs from both Heston and

Dynamic SABR models. To this regard we can say that the fact that we have a significantly lower cost for

Static SABR model is unsurprising since the calibration performed under this model was done for multi-

ple maturities, independently, meaning that a better fit is possible, at the expense of the aforementioned

overfitting.
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5.7 Barrier Options

Having trained all the models, we are now able to use our results on a slightly modified Monte Carlo

method to price Barrier options. This has been described before in subsection 4.3.2 along with all the

expected shortcomings.

We priced several Barrier options with different barrier levels, using all the different models described

before. In these simulations we used a single maturity of 42 days and the calibrated parameters for each

of the models, shown earlier in their respective tables. The results of these simulations are shown in

Figure 5.16. For comparison, we also simulated some European option contracts, also represented in

Figure 5.16.
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(c) Static SABR model
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Figure 5.16: Option price curves of simulated European call options (light blue dot-dashed lines) and

Barrier call options with barrier levels B = 1.05e (red full line), B = 1.1e (orange dashed line) and

B = 1.25e (purple dotted line) under each of the models previously studied, for options with a maturity

of 42 days.
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Analyzing the results of Figure 5.16, we first note that, as expected, when we increase the barrier

level the option price decreases. This is indeed observed in all models’ simulations, and its cause has

been explained before, in section 2.1.2.

Possibly the most striking result that we can observe is just how different the price curves are for

the simulated barrier options across the models. As an extreme example, we can note that the curve

for the Barrier option with barrier level B = 1.1e under Dupire’s model is actually higher than the

curve with barrier level B = 1.05e under Heston’s model, which should never occur. To explain this

phenomenon, we can begin by noting that volatility is particularly important in barrier options. A higher

volatility translates into a higher probability of the barrier being surpassed and thus a higher chance of

activating the option. Because each model produces a different volatility behavior, we expect the prices

of barrier options to also be very different. Furthermore, we should also note that the models were

calibrated on European options. Indeed, when we compare all the European option price curves (blue

dot-dashed lines) we can clearly see that they are the same across all models. Thus, we can conclude

that even though the models agree when pricing European options (as they should, since they were all

calibrated on the same data set), they don’t necessarily agree on the prices of Barrier options.

A more in-depth study is required to verify which model produces the most accurate Barrier option

prices, but additional data would be required and this study is out of the scope of this work.
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5.8 Pitfalls Found in Implementation

During the implementation of all the models, some pitfalls were found. They were mostly solved, or at

least mitigated, and the models were able to perform as expected, as we saw in the previous section. For

future reference, and to prevent other researchers from repeating the same mistakes, we now summarize

not only the pitfalls observed but also their causes and how we were able to solve them or at least reduce

their impact.

5.8.1 Dupire Model

While implementing the Dupire model we noticed that the local volatility surface produced by the model

was heavily dependent on the chosen interpolation method. Moreover, we found that it was particularly

sensitive to the intervals ∆K and ∆T chosen in the interpolation. If chosen to be too large, the gradients

wouldn’t be able to capture the surface curvature and the local volatility surface would look unrealistic.

If chosen to be too small, because we used Delaunay’s triangulation method as interpolation, which

creates triangular planes between three points, the second derivative would be (wrongly) zero if K,

K + ∆K and K −∆K were all evaluated inside the same triangular plane, which is bound to be true for

the majority of points if ∆K is small enough. Thus, the intervals ∆K and ∆T have to be chosen very

carefully for the model to work properly.
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As an example, in Figure 5.17 we show how different choices for ∆K affect the local volatility surface.

(a) Surface Plot, ∆K/S0 = 0.2 (b) Contour Plot, ∆K/S0 = 0.2

(c) Surface Plot, ∆K/S0 = 0.025 (d) Contour Plot, ∆K/S0 = 0.025

Figure 5.17: Influence of ∆K on the local volatility surface.

As we can see, both surfaces look highly unrealistic, which serves to demonstrate the severity of

choosing inadequate values for ∆K and ∆T .

