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Resumo

Esta tese trata da análise do limite hidrodinâmico de um sistema de partı́culas em interação (SPI) com

taxas degeneradas, nomeadamente, o modelo em meios porosos (MMP) evoluindo no espaço discreto

{0, ..., n}, onde n > 1 e os sı́tios 0 e n representam reservatórios lentos. O nome lento significa que os

reservatórios possuem um fator de escala n−θ, e quanto maior o valor de θ ≥ 0, mais lenta é a dinâmica

do processo na fronteira. Mais especificamente, as partı́culas podem ser inseridas no sistema no sı́tio 1

(resp. n−1) com taxa καn−θ (resp. κβn−θ), e podem ser removidas do sistema através do sı́tio 1 (resp.

n− 1) com taxa κ(1−α)n−θ (resp. κ(1−β)n−θ), onde α, β ∈ (0, 1), θ ≥ 0, e κ > 0. A ideia de adicionar

esses reservatórios é ver se essas perturbações têm impacto sobre o comportamento macroscópico

do sistema. Normalmente, essas perturbações, sendo locais, não destroem a natureza da equação

macroscópica, mas em vez disso, trazem condições de fronteira adicionais.

A nossa estratégia para caracterizar o comportamento do MMP com reservatórios lentos baseia-se

no Método de Entropia de Guo, Papanicolau e Varadhan [27]. Este procedimento limite estabelece

que a densidade espacial das partı́culas do MMP com reservatórios lentos converge para a única

solução fraca da equação macroscópica correspondente, chamada equação hidrodinâmica, e repre-

sentada nesta tese pela equação em meios porosos (EMP). No entanto, este método não pode ser

aplicado de forma direta, pois há configurações que não evoluem de acordo com a dinâmica do pro-

cesso (as chamadas configurações bloqueadas). Para evitar esse problema, perturbamos ligeiramente

a dinâmica de forma que o comportamento macroscópico do sistema continue seguindo a equação em

meios porosos, mas com condições de fronteira que dependem da intensidade dos reservatórios. Mais

especificamente, obtemos três tipos diferentes de condições de fronteira: Dirichlet, Robin e Neumann.

Como consequência do limite hidrodinâmico, obtemos a lei de Fick. Obtemos também estimativas de

energia suficientemente fortes que permitem obter informação detalhada sobre o comportamento na

fronteira das soluções fracas da equação em meios porosos.

Palavras-chave: Limite hidrodinâmico, Sistema de partı́culas em interação, Modelo em

meios porosos, Equação em meios porosos, Condições de fronteira.
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Abstract

This thesis is concerned with the analysis of the hydrodynamic limit of an interacting particle system

(IPS) with degenerate rates, namely, the porous medium model (PMM) evolving in a discrete space

{0, . . . , n}, where n > 1 and the sites 0 and n stand for slow reservoirs. The name slow means that

the reservoirs are scaled by a factor n−θ, and the higher the value of θ ≥ 0, the slower the boundary

dynamics. More specifically, particles can be inserted into the system at the site 1 (resp. n − 1) with

rate καn−θ (resp. κβn−θ), and can be removed from the system through the site 1 (resp. n − 1) with

rate κ(1 − α)n−θ (resp. κ(1 − β)n−θ), where α, β ∈ (0, 1), θ ≥ 0, and κ > 0. The idea of adding these

reservoirs is to see whether these perturbations have an impact over the macroscopic behavior of the

system. Usually, these perturbations, being local, do not destroy the macroscopic equation’s nature, but

instead, they bring up additional boundary conditions.

Our strategy to characterize the behavior of the PMM with slow reservoirs relies on the Entropy

Method of Guo, Papanicolau, and Varadhan [27]. This limit procedure states that the spatial density of

particles of the PMM with slow reservoirs converges to the unique weak solution of the corresponding

macroscopic equation, the so-called hydrodynamic equation, represented in this thesis by the porous

medium equation (PME). However, this method cannot be straightforwardly applied, since there are

configurations that do not evolve under the dynamics (the so-called blocked configurations). In order

to avoid this problem, we slightly perturbed the dynamics in such a way that the macroscopic behavior

of the system keeps following the porous medium equation, but with boundary conditions that depend

on the reservoirs’ strength. More specifically, we obtain three different types of boundary conditions

(Dirichlet, Robin, and Neumann) depending on the intensity of the rate at the reservoir’s dynamics. As a

consequence of the hydrodynamic limit, we derived Fick’s law of diffusion. We also derived sufficiently

strong energy estimates which allow obtaining detailed information about the boundary behavior of the

weak solutions of the porous medium equation.

Keywords: Hydrodynamic limit, Interacting particle system, Porous medium model, Porous

medium equation, Boundary conditions.
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Chapter 1

Introduction

Throughout our civilization’s history to the present day, we, human beings, have been trying to under-

stand better the world that we live in. While the pursuit is never ending, this curious journey has shown

us how different and extraordinary is the world through different scales. For example, our ancestors

would not have imagined how different astronomy could be after the telescope (1609), and the biology

after the microscope (1674) have been invented. This thesis focuses on the derivation of macroscopic

patterns that arise by studying microscopic random models. Let us take the glass formation as an exam-

ple. Despite glass being a very present material in our lives and having produced them on a large scale,

understanding how its formation process happens has been a subject of great interest for scientists and

industries worldwide. The idea behind making glass is to take a hot liquid mixture of silica, sodium

carbonate, calcium carbonate and cool it rapidly to avoid crystal structure formation. There are several

video examples available on the internet in which we can see this process. Now, suppose that we aug-

ment our sensory perception with a microscope to see the process again. Thus, in the beginning, we

would observe the molecules moving randomly without any specific purpose. Then, while cooling it, we

would observe the same chaotic motion of the particles, but now they can not move easily, so they move

slower and slower until they ultimately get stuck. The question here is: how do these particles interact

with each other in such a way as to form the glass state as we know it? In principle, the analysis could

be done using the standard mathematical approach of Classical/Quantum Mechanics, which consists of

two main ingredients: the system’s complete state at a given time and an equation of motion. However,

since the number of particles in the system is huge (of the order of Avogadro’s number), we can not use

the standard approach to precisely describe the microscopic state of the system, i.e., the position and

velocity of each particle throughout time. The idea then to overcome this problem comes from Statistical

Mechanics, whose concepts add some uncertainty to the system’s microscopic state, i.e., instead of

considering a deterministic motion of the particles, consider it as being stochastic. Thus, our goal is to

show how we can derive a macroscopic pattern from a random movement of a collection of particles like

the one described above.

The process that describes this collection of particles’ evolution is the so-called interacting particle

system (IPS). The framework of IPS was introduced independently in the 1970s by Spitzer [40] and
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Dobrushin [12, 13]. We will focus on a family of IPSs widely used to study certain aspects of glassy

behavior, called kinetically constrained lattice gases (KCLG). Therefore, this thesis aims presenting a

rigorous mathematical proof of how we can derive a certain partial differential equation (PDE) - the

porous medium equation (PME) - from a member of this family - the porous medium model (PMM) -

whose ends are attached to slow reservoirs.

In recent years, there has been an intensive research activity around the derivation of PDEs with

boundary conditions from IPSs [25, 31]. This derivation is known as hydrodynamic limit, and consists in

proving, rigorously, that the conserved quantity of a random microscopic dynamics is described by the

solution of some PDE. Therefore, this PDE coins the name hydrodynamic equation. A vast literature

has been produced on the hydrodynamic limit with many important techniques, e.g., the method of v-

functions, see [8] for a review, the Entropy Method [27], the Relative Entropy Method [43], non-gradient

techniques, and others. This thesis will focus on the Entropy Method of Guo, Papanicolau, and Varad-

han introduced in [27]. Note that the hydrodynamic limit consists (probabilistically speaking), in a Law

of Large Numbers for the empirical measure associated with the conserved quantities of the system

(the density of particles in this thesis). More recently, there has been quite a lot of attention devoted to

analyzing microscopic systems with local perturbations. One of the puzzling questions is to see whether

these perturbations have an impact over the macroscopic behavior of the system. Usually, these per-

turbations, being local, do not destroy the PDE’s nature, but instead, they bring up additional boundary

conditions to the PDE [2, 6, 21, 23]. In case of microscopic systems with independent particles, we usu-

ally have linear hydrodynamic equations, otherwise, we have nonlinear hydrodynamic equations. See

for instance [25] and references therein.

In light of these questions, we present the derivation of the porous medium equation with boundary

conditions from a microscopic dynamics, which is placed in contact with reservoirs. As a consequence,

we also derive Fick’s law of diffusion. Up to our knowledge, this is the first derivation of a nonlinear

degenerate parabolic PDE with boundary conditions that can be obtained as the hydrodynamic limit of an

underlying microscopic random dynamics. More specifically, we obtain three different types of boundary

conditions (Dirichlet, Robin, and Neumann) depending on the intensity of the rate at the reservoir’s

dynamics. We remark, however, that the first microscopic derivation of the PME was obtained in [14]

and [17], in which the authors considered a model with continuous occupational variables. The first

microscopic derivation considering discrete occupational variables was obtained in [26]. There, the

authors considered a random microscopic dynamics - porous medium model - evolving in the discrete

d-dimensional torus Tdn without the presence of reservoirs. Therefore, the PME did not have any type of

boundary conditions. This motivated us to work with discrete occupational variables in order to derive

the PME, that is, to consider as the random microscopic dynamics, an ad-hoc version of the PMM

analyzed there. With the aim to derive boundary conditions in the PME, we combined the microscopic

dynamics of [26] with the boundary dynamics of [2]. In the latter article, the dynamics was given by

the symmetric simple exclusion process (SSEP) in contact with reservoirs that has a parameter that

regulates its strength (called slow reservoirs). Thus, the authors obtained the heat equation with different

boundary conditions, namely Dirichlet, Robin, and Neumann.

2



Now let us precisely describe the PMM with slow reservoirs. First, in order to do that we fix a scaling

parameter n ∈ N, and a parameter m ∈ N whose role is to regulate the constraints strength. Then, we

fix the discrete space where particles will be moving around, that is, the space Σn := {1, . . . , n − 1},

that we call bulk. We call an element x ∈ Σn by site, which can be empty or occupied, and we note

that we can not have more than one particle per site (exclusion rule). We denote the configuration of

particles by the function η : Σn → {0, 1} since according to IPS framework, they are usually denoted by

a Greek letter. For x ∈ Σn, we write down η(x) for the occupation variable, that represents the number of

particles at site x in the configuration η. Since η(x) takes values in {0, 1}, then η(x) = 0 (resp. η(x) = 1)

stands for an empty (resp. occupied) site. Therefore, the state space of our process is {0, 1}Σn and η is

an element of this set. The PMM is a continuous-time Markov process where particles jump to nearest-

neighbor sites under the exclusion rule, however, within some constraints. For instance, let η ∈ {0, 1}Σn

and suppose that a particle at site x wants to perform a jump to the site x + 1. This jump happens with

the rate cmx,x+1(η), as long as at least one of the set of points below is full of particles

{x− (m− 1), . . . , x− 1}, {x− (m− 2), . . . , x− 1, x+ 2}, . . . , {x+ 2, x+ 3, . . . , x+m},

see Figure 1.1.

x−(m−1) x−1 x x+1

x−(m−2) x x+1 x+2

...

x−1 x x+1 x+m−1

x x+1 x+2 x+m

Figure 1.1: Sets of points for which the particle jump from site x to site x+ 1 in the PMM dynamics.

The jump mechanism from x+1 to x is the same as described above. Now, replace each set of points

above by occupation variables’ products, i.e., {x − (m − 1), . . . , x − 1} by η(x − (m − 1)) · · · η(x − 1),

{x− (m− 2), . . . , x− 1, x+ 2} by η(x− (m− 2)) · · · η(x− 1)η(x+ 2) and so on. The jump rate cmx,x+1(η)

is defined as the sum of these particles’ products. For example, for m = 2, the jump rate is given by

c2x,x+1(η) = η(x− 1) + η(x+ 2) and a particle at site x performs the jump if, and only if, c2x,x+1(η) > 0. In

the general case the exact form for the jump rate is given by

cmx,x+1(η) =

m∑
k=1

k∏
j=−(m−k)

j 6=0,1

η(x+ j).

The choice of m regulates the strength of the kinetic constraint, therefore the higher its value, the slower

the movement of the particles. For example, when m = 1 the jump rate is c1x,x+1(η) = 1 and we recover

the SSEP. However, for m > 1, for certain configurations cmx,x+1(η) = 0 might happen, i.e., if particles do

not have a minimal number of neighboring sites (in our case m−1), they will not be able to move. As we
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mentioned above, in the case m = 2 the jump rate is given by the sum of the number of particles at sites

x − 1 and x + 2. Due to the constraint of the model’s rates, and since one can have configurations in

which the distance between two successive particles is larger than two, the model exhibits the so-called

blocked configurations, i.e., configurations that do not evolve under the dynamics. See Figure 1.2 below.

x−3 x−2 x−1 x x+1 x+2 x+3

Figure 1.2: Example of blocked configuration for PMM (with m = 2).

This jump rate is chosen in such a way that the local constraints slow down the low density dynamics

so that at the macroscopic level, we obtain a diffusion coefficient that degenerates with a low density

of particles. We can see this relation by a heuristic argument used to derive the macroscopic equation,

which in turn rules the space-time evolution of the density of particles of the PMM - the porous medium

equation. We present this heuristic argument for the PMM with slow reservoirs in Chapter 3.

Now, let us add a technicality needed to finish the description of the bulk dynamics. Since the PMM

presents blocked configurations, it is a reducible Markov process. However, as we will see later, to prove

the hydrodynamic limit using the Entropy Method [27], we must have an irreducible Markov process, i.e.,

we have to avoid blocked configurations. Thus, to accomplish this, we will superpose the PMM dynamics

on the SSEP dynamics on the bulk so that the macroscopic hydrodynamic behavior of this perturbed

dynamics still evolves according to the PME. This means that when scaling the time diffusively, we tune

the SSEP dynamics so that its impact is not seen at the macroscopic level.

At the boundary, we use the same dynamics introduced in [2], that is, a Glauber dynamics at sites 1

and n − 1, which play the role of reservoirs. These reservoirs will also be scaled by a parameter which

can be taken to infinity, and the highest its value, the slowest its impact. More specifically, the reservoirs

dynamics can be described as follows. Particles can be inserted into the system at the site 1 (resp. n−1)

with rate καn−θ (resp. κβn−θ), and can be removed from the system through the site 1 (resp. n − 1)

with rate κ(1− α)n−θ (resp. κ(1− β)n−θ), where α, β ∈ (0, 1), θ ≥ 0, and κ > 0. These reservoirs break

down the conservation of the number of particles since there is a mass transfer between the reservoirs

and the bulk. The factor n−θ is the one that scales the boundary dynamics, and the higher the value of

θ, the slower the boundary dynamics. However, we might ask what the role of the factor κ is. Actually,

parameter κ is very important to study convergence results at the macroscopic level. Although κ is

always present at the microscopic level, at the macroscopic level it only appears in the case θ = 1. We

will see below that in this case, our macroscopic equation is the porous medium equation with Robin

boundary conditions depending on κ. Thus, the role of κ is to study the convergence of weak solutions

of the PME with Robin boundary conditions as in [9] and [22]. This convergence depends on obtaining

sufficiently strong energy estimates which is one of the main results of this thesis, and it is presented in

Chapter 7. The argument we employ to their proof can be described as follows. We consider a proper

L2 space that gives adequate weights at the boundary points 0 and 1, which are explicitly given by (7.1).

From this space, we define an energy functional which we prove to be finite on functions ξ such that
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their m-th power, namely ξm, belongs to L2(0, T ;H1), where H1 is the usual Sobolev space. We also

prove that the weak derivative of ξm exists, lives on the introduced L2 space, and also satisfy the Robin

boundary conditions, as given in (2.17), almost everywhere in time. Given this result, we then prove that

the solution ρκ of the PME with Robin boundary conditions has finite energy with respect to that energy

functional, so that all the aforementioned results come for free for ρκ. This is the content of Theorem

7.0.4.

The solution of the hydrodynamic equation is called hydrodynamic profile. Our hydrodynamic pro-

files are weak solutions of the PME with different boundary conditions depending on the range of the

parameter θ. For 0 ≤ θ < 1, we obtain the PME with Dirichlet boundary conditions, which is given by,

 ∂tρt(u) = ∆ (ρt(u))m, (t, u) ∈ (0, T ]× (0, 1),

ρt(0) = α, ρt(1) = β, t ∈ (0, T ].

(1.1)

For θ = 1, the boundary dynamics is slowed enough so that the boundary conditions of Dirichlet type

are replaced by a type of Robin boundary conditions given by


∂tρt(u) = ∆ (ρt(u))m, (t, u) ∈ (0, T ]× (0, 1),

∂u(ρt(0))m = κ(ρt(0)− α), t ∈ (0, T ],

∂u(ρt(1))m = κ(β − ρt(1)) , t ∈ (0, T ],

(1.2)

where κ ∈ (0,∞). Finally, for θ > 1, the boundary is sufficiently slowed so that the Robin boundary

conditions are replaced by Neumann boundary conditions,

 ∂tρt(u) = ∆ (ρt(u))m, (t, u) ∈ (0, T ]× (0, 1),

∂u(ρt(0))m = ∂u(ρt(1))m = 0, t ∈ (0, T ];

(1.3)

which dictate that, macroscopically, there is no flux of particles from the boundary reservoirs. A con-

sequence of the degeneracy of these equations is that (depending on the initial condition) we do not

have classical solutions of the problems above, see Chapter 5 of [42]. The solutions that we will obtain

from the particle system are not classical solutions, and for that reason we just need to require the initial

condition ρ0 : [0, 1]→ [0, 1] to be a measurable function. Therefore we need to introduce an appropriate

concept of generalized solution of the equation. There are different ways of defining generalized solu-

tions of partial differential equations. The weak formulation is obtained by multiplying the equation by

suitable test functions, integrating by parts all the terms and using the boundary conditions. One also

needs to ask from the solution a regularity that allows the weak formulation to make sense. In this case,

we say that the solution is a weak solution. The notions of weak solutions of the equations above are

given in Definitions 4 and 5, respectively. We stress that in the regime θ < 0, that is, when the boundary

dynamics is fast, the macroscopic behavior of the system will be the same as in the case 0 ≤ θ < 1,

i.e., given by PME with Dirichlet boundary conditions. The difference between these regimes is on their

notion of weak solution. On one hand, in the case 0 ≤ θ < 1, we consider test functions that vanish at
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the boundary. On the other hand, in the case θ < 0, we have to consider more restricted test functions

in the notion of weak solution, i.e., functions with compact support. Despite the similarity in the notion

of weak solutions between these cases, we stick to θ ≥ 0 because the proof of uniqueness in the case

θ < 0 requires more effort and we leave it for a future work.

In order to better understand the hydrodynamic behavior of our model, we start by observing that

the PME, ∂tρ = ∆(ρm), m > 1, is a nonlinear evolution equation of parabolic type. This equation has

received a lot of attention in the last decades due to the mathematical difficulties of building a theory for

nonlinear versions of the heat equation. One can rewrite the equation in divergence form as

∂tρ = ∇(D(ρ)∇ρ), (1.4)

where ρ = ρ(t, u) is a scalar function and D(ρ) = mρm−1 is the diffusion coefficient. The space vari-

able u takes values in some bounded or unbounded domain of Rd and the variable t satisfies t ≥ 0.

As mentioned above, the PME is also a degenerate parabolic equation, since the diffusion coefficient

vanishes when ρ goes to zero, i.e., the equation is parabolic at the points ρ 6= 0, but it changes its

character at the level ρ = 0. Thus, the regularity results for its solutions are weaker than the solutions of

classical parabolic equations, and the techniques for studying the PME are much more refined. Matters

as existence and uniqueness of classical and weak solutions are also affected by the degeneracy of this

equation.

In this thesis, ρ represents a density (for example a gas density), and we look for solutions ρ ≥ 0.

In this way, a relevant problem for the PME consists in studying how the initial profile ρ0, confined in a

small region at time t = 0, evolves in time. From the physical point of view, one of the main differences

between the PME and the heat equation is the so-called finite speed of propagation, that is, the solutions

of the PME can be compactly supported at each fixed time. This property implies the appearance of

a free boundary that separates the regions where there is gas (ρ > 0) from the empty region (ρ = 0).

For example, across this boundary, the solution loses regularity. Therefore one of the main issues in the

mathematical investigation of free boundaries consist in finding the evolution in time of the free boundary

of regions with gas concentration, i.e., in the closure of {(t, u) : ρ(t, u) > 0}. Nevertheless, a way to

obtain some information or insight about the free boundary, e.g, how it behaves when we vary the power

m, is to look at the fundamental solution of the PME, the so-called Barenblatt solution (or ZKB solution).

This solution was obtained by Zel’dovich and Kompaneets [3] and Barenblatt [32]. These profiles are

similar to the Gaussian profiles for the linear case. In the one-dimensional case, the Barenblatt solution

has the following explicit form

ρ(t, u) =


t
− 1
m+1

(
C −A u2

t

2
m+1

) 1
m−1

, if u2 ≤ C
A t

2
m+1 ,

0, if u2 > C
A t

2
m+1 ,

where C > 0 is an arbitrary constant and A = m−1
2m(m+1) . Note that for every t > 0, the points u =

±
√

C
A t

1
m+1 represent the region where there is gas, so that the free boundary is located at this distance
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u. Considering it as a time function G(t), we have therefore that the speed of propagation is G′(t) =

± 1
m+1

√
C
A t
− m
m+1 . To see how the Barenblatt profiles evolve in time for different values of m see Figure

1.3 below.
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(a) Barenblatt profiles for m = 5/4
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(b) Barenblatt profiles for m = 2
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(c) Barenblatt profiles for m = 4
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(d) Barenblatt profiles for m = 10

Figure 1.3: Barenblatt solution for different values of m considering C = 1.

Note that when the parameter m increases, the solution varies more slowlier inside its support and tends

to be like a step function in the interface of the support.

To summarize, the main contributions of this thesis are:

• to derive for the first time the hydrodynamic limit for the PMM with slow reservoirs, and as a

consequence, the Fick’s law ;

• to derive sufficiently strong energy estimates which are the keystone in the proof of convergence

results for weak solutions of parabolic PDEs, as presented in [9, 22].

Here is the outline of this thesis. Chapter 2 aims stating the hydrodynamic limit. In Section 2.1,

we introduce some notation and define the porous medium model with slow reservoirs. Section 2.2 is

devoted to presenting the notion of weak solution of the hydrodynamic equations. In Section 2.3, we

define the empirical measure associated to the process and we state the hydrodynamic limit and the

Fick’s law. In Chapter 3, we present a heuristic argument to derive the PME from the PMM. Chapter 4

shows tightness for the sequence of probability measures of interest and in Chapter 5, we characterize

the limit points of that sequence. In Chapter 6, we present the proofs of all the replacement lemmas that

are needed along with the proof’s arguments. Chapter 7 deals with energy estimates, and Chapter 8

with the Fick’s law. Finally, in Chapter 9, we prove the uniqueness of weak solutions of the hydrodynamic

equations, and we devote Chapter 10 to the discussion of some topics to investigate in the near future.

We finish the thesis in Appendix A by presenting some results used throughout the text.
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Chapter 2

Statement of Results

From the big picture, this thesis is focused on the study of diffusion. Generally speaking, diffusion is a

spread out of a substance (e.g., molecules, atoms, energy, etc.) from a region with high concentration

to a region with low concentration. The diffusion is represented here in two scales: the macroscopic

one - by means of a diffusion equation, the porous medium equation with boundary conditions; and the

microscopic one - by means of a microscopic system in contact with reservoirs, the porous medium

model with slow reservoirs. This chapter aims establishing a connection between these scales by a limit

procedure that we will explain below. Thus, a very common question that arises when using such an

approach is: from which of these worlds should we start our study? In fact, the starting point depends

on the limit procedure technique that we are using and the problem at hand. In this thesis, in particular,

we want to characterize the behavior of the PMM in contact with reservoirs. As we mentioned above,

we use the Entropy Method introduced by Guo, Papanicolau, and Varadhan in [27] to accomplish this.

Informally, the aforementioned limit procedure - known in the literature as hydrodynamic limit - states that

the spatial density of particles converges to the unique weak solution of a partial differential equation,

the so-called hydrodynamic equation.

The Entropy Method was one of the main contributions to the hydrodynamic limit theory, mainly due

to its robustness and vast applicability, e.g., to prove laws of large numbers, equilibrium central limit

theorems, and large deviations principles. However, the method at the hydrodynamic limit level requires

the following assumptions regarding the hydrodynamic equation and the microscopic system:

1) uniqueness of weak solutions of the corresponding hydrodynamic equation;

2) irreducibility of the microscopic system over hyperplanes of configurations with k particles

Ωkn :=
{
η ∈ {0, 1}Σn :

∑
x∈Σn

η(x) = k
}
.

With these two conditions, the method proves the existence of such weak solutions. Let us now say some

words about them. The hydrodynamic equations obtained through the hydrodynamic limit described

above are the PME with Dirichlet, Robin, and Neumann boundary conditions, as given in (1.1), (1.2),

and (1.3). We prove the uniqueness of their weak solutions in Chapter 9 and we are done with item

1) above. However, there are blocked configurations in the PMM dynamics so that we do not have
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irreducibility, and item 2) is not satisfied. Then, as mentioned above, we can overcome this problem by

adding jumps of the SSEP dynamics in a time scale less than the diffusive one so that in the limit, it

does not affect the hydrodynamic equation. For more details about the method, we refer the reader to

[24, 25, 31, 41].

2.1 The Porous Medium Model

Let n ∈ N be a scaling parameter and fix m ∈ N. We denote by Σn = {1, . . . , n − 1} the discrete set of

points of size n−1 that we call bulk. We call an element of the set Σn a site. The function η : Σn → {0, 1}

that evaluates each site and returns the value 0 (resp. 1) for an empty (resp. occupied) site is called

a configuration of particles. The PMM is a continuous time Markov process that we denote by {ηt}t≥0,

which has state space Ωn := {0, 1}Σn and infinitesimal generator Lmn that we will define below. The

dynamics of the model at the bulk can be described by associating 2m − 1 Poisson processes at each

bond of the form (x, x+ 1), with x ∈ {1, . . . , n− 2} and with a parameter depending on the constraints of

the model. Recall from the previous chapter that in the case m = 2, the jump rate of the process is given

by c2x,x+1(η) = η(x− 1) + η(x+ 2). Thus, we associate three Poisson processes to each bond (x, x+ 1)

in the following way: Nx−1
x,x+1(t) and Nx+2

x,x+1(t) with parameter 1, and Nx−1,x+2
x,x+1 (t) with parameter 2. Now,

note that in the general case, cmx,x+1(η) is composed by a sum of m terms. The idea to associate the

Poisson processes to each bond (x, x+ 1) in this case, is to look at all possible combinations of positive

sums of terms of cmx,x+1(η), and for each one of them, we associate a Poisson clock with a parameter

equal to the value of the positive sum and depending on the sites involved in this sum. Thus, for each

k = {1, . . . ,m} we will have
(
m
k

)
Poisson processes with parameter k associated to the bond (x, x+ 1),

i.e., a total of
∑m
k=1

(
m
k

)
= 2m − 1. To define the dynamics at the boundary we first need to artificially

add the sites 0 and n to the bulk. Hereafter, at the left boundary (resp. right boundary) we add Poisson

clocks at the bonds (0, 1) (resp. (n − 1, n)) and (1, 0) (resp. (n, n − 1)) in the following way: N0,1(t)

(resp. Nn,n−1(t)) with parameter καn−θ (resp. κβn−θ) and N1,0(t) (resp. Nn−1,n(t)) with parameter

κ(1 − α)n−θ (resp. κ(1 − β)n−θ), for some arbitrary θ ≥ 0, κ > 0 and α, β ∈ [0, 1]. We stress that all of

these Poisson processes are independent.

Let us now define the infinitesimal generator of the process. Let a ∈ (1, 2). For x, y ∈ Σn we denote

the exchange and flip configurations by

ηx,y(z) =


η(z), z 6= x, y,

η(y), z = x,

η(x), z = y,

and ηx(z) =

η(z), z 6= x,

1− η(x), z = x.

With these notations, we define the infinitesimal generator of the process acting on functions f : Ωn → R

as

(Lmn f)(η) = (LmP f)(η) + na−2(LSf)(η) + (LBf)(η), (2.1)
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where

(LmP f)(η) =

n−2∑
x=1

cmx,x+1(η){ax,x+1(η) + ax+1,x(η)}[f(ηx,x+1)− f(η)], (2.2)

is the generator of the PMM,

(LSf)(η) =

n−2∑
x=1

{ax,x+1(η) + ax+1,x(η)}[f(ηx,x+1)− f(η)], (2.3)

is the generator of the SSEP, and

(LBf)(η) = κ
nθ
Iα1 (η)[f(η1)− f(η)] + κ

nθ
Iβn−1(η)[f(ηn−1)− f(η)], (2.4)

is the generator of the Glauber dynamics acting on sites 1 and n−1. Let η be a configuration of particles

in Ωn. For x, y ∈ {1, . . . , n− 2}, we define the exchange rates at the bulk as

cmx,x+1(η) =

m∑
k=1

k∏
j=−(m−k)

j 6=0,1

η(x+ j), (2.5)

ax,y(η) = η(x)(1− η(y)), (2.6)

and at the boundary as

Ibz(η) = b(1− η(z)) + (1− b)η(z), (2.7)

for z ∈ {1, n− 1} and b ∈ {α, β}.

Remark 2.1.1. Note that when m = 1 the rate (2.5) is equal to 1 and (2.2) is exactly the generator of

the SSEP.

Remark 2.1.2. Above we used the convention

η(x) = α, for x ≤ 0,

η(x) = β, for x ≥ n.
(2.8)

For example, if m = 3, we have that c31,2(η) = η(−1)η(0) + η(0)η(3) + η(3)η(4), which is equal to

α2 + αη(3) + η(3)η(4).

Remark 2.1.3. We take the constant a ∈ (1, 2) for two reasons. First, we take the constant a less

than 2 since we want to speed up the SSEP in a time scale less than diffusive, i.e., na < n2. Second,

the constant a must be bigger than 1 in order to control some terms that appear in the proof of the

replacement lemmas, e.g., in (6.9) and (6.15). This is technical and will be explained ahead.

Remark 2.1.4. The restriction imposed on the parameters α, β ∈ (0, 1) comes from the estimate in

Lemma A.0.2, in which we have to take α and β different from 0 and 1 in order to control the entropy in

the case θ < 1. However, if θ ≥ 1 we do not need to impose this restriction due to the choice of profile in
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Lemma 4.2.1.

