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Abstract

The H.264/AVC standard adopted improved transform and quantization procedures to en-

hance the compression performance. Such techniques also greatly increase the computational

burden and the data processing rate requirements of video codecs, posing additional challenges

when designing such systems. These issues are particularly relevant when high definition video

contents must be processed or when real time operation is demanded.

To face these challenges for multiple application domains, this thesis addresses the design of

efficient hardware structures for the fast computation of the H.264/AVC transform and quantization

operations. First, a new high performance and scalable multi-transform architecture capable of

supporting various sets of transforms, including the whole H.264/AVC transformation procedure,

is proposed. Then, a novel class of high performance architectures with a reduced hardware cost

is presented for the realization of H.264/AVC forward, inverse and unified quantizers. Finally, it is

presented an integrated transform and quantization architecture that enables the combined and

autonomous computation of all the H.264/AVC transform and quantization procedures.

The experimental evaluation conducted using a Xilinx Virtex-7 FPGA demonstrates the supe-

rior performance and hardware efficiency of the proposed architectures in comparison with the

state of the art, which allow the processing of video sequences with resolutions up to the 4k

UHDTV format in real time with a reduced hardware cost.

Keywords

Video coding, H.264/AVC standard, Discrete Cosine Transform, Quantization, Real time and

embedded systems, Adaptable architecture, Systolic array, FPGA.
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Resumo

A norma de vı́deo H.264/AVC emprega novas técnicas de codificação de transformada e de

quantização para aumentar ainda mais os seus fatores de compressão. A complexidade com-

putacional e o ritmo de processamento destas ferramentas são elevados, o que impõe restrições

adicionais no desenvolvimento de sistemas de codificação de vı́deo. Esta problemática assume

especial relevância no processamento de conteúdos de elevada definição ou em tempo real.

Para dar uma resposta efetiva a estes desafios, nesta tese apresentam-se estruturas de hard-

ware especializadas e de elevado desempenho que permitem realizar estas duas operações da

norma H.264/AVC, de uma forma rápida e eficiente, para diversos domı́nios da codificação de

vı́deo. Primeiramente, propõe-se uma arquitetura multi-transformada escalável que é capaz de

suportar diferentes conjuntos de transformadas bidimensionais, incluindo todas as transformadas

adotadas pela norma. Depois, apresenta-se uma classe de arquiteturas com custos de hardware

reduzidos para a realização de quantizadores diretos, inversos e unificados. Finalmente, introduz-

se uma arquitetura integrada de transformada e quantização que permite combinar e realizar

de uma forma autónoma todas as operações de codificação de transformada e de quantização

definidas na norma.

Os resultados experimentais relativos à implementação destas arquiteturas numa FPGA

Virtex-7 da Xilinx comprovam os seus elevados nı́veis de desempenho e taxas de utilização

de hardware, que possibilitam a sua utilização no processamento em tempo real de conteúdos

vı́deo com resoluções até ao formato 4k UHDTV.

Palavras-chave

Codificação de vı́deo, Norma de vı́deo H.264/AVC, Transformada Discreta do Co-seno,

Quantização, Sistemas embebidos e de tempo real, Arquitetura configurável, Processador

sistólico, FPGA.
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vii



reference number SFRH/PROTEC/50152/2009, which supported this work from September

2009 to October 2012;

• To the European Cooperation in Science and Technology (COST) Action IC805 (Open Net-

work for High-Performance Computing on Complex Environments), which provided the fund-

ing required to support my stay in LPGC in June 2012, under the Short Term Scientific

Mission IC0805-010612-019048;

• To the 7th Framework Program of the HiPEAC European Network of Excellence, that fi-

nancially supported my stay in LPGC from September 2010 to December 2010, under the

Collaboration Grant EU ICT-217068;

• To the Fundação para a Ciência e a Tecnologia (FCT), for the financial support provided by

the Philosophiae Doctor (PhD) grant with the reference number SFRH/BD/43639/2008 that

was given to me from September 2008 to September 2009.

I must also express my deepest gratitude to my brother and to my dearest friends Mário Neves,

Pedro Miranda and Rui Coutinho for their invaluable support and companionship during one of the

most difficult periods of my life. Without your friendship this work would not have been possible!

