
Optimization of Machine Learning Jobs in the Cloud

João Pedro Neves Nogueira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Paolo Romano

Examination Committee

Chairperson: Prof. José Luís Brinquete Borbinha
Supervisor: Prof. Paolo Romano

Member of the Committee: Prof. João Coelho Garcia

January 2021

ii

Acknowledgments

Foremost, would like to thank my Supervisor Professor Paolo Romano that has always guided me in the

making of this thesis and also made the previously unfamiliar topic of Machine Learning optimization so

interesting and fun to learn. I would also like to thank both Maria Casimiro and Pedro Mendes that were

always there for support and provided valuable feedback and ideas to achieve our proposed system.

Finally I would like to thank my family and Carolina for supporting me after long days and nights of

work.

iii

iv

Resumo

Os sistemas de aprendizagem automática e de computação em nuvem tem sido duas das áreas de

crescimento mais rápido nos últimos anos. Recentemente têm surgido inovações na area de arendiza-

gem automática, melhorando a sua capacidade de atingir elevados nı́veis de precisão e reduzindo o

seu tempo de treino. Para a otimização de sistemas de aprendizagem automática com datasets muito

grandes e uma larga quantidade de hiper-parâmetros, a maioria de utilizadores recorre à computação

em nuvem para conseguir proceder à sua otimização, facilitando a sua acessibilidade. Para fazer

isto, os utilizadores enfrentam a barreira de escolher quais são os parâmetros de configuração na

nuvem, para conseguirem executar os seus algoritmos de aprendizagem automática, o que pode ser

bastante difı́cil devido à enorme escolha de configurações possı́veis, dado que uma escolha errada

destes parâmetros irá traduzir-se em custos elevados para modelos grandes. Recente sistemas de

estado da arte têm optado por uma aproximação de otimização de ambos parâmetros de sistemas de

aprendizagem automática e parâmetros de configuração de computação em nuvem, com o objetivo de

minimizar custos relacionados com computação em nuvem enquanto se obtêm a melhor configuração

de hiper-parâmetros para o especı́fico algoritmo de aprendizagem automática. De qualquer modo, este

processo de otimização também requer a exploração de muitas configurações e impõe grandes gastos

económicos. Por esta razão é crucial que o algoritmo de otimização seja eficiente a nı́vel de tempo,

convergindo para a configuração ótima da forma mais rápida possivél. Esta dissertação propõe Hydra,

um sistema que procede à otimização de sistemas de aprendizagem automática, melhorando desvanta-

gens de sistemas de estado-da-arte que estende ao rapidamente convergir em direção à solução ótima

sem perder tempo em treinar o modelo, usando muitas configurações de baixo custo enquanto aplica

técnicas de transferência de conhecimento para melhorar o desempenho do modelo e, ultimamente a

reduzir o custo final por 35%.

Palavras-chave: Sistemas de Aprendizagem Automática, Computação em Nuvem.

Para a otimização de sistemas de aprendizagem automática com datasets muito grandes e uma

larga quantidade de hiper-parâmetros, a maioria de utilizadores recorre à computação em nuvem para

conseguir proceder à sua otimização, facilitando a sua acessibilidade. Para fazer isto, os utilizadores en-

frentam a barreira de escolher quais são os parâmetros de configuração na nuvem, para conseguirem

executar os seus algoritmos de aprendizagem automática, o que pode ser bastante difı́cil devido à

enorme escolha de configurações possı́veis, dado que uma escolha errada destes parâmetros irá

traduzir-se em custos elevados. Recentes sistemas de estado da arte têm optado por uma aproximação

de otimização de ambos parâmetros de aprendizagem automática e de computação em nuvem, com o

objetivo de minimizar custos relacionados enquanto se obtêm a melhor configuração de hiper-parâmetros

para o especı́fico algoritmo. Este processo de otimização também requer a exploração de muitas

configurações e impõe grandes gastos económicos. Por esta razão é crucial que o algoritmo de

otimização seja eficiente a nı́vel de tempo, convergindo para a configuração ótima da forma mais

rápida possivél. Esta dissertação propõe Hydra, um sistema que procede à otimização de sistemas

de aprendizagem automática, melhorando desvantagens dos sistemas estado-da-arte integrados ao

v

rapidamente convergir em direção à solução ótima sem perder tempo em treinar o modelo, usando

muitas configurações de baixo custo enquanto aplica técnicas de transferência de conhecimento para

melhorar o desempenho do modelo e, ultimamente a reduzir o custo final por 35

vi

Abstract

Machine Learning and Cloud Computing have been two of the fastest growing areas in the the past

few years. Recent developments have emerged regarding machine learning optimizations, enhancing

their accuracy and training time. However, for optimization procedures that have very large datasets

and many hyperparameters, most users turn to the cloud to offload the inherent computation that would

otherwise be infeasible locally. In order to do so, users face the task of picking cloud parameters to

deploy their machine learning jobs which can be difficult due to the wide range of possible configu-

rations and whose misconfiguration translates into large, unnecessary costs for large scale models.

Recent state-of-the-art systems have taken the approach of performing optimization of both cloud con-

figurations and machine learning hyperparameters in a joint fashion, with the goal of minimizing cloud

related expenses while reaching the best hyperparameter configuration for the specified machine learn-

ing algorithm. Nonetheless, the optimization procedure involved by these approaches can also require

exploring a large number of expensive configurations and impose, in its turn, large economical costs.

It is thus crucial that the optimization procedure is as time efficient as possible and converges rapidly

towards the optima. This thesis proposes Hydra, a self-tuning system solution that performs optimiza-

tion of machine learning algorithms improving some drawbacks of extended state-of-the-art systems by

rapidly converging towards the optimum solution without wasting time on bootstrapping the model, using

many low-budget evaluations of configurations while applying transfer-learning to enhance the models’

performance, ultimately reducing overall costs by 35% of the extended work.

Keywords: Machine Learning, Cloud Computing.

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Thesis Outline . 3

2 Background 5

2.1 Background on black-box modeling and optimization techniques 5

2.1.1 Black-box modeling for regression and classification 5

2.1.2 Optimization techniques . 7

2.2 Hyperparameter Optimization . 9

2.2.1 Bayesian Optimization . 9

2.2.2 Hyperband . 10

2.2.3 Fabolas . 10

2.2.4 Google Vizier . 11

2.2.5 BOHB . 12

2.2.6 Efficient Transfer Learning Method for Automatic Hyperparameter Tuning 13

2.3 Optimization in the Cloud . 14

2.3.1 Quasar . 14

2.3.2 HCloud . 15

2.3.3 CherryPick . 15

2.3.4 PARIS . 16

2.3.5 Lynceus . 17

2.4 Summary . 18

ix

3 The Hydra Optimizer 21

3.1 Overview . 21

3.2 Design Details . 22

3.2.1 Budget Sampling . 24

3.2.2 Cost of evaluating configurations . 25

3.2.3 Cost of identifying the next configuration to be evaluated 26

4 Evaluation 29

4.1 Test Environment . 29

4.2 Experiment Run-through . 31

4.2.1 Plotting details . 33

4.3 Hydra variants comparison . 33

4.3.1 Duration of the optimization process . 33

4.3.2 Cost of the optimization process . 36

4.3.3 Summary . 43

4.4 Comparison with state of the art optimizers . 43

4.4.1 Cost of the optimization process . 43

4.4.2 Hydra Overhead . 49

4.4.3 Duration of the optimization process . 49

4.4.4 Summary . 54

5 Conclusions and Future work 55

Bibliography 57

x

List of Tables

2.1 Comparative analysis of state-of-the-art systems. 19

4.1 Description of CNN, RNN and Multilayer hyperparameter values. 30

4.2 Description of UNet experiment hyperparameter values. 30

4.3 MNIST hyperparameter values. 31

4.4 Hyperband bracket decomposition with maximum budget = 60000, minimum budget = 3750. 32

4.5 Overhead value for each system in each experiment . 49

xi

xii

List of Figures

3.1 Hydra system overview . 22

4.1 Total time (seconds) and Loss (in log scale) in CNN experiment 34

4.2 Total time and Loss in log scale in Multilayer experiment (a) and Total time and Loss in log

scale in RNN experiment (b) . 35

4.3 Total time (seconds) and Loss in log scale in MNIST experiment 36

4.4 Total time and Loss in UNET experiment focused in 1st Iteration (a) and focused on the

remaining Iterations (b) . 37

4.5 Accumulated cost (dollar) and loss in CNN experiment scaled in the 1st iteration (a) and

then scaled in the remaining iterations. 38

4.6 Total time and Loss scaled in the first iteration in Multilayer experiment (a) and in RNN

experiment (b) . 39

4.7 Total time and Loss scaled in iterations 2 to 10 in Multilayer experiment (a) and in RNN

experiment (b) . 39

4.8 Accumulated wall-clock time (in minutes) in MNIST experiment focused in 1st Iteration (a)

and focused on the remaining Iterations (b) . 40

4.9 Accumulated Cost in dollars [$] in UNET experiment focused in 1st Iteration (a) and fo-

cused on the remaining Iterations (b) . 42

4.10 Accumulated Cost ($) and Loss in CNN, scaled in the first iteration. 44

4.11 Accumulated Cost ($) and Loss in CNN, scaled in the 2nd to 10th iterations. 44

4.12 Accumulated and Loss with RNN (a) and Multilayer in log scale (b) 46

4.13 Accumulated and Loss with RNN (a) and Multilayer (b) . 47

4.14 Accumulated Cost in dollars [$] in UNET experiment focused in 1st Iteration (a) and fo-

cused on the remaining Iterations (b) . 48

4.15 Accumulated wall-clock time in minutes in CNN experiment focused in 1st Iteration (a)

and focused on the remaining Iterations (b) . 50

4.16 Accumulated wall-clock time in minutes in RNN experiment focused in 1st Iteration (a)

and focused on the remaining Iterations (b), and in Multilayer again focused on the 1st

Iteration (c) and remaining Iterations (d) . 51

4.17 Accumulated Wall-clock time (minutes) and Loss in MNIST, scaled in the 1st iteration, (a)

scaled in the 2nd to 10th iterations (b) . 52

xiii

4.18 Accumulated Wall-clock time (minutes) and Loss in UNET, scaled in the 1st iteration, (a)

scaled in the 2nd to 10th iterations (b) . 53

xiv

Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) has emerged as a popular research area that aims at automating model building

in order to develop self learning systems. ML branches from artificial intelligence and pursues the goal

of extracting information from data for decision making, pattern identification, and many other possible

applications requiring minimal human interaction. Some examples of ML applications are self-driving

cars [1], website recommendation services [2], satellite image recognition [3] and many more [4–9]. For

a ML algorithm to learn and achieve a good accuracy, the data used in it needs to have both quality -

the training data should be representative of the target application scenario - and quantity - a sufficiently

large volume of data should be available to provide an adequate characterization of the phenomenon

to be modeled. Since end-users need ML models to be built as fast as possible, the training procedure

also demands relatively high resource requirements that scale with the targeted accuracy and amount

of training data.

As the amount of digital data grow, novel sophisticated ML algorithms are developed and larger ap-

plications for ML are frequently deployed, demanding an exponential amount of resources from users in

large scale jobs. Associated to these models are hyperparameters, which is a type of parameter that

controls the training process of ML algorithm. To enhance the accuracy of ML model, end users were

accustomed to tune its parameters, but the complexity of testing and tuning the hyperparameters of a ML

job has become prohibitive given the increasing complexity of the ML jobs being currently used. There-

fore, researchers have investigated automated optimization techniques that address hyperparameter

selection of machine learning jobs [10–14]. These optimization methods follow a black box approach,

which requires testing the model multiple times in different configurations. Given the resource-intensive

nature of training and optimizing complex ML jobs [15], users have naturally turned to the cloud to deploy

this kind of jobs.

Cloud computing is one of the areas in technology that has bloomed more in recent years, allowing us

to offload large workloads to large data centers that have the ability to process them in a relatively short

time. Using cloud computing can lead to significant capital cost savings thanks to its convenient pay-

1

per-what-you-use pricing model. However, given the abundance and heterogeneity of available cloud

resources, users are faced with a complex choice when they need to pick the right type and amount of

resources for deploying their jobs. Thereupon, researchers developed systems such as [6, 7, 16–19], to

perform cloud optimization that enables users to reach a decision for what type of cloud configurations

should it pick to perform a certain job.

Unfortunately, though, most of the existing literature looks at the optimization of the cloud configura-

tion for a ML job and at the tuning of the hyper-parameters of a ML job as to two independent problems.

Only very recently [7], the importance of jointly optimizing these two types of parameters has been rec-

ognized. In fact, the choice of hyper-parameters related to, e.g., the synchronization of the parallel/dis-

tributed training process can be strongly affected by the number and type of cloud resources employed

to support the training process (e.g., a small cluster of powerful machines vs a large cluster of inexpen-

sive machines). As a consequence, optimizing the two set of parameters (model’s hyper-parameters

and cloud configuration) independently, as done in most of the existing literature, can lead to identifying

configurations that are up to 3.7× less efficient [7]. On the other hand, joint optimizing these two set of

parameters leads to an exponential growth of the resulting search space, urging for novel solutions that

can efficiently crawl this search space and minimize the cost and latency of the resulting optimization

process.