Remark 2.1.5. We note that one could consider more general rates for the Glauber dynamics acting at

the sites 1 and n − 1, as in [10]. This could be done performing the following changes. Let α, β, γ, δ ∈

(0, 1), replace 1− α (resp. 1− β) by γ (resp. δ) in the reservoir’s rates and consider the convention

η(x) = ρ−, for x ≤ 0,

η(x) = ρ+, for x ≥ n,

with the densities ρ− = α
α+γ and ρ+ = β

β+δ . The result would be the same as the one presented here but

with a heavier notation. This is the reason we decided not to consider this case here. For more details

about the action of this Glauber dynamics in the case m = 2, we refer the reader to [10].

The dynamics of the model in the casem = 2 is represented in Figure 2.1, where black balls stand for

particles and blue balls stand for reservoirs. The clocks associated with the bonds represent all possible

jumps that happen if a clock rings at that bond.

1 2 x n − 2 n − 1

κα
nθ

κ(1−β)
nθ1+n

a

n2 2+n
a

n2
1+n

a

n2
na

n2
na

n2
β+n

a

n2

Figure 2.1: The porous medium model with slow reservoirs (with m = 2).

Recall that m ∈ N and α, β ∈ (0, 1). Let η ∈ Ωn. We denote by jmx,x+1(η) the instantaneous current of

particles over the bond (x, x+ 1). In other words, it is the rate at which the particle jumps from site x to

x + 1, minus the rate at which the particle jumps from site x + 1 to x. Thus, the instantaneous current

associated to the bond (x, x+ 1) is given by


jm0,1(η) = κ

nθ
(α− η(1)),

jmx,x+1(η) = τxh
m(η)− τx+1h

m(η), for x ∈ {1, . . . , n− 2},

jmn−1,n(η) = κ
nθ

(η(n− 1)− β),

(2.9)

where,

τxh
m(η) =

m∑
k=1

k−1∏
j=−(m−k)

η(x+ j)−
m−1∑
k=1

k∏
j=−(m−k)

j 6=0

η(x+ j) + na−2η(x). (2.10)

Observe that from the convention in (2.8), for x = 1 (resp. n− 1), we have

τ1h
m(η) =

m−1∑
k=0

αk
m−k∏
j=1

η(j)−
m−1∑
k=1

αk
m+1−k∏
j=2

η(j) + na−2η(1),

τn−1h
m(η) =

m−1∑
k=0

βk
m−k∏
j=1

η(n− j)−
m−1∑
k=1

βk
m+1−k∏
j=2

η(n− j) + na−2η(n− 1).

(2.11)
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Remark 2.1.6. The identities above share a term of the form na−2η(x). These terms come from the

SSEP dynamics accelerated in a time scale less than diffusive, and since they vanish when n→∞ from

here on, we ignore them and we look only at the remaining terms.

Remark 2.1.7. Note that due to the constraints of the PMM, it has configurations that do not evolve in

time (blocked configurations) and we say that its dynamics is degenerate. This is directly related with

the degeneracy of the diffusion coefficient of the PME, which is given by D(ρ) = mρm−1, for m ∈ N. This

relation can be seen by analyzing the exchange rates of the process (2.5) and the diffusion coefficient

of (1.4), see, for example, the table below:

m D(ρ) cmx,x+1(η)

1 1 1
2 2ρ η(x− 1) + η(x+ 2)
3 3ρ2 η(x− 2)η(x− 1) + η(x− 1)η(x+ 2) + η(x+ 2)η(x+ 3)

Table 2.1: Diffusion coefficient vs. Exchange rates.

Remark 2.1.8. The PMM conserves the total number of particles, and it is possible to write the action

of the generator in η(x) as the discrete gradient of the instantaneous current

LmP η(x) = jmx−1,x(η)− jmx,x+1(η), for x ∈ {1, . . . , n− 2},

where jmx,x+1(η) = τxh
m(η) − τx+1h

m(η). Since it is also possible to write the instantaneous current

in the bulk as the discrete gradient of a local function, i.e, as the difference of a local function and its

translation, we can write the previous identity as

LmP η(x) = τx−1h
m(η) + τx+1h

m(η)− 2τxh
m(η),

where τxhm is given in (2.10). Every system with this previous condition is a gradient system. This is a

significant property of the PMM since the analysis of the hydrodynamic limit for non-gradient systems is

much more involved. See, for example, [31] Chapter 7. Moreover, the PMM superposed with the SSEP

and the Glauber dynamics does not conserve the total number of particles. Actually, these reservoirs

break down the conservation of particles since there is a mass transfer between the reservoirs (which

have different rates) and the bulk. Since the process is superposed with the SSEP dynamics, it is an

irreducible Markov process with a finite state space. Therefore only one invariant measure exists. In

the equilibrium state, that is, when α = β, the Bernoulli product measure, with a constant parameter

ρ = α = β, is the invariant measure of the process. Nevertheless, when α 6= β, this measure is no

longer invariant and we have no information on the system’s invariant measure. We observe that the

matrix product ansatz method of Derrida [11] can not be straightforwardly applied to this model due to

the bulk dynamics’ complicated action.

Remark 2.1.9. As we mentioned above, the PMM is a KCLG. This class of models was introduced in

the 1980s in the physics literature [1] to study glassy dynamics. The KCLG models are usually classified

as cooperative or non-cooperative. In this classification, a model is non-cooperative when its dynamical
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constraints are defined in such a way that it is possible to construct a finite group of particles (the mobile

cluster), which can be moved to any position of the discrete space where particles evolve, by using

strictly positive exchange rates. Any exchange is allowed when the mobile cluster is brought to the

vicinity of the jumping particle, see [7, 38] for a review on the subject. All models which are not non-

cooperative are said to be cooperative. Although we will not consider these models here, we stress

that the Kob-Anderson (KA) model is a cooperative model extensively analyzed by physicists. In [39]

Shapira proved the hydrodynamic limit for this model and also proved that cooperative models are all

non-gradient.

Remark 2.1.10. The non-cooperativity of the model and the fact that we can perturb its dynamics with

the SSEP dynamics, are crucial properties of the model that will be extensively used in our arguments.

More precisely, when proving the hydrodynamic limit, in order to recognize the solution as a weak so-

lution to the PME, we will have to derive some replacement lemmas, which are stated and proved in

Chapter 6. In their proofs we will have to analyze the irreducibility of the model in the sense that we

will have to send a particle from a site x to some site y at a distance depending on the size of the

bulk. In spite of having available the SSEP dynamics, one could think that this could be accomplished

easily. Nevertheless, the problem can not be overcomed just by using the SSEP jumps since they will

be scaled in a time scale less than the diffusive one and for this reason, particles can not travel to sites

at the distance we want. To push the argument further, we could try to use the PMM jumps, but to do

that we need the jumping particle to have particles in its vicinity and many times that does not happen.

The trick is then to fix a finite size window around the jumping particle, create a mobile cluster in that

window and once the mobile cluster is created we can just use the PMM jumps to move the particles.

After sending the particle to where we want we destroy the mobile cluster and we put the particles back

to their initial position. We remark that the jumps used to create and destroy the mobile cluster on the

finite size window are SSEP jumps, in all the rest of the path, we use PMM jumps.

Remark 2.1.11. From now on let {ηtn2}t≥0 denote the Markov process speeded up in the diffusive time

scale tn2 and with infinitesimal generator n2Lmn .

2.2 The Porous Medium Equation

The analysis of diffusion equations started with linear parabolic equations, particularly the well-studied

heat equation ∂tρ = ∆ρ. The equation was proposed by J. Fourier [20] as a model for heat propagation,

and throughout history, it served as inspiration for the construction of the theory of nonlinear parabolic

equations. The interest in studying nonlinear versions of the heat equation arises due to the develop-

ment of the theory for linear parabolic equations. The idea was to use the existing theoretical framework

for linear equations to compare matters of existence, uniqueness, regularity, maximum principle, appli-

cations, fundamental solutions, etc. However, due to the mathematical difficulties faced when studying

such equations, a new theory needed to be created. In this way, in 2007, Juan Luiz Vázquez published

the seminal book [42] focused on the porous medium equation to present part of the framework for

13



nonlinear parabolic equations. There are many physical applications of the PME, most of them used

to describe processes involving diffusion or heat transfer. In [44], the equation was used to study the

heat radiation in plasmas, and in [28, 29], the authors used the PME to describe migratory diffusion

of biological populations. The name PME was motivated by the work [37], in which the equation (with

m = 2) was used to model the density of a gas flowing through a porous medium.

Let us now describe the different partial differential equations and the respective notion of weak

solutions that we will consider along this thesis. We start by introducing some notations and definitions

needed to state the hydrodynamic limit in Theorem 2.3.1. Fix an interval I ⊂ R, T > 0 and n, p ∈ N∪{0}.

We denote by:

• Cn,p([0, T ]×I), the set of all real-valued functions defined on [0, T ]×I that are n times differentiable

on the first variable and p times differentiable on the second variable (with continuous derivatives);

• Cn([0, 1]) (resp. Cnc ((0, 1))), the set of all n times continuously differentiable real-valued functions

defined on [0, 1] (resp. and with compact support in (0, 1));

• Cn,pc ([0, T ]×(0, 1)), the set of all real-valued functionsG ∈ Cn,p([0, T ]×(0, 1)) with compact support

in [0, T ]× (0, 1);

• Cn,p0 ([0, T ] × [0, 1]), the set of all real-valued functions G ∈ Cn,p([0, T ] × [0, 1]) such that Gs(0) =

Gs(1) = 0, for all s ∈ [0, T ]. When n = ∞ or p = ∞ it means that the function is infinitely

differentiable in the corresponding variable;

• 〈·, ·〉, the inner product in L2([0, 1]) with corresponding norm ‖ · ‖2.

Definition 1. Let G,H ∈ L2([0, T ]× [0, 1]). We denote the inner product in L2([0, T ]× [0, 1]) by

〈〈G,H〉〉 :=

∫ T

0

〈Gs, Hs〉 ds. (2.12)

Definition 2 (Sobolev space). Let H1 be the set of all locally summable functions ϕ : [0, 1] → R such

that there exists a function ∂uϕ ∈ L2([0, 1]) satisfying

〈ϕ, ∂ug〉 = −〈∂uϕ, g〉,

for all g ∈ C∞c
(
(0, 1)

)
. For ϕ ∈ H1, we define the norm

‖ϕ‖2H1 := ‖ϕ‖22 + ‖∂uϕ‖22.

Recall that the function ϕ ∈ H1 can be extended to [0, 1] by setting ϕ(0) := ϕ(0+) and ϕ(1) := ϕ(1−).

Definition 3. Let L2(0, T ;H1) be the set of all measurable functions ζ : [0, T ]→ H1 such that

‖ζ‖2L2(0,T ;H1) :=

∫ T

0

‖ζt‖2H1 dt <∞. (2.13)

14



Remark 2.2.1. Note that using the notation in (2.12) we can rewrite (2.13) as

‖ζ‖2L2(0,T ;H1) = 〈〈ζ, ζ〉〉+ 〈〈∂uζ, ∂uζ〉〉.

For more details about the definitions and notations outlined above, we refer the reader to [15]. Along

the text we fix the parameters

α, β ∈ (0, 1) and m ∈ N. (2.14)

Definition 4 (PME with Dirichlet boundary conditions). Let T > 0 and g : [0, 1] → [0, 1] a measurable

function. We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the porous medium equation with

Dirichlet boundary conditions


∂tρt(u) = ∆ (ρt(u))m, (t, u) ∈ (0, T ]× (0, 1),

ρt(0) = α, ρt(1) = β, t ∈ (0, T ],

ρ0(u) = g(u), u ∈ [0, 1],

(2.15)

if the following conditions hold:

1. ρm ∈ L2(0, T ;H1);

2. ρ satisfies the integral equation:

FDir(G, t, ρ, g,m) = 〈ρt, Gt〉 − 〈g,G0〉 −
∫ t

0

〈ρs, (∂sGs + (ρs)
m−1∆Gs)〉 ds

+

∫ t

0

{
βm∂uGs(1)− αm∂uGs(0)

}
ds = 0,

(2.16)

for all t ∈ [0, T ] and all functions G ∈ C1,2
0 ([0, T ]× [0, 1]);

3. for almost every t ∈ (0, T ], ρt(0) = α and ρt(1) = β.

Definition 5 (PME with a type of Robin boundary conditions). Let T > 0, κ > 0 and g : [0, 1] → [0, 1]

a measurable function. We say that ρκ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the porous medium

equation with Robin boundary conditions



∂tρ
κ
t (u) = ∆ (ρt

κ(u))m, (t, u) ∈ (0, T ]× (0, 1),

∂u(ρκt (0))m = κ(ρκt (0)− α), t ∈ (0, T ],

∂u(ρκt (1))m = κ(β − ρκt (1)), t ∈ (0, T ],

ρκ0 (u) = g(u), u ∈ [0, 1],

(2.17)

if the following conditions hold:

1. (ρκ)m ∈ L2(0, T ;H1);
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2. ρκ satisfies the integral equation:

FRob(G, t, ρ
κ, g,m) = 〈ρκt , Gt〉 − 〈g,G0〉 −

∫ t

0

〈ρκs , (∂sGs + (ρκs )m−1∆Gs)〉 ds

+

∫ t

0

{
(ρκs (1))m∂uGs(1)− (ρκs (0))m∂uGs(0)

}
ds

− κ
∫ t

0

{
Gs(0)(α− ρκs (0)) +Gs(1)(β − ρκs (1))

}
ds = 0,

(2.18)

for all t ∈ [0, T ] and all functions G ∈ C1,2([0, T ]× [0, 1]).

Remark 2.2.2. For κ = 0, we obtain above Neumann boundary conditions.

Remark 2.2.3. Observe that for m = 1 the equations above become the heat equation with different

boundary conditions.

We observe that the weak solutions of (2.15), (2.17), and (2.17) with κ = 0, in the sense given above

are unique. We present a proof of this fact in Chapter 9. For a deeper discussion of the porous medium

equation, we refer the reader to [42].

2.3 Hydrodynamic Limit

Let us begin this subsection by introducing the empirical measure associated to the process {ηtn2}t≥0.

For η ∈ Ωn, this measure gives weight 1/n to each particle in our dynamics

πn(η, du) :=
1

n

∑
x∈Σn

η(x)δx/n(du), (2.19)

where δu is a Dirac mass on u ∈ [0, 1]. In order to analyze the temporal evolution of the empirical

measure, we define the process of empirical measures as πnt (η, du) := πn(ηtn2 , du). For a test function

G : [0, 1] → R, we denote the integral of G with respect to the empirical measure πnt , by 〈πnt , G〉, which

is equal to

〈πnt , G〉 =
1

n

∑
x∈Σn

G
(
x
n

)
ηtn2(x).

Note that the notation 〈·, ·〉 above is not related with the inner product in L2([0, 1]). Fix T > 0 and

θ ≥ 0. Let µn be a probability measure in Ωn. We denote by D([0, T ],Ωn) the Skorokhod space, that

is, the space of right continuous with left limits functions (càdlàg) defined in [0, T ] and taking values in

Ωn. We denote by Pµn the probability measure on the space D([0, T ],Ωn) induced by the accelerated

Markov process {ηtn2}t≥0 and the initial measure µn. The corresponding expectation is denoted by Eµn .

Let M+ be the space of positive measures on [0, 1] with total mass bounded by 1 and equipped with

the weak topology. We denote by {Qn}n∈N the sequence of probability measures on D([0, T ],M+),

induced by the Markov process {πnt }t≥0 and by the initial distribution µn. The corresponding expectation

is denoted by En.

In order to state the hydrodynamic limit for {ηtn2}t≥0, we need to impose some conditions on the initial

distribution of the process. Given a measurable function g : [0, 1] → [0, 1], we say that a sequence of
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probability measures {µn}n∈N on Ωn is associated with g(·), if for any continuous function G : [0, 1]→ R

and any δ > 0

lim
n→∞

µn

(
η ∈ Ωn :

∣∣∣∣∣〈πn, G〉 −
∫ 1

0

G(u)g(u) du

∣∣∣∣∣ > δ

)
= 0. (2.20)

The aim of the hydrodynamic limit is to show that the empirical measure πn· converges in probability, with

respect to Pµn , when n → ∞, to a deterministic trajectory of measures π·, such that for each t, πt(du)

is absolutely continuous with respect to the Lebesgue measure, that is, πt(du) = ρ(t, u) du and ρ(t, u) is

the weak solution of the corresponding partial differential equation with certain boundary conditions and

with initial condition g.

Theorem 2.3.1. Let g : [0, 1] → [0, 1] be a measurable function and {µn}n∈N a sequence of probability

measures on Ωn associated with g(·). Then, for any t ∈ [0, T ] and any δ > 0,

lim
n→∞

Pµn

(
η· ∈ D([0, T ],Ωn) :

∣∣∣∣∣〈πnt , G〉 −
∫ 1

0

G(u)ρt(u) du

∣∣∣∣∣ > δ

)
= 0,

where

• ρt(·) is a weak solution of (2.15), for 0 ≤ θ < 1;

• ρt(·) is a weak solution of (2.17), for θ = 1;

• ρt(·) is a weak solution of (2.17) (with κ = 0), for θ > 1.

Remark 2.3.2. We note that if we consider the regime θ < 0 (when the reservoirs are fast) ρt(·) would be

a weak solution of the PME with Dirichlet boundary conditions, with the same notion of weak solution as

above but considering test functions G ∈ C1,2
c ([0, T ]× [0, 1]). Since in this case ∂uGs(0) = ∂uGs(0) = 0

the last term in (2.16) vanishes and we would not be able to distinguish this notion of weak solution from

the others. Thus, due to the similarity with the regime 0 ≤ θ < 1, we will not consider the fast regime

here. However, whenever necessary, we will make comments on it throughout the text.

The theorem above is a corollary of the next result:

Proposition 2.3.3. The sequence of probability measures {Qn}n∈N converges weakly to Q, when

n → ∞, where Q is a Delta of Dirac measure on top of the trajectory of measures that are abso-

lutely continuous with respect to the Lebesgue measure, i.e., πt(du) = ρt(u)du, and the density ρt(u) is

the unique weak solution of the corresponding hydrodynamic equation.

Here follows an outline of the next chapters. In Chapter 3 we present a heuristic argument to derive

the hydrodynamic equations from the PMM for each range of θ by using Dynkin’s formula. Then, the

following chapters aim proving Theorem 2.3.1 by the Entropy Method. The proof relies on first showing

tightness of the sequence of probability measures {Qn}n∈N, i.e., that the sequence has limit points,

which we prove in Chapter 4. In that chapter we also define the Dirichlet forms, the carré du champ

operator and present some estimates for the Dirichlet forms necessary to prove the replacement lemmas

and the energy estimates. Then, the next step is to characterize the limit points by showing that they are
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concentrated on trajectories of measures that are absolutely continuous with respect to the Lebesgue

measure. We do not present the proof of this result since it is a simple consequence of the fact that

our dynamics is of exclusion type, see Section 2 of Chapter 4 of [31]. Moreover, we also have to show

that the density ρt(u) is a weak solution of the corresponding hydrodynamic equation, which we prove in

Chapter 5. We divided Chapter 6 into Sections 6.1 and 6.2, where we state and prove the replacement

lemmas regarding the bulk and the boundary, respectively. Then, in Chapter 7, we prove the energy

estimates, which imply that ρm ∈ L2(0, T ;H1). Chapter 8 aims proving the Fick’s law. In Chapter 9, we

prove the uniqueness of weak solutions for each hydrodynamic equation presented above. Due to this

fact, we guarantee the uniqueness of the limit point.
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Chapter 3

Discrete Versions of Weak solutions

In Section 4.1 we will prove that {Qn}n∈N has limits points, as we mentioned above. Let Q be one of

these limit points. From Section 2 of Chapter 4 of [31], these limit points are supported on trajectories of

measures that are absolutely continuous with respect to the Lebesgue measure, that is: Q(π· : πt(du) =

ρt(u) du) = 1. We call to the function ρt(·), appearing inside last probability, the density profile. In

principle this function could be random, but here we, heuristically, prove that ρt(·) is a weak solution of

the hydrodynamic equation. For simplicity, we will present this heuristic argument for m = 2, but the

argument for any m > 2 is analogous. Fix a function G ∈ C1,2([0, T ] × [0, 1]). We know by Dynkin’s

formula, see for example Lemma A1.5.1 of [31], that

Mn
t (G) = 〈πnt , Gt〉 − 〈πn0 , G0〉 −

∫ t

0

(∂s + n2L2
P + naLS + n2LB)〈πns , Gs〉 ds (3.1)

is a martingale with respect to the natural filtration {Ft}t≥0, where Ft = {σ(ηsn2) : s ≤ t}. Note that

∂s〈πns , Gs〉 = 〈πns , ∂sGs〉, for any function G ∈ C1,2([0, T ] × [0, 1]) and, macroscopically, this extra term

will give rise to the term involving ∂sG in (2.16) and (2.18). Since this term does not have any information

about the dynamics of the model, and for simplicity of the presentation, we consider here test functions

G only space-dependent, that is, G ∈ C2([0, 1]). Then, in (3.1) the term ∂s can be suppressed. Let us

now compute the other term. From (2.9), (2.10), and (2.11), we have that n2L2
n〈πns , G〉 is given by

1

n

n−1∑
x=1

∆nG
(
x
n

)
τxh

2(ηsn2)+∇+
nG(0)τ1h

2(ηsn2)−∇−nG(1)τn−1h
2(ηsn2)

+nG
(

1
n

)
κ
nθ

(
α− ηsn2(1)

)
+ nG

(
n−1
n

)
κ
nθ

(
β − ηsn2(n− 1)

)
,

(3.2)

where for x ∈ Σn, the discrete Laplacian is given by

∆nG
(
x
n

)
= n2

(
G
(
x−1
n

)
− 2G

(
x
n

)
+G

(
x+1
n

) )
,

and the discrete derivatives are given by

∇+
nG

(
x
n

)
= n

(
G
(
x+1
n

)
−G

(
x
n

) )
and ∇−nG

(
x
n

)
= n

(
G
(
x
n

)
−G

(
x−1
n

) )
.
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Since the function G is time independent and using the convention (2.8), the martingale in (3.1) is equal

to

Mn
t (G) = 〈πnt , G〉 − 〈πn0 , G〉 −

∫ t

0

1

n

n−1∑
x=1

∆nG
(
x
n

)
τxh

2(ηsn2) ds

−
∫ t

0

∇+
nG(0)τ1h

2(ηsn2) ds+

∫ t

0

∇−nG(1)τn−1h
2(ηsn2) ds

− κ n
nθ

∫ t

0

{
G
(

1
n

) (
α− ηsn2(1)

)
+G

(
n−1
n

) (
β − ηsn2(n− 1)

)}
ds.

(3.3)

Remark 3.0.1. By the mean value theorem, for all x ∈ Σn we have

∣∣∆nG
(
x
n

) ∣∣ ≤ 2‖G′′‖∞, |∇+
nG(0)| ≤ ‖G′‖∞, and |∇−nG(1)| ≤ ‖G′‖∞,

where ‖G‖∞ := supx∈[0,1] |G(x)|

From the previous remark and the fact that |ηsn2(x)| ≤ 1, for all s ≥ 0 and x ∈ Σn, the terms that come

from the SSEP jumps vanish when n→∞. From here on we ignore them and we look only at the other

terms in (3.3).

Case θ < 1 : Since in this regime we take G ∈ C2
0 ([0, 1]), we can write expression (3.3) as

Mn
t (G) = 〈πnt , G〉 − 〈πn0 , G〉 −

∫ t

0

1

n

n−1∑
x=1

∆nG( xn )τxh
2(ηsn2) ds

−
∫ t

0

{
∇+
nG(0)τ1h

2(ηsn2)−∇−nG(1)τn−1h
2(ηsn2)

}
ds+O(n−θ).

(3.4)

As usual, see [16], the notationsO, o and∼ have the following meaning: for functions ϕ and ψ depending

on a parameter n, which tends to infinity and ψ > 0, we write

ϕ = O(ψ)

ϕ = o(ψ)

ϕ ∼ ψ

 if
ϕ

ψ


remains bounded

→ 0

→ 1.

Note that the term O(n−θ) in (3.4) comes from last integral in (3.3), by using the fact that G is a function

vanishing at the boundary and that |ηsn2(x)| ≤ 1, for all s ≥ 0 and x ∈ Σn. From Remark 3.0.1 and

Lemma 6.2.1, we get

Mn
t (G) = 〈πnt , G〉 − 〈πn0 , G〉 −

∫ t

0

1

n

n−1∑
x=1

∆nG( xn )τxh
2(ηsn2) ds

−
∫ t

0

{
∇+
nG(0)α2 −∇−nG(1)β2

}
ds+O(n−θ).

(3.5)
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Now, from Theorem 6.1.1, we have that

Mn
t (G) = 〈πnt , G〉 − 〈πn0 , G〉 −

∫ t

0

1

n

n−1∑
x=1

∆nG( xn )←−η εnsn2(x)−→η εnsn2(x+ 1) ds

−
∫ t

0

{
∇+
nG(0)α2 −∇−nG(1)β2

}
ds+O(n−θ) + o(1).

The sense of convergence for the term o(1) is the one stated in Theorem 6.1.1. Above, ←−η εnsn2(x) and
−→η εnsn2(x) are the empirical densities in a box of size εn to the left (resp. to the right) of site x, which are

given on x ∈ Σn by

←−η εnsn2(x) =
1

εn

x∑
y=x−εn+1

ηsn2(y) and −→η εnsn2(x) =
1

εn

x+εn−1∑
y=x

ηsn2(y). (3.6)

Above and below εn should be understood as bεnc. Note that ←−η εnsn2(x) = 〈πns ,←−ι xε 〉 and −→η εnsn2(x) =

〈πns ,−→ι xε 〉, where for v ∈ [0, 1]

←−ι xε (v) =
1

ε
1(x−ε,x](v) and −→ι xε (v) =

1

ε
1[x,x+ε)(v).

Then, heuristically, we have that 〈πns ,←−ι xε 〉 and 〈πns ,−→ι xε 〉 converges, when n→∞, to

〈πs,←−ι xε 〉 =

∫ 1

0

ρs(u)←−ι xε (u) du and 〈πs,−→ι xε 〉 =

∫ 1

0

ρs(u)−→ι xε (u) du,

where ρs(·) is the density profile. Taking the limit when ε→ 0 we obtain that both 〈πs,←−ι xε 〉 and 〈πs,−→ι x+1
ε 〉

converge to ρs( xn ). From the observation above we say that

←−η εnsn2(x)−→η εnsn2(x+ 1) ∼ ρ2
s(
x
n ).

Finally, since Mn
0 (G) = 0 and Eµn [Mn

t (G)] = Eµn [Mn
0 (G)] = 0, taking n → ∞ and ε → 0 in the last

display we obtain:

0 = 〈ρt, G〉 − 〈ρ0, G〉 −
∫ t

0

〈∆G, (ρs)2〉 ds−
∫ t

0

∂uG(0)α2 − ∂uG(1)β2ds,

from where we see (2.16).

Remark 3.0.2. Note that above we used (2.8). If we had assumed that η(0) is any positive constant, let

us call it r, then in the second line of (3.3) we would have

∫ t

0

∇+
nG(0)

(
ηsn2(1)r + ηsn2(1)ηsn2(2)− ηsn2(2)r + na−2ηsn2(1)

)
ds.

The last integrand function only comes from the bulk dynamics. Now to get the Dirichlet boundary

conditions as above, we would have to prove that we can replace η(1) by η(2), which can be done by

using Corollary 6.2.6 and then we can use Theorem 6.1.1 of Section 6.1, to replace ηsn2(1) by α. This
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could give us some freedom to take other rates for the bulk dynamics. Here we stick to the choice (2.8).

Case θ = 1 : In this case, taking test functions G ∈ C2([0, 1]), we get

Mn
t (G) = 〈πnt , G〉 − 〈πn0 , G〉 −

∫ t

0

1

n

n−1∑
x=1

∆nG( xn )τxh
2(ηsn2) ds

−
∫ t

0

∇+
nG(0)τ1h

2(ηsn2) ds+

∫ t

0

∇−nG(1)τn−1h
2(ηsn2) ds

− κ
∫ t

0

G( 1
n )(α− ηsn2(1)) +G(n−1

n )(β − ηsn2(n− 1)) ds.

Since Theorem 6.1.1 allows replacing products of the form η(x)η(x + 1) by ←−η εnsn2(x)−→η εnsn2(x + 1) in the

bulk, and Theorem 6.2.3 replacing η(1)η(2) (resp. η(n − 2)η(n − 1)) by −→η εnsn2(1)−→η εnsn2(1 + εn) (resp.
←−η εnsn2(n − 1 − εn)←−η εnsn2(n − 1)) at the boundary, taking the limit in n → ∞ and ε → 0 in last expression,

we obtain

0 = 〈ρt, G〉 − 〈ρ0, G〉 −
∫ t

0

〈∆G, (ρs)2〉 ds−
∫ t

0

∂uG(0)(ρs(0))2 − ∂uG(1)(ρs(1))2ds

− κ
∫ t

0

G(0)(α− ρs(0)) +G(1)(β − ρs(1)) ds,

from where we get (2.18).

Case θ > 1 : In this case we take the same space of test functions as in the case θ = 1, but since θ > 1

the last term on the right-hand side of (3.3) vanishes, as n → ∞. Moreover, since Theorems 6.1.1 and

6.2.3 hold, when taking the limit in n→∞ and ε→ 0 in (3.3) we obtain

0 = 〈ρt, G〉 − 〈ρ0, G〉 −
∫ t

0

〈∆G, (ρs)2〉 ds−
∫ t

0

∂uG(0)(ρs(0))2 − ∂uG(1)(ρs(1))2ds,

which corresponds to (2.18) for κ = 0.
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Chapter 4

Tightness and Auxiliary Results

This chapter is divided into two sections. In Section 4.1 we prove that the sequence of probability

measures {Qn}n∈N, defined in Section 2.3, is tight. In order to prove the result, we use Aldous’ criterium

stated in Lemma 4.1.1. In Section 4.2, we state and prove some estimates on the Dirichlet forms that

will be crucial along the proofs of the replacement lemmas in Chapter 6 and the energy estimates in

Chapter 7.