There exist two possible alternatives to solve this problem. On the one hand, we could significantly

increase the size of our data set. This would ensure that the size of the triangular planes from Delaunay’s

triangulation is small enough for the numerical derivatives to produce realistic results, even for small

values of ∆K and ∆T . The problem with this approach is the fact that more data isn’t always available,

and this alternative may not always possible. The other possible path, which was the one implemented,

is to test several values for the intervals and observe which of them produces the most realistic gradients

and the most realistic local volatility surface. This alternative has the caveat that the choice for the

intervals is very subjective and that we lose a great deal of robustness because an interval that is

appropriate for a given data set might perform poorly on other data sets.
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5.8.2 Heston Model

In the Heston model, we need to evaluate some integrals to find the closed-form solutions of call prices

(eqs. (3.34) and (3.35)). These integrals are evaluated between 0 and ∞, and, because they are not

analytically solvable, they have to be calculated numerically. We thus obviously need to define some

upper limits for the integrals, since numerical integration until ∞ is impossible. Cui et al. [Cui et al.,

2017] showed that usually these integrals only have to be evaluated until ≈ 100, because the integrands

decrease fast enough that they become negligible after this point. During our implementation, this

threshold proved to be insufficient when we evaluated the integrals for the earlier maturities with strikes

far below and far above S0. For such regions, some erratic oscillating behavior was found, which we

represent in Figure 5.18. This behavior was not described by Cui et al. possibly because they didn’t

study the implied volatility curve for such high and low strikes.

Figure 5.18: Comparison between the different theoretical curves obtained using the values 100 (green

dot-dashed line) and 400 (red full line) as upper integration limits in the Heston model.

This problem was solved simply by increasing the upper integration limits to 400, for which the oscil-

lating behavior disappeared.

5.8.3 SABR Model

One problem related to the SABR models is the fact that stock prices might become negative, which is

clearly absurd. This event is very rare and was usually only found in one of the simulated paths out of

100 000. The reason why this problem only occurred for the SABR models and wasn’t observed in Heston

is due to the fact that the volatility process in the former is not mean reverting. This detail enables the

volatility process to evolve without restrain. If the volatility process becomes extremely large, the jumps

in the stock price process become equally extremely large. In the limit, it is perfectly possible that one

of these jumps decreases the stock price process past zero. For the Heston model this problem is
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not observed because the volatility process (we used the variance process, but they are equivalent) is

mean-reverting, so that the volatility doesn’t evolve unrestrained and thus the prices don’t evolve too

erratically.

This negative price shortcoming is more problematic in the SABR model because, in the stock price

process, one of the terms is a stock price with an exponent β. If β 6= {0, 1} and S(t) < 0, the resulting

S(t+ ∆t) will become imaginary, and the whole pricing procedure fails.

To solve this problem, we simply cut the negative stock price paths to zero by applying the function

max[S(t), 0], preventing them from becoming negative.

5.8.4 Other Problems

During the implementation we also found that, in the Monte Carlo simulations, updating the volatility

process before the stock price produced results that didn’t match the theoretical predictions in both the

Heston and SABR models.

In other words, if we used

S(t+ ∆t) = σ(t+ ∆t). (. . .) + . . . , (5.10)

instead of the correct

S(t+ ∆t) = σ(t). (. . .) + . . . , (5.11)

the simulations deviate significantly from the theoretical predictions. This is expected because the whole

correlation mechanism, relating the two stochastic processes through the variable ρ, falls apart when we

use the first formula.

Though this might seem trivial, some care must be taken when implementing the Monte Carlo pricer

to use the updating equations in the correct order.

85



86



Chapter 6

Conclusions

Volatility is one of the most important subjects in all of quantitative finance, due not only to its impact on

the prices of options but also to its elusiveness. In this thesis we studied some of the models most used

to forecast this variable.

We began by implementing Dupire’s local volatility model, a non-parametric model which assumes

that volatility is a deterministic function of the stock price and the option’s time to maturity. This de-

pendence must be determined by interpolating some real option data, for which we used Delaunay’s

triangulation.

We also studied Heston and Static/Dynamic SABR stochastic volatility models, which, as the name

implies, assume that volatility itself is a stochastic variable, correlated with the stock price. These models

are particularly famous due to their closed form solutions that enable us to easily calibrate them, i.e. find

the values of the model variables that best fit the data. This calibration was done using a weight function

and the CMA-ES optimization algorithm.

Having trained all models, we input them into a numerical pricer, using the Monte Carlo method to

estimate the option prices under each model, which we then compared to the real data, for validation. We

also benchmarked each of these models against the simpler model of constant volatility, as assumed by

Black and Scholes. Finally, adapting the Monte Carlo pricers we were also able to price Barrier options.