1.2 Objectives

In the following, the state of the art in the area of optimization of ML training jobs in the cloud is critically

analyzed. In the light of this analysis, two main research directions are identified and proposed for my

MSc dissertation:

1. Investigating how to extend BOHB [12], a recently proposed method for hyperparameter tuning

to optimize, in a joint fashion, both the model’s hyper-parameter and the choice of the underlying

cloud platform. The key idea at the basis of BOHB is to test configurations ”partially”, i.e., allocating

an intentionally limited ”budget” (e.g., time or cost) to each configuration test and timing out the

testing once the allocated budget is depleted. This information is used to build a model of the

application’s efficiency over the set of untested configurations, which can then be consulted to

drive the optimization process. The process is then repeated iteratively, invoking the model to

select which configurations to test in the next iteration, which will test a number of configurations

decreased by a factor β, allocating to each configuration test a budget increased by the same factor

β. Unlike in conventional model-driven approaches [10, 13, 20], which do not explicitly control the

cost of testing a configuration, the cost incurred to create a model can be significantly reduced.

2. BOHB predicts the quality of a configuration via models that are built considering a specific testing

budget. As the optimization process progresses, the budget used for testing increases exponen-

tially, and the number of configurations tested at each iteration also drops with an exponential rate.

As a consequence, the models used by BOHB, as the optimization process evolves, are based

2

on an exponentially decaying number of configurations, which, we argue, can limit their prediction

accuracy significantly. To cope with this limitation, we plan to extend BOHB to incorporate trans-

fer learning techniques aimed at extrapolating the predicted configuration quality across different

budgets. Through the use of transfer learning techniques, the models used by BOHB to steer

the optimization process will be able to retain and exploit the knowledge acquired when testing

configurations with smaller budgets.

1.3 Contributions

This thesis focuses on the analysis of machine learning optimization systems, providing insights and

developing a system that covers underlying drawbacks of recent state-of-the-art systems that are shown

to have good performances. The main contributions are:

• Overview analysis and comparison of state-of-the-art systems.

• Hydra, a self-tuning system solution that performs optimization of machine learning algorithms im-

proving some drawbacks of previous systems by rapidly converging towards the optimum solution

without wasting time on bootstrapping the model, using many low-budget evaluations of configu-

rations while applying transfer-learning to enhance the models’ performance, ultimately reducing

overall costs.

1.4 Thesis Outline

This thesis is structured in five Chapters. Chapter 2 covers the background on this thesis, describing

modeling and optimization techniques and will then further analyze related work on systems that op-

timize machine learning hyperparameters and/or cloud resources. Chapters 3 describe Hydra, going

through the implementation, design and workflow of the system. Chapter 4 covers the description of the

datasets used in the experiments, and also describe the experiments themselves, and then finally will

evaluate the results of Hydra in the previously described experiments. Lastly, in Chapter 5, the conclu-

sions of this work is presented and possible future work in order to improve and innovate the proposed

system.

3

4

Chapter 2

Background

In this chapter, we will firstly cover some background on black-box modeling and some relevant optimiza-

tion techniques, followed by the introduction of state-of-the-art systems in the context of hyperparameter

optimization. Then, we transition to cloud optimization. Finally, a brief summary of the presented state-

of-the-art techniques is discussed.

2.1 Background on black-box modeling and optimization techniques

In the context of optimization and self-tuning of complex applications, the goal is to optimize the applica-

tion’s performance/efficiency while minimizing the number of application’s configurations to be tested.

This section overviews existing black-box methods aimed respectively at modeling 2.1.1 and at opti-

mizing 2.1.2 the performance of complex systems.

2.1.1 Black-box modeling for regression and classification

In the following, we provide background on some of black-box modeling techniques that are more

commonly employed to capture the dynamics of complex machine learning training jobs. As we will see,

in fact, the modeling techniques surveyed in the following are at the basis of the systems, reviewed in

Section 2.1.2, which target the optimization of this challenging type of systems.

Gaussian Processes

A Gaussian Process [21] (GP) is a stochastic process that is a generalization of the Gaussian prob-

ability distribution. It is a non-parametric approach, which means that it will find a distribution of the

possible functions that are similar to the data previously observed.

According to [21] a GP defines a prior over normally distributed functions, and once some data has

been acquired, it can be converted into a posterior over functions. Even though it might seem unfeasible

5

to find a function that correctly represents a distribution, it is facilitated by having the distribution over the

function’s values at a finite set of points.

Given a finite set of points x1, ..., xn a GP assumes that p(f(x1), . . . , f(xn)) is jointly Gaussian with

some mean µ(x) and covariance
∑

(x) given by
∑

ij = k(xi, xj) , where k is a positive definite covari-

ance function or kernel. The main idea here is that if some xi is considered to be similar to xj by the

covariance function, then it is expected that the output of the function at those points should be similar

as well.

Transfer Learning

In a black-box hyperparameter optimization scenario, we strive to learn what are the specific config-

urations that maximize the objective function. In order to do that, at the beginning, we need to sample

some configurations that will have a relatively high probability of achieving bad results (since they are

random) and will have a high cost.

Despite of having tested worse performing configurations, some information can be leveraged in

order to improve the probability of selecting a good configuration in the future. If a rough approximation

of the objective function is produced, we can take this one step further by sampling from it and take

that information into account when selecting a configuration to be sampled in the real objective function.

Also, it is possible to extrapolate knowledge from similar experiments so that the initial model is better

and improve its overall convergence to the optimum.

This is the base goal of transfer learning, i.e. passing the knowledge from previous tasks that are

similar to the real. Since the similarity between tasks can vary, we need to evaluate whether or not it is

worth it to use this technique. This is usually done by comparing the base model without training and

one with transfer learning training. If the accuracy increases and the training time decrease with transfer

learning, it can be advantageous to use.

Some works [22] have done this by learning the model using samples from low-cost approximations

of the real model that produce a rough estimate of the performance of the authentic system. In [23],

transfer learning techniques are implemented to leverage previous tested models on different dataset to

explore hyperparameter settings for a better result.

Recommender Systems

In abstract terms, Recommender Systems (RS) [24] have the goal of providing the end users with

recommendations of some object/property that they can find interesting. Essentially, they are useful

tools that interact with complex datasets of information, which can deduct the interest of users.

This type of systems are found everywhere on the web, especially e-commerce websites such as

Netflix or Amazon and can be advantageous towards both the user and the e-commerce owner. Given

that the goal is to provide relevant user-specific recommendations, this can be done if we keep a track of

user preferences, e.g. how much did they like a certain movie. Hence, we can send custom suggestions

6

based on that rating, where the amount of user information that exists on the system is proportional to

the accuracy of the produced recommendations.

In the direction of getting the correct recommendations to the correct users, a RS normally uses

a rating matrix that keeps users ratings for that purpose. However, this matrix tends to have a large

amount of missing values due to the fact that normally users provide feedback on a very limited number

of items. To solve this issue, most RS use Collaborative Filtering technique [25] (CF). In order to explain

this technique in succinct manner, take the example of two users having a very similar taste for the

same set of items; if they have the same utility for items 1 to x, we can safely presume that they should

have continue having similar utility with respect to the item x+1. The utility refers to the rating the users

provide to items they have bought or had experience with. CF is used by several state-of-the-art systems

such as Quasar [16] for instance, that takes advantage of it to estimate the impact of resource scale-out

and scale-up, which will be explained in Section 2.3.1.

Decision Trees

Some models that are used for classification and/or regression i.e., their co-domains are respectively

discrete and continuous, face common problems such as having many irrelevant predictor variables,

therefore needing to preform feature selection improve accuracy. A method that does this quite well is

Decision Trees (DT) [26] since they are impervious to the previous problem and offer some advantages

such as incorporating naturally numeric and categorical data.

DT builds classification or regression models in a top-down tree-structured fashion. A DT is com-

posed by nodes that have an associated rule, and leaf nodes that label the data. Each node divides the

existing data that was transferred from its parent node, according to its own associated rule, and transfer

the resulting division towards the two child nodes where on one side reside the data follow the imposed

rule and on the other resides the remaining data.

Random Forests (RS) represent an interesting extension of the concept of DTs [27]. RSs are com-

posed by collections of different DT derived from different samples of the dataset and vote on the result

of a given input. The outputs of the different DTs, in the inference phase, are then reconciled using a

voting scheme. Being build in this manner, RF is less subjective to over fitting than the regular DT [27].

2.1.2 Optimization techniques

Existing optimization techniques can be coarsely classified depending on whether they use a model

of the objective-function that is being maximized/minimized or whether they operate in a model-free

fashion.

7

In the following, we overview two model-free optimization approaches, namely hill-climbing and sim-

ulated annealing, and one model-based optimization technique, namely Bayesian Optimization.

Model-Free

Hill Climbing and Simulated Annealing

Hill Climbing [28] is a local search technique that can give us a notion about what configuration is

better to sample next by moving towards configurations of increasing quality, until it reaches a point

where the neighbors of the parameters it chose do not have a higher value. This technique has its key

strength in its simplicity. However, it can be severely limited with objective functions that have a large

amount of spikes that translate to several local optimums.

Simulated Annealing [29] is another model-free local search technique that improves efficiency sig-

nificantly regarding previous model-free techniques. It is more robust than hill climbing because hill

climbing never picks lower values, i.e. go downhill, hence it might get stuck in a local maximum, and

even if it is compared with a stochastic variation of the same algorithm, it proves to be complete but not

as efficient.

Unlike hill climbing, simulated annealing can pick bad moves instead of always picking the best.

The probability of picking a worse configuration rather than the current best is related to a, so called,

”temperature” variable that decreases over time, where a high temperature increases the probability of

a bad configuration being chosen and a low temperature the opposite.

Hence, the general goal in this algorithm is in the beginning start exploring recklessly, e.g. choosing

worse configurations than the current ones, and as the algorithm progresses it is more careful to the

point where it only chooses better configurations.

Bayesian Optimization

Bayesian Optimization (BO) [30] is a model based optimization technique that operates in an online

fashion. More in detail, BO assumes no initial knowledge on the objective function and exploits the

information gathered by testing configurations to construct, in an online way, a model of the function

being optimized. Overall, BO strives to find a good balance in the exploration vs exploitation dilemma [31]

by favoring the selection of configurations that, on one hand, the model predicts to have high quality

(thus exploiting the model’s knowledge), as well as, of configurations for which the model shows large

uncertainty (thus encouraging explorative behaviors).

As stated in [30] BO uses prior functions, such as GPs as presented previously, to build a probabilistic

model of the sampled data. The configuration selection is based on an acquisition functions that choose

what point is the best candidate to sample and several acquisition functions have been proposed in the

literature. Probability of Improvement (PI) [32] is an acquisition function that considers points that have

8

a higher probability than the current one of being better. This has the disadvantage of discarding points

that might not fit this requirement but have higher uncertainty. Hence, PI is prone to under-explore

globally and getting stuck into local optima [30]. Expected Improvement (EI) is another acquisition

function that, analogously to PI, looks for configurations that are likely to outperform the currently known

optimum. However, unlike PI, the EI uses the model to estimate the predicted magnitude of improvement

with respect to the current optimum. As such, EI tends to achieve a better tradeoff between exploration

and exploitation.

BO algorithms have many variants and the main differences between them is in the methods they

employ to construct a model. In section 2.2.1 we will discuss BO with GP as a model in an hyperparam-

eter optimization context.

2.2 Hyperparameter Optimization

As previously discussed, in machine learning many algorithms require the user to set some hyperpa-

rameters. This type of parameters are called hyper because they influence how the algorithm will learn.

Examples of hyperparameters are the synchronization method and batch size used by different workers

in a distributed training process [33]. Unfortunately, guessing a good value for a model’s hyperparam-

eters beforehand is far from being a trivial task, as their correct tuning is affected by a large number of

factors, such as the shape of the function that the ML model is learning or the number/type of computa-

tional resources being harnessed in the learning process.

In the section 2.1.2 we have covered some approaches for optimization can be applied in this sce-

nario. However, machine learning algorithms tend to have large training times and require a large

number of resources such as powerful CPUs and in some cases even one or more GPUs. Given this,

it is imperative that the optimization task minimizes both cost and time while providing a set of hyperpa-

rameters that ensure optimal (or close to optimum) performance.

In this section we will review some state-of-the-art optimization techniques in the scenario of hyper-

parameter optimization that approach the problem in different ways.

2.2.1 Bayesian Optimization

The existing approaches that use BO for hyperparameter optimization build a model, often based on

GP, that predicts, for each possible hyperparameter value, the corresponding accuracy achievable by

the model. A great advantage of this model is that it accumulates all data from previous evaluations of

the objective function, which typically leads to producing more accurate predictions and, consequently,

to enhance the speed of convergence towards optimal solutions.

This technique proves to be very efficient in providing highly accurate configurations but there are

some intrinsic weaknesses associated to it, such as: i) it needs to have some samples before building

a model; ii) each individual sample has a high cost; iii) GPs are very slow to train, especially if a large

number of configurations have been tested. Consequently the initial phase is costly and slow. Besides

9

this, in large datasets or in scenarios with a substantial amount of hyperparameters, BO will scale poorly

because it will need to train the algorithm on the whole dataset and build increasingly complex models

for each hyperparameter it is added.

In the following, we will discuss some algorithms that mitigate this disadvantage by adopting tech-

niques such as transfer learning and others that provide cheaper costs and meet the same or better

results in the process.

2.2.2 Hyperband

Hyperband [11] (HB), is characterized as a model-free technique of hyperparameter optimization that

originated from pure exploitation bandit problems, that have the goal of minimizing regret, that is the

distance from the optimal solution as fast as possible, in any setting. This algorithm extends the Succes-

sive Halving [34] (SH) algorithm that performs in the following way: Given a growth factor N, a minimum

and maximum budget (e.g. wall clock time), a fixed number of randomly sampled configurations will be

evaluated with the minimum budget, then they will be compared. The top 1/N, multiplied by the number

of tested configurations will pass to the next phase, which is similar to the previous phase, with the

difference that it only evaluates the passed configurations and having the budget multiplied by N. This

algorithm stops when the maximum budget value is reached.