4.1 Tightness

We start this section by stating Aldous’ criterium. Before stating it let D([0, T ],S) be the space of càdlàg

functions with values in S, where S is a separable metric space endowed with a distance δ. Let Λ = {λ :

[0, T ]→ [0, T ] |λ is a continuous and strictly increasing function}. If λ ∈ Λ, we define

‖λ‖ = sup
t6=s

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ .
If µ, ν ∈ S, we define the Skorokhod distance as

d(µ, ν) = inf
λ∈Λ

max

{
‖λ‖, sup

0≤t≤T
δ
(
µt, νλ(t)

)}
.

Lemma 4.1.1. Let {Pn}n≥1 be a sequence of probability measures defined inD([0, T ],S). The sequence

is tight if the following conditions hold:

1. For every t ∈ [0, T ] and ε > 0, there exists a compact set K(t, ε) ⊂ S, such that

sup
n≥1

Pn

(
π· ∈ D([0, T ],S) : πt /∈ K(t, ε)

)
< ε;

2. For every ε > 0

lim
γ→0

lim
n→∞

sup
τ∈TT ,σ≤γ

Pn

(
π· ∈ D([0, T ],S) : d(πτ+σ, πτ ) > ε

)
= 0,
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where TT is the set of stopping times bounded by T and d is the metric in S defined above.

Proposition 4.1.2. The sequence of measures {Qn}n∈N is tight with respect to the Skorokhod topology

of D([0, T ],M+).

Proof. We start the proof by recalling that from Proposition 4.1.7 of [31], it is enough to show that for

every function G in a dense subset of C([0, 1]), with respect to the uniform topology of C([0, 1]), the

real-valued process {〈πnt , G〉}0≤t≤T is tight. Therefore, in this context, the metric d in the statement of

previous lemma is the usual distance in R.

To prove the first condition of Lemma 4.1.1, fix G ∈ C([0, 1]) and ε > 0, and note that

|〈πnt , G〉| =

∣∣∣∣∣ 1n ∑
x∈Σn

ηtn2(x)G
(
x
n

)∣∣∣∣∣ ≤ ‖G‖∞,
where ∀x ∈ Σn, |ηtn2(x)| ≤ 1, ∀t ∈ [0, T ]. Thus, taking K(t, ε) = Bε(0) with ε > ‖G‖∞, we conclude that

Pµn
(
〈πn· , G〉 ∈ D([0, T ],R) : 〈πnt , G〉 /∈ K(t, ε)

)
= 0 < ε.

Now, let us prove the second condition of Lemma 4.1.1. As we mentioned above, it is enough to

show tightness of the real-valued process {〈πnt , G〉}0≤t≤T for a time independent function G ∈ C([0, 1]).

We claim that for each ε > 0,

lim
γ→0

lim
n→∞

sup
τ∈TT ,σ≤γ

Pµn
(∣∣〈πnτ+σ, G〉 − 〈πnτ , G〉

∣∣ > ε

)
= 0, (4.1)

where TT is the set of stopping times bounded by T , thus, τ + σ should be understood as (τ + σ) ∧ T .

From (3.1), Markov’s and Chebyshev’s inequalities, the probability in (4.1) can be bounded from above

by

Pµn

(∣∣Mn
τ+σ(G)−Mn

τ (G)
∣∣ > ε

2

)
+ Pµn

(∣∣∣∣∣
∫ τ+σ

τ

n2Lmn 〈πnr , G〉 dr

∣∣∣∣∣ > ε

2

)

≤ 4

ε2
Eµn

[∣∣Mn
τ+σ(G)−Mn

τ (G)
∣∣2]+

2

ε
Eµn

[∣∣∣∣∣
∫ τ+σ

τ

n2Lmn 〈πnr , G〉 dr

∣∣∣∣∣
]
.

Thus, if we prove that

lim
γ→0

lim
n→∞

sup
τ∈TT ,σ≤γ

Eµn

[(
Mn
τ+σ(G)−Mn

τ (G)
)2]

= 0, (4.2)

and

lim
γ→0

lim
n→∞

sup
τ∈TT ,σ≤γ

Eµn

[∣∣∣∣∣
∫ τ+σ

τ

n2Lmn 〈πnr , G〉 dr

∣∣∣∣∣
]

= 0, (4.3)

the claim follows. We have divided the proof of (4.2) and (4.3) into two cases: θ ≥ 1 and θ ∈ [0, 1).

Case θ ≥ 1: We begin by analyzing (4.2). Let G ∈ C2([0, 1]), and observe that C2([0, 1]) is a dense
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subset of C([0, 1]) with respect to the uniform topology. Define

Fnt (G) := n2
(
Lmn 〈πnt , G〉2 − 2〈πnt , G〉Lmn 〈πnt , G〉

)
.

Note that

Eµn

[(
Mn
τ+σ(G)−Mn

τ (G)
)2]

= Eµn

[∫ τ+σ

τ

Fnt (G) dt

]
,

since
(
Mn
τ+σ(G) −Mn

τ (G)
)2 − ∫ τ+σ

τ
Fnt (G) dt is a mean zero martingale by Dynkin’s formula. Hence,

(4.2) holds if we show that
∫ τ+σ

τ
Fnt (G) dt converges to zero uniformly in t ∈ [0, T ], when n → ∞. From

Remark 3.0.1, a simple computation shows that Fnt (G) is bounded from above by a constant, times

(m+ na−2)

n
‖(G′)2‖∞ +

κ

nθ
C(α, β)‖G2‖∞, (4.4)

where C(α, β) is a positive real constant depending on α and β. Since a ∈ (1, 2), taking n → ∞ in the

previous display, the result follows. It remains to prove (4.3). Recall (3.2). From Remark 3.0.1 and since

|ηtn2(x)| ≤ 1 for all t ≥ 0 and x ∈ Σn, we can bound the bulk term from above by

∣∣∆nG
(
x
n

)
τxh

m(ηtn2)
∣∣ ≤ 2‖G′′‖∞, (4.5)

and the boundary terms by

∣∣∣∇+
nG(0)τ1h

m(ηtn2) + κ
n

nθ
G
(

1
n

) (
α− ηtn2(1)

)∣∣∣ ≤ ‖G′‖∞ + κ
n

nθ
‖G‖∞,∣∣∣−∇−nGs(1)τn−1h

m(ηtn2) + κ
n

nθ
G
(
n−1
n

) (
β − ηtn2(n− 1)

)∣∣∣ ≤ ‖G′‖∞ + κ
n

nθ
‖G‖∞.

(4.6)

Therefore, since θ ≥ 1, by (3.2), (4.5), and (4.6), we have that

lim
γ→0

lim
n→∞

sup
τ∈TT ,σ≤γ

Eµn

[∣∣∣∣∣
∫ τ+σ

τ

n2Lmn 〈πnr , G〉 dr

∣∣∣∣∣
]

= 0,

proving (4.3). The proof of (4.2) works for any θ > 0, but does not work for θ = 0 since the second term

in (4.4) does not vanish when we take n→∞. We will treat this case below.

Case θ ∈ [0, 1): Note that if we try to apply the strategy used above, we will have problems trying to

control the expression
∫ τ+σ

τ
n2LB〈πnt , G〉 dt. This happens because for these values of θ, the terms that

come from the boundary go to infinity with n. Indeed, since these terms depend on the value of G
(

1
n

)
and G

(
n−1
n

)
, we can get rid of them by asking the test function G to have compact support in (0, 1).

With this assumption, we can show that (4.2) and (4.3) are still valid when G ∈ C2
c ((0, 1)) only by using

the computations done for θ ≥ 1. To finish the proof, we need to show that (4.2) and (4.3) hold for

G ∈ C((0, 1)). The idea then is to approximate G ∈ C((0, 1)) in L1 by functions in C2
c ((0, 1)). To do

this, we take a function G ∈ C1([0, 1]) ⊂ L1([0, 1]) and a sequence of functions {Gk}k≥0 ∈ C2
c ((0, 1))

converging to G with respect to the L1-norm as k → ∞. Note that the probability in (4.1) is bounded
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from above by

Pµn
(
|〈πnτ+σ, Gk〉 − 〈πnτ , Gk〉| >

ε

2

)
+ Pµn

(
|〈πnτ+σ, G−Gk〉 − 〈πnτ , G−Gk〉| >

ε

2

)
.

Now, since Gk has compact support, the first probability above vanishes, and it remains only to check

that the last probability vanishes as n→∞, k →∞, and γ → 0. Since |η(x) ≤ 1|, we have that

|〈πnτ+σ, G−Gk〉 − 〈πnτ , G−Gk〉| ≤
2

n

∑
x∈Σn

∣∣(G−Gk)
(
x
n

)∣∣ ,
from where we have the following estimate

1

n

∑
x∈Σn

∣∣(G−Gk)
(
x
n

)∣∣ ≤ ∑
x∈Σn

∫ x+1
n

x
n

∣∣(G−Gk)
(
x
n

)
− (G−Gk)(q)

∣∣ dq +

∫ 1

0

|(G−Gk)(q)|dq

≤ 1

n
‖(G−Gk)′‖∞ +

∫ 1

0

|(G−Gk)(q)|dq.

Therefore, since C1([0, 1]) is a dense subset of C([0, 1]) wrt the sup topology, the result follows by taking

first the lim in n→∞ and then in k →∞.

4.2 Estimates on Dirichlet forms

We start this section by defining the Dirichlet forms, the carré du champ operator, and the Bernoulli

product measure. Thereafter, we compare the Dirichlet forms and the integral of the carré du champ

operator in Lemma 4.2.1.

Let µ be a probability measure on Ωn, and f : Ωn → R a density with respect to µ. The Dirichlet form

of the process is defined as

〈
√
f,−Lmn

√
f〉µ = 〈

√
f,−LmP

√
f〉µ + na−2〈

√
f,−LS

√
f〉µ + 〈

√
f,−LB

√
f〉µ, (4.7)

where the inner product 〈·, ·〉µ is the one of L2 (Ωn, µ). Moreover, we define the integral of the carré du

champ operator, denoted by Dm
n acting on functions f : Ωn → R, with respect to µ as

Dm
n (
√
f, µ) := (Dm

P + na−2DS +DB)(
√
f, µ), (4.8)

with

Dm
P (
√
f, µ) :=

n−2∑
x=1

∫
Ωn

pmx,x+1(η)(
√
f(ηx,x+1)−

√
f(η))2 dµ, (4.9)
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and

DS(
√
f, µ) :=

n−2∑
x=1

∫
Ωn

{
ax,x+1(η) + ax+1,x(η)

}
(
√
f(ηx,x+1)−

√
f(η))2 dµ

=

n−2∑
x=1

∫
Ωn

(
√
f(ηx,x+1)−

√
f(η))2 dµ.

(4.10)

Above pmx,x+1(η) := cmx,x+1(η)
{
ax,x+1(η) + ax+1,x(η)

}
, where the rates cmx,x+1(η) and ax,x+1(η) are given

in (2.5) and (2.6) respectively, and

DB(
√
f, µ) := κ

nθ

(
Fα1 (

√
f, µ) + F βn−1(

√
f, µ)

)
,

where for x ∈ {1, n− 1} and γ ∈ {α, β}, F γx is given by

F γx (
√
f, µ) =

∫
Ωn

Iγx (η)(
√
f(ηx)−

√
f(η))2 dµ, (4.11)

with Iγx given in (2.7).

For a profile ρ : [0, 1] → [0, 1], we define the Bernoulli product measure νnρ(·) on Ωn with marginals

given by

νnρ(·){η : η(x) = 1} = ρ
(
x
n

)
. (4.12)

Let f be a density with respect to the measure νnρ(·). This section aims proving the estimate stated in

Lemma 4.2.1. The idea is to estimate the Dirichlet form 〈Lmn
√
f,
√
f〉νn

ρ(·)
by the carré du champ operator

plus an error, depending on the properties of the profile ρ. The properties that we ask for ρ depend on

the parameter θ and its corresponding hydrodynamic equation. This estimate will be used many times

in Sections 6.1, 6.2, and Chapter 7, and we will highlight each choice of the profile within the proofs.

Lemma 4.2.1. Let ρ : [0, 1]→ [0, 1] be a Lipschitz profile such that for all u ∈ (0, 1),

α = ρ(0) ≤ ρ(u) ≤ ρ(1) = β, (4.13)

and which is locally constant at the boundary. Then, the Dirichlet form satisfies

〈Lmn
√
f,
√
f〉νn

ρ(·)
≤ −1

4
Dm
n (
√
f, νnρ(·)) +O

(
1
n

)
. (4.14)

In case ρ : [0, 1]→ [0, 1] is a constant profile, then

〈Lmn
√
f,
√
f〉νn

ρ(·)
≤ −1

4
Dm
n (
√
f, νnρ(·)) +O( 1

nθ
). (4.15)

The proof of the previous lemma follows from the following lemma.

Lemma 4.2.2. Let T : η ∈ Ωn → T (η) ∈ Ωn be a transformation and c : η → c(η) be a positive local
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function. Let f be a density with respect to a finite positive measure µ on Ωn. Then, we have that∫
Ωn

c(η)
[√

f(T (η))−
√
f(η)

] √
f(η) dµ

≤ −1

4

∫
Ωn

c(η)
[√

f(T (η))−
√
f(η)

]2
dµ

+
1

16

∫
Ωn

1

c(η)

[
c(η)− c(T (η))

µ(T (η))

µ(η)

]2 [√
f(T (η)) +

√
f(η)

]2
dµ.

(4.16)

Remark 4.2.3. The previous lemma is stated in [4] asking the measure µ to be a probability measure,

but we can ask the measure to be finite. For simplicity of the presentation, we decided not to repeat the

proof of the previous lemma here. The interested reader can see a proof of it in Section 5.1 of [4].

Proof of Lemma 4.2.1. Recall that the Dirichlet form of the process is given by the sum of the Dirichlet

forms of the PMM, SSEP and Glauber dynamics

〈Lmn
√
f,
√
f〉νn

ρ(·)
= 〈LmP

√
f,
√
f〉νn

ρ(·)
+ na−2〈LS

√
f,
√
f〉νn

ρ(·)
+ 〈LB

√
f,
√
f〉νn

ρ(·)
.

The proof will be divided into three steps, each one regarding the Dirichlet forms on the right-hand side

of the previous expression. Let us begin by examining the one regarding the PMM

〈LmP
√
f,
√
f〉νn

ρ(·)
=

n−2∑
x=1

∫
Ωn

ax,x+1(η)
[√

f(ηx,x+1)−
√
f(η)

] √
f(η) dνnρ(·), (4.17)

Define Ωxn := {η ∈ Ωn; pmx,x+1(η) 6= 0}. Now, from Lemma 4.2.2, and the fact that pmx,x+1(ηx,x+1) =

pmx,x+1(η), we can bound the integral in (4.17) from above by

− 1

4

∫
Ωxn

pmx,x+1(η)
[√

f(ηx,x+1)−
√
f(η)

]2
dνnρ(·)

+
1

16

∫
Ωxn

pmx,x+1(η)

(
1− νnρ(·)(η

x,x+1)

νn
ρ(·)(η)

)2 [√
f(ηx,x+1) +

√
f(η)

]2
dνnρ(·).

Recall (4.9). Since pmx,x+1(η) ≤ m and
(
νnρ(·)(η

x,x+1)

νn
ρ(·)(η) −1

)2

≤ C(α, β)
(
ρ
(
x
n

)
− ρ

(
x+1
n

))2, where C(α, β) >

0, then the right-hand side of (4.17) can be bounded from above by

− 1

4
Dm
P (
√
f, νnρ(·)) +

mC(α, β)

8

n−2∑
x=1

(
ρ
(
x
n

)
− ρ

(
x+1
n

))2
, (4.18)

since f is a density with respect to νnρ(·). Now, we look at the Dirichlet form for the SSEP. Repeating the

same arguments as above, we get

〈LS
√
f,
√
f〉νn

ρ(·)
≤ −1

4
DS(

√
f, νnρ(·)) +

C(α, β)

8

n−2∑
x=1

(
ρ
(
x
n

)
− ρ
(
x+1
n

))2

.

Finally, let us examine the one regarding the boundary dynamics. We claim that for θ ≥ 0 fixed, there
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exists a constant C(α, ρ) > 0 (independent of f and n) such that

〈LB
√
f,
√
f〉νn

ρ(·)
≤ −1

4
DB(

√
f, νnρ(·)) + C(α, ρ)

κ

nθ
[
(ρ( 1

n )− α
]2

+ C(β, ρ)
κ

nθ
[
(ρ(n−1

n )− β
]2
,

(4.19)

where f is a density with respect to νnρ(·). Since LB is the sum of two terms, we just present the proof for

one of them, namely the term which involves α, but for the other one the proof is completely analogous.

To prove the result it is enough to note that from Lemma 4.2.2 and (4.11), we have that∫
Ωn

κ

nθ
[
α(1− η(1)) + (1− α)η(1)

] [√
f(η1)−

√
f(η)

] √
f(η) dνnρ(·)

≤ −1

4

κ

nθ
Fα1 (

√
f, νnρ(·)) +

κ

16nθ

∫
Ωn

1

Iα1 (η)

[
Iα1 (η)− Iα1 (η1)

νnρ(·)(η
1)

νn
ρ(·)(η)

]2 [√
f(η1) +

√
f(η)

]2
dνnρ(·),

where Iα1 (η) is defined in (2.7) and Fα1 (
√
f, νnρ(·)) is defined in (4.11). By a simple computation we see

that there exists a constant C̄(α, ρ) > 0 such that

1

Iα1 (η)

[
Iα1 (η)− Iα1 (η1)

νnρ(·)(η
1)

νn
ρ(·)(η)

]2

≤ C̄(α, ρ)
[
ρ( 1
n )− α

]2
,

uniformly on η ∈ Ωn. Finally, using the fact that f is a density with respect to νnρ(·), and repeating the

argument for the term which involves β we conclude (4.19). Putting together all the estimates that we

have obtained, we see that there exists a constant C̃ = C̃(m,α, β, ρ) such that

〈Lmn
√
f,
√
f〉νn

ρ(·)
≤− 1

4
Dm
n (
√
f, νnρ(·)) + C̃

n−2∑
x=1

(
ρ( xn )− ρ(x+1

n )
)2

+C̃
κ

nθ
[
ρ( 1
n )− α

]2
+ C̃

κ

nθ
[
ρ(n−1

n )− β
]2
.

From the previous bound, and from the fact that ρ is Lipschitz and locally constant at the boundary, we

get (4.14).
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Chapter 5

Characterization of limit points

We begin this section by fixing some notations that will be used in the next chapters. Recall (2.10) and

(2.11) from Chapter 2. Note that

τ1h
m(η)− αm = (η(1)− α)Rαm(η),

τn−1h
m(η)− βm = (η(n− 1)− β)Rβm(η),

(5.1)

where

Rαm(η) =

m−1∑
i=0

αm−1−i
i−1∏
j=0

η(2 + j) and Rβm(η) =

m−1∑
i=0

βm−1−i
i−1∏
j=0

η(n− 2− j). (5.2)

Fix n, ` ∈ N, x ∈ Σn, ε > 0, δ > 0, and recall that a ∈ (1, 2). Let

←−
Λ `
x := {x− `+ 1, . . . , x}

(
resp.

−→
Λ `
x := {x, . . . , x+ `− 1}

)
(5.3)

be the box of size ` to the left (resp. right) of the site x. We denote by

←−η `(x) =
1

`

∑
y∈
←−
Λ `
x

η(y) and −→η `(x) =
1

`

∑
y∈
−→
Λ `
x

η(y) (5.4)

the empirical densities in the boxes
←−
Λ `
x and

−→
Λ `
x, respectively. In many proofs presented along the text,

we will need to replace terms of the form (2.10) by products of terms of the form (5.4). To do so, we

need to have space in our discrete set Σn and we define the following space

Σεn,m = {1 + m
2 εn, . . . , n− 1− m

2 εn}, (5.5)

where above εn denotes bεnc. For m even we consider Σεn,m, while for m odd, we would consider Σεn,m

given by

Σεn,m = {1 + m+1
2 εn, . . . , n− 1− m−1

2 εn},
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see Figure 5.1. More specifically, we introduce the subset Σεn,m of the bulk Σn since, for each x ∈ Σεn,m

we will need to replace the occupation at site x by its average to the left or right of x on a box of size εn,

and we are allowed to do so for x ∈ Σεn,m but not for x on the whole bulk.

1 · · · 1+m
2
εn n−1−m

2
εn · · · n−1

1 · · ·
1+m+1

2
εn n−1−m−1

2
εn
· · · n−1

Figure 5.1: The set Σεn,m for m even and for m odd, respectively.

Now we consider two approximations of the identity, for fixed u ∈ [0, 1], which are given on v ∈ [0, 1]

by←−ι uε (v) =
1

ε
1(u−ε,u](v) and −→ι uε (v) =

1

ε
1[u,u+ε)(v). We use the notation

〈πs,←−ι uε 〉 =
1

ε

∫ u

u−ε
ρs(v) dv and 〈πs,−→ι uε 〉 =

1

ε

∫ u+ε

u

ρs(v) dv. (5.6)

From last result, the fact that 0 ≤ ρs(·) ≤ 1, and Lebesgue differentiation Theorem, for almost every

u ∈ [0, 1],

lim
ε→0
|ρs(u)− 〈πs,←−ι u−iεε 〉| = 0 and lim

ε→0
|ρs(u)− 〈πs,−→ι u+iε

ε 〉| = 0, (5.7)

for any i ∈ {0, 1, . . . ,m− 1}. From (5.6) and (5.4), we have that

〈πns ,←−ι x/n−iεε 〉 =←−η εnsn2(x− iεn) +O
(

1
εn

)
, 〈πns ,−→ι x/n+iε

ε 〉 = −→η εnsn2(x+ 1 + iεn) +O( 1
εn ),

and

〈πns ,−→ι jεε 〉 = −→η εnsn2(2 + jεn) +O( 1
εn ),

for i = 0, . . . , m2 − 1 and j = 0, . . . , i− 1.

From Section 4.1 we know that limit points Q of the sequence {Qn}n∈N exist. As a consequence

of the exclusion rule, we now observe that they are concentrated on trajectories of measures that are

absolutely continuous with respect to the Lebesgue measure, see [31] for more details. Moreover, we

claim that the density ρt(u) is a weak solution of the corresponding hydrodynamic equation. This is

proved in the next proposition.

Proposition 5.0.1. Let Q be a limit point of the sequence {Qn}n∈N. Then

Q
(
π· ∈ D([0, T ],M+) : Fθ(G, t, ρ, g,m) = 0,∀t ∈ [0, T ],∀G ∈ Cθ

)
= 1.

Above Fθ = FDir and Cθ = C1,2
0 ([0, T ]× [0, 1]) for θ < 1; and Fθ = FRob and Cθ = C1,2([0, T ]× [0, 1]) for

θ ≥ 1, where FDir (resp. FRob) is defined in (2.16) (resp. (2.18)).

Proof. For simplicity of the presentation, we will present the proof for even m since the proof for m odd

is analogous, and, when necessary, we explain the changes for the case m odd. The proof ends as long
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as we show that for any δ > 0 and G ∈ Cθ

Q

(
π· ∈ D([0, T ],M+) : sup

0≤t≤T

∣∣Fθ(G, t, ρ, g,m)
∣∣ > δ

)
= 0, (5.8)

for each regime of θ. We start with the case θ ≥ 1. Recall from item (2) of Definition 5 the definition

of FRob. Since the boundary integrals are not well-defined in the Skorokhod space, the set inside last

probability is not an open set in the Skorokhod space, and we can not use Portmanteaus’s Theorem. To

avoid this problem, we fix ε > 0 and we consider two approximations of the identity for fixed u ∈ [0, 1],

which are given on v ∈ [0, 1] by ←−ι uε (v) = 1
ε1(u−ε,u](v) and −→ι uε (v) = 1

ε1[u,u+ε)(v). Recall the notations

(5.6) and (5.7). By summing and subtracting proper terms, we bound the probability in (5.8) from above

by the sum of

Q

(
sup

0≤t≤T

∣∣∣∣∣〈ρt, Gt〉 − 〈ρ0, G0〉+

∫ t

0

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉∆Gs(u) du ds

−
∫ t

0

〈ρs, ∂sGs〉 ds+

∫ t

0

{
m−1∏
i=0

〈πs,←−ι 1−iε
ε 〉∂uGs(1)−

m−1∏
i=0

〈πs,−→ι iεε 〉∂uGs(0)

}
ds

− κ
∫ t

0

{
Gs(0)

(
α− 〈πs,−→ι 0

ε〉
)

+Gs(1)
(
β − 〈πs,←−ι 1

ε〉
)}
ds

∣∣∣∣∣ > δ
7

)
,

(5.9)

Q
(∣∣〈ρ0 − g,G0〉

∣∣ > δ
7

)
, (5.10)

Q

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
〈ρms ,∆Gs〉 −

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉∆Gs(u) du

}
ds

∣∣∣∣∣ > δ
7

)
, (5.11)

Q

(
sup

0≤t≤T

∣∣∣∣∣κ
∫ t

0

Gs(0)
{
〈πs,−→ι 0

ε〉 − ρs(0)
}
ds

∣∣∣∣∣ > δ
7

)
, (5.12)

Q

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
(ρs(0))m −

m−1∏
i=0

〈πs,−→ι iεε 〉
}
∂uGs(0) ds

∣∣∣∣∣ > δ
7

)
, (5.13)

plus two other terms similar to (5.12) and (5.13) but with respect to the right boundary. The term (5.10)

is equal to zero since Q is a limit point of {Qn}n∈N and Qn is induced by µn, which satisfies (2.20). To

treat (5.11), we use (5.6), (5.7), and the fact that 0 ≤ ρ(·) ≤ 1 to get

∣∣∣∣∣
∫ t

0

{
〈ρms ,∆Gs〉 −

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉∆Gs(u) du

}
ds

∣∣∣∣∣
≤ εC(G,T,m) +

∫ t

0

∫ 1−εm2

εm2


m
2 −1∑
i=0

∣∣ρs(u)− 〈ρs,←−ι u−iεε 〉
∣∣+

m
2 −1∑
i=0

∣∣ρs(u)− 〈ρs,−→ι u+iε
ε 〉

∣∣ |∆Gs(u)| du ds.

(5.14)

From the previous inequality and (5.7), we have that (5.11) vanishes when ε → 0. In the same way, it

follows that (5.12) and (5.13) vanish when ε → 0. Now, to treat (5.12) and (5.13) we need the limit in

(5.7) to be true for all u ∈ [0, 1] (or at least at the points of the boundary of [0, 1]) and this is the statement
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of Lemma A.0.1. The probability in (5.12) vanishes when ε→ 0 by a simple application of Lemma A.0.1.

Now, we want to show that (5.13) vanishes when ε→ 0. Let

Riε,s :=

∣∣∣∣∣∣ρis(0)−
i−1∏
j=0

〈πs,−→ι jεε 〉

∣∣∣∣∣∣ ,
for every i = {0, 1, . . . ,m − 1}. In order to prove (5.13) it is enough to prove that limε→0R

i
ε,s = 0, for

every i = {0, 1, . . . ,m − 1}. Note that R0
ε,s = 1 − 1 = 0. For i = 1, R1

ε,s = |ρs(0) − 〈πs,−→ι 0
ε〉| vanishes

when ε→ 0 by a simple application of Lemma A.0.1. For i = 2,

R2
ε,s = ρs(0)

∣∣ρs(0)− 〈πs,−→ι 0
ε〉
∣∣+ 〈πs,−→ι 0

ε〉 |ρs(0)− 〈πs,−→ι εε〉|

= ρs(0)R1
ε,s + 〈πs,−→ι 0

ε〉 |ρs(0)− 〈πs,−→ι εε〉| .

Since ρ(0) ≤ 1 and 〈πs,−→ι 0
ε〉 ≤ 1, R2

ε,s vanishes when ε→ 0 by Lemma A.0.1 for i = 1 for s a.s. Following

the same idea as before, for i = 3 we have

R3
ε,s = ρs(0)R2

ε,s + 〈πs,−→ι 0
ε〉〈πs,−→ι εε〉

∣∣ρs(0)− 〈πs,−→ι 2ε
ε 〉
∣∣ ,

which vanishes by Lemma A.0.1 for i = 2 for s a.s. Proceeding in an inductive fashion, suppose that

limε→0R
i
ε,s = 0 for every i ≤ m− 1 and let us prove that limε→0R

i+1
ε,s = 0. From the previous computa-

tions we have that

Ri+1
ε,s = ρs(0)Riε,s +

i−2∏
j=0

〈πs,−→ι jεε 〉
∣∣ρs(0)− 〈πs,−→ι iεε 〉

∣∣ .
Thus, limε→0R

i+1
ε,s = 0 for every i ≤ m − 1 since limε→0R

i
ε,s = 0,

∏i−2
j=0〈πs,

−→ι jεε 〉 ≤ 1 and by the

application of Lemma A.0.1 for i for s a.s. Therefore, from the previous computations we have that

(5.13) vanishes when ε→ 0.

Now, it remains only to look at (5.9). Note that we still can not use Portmanteau’s Theorem, since

for each i = 0, . . . , m2 − 1 the functions ←−ι u−iεε and −→ι u+iε
ε are not continuous. Nevertheless, we can

approximate each one of these functions by continuous functions, in such a way that the error vanishes

as ε → 0. Then, since for the continuous functions the set inside the probability in (5.9) is an open set

with respect to the Skorokhod topology, we can use Portmanteau’s Theorem, change back again from

the continuous functions to←−ι u−iεε and −→ι u+iε
ε , and bound (5.9) from above by

lim inf
n→∞

Qn

(
sup

0≤t≤T

∣∣∣∣∣〈πt, Gt〉 − 〈π0, G0〉 −
∫ t

0

〈πs, ∂sGs〉 ds

−
∫ t

0

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉∆Gs(u) du ds

+

∫ t

0

{
m−1∏
i=0

〈πs,←−ι 1−iε
ε 〉∂uGs(1)−

m−1∏
i=0

〈πs,−→ι iεε 〉∂uGs(0)

}
ds

−κ
∫ t

0

{
Gs(0)

(
α− 〈πs,−→ι 0

ε〉
)

+Gs(1)
(
β − 〈πs,←−ι 1

ε〉
)}
ds

∣∣∣∣∣ > δ
7

)
.

(5.15)
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Summing and subtracting
∫ t

0
n2Lmn 〈πns , Gs〉ds to the term inside the supremum in (5.15), and recalling

(3.3), we bound the probability in (5.15) from above by the sum of the next two terms

Pµn

(
sup

0≤t≤T

∣∣Mn
t (G)

∣∣ > δ
14

)
, (5.16)

and

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

n2Lmn 〈πns , Gs〉 ds−
∫ t

0

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πns ,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πns ,−→ι u+iε
ε 〉∆Gs(u) du ds

+

∫ t

0

{
m−1∏
i=0

〈πns ,←−ι 1−iε
ε 〉∂uGs(1)−

m−1∏
i=0

〈πns ,−→ι iεε 〉∂uGs(0)

}
ds

− κ
∫ t

0

{
Gs(0)

(
α− 〈πns ,−→ι 0

ε〉
)

+Gs(1)
(
β − 〈πns ,←−ι 1

ε〉
)}
ds

∣∣∣∣∣ > δ
14

)
.