6.1 Achievements

Regarding the stochastic volatility models, we saw that their theoretical predictions (obtained with the

respective closed form solutions) accurately followed real European call option prices, even for deep in-

and out-of-the money options. For data on a single maturity, the Static SABR model clearly performed

best, as is verified by the observed low value of the cost function observed with this model, though

some overfitting is expected to have occurred. It also vastly outperforms the constant volatility model,

which was unsurprising. When dealing with multiple maturities, the Heston model performed better than

Dynamic SABR, though both models outperform the constant volatility model.

For near-the-money strikes (i.e. K ∼ S0), the Monte Carlo simulations of all stochastic volatility
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models seemed to match both the data and the theoretical predictions, suggesting that the simulations

were working properly.

As for Dupire’s local volatility model, for which no theoretical predictions were available, we observed

that for near-the-money options the predictions obtained with the Monte Carlo simulations followed the

real data very closely.

On all Monte Carlo simulations we also observed some divergence for options with lower strikes,

which we were able to explain using the Greek Vega and the relative change of the stock price w.r.t.

volatility. One other divergent behavior was found in options with very high strikes and short maturities,

which we linked to the low number of simulated paths that are able to reach such strikes in the Monte

Carlo simulations.

We were then able to price barrier options by adapting the Monte Carlo algorithm, though we weren’t

able to validate our results due to a lack of data for such contracts. This achievement serves to prove

that pricing Exotic options with our methods is possible.

In conclusion, we may say all models greatly surpass the constant volatility model, providing results

that better match real world data. However, great care should be employed when applying the calibra-

tions to Monte Carlo pricers, particularly for deep in-of-the-money call (or deep out-of-the-money put)

options, since the results might diverge.

6.2 Future Work

Despite the good results obtained with the models, there is still much room for improvement. In particu-

lar, a lot could still be done to improve the Monte Carlo pricers: first, implementing importance sampling

on the simulated paths could significantly reduce the number of simulations required to produce each

prediction, thus reducing computation time (this has been done for the Heston model in Stilger [Stilger,

2015]). Secondly, we could use the antithetic variates method to reduce the variance of the simula-

tions. Finally, we could use low-discrepancy sequences, such as Sobol sequences [Sobol’, 1967], in the

random number generator used at each simulation step of the Monte Carlo method.

Regarding the models, we could also study the mean-reverting version of the Static SABR model,

which prevents the volatility from becoming negative or exploding to very large results. Some different

functions for ρ(t) and ν(t) could also be considered, besides the ones we used.

Finally, some study on how each model influences the Greeks of the options would also be quite

interesting and useful.
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Appendix A

Option Market Data

Here, we present data for European options, which we will use to train and validate the models presented

in this thesis. For data compliance reasons, the strike prices were normalized by the initial stock price

i.e. K → K/S0 so that the original strike prices are inaccessible. Suffice it to say that the underlying

asset of the options here represented is a stock index, i.e. a weighted average of the prices of some

selected stocks (e.g. PSI-20 (Portugal)).

The data provided pertains to the options’ implied volatilities. We can easily obtain their prices from

these values using eq.(3.5). The converted prices of call European options are also shown below.

The number of days here denoted correspond to trading days (i.e. days where exchanges are open

and trading occurs) so that one month corresponds to 21 days and one year to 252.

T (days) K(e) σimp,mkt(yr−0.5) Cmkt(e)

21

0.50 0.7082 5.000× 10−1

0.75 0.4632 2.506× 10−1

0.90 0.2989 1.044× 10−1

1.00 0.2425 2.792× 10−2

1.10 0.2314 2.421× 10−3

1.25 0.2699 5.345× 10−5

1.50 0.3433 5.748× 10−7

42

0.50 0.5556 5.000× 10−1

0.75 0.3876 2.519× 10−1

0.90 0.2824 1.107× 10−1

1.00 0.2461 4.006× 10−2

1.10 0.2354 8.525× 10−3

1.25 0.2525 6.209× 10−4

1.50 0.2968 1.583× 10−5

T (days) K(e) σimp,mkt(yr−0.5) Cmkt(e)

63

0.50 0.4789 5.001× 10−1

0.75 0.3452 2.530× 10−1

0.90 0.2658 1.153× 10−1

1.00 0.2401 4.787× 10−2

1.10 0.2330 1.421× 10−2

1.25 0.2438 1.799× 10−3

1.50 0.2749 7.656× 10−5

126

0.50 0.3878 5.004× 10−1

0.75 0.2954 2.569× 10−1

0.90 0.2444 1.272× 10−1

1.00 0.2295 6.467× 10−2

1.10 0.2269 2.862× 10−2

1.25 0.2340 7.569× 10−3

1.50 0.2521 8.580× 10−4

Table A.1: Data to be used in model calibration and validation.
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Figure A.1: Scatter plots of the implied volatilities and European call prices provided
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Appendix B