As described in [11], low budgets will produce noisy evaluations that can be misleading in SH, so HB

tackles this concern by doing multiple runs of SH and increasing, at each run, the minimum budget. As

such, HB mitigates the risk of being biased, hence staying in the Successive Halving iteration. However,

it may not scale well when the budget increases. Ultimately, HB recommends the configuration that

performed best across every run of SH.

HB has the advantage of being very fast regarding proposing good configurations in early stages. By

comparing it with BO, it proposes configurations and converges faster in the early stages. However, due

to its stochastic nature, HB suffers from the same issue of Random Search [35]. For instance, HB does

not leverage the information of previously done evaluations, since it only maintains a record of the best

performing configuration, making it converge slowly and most likely not reach the global optimum.

2.2.3 Fabolas

Fabolas [36] is a state-of-the-art technique for hyperparameter optimization that tries to increase the ef-

ficiency of BO when used to optimize machine learning jobs that need to digest large datasets. The idea

at the basis of Fabolas is to infer optimal configurations for training using the full dataset, based only on

observations performed using a subsampled dataset. This leads to speeding up the initial model building

phase and provides faster results when compared to traditional BO-based hyperparameter optimization

techniques [10, 13, 20].

Producing a model while using a subsampled dataset will result in cheaper function evaluations,

however it will also produce a worse approximation of the objective function which in turn will provide

worse samples. To tackle this issue, Fabolas models accuracy and training time as a function not only

10

of the hyperparameters’ configuration, but also of the dataset size. Based on this model, Fabolas seeks

the best trade-off global optimum. Finally, Fabolas extrapolates the knowledge to the original dataset by

predicting what configurations will achieve the best result.

This approach of constraining the resources needed to build the model in order to lower the cost

of function evaluations is similar to the HB approach of doing budget runs to minimize cost. However

Fabolas is not as fast as HB in the initial phase but it does converge faster than BO in general.

2.2.4 Google Vizier

Google Vizier [13] is a service that provides distributed black-box optimization techniques and can,

as such, be applied not only to hyperparameter optimization but also to other domains such as auto-

mated A/B testing e.g. tuning user–interface parameters. Vizier has then been superseded by Google’s

AutoML, which Google offers as a commercial service aimed to simplify the development of machine

learning-based services.

In Google Vizier, a study is an optimization process, that is composed by a set of trials. Each trial

is essentially the function evaluation of the algorithm to be optimized with a set of hyperparameters.

Its workflow is composed by suggestion workers that run the trials of a study, then they post the result

in a persistent database. After posting the result, evaluation workers will analyze the trial results and

then request new trials for the system with new parameters, which will get forwarded to the suggestion

service, that is composed by suggestion workers and will repeat the process. Each suggestion worker

will get a distributed lock while working on a trial, and will release it and write to the persistent data base

once it has completed or if it had a problem, e.g. has crashed. This enables the system to detect faulty

studies and preempt the study to stop wasting resources. Vizier also provides a mechanism that enables

the client to implement its own optimization algorithms instead of the ones provided by the platform.

The system has an early stopping mechanism to stop trials that are expected to have bad outcomes.

In order to do this efficiently, Vizier has two rules that need to be valid in order for the Trial to proceed; the

first one is the performance curve stopping rule, that will halt the trial if the performance at a given time

is falling short. This is accomplished by keeping track of the performance of previous trials of a study

as well as a set of measurements taken during the trial evaluation, then model this data to a Bayesian

regressor and compare the results. The second rule is the median stopping rule, that will stop a trial at a

given step if its objective value is inferior than the median objective value of all previous completed trials

in that study up to that step.

Besides having mechanisms that improve scalability of the system, Vizier also improves its optimiza-

tion efficiency by applying transfer learning to improve configuration selection of the trails. It leverages

obtained information form previous studies by using GP regressors stack, where each regressor is as-

sociated to a study, and all of the regressors are trained on the residuals relative to the regressor below

it, so the top-level regressor transmits data of all studies that were made that can aid the optimization

process. However in order to perform transfer learning it has heavy assumptions about the underlying

11

performance for the same dataset in different algorithms, and furthermore transfer learning in this sys-

tem is only valuable for studies that have many trials, which is something that is preferred to be as small

as possible for a model-based ML algorithm.

2.2.5 BOHB

BOHB [12] is a state-of-the-art technique that combines two techniques that were previously dis-

cussed, namely Hyperband [11] and BO [30]. It does so in order to leverage the advantages that both

algorithms bring, while minimizing their disadvantages.

BOHB performs BO with a different modeling scheme, instead of using GP to model the objective

function, it uses a Tree Parzen Estimator [30] (TPE). TPE uses a kernel density estimator which instead

of modeling the objective function directly as GP does, models two different densities over the input

configuration space. These densities are represented by l(x) and g(x); where the first density captures

configurations that performed significantly well, that are above a certain α threshold, and the second has

configurations that have undesirable results, that are below the α threshold. They can be represented

by:

l(x) = p(x < α|x,D)

g(x) = p(x > α|x,D)

This change of model came due to the fact that TPE scales better than GP, while maintaining the

support for mixed discrete and continuous configuration spaces. In order to sample with TPE, the new

configuration space to be evaluated is the one that maximizes the ratio l(x)
g(x) which is equivalent to

maximizing the EI.

The BOHB algorithm starts after the user has defined a minimum and a maximum budget , where

budget can represent any type of constraint on computational resources, such as execution time, epochs,

and others. After declaring the budgets boundaries, the algorithm will start by doing the Hyperband

method with a relevant difference: unlike HB, BOHB does not sample configurations randomly. Instead,

it does not always randomly sample configurations; conversely, it relies on the TPE-based models, con-

structed in previous HB runs, to determine which configurations to test in the next HB run. This way, the

knowledge acquired by testing configurations in previous HB runs is retained and exploited to drive the

future HB runs and enhance convergence speed.

This method has the speed advantage of Hyperband, i.e., it is able to reduce the cost of evaluating

the quality of configurations by controlling the computational budget allocated over time to function eval-

uation. However, thanks to the use of a model, it preserves BO’s effectiveness in guiding the search

process towards global optima. Additionally, BOHB selects, with a small, user-tunable probability, con-

12

figurations in a purely random way (i.e., without consulting the model). This design choice improves the

robustness of BOHB in presence of inaccurate/flawed models, which, in pure model-driven approaches

(e.g., based on BO [10]) are likely to hinder the efficiency of the optimization process.

2.2.6 Efficient Transfer Learning Method for Automatic Hyperparameter Tuning

This work [14] focuses on leveraging information acquired via optimization of machine learning algo-

rithms in different datasets to improve the overall accuracy while minimizing the overhead of performing

such techniques. It is an instance of BO[10] that can perform transfer learning by building a common

response surface on all evaluated datasets. BO is a framework that is used in this scenario because

it takes the advantage of performing cheaper evaluation on approximations of the objective function by

constructing a surrogate that uses, in this case, EI as the evaluation criteria and GP as its model.

The present method builds a common response surface as [37] with the difference that instead of

using a ranking surrogate to approximate the surface, it uses the mean value derivation per dataset that

reduces execution complexity, which is crucial, considering that these algorithms are executed in each

evaluation stage.

Unlike traditional SMBO methods, instead of modeling in each new dataset the surrogate GP to a

new unknown function directly, it uses the derivations of the per-dataset mean value as the common

response surface values, and in each iteration of function evaluations, the response surface changes

based on the output value of that evaluation and the mean and standard deviation values of all the

function evaluations up to that point of that dataset. The following function as denoted in [14] explains

this, where y is the response value that is used by the GP, t represents the iteration number of function

evaluations, d is the dataset being used and finally µ and σ are the mean and standard deviation values

respectively.

ydt =
fd(xt)− µd

σd

This method is valid if we assume that different datasets produce resembling functions without tak-

ing into account the scale and location difference between two functions. So, using the derivation of the

dataset mean as the response surface is valid as it uses GP models with different means for different

datasets. However this assumption can be sometimes unrealistic and can possibly lead to a worse per-

formance in datasets that produce dissimilar functions. In addition, the use of transfer-learning in this

method requires some a priori knowledge that can be obtained only after performing some function eval-

uations. As such, this method scales slowly at first and is only be able provide significant improvements

after gathering a substantial amount of knowledge.

13

2.3 Optimization in the Cloud

This section reviews a set of state-of-the-art approaches that tackled the problem of optimizing, accord-

ing to different metrics, the efficiency of complex applications to be deployed on the cloud. As it will

discussed, most of the solution in this area of the literature treat the application as a black-box and

focus solely on the identification of the right amount and type of cloud resources to be allocated to the

application to meet user-defined constraints on QoS. Examples of this type of approaches can be found

in Sections 2.3.1-2.3.5.

A notable exception is Lynceus, which instead optimizes the application and cloud parameters in a

joint fashion (see Section 2.3.5). However, this introduces a plethora of decisions and problems users

face, such as, what type of instances should be rented in order to perform this task, how many virtual

machines should be rented, which one is more suited for a specific workload and how much money do

they cost. Pairing these issues with machine learning optimization, even experienced users might be

overwhelmed by both the difficulty and amount of decisions they need to make for the service to be

worthwhile.

In this section we will introduce some state-of-the-art systems that provide solutions to this type of

problem.

2.3.1 Quasar

Quasar [16] aims at determining the cloud resources needed for each workload, which is done by pro-

filing a workload when it arrives. The workload is classified by offline knowledge, that is gathered by

observing previous workloads. Quasar characterizes a workload according to four main dimensions: re-

sources per node and number of nodes for allocation, number of servers, heterogeneity (types of servers

used) and interference.

After profiling the workload, the system compares the profiling results of the analyzed workloads

with current available labels to conclude the characterization process. This is done by using CF [25]

techniques as mentioned in section 2.1.1.

Quasar is similar to another state-of-the-art system, named Paragon [38], since it has the same goals

and applies CF techniques to profile received workloads, however Paragon solely evaluates resource

assignment, so it only is able to characterize workloads with respect to interference and heterogeneity

i.e. server type. By handling both resource assignment and allocation, Quasar also characterizes scale-

out and scale-in for each workload which causes the space of assignments significantly larger. This can

be advantageous as it explores more options for allocation but it can quickly turn the space of possible

allocations to be gigantic.

To cope with this problem, the CF techniques that are used to assign the workload to the available

machines follow a policy of minimum resource allocation per job, in which the resources that are exam-

ined first are the largest ones. That way, Quasar minimizes the amount of combinations of resources

that satisfy the constraints, effectively reducing the search space.

14

As the system receives more workloads and uses CF techniques, it learns more about them and

improves classification performance over time which directly improves overall performance, as well as

maximizing resource utilization, reducing user expenses while achieving quality of service constraints.

Despite being a cost efficient system, Quasar suffers from only optimize cloud parameters, not ap-

plication ones. It also need knowledge of previous workloads/offline data to function efficiently and

disregards optimization costs.

2.3.2 HCloud

As previously mentioned, cloud computing provides both flexibility and high performance for users while

also being cost efficient to operators, but it can prove challenging for users to choose what instance

size, what type, if they are short-term or long-term allocations. Some strategies try to solve this multi-

dimensional problem but overlook differentiating reserved and on-demand provisioning strategies.

HCloud [17] is a state-of-the-art hybrid provisioning system that leverages both reserved and on-

demand resources, which are resources that are reserved and payed for large in large periods of time

e.g. one year, and resources that are provided whenever the user desires and payed for by each

second/minute of utilization, respectively. It does so to minimize cost and maximize resource utility in

the cloud. For every job, it determines what type of provisioning strategy is more advantageous based on

the load and resource unpredictability of an instance. It factors in the decision making process the cost,

performance unpredictability, instantiation overheads and provisioning flexibility of an instance, while it

is aware of the quality of service it needs to maintain and maximizing resource efficiency.

By taking advantage of on-demand and reserved resources, higher resource efficiency can be

achieved for the end-user, however traditionally the user always needs to specify how many resources

each job uses, and this decision is prone to be erroneous and leads to over-provisioning. In order to min-

imize this issue, HCloud uses Quasar’s [16] estimators of resource preference, as well as interference

provisioning estimators, to improve provisioning accuracy. The interference provisioning estimators play

a great part in this system, as on-demand resources tend to have great external interference, having

more the smaller the instance is.

To decide how to map jobs to resources of different types, a policy was devised that was based

on three principles; Reserved resources are always consumed first rather than on-demand; Jobs that

are mapped to on-demand instances cannot delay interference sensitive jobs; Utilization of reserved

instances are to be carefully managed in order to reduce queue.

Even though this system improves on others regarding the use of provisioning strategies, it is still

focused on providing resource efficiency, ignoring allocation and deployment costs.

2.3.3 CherryPick

Picking the best performing cloud configurations for a job has been a challenge and many previous

strategies such as [16] leveraged recommender systems techniques line CF and/or applied decision

policies to maximize resource utilization [16][17].

15

CherryPick [18] is a system that instead leverages Bayesian Optimization [30] (BO) to build a predic-

tive model that is used to find cloud configurations that not only guarantee application performance, but

also minimize cloud usage cost.

This approach views the problem from a different perspective but it still faces daunting issues re-

garding cloud configurations. The first issue is focused on the cloud computing performance model. It

is quite complex, because the amount of time that takes a resource to complete a job is affected by

its configuration in a non-linear manner, e.g. two configurations might take the same time executing a

job, even if the second configuration had double the RAM amount. The second problem is that, while

cloud providers charge users based on the time the virtual machines are executing and more powerful

machines are more costly and execute faster, it is hard to find the balance between a fast expensive

machines and a cheaper slower machines. Heterogeneity of applications is the third and final major is-

sue, since multiple applications can have significantly different performances with slightly different cloud

configurations.