(5.17)

From Doob’s inequality and (4.4), the term (5.16) vanishes as n → ∞. Finally, for δ̃ > 0, we can bound

(5.17) from above by the sum of the following terms

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
1

n

∑
x∈Σn

∆nGs
(
x
n

)
τxh

m(ηsn2)

−
∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πns ,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πns ,−→ι u+iε
ε 〉∆Gs(u) du

}
ds

∣∣∣∣∣ > δ̃

)
,

(5.18)

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
∇+
nGs(0)τ1h

m(ηsn2)−
m−1∏
i=0

〈πns ,−→ι iεε 〉∂uGs(0)
}
ds

∣∣∣∣∣ > δ̃

)
, (5.19)

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
Gs(0)(α− 〈πns ,−→ι 0

ε〉)−Gs
(

1
n

)
(α− ηsn2(1))

}
ds

∣∣∣∣∣ > δ̃

)
, (5.20)

plus two terms which are similar to the last ones, but concerning the right boundary. Now, we show that

(5.20) vanishes when n → ∞ and then ε → 0. By Taylor expansion on G, the terms which involve α

vanish when n → ∞. Recall (5.4). Observing that 〈πns ,−→ι 0
ε〉 = −→η εnsn2(1), from Lemma 6.2.2, (5.20) goes

to zero as n→∞ and ε→ 0. Now, we treat (5.19). Using Taylor expansion, ∂uGs(0) can be replaced by

its discrete derivative ∇+
nGs(0). Recall (2.11) and note that τ1hm(ηsn2) is composed by sum of products

of the form η(1)η(2) · · · η(m) and a term αm−1(ηsn2(1)− ηsn2(2)). Note also that

〈πns ,−→ι iεε 〉 = −→η εnsn2(1 + iεn) +O( 1
εn ),

for i = 0, . . . ,m− 1. Thus, since Theorem 6.2.3 allow us to replace products of the form

m−1∏
i=0

η(i+ 1) by
m−1∏
i=0

−→η εnsn2(1 + iεn),

and Corollary 6.2.6 allow us replacing η(1) by η(2), from these observations (5.19) vanishes, as n→∞

and ε → 0. Finally, we treat (5.18). Recall (5.5). Note that the sum in Σn can be written as a sum over
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Σεn,m by paying a price of order O(ε). Now, note that the error from changing the integral in the space

variable by its Riemann sum is of order O( 1
n ), and therefore we can bound (5.18) from above by

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,m

{
∆nGs

(
x
n

)
τxh

m(ηsn2)−
m
2 −1∏
i=0

〈πns ,←−ι x/n−iεε 〉〈πns ,−→ι x/n+iε
ε 〉∆Gs

(
x
n

)}
ds

∣∣∣∣∣ > δ̃

)
.

(5.21)

By Taylor expansion on the test function G, we can replace its Laplacian by its discrete Laplacian, by

paying a price of order O( 1
n ). Since for x ∈ Σn

〈πns ,←−ι x/n−iεε 〉 =←−η εnsn2(x− iεn), 〈πns ,−→ι x/n+iε
ε 〉 = −→η εnsn2(x+ 1 + iεn) +O( 1

εn ),

(5.21) can be bounded from above by

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn

{
∆nGs

(
x
n

)
τxh

m(ηsn2)−
m
2 −1∏
i=0

←−η εnsn2(x− iεn)−→η εnsn2(x+ 1 + iεn)
}
ds

∣∣∣∣∣ > δ̃

)
.

(5.22)

Then from Theorem 6.1.1, (5.22) vanishes, as n→∞ and ε→ 0. This ends the proof in the case θ = 1.

We observe that the case θ > 1 is contained in the previous proof.

Finally, we present the proof in the case θ ∈ [0, 1). Recall the definition of FDir from item (2) of

Definition 4. Following the same ideas presented in the case θ = 1, we can bound (5.8) from above by

the sum of

Q

(
sup

0≤t≤T

∣∣∣∣∣〈πt, Gt〉 − 〈π0, G0〉+

∫ t

0

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉∆Gs(u) du ds

−
∫ t

0

〈πs, ∂sGs〉 ds+

∫ t

0

{
βm∂uGs(1)− αm∂uGs(0)

}
ds

∣∣∣∣∣ > δ
3

)
,

(5.23)

Q
(
|〈ρ0 − g,G0〉| > δ

3

)
, (5.24)

Q

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
〈ρms ,∆Gs〉 −

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉∆Gs(u) du

}
ds

∣∣∣∣∣ > δ
3

)
. (5.25)

Using the same arguments that we used above to treat (5.10) and (5.11), we can see that (5.24) and

(5.25) vanish when n → ∞ and ε → 0. Therefore, it remains only to bound (5.23). By the same

arguments used in case θ = 1, (5.23) is bounded from above by

lim inf
n→∞

Qn

(
sup

0≤t≤T

∣∣∣∣∣〈πt, Gt〉 − 〈π0, G0〉+

∫ t

0

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉∆Gs(u) du ds

−
∫ t

0

〈πs, ∂sGs〉 ds+

∫ t

0

{
βm∂uGs(1)− αm∂uGs(0)

}
ds

∣∣∣∣∣ > δ
3

)
.

(5.26)
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Summing and subtracting
∫ t

0
n2Lmn 〈πns , Gs〉ds to the term inside the supremum in (5.26) and recalling

(3.3), we can bound the probability in (5.26) from above by

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

n2Lmn 〈πns , Gs〉ds+

∫ t

0

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πns ,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πns ,−→ι u+iε
ε 〉∆Gs(u) du ds

+

∫ t

0

{
βm∂uGs(1)− αm∂uGs(0)

}
ds

∣∣∣∣∣ > δ
6

)
,

(5.27)

plus Pµn
(
sup0≤t≤T |Mn

t (G)| > δ
6

)
, which we showed above that vanishes when n → ∞ without using

the fact that θ = 1. From (5.27) and following again the steps of the case θ = 1, we need to bound the

next terms

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
1

n

∑
x∈Σεn,m

∆nGs
(
x
n

)
τxh

m(ηsn2)

−
∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πns ,←−ι u−iεε 〉
m
2 −1∏
i=0

〈πns ,−→ι u+iε
ε 〉∆Gs(u) du

}
ds

∣∣∣∣∣ > δ̃

)
,

(5.28)

Pµn

(
sup

0≤t≤T

∣∣∣∣∣κ n
nθ

∫ t

0

Gs
(

1
n

) (
α− ηsn2(1)

)
+Gs

(
n−1
n

) (
β − ηsn2(n− 1)

)
ds

∣∣∣∣∣ > δ̃

)
, (5.29)

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∇+
nGs(0)τ1h

m(ηsn2)− αm∂uGs(0) ds

∣∣∣∣∣ > δ̃

)
, (5.30)

plus another term similar to the last one which comes from the right boundary. Note that from the

previous computations done for (5.22), we have that (5.28) vanishes, as n → ∞ and ε → 0. Moreover

(5.29) vanishes, since from Lemma 6.2.1 we can replace ηsn2(1) by α and ηsn2(n− 1) by β. Now, let us

treat (5.30). Using Taylor expansion, we can replace ∂uGs(0) by its discrete derivative ∇+
nGs(0) and we

get

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∇+
nGs(0) (τ1h

m(ηsn2)− αm) ds

∣∣∣∣∣ > δ̃

)
.

From (5.1), we can rewrite the previous expression as

Pµn

(
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∇+
nGs(0) (ηsn2(1)− α)Rαm(ηsn2) ds

∣∣∣∣∣ > δ̃

)
,

where Rαm(η) =
∑m−1
i=0 αm−1−i∏i−1

j=0 η(2 + j). Thus, since Rαm(ηsn2) ≤ m, from the previous expression

and Lemma 6.2.1, (5.30) vanishes when n→∞ and ε→ 0, concluding the result.
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Chapter 6

Replacement Lemmas

Recall that in Chapter 3 we presented a heuristic argument to derive the porous medium equation with

different boundary conditions from the PMM with slow reservoirs, with m = 2. There, in order to see

that the density profile ρt(·) was a weak solution of the corresponding hydrodynamic equation, we had

to use some replacements, e.g., we replaced τxh2(ηsn2) by←−η εnsn2(x)−→η εnsn2(x+ 1) and α by ηsn2(1). This

chapter aims to present a rigorous proof of these results.

We start this chapter by noticing one important property of the PMM, which is to be a gradient

system. This means that the instantaneous current of the system at the bulk can be written as a discrete

gradient of some local function of the dynamics, that is, jmx,x+1(η) = τx+1h
m(η)− τxhm(η), see (2.9) and

(2.10). This function hm is a degree m function, i.e., it is a function given by sums of terms of the form

η(x)η(x + 1) · · · η(x + m). Due to this fact, one needs a replacement lemma in the whole bulk which

allows to replace

m
2 −1∏
i=0

η(x− i)
m
2 −1∏
i=0

η(x+ 1 + i) by

m
2 −1∏
i=0

←−η εn(x− iεn)

m
2 −1∏
i=0

−→η εn(x+ 1 + iεn),

for every x ∈ Σεn,m, as stated in Theorem 6.1.1. The idea of the argument of the proof is the following.

First, we replace our general measure µn (which satisfies (2.20)) by a reference measure νnρ(·) that is

Bernoulli product and is defined in (4.12). Depending on the range of the parameter θ, some conditions

will have to be imposed on the profile ρ(·). We note, however, that since we can control the entropy of

µn with respect to this product measure, the choice on the type of profile does not impose any additional

condition on the starting measure µn. Second, we make use of the Feynman-Kac’s formula, and we

have to control the error between the Dirichlet form of the process, defined in (4.7), and the integral of

the carré du champ operator - denoted by Dm
n - defined in (4.8). We remark that Dm

n is the Dirichlet

form that we would obtain if the reference measure is reversible with respect to the exchange and the

Glauber dynamics. Since the reference measure that we consider below is not invariant for all these

transformations, some errors appear which have to vanish in the limit, as stated in Lemma 4.2.

The idea to replace the products mentioned above consists of first removing the boundary points from

the bulk, which do not allow these replacements; show that this removal is negligible in the limit, and on
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the remaining points, we do a step-by-step replacement. We start by presenting the argument for the

function τxh2(η), in which we need to replace terms of the form η(x)η(y) for |y−x| ≤ 2 by←−η εn(x)−→η εn(y),

as stated in Theorem 6.1.2. We do so in the following fashion: at first step fix one of the variables η(x)

and do the replacement of η(x + 1) by −→η εn(x + 1). Then, fix this average and repeat the previous

replacement but now for the variable η(x) and←−η εn(x); this left-right argument is crucial so that the two

boxes do not overlap and variables do not correlate, see Figure 6.1. The argument for a more general

product of variables follows the same idea as the aforementioned case, the only difference is the fact

that, for example, for m = 3, the function τxh3(η) contains terms of the form η(x)η(x+1)η(x+2). In order

to replace them by products of averages, one first has to replace in the product above η(x) by η(x− εn),

this is done in another replacement, then follow the proof for the casem = 2 to replace η(x+1)η(x+2) by
←−η εn(x+1)−→η εn(x+2), and finally fix these averages to replace η(x−εn) by←−η εn(x−εn). We will explain

all steps of these replacement lemmas in Section 6.1. We note that when doing all these replacements

one has to use the arguments described above, in which we need to create a mobile cluster capable of

making particles move. Due to the reservoir’s action, we also have to control the terms that arise at the

boundary and we need to derive a couple of replacements to deal with these extra terms, this in done in

Section 6.2.

This chapter is divided into two sections in which we state and prove all the replacement lemmas

used in Chapters 3, 5, 7 and 8. Section 6.1 aims to prove all the replacement lemmas concerning the

bulk and Section 6.2 concerning the boundary.

6.1 Replacement lemmas at the bulk

As we mentioned above, one needs a replacement lemma in the whole bulk which allows writing τxhm(η)

in terms of products of averages of particles around a box of size O(εn). We remark that the sites

x ∈ Σn \ Σεn,m, where Σεn,m is defined in (5.5), are the ones where we do not have space to do the

replacement and are those where we do not need to make the replacement. We stress that throughout

this and the next section we will extensively use the non-cooperativity of the PMM by means of a path

argument.

Theorem 6.1.1. Let Gns : [0, 1]→ R be such that ‖Gns ‖∞ ≤M <∞, for all n ∈ N and s ∈ [0, T ]. For any

t ∈ [0, T ], we have that

lim
ε→0

lim
n→∞

Eµn


∣∣∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,m

Gns
(
x
n

){
τxh

m(ηsn2)−

m
2 −1∏
i=0

←−η εnsn2(x− iεn)−→η εnsn2(x+ 1 + iεn)

}
ds

∣∣∣∣∣∣∣
 = 0.

The previous theorem is the main result of this section, and it holds for every m ≥ 2. We will divide its

proof into two steps. First, we present the proof for a weaker version of Theorem 6.1.1 considering the

particular case m = 2, i.e., replacing products of the form η(x)η(x+ 1) by←−η εnsn2(x)−→η εnsn2(x+ 1) using the

PMM dynamics with infinitesimal generator Lmn (for a general m), as stated in Theorem 6.1.2. Second,

we present the proof of Theorem 6.1.1 in its general form, i.e., for every m ≥ 2. Actually, the general
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case can be proved by combining the arguments described in Theorem 6.1.2 and the ones described

in Theorem 6.2.3, that we will explain at the end of this section. Recall Σεn,2 = {1 + εn, . . . , n− 1− εn},

the convention in (2.8), and that for every x ∈ Σn

τxh
2(η) = η(x− 1)η(x) + η(x)η(x+ 1)− η(x− 1)η(x+ 1).

Since the previous function contains terms of the form η(x)η(x+ 1), we now focus in replacing them by

products of averages, and this is the content of the next theorem.

Theorem 6.1.2. Let Gns : [0, 1]→ R be such that ‖Gns ‖∞ ≤M <∞, for all n ∈ N and s ∈ [0, T ]. For any

t ∈ [0, T ], we have that

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {
ηsn2(x)ηsn2(x+ 1)−←−η εnsn2(x)−→η εnsn2(x+ 1)

}
ds

∣∣∣∣∣
]

= 0.

In order to simplify the presentation of the previous theorem’s proof, we divided it into three steps

as described below and illustrated in Figure 6.1. For x ∈ Σεn,2, a ∈ (1, 2), ε > 0, and δ > 0 such that

a− 1− δ ≥ 0:

1) replace η(x)η(x+ 1) by←−η `(x)η(x+ 1), for ` = na−1−δ; (Lemma 6.1.3)

2) replace←−η `(x)η(x+ 1) by←−η `(x)−→η εn(x+ 1), for ` = na−1−δ; (Lemma 6.1.7)

3) replace←−η `(x)−→η εn(x+ 1) by←−η L(x)−→η εn(x+ 1), for ` = na−1−δ and L = εn. (Lemma 6.1.9)

x x+1

x−`+1 x x+1

`

x−`+1 x x+1 x+εn

εn
`

x−εn+1 x x+1 x+εn

εn εn

Figure 6.1: Steps to prove Theorem 6.1.2.

The steps to prove Theorem 6.1.2 are intentionally divided in this way because the proof of the

theorem is based on the path argument that we will explain below. The idea is the following: since we

want to replace η(x)η(x + 1) by ←−η εnsn2(x)−→η εnsn2(x + 1) one could think that this could be accomplished

easily once we can freely move particles using the SSEP dynamics. However, since their jumps are in

a time scale less than the diffusive one particles can not travel to sites at a distance of order O(εn).

To overcome this problem, we could try to use the PMM dynamics since now particles can travel at a

distance of order O(εn). The problem is that when using only the PMM dynamics we can have locally

blocked configurations so that we can not accomplish this all the time. Thus, the strategy is the following:

we first create a finite size box around the jumping particle (Lemma 6.1.3) so that we create a mobile

cluster inside this box. Now, since we have this box, we can use the path argument to do the replacement

described in Lemma 6.1.7 and then in Lemma 6.1.9.
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Lemma 6.1.3. Let Gns : [0, 1] → R be such that ‖Gns ‖∞ ≤ M < ∞, for all n ∈ N and s ∈ [0, T ]. For any

t ∈ [0, T ], ε > 0 and ` = na−1−δ with δ > 0 such that a− 1− δ ≥ 0, we have that

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {
ηsn2(x)−←−η `sn2(x)

}
ηsn2(x+ 1) ds

∣∣∣∣∣
]

= 0. (6.1)

Proof. Note that the expectation in the statement of the lemma can be written as

1

n

∫
Ωn

Eη

[
n

∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {
ηsn2(x)−←−η `sn2(x)

}
ηsn2(x+ 1) ds

∣∣∣∣∣
]
dµn.

Since we do not have enough information about the measure µn, except the fact that it is associated

with a profile (2.20), we want to change this measure to the Bernoulli product measure νnρ(·), where ρ(·)

satisfies (4.13). Since Ωn is a countable state space, the entropy of µn with respect to νnρ(·) (see [31]

for more details) can be defined as H
(
µn|νnρ(·)

)
=
∑
η∈Ωn

µn(η) log
(
µn(η)
νn
ρ(·)(η)

)
. By entropy inequality, the

previous expression is bounded from above, for any B > 0, by
H(µn|νnρ(·))

nB plus

1

nB
log

∫
Ωn

exp

{
nB Eη

[∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {
ηsn2(x)−←−η `sn2(x)

}
ηsn2(x+ 1) ds

∣∣∣∣∣
]}

dνnρ(·).

Now, using Jensen’s inequality, we can bound (6.1) from above by
H(µn|νnρ(·))

nB plus

1

nB
logEνn

ρ(·)

[
exp

{
nB

∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {
ηsn2(x)−←−η `sn2(x)

}
ηsn2(x+ 1) ds

∣∣∣∣∣
}]

. (6.2)

Since ρ(·) satisfies (4.13), from Lemma A.0.2 we have that

H
(
µn|νnρ(·)

)
≤ log

(
1

(α ∧ (1− β))
n

) ∑
η∈Ωn

µn(η) ≤ nC(α, β). (6.3)

Thus, we only need to treat the term in (6.2), since the term C(α,β)
B vanishes in the end when we take

B → ∞. From Feynman-Kac’s formula (see, for example, Lemma A.1 of [2]), (6.2) is bounded from

above by

∫ t

0

sup
f

(∣∣∣∣∣
∫

Ωn

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {
η(x)−←−η `(x)

}
η(x+ 1)f(η) dνnρ(·)

∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
ds,

where the supremum is carried over all densities f with respect to νnρ(·). Let us now examine

∣∣∣∣∣
∫

Ωn

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {
η(x)−←−η `(x)

}
η(x+ 1)f(η) dνnρ(·)

∣∣∣. (6.4)

Note that η(x)−←−η `(x) = 1
`

∑
y∈
←−
Λ `
x
η(x)− η(y), and that η(x)− η(y) =

∑x−1
z=y η(z + 1)− η(z). Hence, by

summing and subtracting the term 1
2f(ηz,z+1) and using the hypothesis on G, we can bound (6.4) from
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above by

M

2`n

∑
x∈Σεn,2

∑
y∈
←−
Λ `
x

x−1∑
z=y

∣∣∣∣∣
∫

Ωn

(
η(z + 1)− η(z)

)
η(x+ 1)

(
f(η) + f(ηz,z+1)

)
dνnρ(·)

∣∣∣∣∣
+
M

2`n

∑
x∈Σεn,2

∑
y∈
←−
Λ `
x

x−1∑
z=y

∣∣∣∣∣
∫

Ωn

(
η(z + 1)− η(z)

)
η(x+ 1)

(
f(η)− f(ηz,z+1)

)
dνnρ(·)

∣∣∣∣∣.
(6.5)

Let η̄ denote the configuration η removing its value at the sites z and z + 1. Thus, we can write the first

integral in (6.5) as ∣∣∣∣∣ ∑
η̄∈Ωn−2

(
η̄(x+ 1)

(
f(η̄, 0, 1) + f(η̄, 1, 0)

) (
1− ρ

(
z
n

))
ρ
(
z+1
n

)
− η̄(x+ 1)

(
f(η̄, 0, 1) + f(η̄, 1, 0)

)
ρ
(
z
n

) (
1− ρ

(
z+1
n

)))
νn−2
ρ(·) (η̄)

∣∣∣∣∣,
(6.6)

where the notation f(η̄, 1, 0) means that we are computing f(η) with η(z) = 1 and η(z+1) = 0. Using the

fact that ρ(·) satisfies the hypothesis of Lemma 4.2.1 so that (4.14) holds, (6.6) is bounded from above

by a constant (depending on ρ(·)) times

1

n

∑
η̄∈Ωn−2

(
f(η̄, 0, 1) + f(η̄, 1, 0)

)
νn−2
ρ(·) (η̄).

Since last term is bounded from above by

2

n

∑
z∈{0,1}

∑
η∈Ωn

f(η)
( ∏
y=z,z+1

ρ
(
y
n

)η(y) (
1− ρ

(
y
n

))1−η(y)
)−1

νnρ(·)(η)

and f is a density with respect to νnρ(·), (6.6) is of order O( 1
n ). Thus, the first line in (6.5) is bounded from

above by a constant, times `
n . It remains to treat the second line of (6.5). Note that for two nonnegative

numbers a and b, a− b = [
√
a−
√
b][
√
a+
√
b]. Then, from Young’s inequality we have that for any A > 0

the absolute value of the integral in the second line of (6.5) is bounded from above by

M

4n`A

∑
x∈Σεn,2

∑
y∈
←−
Λ `
x

x−1∑
z=y

∣∣∣∣∣
∫

Ωn

(
η(z + 1)− η(z)

)2
η(x+ 1)2

(√
f(η) +

√
f(ηz,z+1)

)2
dνnρ(·)

∣∣∣∣∣
+
MA

4n`

∑
x∈Σεn,2

∑
y∈
←−
Λ `
x

x−1∑
z=y

∣∣∣∣∣
∫

Ωn

(√
f(η)−

√
f(ηz,z+1)

)2
dνnρ(·)

∣∣∣∣∣ .
(6.7)

Now, since f is a density with respect to νnρ(·), |η(x)| ≤ 1 for x ∈ Σn, and (a + b)2 ≤ 2a2 + 2b2, the first

line of the previous display is bounded from above by M`
A . Furthermore, recalling the definition of (4.10),

we can bound (6.7) from above by

M`

A
+
MA

4
DS(

√
f, νnρ(·)) . (6.8)
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Now, recall from (4.14) that

〈Lmn
√
f,
√
f〉νn

ρ(·)
≤ −n

a−2

4
DS

(√
f, νnρ(·)

)
+O( 1

n ).

Taking A = na−1

BM in (6.8), from last inequality and the previous computations, the expectation in the

statement of the lemma is bounded from above by a constant, times

1

B
+ T

(
`

n
+

B`

na−1

)
. (6.9)

Therefore, from our choice of `, taking n→∞ and then B →∞ in (6.9), the proof ends.

Remark 6.1.4. We stress that, in the proof above and the ones below, we present the replacement

lemmas using the Bernoulli product measure νnρ(·) and asking ρ(·) to satisfy the conditions stated in the

first part of Lemma 4.2.1. Nevertheless, in the case θ ≥ 1, it is enough to consider the constant profile

ρ(·), due to the bound obtained in (4.15).

Remark 6.1.5. We observe that the restriction imposed above Remark 2.1, that the parameters α, β ∈

(0, 1), comes from the estimate in (6.3). Since, as mentioned above, in the case θ ≥ 1 we can take any

constant profile, that restriction on the parameters is only needed in Dirichlet case, that is, when θ < 1.

Remark 6.1.6. A simple modification of the proof of Lemma 6.1.3 also shows that, for all ε > 0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

)
ηsn2(x− 1)

{
ηsn2(x)−−→η `sn2(x)

}
ds

∣∣∣∣∣
]

= 0.

Lemma 6.1.7. Let Gns : [0, 1] → R be such that ‖Gns ‖∞ ≤ M < ∞, for all n ∈ N and s ∈ [0, T ]. For any

t ∈ [0, T ] and ` = na−1−δ with δ > 0 such that a− 1− δ ≥ 0, we have that

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

)←−η `sn2(x)
{
ηsn2(x+ 1)−−→η εnsn2(x+ 1)

}
ds

∣∣∣∣∣
]

= 0. (6.10)

Proof. Following the same steps as we did in the beginning of the previous lemma, for B > 0, we can

bound the expectation in (6.10) from above by C(α,β)
B , plus

∫ t

0

sup
f

(∣∣∣∣∣
∫

Ωn

1

n

∑
x∈Σεn,2

Gns
(
x
n

)←−η `(x)
{
η(x+ 1)−−→η εn(x+ 1)

}
f(η) dνnρ(·)

∣∣∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
ds.

Now, we need to examine the term∣∣∣∣∣
∫

Ωn

1

n

∑
x∈Σεn,2

Gns
(
x
n

)←−η `(x)
{
η(x+ 1)−−→η εn(x+ 1)

}
f(η) dνnρ(·)

∣∣∣∣∣. (6.11)

Note that although the expression above is similar to (6.4), we can not use the same argument to treat

it. The main difference here is that we can not estimate expressions like (6.7) by only using the SSEP

dynamics. In order to overcome this, we will define a set of configurations in which we can combine
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both the SSEP jumps and the PMM jumps to estimate the aforementioned expression, as we will explain

below.

Recall the definition of
←−
Λ `
x in (5.3). Denote by X1 = {η ∈ Ωn :←−η `(x) ≥ m

` } the set of configurations

that have at least m particles in
←−
Λ `
x. Thus, we can write (6.11) as the sum of the integral over the set

X1, plus the integral over its complement Xc
1 . By the hypothesis on G, the fact that |η(x)| ≤ 1 for x ∈ Σn,

and since f is a density with respect to νnρ(·), the absolute value of the integral over Xc
1 is bounded from

above by a constant, times 1
` . By the hypothesis on `, the integral over Xc

1 vanishes as n goes to infinity.

Hence, since η(x+ 1)−−→η εn(x+ 1) = 1
εn

∑
y∈
−→
Λ εn
x+1

η(x+ 1)− η(y), we can bound (6.11) from above by

∣∣∣∣∣ 1

n2ε

∑
x∈Σεn,2

∑
y∈
−→
Λ εn
x+1

∫
X1

Gns
(
x
n

)←−η `(x)
{
η(x+ 1)− η(y)

}
f(η) dνnρ(·)

∣∣∣∣∣.
From the hypothesis on G and by summing and subtracting the term 1

2f(ηx+1,y) in the previous expres-

sion, we can bound from above the last expression by

M

2n2ε

∑
x∈Σεn,2

∑
y∈
−→
Λ εn
x+1

∣∣∣∣∣
∫
X1

←−η `(x)
{
η(x+ 1)− η(y)

}(
f(η) + f(ηx+1,y)

)
dνnρ(·)

∣∣∣∣∣
+

M

2n2ε

∑
x∈Σεn,2

∑
y∈
−→
Λ εn
x+1

∣∣∣∣∣
∫
X1

←−η `(x)
{
η(x+ 1)− η(y)

}(
f(η)− f(ηx+1,y)

)
dνnρ(·)

∣∣∣∣∣.
(6.12)

We begin by estimating the first line in the previous display. We use the notation η̄ for the configuration

η removing its value at the sites x+ 1 and y. Since x+ 1 and y do not intersect
←−
Λ `
x, the term inside the

absolute value in the first equation in (6.12), can be written as∣∣∣∣∣ ∑
η̄∈Ωn−2

1η̄∈X1

←−̄
η `(x)

{(
f(η̄, 0, 1) + f(η̄, 1, 0)

)( (
1− ρ

(
y
n

))
ρ
(
x+1
n

)
− ρ

(
y
n

) (
1− ρ

(
x+1
n

)) )}
νn−2
ρ(·) (η̄)

∣∣∣∣∣.
Using the fact that ρ(·) satisfies the hypothesis of Lemma 4.2.1 so that (4.14) holds, the first term in

(6.12) can be bounded from above by a constant, times

M

2n2ε

∑
x∈Σεn,2

∑
y∈
−→
Λ εn
x+1

∣∣∣x+1−y
n

∣∣∣,
which is of order O (ε). To bound the second line in (6.12) we need to be careful. Recall that the idea

behind this lemma is to replace a particle at the site x + 1 by the empirical density in the box
−→
Λ εn
x+1. To

accomplish this we have to construct a path (with allowed jumps from the SSEP and the PMM dynamics),

in such a way that we can send a particle from the site x + 1 to the site y, for any y ∈
−→
Λ εn
x+1. This path

depends on the creation of a mobile cluster. Thus, to present the argument in a more didactic way, will

explain in the next paragraph how to construct the aforementioned path by using the SSEP jumps and

the PMM jumps restricted to the case m = 2, and on Remark 6.1.8 we present what changes in the

general case.
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Recall that in the case m = 2 we are integrating over X1 = {η ∈ Ωn : ←−η `(x) ≥ 2
` }, so that we have

at least two particles in
←−
Λ `
x. Suppose, without loss of generality, that we have a particle at site x1 ∈

←−
Λ `
x,

and another one at site x2 ∈
←−
Λ `
x, with x1 < x2. Using the SSEP jumps, we can take the particle from

the site x1 close to the particle at the site x2, in such a way that the distance between them is less

than or equal to 2. Denoting by • an occupied site and by ◦ an empty site, this approximation is done

by the SSEP jumps and at the end we get one of the following structures ( • ◦ • or • • ◦). When

we reach a structure of the previous form, we say that a mobile cluster has been created. Now, since

we have a mobile cluster, there exists a sequence of nearest-neighbor jumps (with the PMM dynamics)

which allow us to move the mobile cluster to any position on the box
−→
Λ εn
x+1. Note that the SSEP jumps

are used to approximate particles inside a box of size `, with the choice of ` as in the statement of this

lemma. However, the PMM jumps can be used in the presence of the mobile cluster, to take a particle

from a site x + 1 to a site y at a distance at most εn. After the creation of the mobile cluster with SSEP

jumps, we move it to a vicinity of the site x + 1 until the distance between them is less than or equal

to 2. Then, using the PMM jumps we take a particle to the site y and we bring back the mobile cluster

to the same position where it was created. When we reach this step, we use the SSEP jumps again to

put the particles back to their initial positions, x1 and x2, respectively. To have a picture of all the steps

mentioned above see Figure 6.2.

x−`+1 x1 x2 x x+1 y x+εn

x−`+1 x1 x2 x x+1 y x+εn

x−`+1 x1 x2 x x+1 y x+εn

x−`+1 x1 x2 x x+1 y x+εn

x−`+1 x1 x2 x x+1 y x+εn

x−`+1 x1 x2 x x+1 y x+εn

Figure 6.2: Path used to send a particle from site x + 1 to y inside the box of size εn, combining SSEP
jumps and PMM jumps (with m = 2).