CMA-ES Algorithm Formulas

Here we present the formulas required for the calculation of the mean vector, m, and the covariance

matrix, C, to be used, at each iteration of the CMA-ES optimization algorithm, on the multivariate normal

distribution

N(x;m,C) =
1√

(2π)D|detC|
exp

(
−1

2
(x−m)TC−1(x−m)

)
. (B.1)

We will directly follow the steps shown in [Dilão and Muraro, 2013]. For a more in-depth explanation

of the algorithm, refer to the cited article.

B.1 The Optimization Algorithm

B.1.1 Initialization

We initialize the algorithm by setting the first mean vector, m(0), to some initial guess, θ0, and the

covariance matrix to the unit matrix, C(0) = I.

B.1.2 Sampling

We sample λ points, y(1)
i , i = 1, . . . , λ, from a multivariate normal distribution N(x;0,C(0)), generating

the first candidate solutions

x
(1)
i = m(0) + σ(0)y

(1)
i , i = 1, . . . , λ, (B.2)

where σ(0) = 1.

B.1.3 Classification

The candidate solutions are ordered based on their cost function, such that we denote x
(1)
i:λ as the i-

th best classified point from the set x(1)
1 , . . . ,x

(1)
λ . In other words, Cost(x

(1)
1:λ) ≤ Cost(x

(1)
2:λ) ≤ . . . ≤

Cost(x
(1)
λ:λ).
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B.1.4 Selection

From the ordered set x(1)
i:λ we choose the first µ data points (with the lowest cost) and discard the others.

We then define the weights ωi as

ωi =
(log (µ+ 1/2)− log(i))∑µ
i=1 (log (µ+ 1/2)− log(i))

, i = 1, . . . , µ. (B.3)

As an alternative we could also use ωi = 1/µ.

B.1.5 Adaptation

We are finally able to calculate the new mean vector and covariance matrix using

〈
y(k)

〉
w

=

µ∑
i=1

ωiy
(k)
i:λ , (B.4)

m(k) = m(k−1) + σ(k−1)
〈
y(k)

〉
w

=

µ∑
i=1

ωix
(k)
i:λ , (B.5)

p(k)
σ = (1− cσ)p(k−1)

σ +
√
cσ(2− cσ)µeff

(
C(k−1)

)−1/2 〈
y(k)

〉
w
, (B.6)

σ(k) = σ(k−1)exp

(
cσ
dσ

(
‖p(k)

σ ‖
E∗

− 1

))
, (B.7)

p(k)
c = (1− cc)p(k−1)

c + h(k)
σ

√
cc(2− cc)µeff

〈
y(k)

〉
w
, (B.8)

C(k) = (1− c1 − cµ)C(k−1) + c1

(
p(k)
c

(
p(k)
c

)T
+ δ

(
h(k)
σ

)
C(k−1)

)
+ cµ

µ∑
i=1

ωiy
(k)
i:λ

(
y

(k)
i:λ

)T
, (B.9)

where we define

µeff =

(
µ∑
i=1

ω2
i

)−1

, (B.10)

cc =
4 + µeff/D

D + 4 + 2µeff/D
, (B.11)

cσ =
µeff + 2

D + µeff + 5
, (B.12)

dσ = 1 + 2 max

(
0,

√
µeff − 1

D + 1
− 1

)
+ cσ, (B.13)

c1 =
2

(D + 1.3)2 + µeff
, (B.14)

cµ = min

(
1− c1, 2

µeff − 2 + 1/µeff

(D + 2)2 + µeff

)
, (B.15)

E∗ =

√
2Γ
(
D+1

2

)
Γ
(
D
2

) , (B.16)
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h(k)
σ =


1, if

‖p(k)
σ ‖√

1−(1−cσ)2(k+1)
<
(

1.4 + 2
D+1

)
E∗

0, otherwise

, (B.17)

δ
(
h(k)
σ

)
=
(

1− h(k)
σ

)
cc (2− cc) , (B.18)

(
C(k)

)−1/2

= B
(
D(k)

)−1

BT , (B.19)

with D corresponding to the number of parameters of the model (i.e. the dimensions of the sample

space) and we define p
(0)
σ = p

(0)
c = 0.

These steps are repeated until the termination criterion is met.
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