As to tackle this obstacle, CherryPick uses a objective function that is optimized by the system. It

minimizes the deployment cost of a given configuration in function of the time the machines are up

and how much they cost per hour, added with a time constraint to guarantee application performance.

Similarly as previous techniques that leveraged BO, CherryPick uses GP [21] to build the model as well

as EI c (constrained EI), as it needs to factor in the probability of meeting the execution time constraints.

CherryPick begins by sampling three quasi-random points in order to retrieve an estimate of the cost

function that is to be minimized. Then, regular BO is performed, choosing the best points to be sampled

that maximize EI.

CherryPick has two main drawbacks. First, it only aims at optimizing the cloud configurations, ne-

glecting the fact that in many applications (in particular, distributed training of ML models) optimal ef-

ficiency can only be attained by jointly optimizing both the cloud configuration and the application’s

configuration. Second, being based on BO it suffers from the same shortcomings already discussed in

Section2.2.1 in the context of hyperparameter optimization. Namely, it requires an initial bootstrapping

phase that, due to its random nature, may lead to testing very expensive configurations. Furthermore, in

order to assess the quality of configurations, it can require applications to execute in each configuration

for a long period of time (thus incurring a large economical cost).

2.3.4 PARIS

As CherryPick, PARIS [19] is another state-of-the-art technique that has a different approach on solving

the cloud configuration selection problem. It provides performance estimates with minimal data collection

and uses random forests, as described in section 2.1.1, instead of BO [30].

After the user provides a representative task of the workload, as well as indicating the desired per-

formance metric and set of candidate virtual machine types, PARIS proceeds by outputting cost and

performance predictions of the instances provided by the user. In order to make such predictions, it

needs to know the resource requirements for the workload and how the indicated instances affect it.

16

Instead of executing the workload on all of the machine types, the modeling approach of PARIS

operates in two stages. The first of them is an offline stage that will run one single time and has the

objective of benchmarking various workloads with each machine type, providing detailed metrics such

as CPU utilization,network utilization, disk utilization and memory utilization. This stage will only need to

run whenever a new instance type that was not bench marked is added, as to minimize repetitive work.

After benchmarking the virtual machines, a set of decision trees are trained for each workload and will

eventually build a forest. The second is the online stage that will run the task provided by the user on

two, pre-defined, reference virtual machines in order to collect information on the corresponding usage

of resources and performances.

After the forest have been trained according to user specified performance metrics, the information

that was acquired in the online stage is fed to the forest. The forest will finally output the mean and the

90th percentile performance for that machine type and will repeat after doing the same process for every

candidate virtual machine types.

Now, since resource requirements for the workload are known and how the indicated instances affect

it, PARIS can build a performance-cost trade-off map after estimating the cost of each instance, which

is made by assuming cost is a function of the provided performance metric and the cost per hour of

instances, that is assumed to be known as well.

This map aids the user in choosing instance types significantly, however PARIS accuracy is strongly

dependent in the choice of reference configurations as well as the quality of the data in the training set.

Furthermore, PARIS requires a priori knowledge of some similar workload to work. In fact, if the set

of workloads used in the first stage are not representative of the application to be actually optimized,

PARIS’ accuracy might be severely compromised.

2.3.5 Lynceus

Lynceus [7] is another recent approach for the optimization of cloud-based jobs. It adopts model-

driven optimization as [18] and [19] but it refines its model in a different manner. Lynceus is a budget-

aware and long-sighted self-tuning system of cloud resources that has the goal of discovering the config-

urations that minimize the execution cost of data analytic jobs by ensuring that the maximum execution

time constraint is followed and the evaluation of a configuration does not exceed a given budget, where

a configuration in this scenario is composed by cloud parameters (e.g. virtual machine type and number

of instances) as well as hyperparameters of machine learning jobs.

To achieve its goals, this system has the following strategy: At the beginning of the exploration phase,

where it strives to find a good configuration and there is a large uncertainty in the cost model, Lynceus

allows for a larger budget and presents a more explorative behavior. As the system explores more

configurations and the cost model becomes more accurate, the budget will decrease. In this phase,

Lynceus adopts a more careful and exploitative approach where it only selects configurations that will

17

not compromise the given budget, while leveraging the cost model to achieve the maximum shorter

reward.

It uses BO [30] to solve the optimization problem, with the acquisition function of Constrained Ex-

pected Improvement [39] (EIC). A bagging ensemble of decision trees [40] are trained with a dataset

containing the tested configurations and used to build the cost model. This latter technique is similar to

random forest as described in Section 2.1.1 but does not integrate the random selection of subsets of

training data and uses all available features for each tree.

Lynceus also leverages a look-ahead technique that allows to foresee the effect of choosing a con-

figuration to sample. It predicts a path of configurations to be explored by simulating evaluations using

predicted values by the model. The model will then be updated with the predicted cost of the config-

uration which has the highest reward and will predict a reward and cost value for configurations that

have not been tested yet. For each evaluation iteration, it computes the reward of configurations that are

assumed to have a 99% probability of having a lower cost than the current budget and then based on the

current model, it predicts the improvement over the current know best configuration. The configuration

that maximizes the reward is used to update the model.

EIC is used due to the fact that Lynceus aims to ensure that the selected configuration will not only

minimize cost but will also meet user-defined constraints on the jobs. EIC of a certain configuration is

the product of the standard EI [30]of a given configuration and the probability of that point it respects the

constraints.

Lynceus does consider both cloud and application’s configuration parameters jointly. However, due to

its reliance on BO, it suffers of the same problems already discussed when introducing CherryPick, which

are reacquiring an initial bootstrapping phase that, may lead to testing very expensive configurations.

2.4 Summary

This section has provided an overview of some of the most relevant state of the art techniques in the

context of hyperparameter optimization and optimization in the cloud. Important background on general

optimization techniques was also discussed, giving us insight about possible paths that may help achieve

the objectives stated in 1.2.

Table 2.1 outlines important characteristics concerning state-of-the-art techniques covered in this report.

It compares base optimization techniques, optimization models, what parameters the system takes into

account, if it applies transfer-learning to extrapolate information obtained from partially observing con-

figurations or from previously observed workloads in the optimization process, and finally if it requires

offline knowledge to do so.

18

System Base Optimization Technique Modeling Technique Optimization Parameters Transfer-learning Requires Offline Knowledge

BO Bayesian Optimization Gaussian Process
Regression

ML Algorithm
Hyperparameters No No

Hyperband Pseudo-random Sampling None ML Algorithm
Hyperparameters No No

Fabolas Bayesian Optimization Gaussian Process
Regression

ML Algorithm
Hyperparameters

From partially
sampled

configurations
No

Google Vizier Bayesian Optimization Gaussian Process
Regression

ML Algorithm
Hyperparameters

From other
workloads

Not needed,
but can be

BOHB Bayesian Optimization Tree Parzen
Estimator

ML Algorithm
Hyperparameters No No

Efficient Transfer
Learning Method

Sequential Model-based
Optimization

Gaussian Process
Regression

ML Algorithm
Hyperparameters

From other
workloads No

Quasar
Policy-based Optimization

with
Collaborative Filtering

Collaborative
Filtering Cloud parameters From other

workloads Yes

HCloud
Policy-based Optimization

with
Interference estimators

Collaborative
Filtering Cloud parameters From other

workloads Yes

CherryPick Bayesian Optimization Gaussian Process
Regression Cloud parameters No No

PARIS Offline Online
stage Optimization

Random Forest
Regression Cloud parameters From other

workloads Yes

Lynceus Bayesian Optimization
with Lookahead

Bagging Ensemble of
Decision Trees

ML algorithm
Hyperparameters

and
Cloud parameters

No No

Table 2.1: Comparative analysis of state-of-the-art systems.

Overall by the analysis of the table we get that:

1. Only Lynceus aims at optimizing both cloud and application parameters. The authors of that

solution have also reported experimental data that confirms the relevance of optimizing these

parameters in a joint fashion, with gains (in terms of cost reduction for the users) that can extend up

to a factor 3.7× when compared to solutions that optimize the two set of parameters independently.

2. Unfortunately, the reliance of Lynceus on BO [10] exposes it to a number of shortcomings that

have been highlighted by the recent literature on hyperparameter optimization. More in detail, In

BO each function evaluation is very expensive and it requires model bootstrapping time in the

beginning. Overall, these aspects can make BO prohibitively expensive if the jobs to be deployed

demand a large amount of computational resources. BOHB overcomes these issues, and appears,

as such, to be a very promising solution. However, BOHB has never been applied to jointly optimize

cloud and hyperparameters of a ML job. Another limitation of BOHB is that it relies on models

built considering only the information acquired when testing configurations with the largest budget

tested so far. As the number of tested configurations drops exponentially with the available budget,

the models used by BOHB are prone to suffer from data scarcity.

3. There are techniques that do not require to build a model, hence, in that short time window, they

gain some benefit for those resources, however they are quickly outclassed in terms of conver-

gence to the global optimum after some time. Hyperband [11] is one of those techniques, but

despite its convergence rate being sub-optimal, for short-time optimizations it can produce great

19

results, taking advantage of its many low-budget executions that produce configurations that are

accurate enough to be considered.

20

Chapter 3

The Hydra Optimizer

In this chapter we propose and cover the design/implementation of Hydra, a system that build on BOHB

and extends it to address its main shortcomings, such as the inability to extrapolate how the quality

of configurations vary across budgets. We also present variants of this system that try to balance the

economic cost of the optimization process by taking it into account throughout the run.

3.1 Overview

Performing optimization of machine learning algorithm is an expensive procedure. As a matter of fact,

even with BO-based techniques [10], which strive to minimize the number of evaluations needed to

reach a global optimum, each evaluation can still be very demanding in terms of resources and time.

Other techniques, such as Fabolas [36], have addressed this problem by using sub-sampling in the

training dataset so as to reduce cost of evaluating the quality of configurations during the optimization

process.

These techniques require a model to be built firstly in order to produce results that can lead them to

the global optima and since this task is done by randomly sampling some configurations there is always

a fixed amount of resources that is spent and do not contribute to the end goal in that time window. This

said, BOHB [12] leverages both Hyperband [11] and Bayesian Optimization to produce results before the

model has been built and after, provide more information to the model with the configurations that have

been evaluated. This allows for achieving convergence rates that are faster than BO, while constraining

evaluations to a budget, so as to reduce the cost of the optimization process. BOHB then effectively

counters the presented issue with traditional BO. Furthermore it inherits some beneficial features of

Hyperband in the sampling phase, since it has the possibility of exploring random configurations, while

reducing the penalty of it being sub-optimal via the use of the Successive Halving [34] technique.

Extending BOHB to jointly optimize both the ML applications and the cloud configuration is not trivial.

The first challenge with BOHB is understanding what is the most efficient way to employ BOHB for

this purpose. One key question that arises is whether the cloud configurations should be treated in

an opaque way i.e. similar to additional hyperparameters in a hyperparameter configuration. The risk

21

of such a simplistic approach is that it exposes to the risk of sampling very expensive configurations

that require a large amount of computational resources unnecessarily, e.g., in the initial phases of the

optimization process where no or very little knowledge is available on the job being optimized.

Another shortcoming of BOHB that we intend to address is its inability to exploit information gathered

when testing configurations with small budgets. In order to overcome this limitation, we plan to use

transfer-learning. By recording the performance of various configurations evaluated using diverse budget

levels, Hydra can leverage that information to find a trend between budgets and use it to predict the

performance of configurations on larger budgets.

3.2 Design Details

Hydra is a solution that extends BOHB [12], which itself its an extension of Hyperband [11]. Since BOHB

proved to possess the speed of Hyperband while being more likely to select high quality configurations

via model-based techniques, we argue that by having a similar system with a richer model and a more

effective way to extract the model’s knowledge (via the use of alternative acquisition functions), one can

further enhance the efficiency of the optimization process.

Figure 3.1: Hydra system overview

As showcased in figure 3.1 the system has the following steps: Firstly the Master module will initialize

the optimization, generating the intermediate budget values from the given minimum and maximum

values. Then (1) it will create a worker with a given objective function i.e. machine learning algorithm

and the associated configuration space, containing all different combinations of hyperparameters. Once

that is completed it will return the configuration space of the hyperparameters (2) to the master module,

where it is shared with the optimizer component. After that, while the number of maximum finished

22

iterations completed, (3) it will create a new iteration module with the associated initial budget. This

module will issue hyperparameter configuration samples from the optimizer (4) with the corresponding

budget. Once the optimizer returns a hyperparameter configuration (5), the iteration module will prompt

the Master module to queue a run with the given hyperparameters and budget (6). Once the Master

receives this request, (7) it will give the Worker a configuration to evaluate with a budget, and, when

complete, (8) it will return the accuracy value that was achieved. This value is then registered and

passed to the Iteration and Optimizer. The steps (4) to (8) will then be repeated until the Iteration has no

more configurations needed to be sampled. After that, it will perform successive halving and advancing

a stage, performing steps (6) to (8) with the configurations that have passed but with a higher budget

value. Finally, once the iteration finishes its last stage, (9) it informs the Master module that the current

iteration has finished. This module then will increase the number of finished iterations and initial budget

value, repeating step (3).

In Hydra, we have selected Gaussian Process [21] as base ML technique, since they are the most

frequently used models in Bayesian Optimization due to their ability to provide smooth and accurate

uncertainty estimates. Specifically, we use Gaussian Processes with Matérn 5/2 Kernels [41], which

is also a common choice in the Bayesian optimization literature given that it produces less restrictive

smoothness assumptions [36] — an important feature, given that we plan to add another dimension to

the model’s feature space, namely the Hyperband budget. Hydra supports various EI-based acquisition

functions, including novel ones defined for being used in the context of the HB optimization method.