Note that, in this path, we use at most 4` jumps from the SSEP and 6(`+ εn) jumps from the PMM.

From this, it follows that for any configuration η ∈ X1, if x1 and x2 denote the position of the two closest

particles to x + 1, then there exist N(x1) ≤ ` + εn and a sequence of allowed moves {x(i)}i=0,...,N(x1),

which takes values in the set of points {x1, . . . , y}, such that η(0) = η, η(i+1) = (η(i))x(i),x(i)+1 and the

final configuration is η(N(x1)) = ηx+1,y. Note that the rates for each exchange is strictly positive. With
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this in mind, we can rewrite the exchange f(η)− f(ηx+1,y) as

f(η)− f(ηx+1,y) =

N(x1)∑
i=1

f(η(i−1))− f(η(i)) =
∑
i∈Iexc

f(η(i−1))− f(η(i)) +
∑
i∈Ipmm

f(η(i−1))− f(η(i)), (6.13)

where Iexc (resp. Ipmm) are the sets of indexes that count the bonds used with SSEP jumps (resp. PMM

jumps) along the path. Take into account the fact that the SSEP jumps are used only to create and

to destroy the mobile cluster, while all the rest of the path is done with PMM jumps. Now, substituting

(6.13) in the second line of (6.12) and using the triangular inequality, we need to estimate the following

expressions

M

2n2ε

∑
x∈Σεn,2

∑
y∈
−→
Λ εn
x+1

∑
i∈Iexc

∣∣∣∣∣
∫
X1

←−η `(x)
(
η(x+ 1)− η(y)

)(
f(η(i−1))− f(η(i)

)
dνnρ(·)

∣∣∣∣∣
+

M

2n2ε

∑
x∈Σεn,2

∑
y∈
−→
Λ εn
x+1

∑
i∈Ipmm

∣∣∣∣∣
∫
X1

←−η `(x)
(
η(x+ 1)− η(y)

)(
f(η(i−1))− f(η(i))

)
dνnρ(·)

∣∣∣∣∣.
(6.14)

Since η(i) = (η(i−1))x(i−1),x(i−1)+1, the way to estimate the first line above is the same as it is done in

(6.7). For the sake of completeness, for each A > 0, by Young’s inequality, the definitions of
−→
Λ εn
x+1 and

Σεn,2 (see (5.5) and (5.3), respectively), the first sum of (6.14) is bounded from above by

1

2A

∑
i∈Iexc

∫
X1

(√
f(η(i−1)) +

√
f(η(i))

)2

dνnρ(·) +
A

2

∑
i∈Iexc

∫
X1

(√
f(η(i−1))−

√
f(η(i))

)2

dνnρ(·) .

Now, remember that the indexes in Iexc count the number of SSEP jumps to move the two particles that

are in the box
←−
Λ `
x (which exist due to the fact that the integral is over X1) close to the bond (x − 1, x)

and the path back to the initial position of these particles. Then, the first line in (6.14) is bounded from

above by
2M`

A
+
AM

4
DS(

√
f, νnρ(·)).

In order to estimate the second line in (6.14), we repeat the argument above using the PMM jump rates.

Recall that p2
x,x+1(η) is introduced below (4.10). Thus, for all Ã > 0, the sum involving Ipmm in (6.14) is

bounded from above by

1

2Ã

∑
i∈Ipmm

∫
X1

1

p2
x(i−1),x(i−1)+1(η)

(√
f(η(i−1)) +

√
f(η(i))

)2

dνnρ(·)

+
Ã

2

∑
i∈Ipmm

∫
X1

p2
x(i−1),x(i−1)+1(η)

(√
f(η(i−1))−

√
f(η(i))

)2

dνnρ(·) .

Observe that for η ∈ X1 and i ∈ Ipmm, p2
x(i−1),x(i−1)+1(η) is either equal to 1 or 2. Therefore, the second

line in (6.14) is bounded from above by

6Mεn

Ã
+
ÃM

4
D2
P (
√
f, νnρ(·)).
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Taking A = na−1

MB and Ã = n
MB , from the previous computations, the expectation in the statement of the

lemma is bounded from above by a constant, times

1

B
+ T

(
1

`
+ ε+

`B

na−1
+ εB

)
. (6.15)

Taking n → ∞, the second and fourth term of (6.15) vanish by the choice of `. Taking ε → 0, the third

and fifth terms of (6.15) vanish. To finish, we send B →∞ and the remaining term vanishes, concluding

the proof.

Remark 6.1.8. We decided to use the PMM with generator L2
P in the middle of the theorem above

because it is the easiest way to illustrate the path argument’s ideas. However, this argument can be

generalized with some adaptations considering the PMM with generator LmP for m > 2, since as we

increase the degree of m, the jump rates degree increase, and therefore the number of particles to

create the mobile cluster. Indeed, in the case m = 3, the main changes in the argument will be the

following: to estimate (6.11) we consider X1 =
{
η ∈ Ωn :←−η `(x) ≥ 3

`

}
; the mobile cluster will have the

forms (• • ◦ •) or (• ◦ • •) or (• • • ◦); and the path to move a particle from the site x + 1 to the site

y will have at most 6` jumps from the SSEP, and 8(`+ εn) jumps from the PMM dynamics. Thus, for the

general case m ≥ 2, we will have: X1 =
{
η ∈ Ωn :←−η `(x) ≥ m

`

}
, a path with at most 2m` jumps from

the SSEP, and 2(m + 1)(` + εn) jumps from the PMM dynamics, and the mobile clusters will have the

following forms

x−m x− 1 x

x−m x− 1 x

...

x−m x− 1 x

x−m x− 1 x

Figure 6.3: Possible mobile clusters used in the case m ≥ 2.

Lemma 6.1.9. Let Gns : [0, 1] → R be such that ‖Gns ‖∞ ≤ M < ∞, for all n ∈ N and s ∈ [0, T ]. For any

t ∈ [0, T ], L = εn and ` = na−1−δ with δ > 0 such that a− 1− δ ≥ 0, we have that

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {←−η `sn2(x)−←−η Lsn2(x)
}−→η εnsn2(x+ 1) ds

∣∣∣∣∣
]

= 0. (6.16)

Proof. The proof of this lemma is similar to one of Lemma 6.1.7, with some modifications due to the

sizes of the boxes involved here. Again, we can bound the expectation in the statement of the lemma

from above by C(α,β)
B plus

∫ t

0

sup
f

(∣∣∣∣∣
∫

Ωn

1

n

∑
x∈Σεn,2

Gns
(
x
n

) {←−η `(x)−←−η L(x)
}−→η εn(x+ 1)f(η) dνnρ(·)

∣∣∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
ds,

(6.17)
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for any B > 0, where f is a density with respect to νnρ(·). Take L = k` with k = εn
` , and note that

←−η `(x)−←−η L(x) =
1

k

k−1∑
j=1

(←−η `(x)−←−η `(x− j`)
)
.

From the last identity and the hypothesis on G, to bound the first integral inside the supremum in (6.17),

it is enough to estimate the term

M

kn

∑
x∈Σεn,2

k−1∑
j=1

∣∣∣∣∣
∫

Ωn

{←−η `(x)−←−η `(x− j`)
}−→η εn(x+ 1)f(η) dνnρ(·)

∣∣∣∣∣.
For j = 1, . . . , k − 1, let Xj

2 = {η ∈ Ωn : ←−η `(x) ≥ m+1
` } ∪ {η ∈ Ωn : ←−η `(x − j`) ≥ m

` }. Thus,

the integral in the previous display can be written as the integral over Xj
2 plus the integral over its

complement (Xj
2)c. We observe that the integral over (Xj

2)c is of order O( 1
` ). Since←−η `(x)−←−η `(x−j`) =

1
`

∑
z∈
←−
Λ `
x
η(z)− η(z − j`), we can write the integral over Xj

2 as

M

kn

∑
x∈Σεn,2

k−1∑
j=1

∣∣∣∣∣
∫
Xj2

1

`

∑
z∈
←−
Λ `
x

(
η(z)− η(z − j`)

)−→η εn(x+ 1)f(η) dνnρ(·)

∣∣∣∣∣. (6.18)

Basically the idea above is to send a particle z ∈
←−
Λ `
x to a site inside a box of size j`, given that we have

at least m + 1 particles in
←−
Λ `
x or m particles in

←−
Λ `
x−j`. In Figure 6.4 we illustrate these two cases for

m = 3. We stress that the path argument used here is the same used above to prove Lemma 6.1.7.

x−k`+1 · · · x−(j+1)`+1 z−` x−j` · · · x−`+1 z x x+1 · · · x+εn

x−k`+1 · · · x−(j+1)`+1 z−` x−j` · · · x−`+1 z x x+1 · · · x+εn

Figure 6.4: Two possible situations in which it is possible to send a particle from site z to z − j`. (with
m = 3)

Summing and subtracting 1
2f(ηz−j`,z) in (6.18), we get

M

2kn`

∑
x∈Σεn,2

k−1∑
j=1

∑
z∈
←−
Λ `
x

∣∣∣∣∣
∫
Xj2

(
η(z)− η(z − j`)

)−→η εn(x+ 1)
(
f(η) + f(ηz−j`,z)

)
dνnρ(·)

∣∣∣∣∣
+

M

2kn`

∑
x∈Σεn

k−1∑
j=1

∑
z∈
←−
Λ `
x

∣∣∣∣∣
∫
Xj2

(
η(z)− η(z − j`)

)−→η εn(x+ 1)
(
f(η)− f(ηz−j`,z)

)
dνnρ(·)

∣∣∣∣∣.
(6.19)

Note that, as in Lemma 6.1.7, we can write the integral in the first line of (6.19) as

M

2kn`

∑
x∈Σεn,2

k−1∑
j=1

∑
z∈
←−
Λ `
x

∣∣∣∣∣ ∑
η̃∈Ωn−2

1η̃∈Xj2
−→̄
η εn(x+ 1)

(
f(0, 1, η̃) + f(1, 0, η̃)

)(
ρ
(
z
n

)
− ρ

(
z−j`
n

))
νn−2
ρ(·) (η̃)

∣∣∣∣∣,
where η̃ denotes the configuration η removing its value at the sites z− j` and z. Since f is a density with
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respect to νnρ(·) and ρ(·) satisfies the hypothesis of Lemma 4.2.1, we can bound the first line in (6.19)

from above by
M

kn`

∑
x∈Σεn,2

k−1∑
j=1

∑
z∈
←−
Λ `
x

∣∣∣j`
n

∣∣∣ ≤ Mk`

n
.

Since k = εn
` , that term is of order O(ε). It remains to estimate the second term in (6.19). The idea is to

send a particle from the site z to the site z − j`. This can be done since we are restricted to the set Xj
2 ,

so that we know that there are at least m particles either in the box
←−
Λ `
x or in the box

←−
Λ `
x−j` apart from

the particle at site z. With this in mind, we can again construct a path using the SSEP jumps to create

a mobile cluster in the box where there are for sure m particles apart from the site z. Now, we use the

PMM jumps to move the mobile cluster close to the particle at site z, and to send it to the site z − j`.

Then, we put the mobile cluster back to its starting point using the PMM jumps, and we then put the m

particles back to their initial position using the SSEP jumps. As in the previous lemma, for A, Ã > 0, we

can bound the second line in (6.19) from above by a constant, times

`

A
+ADS(

√
f, νnρ(·)) +

`k

Ã
+ ÃDm

P (
√
f, νnρ(·)).

By choosing A = na−1

B and Ã = n
B , we can bound (6.17) from above by a constant, times

1

B
+ T

(
ε+

`B

na−1
+
`kB

n

)
. (6.20)

From the choice of ` and k, (6.20) is bounded from above by 1
B + T (ε + n−δB + εB), which vanishes

when we take n→∞, then ε→ 0 and finally B →∞.

Proof of Theorem 6.1.1. The proof of this general case is similar to the proof of Theorem 6.1.2. The

only difference is that, for example, for m = 4, the function τxh4(η) contains terms of the form η(x)η(x+

1)η(x+ 2)η(x+ 3) and one must have space to do the replacement. The idea is the following: one first

has to replace η(x) by η(x + 1 − `) in the product above, then η(x + 3) by η(x + 2 + `), which can be

done by using Lemma 6.2.5 for ` = na−1−δ, and finally we combine Lemmas 6.2.7, 6.2.8, and 6.2.9 to

replace these terms by boxes of size O(εn), see Figure 6.5.

x x+1 x+2 x+3

x+1−` x+1 x+2 x+3

x+1−` x+1 x+2 x+2+`

x+1−` x+1 x+2 x+2+`

` `

x+1−εn x+1 x+2 x+2+εn

εn εn εn εn

Figure 6.5: Replacing the occupation sites x, x + 1, x + 2, and x + 3 by occupation averages on boxes
of size εn.

In the general case, the function τxh
m(η) contains terms of the form η(x)η(x + 1) · · · η(x + m − 1).
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Note that we can write this product as

m
2 −1∏
i=0

η(x+ i)

m
2 −1∏
i=0

η(x+ m
2 + i).

Thus, following the same idea as in the previous case, the result follows from the application of Theorem

6.2.4 twice to replace:

m
2 −1∏
i=0

η(x+ i)

m
2 −1∏
i=0

η(x+ m
2 + i) by

m
2 −1∏
i=0

η(x+ i)

m
2 −1∏
i=0

−→η εnsn2(x+ 1 + iεn),

and
m
2 −1∏
i=0

η(x+ i)

m
2 −1∏
i=0

−→η εnsn2(x+ 1 + iεn) by

m
2 −1∏
i=0

←−η εnsn2(x− iεn)

m
2 −1∏
i=0

−→η εnsn2(x+ 1 + iεn).

6.2 Replacement lemmas at the boundary

In this section, we prove the different replacement lemmas regarding the boundary. Throughout this

section ρ(·) will also be a profile satisfying the hypothesis of Lemma 4.2.1 so that (4.14) holds, as in the

previous section. We stress that we had to define the available sets in the last section in which we can

prove the replacement lemmas, namely Σεn,m. Thus, since the replacement lemmas here concern the

boundary, we have to define two different subsets of our discrete space Σn, one regarding the available

sites in which we can prove the replacement lemma for the left boundary Σε,ln,m, and the other for the

right boundary Σε,rn,m, that are represented below:

Σε,ln,m := {1, 2, . . . , n− 1−mεn} and Σε,rn,m := {1 +mεn, . . . , n− 2, n− 1}.

The replacement lemmas at the boundary say that we can replace:

• η(1) (resp. η(n− 1)) by α (resp. β); (Lemma 6.2.1)

• For every x ∈ Σε,ln,1 (resp. x ∈ Σε,rn,1)

η(x) by −→η εn(x), (resp. η(x) by ←−η εn(x)); (Lemma 6.2.2)

• For every x ∈ Σε,ln,m

m−1∏
i=0

η(x+ 1 + i) by
m−1∏
i=0

−→η εn(x+ 1 + iεn), (Theorem 6.2.3)
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• For every x ∈ Σε,rn,m

m−1∏
i=0

η(x− i) by
m−1∏
i=0

←−η εn(x− iεn). (Theorem 6.2.3)

Note that the index l in Σε,ln,m regards the word ‘left”, and ` regards the size of the box. Before proving

the main theorem of this section, namely, Theorem 6.2.3, let us prove the results presented in the first

and second items above.

Lemma 6.2.1. Fix θ < 1. Let ϕ : Ωn → Ωn be a positive and bounded function which does not depend

on the value of the configuration η at the site 1. For any t ∈ [0, T ], we have that

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

ϕ(ηsn2)(α− ηsn2(1)) ds

∣∣∣∣∣
]

= 0.

The same is true replacing α by β, 1 by n− 1 and requiring ϕ not to depend on η at the site n− 1.

Proof. As in the replacement lemmas of the previous section, the expectation in the statement of the

lemma is bounded from above by C(α,β)
B , plus

t sup
f

(∣∣∣∣∣
∫

Ωn

ϕ(η)(α− η(1))f(η) dνnρ(·)

∣∣∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
, (6.21)

where B > 0 and the supremum is carried over all the densities f with respect to νnρ(·). Summing and

subtracting 1
2f(η1) in the first integral term inside the supremum in (6.21), we can bound this integral

term from above by

1

2

∣∣∣∣∣
∫

Ωn

ϕ(η)(α− η(1))
(
f(η)− f(η1)

)
dνnρ(·)

∣∣∣∣∣+
1

2

∣∣∣∣∣
∫

Ωn

ϕ(η)(α− η(1))
(
f(η) + f(η1)

)
dνnρ(·)

∣∣∣∣∣. (6.22)

From Young’s inequality and computations similar to the ones used to treat (6.5), the first term in (6.22)

is bounded from above by

A

4

∫
Ωn

(ϕ(η)(α− η(1)))2

Iα1 (η)

(√
f(η1) +

√
f(η)

)2

dνnρ(·) +
1

4A

∫
Ωn

Iα1 (η)
(√

f(η)−
√
f(η1)

)2

dνnρ(·),

for any A > 0, where Iα1 (η) = α(1−η(1))+(1−α)η(1). Recalling the definition of Fα1 (
√
f, νnρ(·)) in (4.11),

and since ϕ is bounded, we can bound the previous display from above by

CA+
1

4A
Fα1 (

√
f, νnρ(·)),

where C := C(α,ϕ). Now let us treat the remaining term in (6.22). Denoting by η̄ the configuration η

removing its value at the site 1, we can rewrite the second term of (6.22) as

1

2

∣∣∣∣∣ ∑
η̄∈Ωn−1

(
(α− 1)ϕ(η̄)(f(1, η̄) + f(0, η̄))ρ

(
1
n

)
+ αϕ(η̄)(f(0, η̄) + f(1, η̄))

(
1− ρ

(
1
n

)) )
νn−1
ρ(·) (η̄)

∣∣∣∣∣,
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which is equal to
1

2

∣∣∣∣∣ ∑
η̄∈Ωn−1

(
α− ρ

(
1
n

))
ϕ(η̄)(f(0, η̄) + f(1, η̄))νn−1

ρ(·) (η̄)

∣∣∣∣∣,
where the notation f(j, η̄) means that we are computing f(η) with η(1) = j with j ∈ {0, 1}. Since ϕ is

bounded and f is a density with respect to νnρ(·), we can bound the previous expression from above by

C̃
∣∣α− ρ ( 1

n

)∣∣ ∑
η̄∈Ωn−1

(
ρ( 1
n )f(1, η̄)νn−1

ρ(·) (η̄) +
(
1− ρ( 1

n )
)
f(0, η̄)νn−1

ρ(·) (η̄)
)
,

which is equal to C̃
∣∣α− ρ ( 1

n

)∣∣, where C̃ := C̃(ϕ, ρ). Now, from the previous computations, (6.22) is

bounded from above by

CA+
1

4A
Fα1 (

√
f, νnρ(·)) + C̃

∣∣α− ρ ( 1
n

)∣∣ .
Thus, taking A = Bnθ−1

κ , from (4.14) we have that (6.21) is bounded from above by a constant, times

Bnθ−1

κ
+
∣∣α− ρ( 1

n )
∣∣ .

Taking n → ∞ and using the fact that ρ(·) satisfies (4.13), we have that these terms vanish since

θ < 1.

Lemma 6.2.2. For any t ∈ [0, T ] and x ∈ Σε,ln,1, we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
ηsn2(x)−−→η εnsn2(x)

}
ds

∣∣∣∣∣
]

= 0.

In the same way, for any t ∈ [0, T ] and x ∈ Σε,rn,1, we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
ηsn2(x)−←−η εnsn2(x)

}
ds

∣∣∣∣∣
]

= 0.

Proof. We will explain the idea to prove the second equality since the first one is analogous. This proof

can be done in two steps. The first one is to replace η(x) by←−η `sn2(x) using Lemma 6.1.3 and the second

one is to replace←−η `sn2(x) by←−η εnsn2(x) using Lemma 6.1.9.

Now, we state the main theorem of this section.

Theorem 6.2.3. For any t ∈ [0, T ], m ∈ N, and x ∈ Σε,ln,m, we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
m−1∏
i=0

ηsn2(x+ i)−
m−1∏
i=0

−→η εnsn2(x+ iεn)

}
ds

∣∣∣∣∣
]

= 0.

In the same way, for any t ∈ [0, T ], m ∈ N, and x ∈ Σε,rn,m, we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
m−1∏
i=0

ηsn2(x− i)−
m−1∏
i=0

←−η εnsn2(x− iεn)

}
ds

∣∣∣∣∣
]

= 0.
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As in the previous section, we will divide the proof of previous theorem into two steps. First, we will

present the proof for replacing products of the form η(x)η(x+1) (resp. η(x−1)η(x)) by −→η εnsn2(x)−→η εnsn2(x+

εn) (resp. ←−η εnsn2(x − εn)←−η εnsn2(x)) as stated in Theorem 6.2.4. Second, we will present the proof of

Theorem 6.2.3 for any m > 2.

Theorem 6.2.4. For any t ∈ [0, T ] and x ∈ Σε,ln,2, we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
ηsn2(x)ηsn2(x+ 1)−−→η εnsn2(x)−→η εnsn2(x+ εn)

}
ds

∣∣∣∣∣
]

= 0. (6.23)

In the same way, for any t ∈ [0, T ] and x ∈ Σε,rn,2, we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
ηsn2(x)ηsn2(x+ 1)−←−η εnsn2(x− εn+ 1)←−η εnsn2(x+ 1)

}
ds

∣∣∣∣∣
]

= 0. (6.24)

For simplicity of the presentation, we will only prove (6.23), that is, the left boundary part. We note

that the result concerning the right boundary in (6.24) can be proved with an analogous argument. Let

x ∈ Σε,ln,m, a ∈ (1, 2), ε > 0, and δ > 0 such that a − 1 − δ ≥ 0. Thus, in the same way that we did in

the proof Theorem 6.1.1, we will divide the proof of the previous theorem into fours steps as follows (see

also Figure 6.6):

1) replace η(x)η(x+ 1) by η(x)η(x+ `), for ` = na−1−δ; (Lemma 6.2.5)

2) replace η(x)η(x+ `) by −→η `(x)η(x+ `), for ` = na−1−δ; (Lemma 6.2.7)

3) replace −→η `(x)η(x+ `) by −→η `(x)−→η εn(x+ εn), for ` = na−1−δ; (Lemma 6.2.8)

4) replace −→η `(x)−→η εn(x+ εn) by −→η L(x)−→η εn(x+ εn), for ` = na−1−δ and L = εn. (Lemma 6.2.9)

x x+1

x x+`

x x+`

x x+εn x+2εn−1

x x+εn−1 x+εn x+2εn−1

Figure 6.6: Steps to prove Theorem 6.2.4.

Lemma 6.2.5. For any t ∈ [0, T ], x ∈ Σε,ln,1, ` = na−1−δ with δ > 0 such that a− 1− δ ≥ 0, we have

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

ηsn2(x)
{
ηsn2(x+ 1)− ηsn2(x+ `)

}
ds

∣∣∣∣∣
]

= 0.
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Proof. Following the same steps of the proof of Lemma 6.1.3, the expectation in the statement of the

lemma is bounded from above by C(α,β)
B , plus

T sup
f

(∣∣∣∣∣
∫

Ωn

η(x)
{
η(x+ 1)− η(x+ `)

}
f(η) dνnρ(·)

∣∣∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
, (6.25)

where B > 0 and the supremum is carried over all the densities f with respect to νnρ(·). Write η(x) −

η(x+ `) =
∑x+`−1
y=x η(y)− η(y + 1). Using the same strategy that we used to bound the term in (6.5), for

A > 0, the first term inside the supremum in (6.25) is bounded from above by a constant, times

`

n
+
`

A
+ADS(

√
f, νnρ(·)). (6.26)

With the choice A = na−1

B , from (4.14), (6.25), and (6.26), we have that the expectation in the statement

of the lemma is bounded from above by a constant times

1

B
+ T

(
`

n
+

`B

na−1

)
.

From the choice of `, taking n → ∞ we have that the right-hand side of last expression vanishes. By

sending B →∞, we conclude the proof.

Corollary 6.2.6. For any t ∈ [0, T ] and x ∈ Σε,ln,1, we have

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
ηsn2(x)− ηsn2(x+ 1)

}
ds

∣∣∣∣∣
]

= 0.

In the same way, for any t ∈ [0, T ] and x ∈ Σε,rn,2, we have

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{
ηsn2(x+ 1)− ηsn2(x)

}
ds

∣∣∣∣∣
]

= 0.

Proof. To prove this corollary it is enough to repeat the proof of Lemma 6.2.5 taking ` = 1 and replacing

η(x+ 1) by η(x).

Lemma 6.2.7. For any t ∈ [0, T ], x ∈ Σε,ln,1, ` = na−1−δ with δ > 0 such that a− 1− δ ≥ 0, we have

lim
n→∞

Eµn
[ ∣∣∣∣∫ t

0

{
ηsn2(x)−−→η `sn2(x)

}
ηsn2(x+ `) ds

∣∣∣∣
]

= 0. (6.27)

Proof. Following the same steps of previous lemmas, the expectation in (6.27) is bounded from above

by C(α,β)
B , plus

T sup
f

(∣∣∣∣∣
∫

Ωn

{
η(x)−−→η `(x)

}
η(x+ `)f(η) dνnρ(·)

∣∣∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
,

where B > 0 and the supremum is carried over all densities f with respect to νnρ(·). Now, following

53



exactly the same computations done in the proof of Lemma 6.1.3, the expectation in the statement of

the lemma is bounded from above by a constant times

1

B
+ T

(
`

n
+

`B

na−1

)
.

Taking n→∞ and then B →∞, the expression above vanishes due to our choice of `.

Lemma 6.2.8. For any t ∈ [0, T ], x ∈ Σε,ln,2, ` = na−1−δ with δ > 0 such that a− 1− δ ≥ 0, we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

−→η `sn2(x)
{
ηsn2(x+ `)−−→η εnsn2(x+ εn)

}
ds

∣∣∣∣∣
]

= 0.

Proof. Following the same steps of the proof of Lemma 6.1.3, the expectation in the statement of the

lemma is bounded from above by C(α,β)
B , plus

T sup
f

(∣∣∣∣∫
Ωn

−→η `(x)
{
η(x+ `)−−→η εn(x+ εn)

}
f(η) dνnρ(·)

∣∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
,

where B > 0 and the supremum is carried over all densities f with respect to νnρ(·). Now, we want to

examine the first term inside the supremum above. In order to do it we will use the path argument again.

First, let X1 = {η ∈ Ωn : −→η `(x) ≥ m
` } and note that the first integral inside the supremum above can be

written as the integral over the set X1 plus the integral over its complement Xc
1 . The integral over Xc

1 is

of order O
(

1
`

)
so that it vanishes in the limit due to our choice of `. To treat the integral over X1, we start

by noticing that

η(x+ `)−−→η εn(x+ εn) =
1

εn

x+2εn−1∑
y=x+εn

η(x+ `)− η(y).

Thus, we need to examine

1

εn

x+2εn−1∑
y=x+εn

∣∣∣∣∫
X1

−→η `(x)
{
η(x+ `)− η(y)

}
f(η) dνnρ(·)

∣∣∣∣ . (6.28)

Following the same computations done in the proof of Lemma 6.1.7, we can bound the previous expres-

sion by the sum

1

2εn

x+2εn−1∑
y=x+εn

∣∣∣∣∫
X1

−→η `(x)
{
η(x+ `)− η(y)

} (
f(η) + f(ηx+`,y)

)
dνnρ(·)

∣∣∣∣
+

1

2εn

x+2εn−1∑
y=x+εn

∣∣∣∣∫
X1

−→η `(x)
{
η(x+ `)− η(y)

} (
f(η)− f(ηx+`,y)

)
dνnρ(·)

∣∣∣∣ .
Since ρ(·) is Lipschitz, the first line of the previous expression is bounded from above by

1

εn

x+2εn−1∑
y=x+εn

∣∣ρ (x+`
n

)
− ρ

(
y
n

)∣∣ ≤ `+ 1 + 2εn

n
.

Now, since we are integrating over X1, we will use again the path’s argument to examine the remaining
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term. The idea is to move a particle at site x + ` to a site y inside a box of size εn combining the

SSEP and the PMM jumps. See Figure 6.7 to have a picture of the aforementioned path in the case

m = 3. Combining the path argument with the computations above, for A, Ã > 0 the expectation in the

statement of the lemma is bounded from above by a constant times

1

B
+ T

( `
n

+
1

n
+ ε+

`

A
+

(
A

4
− na−1

4B

)
DS(

√
f, νnρ(·)) +

εn

Ã
+

(
Ã

4
− n

4B

)
Dm
P (
√
f, νnρ(·))

)
.

With the choice A = na−1

B and Ã = n
B we get

1

B
+ T

(
`

n
+

1

n
+ ε+

`B

na−1
+ εB

)
.

Taking n→∞, then ε→ 0, and finally B →∞, the result follows due to our choice of `.

x x+`−1 x+` x+εn y x+2εn−1

x x+`−1 x+` x+εn y x+2εn−1

x x+`−1 x+` x+εn y x+2εn−1

x x+`−1 x+` x+εn y x+2εn−1

x x+`−1 x+` x+εn y x+2εn−1

Figure 6.7: Path used to send a particle from site x+ ` to y inside a box of size εn.

Lemma 6.2.9. For any t ∈ [0, T ], x ∈ Σε,ln,2, L = εn and ` = na−1−δ with δ > 0 such that a − 1 − δ ≥ 0,

we have

lim
ε→0

lim
n→∞

Eµn

[∣∣∣∣∣
∫ t

0

{−→η `sn2(x)−−→η Lsn2(x)
}−→η εnsn2(x+ εn) ds

∣∣∣∣∣
]

= 0. (6.29)

Proof. Following the same steps of Lemma 6.1.9, the expectation in (6.29) is bounded from above by
C(α,β)
B plus

T sup
f

(∣∣∣∣∣
∫

Ωn

{−→η `(x)−−→η L(x)
}−→η εn(x+ εn)f(η) dνnρ(·)

∣∣∣∣∣+
n

B
〈Lmn

√
f,
√
f〉νn

ρ(·)

)
,

where B > 0 and the supremum is carried over all the densities f with respect to νnρ(·). Take L = k`

with k = εn
` . As in Lemma 6.1.9, let Xj

2 = {η ∈ Ωn : −→η `(x) ≥ m
` } ∪ {η ∈ Ωn : −→η `(x + j`) ≥ m

` }. Now,

following exactly the same computations done in the proof of that lemma, we have that the expectation

in (6.29) is bounded from above by a constant times

1

B
+ T

(
ε+

`B

na−1
+Bε

)
.
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Taking n→∞, then ε→ 0, and B →∞, the result follows due to our choice of ` and k.