While performing the optimization, Hydra will gather relevant data from the experiment, namely the

configuration that was sampled, the budget that was used, wall-clock time, optimization result, and other

information. When using the model to do a prediction, it will use the information it has gathered to train

the model, more specifically the configurations it has sampled, their results and their budgets.

BOHB only trains configurations using a single budget, i.e. the largest budget for which a minimum

pre-determined number of configurations has been gathered. As a result, only a subset of the available

info is exploited whenever the model is used/queried. This problem is solved in Hydra by considering

budget as an extra feature and training a single model with data gathered using diverse budgets, in

order to enable the construction of models that can extrapolate the trends that arise when the budget

varies. Recall also that the objective is to find a configurations that has maximize accuracy using the full

budget, so the models should be used to identify configurations that will excel at full budget, but that will

be at least initially evaluated with lower budget, based on the SH algorithm.

In Hydra, there are some parts of the system that we chose not to change, having the similar be-

havior as BOHB, such as instead of always using the model to predict a configuration, we still use a

probability of sampling instead a random configuration, thereby maintaining Hyperband theoretical guar-

antees. When producing a prediction, Hydra uses the Hyperband algorithm to determine how many

configurations will be generated. If at least (d + 1) configurations (where d is set to the number of di-

mension in the configuration space) have been evaluated, the model is used to make a prediction on a

configuration. Otherwise, we sample configurations randomly according to a uniform distribution. Even

23

if there are enough results, there is always a probability (which as in BOHB we set to 33.3%) that we

chose to sample randomly.

The process of producing a prediction with a model implies: (i) to train the model with all the collected

data from the evaluated configurations, and (ii) identify the incumbent configuration, i.e., the one that

the model predicts to yield the best result (e.g. highest accuracy, lowest loss) when deployed using the

full budget. The main reason behind focusing on choosing incumbents that have the highest budget is

to guide the model to focus on achieving the best performing configurations on the maximum budget,

where there is a higher probability in sampling better configurations. However, by doing so, in scenarios

where there are no sampled configurations that have as high budget value, such as the beginning of the

first Hyperband bracket, we drop that constraint and allow the incumbents budget to take the value of

the highest sampled budget from the gathered data. To collect more information about Hydra behavior,

we have also implemented multiple variants that have a different take on how the predictions are made,

and in the following sections we will explain what are the main differences and their purpose.

3.2.1 Budget Sampling

Analogously to Hyperband and BOHB, in Hydra the notion of budget can mapped to different metrics that

constraint the amount of resources consumed when training a ML model, e.g. wall-clock time, iteration,

algorithm epochs, cloud cost.

In both these systems, the algorithm starts by sampling a number of configurations randomly, and

evaluates them using the lowest possible budget. In Hydra we use the same procedure, but, as in BOHB,

at some point, when enough configurations are gathered to build a model, we can start choosing which

configurations to evaluate by leveraging its knowledge. To get a prediction from the model, we go through

the search space and for each different configuration (or for a set of randomly chosen configurations if the

configuration space is too large to be exhaustively sampled) we compute the Expected Improvement [39]

(EI). Finally, we select the configuration that has the highest EI value.

Differently from BOHB, though, in Hydra we treat the budget as a model’s feature. When querying

the model, we need therefore to establish what value of the budget to specify.The Hyperband algorithm

only determines which configurations to evaluated at the beginning of a bracket. From that moment on,

the top configurations will pass to the next stage, to be evaluated with a higher budget. This Successive

Halving [34] will happen until the maximum budget is reached and the highest quality configuration using

full budget is returned. Thus, one may argue that the model should be queried to identify the configu-

ration that will achieve maximum quality (e.g., accuracy/loss) in the maximum or final budget. However

it is also arguable that what matters in a stage of a bracket is the performance of the configuration on

the current budget of that stage. Indeed, a poor performance in early stages would reduce the odds

of that configuration to be among the top ones that proceed to the following stages with higher bud-

gets. Consequently we consider two variants: one that selects configurations according to their EI value

considering full/maximum budget, which we call Full-Budget Sampling (FBS), and another variant that

24

similarly selects configurations according to their EI value, but considering the current stage budget. We

name this variant Current Budget Sampling (CBS).

The main advantage of the FBS strategy is that it will favor configurations that excel on higher bud-

gets. However, if a configuration does fall short in its performance in lower budget values, it may not

be tested in higher budget levels, since Successive Halving may discard that configuration. Conversely,

CBS will focus on picking configurations that excel on the lowest budget of the current bracket, thus

improving the odds that a model chosen configuration passes through the initial Successive Halving

pruning of configurations. Clearly, these two variants will have the same behavior when predicting con-

figurations on a bracket that has as initial budget value the maximum budget value of the experiment.

3.2.2 Cost of evaluating configurations

In the cloud different choices of type and numbers of virtual machines yield different costs. Hydra

keeps the cost factor into account by incorporating several cost-aware acquisition functions, which will

be evaluated in the following chapter. Expected Improvement per dollar is a classic technique to keep

into account costs in BO. However, Hydra introduces a new cost-aware acquisition function tailored

for operating in a successive halving scheme. By Expected Improvement per dollar with the Budget

Sampling variants discussed in section 3.2.1, with FBS we can sample configurations that have the

potential of achieving a high accuracy in higher budget values while possessing a low economic cost.

This may hamstring FBS capacity of providing good configurations in low budget value scenarios even

more, however we can ensure that whenever a configuration that was sampled through the model, if it

reaches the highest budget value stage, it will have a reduced cost. On the other hand, if we consider

CBS with this variant, it will sample very economic and well performing configurations in the initial budget

value of a bracket, but on the higher budget value stages the configuration might achieve higher than

expected costs. Much like in section 3.2.1, both FBS and CBS with this variant will also have similar

behavior when sampling configurations in brackets where the initial budget value is the same as the

maximum budget value allowed in the experiment. This economic-cost reducing variant may have a cost-

reducing prospect, however we need to take into consideration that duplicating a model that is already

considered slow compared to Tree-structered Parzen estimators as shown in BOHB [12] may deter

the algorithm from being fast and by consequence proving to have a higher economic cost. When we

are combining the economic cost variant Expected Improvement per Dollar with budget sample variants

FBS and CBS, we are restricting both base model and cost model to have the same target budget, e.i.

sample according to maximum or current bracket budget. In order to have a prediction that can leverage

the performance of configurations on higher budget values while reducing the cost of configurations on

current budget values, we developed another variant called Hybrid Sampling. Essentially it uses FBS

to retrieve the Expected Improvement of a configuration the highest budget possible, while dividing the

cost of the same configuration but on the initial budget a bracket. This variant is expected to propose

configurations that have low costs in low budget values and have great performance in the maximum

budget value. Since Hyperband proposes a large quantity of configurations in lower budget values, we

25

expect this to minimize the economic costs greatly in early stages while providing the ability to outperform

others in the last.
Data: random run probability p, budget b, maximum budget B, current number of observations

O, number of hyperparameters D

Result: next configuration to evaluate

if O <= (D + 1) or random() < p then

return random configuration;

end

best configuration = None;

best value = 0;

for configuration c in the search space do

ei = compute the EI of c with B;

cost = predict the cost value of c with b;

if ei/cost > best value then

best configuration = c;

best value = ei/cost;

end

end

return best configuration;
Algorithm 1: Hydra Hybrid variant algorithm.

3.2.3 Cost of identifying the next configuration to be evaluated

Hyperparameter optimization of large machine learning models can have a high economic cost [42],

especially in scenarios where there is a need to rent computational power. In situations such as this,

we want the optimization to be as efficient as possible so that the optimization economic cost is as low

as possible and produces the best result. Unfortunately, without querying the model for all possible

configurations, e.g., using a grid-based approach, one cannot guarantee to have correctly identified

the configuration that the model predicts to be the optimum. In BOHB, there are always a fraction of

configurations that are randomly sampled, and in scenarios like we have described previously where

there are associated economic costs to each configuration that is sampled, having an under performing

result can have an even more negative impact. These situations can’t be avoided in Hydra as well since

we need initial results to build a model, and we need Hyperband’s theoretical properties. However, we

can greatly reduce the economic cost of the optimization when using the model to predict a configuration.

This is done by replicating the Gaussian Process model we use to predict the accuracy/loss of a given

configuration, but instead of feeding performance-related information, we use economic-cost related

information and finally, when calculating the Expected Improvement of a configuration, we divide it by

the predicted economic cost given by this new model. When the search space is too big to compute

exhaustively the acquisition function on all configurations, Hydra supports a simple heuristic that was

already used in Fabolas [36], namely a mix of uniform random sampling and sampling via a gaussian

26

centered on the currrent incumbent. As an alternative, one could have used other black-box optimizers

such as Direct [43] or CMAES [44].

Summary

In this chapter we have reviewed Hyperband and BOHB algorithms and explained how they would relate

with Hydra. We have also described how Hydra would sample configurations and both analyzed and

explained the thought process of the multiple variants included in Hydra, namely full-budget sampling,

current-budgets sampling, expected improvement per dollar, and hybrid variations. In the next chapter

we will evaluate Hydra in different environments and compare with related algorithms to point out what

are its main advantages and disadvantages measuring loss, economic cost ($), Time and Overhead.

27

28

Chapter 4

Evaluation

This chapter evaluates Hydra via five different experiments. We first present the settings of each experi-

ment. Then, we compare how each variant performs in each different environment measuring the loss of

configurations achieved and accumulated cost ($) spent performing the optimization and the time taken.

After this, we will select two of the best performing variants and compare them in the same experiments

against state of the art algorithms that are related to Hydra, namely Hyperband and BOHB. We chose

those algorithms because we want to establish experimentally if Hydra can outperform them in different

scenarios. We include among the baselines also a variant of BOHB, which, instead of using the Tree-

structured Parzen estimator, relies on the same modeling techniques used in Hydra. This allows for

discriminating the effects of using different modeling techniques (TPE vs Hydra’s GP-based acquisition

functions) and of different input data sets (including or not the budget in the set of features fed to the

models).

4.1 Test Environment

In this chapter we present five different experiments. Three of the five experiments only have a single

difference, which is the machine learning model used to train the MNIST [45] dataset. This dataset

is composed of 70000 28x28 pixel images of size-normalized handwritten digits from zero to nine and

has training set of 60000 and a test set of 10000 image examples. These three experiments have the

budget associated to the dataset size (number of images) used to train different neural networks. The

minimum budget used was 3750 images, and the maximum was 60000 images. These three experi-

ments were conducted using different neural networks, namely CNN [46] (convolutional neural network),

RNN (recurrent neural network) [47] and a multilayer neural network [48]. CNN is a neural network that is

mainly used in image recognition area, and is composed by two convolution layers, one input and output

layer. The main idea how CNN extracts features from an image is by extracting small features from the

previous layer like a feed-forward neural network and by applying pooling and convolution operations,

these features will be given as input to the subsequent layers. plus two fully connected hidden layers

with 256 neurons. These neural network models were trained in a public cloud, namely Amazon Web

29

Services (AWS), over a large number of configurations (288) and the corresponding cost and execution

time were made publicly available [6] [7]. Table 4.2 has information about the hyperparameters used

in these datasets. The configuration space considered in these experiments includes both parameters

describing the type and amount of virtual machines to provision from the cloud and three models’ hyper-

parameters, namely learning rate, batch size and synchronization type. From here on we will mention

theses experiments as CNN, RNN and Multilayer.

In CNN, RNN and Multilayer experiments we use as the economic cost measure the cost in dollars ($)

of training a model with a given hyper-parameter configuration in AWS using the picked virtual machine

type (which has an associated cost per second). Some other parameters of the optimization process in

these experiments are equal, such as the intermediate budget values, as detailed in table 4.5, which are:

7500, 15000 and 30000 images. This combined with the minimum and maximum budget we declare

for our experiment we can calculate what are resulting intermediate budgets that are available to the

experiment. Encapsulating this list with the minimum and maximum budgets we get: 3750, 7500, 15000,

30000 and 60000. These will be the budgets used by the optimizer. It is also worth mentioning that RNN

and Multilayer experiments are faster to train than CNN, given that CNN is much more complex; ergo,

providing less economic costs in the training process.

CNN, RNN and Multilayer Experiment Search Space
Hyperparameter Values
Batch Size [16, 256]
Learning Rate [0.00001, 0.0001, 0.001]
Number of Workers [8, 16, 32, 48, 64, 80]
Synchronization type [asynchronous, synchronous]
Virtual machine Flavor [t2.small, t2.medium, t2.xlarge, t2.2xlarge]

Table 4.1: Description of CNN, RNN and Multilayer hyperparameter values.

UNet Experiment Search Space
Hyperparameter Values
Machine type [GTX 1080TI, RTX 2080TI]
Learning Rate [0.000001, 0.00001, 0.0001]
Number of GPUs [1, 2]
Synchronization type [asynchronous, synchronous]
Batch Size [1, 2]
Momentum [0.9, 0.95, 0.99]

Table 4.2: Description of UNet experiment hyperparameter values.

machine type, batch size, learning rate, momentum, and synchronization type. The fourth experiment

was selected as it was previously used in the evaluation of BOHB. As such this experiment focuses

solely on the problem of hyper-parameter optimization, i.e., it does not include the type/amount of cloud

resources in the configuration space. Analogously to the previous experiments, it also uses MNIST

and a CNN. However, it considers a set of seven hyper-parameters, see table 4.3, yielding a total of

135000 possible different combinations. Unlike the previous experiments, where cost/execution times

had been exhaustively measured and pre-recorded, this is not possible given the vastness of the search

space. So, in the experiments reported below, Hydra is deploying and executing ML jobs using Keras

30

deep learning library and reading the resulting accuracy/loss (whereas in the previous experiments this

process could be simply emulated by reading from the pre-recorded log file the configurations’ cost and

quality). This experiment has as optimizer a Stochastic Gradient Descent and only 8192 images are

used for training, 1024 for validation.