Proof of Theorem 6.2.3. Note that the cases m = 1 and m = 2 were proved in Lemma 6.2.2 and

Theorem 6.2.3, respectively. The only difference between these cases and the general one is the fact

that, for example, for m = 4, the function τxh4(η) contain terms of the form η(x)η(x+ 1)η(x+ 2)η(x+ 3).

Since one must have to have space to replace this product by a product of averages of particles in a

box of size O(εn), we are allowed to do so only for sites x in Σεn,4. The idea is the following: First, we

use Lemma 6.2.5 three times in order to have space to replace the product by the product of boxes of

size O(εn) so that they do not overlap and variables do not correlate, i.e., replace η(x+ 3) by η(x+ 3`),

η(x + 2) by η(x + 2`) and η(x + 1) by η(x + `). Thus, we use Lemma 6.2.7 to replace η(x) by −→η `(x) in

order to be able to use the path argument. Then, we use Lemma 6.2.8, three times to replace η(x+ 3`)

by −→η εn(x+ 3εn), η(x+ 2`) by −→η εn(x+ 2εn), and η(x+ `) by −→η εn(x+ εn). Finally, we use Lemma 6.2.9

to replace −→η `(x) by −→η εn(x) and we are done. Note that the proof has 8 steps, and we summarize them

in Figure 6.8 below.

x x+1 x+2 x+3

(Lemma 3.5.17)

x x+1 x+2 x+3`

(Lemma 6.2.5)

x x+1 x+2` x+3`

(Lemma 6.2.5)

x x+` x+2` x+3`

(Lemma 6.2.5)

x x+` x+2` x+3`

(Lemma 6.2.7)

x x+` x+2` x+3εn

(Lemma 6.2.8)

x x+` x+2εn x+3εn

(Lemma 6.2.8)

x x+εn x+2εn x+3εn

(Lemma 6.2.8)

x x+εn x+2εn x+3εn

(Lemma 6.2.9)

Figure 6.8: Steps to prove Theorem 6.2.3.

For the general case we follow the same idea as before, but here we need to use Lemma 6.2.5 m−1

times, Lemma 6.2.7 once, Lemma 6.2.8 m− 1 times, and Lemma 6.2.9 once.

6.3 Fixing the profile at the boundary (The Dirichlet case)

In this section we will fix the profile at the boundary for the case θ < 1, i.e., we intend to prove item (3)

in Definition 4, that is, ρt(0) = α and ρt(1) = β for a.e. t ∈ (0, T ]. We present the proof for the term

concerning the left boundary since the other one is analogous. Recall from Section 2.3 that Q is a limit

point of the sequence {Qn}n∈N and note that

Eµn
[∣∣∣∣∫ 1

0

(−→η εnsn2(1)− α) ds

∣∣∣∣] = En
[∣∣∣∣∫ 1

0

〈πs,−→ιε 0〉 − α) ds

∣∣∣∣] .
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From Markov’s inequality, for any δ > 0 we have

Qn
(∣∣∣∣∫ 1

0

(〈πs,−→ιε 0〉 − α) ds

∣∣∣∣ > δ

)
≤ 1

δ
Eµn

[∣∣∣∣∫ 1

0

(−→η εnsn2(1)− α) ds

∣∣∣∣] .
Now, since −→ιε 0 is not a continuous function, we can not use Portmanteus’s Theorem in the previous

expression. Nevertheless, we can approximate this function by a continuous function so that the error

vanishes as ε → 0. Then, after this approximation and recalling the definition of Qn, we can use

Portmanteau’s Theorem to conclude that

Q
(∣∣∣∣∫ 1

0

(〈πs,−→ιε 0〉 − α) ds

∣∣∣∣ > δ

)
≤ 1

δ
lim inf
n→∞

Eµn
[∣∣∣∣∫ 1

0

(−→η εnsn2(1)− α) ds

∣∣∣∣] .
Combining both Lemma 6.2.1 with ϕ ≡ 1 and Lemma 6.2.2, the right-hand side of the previous inequality

vanishes as ε→ 0. Therefore, since Q a.s. πt(du) = ρt(u)du with ρt(·) a continuous function in 0 for a.e.

t, taking ε→ 0 we conclude that Q a.s. ρt(0) = α for a.e. t.
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Chapter 7

Energy Estimates

This chapter aims to deduce the energy estimate stated in Theorem 7.0.4. From the hydrodynamic limit

perspective, we can see this chapter as being devoted to proving that any limit point Q of the sequence

{Qn}n∈N is concentrated on trajectories ρt(u)du, so that ρm belongs to L2(0, T ;H1). This is a crucial step

to guarantee the uniqueness of weak solutions of our hydrodynamic equations, and it is a consequence

of Theorem 7.0.4. Since our model is an exclusion process, it is standard to check that Q is supported

on trajectories of measures that are absolutely continuous with respect to the Lebesgue measure, that

is, πt(du) = ρt(u)du, for all t ∈ [0, T ] where ρ : [0, T ] × [0, 1] → [0, 1]. The energy estimate stated

and proved in this chapter is based on the Robin case, once the energy estimate for the Dirichlet and

Neumann cases follows from the Robin one. We will explain how to proceed in each one of these cases

in the end of this chapter. Thus, we can see the result of this chapter as strong energy estimates, which

allow obtaining detailed information about the boundary behavior of the weak solutions of (2.17).

Although the proof of energy estimates is based on interacting particle systems techniques, it can be

used for example, in the proof of convergence results for weak solutions of partial differential equations

of parabolic type, see [9, 22]. In [9], Theorem 7.0.4 was the most important step in the proof of the

following result about the convergence of weak solutions of (2.17):

Theorem 7.0.1 ([9]). Let g : [0, 1] → [0, 1] be a measurable function. For each κ > 0, let ρκ : [0, T ] ×

[0, 1]→ [0, 1] be the unique weak solution of (2.17) with initial condition g. Then,

lim
κ→0

ρκ = ρ0 and lim
κ→∞

ρκ = ρ∞

in L2([0, T ] × [0, 1]), where ρ0 is the unique weak solution of (2.17) (with κ = 0), and ρ∞ is the unique

weak solution of (2.15), both with initial condition g.

Before deducing the energy estimates, recall the definitions, notations and results of the previous

sections. We start this chapter by introducing a proper weighted L2 space, and from this space we

define an energy functional. If the energy of a function ξ is finite, then the functional captures a lot of

information about ξm, see Proposition 7.0.2. Then, we will state that the solution ρκ of (2.17) has finite

energy, and this is the content of Theorem 7.0.4.
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Recall that the parameters α, β and m are fixed as in (2.14). Let κ > 0 and a, b ≥ 0. We define a

measure Wα,β
κ,a,b on [0, 1] by

Wα,β
κ,a,b(du) := du+

1

k
Pαm(a)δ0(du) +

1

k
P βm(b)δ1(du),

where δz(du), with z ∈ {0, 1}, is the Dirac measure and

P γm(ρ) =

m−1∑
i=0

γm−1−iρi, for γ ∈ {α, β} and ρ ≥ 0 . (7.1)

Thus,

P γm(ρ) ≥ γm−1 > 0, (7.2)

because ρ ≥ 0 and γ > 0, since γ ∈ {α, β} and the restrictions in (2.14). If γ = 0, then P 0
m(ρ) = ρm−1 so

that the inequality (7.2) would not hold in general. Observe that, since

γm − ρm = (γ − ρ)
m−1∑
i=0

γm−1−iρi = (γ − ρ)P γm(ρ) , (7.3)

then

γ − ρ =
γm − ρm

P γm(ρ)
, (7.4)

for γ ∈ {α, β} and for all ρ ≥ 0. The measure Wα,β
κ,a,b is the sum of the Lebesgue measure and Dirac

measures concentrated on 0 and 1 with weights 1
kP

α
m(a) and 1

kP
β
m(b), respectively. For g ∈ L2([0, 1])

such that g(0) and g(1) are both well-defined, we denote

‖g‖2
Wα,β
κ,a,b

:=

∫ 1

0

g2(u)Wα,β
κ,a,b(du) . (7.5)

Definition 6. Let B be the space of measurable functions ξ : [0, T ] × [0, 1] → [0,∞) such that the

applications s 7→ ξs(0) and s 7→ ξs(1) are measurable and bounded.

Definition 7. Let ξ ∈ B. For any κ > 0, we denote by L2
κ,ξ([0, T ]× [0, 1]) the Hilbert space composed of

all measurable functions H : [0, T ]× [0, 1]→ R such that

〈〈H,H〉〉α,βκ,ξ :=

∫ T

0

‖Hs‖2Wα,β
κ,ξs(0),ξs(1)

ds

= 〈〈H,H〉〉+

∫ T

0

{
Pαm(ξs(0))

κ
H2
s (0) +

P βm(ξs(1))

κ
H2
s (1)

}
ds <∞,

(7.6)

where 〈〈·, ·〉〉 is defined in (2.12) and for γ ∈ {α, β}, P γm is defined in (7.1). Moreover, L2
κ,ξ([0, T ]× [0, 1]) ⊆

L2([0, T ]× [0, 1]).

Definition 8. For a function ξ such that ξm ∈ L2([0, T ] × [0, 1]), we define the functional T α,βξ,m on
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C0,1([0, T ]× [0, 1]) by

T α,βξ,m (H) := 〈〈 ξm, ∂uH〉〉+

∫ T

0

{
αmHs(0)− βmHs(1)

}
ds. (7.7)

Let us define the energy functional:

Definition 9 (Energy functional). For each κ > 0 and c > 0 fixed, we define the functional Eα,βm,κ,c which

acts on functions ξ ∈ B such that ξm ∈ L2([0, T ]× [0, 1]) as

Eα,βm,κ,c(ξ) := sup
H∈C0,1([0,T ]×[0,1])

{
T α,βξ,m (H)− c〈〈H,H〉〉α,βκ,ξ

}
. (7.8)

Fortunately, by means of estimating the energy functional Eα,βm,κ,c(·) we are able to obtain a lot of

information about ξm, which is given by the next proposition.

Proposition 7.0.2. Let ξ ∈ B such that ξm ∈ L2([0, T ]× [0, 1]) and Eα,βm,κ,c(ξ) ≤M0 <∞, for some κ > 0,

c > 0, and M0 > 0. Then, there exists ∂uξm ∈ L2
κ,ξ([0, T ]× [0, 1]) such that for all H ∈ C0,1([0, T ]× [0, 1])

T α,βξ,m (H) = −〈〈∂uξm, H〉〉α,βκ,ξ , (7.9)

and ξm ∈ L2(0, T ;H1). Moreover,

Eα,βm,κ,c(ξ) =
1

4c
〈〈∂uξm, ∂uξm〉〉α,βκ,ξ , (7.10)

and

∂u(ξs)
m(0) Pαm(ξs(0)) = κ

(
(ξs)

m(0)− αm
)

and ∂u(ξs)
m(1) Pαm(ξs(0)) = κ

(
βm − (ξs)

m(1)
)
, (7.11)

for almost every s ∈ (0, T ].

We observe that last result holds for α, β ∈ [0, 1].

Remark 7.0.3. In particular, as we assume that α, β > 0 (see (2.14)), (7.4) and (7.2), the boundary

conditions in (7.11) become

∂u(ξs)
m(0) = κ(ξs(0)− α) and ∂u(ξs)

m(1) = κ(β − ξs(1)), (7.12)

for almost every s ∈ (0, T ]. This is one of the major consequences of the energy estimates.

Properties of the weak solution of (2.17).

In the next theorem, we state that the unique weak solution ρκ of (2.17) has finite energy, and from the

last proposition we obtain information about (ρκ)m. The proof of the next theorem is a consequence of

Proposition 7.0.6, and since its proof is quite long, we will present it afterward. The idea is to consider
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the PMM with slow reservoirs, whose hydrodynamic limit is ruled by the weak solution of (2.17), and

from its properties prove the energy bound (7.13) below.

Theorem 7.0.4 (Energy estimate). For any κ > 0, there exists a constant c > 0 such that the unique

weak solution ρκ : [0, T ]× [0, 1]→ [0, 1] of (2.17) satisfies the energy estimate:

Eα,βm,κ,c(ρ
κ) ≤M0, (7.13)

where M0 is a constant that does not depend on κ. As a consequence, for all κ > 0, the weak solution

ρκ satisfies the boundary conditions:

∂u(ρκs )m(0) = κ(ρκs (0)− α) and ∂u(ρκs )m(1) = κ(β − ρκs (1)), (7.14)

for almost every s ∈ (0, T ] and the set {(ρκ)m : κ > 0} is bounded in L2(0, T ;H1).

Remark 7.0.5. If we do not assume that α, β > 0, the boundary conditions (7.14) would be

∂u(ρκs )m(0) Pαm(ρκs (0)) = κ
(
(ρκs )m(0)− αm

)
and ∂u(ρκs )m(1) Pαm(ρκs (0)) = κ

(
βm − (ρκs )m(1)

)
,

(7.15)

for almost every s ∈ (0, T ].

Proof of Theorem 7.0.4. The result follows as a consequence of the next proposition, which states that

the expectation with respect to Q of Eα,βm,κ,c(ρ
κ) is bounded. To remove the expectation in (7.17), we

use Proposition 2.3.3, and then, the first result in Theorem 7.0.4 follows. Now, for (7.14) we start by

observing that (ρκ)m ∈ L2([0, T ] × [0, 1]). Moreover, since Eα,βm,κ,c(ρ
κ) < ∞, from (7.11) the identities in

(7.14) follow. Finally, to prove the boundedness of {(ρκ)m : κ > 0} in L2(0, T ;H1), we argue as follows.

By Definition 7, (7.10), and (7.13), it holds that

〈〈∂u(ρκ)m, ∂u(ρκ)m〉〉 ≤ 〈〈∂u(ρκ)m, ∂u(ρκ)m〉〉α,βκ,ρκ

= 4c Eα,βm,κ,c(ρ
κ) ≤ 4cM0,

(7.16)

for all κ > 0. Therefore, from the definition of the norm in L2(0, T ;H1) given in (2.13), and the fact that

0 ≤ (ρκ)m ≤ 1, we have

‖(ρκ)m‖2L2(0,T ;H1) = 〈〈(ρκ)m, (ρκ)m〉〉+ 〈〈∂u(ρκ)m, ∂u(ρκ)m 〉〉 ≤ T + 4cM0,

concluding the proof. To finish, we are only left to prove the next proposition.

Proposition 7.0.6. For any κ > 0 and any m ∈ N, there exist constants M0 and c, that do not depend

on κ, such that

EQ
[
Eα,βm,κ,c(ρ

κ)
]
≤ M0 <∞, (7.17)
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where ρκ is the unique weak solution of (2.17), Q is a limit point of Qn and Eα,βm,κ,c is defined in (7.8).

Remark 7.0.7. If we restrict the supremum in the definiton of Eα,βm,κ,c, see (7.8), to functions H ∈

C0,1
c ([0, T ]× (0, 1)), the statement of Proposition 7.0.6 reduces to

EQ

[
sup

H∈C0,1
c ([0,T ]×(0,1))

{
〈〈(ρκ)m, ∂uH〉〉 − c〈〈H,H〉〉

}]
≤ M0 <∞.

Proof of Proposition 7.0.6. For simplicity of the presentation, we will present the proof for even m since

the proof for m odd is analogous and, when necessary, we explain the changes for the case m odd.

We begin by noticing that the space C0,1 ([0, T ]× [0, 1]) is separable with respect to the norm ‖H‖∞ +

‖∂uH‖∞. Thus, it is enough to restrict the supremum inside the expectation in the statement of the

proposition to functions H on a countable dense subset {Hq}q∈N of C0,1([0, T ] × [0, 1]). In addition,

since

max
l≤q

{
T α,βρκ,m(H l)− c〈〈H l, H l〉〉α,βκ,ρκ

}
↑ sup
H∈C0,1([0,T ]×[0,1])

{
T α,βρκ,m(H)− c〈〈H,H〉〉α,βκ,ρκ

}
,

as l→∞, then by Monotone Convergence Theorem

EQ

[
max
l≤q

{
T α,βρκ,m(H l)− c〈〈H l, H l〉〉α,βκ,ρκ

}]
→ EQ

[
sup

H∈C0,1([0,T ]×[0,1])

{
T α,βρκ,m(H)− c〈〈H,H〉〉α,βκ,ρκ

}]
,

when q →∞. Therefore, we are left to show that

EQ

[
max
l≤q

{
T α,βρκ,m(H l)− c〈〈H l, H l〉〉α,βκ,ρκ

}]
≤M0, (7.18)

for any q and for some M0 independent from q and κ. From (7.6) and (7.7), we have

T α,βρκ,m(H l)− c〈〈H l, H l〉〉α,βκ,ρκ =

∫ T

0

{∫ 1

0

(ρκs )
m

(u) ∂uH
l
s(u) du+ αmH l

s(0)− βmH l
s(1)

− c
∫ 1

0

(H l
s(u))2du − c

κ
Pαm (ρκs (0)) (H l

s(0))2 − c

κ
P βm (ρκs (1)) (H l

s(1))2

}
ds.

(7.19)

Now, from the same computations done to treat (5.13), we conclude that∣∣∣∣∣∣
∫ T

0

c

κ
Pαm
(
ρks(0)

)
(H l

s(0))2 ds−
∫ T

0

c

κ

m−1∑
i=0

αm−1−i
i−1∏
j=0

〈ρκs ,−→ι jεε 〉(H l
s(0))2 ds

∣∣∣∣∣∣
vanishes when ε→ 0. By the definition of Pαm(·) given in (7.1), the product above is understood as being

equal to one for i = 0. Following the same computations done to treat (5.11) we can also conclude, for

m even, that∣∣∣∣∣∣∣
∫ T

0

∫ 1

0

(ρκs )m(u) ∂uH
l
s(u) du ds−

∫ T

0

∫ 1−εm2

εm2

m
2 −1∏
i=0

〈ρκs ,←−ιε u−iε〉

m
2 −1∏
i=0

〈ρκs ,−→ι u+iε
ε 〉∂uH l

s(u) du ds

∣∣∣∣∣∣∣
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vanishes when ε→ 0. For m odd, we would replace the previous display by

∣∣∣∣∣∣∣
∫ T

0

∫ 1

0

(ρκs )m(u) ∂uH
l
s(u) du ds−

∫ T

0

∫ 1−εm−1
2

εm+1
2

m+1
2 −1∏
i=0

〈ρκs ,←−ιε u−iε〉

m−1
2 −1∏
i=0

〈ρκs ,−→ι u+iε
ε 〉∂uH l

s(u) du ds

∣∣∣∣∣∣∣ .
Observe that in the last two displays we changed the function (ρκs )m by a choice of products of the form

(5.6), and despite not being the obvious change, it will be useful when we move to the microscopic

system due to the result of Theorem 6.1.1.

To treat the boundary term at the right-hand side of (7.19), we can do exactly the same argument

as we did to control the left boundary term. For simplicity of the presentation, we just present the

arguments for the left boundary, but for the right, it is completely analogous. From here on, we neglect

all the contributions from the right boundary.

From previous results, we are left to prove that there exist constants c > 0 and M0 > 0 such that

lim
ε→0

EQ

[
max
l≤q

{∫ T

0

(∫ 1−εm2

εm2

m
2 −1∏
i=0

〈ρκs ,←−ιε u−iε〉

m
2 −1∏
i=0

〈ρκs ,−→ι u+iε
ε 〉∂uH l

s(u) du+ αmH l
s(0)

−c
∫ 1

0

(H l
s(u))2du− c

κ

m−1∑
i=0

αm−1−i
i−1∏
j=0

〈ρκs ,−→ι jεε 〉(H l
s(0))2

)
ds

}]
≤ M0.

(7.20)

Now, we define the application Φ : D ([0, T ],M+)→ R by

Φ(π·) = max
l≤q

{∫ T

0

(∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πs,←−ιε u−iε〉

m
2 −1∏
i=0

〈πs,−→ι u+iε
ε 〉 ∂uH l

s(u) du+ αmH l
s(0)

−c
∫ 1

0

(H l
s(u))2du− c

κ

m−1∑
i=0

αm−1−i
i−1∏
j=0

〈πs,−→ι jεε 〉(H l
s(0))2

)
ds

}
.

The function Φ is lower semi-continuous and bounded with respect to the Skorokhod topology of

D([0, T ],M+). Therefore, recalling that En is the expectation with respect to the measure Qn, we can

bound the expectation in (7.20) from above by

lim
n→∞

En

[
max
l≤q

{∫ T

0

(∫ 1−εm2

εm2

m
2 −1∏
i=0

〈πns ,←−ιε u−iε〉

m
2 −1∏
i=0

〈πns ,−→ι u+iε
ε 〉 ∂uH l

s(u) du+ αmH l
s(0)

−c
∫ 1

0

(H l
s(u))2du− c

κ

m−1∑
i=0

αm−1−i
i−1∏
j=0

〈πns ,−→ι jεε 〉(H l
s(0))2

)
ds

}]
.

Now we want to compare this expression to its analogue at the microscopic level. To that end, fix

n ∈ N, x ∈ Σn, ε > 0, and recall that the definition of Σεn,m in (5.5), where εn denotes bεnc. Since

the error from changing the integral in the space variable by its Riemann sum is of order O( 1
n ), we can
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rewrite last display as

lim
n→∞

En

[
max
l≤q

{∫ T

0

(
1

n

∑
x∈Σεn,m

m
2 −1∏
i=0

〈πns ,←−ιε x/n−iε〉

m
2 −1∏
i=0

〈πns ,−→ι x/n+iε
ε 〉 ∂uH l

s(
x
n ) + αmH l

s(0)

−c
∫ 1

0

(H l
s(u))2du− c

κ

m−1∑
i=0

αm−1−i
i−1∏
j=0

〈πns ,−→ι jεε 〉(H l
s(0))2

)
ds

}]
.

(7.21)

Recall that the boxes of size ` to the left and to the right of site x are given by
←−
Λ `
x := {x − ` + 1, . . . , x}

and
−→
Λ `
x := {x, . . . , x+ `− 1}, respectively. Recall also that the empirical densities in the boxes

←−
Λ `
x and

−→
Λ `
x are given by

←−η `(x) =
1

`

∑
y∈
←−
Λ `
x

η(y) and −→η `(x) =
1

`

∑
y∈
−→
Λ `
x

η(y). (7.22)

Now, just as we did in Chapter 5 we need to introduce the subset Σεn,m of the bulk Σn. We use this set

since, for each x ∈ Σεn,m we will need to replace the occupation at site x by its average to the left or right

of x on a box of size εn, and we are allowed to do so for x ∈ Σεn,m but not for x on the whole bulk.

Recall from Chapter 5 that

〈πns ,←−ι x/n−iεε 〉 =←−η εnsn2(x− iεn), 〈πns ,−→ι x/n+iε
ε 〉 = −→η εnsn2(x+ 1 + iεn) +O( 1

εn ),

and

〈πns ,−→ι jεε 〉 = −→η εnsn2(2 + jεn) +O( 1
εn ),

for i = 0, . . . , m2 − 1 and j = 0, . . . ,m− 2. Then, we can rewrite the expectation, now with respect to Pµn ,

in (7.21) as

Eµn

[
max
l≤q

{∫ T

0

(
1

n

∑
x∈Σεn,m

m
2 −1∏
i=0

←−η εnsn2(x− iεn)

m
2 −1∏
i=0

−→η εnsn2(x+ 1 + iεn) ∂uH
l
s(
x
n ) + αmH l

s(0)

−c
∫ 1

0

(H l
s(u))2du− c

κ

m−1∑
i=0

αm−1−i
i−1∏
j=0

−→η εnsn2(2 + jεn)(H l
s(0))2

)
ds

}]

plus terms that vanish as n → ∞. Now, recall the definition of τxhm in (2.10). By putting together

Theorem 6.1.1 and Theorem 6.2.3, we are left to show that

lim
ε→0

lim
n→∞

Eµn

[
max
l≤q

{∫ T

0

(
1

n

n−2∑
x=1

∂uH
l
s(
x
n )τxh

m(ηsn2) + αmH l
s(0)

−c
∫ 1

0

(H l
s(u))2du− c

κ
Rαm(ηsn2)(H l

s(0))2

)
ds

}]
≤M0,

(7.23)

whereRαm(ηsn2) is defined in (5.2). Observe that above we are back to the whole bulk since the replace-

ment from Σεn,m to Σn vanishes as ε → 0. Now we want to change the initial measure µn to a suitable

measure, here being the Bernoulli product measure νnρ(·) satisfying the conditions of Lemma 4.2.1. We

observe that to derive the inequality above we need to restrict α, β ∈ (0, 1). Therefore, by entropy’s and

64



Jensen’s inequality, Proposition A.0.2, and the fact that exp {maxl≤q al} ≤
∑q
l=1 exp{al}, the expectation

in (7.23) is bounded from above by

C(α, β) +
1

n
logEνn

ρ(·)

[
q∑
l=1

exp

{∫ T

0

(
n−2∑
x=1

∂uH
l
s(
x
n )τxh

m(ηsn2) + nαmH l
s(0)

−n c
∫ 1

0

(H l
s(u))2du− n c

κ
Rαm(ηsn2)(H l

s(0))2

)
ds

}]
.

(7.24)

From the identity

lim
n→∞

n−1 log(an + bn) = max
{

lim
n→∞

n−1 log(an), lim
n→∞

n−1 log(bn)
}
,

in order to estimate (7.24), it is enough to bound

1

n
logEνn

ρ(·)

[
exp

{∫ T

0

(
n−2∑
x=1

∂uHs(
x
n )τxh

m(ηsn2)− n c
κ
Rαm(ηsn2) (Hs(0))

2

− n c
∫ 1

0

(Hs(u))
2
du+ nαmHs(0)

)
ds

}]
,

for a fixed function H ∈ C0,1([0, T ]× [0, 1]). Now, by Feynman-Kac’s formula (see, for example, Lemma

A.1 of [2]), we can bound the previous display from above by

∫ T

0

sup
f

{
1

n

∫
Ωn

n−2∑
x=1

∂uHs(
x
n )τxh

m(η)f(η) dνnρ(·) −
c

κ
(Hs(0))

2
∫

Ωn

Rαm(η)f(η) dνnρ(·)

− c
∫ 1

0

(Hs(u))
2
du+ αmHs(0) + n 〈Lmn

√
f,
√
f〉νn

ρ(·)

}
ds,

(7.25)

where the supremum is carried over all the densities f with respect to νnρ(·). Now, recall the results

related to the Dirichlet forms in Section 4.2. From a Taylor expansion on H, we can replace its space

derivative by the discrete gradient∇−nHs

(
x
n

)
= n

(
Hs

(
x
n

)
−Hs

(
x−1
n

))
, by paying a price of order O

(
1
n

)
.

Then, from a summation by parts, the first integral inside the supremum in (7.25) is equal to

∫
Ωn

n−2∑
x=1

Hs

(
x
n

) {
τxh

m(η)− τx+1h
m(η)

}
f(η) dνnρ(·)

−
∫

Ωn

{
Hs(0)τ1h

m(η)−Hs

(
n−2
n

)
τn−1h

m(η)
}
f(η) dνnρ(·).

(7.26)

Now, we need to bound both terms in expression (7.26) separately. We will call the term on the first line,

the bulk term, and the one on the second line, the boundary term. Let us start by examining the bulk

term. Recall (2.5), (2.9), (2.10), and (2.11). Thus, we can write the first line of (7.26) as

∫
Ωn

n−2∑
x=1

Hs

(
x
n

)
cmx,x+1(η)(η(x)− η(x+ 1))f(η) dνnρ(·). (7.27)

Writing the previous expression as one half of it plus one half of it, and by summing and subtracting
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1
2f(ηx,x+1), we obtain

1

2

n−2∑
x=1

Hs

(
x
n

) ∫
Ωn

cmx,x+1(η)(η(x)− η(x+ 1))(f(η) + f(ηx,x+1) dνnρ(·)

+
1

2

n−2∑
x=1

Hs

(
x
n

) ∫
Ωn

cmx,x+1(η)(η(x)− η(x+ 1))(f(η)− f(ηx,x+1) dνnρ(·).

(7.28)

Let η̄ be the configuration η removing its value at the site x and x+ 1. Thus, we can rewrite the integral

on the first line of (7.28) as

∑
η̄∈Ωn−2

(
cmx,x+1(η)(f(η̄, 1, 0) + f(η̄, 0, 1))ρ

(
x
n

) (
1− ρ

(
x+1
n

))
−cmx,x+1(η)(f(η̄, 0, 1) + f(η̄, 1, 0))

(
1− ρ

(
x
n

))
ρ
(
x+1
n

) )
νn−2
ρ(·) (η̄),

which is equal to

∑
η̄∈Ωn−2

cmx,x+1(η)(f(η̄, 1, 0) + f(η̄, 0, 1))
(
ρ
(
x
n

)
− ρ

(
x+1
n

))
νn−2
ρ(·) (η̄),

where the notation f(η̄, 0, 1) means that we are computing f(η) with η(x) = 0 and η(x + 1) = 1. From

the previous computation, we can bound the first line of (7.28) from above by

1

2

n−2∑
x=1

Hs

(
x
n

) (
ρ
(
x
n

)
− ρ

(
x+1
n

)) ∑
η̄∈Ωn−2

cmx,x+1(η)(f(η̄, 1, 0) + f(η̄, 0, 1))νn−2
ρ(·) (η̄).