CNN, RNN and Multilayer Experiment Search Space
Hyperparameter Values
Stochastic Gradient Descent Momentum [0.0, 0.2, 0.4, 0.6, 0.8]
Learning Rate [0.000001, 0.00001, 0.0001, 0.001, 0.01]
Number of Filter in Layer 1 [4, 8, 16, 32, 64]
Number of Filter in Layer 2 [0, 4, 8, 16, 32, 64]
Number of Filter in Layer 3 [0, 4, 8, 16, 32, 64]
Number of Hidden Units
in the fully connected layer [0, 4, 8, 16, 32, 64]
Dropout Rate [0.0, 0.2, 0.4, 0.6, 0.8]

Table 4.3: MNIST hyperparameter values.

Given that exhaustively evaluating the acquisition function on all possible configurations is infeasible

in this case, given the vastness of the configuration space, we only compute the acquisition function

for 8000 configurations selected at random, where 70% are uniformly distributed throughout the whole

search space and 30% sampled by centering a Gaussian on the current incumbent. We will be refer-

encing this experiment as MNIST in the future. As cost metric we use time here, since a single machine

was used in this experiment.

The final experiment involved a UNet [49] neural network adaptation in the context of Satellite Image

Segmentation. This network uses Feature Pyramid Network [50] that has a size of 256*256*512 neurons

with 1.2 gigabytes of training data. The loss function is soft-max cross-entropy, and the hyperparameters

were machine type, batch size, learning rate, momentum, and synchronization type. In this experiment

we performed the training in GPUs and used two different machines, one with two GTX 1080Ti, and

another with two RTX 2080Ti, and measured economic cost as if they were rented in AWS. Since AWS

does not possess instances with these GPUs, we use as pricing the instances with the nearest ratio of

floating-point operations every second on average, which are Tesla K80 (P2.xlarge) that cost 0.9$/hour

and will correspond to the machine with GTX 1080Ti, and Tesla M60 (G3.4xlarge) that cost 1.14$/hour

that will correspond to the machine with RTX 2080Ti. These costs need to be multiplied by the number

of GPUs used in each configuration. In this experiment we have budget as wall-clock time and we have

the maximum budget as 5 hours and the minimum budget as 18 minutes and 45 seconds.

In the following section we will explain the workflow of the optimizer in our experiments in order to

clarify the analysis of the results.

4.2 Experiment Run-through

In all of the experiments, we complete, for each run, 10 iterations of each optimization algorithm — recall

that all the optimization algorithms are based on the Hyperband base scheme. Each iteration, called

31

also ”bracket”, is composed by a number of ”stages” that is equal at most to the amount of different

budgets used by the optimizer, which in out scenario is 5.

Each stage will contain a number of different configurations that will be evaluated (e.g., by training a

neural network and observing the resulting accuracy) and each stage will have an associated budget.

Each stage evaluates a pre-determined number of configurations on the budget associated with the

stage, and then run the Successive Halving algorithm, where the top ranked configurations (with respect

to, i.e. lowest loss value) will pass to the next stage. The next stage will have the nearest greater budget

in the budget list used by the optimizer. This will repeat until the stage budget is equal to the maximum

budget value.

When a bracket/iteration is over, a new one is activated using the next larger level for the initial budget.

This process repeats until a bracket is activated with the starting budget as the maximum budget. Next, if

the optimizer has not finished all its iterations, the next bracket will have as starting budget the minimum

budget value. Thus, in our settings, we execute two full cycles of the Hyper-band base scheme.

SH#
Initial budgets

3750 7500 15000 30000 60000
Bracket 1 Bracket 2 Bracket 3 Bracket 4 Bracket 5

0 16 8 4 4 5
1 8 4 2 2
2 4 2 1
3 2 1
4 1

Table 4.4: Hyperband bracket decomposition with maximum budget = 60000, minimum budget = 3750.

The number of configurations to sample in each bracket are determined by its starting budget value,

and as per the Hyperband algorithm, the total number of generated configurations for each bracket

is always greater than the number of different possible brackets that the algorithm can generate. For

instance, as we can see in Table 4.5, in CNN, RNN and Multilayer experiment we generate 5 different

brackets, and each bracket will have 16, 8, 4 , 4 and 5 initial configurations and start as initial budgets

3750, 7500, 15000, 30000 and 60000 respectively. Thus by executing Successive Halving the first,

second and third bracket, the optimizer will execute one configuration in the maximum budget in each

bracket, whereas in the fourth and fifth bracket it will produce two and five configurations on the maximum

budget value respectively.

To recapitulate, the first iteration will form the first bracket that will have the minimum budget value

and starting budget. So, in the first stage of the first bracket it will sample 16 different configurations and

evaluate them (sequentially) with respect to the objective function with the minimum budget value.

After evaluating all of the assigned configurations, it will pass the top configurations to the next stage.

The next stages starts with the top configurations of the previous stages and evaluates them with the

immediately larger budget value (which, for CNN, RNN or Multilayer experiment will be 7500) and like the

the previous stage, will rank and pass the top (best-performing) configurations to the next stage. After

the last stage with the maximum budget value evaluates the last remaining configuration, the bracket

will finish, and a new iteration will begin, forming a new bracket that will have 7500 as starting budget

32

value (in CNN, RNN or Multilayer experiment). In Successive Halving, in this experiment with the given

parameters we use top half of the evaluated configurations since this is corresponds to the inverse

of the eta value (Hyperband algorithm details). In total, 10 iterations will generate 128 evaluations of

configurations. In the next section we will discuss some information about the plots and how to visualize

them.

4.2.1 Plotting details

To simplify the visualization of the plots, after the first bracket (31 explorations) we start plotting the

incumbent of each optimizer. This is in fact the first point in which a full budget configuration is evaluated,

thus allowing to establish the notion of currently known optimum.

When an optimizer fails to find a better incumbent, we plot a black circle with the current incumbent

loss, however when it upgrades an incumbent we plot the point similarly to the points in the first bracket.

For each plot we mark with a red square the best achieved loss value for each optimizer. We also plot

the variance of the plotted values with the same color as the optimizer. The results are based in 300

runs of each optimizer (10 iterations per run) for the CNN, RNN and Multilayer experiment, 50 for UNet

dataset and 20 for MNIST dataset. All the runs use deterministic seeds to initialize the random number

generators in each different run, making it possible to replicate the same results for every different

run. In the next section we will start by presenting the results of every experiment with respect to the

performance of the various variants of Hydra that were developed in this dissertation.

4.3 Hydra variants comparison

In this section we will start by presenting the experiment results with respect to the wall-clock time,

analyzing the most relevant plots and pointing out interesting behaviors observable in our experimental

data. Next, we shift perspective to consider the economic cost of each experiment. Finally, we present

conclusion that sum up what are the pros and cons of each variant and what can be considered the best

performing one on different levels.

4.3.1 Duration of the optimization process

In this experiment we can effectively measure how fast is each variant with respect to each other, what

are the advantages of having a less complex system with a single model and what can cost-reducing

variants can do. Since we have several experiments that have different environments, we will group the

more similar ones and evaluate them together.

33

0 10000 20000 30000
Time

0.01

0.10

1.00
Lo

ss
Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

Figure 4.1: Total time (seconds) and Loss (in log scale) in CNN experiment

CNN, RNN and Multilayer We can note in Figures 4.1 and 4.2, FBS and CBS manage to get slightly

better configurations in the early stages of the algorithm, especially FBS, showing that the configurations

that it has picked have the potential to be better than the other variants. However, when the last sample

of the first iterations finishes, CBS with EI per $ manages to achieve the best configuration of the first

iteration. After some time passes, we can see that CBS with EI per $ maintains its superior pace, always

achieving a higher accuracy than the rest. We can also notice that FBS with EI per $ and Hybrid finish

all ten iterations, albeit with a higher loss than CBS with EI per $, very early, while CBS and FBS finish

almost 3 hours later. In these experiments, especially in CNN, higher wall-clock times are closely related

with high cost, since these experiments are ran in a cloud computing platform, where time is equal to

money, so by consequence, cost-reducing variants are likely too have lower execution times (at least

when run on the same type/amount of cloud resources). FBS with EI per $ is the variant that finishes

first in CNN (lowest execution time), this is many because given that sampling a configuration in a larger

budget will produce higher costs. This is true for these experiments because cheap configurations take

on average 50% less time to complete. As explained in section 3.2.1 it would have a greater affect the

higher the cost, and it so happens that this CNN experiment has a higher cost than RNN and Multilayer.

Contrarily, it is expected that FBS and CBS to be the slower variants, since they do not care about time

or economic costs.

What is surprising however is the performance on CBS with EI per $. In RNN, where the costs are

significantly lower (since the sample time in each network is much lower), we can see a degradation

34

of performance on CBS with EI per $. However, in both RNN and Multilayer, FBS with EI per $ and

Hybrid prove to be consistently faster than other variants, finishing the experiment with 50% lower time

on average than variants with no economic-cost reduction. We can see the affect this has especially on

FBS in RNN, where it seems to lag behind and sample configurations in a much slower pace than the

rest.

0 1000 2000 3000 4000 5000 6000 7000
Time

0.100

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(a)

0 1000 2000 3000 4000
Time

0.10

1.00

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(b)

Figure 4.2: Total time and Loss in log scale in Multilayer experiment (a) and Total time and Loss in log
scale in RNN experiment (b)

MNIST Since this experiment does not possess any type of economic cost related value, we have set

the economic cost equal to the time spent for the variants (e.g., the ones that use EI/$) that keep cost

into account. Since the used budget for this experiment is epochs, the higher the budget, the longer

the time spent in the training process. We can see that Hybrid variant is the one that finished first the

ten iterations, having 18% lower execution time on average than CBS. In spite of being slow, CBS has

on average the best incumbent values, proving that by sampling towards bracket budget values will get

more consistent results. However FBS achieves on average the highest accuracy on all points than

the rest of the variants and it also surpasses CBS incumbent values at a later stage, which shows the

strength of sampling towards the full budget value will show the best results on later stages.

UNET In this experiment, analyzing loss values against time done in figure 4.4 , we can see that the

explorations are synchronized, that is, all variants transition to the same stage and brackets simultane-

ously. This is because the budget type in this experiment is wall-clock time, so it is expected that they

finish each bracket at the same amount of time. Contrarily to previous experiments in this section, we

cannot evaluate the difference in execution time. We can see in figure 4.4 (a) a difference in loss values

obtained in the different iterations. We can also see that FBS variant does not perform as well as other

experiments in the early stage of the optimization, being equally matched with CBS variant in the loss

values obtained. In the subsequent iterations in (b) we see that FBS does not achieve lower loss values

than CBS, even in the last iteration.

35

0 500 1000 1500 2000 2500
Time

0.10

1.00
Lo

ss
Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

Figure 4.3: Total time (seconds) and Loss in log scale in MNIST experiment

4.3.2 Cost of the optimization process

This experiment analyzes the economic cost of the optimization process for all variants of Hydra. Like

section 4.3.1 since we have several experiments that have different environments, we will group the

more similar and evaluate them together. CNN, RNN, Multilayer In figure 4.5 (a) we can observe a

dominant gain of FBS in the early stages of the algorithm, being able to identify configurations that are

generally better than the rest of the variants. However other variants catch up quickly, as can be seen

in Figure 4.5 (b). Further the variants that incorporate a cost model in their acquisition functions all

attain higher quality configurations at a lower cost. This is particularly clear for CBS with EI per $, which

achieves the smallest lost at around half the costs of the FBS and CBS variants. Similar considerations

apply to RNN and Multilayer, in Figure 4.7 (a) and (b) respectively: also in these experiments, CBS and

FBS with EI per $, as well Hybrid, achieve approximately a 2× cost reduction, albeit in this case at the

expense of a slight degradation in the accuracy of the configurations recommended at the end of the

optimization process.

36

0 5 10 15 20
Time[h]

0.100

0.200

0.300

0.400

0.500

0.600

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(a)

50 100 150 200
Time[h]

0.040

0.045

0.050

0.055

0.060

0.065

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(b)

Figure 4.4: Total time and Loss in UNET experiment focused in 1st Iteration (a) and focused on the
remaining Iterations (b)

37

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Cost($)

0.0

0.2

0.4

0.6

0.8

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(a)

2 4 6 8 10 12
Cost($)

0.012

0.014

0.016

0.018

0.020

0.022

0.024

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(b)

Figure 4.5: Accumulated cost (dollar) and loss in CNN experiment scaled in the 1st iteration (a) and then
scaled in the remaining iterations.

38

0.00 0.05 0.10 0.15 0.20
Cost($)

0.2

0.4

0.6

0.8

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

)
(a)

0.00 0.05 0.10 0.15
Cost($)

0.0

0.2

0.4

0.6

0.8

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(b)

Figure 4.6: Total time and Loss scaled in the first iteration in Multilayer experiment (a) and in RNN
experiment (b)

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Cost($)

0.110

0.115

0.120

0.125

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(a)

0.4 0.5 0.6 0.7 0.8 0.9
Cost($)

0.018

0.019

0.020

0.021

0.022

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(b)

Figure 4.7: Total time and Loss scaled in iterations 2 to 10 in Multilayer experiment (a) and in RNN
experiment (b)

MNIST here we do not show cost-related figures, since as previously discussed, this experiment lacks

a valuable source of economic cost, (it is equal to time). This will hamstring economic-cost focused

variants, resulting in lower cost reductions and average below performances with respect to FBS and

CBS. However, we introduce here figure 4.8, that has been scaled to perform a closer visualization with

x as wall-clock time with minutes. We can see an advantage of FBS in the early stage of the optimization

process (a), noticed in the previous experiment, is less noticed, but still observable. This advantage falls

off like the other experiments, and in figure 4.8 (b) we can see that CBS will maintain the best incumbent

until FBS finds a better incumbent in the final iterations.