Then, from Young’s inequality, we get that the first line of (7.28) is bounded from above by

1

4A

n−2∑
x=1

(
Hs

(
x
n

))2
+
AC(ρ)m2

n
, (7.29)

for A > 0, where C(ρ) > 0. Let us now examine the second line of (7.28). Since a− b = (
√
a−
√
b)(
√
a+

√
b) and pmx,x+1(η) = cmx,x+1(η){ax,x+1(η) + ax+1,x(η)} 6= 0, from Young’s inequality we can bound the

second line of (7.28) from above by

B

4

n−2∑
x=1

∫
Ωn

pmx,x+1(η)(
√
f(η)−

√
f(ηx,x+1))2 dνnρ(·)

+
1

4B

n−2∑
x=1

(
Hs

(
x
n

))2 ∫
Ωn

(
cmx,x+1(η)

)2
(η(x)− η(x+ 1))2

pmx,x+1(η)
(
√
f(η) +

√
f(ηx,x+1))2 dνnρ(·),

for B > 0. From (4.9) and the definition of pmx,x+1(η), we can bound the previous expression from above

by
B

4
Dm
P

(√
f, νnρ(·)

)
+

1

4B

n−2∑
x=1

(
Hs

(
x
n

))2 ∫
Ωn

cmx,x+1(η)
(√

f(η) +
√
f(ηx,x+1)

)2

dνnρ(·).

Since (a + b)2 ≤ 2a2 + 2b2, cmx,x+1(η) ≤ m, and f is a density with respect to νnρ(·), we can bound the
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previous expression by

B

4
Dm
P

(√
f, νnρ(·)

)
+

1

2B

n−2∑
x=1

(
Hs

(
x
n

))2(
m+

∫
Ωn

cmx,x+1(ηx,x+1)f(η)
d νnρ(·)(η

x,x+1)

d νnρ(·)(η)
dνnρ(·)

)
.

From Proposition A.0.3, last expression is bounded from above by

B

4
Dm
P

(√
f, νnρ(·)

)
+

1

2B

n−2∑
x=1

(
Hs

(
x
n

))2 (
m+mĈ(α, β)

)
, (7.30)

where Ĉ(α, β) is a positive constant. Therefore, combining (7.29) and (7.30), we can bound (7.27) from

above by

1

4A

n−2∑
x=1

(
Hs

(
x
n

))2
+
AC(ρ)m2

n
+
B

4
Dm
P

(√
f, νnρ(·)

)
+

1

2B

n−2∑
x=1

(
Hs

(
x
n

))2 (
m+mĈ(α, β)

)
.

Taking A = n
m2 and B = n, we get

n

4
Dm
P

(√
f, νnρ(·)

)
+

n−2∑
x=1

(
Hs

(
x
n

))2(m2

4n
+
m(1 + Ĉ(α, β))

2n

)
+ C(ρ),

which is bounded by

n

4
Dm
P (
√
f, νnρ(·)) +

1

n

n−2∑
x=1

(
Hs

(
x
n

))2 (
m+ C̃(m,α, β)

)
+ C(ρ), (7.31)

with C̃(m,α, β) = m2 + mĈ(α, β), where Ĉ(α, β) is a positive constant. Now we need to examine the

second line of (7.26). Let us begin by examining the leftmost term given by

−
∫

Ωn

Hs (0) τ1h
m(η)f(η) dνnρ(·). (7.32)

Recall that we neglected above all the terms from the right boundary so that we will not treat the contri-

bution from the rightmost term on the second line of (7.26), but it is completely analogous to what we do

for the left boundary. Recall from (2.10) and (5.1) that

τ1h
m(η) =

m−1∑
k=0

αk
m−k∏
j=1

η(j)−
m−1∑
k=1

αk
m+1−k∏
j=2

η(j),

τ1h
m(η)− αm = (η(1)− α)Rαm(η).

Summing and subtracting αm in (7.32), and since f is a density with respect to νnρ(·), we can rewrite

(7.32) as

Hs (0)

(∫
Ωn

(α− η(1))Rαm(η)f(η) dνnρ(·) − α
m

)
. (7.33)

The argument to estimate the leftmost term in (7.33) is similar, in essence, to the one used to treat

the first term of (7.26). We write the leftmost term in (7.33) as one half of it plus one half of it, and by
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summing and subtracting 1
2f(η1), we obtain

1

2
Hs (0)

∫
Ωn

(α− η(1))Rαm(η)(f(η) + f(η1)) dνnρ(·) +
1

2
Hs (0)

∫
Ωn

(α− η(1))Rαm(η)(f(η)− f(η1)) dνnρ(·).

(7.34)

Denoting by η̃ the configuration η removing its value at site 1, and noticing that Rαm(η) does not depend

on η(1), we can write the first term in (7.34) as

1

2
Hs (0)

∑
η̃∈Ωn−1

(
αRαm(η)(f(0, η̃) + f(1, η̃))

(
1− ρ

(
1
n

))
+ (α− 1)Rαm(η)(f(1, η̃) + f(0, η̃))ρ

(
1
n

))
νn−1
ρ(·) (η̃),

where the notation f(1, η̃) (resp. f(0, η̃)) means that we are computing f(η) with η(1) = 1 (resp. η(1) =

0). Hence, the previous expression is equal to

1

2
Hs (0)

(
α− ρ

(
1
n

)) ∑
η̃∈Ωn−1

Rαm(η)(f(0, η̃) + f(1, η̃))νn−1
ρ(·) (η̃).

Since Rαm(η) ≤ m, ρ satisfies the conditions we imposed, and since f is a density with respect to

νnρ(·), the previous expression vanishes when n → ∞. Let us now estimate the second term of (7.34).

Combining the identity a− b = (
√
a−
√
b)(
√
a+
√
b) and Young’s inequality, we can bound it from above

by

A

2

∫
Ωn

Iα1 (η)
(√

f(η)−
√
f(η1)

)2

dνnρ(·)

+
(Hs (0))

2

8A

∫
Ωn

(α− η(1))2 (Rαm(η))
2

Iα1 (η)

(√
f(η) +

√
f(η1)

)2

dνnρ(·),

where A > 0 and Iα1 (η) is defined in (2.7). Recall the definition of Fα1 (
√
f, νnρ(·)) in (4.11). Using the

inequality (a + b)2 ≤ 2a2 + 2b2 and the identity Iα1 (η) = (α−η(1))2

Iα1 (η) , last expression can be bounded from

above by A
2 F

α
1 (
√
f, νnρ(·)) plus

(Hs (0))
2

4A

(∫
Ωn

(Rαm(η))
2
Iα1 (η)f(η) dνnρ(·) +

∫
Ωn

(Rαm(η))
2
Iα1 (η)f(η1) dνnρ(·)

)
.

After a change of variables in the second integral of the previous expression, we get

A

2
Fα1 (

√
f, νnρ(·)) +

(Hs (0))
2

4A

(∫
Ωn

(Rαm(η))
2
Iα1 (η)f(η) dνnρ(·)

+

∫
Ωn

(Rαm(η))
2
Iα1 (η1)

dνnρ(·)(η
1)

dνn
ρ(·)(η) f(η) dνnρ(·)

)
.
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Since Iα1 (η) = Iα1 (η1)
dνnρ(·)(η

1)

dνn
ρ(·)(η) , last expression is equal to

A

2
Fα1 (

√
f, νnρ(·)) +

(Hs (0))
2

2A

∫
Ωn

(Rαm(η))
2
Iα1 (η)f(η) dνnρ(·).

Thus, taking A = κn
2nθ

and since (Rαm(η))
2
Iα1 (η) ≤ (Rαm(η))

2 ≤ mRαm(η), the first boundary term of

(7.26) is bounded from above by

n

4

κ

nθ
Fα1 (

√
f, νnρ(·)) +

m

κ

nθ

n
(Hs (0))

2
∫

Ωn

Rαm(η)f(η) dνnρ(·) − α
mHs (0) . (7.35)

Thus, combining (7.31) and (7.35), we bound (7.26) from above by

n

4
Dm
P (
√
f, νnρ(·)) +

(
m+ C̃(m,α, β)

) 1

n

n−2∑
x=1

(
Hs

(
x
n

))2
+ C(ρ)

+
n

4

κ

nθ
Fα1 (

√
f, νnρ(·)) +

m

κ

nθ

n
(Hs (0))

2
∫

Ωn

Rαm(η)f(η) dνnρ(·) − α
mHs (0) ,

plus the terms that come from the right boundary and which are very similar to the ones we obtained for

the left boundary. Therefore, taking c = m + C̃(m,α, β) in (7.25), from last expression and (4.14), we

can bound (7.24) from above by

C(α, β) +

∫ T

0

{(
m+C̃(m,α, β)

) 1

n

n−2∑
x=1

(
Hs

(
x
n

))2 − (m+ C̃(m,α, β)
)∫ 1

0

(Hs(u))
2
du

+C(ρ)+
(Hs(0))2

κ

(
m

(
nθ

n
− 1

)
− C̃(m,α, β)

)∫
Ωn

Rαm(η)f(η) dνnρ(·)

}
ds.

Above C(α, β) is the one in (7.24). Noting that C̃(m,α, β) andRαm(η) as defined in (5.2) are non-negative

we can bound from above the last display by

C(α, β) +

∫ T

0

{(
m+ C̃(m,α, β)

)( 1

n

n−2∑
x=1

(
Hs

(
x
n

))2 − ∫ 1

0

(Hs(u))
2
du

)

+C(ρ)+
m

κ
(Hs(0))2

(
nθ

n − 1
)∫

Ωn

Rαm(η)f(η) dνnρ(·)

}
ds.

(7.36)

Now, recall that θ = 1. Therefore, the previous expression converges to TC(ρ), as n → ∞. From all

this, we conclude that the expectation in (7.17) is bounded from above by M0 := C(α, β) + TC(ρ). This

ends the proof.

Remark 7.0.8. We note that due to the rightmost term in (7.36), the energy estimate with test func-

tions without compact support can only be obtained for θ = 1. Even in the case θ < 1, where the

factor m
κ
nθ

n (Hs (0))
2 ∫

Ωn
Rαm(η)f(η) dνnρ(·) would simply vanish as n → ∞, there would remain the term

m
κ (Hs(0))

2 ∫
Ωn
Rαm(η)f(η) dνnρ(·)ds which would blow up since we are taking the supremum over func-

tions f .

Remark 7.0.9. The proof of the energy estimate in the Dirichlet and Neumann cases follows from re-
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stricting the supremum of Eα,βm,κ,c in Proposition 7.0.6 to functions H ∈ C0,1
c ([0, T ]× (0, 1)), such that the

statement of Proposition 7.0.6 reduces to

EQ

[
sup

H∈C0,1
c ([0,T ]×(0,1))

{
〈〈(ρ)m, ∂uH〉〉 − c〈〈H,H〉〉

}]
≤ M0 <∞,

where ρ is the unique weak solution of (2.15) or (2.17) (with κ = 0). Since in these cases we have

functions with compact support, the proof follows the same steps done above and noticing that the

boundary term of (7.28) is negligible (order O( 1
n )).
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Chapter 8

Fick’s law

This chapter aims examining one of the questions that arises when studying diffusive systems out of

equilibrium. This chapter regards the Fick’s law of diffusion, namely Theorem 8.2.1, derived by Adolf Fick

in [18], that says that the rate of the flux of particles is proportional to the density gradient. The Robin

boundary conditions that we have in our hydrodynamic equation, i.e., ∂tρm(t, 0) = κ(α − ρ(t, 0)) and

∂tρ
m(t, 1) = κ(ρ(t, 1)−β), give us an idea of the transport of mass through the macroscopic points 0 and

1 - the rate at which mass crosses borders is proportional to the difference in the density. Although we

studied scaling limits for the empirical density of the PMM with slow reservoirs in the previous sections,

we study scaling limits for the empirical currents of this model. The motivation comes from [5], in which

the authors derived the large deviation principle for the empirical currents of the SSEP in the domain

{−n, n} with creation and annihilation of particles in the bulk and a Glauber dynamics at the boundaries.

The result we prove here is a consequence of the hydrodynamic limit proved through the previous

sections. Then, recall the definitions and results from that part to connect with the one we will present

here. We start this chapter by defining some important quantities of interest, namely, the integrated

currents and the empirical measures associated with these currents. After defining them, we present

the proof of Theorem 8.2.1.

8.1 Integrated currents

Recall the definition of the instantaneous current between sites x and x + 1 in (2.9). The idea of this

section is to define the integrated current. For T > 0, let t ∈ [0, T ]. For any x ∈ Σn ∪ {0}, we denote by

Nn
t (x) the total number of particles that jumped from site x to x+ 1 in an interval of time [0, tn2], and by

Ñn
t (x) the total number of particles that jumped from site x+ 1 to x in the same time interval. Thus, we

define the integrated current at time t and location x by

Jnt (x) := Nn
t (x)− Ñn

t (x), for x ∈ Σn ∪ {0}. (8.1)
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In other words, Jnt (x) denotes the flux of particles through the bond (x, x + 1) in an interval of time

[0, tn2]. The integrated current (8.1) can be written in terms of its conservative and non-conservative

parts. We denote by Qnt (x) the conservative integrated current at time t and location x, which records

the particles jump from the diffusive part of the dynamics (PMM and SSEP) and it is given by

Qnt (x) := Jnt (x), for x ∈ Σn−1. (8.2)

In the same way, we denote by Kn
t (x) the non-conservative integrated current at time t and location x,

which records the particles inserted and removed from the system at sites 1 or n−1 (Glauber dynamics)

Kn
t (x) := Jnt (x), for x ∈ {0, n− 1}. (8.3)

Having disposed of this preliminary step, for x ∈ {0, n− 1} we can now define the infinitesimal generator

of the joint process {ηt, Jnt (x)}t≥0 as

L̃mn f(η, Jn(x)) = L̃mP f(η, Jn(x)) + na−2L̃Sf(η, Jn(x)) + L̃αf(η, Jn(x)) + L̃βf(η, Jn(x)), (8.4)

for x ∈ Σn ∪ {0}. To simplify notation, let qmx,x+1(η) = ax,x+1(η)(cmx,x+1(η) + na−2). For each x ∈ Σn−1,

we define the identity (8.4) into two parts, one corresponding to the jumps in the bulk, that is given by

(
L̃mP + na−2L̃S

)
f(η, Jn(x)) = qmx,x+1(η)

(
f(ηx,x+1, Jn(x) + 1)− f(η, Jn(x))

)
+ qmx+1,x(η)

(
f(ηx,x+1, Jn(x)− 1)− f(η, Jn(x))

)
+

∑
y∈Σn−1

y 6=x

(qmy,y+1(η) + qmy+1,y(η))
(
f(ηy,y+1, Jn(y))− f(η, Jn(y))

)
,

(8.5)

and another one corresponding to the jumps in the boundary

L̃αf(η, Jn(0)) =
m

nθ

(
α(1− η(1))

(
f(η1, Jn(0) + 1)− f(η, Jn(0))

) )
+

κ

nθ

(
(1− α)η(1)

(
f(η1, Jn(0)− 1)− f(η, Jn(0))

) )
,

L̃βf(η, Jn(n− 1)) =
κ

nθ

(
β(1− η(n− 1))

(
f(ηn−1, Jn(n− 1)− 1)− f(η, Jn(n− 1))

)
+ (1− β)η(n− 1)

(
f(ηn−1, Jn(n− 1) + 1)− f(η, Jn(n− 1))

) )
.

(8.6)

Remark 8.1.1. As in the previous sections, the process is sped up in the diffusive time scale tn2.

Remark 8.1.2. It is worth noting that we recover the infinitesimal generator of {ηt}t≥0, which is defined

in (2.1), if we take f(η, J) = f(η) in (8.5) and (8.6). Moreover, if we take f being the projection in the

second variable, that is, f(η, J) = J , in (8.5) and (8.6), we recover the instantaneous current through

the bond (x, x+ 1) as we can see below:
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For x ∈ Σn−1, we have

(
L̃mP + na−2L̃S

)
Jn(x) = qmx,x+1(η) (Jn(x) + 1− Jn(x)) + qmx+1,x(η) (Jn(x)− 1− Jn(x))

= jmx,x+1(η).

For the left (resp. right) boundary, we have

L̃αJ
n(0) =

κ

nθ

(
α(1− η(1)) (Jn(0) + 1− Jn(0))

)
+

κ

nθ

(
((1− α)η(1)) (Jn(0)− 1− Jn(0))

)
= jm0,1(η),

L̃βJ
n(n− 1) =

κ

nθ

(
β(1− η(n− 1)) (Jn(n− 1)− 1− Jn(n− 1))

)
+

κ

nθ

(
((1− β)η(n− 1)) (Jn(n− 1) + 1− Jn(n− 1))

)
= jmn−1,n(η).

Now, having defined the integrated currents, in the next section we will defined empirical measures

associated with them.

8.2 Empirical measures

Recall the definition of the empirical measure in (2.19) and the conservative current in (8.2). Fix t ∈ [0, T ].

For η ∈ Ωn, the empirical measure associated with the conservative current is defined as the signed

measure on [0, 1]

Qnt :=
1

n2

n−2∑
x=1

Qnt (x)δx/n, (8.7)

where δu is the Dirac measure concentrated on u ∈ [0, 1]. Note that the renormalization factor of order n2

arises in (8.7) because we need to take into account the space renormalization and the diffusive scaling

of the PMM and SSEP dynamics. Now, recall the definition (8.3). The empirical measure associated

with this boundary current is defined as

Kn
t :=

1

n
Kn
t (0)δ0 +

1

n
Kn
t (n− 1)δn−1/n. (8.8)

Since (8.8) is related to the Glauber part of the dynamics, we only need to take into account the space

renormalization factor of order n. Let f ∈ C1([0, 1]) be a test function. We define the empirical density

of particles at time t, that is, the integral of f with respect to the empirical measure πnt , as

〈πnt , f〉 =
1

n

∑
x∈Σn

ηtn2(x)f
(
x
n

)
.
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In the same manner, the current field Jnt is defined as

Jnt (f) := Qnt (f) +Kn
t (f),

where Qnt is the conservative current field

Qnt (f) :=
1

n2

n−2∑
x=1

f
(
x
n

)
Qnt (x),

and Kn
t is the non-conservative current field

Kn
t (f) :=

1

n

[
f(0)Kn

t (0)− f
(
n−1
n

)
Kn
t (n− 1)

]
.

Theorem 8.2.1 (Fick’s law). Under the same hypothesis of Theorem 2.3.1, for any t ∈ [0, T ] and any

δ > 0, we have

lim
n→∞

Pµn
(
η· ∈ D([0, T ],Ωn) :

∣∣∣ 1

n2

n−2∑
x=1

Qnt (x)H
(
x
n

)
−
∫ 1

0

H(u)∇ρmt (u) du
∣∣∣ > δ

)
= 0,

lim
n→∞

Pµn
(
η· ∈ D([0, T ],Ωn) :

∣∣∣ 1
n

(
H(0)Kn

t (0)−H
(
n−1
n

)
Kn
t (n− 1)

)
− 1{θ=1}κ

∫ t

0

H(0)(α− ρs(0)) +H(1)(β − ρs(1))ds
∣∣∣ > δ

)
= 0,

where ρ(·) stands for a weak solution of the PME as Theorem 2.3.1, and Qnt (x), Kn
t (0) and Kn

t (n − 1)

stand for the conserved and non-conserved integrated currents defined in (8.2) and (8.3), respectively.

Remark 8.2.2. From the previous theorem we have that Jn converges weakly to J du, where J is the

weak solution of

J = −D(ρ)∇ρ = −∇ρm.

8.3 Proof of Fick’s law

In this section, we prove Theorem 8.2.1, that is, the validity of Fick’s law: the current of particles that

enter (resp. exit) from the system is at all times equal to the local density gradient at 0 (resp. 1). In order

to prove it we will use the fact that we proved the validity of the hydrodynamic limit for the model, and we

can then use the replacement lemmas stated in Chapter 6.

The result stated in Theorem 8.2.1, that we will prove here, is the Law of large numbers for the

empirical measures defined in (8.7) and (8.8).

Proof. Let us prove the first identity of the theorem. Our proof starts with the observation that by Dynkin’s

formula (see Lemma A1.5.1 of [31]), for a fixed test function H ∈ C1([0, 1]), we have that

Mn
t (H) = Qnt (H)−Qn0 (H)−

∫ t

0

n2L̃mn Q
n
s (H) ds, (8.9)

74



is a martingale with respect to the natural filtration {Ft}t≥0, which vanishes as n → ∞ in L2(Pµn) (see

Appendix A). Note that Qn0 (H) = 0. Hence, we can write (8.9) as

Mn
t (H) = Qnt (H)−

∫ t

0

n−2∑
x=1

H
(
x
n

)
jmx,x+1(ηsn2) ds.

Since the PMM is a gradient model, performing a summation by parts in the previous expression, we

can write (8.9) as

Qnt (H)−
∫ t

0

1

n

n−2∑
x=1

∇−nH
(
x
n

)
τxh

m(ηsn2) +H
(

0
n

)
τ1h

m(ηsn2)−H
(
n−1
n

)
τn−1h

m(ηsn2) ds, (8.10)

where τxh
m(ηsn2) is defined in (2.10). Thus, we want to examine the convergence of (8.10) for each

value of θ ≥ 0.

If θ < 1, the test function vanishes at the boundary. From the hydrodynamic limit and Theorem 6.1.1,

we have that the integral term of (8.10) converges in Pµn , as n→∞ to

∫ t

0

∫ 1

0

∇H(u)ρms (u) du ds =

∫ t

0

H(1)ρms (1)−H(0)ρms (0) ds

−
∫ t

0

∫ 1

0

H(u)∇ρms (u) du ds,

which is equal to −
∫ t

0

∫ 1

0
H(u)∇ρms (u) du ds.

If θ ≥ 1, the test function does not necessarily vanishes at the boundary. From the hydrodynamic

limit, Theorems 6.1.1 and 6.2.3 it follows that the integral term of (8.10) converges in Pµn , as n→∞ to

∫ t

0

∫ 1

0

∇H(u)ρms (u) du ds+

∫ t

0

H(0)ρms (0)−H(1)ρms (1) ds,

which is also equal to −
∫ t

0

∫ 1

0
H(u)∇ρms (u) du ds.

Let us now prove the second identity of the theorem regarding the boundary current. In the same

manner, for H ∈ C1([0, 1]) we have that

M̃n
t (H) = Kn

t (H) + κ

∫ t

0

n

nθ
[
H( 1

n )(α− ηsn2(1)) +H(n−1
n )(β − ηsn2(n− 1))

]
ds, (8.11)

is also a martingale that vanishes in L2(Pµn) as n→∞, see Appendix A. Now, we want to examine the

convergence of the integral term of (8.11), for each value of θ ≥ 0.

If θ < 1, the test function vanishes at the boundary, and by a Taylor expansion on H we get

κ

nθ

∫ t

0

−∇+
nH(0)(α− ηsn2(1))−∇−nH (1) (β − ηsn2(n− 1)) ds.

The previous expression is bounded from above by

κ

nθ
‖∇H‖∞

∫ t

0

|α− ηsn2(1)|+ |β − ηsn2(n− 1)| ds,
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which vanishes as n → ∞. If θ = 0, the test function vanishes at the boundary, and by Lemma 6.2.1

we have that the integral term of (8.11) vanishes. If θ = 1, the test function does not vanishes at the

boundary, and from Theorem 6.2.2 we have that the integral term of (8.11) converges in Pµn , as n→∞

to

κ

∫ t

0

H(0)(α− ρ(s, 0)) +H(1)(β − ρ(s, 1)) ds.

Finally, if θ > 1, we have that the integral term of (8.11) is bounded from above by

κ

nθ−1
‖H‖∞

∫ t

0

|α− ηsn2(1)|+ |β − ηsn2(n− 1)| ds,

which vanishes as n→∞, concluding the proof.
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Chapter 9

Uniqueness of weak solutions

In this chapter, we prove the uniqueness of weak solutions of the hydrodynamic equations defined in

Section 2.2. As we mentioned above, uniqueness is fundamental in the proof of the hydrodynamic limit

using the Entropy Method. We start covering the Dirichlet case, in which we use Oleinik’s trick, and

we finish the chapter presenting the uniqueness for the Robin case. We remark that both methods

presented below cover the Neumann case. We decided to include a brief description at the end of the

proof for the Dirichlet case stating what would be the differences for the Neumann case.

Before presenting the proofs, suppose that ρ1(t, u) and ρ2(t, u) are weak solutions of the PME starting

from the same initial condition g(·) and with suitable boundary conditions for each problem.

9.1 The Dirichlet and Neumann cases

Suppose that ρ1(t, u) and ρ2(t, u) are weak solutions of (2.15) starting from the same initial condition

g(·). Performing an integration by parts in (2.15), we get

〈ρ1(T, ·)− ρ2(T, ·), GT 〉+

∫ T

0

〈∂uρm1 (t, ·)− ∂uρm2 (t, ·), ∂uGt〉 dt−
∫ T

0

〈ρ1(t, ·)− ρ2(t, ·), ∂tGt〉 dt = 0,

(9.1)

for all G ∈ C1,2
0 ([0, T ] × [0, 1]). Observe that the left-hand side of this identity is well defined even

if we assume only that G ∈ L2(0, T ;H1
0) and ∂tG ∈ L2(0, T ;L2[0, 1]), where H1

0([0, 1]) is the closure

in H1([0, 1]) of the space C∞c ([0, 1]). In fact, by mollifying such G we can approximate it by smooth

functions Gk ∈ C1,2
0 ([0, T ] × [0, 1]) and, using a limit argument, conclude that (9.1) holds for G, since it

holds for Gk. We leave the details to the reader and we refer to [42] for more details. Now we consider

the function ζ ∈ L2(0, T ;H1
0) such that ∂tζ ∈ L2(0, T ;L2[0, 1]) given by

ζ(t, u) =


∫ T
t
ρm1 (s, u)− ρm2 (s, u) ds , if 0 < t < T ,

0 , if t ≥ T ,
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where T > 0. Note that ζ(t, 0) = ζ(t, 1) = 0 for all t ∈ [0, T ], comes from the fact that ρ1(t, u) and ρ2(t, u)

satisfy item (3) of Definition 4. Observe that

∂tζ(t, u) = − (ρm1 (t, u)− ρm2 (t, u)) ∈ L2([0, T ]× [0, 1]),

∂uζ(t, u) =

∫ T

t

(
∂uρ

m
1 (s, u)− ∂uρm2 (s, u)

)
ds ∈ L2([0, T ]× [0, 1]).

(9.2)

Replacing G by ζ in (9.1), we have

∫ T

0

〈∂uρm1 (t, ·)− ∂uρm2 (t, ·), ∂uζt〉 dt−
∫ T

0

〈ρ1(t, ·)− ρ2(t, ·), ∂tζt〉 dt = 0.

Using (9.2) it follows that

∫ 1

0

∫ T

0

{
(ρ1(t, u)− ρ2(t, u))(ρm1 (t, u)− ρm2 (t, u))

+
(
∂uρ

m
1 (t, u)− ∂uρm2 (t, u)

)(∫ T

t

(∂uρ
m
1 (s, u)− ∂uρm2 (s, u) ds

)}
dt du = 0,

that is

∫ 1

0


∫ T

0

(ρ1(t, u)− ρ2(t, u))(ρm1 (t, u)− ρm2 (t, u)) dt+
1

2

(∫ T

0

(∂uρ
m
1 (t, u)− ∂uρm2 (t, u)) dt

)2
 du = 0.

From last identity, we conclude that ρ1(t, u) = ρ2(t, u) a.s. in [0, T ] × [0, 1]. Now, we remark that the

previous proof also shows uniqueness in the Neumann case. The only difference with respect to the

proof above is that we do not need to require the profile ρ(·) to have a fixed value at the boundary. We

now give a sketch of the proof in this case. Suppose that ρ1(t, u) and ρ2(t, u) are now weak solutions

of (2.17) (with κ = 0), starting from the same initial condition g(·). Performing an integration by parts in

(2.17) (with κ = 0), we get

〈ρ1(T, ·)− ρ2(T, ·), GT 〉+

∫ T

0

〈∂uρm1 (t, ·)− ∂uρm2 (t, ·), ∂uGt〉 dt−
∫ T

0

〈ρ1(t, ·)− ρ2(t, ·), ∂tGt〉 dt = 0,

for all G ∈ C1,2([0, T ] × [0, 1]). Note that the last equation is exactly the same as in (9.1). Now, by the

same arguments used in the Dirichlet case, we can reach the same conclusion for the Neumann case.

9.2 The Robin case

We adapt Filo’s proof to our equation (see [19], Theorem 3), and we present it in details below. Although

the proof there holds for any spatial dimension, we consider only the one-dimensional case. Before

starting the proof, we need some technical results. The following result is concerning the final value

problem with Robin boundary conditions:

Lemma 9.2.1. Suppose that a = a(t, u) is a positive C2,2([0, T ]× [0, 1]) function, b = b(t, u) is a positive
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C2([0, T ]) function, for u = 0 and u = 1, h = h(u) ∈ C2
0 ([0, 1]), and λ ≥ 0. Then, for t ∈ (0, T ], the

problem with Robin conditions



∂sϕ+ a∆ϕ = λϕ, for (s, u) ∈ [0, t)× (0, 1),

∂uϕ(s, 0) = b(s, 0)ϕ(s, 0), for s ∈ [0, t),

∂uϕ(s, 1) = −b(s, 1)ϕ(s, 1), for s ∈ [0, t),

ϕ(t, u) = h(u), for u ∈ (0, 1),

(9.3)

has a unique solution ϕ0 in C1,2([0, t]× [0, 1]). Moreover, if 0 ≤ h ≤ 1, then

0 ≤ ϕ0(s, u) ≤ e−λ(t−s), for (s, u) ∈ [0, t]× [0, 1]. (9.4)

Proof. First, observe that by setting τ = t− s and ζ(τ, u) = e−λ(t−τ)ϕ(t− τ, u), (9.3) is equivalent to



∂τζ − a∆ ζ = 0, for (τ, u) ∈ (0, t]× (0, 1),

∂uζ(τ, 0) = b(t− τ, 0) ζ(τ, 0), for τ ∈ (0, t],

∂uζ(τ, 1) = −b(t− τ, 1) ζ(τ, 1), for τ ∈ (0, t],

ζ(0, u) = e−λth(u), for u ∈ (0, 1),

(9.5)

which has a unique C1,2([0, t]× [0, 1]) solution ζ0(τ, u) according to [33] (see Theorem 5.3) or [34] (see

Theorem 4). Now, we need to show that 0 ≤ ζ0 ≤ e−λt in [0, t] × [0, 1], under the assumption that

0 ≤ h ≤ 1. Suppose that

max
[0,t]×[0,1]

ζ0 > e−λt.

From the maximum principle for parabolic equations,

max
[0,t]×[0,1]

ζ0 = max
Σt∪({0}×[0,1])

ζ0,

where Σt = ([0, t] × {0}) ∪ ([0, t] × {1}). Since ζ0(0, u) = e−λth(u) ≤ e−λt, for 0 ≤ u ≤ 1, there exists

some (τ1, u1) ∈ Σt that realizes the maximum of ζ0. Suppose, without loss of generality, that u1 = 0.