39

0 1 2 3 4 5
Time[m]

0.000

0.200

0.400

0.600

0.800

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(a)

10 20 30 40
Time[m]

0.020

0.025

0.030

0.035

0.040

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(b)

Figure 4.8: Accumulated wall-clock time (in minutes) in MNIST experiment focused in 1st Iteration (a)
and focused on the remaining Iterations (b)

40

UNET comparing figure 4.9 (a) with 4.4 (a), we can notice a difference in performance of economic-cost

variant performance, where with lower costs, they can transition to other stages, being able to achieve

lower loss values. In (b) however, it is apparent that by being cost efficient, they lack the performance

of FBS and CBS variants. In spite of this, FBS with EI per $ and Hybrid variants will be on average 60$

cheaper (corresponds to 17.1% less costs) than CBS or FBS, while spending the same amount of time

training and have a increase of 11% on the best achieved loss value. FBS in (b), like in figure 4.4 (b),

has the same behavior as CBS, and does not achieve better results.

41

0 10 20 30 40
Cost[$]

0.100

0.200

0.300

0.400

0.500

0.600

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(a)

50 100 150 200 250 300 350
Cost[$]

0.040

0.045

0.050

0.055

0.060

0.065

Lo
ss

Hydra FBS
Hydra CBS
Hydra FBS-EI$
Hydra CBS-EI$
Hydra Hybrid
Max Accuracy
Fail to Improve

(b)

Figure 4.9: Accumulated Cost in dollars [$] in UNET experiment focused in 1st Iteration (a) and focused
on the remaining Iterations (b)

42

4.3.3 Summary

Evaluating the variants from wall-clock time demonstrated that economic-cost reducing variants have

the ability to speed up the optimization time of the whole run, consistently showing that it is faster than

methods that do ignore economic cost. We have also shown that in spite of being relatively slow with

respect to variants that take into account the economic cost of an experiment, FBS has demonstrated

in the majority of experiments that it is able to produce better results in the beginning of the experiment

which is even more apparent in the zoomed-in plots in section 4.3.2. Even if its relative performance

degrades before reaching the end of the first iteration, FBS is able to produce good results at later stages

of the optimization process.

By comparing all economic cost related variants, we can say that FBS demonstrated to be the variant

that is consistently better at sampling in earlier stages than the rest. However CBS with EI per $ proved

to be both surprisingly fast and cost efficient. In the next section of evaluation, we will be looking at

how these two variants (FBS and CBS with EI per $) compare with respect to various state of the art

optimizers.

4.4 Comparison with state of the art optimizers

In this section we present the results gathered using the CNN, RNN and multilayer neural network

datasets and aim at evaluate the performance of the FBS and CBS with EI per $ variants of Hydra

against two state of the art optimizers, namely Hyperband (HB) and BOHB (BOHB-TPE). As previously

mentioned, we have also included a BOHB variant that uses Expected Improvement as the acquisi-

tion function (and the same Gaussian Process models as in Hydra) to isolate the gains deriving from

incorporating information on configurations using different budgets in the model (as Hydra does).

We will consider the same experiments as in section 4.3 and, also in this case, we start by analyzing

the accumulated economic cost and loss. In addition, we will provide a table which will contain the

optimization overhead and additional information about and finally will sum up the analysis.

4.4.1 Cost of the optimization process

CNN In Figure 4.10 we can see the cost accumulation progression with respect to our elected variants

of Hydra, namely FBS and CBS with EI per $, when compared with Hyperband, BOHB and BOHB with

EI. This figure is focused on the first iteration, and we can clearly see that the FBS variant has a signifi-

cant advantage over BOHB-EI, and CBS with EI per $ variant (as seen in section 4.3.2). This advantage

is even more apparent with respect to BOHB-TPE and Hyperband. By analyzing, the remaining 9 iter-

ations, see Figure 4.11, we see that the performance of FBS is closely matched with BOHB-EI. Both

of them are shadowed by Hydra CBS with EI per $, which is able to reach better configurations with

almost half the cost. Comparing CBS with EI per $ with BOHB-TPE, we can even see a clearer advan-

tage, where with just only 2$ it is able to match its minimum loss value throughout the hole experiment,

spending on average 88% less.

43

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Cost[$]

0.000

0.200

0.400

0.600

0.800

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

Figure 4.10: Accumulated Cost ($) and Loss in CNN, scaled in the first iteration.

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Cost[$]

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

Figure 4.11: Accumulated Cost ($) and Loss in CNN, scaled in the 2nd to 10th iterations.

44

RNN and Multilayer for FBS and CBS with EI per $, the best performing variants would be by contrast

CBS and CBS per $, as viewed in figure 4.7. We show the gains of using CBS in these experiment in

figure 4.12 and 4.13. In these particular experiments, CBS is better than FBS and it also proves to be

better than BOHB-EI. Interestingly CBS shows the exact same behavior as BOHB-EI in figure 4.12. This

is because CBS samples always according to the same budget and it does not know any other result

outside of the initial budget. Since the training set’s configurations contain the same budget value the

model wants to predict to, it will treat the configuration as if it does not have a budget hyperparameter,

because it has no knowledge of any other configuration with a different value and it does not change the

predicted value until it finishes the bracket. After all, if CBS ignores the budget dimension it essentially

becomes like BOHB-EI in iteration 1.

We can verify the advantage of inter-budget knowledge by the gains showed in figure 4.12. In these

plots we can view a great advantage of using Hydra comparing it with Hyperband and BOHB-TPE, and

even with BOHB-EI, which is indirectly a ”enhanced” version of BOHB.

MNIST Since MNIST has its economic budget value equal to wall-clock time, we will show the compari-

son on section.

UNET In figure 4.14 (a) we can see that CBS with EI per $ manages to achieve better configurations

with lower cost values than any other systems. It is similar to figure 4.9(a). We can see that in this

experiment FBS does not distinguish itself from other variants, closely matching their loss values with

the same cost. In figure 4.14 (b), we can see that FBS has in general better performance than other

variants. Hyperband has great results too, which can indicate that this experiment is very hard to model.

We can also see that CBS with EI per $ has in general, better performance than BOHB-EI and especially

BOHB-TPE, and it also has lower costs. BOHB-TPE has on average the largest cost value.

45

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Cost[$]

0.200

0.400

0.600

0.800

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Cost[$]

0.000

0.200

0.400

0.600

0.800

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(b)

Figure 4.12: Accumulated and Loss with RNN (a) and Multilayer in log scale (b)

46

0.5 1.0 1.5 2.0 2.5
Cost[$]

0.110

0.115

0.120

0.125

0.130

0.135

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(a)

0.2 0.4 0.6 0.8 1.0
Cost[$]

0.020

0.030

0.040

0.050

0.060

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(b)

Figure 4.13: Accumulated and Loss with RNN (a) and Multilayer (b)

47

0 5 10 15 20 25 30 35
Cost[$]

0.100

0.200

0.300

0.400

0.500

0.600

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(a)

50 100 150 200 250 300 350 400
Cost[$]

0.040

0.045

0.050

0.055

0.060

0.065

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(b)

Figure 4.14: Accumulated Cost in dollars [$] in UNET experiment focused in 1st Iteration (a) and focused
on the remaining Iterations (b)

48

4.4.2 Hydra Overhead

In this section we compare the overhead values obtained during the experiment. As demonstrated in

table 4.5 we can view the accumulated overhead of each system in each experiment. Hyperband always

has an almost non existing overhead and is because it always randomly samples the configurations that

are to be evaluated. Across all experiments we see that BOHB-TPE and Hyperband have the lowest total

overhead value, and especially in MNIST experiment, this difference is very noticeable. This happens

because the Tree-structured Parzen Estimator used in BOHB-TPE is much faster than the Gaussian

Process models used in Hydra, and this is exacerbated in UNET experiment because the search space

is almost 500x larger than CNN, RNN and Multilayer experiment, and three orders of magnitude larger

than UNET. This is minimized by only computing the EI of 8000 configurations in maximum, but it still

has a sizable difference.

Accumulated Overhead[s] over 258 explorations
Experiment Hydra FBS Hydra CBS-EI/$ BOHB-EI BOHB-TPE Hyperband
CNN 21.5 26.9 17.6 5.4 0.2
RNN 20.3 26.3 16.4 5.3 0.1
Multilayer 20.0 25.8 16.8 5.4 0.1
MNIST 596.4 803.9 504.6 172.8 0.2
UNET 9.7 13.3 8.5 3.8 0.1

Table 4.5: Overhead value for each system in each experiment

4.4.3 Duration of the optimization process

Here we take a look at the performance of the same selected optimizers but in a wall-clock time per-

spective.

In CNN we can identify in figure 4.15 (a) a major advantage in FBS, managing to quickly sample

configurations that achieve a lower loss than other variants. This advantage is maintained until minute

60, where other optimizers manage to achieve similar values. Looking at 4.15 (b) we can see the

predominance of CBS with EI per $, managing to achieve lower loss configurations than any other

optimizer and finishing the optimization process earlier too. BOHB-EI matches Hydra FBS behavior,

proving FBS only to be exceptional during early stages of optimization. Comparing Hydra variants to

Hyperband and BOHB-TPE we find that they can at any moment achieve better configuration loss values

in the same amout of time.

RNN and Multilayer in figure 4.16 show FBS prowess as well albeit in much shorter periods of time

in (a) and (c). In (b) and (d), where iterations 2 to 10 are shown, we see a decrease of performance

of CBS with EI per $ but we see that it has a much shorter period of execution and still manages to

outperform Hyperband and BOHB-TPE. Like figure 4.15 (a), FBS has similar behavior as BOHB-EI, with

the difference being that FBS lowers its incumbent loss values with a more visible pace, demonstrating

an impact on intra-budget information gain.

49

0 20 40 60 80
Time[m]

0.000

0.200

0.400

0.600

0.800

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(a)

100 200 300 400 500 600
Time[m]

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(b)

Figure 4.15: Accumulated wall-clock time in minutes in CNN experiment focused in 1st Iteration (a) and
focused on the remaining Iterations (b)

50

0 1 2 3 4 5
Time[m]

0.000

0.200

0.400

0.600

0.800

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(a)

10 20 30 40 50 60 70 80
Time[m]

0.020

0.030

0.040

0.050

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(b)

0 2 4 6
Time[m]

0.200

0.400

0.600

0.800

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(c)

20 40 60 80 100 120
Time[m]

0.110

0.115

0.120

0.125

0.130

0.135

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(d)

Figure 4.16: Accumulated wall-clock time in minutes in RNN experiment focused in 1st Iteration (a)
and focused on the remaining Iterations (b), and in Multilayer again focused on the 1st Iteration (c) and
remaining Iterations (d)

MNIST By analyzing figure 4.17 (a) we can note that FBS preserves, also in this experiment, its ad-

vantage in the earlier stages of the optimization process. We can also note that in this experiment, this

advantage extends throughout all the following iterations (b), producing highly accurate predictions. In

UNET in figure 4.18 (a) as in figure 4.14 (a) we see all closely matched optimizers in the first iteration.

However in (b) we see Hydra FBS achieving the best performance out of all.

51

0 1 2 3 4 5 6
Time[m]

0.000

0.200

0.400

0.600

0.800

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(a)

10 20 30 40
Time[m]

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(b)

Figure 4.17: Accumulated Wall-clock time (minutes) and Loss in MNIST, scaled in the 1st iteration, (a)
scaled in the 2nd to 10th iterations (b)

52

0 5 10 15 20
Time[h]

0.100

0.200

0.300

0.400

0.500

0.600

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(a)

50 100 150 200
Time[h]

0.040

0.045

0.050

0.055

0.060

0.065

Lo
ss

Hydra CBS-EI$
Hydra FBS
BOHB-TPE
BOHB-EI
HB
Max Accuracy
Fail to Improve

(b)

Figure 4.18: Accumulated Wall-clock time (minutes) and Loss in UNET, scaled in the 1st iteration, (a)
scaled in the 2nd to 10th iterations (b)

53

4.4.4 Summary

In this section we have viewed two of the best-performing variants of Hydra, namely full-budget sampling

variant and current-budget sampling with expected improvement per dollar, performing against known

state of the art systems such as BOHB with Tree-structured Parzen Estimator and Hyperband. Hydra as

table 4.5 shows, has on overhead value that is consistently greater than the other optimizers, however

this increase in time becomes insignificant for experiments that spend a great amount of time training the

machine learning algorithm. This is evident in experiments such as UNET, CNN, RNN and Multilayer. By

contrast, MNIST has major impact, having almost a 22% increase of experiment duration time. Finally,

even though this overhead exists and sometimes is significant, the experiments have demonstrated that

Hydra achieves constantly lower loss final incumbent values comparing with BOHB-TPE and Hyperband.

This is also true in economic-cost focused variants of Hydra, where they can achieve better results with

65% of BOHB-TPE final accumulated cost in economic-cost related experiments (excluding MNIST).

54

Chapter 5

Conclusions and Future work

Hyperparameter optimization of machine learning is an essential area of artificial intelligence that fo-

cuses on enhancing the performance of machine learning models. Unfortunately, though, this process

is notorious for being costly and time consuming. Novel state-of-the-art systems regarding this topic

have been significantly improving their performance and reducing the associated costs. However, since

the majority of largest optimization tasks are performed in the cloud, it is crucial that systems are as fast

and efficient as possible, and some, as covered in this report, present shortcomings and miss out on

leveraging some techniques that would otherwise improve its performance and efficiency.

This thesis proposes Hydra, a self-tuning system solution that performs optimization of machine

learning algorithms improving some drawbacks of previous systems by rapidly converging towards the

optimum solution without wasting time on bootstrapping the model, using many low-budget evaluations

of configurations while applying transfer-learning to enhance the models’ performance, ultimately reduc-

ing overall costs.

Hydra achieves consistently higher optimum convergence rates than the extended systems in its

full-budget sampling variant in spite of having a slower and more complex model, and lower economic-

cost. Comparing with BOHB, Hydra achieves 35% cost reduction while still maintain its speed due to

the Hyperband structure, and still outperforms BOHB.

55

56

Bibliography

[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep learning techniques

for autonomous driving. Journal of Field Robotics, n/a(n/a). doi: 10.1002/rob.21918. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918.

[2] T. Lai and X. Zheng. Machine learning based social media recommendation. In 2015 2nd IEEE

International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM),

pages 28–32, July 2015. doi: 10.1109/ICSDM.2015.7298020.

[3] A. KumarGoswami, S. Gakhar, and H. Kaur. Automatic object recognition from satellite images

using artificial neural network. International Journal of Computer Applications, 95:33–39, 06 2014.

doi: 10.5120/16633-6502.

[4] J. A. Cruz and D. S. Wishart. Applications of machine learning in cancer prediction and prognosis.

Cancer Informatics, 2:117693510600200030, 2006. doi: 10.1177/117693510600200030. URL

https://doi.org/10.1177/117693510600200030.

[5] A. Mccallum, K. Nigam, J. Rennie, and K. Seymore. Building domain-specific search engines with

machine learning techniques. 04 2009.

[6] P. Mendes, M. Casimiro, P. Romano, and D. Garlan. Trimtuner: Efficient optimization of machine

learning jobs in the cloud via sub-sampling, 2020.

[7] M. Casimiro, D. Didona, P. Romano, L. Rodrigues, and W. Zwanepoel. Lynceus: Tuning and provi-

sioning data analytic jobs on a budget, 2019.

[8] D. Didona and P. Romano. Using analytical models to bootstrap machine learning performance

predictors. 12 2015. doi: 10.1109/ICPADS.2015.58.

[9] M. Couceiro, P. Ruivo, P. Romano, and L. Rodrigues. Chasing the optimum in replicated in-

memory transactional platforms via protocol adaptation. In 2013 43rd Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks (DSN), pages 1–12, 2013. doi:

10.1109/DSN.2013.6575311.

[10] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning

algorithms. In Proceedings of the 25th International Conference on Neural Information Processing

57

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21918
https://doi.org/10.1177/117693510600200030

Systems - Volume 2, NIPS’12, pages 2951–2959, 2012. URL http://dl.acm.org/citation.cfm?

id=2999325.2999464.

[11] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel bandit-

based approach to hyperparameter optimization. J. Mach. Learn. Res., 18(1):6765–6816, Jan.

2017. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=3122009.3242042.

[12] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperparameter optimization at scale.

ArXiv, abs/1807.01774, 2018.

[13] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google vizier: A service

for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’17, pages 1487–1495, 2017. ISBN 978-1-4503-

4887-4. doi: 10.1145/3097983.3098043. URL http://doi.acm.org/10.1145/3097983.3098043.

[14] D. Yogatama and G. Mann. Efficient Transfer Learning Method for Automatic Hyperparameter Tun-

ing. In S. Kaski and J. Corander, editors, Proceedings of the Seventeenth International Conference

on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning Research,

pages 1077–1085, 22–25 Apr 2014. URL http://proceedings.mlr.press/v33/yogatama14.

html.

[15] E. Garcı́a-Martı́n, C. F. Rodrigues, G. Riley, and H. Grahn. Estimation of energy consumption

in machine learning. Journal of Parallel and Distributed Computing, 134:75 – 88, 2019. ISSN

0743-7315. doi: https://doi.org/10.1016/j.jpdc.2019.07.007. URL http://www.sciencedirect.

com/science/article/pii/S0743731518308773.

[16] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-aware cluster management.

In Proceedings of the 19th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’14, pages 127–144, 2014. ISBN 978-1-4503-2305-

5. doi: 10.1145/2541940.2541941. URL http://doi.acm.org/10.1145/2541940.2541941.

[17] C. Delimitrou and C. Kozyrakis. Hcloud: Resource-efficient provisioning in shared cloud systems.

SIGPLAN Not., 51(4):473–488, Mar. 2016. ISSN 0362-1340. doi: 10.1145/2954679.2872365. URL

https://doi.org/10.1145/2954679.2872365.

[18] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. Cherrypick: Adaptively

unearthing the best cloud configurations for big data analytics. In Proceedings of the 14th USENIX

Conference on Networked Systems Design and Implementation, NSDI’17, page 469–482, 2017.

ISBN 9781931971379.

[19] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz. Selecting the best vm

across multiple public clouds: A data-driven performance modeling approach. In Proceedings of the

2017 Symposium on Cloud Computing, SoCC ’17, page 452–465, 2017. ISBN 9781450350280.

doi: 10.1145/3127479.3131614. URL https://doi.org/10.1145/3127479.3131614.

58

http://dl.acm.org/citation.cfm?id=2999325.2999464
http://dl.acm.org/citation.cfm?id=2999325.2999464
http://dl.acm.org/citation.cfm?id=3122009.3242042
http://doi.acm.org/10.1145/3097983.3098043
http://proceedings.mlr.press/v33/yogatama14.html
http://proceedings.mlr.press/v33/yogatama14.html
http://www.sciencedirect.com/science/article/pii/S0743731518308773
http://www.sciencedirect.com/science/article/pii/S0743731518308773
http://doi.acm.org/10.1145/2541940.2541941
https://doi.org/10.1145/2954679.2872365
https://doi.org/10.1145/3127479.3131614

[20] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for gen-

eral algorithm configuration. In Proceedings of the 5th International Conference on Learning

and Intelligent Optimization, LION’05, pages 507–523, 2011. ISBN 978-3-642-25565-6. doi:

10.1007/978-3-642-25566-3 40. URL http://dx.doi.org/10.1007/978-3-642-25566-3_40.

[21] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive

Computation and Machine Learning). 2005. ISBN 026218253X.

[22] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar. Transfer learning for im-

proving model predictions in highly configurable software. In Proceedings of the 12th Interna-

tional Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS

’17, pages 31–41, 2017. ISBN 978-1-5386-1550-8. doi: 10.1109/SEAMS.2017.11. URL https:

//doi.org/10.1109/SEAMS.2017.11.

[23] D. Yogatama and G. Mann. Efficient Transfer Learning Method for Automatic Hyperparameter Tun-

ing. In S. Kaski and J. Corander, editors, Proceedings of the Seventeenth International Conference

on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning Research,

pages 1077–1085, 22–25 Apr 2014. URL http://proceedings.mlr.press/v33/yogatama14.

html.

[24] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Recommender Systems Handbook. 1st edition,

2010. ISBN 0387858199, 9780387858197.

[25] B. Schafer, B. J, D. Frankowski, Dan, Herlocker, Jon, Shilad, and S. Sen. Collaborative filtering

recommender systems. 01 2007.

[26] S. Kotsiantis. Decision trees: A recent overview. Artificial Intelligence Review, pages 1–23, 04

2013. doi: 10.1007/s10462-011-9272-4.

[27] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series in

Statistics. 2001.

[28] S. Chalup and F. Maire. A study on hill climbing algorithms for neural network training. volume 3,

page 2021 Vol. 3, 02 1999. ISBN 0-7803-5536-9. doi: 10.1109/CEC.1999.785522.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220

4598:671–80, 1983.

[30] E. Brochu, V. Cora, and N. Freitas. A tutorial on bayesian optimization of expensive cost func-

tions, with application to active user modeling and hierarchical reinforcement learning. CoRR,

abs/1012.2599, 12 2010.

[31] O. Berger-Tal, J. Nathan, E. Meron, and D. Saltz. The exploration-exploitation dilemma: A multi-

disciplinary framework. PLOS ONE, 9(4):1–8, 04 2014. doi: 10.1371/journal.pone.0095693. URL

https://doi.org/10.1371/journal.pone.0095693.

59

http://dx.doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1109/SEAMS.2017.11
https://doi.org/10.1109/SEAMS.2017.11
http://proceedings.mlr.press/v33/yogatama14.html
http://proceedings.mlr.press/v33/yogatama14.html
https://doi.org/10.1371/journal.pone.0095693

[32] H. J. Kushner. A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in

the Presence of Noise. Journal of Basic Engineering, 86(1):97–106, 03 1964. ISSN 0021-9223.

doi: 10.1115/1.3653121. URL https://doi.org/10.1115/1.3653121.

[33] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,

and B.-Y. Su. Scaling distributed machine learning with the parameter server. In Proceedings of

the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, page

583–598, 2014. ISBN 9781931971164.

[34] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter opti-

mization. 02 2015.

[35] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J. Mach. Learn. Res.,

13:281–305, Feb. 2012. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=2188385.

2188395.

[36] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast bayesian optimization of machine

learning hyperparameters on large datasets. In Proceedings of the 20th International Confer-

ence on Artificial Intelligence and Statistics (AISTATS 2017), volume 54 of Proceedings of Ma-

chine Learning Research, pages 528–536, Apr. 2017. URL http://proceedings.mlr.press/v54/

klein17a.html.

[37] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In S. Das-

gupta and D. McAllester, editors, Proceedings of the 30th International Conference on Machine

Learning, volume 28 of Proceedings of Machine Learning Research, pages 199–207, 17–19 Jun

2013. URL http://proceedings.mlr.press/v28/bardenet13.html.

[38] C. Delimitrou and C. Kozyrakis. Qos-aware scheduling in heterogeneous datacenters with paragon.

ACM Transactions on Computer Systems (TOCS), 31, 12 2013. doi: 10.1145/2556583.

[39] J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, and J. P. Cunningham. Bayesian optimization

with inequality constraints. In Proceedings of the 31st International Conference on International

Conference on Machine Learning - Volume 32, ICML’14, page II–937–II–945, 2014.

[40] L. Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, Aug. 1996. ISSN 0885-6125. doi:

10.1023/A:1018054314350. URL https://doi.org/10.1023/A:1018054314350.

[41] M. G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of Machine

Learning Research, 2:299–312, 2001. URL http://www.jmlr.org/papers/v2/genton01a.html.

[42] E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in

NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 3645–3650, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.

18653/v1/P19-1355. URL https://www.aclweb.org/anthology/P19-1355.

60

https://doi.org/10.1115/1.3653121
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v28/bardenet13.html
https://doi.org/10.1023/A:1018054314350
http://www.jmlr.org/papers/v2/genton01a.html
https://www.aclweb.org/anthology/P19-1355

[43] D. Jones. A taxonomy of global optimization methods based on response surfaces. J. of Global

Optimization, 21:345–383, 12 2001. doi: 10.1023/A:1012771025575.

[44] N. Hansen. The CMA Evolution Strategy: A Comparing Review, volume 192, pages 75–102. 06

2007. ISBN 978-3-540-29006-3. doi: 10.1007/3-540-32494-1 4.

[45] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/

exdb/mnist/.

[46] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural network.

In 2017 International Conference on Engineering and Technology (ICET), pages 1–6, 2017. doi:

10.1109/ICEngTechnol.2017.8308186.

[47] A. Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-term memory

(LSTM) network. CoRR, abs/1808.03314, 2018. URL http://arxiv.org/abs/1808.03314.

[48] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep Big Multilayer Percep-

trons for Digit Recognition, pages 581–598. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8 31. URL https://doi.org/10.1007/

978-3-642-35289-8_31.

[49] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image

segmentation, 2015.

[50] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for

object detection, 2017.

61

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1808.03314
https://doi.org/10.1007/978-3-642-35289-8_31
https://doi.org/10.1007/978-3-642-35289-8_31

62

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Background on black-box modeling and optimization techniques
	2.1.1 Black-box modeling for regression and classification
	2.1.2 Optimization techniques

	2.2 Hyperparameter Optimization
	2.2.1 Bayesian Optimization
	2.2.2 Hyperband
	2.2.3 Fabolas
	2.2.4 Google Vizier
	2.2.5 BOHB
	2.2.6 Efficient Transfer Learning Method for Automatic Hyperparameter Tuning

	2.3 Optimization in the Cloud
	2.3.1 Quasar
	2.3.2 HCloud
	2.3.3 CherryPick
	2.3.4 PARIS
	2.3.5 Lynceus

	2.4 Summary

	3 The Hydra Optimizer
	3.1 Overview
	3.2 Design Details
	3.2.1 Budget Sampling
	3.2.2 Cost of evaluating configurations
	3.2.3 Cost of identifying the next configuration to be evaluated

	4 Evaluation
	4.1 Test Environment
	4.2 Experiment Run-through
	4.2.1 Plotting details

	4.3 Hydra variants comparison
	4.3.1 Duration of the optimization process
	4.3.2 Cost of the optimization process
	4.3.3 Summary

	4.4 Comparison with state of the art optimizers
	4.4.1 Cost of the optimization process
	4.4.2 Hydra Overhead
	4.4.3 Duration of the optimization process
	4.4.4 Summary

	5 Conclusions and Future work
	Bibliography