Observe that τ1 > 0, due to the fact that ζ0 is continuous in [0, t] × [0, 1] and ζ0(0, 0) = e−λth(0) = 0.

Since ζ0(τ1, u1) > e−λt and b is positive, it follows that

∂uζ0(τ1, 0) = b(t− τ1, 0) ζ0(τ1, 0) > 0.

Hence, for u > 0 sufficiently close to 0, we have

ζ0(τ1, u) > ζ0(τ1, 0),
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contradicting the fact that (τ1, 0) is a point of maximum of ζ0. Therefore, ζ0 ≤ e−λt. By an analogous

argument, we can prove that ζ0 ≥ 0, concluding that 0 ≤ ζ0 ≤ e−λt.

Now, let ϕ0(s, u) = eλsζ0(t − s, u). As we have already mentioned, since ζ0 is the solution of (9.5),

then ϕ0 is the solution of (9.3). Furthermore, since 0 ≤ ζ0 ≤ e−λt, we have that 0 ≤ ϕ0(s, u) ≤ e−λ(t−s),

which proves the lemma.

Lemma 9.2.2. Let ϕ0 be the solution of the parabolic problem (9.3). There exists a positive constant

C = C(b, h) such that ∫ t

0

∫ 1

0

a(s, u)(∆ϕ0(s, u))2 duds ≤ C(b, h).

Proof. Multiplying the first line of (9.3) by ∆ϕ0(s, u), and integrating it in space and time, we obtain

∫ t

0

∫ 1

0

∂sϕ0 ∆ϕ0 du ds +

∫ t

0

∫ 1

0

a(∆ϕ0)2 du ds −
∫ t

0

∫ 1

0

λϕ0 ∆ϕ0 duds = 0.

Integrating last equation by parts, we have

∫ t

0

∂sϕ0(s, 1) ∂uϕ0(s, 1) ds−
∫ t

0

∂sϕ0(s, 0) ∂uϕ0(s, 0) ds

− 1

2

∫ t

0

∫ 1

0

∂s|∂uϕ0|2 duds+

∫ t

0

∫ 1

0

a(∆ϕ0)2 du ds

−
∫ t

0

λϕ0(s, 1) ∂uϕ0(s, 1) ds+

∫ t

0

λϕ0(s, 0) ∂uϕ0(s, 0) ds+

∫ t

0

∫ 1

0

λ |∂uϕ0|2 duds = 0 .

Integrating the third term in the last equation and using the boundary conditions, it follows that

∫ t

0

∫ 1

0

(
a(∆ϕ0)2 + λ |∂uϕ0|2

)
du ds+

∫ t

0

λb(s, 1)(ϕ0(s, 1))2 ds+

∫ t

0

λb(s, 0)(ϕ0(s, 0))2 ds

−
∫ t

0

∂sϕ0(s, 1) b(s, 1)ϕ0(s, 1) ds−
∫ t

0

∂sϕ0(s, 0) b(s, 0)ϕ0(s, 0) ds

− 1

2

∫ 1

0

|∂uϕ0|2(t, u)− |∂uϕ0|2(0, u) du = 0 .

Now, doing an integration by parts on the fourth and fifth terms in the above display, and using the initial

condition, we obtain:

∫ t

0

∫ 1

0

(
a(∆ϕ0)2 + λ |∂uϕ0|2

)
du ds+

∫ t

0

λb(s, 1)(ϕ0(s, 1))2 ds+

∫ t

0

λb(s, 0)(ϕ0(s, 0))2 ds

− 1

2
b(t, 1)(ϕ0(t, 1))2 +

1

2
b(0, 1)(ϕ0(0, 1))2 +

1

2

∫ t

0

∂sb(s, 1)(ϕ0(s, 1))2 ds

− 1

2
b(t, 0)(ϕ0(t, 0))2 +

1

2
b(0, 0)(ϕ0(0, 0))2 +

1

2

∫ t

0

∂sb(s, 0)(ϕ0(s, 0))2 ds

− 1

2

∫ 1

0

|h′(u)|2 du+
1

2

∫ 1

0

|∂uϕ0|2(0, u) du = 0 .
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Therefore,

∫ t

0

∫ 1

0

a(∆ϕ0)2 du ds ≤ 1

2

∫ 1

0

|h′(u)|2 du

+
1

2
b(t, 1)(ϕ0(t, 1))2 − 1

2
b(0, 1)(ϕ0(0, 1))2 − 1

2

∫ t

0

∂sb(s, 1)(ϕ0(s, 1))2 ds

+
1

2
b(t, 0)(ϕ0(t, 0))2 − 1

2
b(0, 0)(ϕ0(0, 0))2 − 1

2

∫ t

0

∂sb(s, 0)(ϕ0(s, 0))2 ds .

Since ϕ0 is bounded, according to Lemma 9.2.1, the right-hand side of last inequality is bounded from

above by some constant C, that depends only on h and b.

Before presenting the uniqueness of weak solutions of the hydrodynamic equation with Robin bound-

ary conditions, we need two more technical results:

Lemma 9.2.3. Let b be a nonnegative and bounded measurable function in [0, T ] and 1 ≤ p <∞. There

exists a sequence {bk}k∈N of positive functions in C∞([0, T ]), such that bk converges to b in Lp([0, T ])

and ∥∥∥∥ bbk − 1

∥∥∥∥
Lp(A)

→ 0,

where A = {t ∈ (0, T ] : b(t) > 0}.

Proof. Let εk = 1/k > 0. Consider a sequence of positive numbers {δj}j∈N, such that δj → 0. Since

b > 0 in A, we have

b(t)

b(t) + δj
− 1→ 0 for any t ∈ A as j →∞, and

∣∣∣∣ b(t)

b(t) + δj
− 1

∣∣∣∣ < 2.

From the dominated convergence theorem, b/(b+ δj)− 1 converges to 0 in Lp(A). Hence, for a large j0,

we have ∥∥∥∥ b

b+ δj0
− 1

∥∥∥∥
Lp(A)

<
εk
2
. (9.6)

Let {cm}m∈N be a sequence in C∞([0, T ]), such that cm → b + δj0 in Lp([0, T ]). Since b + δj0 ≥ δj0 , we

can assume that cm ≥ δj0 . Then∥∥∥∥ b

cm
− b

b+ δj0

∥∥∥∥
Lp(0,T )

=

∥∥∥∥b(b+ δj0 − cm)

cm(b+ δj0)

∥∥∥∥
Lp(0,T )

≤
‖b‖L∞([0,T ])‖b+ δj0 − cm‖Lp([0,T ])

δ2
j0

.

Hence, using that cm → b+ δj0 in Lp([0, T ]), for a large m0, we have that∥∥∥∥ b

cm0

− b

b+ δj0

∥∥∥∥
Lp(0,T )

<
εk
2
. (9.7)

Defining bk = cm0
, (9.6) and (9.7) imply that∥∥∥∥ bbk − 1

∥∥∥∥
Lp(A)

< εk,
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proving the result.

Remark 9.2.4. Using the same argument above, we can prove the following result that is used in [19]: if

a is a nonnegative bounded measurable function in [0, T ]× [0, 1], then there exists a sequence {ak}k∈N
of positive C∞ functions in time and space, such that

1

k
≤ ak ≤ ‖a‖L∞ +

1

k
and

∥∥∥∥a− ak√
ak

∥∥∥∥
L2([0,T ]×[0,1])

→ 0.

Proof of uniqueness for the Robin case ([19]): Although the proof that we will present is true for κ ≥ 0,

we will only consider the case κ > 0. But the interested reader can check that for k = 0, the proof also

holds. Suppose that ρ1(t, u) and ρ2(t, u) are weak solutions of (2.17). We stress that throughout this

proof we will use the notation

w(t, u) = ρ1(t, u)− ρ2(t, u) and v(t, u) =

m−1∑
i=0

ρm−1−i
1 (t, u)ρi2(t, u), (9.8)

for (t, u) ∈ [0, T ] × [0, 1], and we note that wt(u)vt(u) = ρm1 (t, u) − ρm2 (t, u). Since ρ1(t, u) and ρ2(t, u)

satisfy (2.18), we get

〈wt, Gt〉 −
∫ t

0

〈ws, ∂sGs〉 ds−
∫ t

0

〈ws, vs∆Gs〉 ds+

∫ t

0

ws(1)vs(1)∂uGs(1)− ws(0)vs(0)∂uGs(0) ds

+ κ

∫ t

0

ws(0)Gs(0) + ws(1)Gs(1)ds = 0,

for all G ∈ C1,2([0, T ]× [0, 1]). Thus, the previous equation can be rewritten as

〈wt, Gt〉 =

∫ t

0

〈ws, ∂sGs + vs∆Gs〉 ds−
∫ t

0

ws(1)
(
κGs(1) + vs(1)∂uGs(1)

)
ds

+

∫ t

0

ws(0)
(
vs(0)∂uGs(0)− κGs(0)

)
ds .

(9.9)

To estimate the integrals above we need to use a suitable test function, which is the solution of the

parabolic equation (9.3). Unfortunately, the function v above does not have regularity enough. To avoid

this difficulty, observe that 0 ≤ v(t, u) ≤ m, since 0 ≤ ρ1(t, u), ρ2(t, u) ≤ 1. Then, according to Lemma

9.2.3, taking b equal to v, and p = 1, for ε > 0 there exists a positive function bε ∈ C2([0, T ] × {0, 1})

such that ∥∥∥∥ v(t, ui)

bε(t, ui)
− 1

∥∥∥∥
L1(Ai)

< ε for i ∈ {0, 1}, (9.10)

where u0 = 0, u1 = 1 and Ai = {t ∈ (0, T ] : v(t, ui) > 0}. Moreover, from Remark 9.2.4 with a = v,

there exists a sequence of functions {an}n∈N in C∞([0, T ]× [0, 1]), such that

1

n
≤ an ≤ m+

1

n
and

an − v√
an
→ 0 in L2([0, T ]× [0, 1]) as n→∞. (9.11)

For fixed λ = 0 and h ∈ C2
0 ([0, 1]), consider the parabolic problem (9.3) with a and b replaced by an and
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κ/bε, respectively. Observe that κ/bε is a positive C2 function. Then, from Lemma 9.2.1 there exists a

unique solution ϕn(s, u) to this problem associated to an and κ/bε.

Now, for G(s, u) = ϕn(s, u), we estimate each integral of the right-hand side of (9.9). For the first

integral, using the fact that ϕn is a solution of (9.3) (with λ = 0), and the Cauchy-Schwarz inequality, we

obtain

∫ t

0

〈ws, ∂sϕn(s, ·) + vs∆ϕn(s, ·)〉 ds

=

∫ t

0

〈ws, ∂sϕn(s, ·) + an(s, ·)∆ϕn(s, ·)〉 ds+

∫ t

0

〈ws, (vs − an(s, ·))∆ϕn(s, ·))〉 ds

≤
∫ t

0

∥∥∥∥ws (v − an)
√
an

∥∥∥∥
L2([0,1])

‖
√
an∆ϕn‖L2([0,1]) ds .

Hence, from Cauchy-Schwarz inequality, (9.4), Lemma 9.2.2, and |ws| = |ρ1 − ρ2| ≤ 2, we have

∫ t

0

〈ws, ∂sϕn(s, ·) + vs∆ϕn(s, ·)〉 ds ≤ 2

∥∥∥∥ (v − an)
√
an

∥∥∥∥
L2([0,T ]×[0,1])

√
C(κ/bε, h) . (9.12)

For the boundary integrals of (9.9) we use the Robin condition satisfied by ϕn. For the right-hand side

of the boundary (u1 = 1), we have

∂uϕn(s, 1) = − κ

bε(s, 1)
ϕn(s, 1).

Then, for G(s, u) = ϕn(s, u), the second integral on the right-hand side of (9.9) becomes

∫ t

0

ws(1)(κϕn(s, 1) + vs(1)∂uϕn(s, 1)) ds =

∫ t

0

ws(1)

(
κϕn(s, 1)− vs(1)

κ

bε(s, 1)
ϕn(s, 1)

)
ds .

Note that if s0 6∈ At1 := {s ∈ [0, t] : vs(1) > 0}, then ρ1(s0, 1) = ρ2(s0, 1) = 0 and, therefore, w(s0, 1) = 0.

Hence, from the fact that |w| ≤ 2, and (9.4) together with the choice λ = 0, we get

∣∣∣∣∫ t

0

ws(1)(κϕn(s, 1) + vs(1)∂uϕn(s, 1)) ds

∣∣∣∣ =

∣∣∣∣∣
∫
At1

ws(1)

(
κϕn(s, 1)− vs(1)

κ

bε(s, 1)
ϕn(s, 1)

)
ds

∣∣∣∣∣
≤ 2κ

∥∥∥∥1− vs(1)

bε(s, 1)

∥∥∥∥
L1(At1)

.

Then, using (9.10) and that At1 ⊂ A1, we have∣∣∣∣∫ t

0

ws(1)(κϕn(s, 1) + vs(1)∂uϕn(s, 1)) ds

∣∣∣∣ ≤ 2κε. (9.13)

By an analogous argument, we also have∣∣∣∣∫ t

0

ws(0)(vs(0)∂uϕn(s, 0)− κϕn(s, 0)) ds

∣∣∣∣ ≤ 2κε. (9.14)
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Therefore, from the fact that ϕn(t, u) = h(u), and from (9.9), (9.12), (9.13), and (9.14), we conclude that

〈wt, h〉 ≤ 2

∥∥∥∥ (v − an)
√
an

∥∥∥∥
L2([0,T ]×[0,1])

√
C(κ/bε, h) + 4κε .

Taking n→∞ and using (9.11), it follows that

〈wt, h〉 ≤ 4κε.

Since ε > 0 is arbitrary,

〈wt, h〉 ≤ 0,

for any h ∈ C2
0 ([0, 1]). Now, consider a sequence hn ∈ C2

0 ([0, 1]) such that hn(·)→ 1{u∈[0,1] : wt(u)>0}(t, ·)

in L2([0, 1]). Then, from the last inequality, we obtain

∫ 1

0

w+(t, u) du ≤ 0,

where w+ = max{w, 0}. Therefore, for any t ∈ [0, T ], ρ1(t, u) ≤ ρ2(t, u) for almost every u ∈ [0, 1]. That

is, ρ1 ≤ ρ2 for almost every (t, u) ∈ [0, T ]× [0, 1]. In the same way, ρ2 ≤ ρ1 a.e., completing the proof. �

84



Chapter 10

Future work

There are a couple of questions that still have no answer and are left for future work. We highlight one

that is concerned with the hydrostatic limit. In our result on the hydrodynamic limit, we need to impose

the starting measure to be associated with a profile, see (2.20). We note that when the boundary rates α

and β coincide with ρ, the Bernoulli product measure with constant parameter ρ is a reversible measure

for this model and, in particular, it is invariant. Nevertheless, when α 6= β, this measure is no longer

invariant, and we have no information on the invariant measure of the system. The matrix method of

Derrida [11] can not be straightforwardly applied to this model due to the complicated action of the bulk

dynamics. One way to prove that the invariant measure of the model is associated with a profile, namely

the stationary profile of the respective hydrodynamic equation, is to prove that its space correlations

decay to 0 when n→∞. For this model, it is not easy to obtain information on the correlations since the

generator of the process does not preserve the degree of functions of η. Another interesting problem

is to derive the hydrodynamic limit for the PMM with slow reservoirs without the perturbation with the

SSEP jumps. We will face difficulty in studying how long it takes for the Glauber dynamics to create a

mobile cluster in the system. Due to the recent advances in the study of nonequilibrium fluctuations of

interacting particle systems, see [30], another interesting problem is to study the nonequilibrium fluctua-

tions for the PMM. Another interesting problem is studying the hydrodynamic limit and the large deviation

principle of the PMM with long jumps. The first is a work in progress, and we hope to finish it soon.
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[12] Dobrušin, R. L.: Markov processes with a large number of locally interacting components: Exis-

tence of a limit process and its ergodicity. Problemy Peredači Informacii, 7(2):70–87, (1971).
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[26] Gonçalves, P., Landim, C., Toninelli, C.: Hydrodynamic Limit for a Particle System with degenerate

rates. Ann. Inst. H. Poincaré: Probab. Statist, Volume 45, Issue 4, 887–909, (2009).

[27] Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest

neighbor interactions. Commun. Math. Phys. 118, 31–59, (1988).

87



[28] Gurney, W., Nisbet, R.: The regulation of inhomogeneous populations. J. Theoret. Biol. 52 441–

457, (1975).

[29] Gurtin, M., MacCarny, R.: On the diffusion of biological populations. Math. Biosci. 33 35–49, (1977).

[30] Jara, M., Menezes, O.: Non-equilibrium Fluctuations of Interacting Particle Systems, (2018).

https://arxiv.org/abs/1810.09526

[31] Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehrender Mathema-

tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 320. Springer-Verlag,

Berlin, (1999).

[32] Kompaneets, A. S., Zel’dovich, Ya. B: Towards a theory of heat conduction with thermal conductivity

depending on the temperature. In Collection of Papers Dedicated to 70th Anniversary of A. F. Ioffe.

Izd. Akad. Nauk SSSR, Moscow, pp. 61–72, (1950).
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Appendix A

Some results

This appendix is dedicated to the proof of some results that we used along the thesis. We start by

presenting a result from analysis that were used in Chapters 5 and 7. Then, we present microscopic

results used in Chapters 5, 6, 7, and 8.

Lemma A.0.1. Let m ∈ N\{1} such that ρm ∈ L2(0, T ;H1). For all ε > 0 it holds that

|ρs(0)− 〈πs,−→ιε iε〉| ≤ 2ε1/4(m−1) + ε1/4‖∂uρms ‖24m3/2,

for any i ∈ {0, 1, . . . ,m − 1} and for almost every s ∈ [0, T ]. Besides that the same inequality above

holds for←−ιε 1−iε in place of −→ιε iε and ρs(1) in place of ρs(0).

Proof. For A > 0 and s ∈ [0, T ], let Es,A = {v ∈ [0, 1] : ρs(0) ≤ A and ρs(v) ≤ A}. We start the proof by

noticing that

ρs(0)− 〈πs,−→ι iεε 〉 =
1

ε

∫ iε+ε

iε

ρs(0)− ρs(v) dv

=
1

ε

∫ iε+ε

iε

(ρs(0)− ρs(v))
(
1Es,A(v) + 1Ēs,A(v)

)
dv

≤ 2A+
1

ε

∫ iε+ε

iε

(ρs(0)− ρs(v))1Ēs,A(v) dv,

(A.1)

for any i ∈ {0, 1, . . . ,m− 1} and for almost every s ∈ [0, T ]. Let

P ρs(0)
m (ρs(v)) =

m−1∑
i=0

(ρs)
m−1−i(0)(ρs)

i(v),

and note that (ρs)
m(0)− (ρs)

m(v) = (ρs(0)− ρs(v))P
ρs(0)
m (ρs(v)). Thus, for every v ∈ Ēs,A, it holds that
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P
ρs(0)
m (ρs(v)) ≥ Am−1 and that

|ρs(0)− ρs(v)| =

∣∣∣∣∣ (ρs)m(0)− (ρs)
m(v)

P
ρs(0)
m (ρs(v))

∣∣∣∣∣
≤ |(ρs)

m(0)− (ρs)
m(v)|

Am−1

=
1

Am−1

∣∣∣∣∫ v

0

∂u(ρs)
m(u) du

∣∣∣∣ .
From Cauchy-Schwarz’s inequality we can bound the previous expression from above by

1

Am−1

(∫ 1

0

(∂u(ρs)
m(u))

2
du

)1/2(∫ 1

0

1
2
(0,v)(u) du

)1/2

,

which is equal to 1
Am−1 ‖∂uρms ‖2

√
v. Hence, from the previous computations we get

|ρs(0)− ρs(v)|1Ēs,A(v) ≤ 1

Am−1
‖∂uρms ‖2

√
v. (A.2)

Combining (A.1) with (A.2), we have that

|ρs(0)− 〈πs,−→ι iεε 〉| ≤ 2A+
1

εAm−1
‖∂uρms ‖2

∫ iε+ε

iε

√
v dv

≤ 2A+
2

3εAm−1
‖∂uρms ‖2

(
(iε+ ε)3/2 − (iε)3/2

)
≤ 2A+

2ε1/2

3Am−1
‖∂uρms ‖2m3/2.

Taking A = ε1/4(m−1), we have therefore that

|ρs(0)− 〈πs,−→ι iεε 〉| ≤ 2ε1/4(m−1) +
2ε1/4

3
‖∂uρms ‖2m3/2,

for every i = {0, 1, . . . ,m− 1} and almost every s ∈ [0, T ].

Microscopic computations: Now, we will establish some microscopic technical results that were used

in the proof of Proposition 7.0.6 and in the proof of the Fick’s law. Let µn be a probability measure on Ωn

and f : Ωn → R be a density with respect to νnρ(·). We denote by H
(
µn|νnρ(·)

)
the relative entropy of µn

with respect to νnρ(·), which is defined by

H
(
µn|νnρ(·)

)
:= sup

f

{∫
f(η)dµn − log

∫
ef(η)dνnρ(·)

}
,

where the supremum is carried over all continuous functions.

Lemma A.0.2. There exists a constant C = C(α, β), such that

H
(
µn|νnρ(·)

)
≤ nC.

Proof. Since Ωn is a countable state space, the entropy of µn with respect to νnρ(·) (see [31] for more
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details) can be computed using the explicit formula

H
(
µn|νnρ(·)

)
=
∑
η∈Ωn

µn(η) log

(
µn(η)

νnρ(·)(η)

)
.

Moreover, since µn is a probability measure and log(·) is an increasing function, we can bound the

previous expression by ∑
η∈Ωn

µn(η) log

(
1

νnρ(·)(η)

)
.

Using the definition of the Bernoulli product measure νnρ(·) and the fact that ρ(·) satisfies the hypothesis

of Lemma 4.2.1, last expression can be written as

∑
η∈Ωn

µn(η) log

(
1∏n−1

x=1 ρ
(
x
n

)η(x) (
1− ρ

(
x
n

))1−η(x)

)
≤
∑
η∈Ωn

µn(η) log

(
1(

min{ρ
(
x
n

)
, 1− ρ

(
x
n

)
}
)n
)
.

Now, using properties of logarithmic functions and the fact that µn is a probability measure, last expres-

sion can be bounded by

n
(
− log

(
min

{
ρ
(
x
n

)
, 1− ρ

(
x
n

)}))
.

Therefore, using again the fact that ρ(·) satisfies the hypothesis of Lemma 4.2.1 we conclude that

H
(
µn|νnρ(·)

)
≤ nC.

Proposition A.0.3. Let ρ be a function that satisfies the hypothesis of Lemma 4.2.1 and η ∈ Ωn.

i) There exists a constant C(α, β) such that

dνnρ(·)(η
x,x+1)

dνnρ(·)(η)
≤ C(α, β). (A.3)

ii) It is true that

Iα1 (η1)
dνnρ(·)(η

1)

dνnρ(·)(η)
= Iα1 (η). (A.4)

The same is true for β (resp. 1) in place of α (resp. n− 1).

Proof. Let us begin by proving item i) above. Note that

dνnρ(·)(η
x,x+1)

dνnρ(·)(η)
= 1η(x)=1,η(x+1)=0

(1− ρ( xn ))ρ(x+1
n )

ρ( xn )(1− ρ(x+1
n ))

+ 1η(x)=0,η(x+1)=1

ρ( xn )(1− ρ(x+1
n ))

(1− ρ( xn ))ρ(x+1
n )

+ 1η(x)=η(x+1).

Since for u ∈ (0, 1), it holds that 1− β ≤ 1− ρ(u) ≤ 1− α, we have that last expression is bounded from
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above by

1η(x)=1,η(x+1)=0
(1− α)β

α(1− β)
+ 1η(x)=0,η(x+1)=1

β(1− α)

(1− β)α
+ 1η(x)=η(x+1) ≤ C(α, β) = max

{
β(1− α)

(1− β)α
, 1

}
.

Now, let us prove item ii).

Iα1 (η1)
dνnρ(·)(η

1)

dνnρ(·)(η)
= 1η(1)=0(1− α)

ρ( 1
n )

1− ρ( 1
n )

+ 1η(1)=1(α)
1− ρ( 1

n )

ρ( 1
n )

= (1− η(1))(1− α)
α

1− α
+ η(1)α

1− α
α

= α(1− η(1)) + (1− α)η(1)

= Iα1 (η).

Now, we will show that the quadratic variation vanishes in L2(Pµn), as n goes to infinity. This is a

necessary result in order to prove the Fick’s law in Chapter 8.

Quadratic variation: Our goal now is to prove that the quadratic variation of (8.9) vanishes in L2(Pµn),

as n goes to infinity.

Fix f ∈ C1(0, 1). From Dynkin’s formula (see Lemma A1.5.1 of [31]) we have that

Mn
t (f) = Jnt (f)− Jn0 (f)−

∫ t

0

n2L̃mn J
n
s (f) ds,

is a martingale with respect to the natural filtration {Ft}t≥0. The quadratic variation of Mn
t is given by

〈Mn(f)〉t =
∫ t

0
Bns (f) ds, where

Bns (f) := n2
(
L̃mn J

n
s (f)2 − 2Jns (f)L̃mn J

n
s (f)

)
.

Recalling the definition of L̃mn in (8.4), we can write Bns (f) in the following form

Bns (f) = Bns,α(f) +Bns,P (f) + na−2Bns,S(f) +Bns,β(f). (A.5)

Let us examine the conservative part of (A.5). Note that

(
Bns,P + na−2Bns,S

)
(f) = n2

((
L̃mP + na−2L̃S

)
Qns (f)2 − 2Qns (f)

(
L̃mP + na−2L̃S

)
Qns (f)

)
. (A.6)

To simplify notation, take Qns (f) = F (ηsn2 , Qns (x)). Now, we can write (A.6) as

(
Bns,P + na−2Bns,S

)
(f) = n2

n−1∑
x=1

(
Bns,P + na−2Bns,S

)
(x),
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where

(
Bns,P + na−2Bns,S

)
(x) =

(
L̃mP + na−2L̃S

)
F (ηsn2 , Qns (x))2

− 2F (ηsn2 , Qns (x))
(
L̃mP + na−2L̃S

)
F (ηsn2 , Qns (x)).

The previous expression is equal to

ax,x+1(ηsn2)(cmx,x+1(ηsn2) + na−2)
(
F
(
ηx,x+1
sn2 , Qns (x) + 1

)
− F (ηsn2 , Qns (x))

)2

+ax+1,x(ηsn2)(cmx,x+1(ηsn2) + na−2)
(
F
(
ηx,x+1
sn2 , Qns (x)− 1

)
− F (ηsn2 , Qns (x))

)2

+

n−2∑
y=1

y 6=x

(ηsn2(x)− ηsn2(x+ 1))
2

(cmx,x+1(ηsn2) + na−2)
(
F
(
ηy,y+1
sn2 , Qns (y)

)
− F (ηsn2 , Qns (y))

)2

.

Thus, since Qns (f) = F (ηsn2 , Qns (x)), we get

ax,x+1(ηsn2)(cmx,x+1(ηsn2) + na−2)

(
1

n2

n−2∑
y=1

f
(
y
n

)
Qn,x+1
s (y)− 1

n2

n−2∑
y=1

f
(
y
n

)
Qns (y)

)2

+ax+1,x(ηsn2)(cmx,x+1(ηsn2) + na−2)

(
1

n2

n−2∑
y=1

f
(
y
n

)
Qn,x−1
s (y)− 1

n2

n−2∑
y=1

f
(
y
n

)
Qns (y)

)2

,

which is equal to

ax,x+1(ηsn2)(cmx,x+1(ηsn2) + na−2)

(
1

n2
f
(
x
n

)
(Qns (x) + 1)− 1

n2
f
(
x
n

)
Qns (x)

)2

+ax+1,x(ηsn2)(cmx,x+1(ηsn2) + na−2)

(
1

n2
f
(
x
n

)
(Qns (x)− 1)− 1

n2
f
(
x
n

)
Qns (x)

)2

.

Hence,

(
Bns,P + na−2Bns,S

)
(x) =

1

n4
f
(
x
n

)2
(ax,x+1(ηsn2) + ax+1,x(ηsn2))(cmx,x+1(ηsn2) + na−2).

Therefore,

(
Bns,P + na−2Bns,S

)
(f) =

1

n2

n−2∑
x=1

f
(
x
n

)2
(ax,x+1(ηsn2) + ax+1,x(ηsn2))(cmx,x+1(ηsn2) + na−2)

≤ 2
‖f2‖∞
n

+
‖f2‖∞
n3−a ,

which vanishes when n goes to infinity since 1 < a < 2.

Let us now examine the non-conservative part of the quadratic variation. Note that

(
Bns,α +Bns,β

)
(f) = n2

((
L̃α + L̃β

)
Kn
s (f)2 − 2Kn

s (f)
(
L̃α + L̃β

)
Kn
s (f)

)
.

We will examine onlyBns,α(f) since the computations forBns,β(f) are the same. TakeKn
s (f) = F (ηsn2 ,Kn

s (0)).

93



Repeating the same arguments used above, we have that

Bns,α(f) = n2 κ

nθ

{
α(1− ηsn2(1))

(
F
(
(η1
sn2 ,Kn

s (0) + 1
)
− F (ηsn2 ,Kn

s (0))
)2

+ (1− α)(ηsn2(1))
(
F
(
(η1
sn2 ,Kn

s (0)− 1
)
− F (ηsn2 ,Kn

s (0))
)2}

.

Since Kn
s (f) = F (ηsn2 ,Kn

s (0)), we get

n2 κ

nθ

{
α(1− ηsn2(1))

(
1

n
f(0)(Kn

s (0) + 1)− 1

n
f(0)Kn

s (0)

)2

+(1− α)(ηsn2(1))

(
1

n
f(0)(Kn

s (0)− 1)− 1

n
f(0)Kn

s (0)

)2
}
.

Hence,

Bns,α(f) =
κ

nθ
f(0)2(α− ηsn2(1))2.

In the same manner, we also have

Bns,β(f) =
κ

nθ
f
(
n−1
n

)2
(β − ηsn2(n− 1))2.

Therefore,

Bns,α(f) +Bns,β(f) ≤ C(α, β)
κ

nθ
‖f2‖∞, (A.7)

which vanishes as n goes to infinity for any θ > 0. In order to conclude the proof we need to show that

(A.7) vanishes for θ = 0. The proof of this case follows the same ideas used in the proof of Proposition

4.1.2 in the case θ ∈ [0, 1).
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