Last but not least, I want to express my eternal gratitude to my parents and to my beloved

Anabela for their constant support, encouragement, dedication, and unconditional love. A very

special THANK YOU to Anabela for showing up in my life and bringing a whole new meaning and

a much brighter future to it.
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1. Introduction

The technological progresses that were achieved in the last decade, both for Very Large Scale

Integration (VLSI) and network access technologies, have allowed the development of several

new and different services and applications that people for long had been awaiting, most of them

dealing with multimedia content. In this scope, video coding has widespread through multiple

applications and networks, as a result of the constantly growing user demand for more, innovative

and better quality multimedia services and equipment. These applications range from conver-

sational services, such as bidirectional and real time videotelephony or videoconferencing, to

non-conversational services, like broadcast of Standard Definition (SD) and High Definition (HD)

Television (TV), video streaming over the Internet, delivery of high definition DVD and Blu-ray con-

tents, video surveillance and the highest quality video for digital cinemas, which all together cover

a wide range of bit rates and video resolutions. Simultaneously, the transmission media has di-

versified from the classical broadcast channels and Integrated Services Digital Networks (ISDNs)

to embrace new network access technologies with improved bandwidth, like cable modem, xDSL,

Universal Mobile Telecommunications System (UMTS) and 4G Long Term Evolution (LTE). Al-

though many of these new networks offer modest data rates, they also present quite significantly

different loss/error robustness characteristics that have been used to support the expansion of

multimedia applications and services to the wireless and mobile domains.

One direct consequence of such advances is the recent proliferation of portable and handheld

devices, which mostly focus on multimedia services and applications. This includes portable video

and audio players and recorders, PDAs and 3G/4G mobile telephones, smartphones and tablets

with Internet access, or even video surveillance and telephony equipment to be used over the

Internet (i.e. IP cameras and videophones). At the same time, the use of other classes of com-

putational (embedded) systems that target the home consumer and entertainment markets (e.g.

DVD, HD-DVD and Blue-ray players or set-top boxes for three-dimensional (3-D), SD and HD dig-

ital TV) has also experienced a tremendous growth. However, while the enabling technologies to

support efficient implementations of applications for speech, data, text and audio in modern com-

putational systems are already available today, the management of video information represents

the ultimate design challenge for these systems, due to its inherently high data rates and stor-

age burdens. To overcome such troubling constraints, new and improved video standards have

been proposed along the last few years, such as the H.264/Advanced Video Coding (AVC) [111],

Audio Video coding Standard (AVS) [150], VC-1 [128] or, more recently, the H.265/High Efficiency

Video Coding (HEVC) standard [129]. Among these, H.264/AVC is currently still considered to be

the de facto standard for digital video applications1, mostly due to its high coding efficiency and

increased flexibility to address multiple application domains.

The H.264/AVC standard was jointly developed by the International Organization for Standard-

1Although the first version of the H.265/HEVC standard was completed and published in June 2013, this new and
promising technology will take at least 6-8 years to mature and replace H.264/AVC. In fact, AVC is only hitting its stride at
the time of writing this thesis, nearly a decade after it was established.
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ization (ISO)/International Electrotechnical Commission (IEC) Moving Pictures Experts Group

(MPEG) and the Telecommunication Standardization Sector of the ITU (ITU-T) Video Coding

Experts Group (VCEG) and its first draft, as an international standard, was approved by the ITU-T

in May 2003. This initial version of the standard was designed to provide high quality coding of

the video content at very low bit rates, but soon was adapted to address the full range of video

applications by means of three amendments: Multi-View Video Coding (MVC), Fidelity Range

Extension (FRExt) [103] and Scalable Video Coding (SVC) [121]. As a result, the widespread use of

the H.264/AVC standard has proved to provide increased coding efficiency in most video coding

applications, regarding to prior successful and popular standards. In fact, for the same recon-

structed picture quality, it can save up to 65%, 50% and 40% in the bit rate, when compared with

that of MPEG-2, H.263++ HLP and MPEG-4 ASP, respectively [111,143]. This improved coding effi-

ciency, which makes H.264/AVC one of the best video coding standards in terms of compression

and quality, is owed to the addition of several new features that include, among others, variable

block sizes and fractional Motion Estimation (ME) using multiple reference frames, several Intra

prediction modes, in-loop de-blocking filtering and context adaptive entropy coding, as it is briefly

presented in subsection 1.2.

Despite all these improvements and innovations, H.264/AVC is still a block-based motion com-

pensated transform coding scheme, just like the former ITU-T (H.261 [66] and H.263 [67]) and the

ISO/IEC MPEG video standards (MPEG-1 [61], MPEG-2 [68] and MPEG-4 [62]). However, its com-

putational complexity is much higher when compared with these predecessors, as it is discussed

in subsection 1.2.2. In fact, it has been estimated that the complexity of a H.264/AVC encoder

is about 5 – 10 times greater than that of a MPEG-4 encoder, while the complexity of the de-

coder has been estimated to be 2 – 4 times greater than that of a MPEG-4 decoder [18]. To make

matters worse, several of the new coding techniques that were introduced in H.264/AVC involve

massive amounts of data, therefore requiring a huge memory bandwidth and thus significantly

increasing the storage complexity of this standard. It has been reported [93] that such bandwidth

requirement can be as high as 528 MB/s or 878 MB/s for the decoding of 4096× 2160 contents in

the H.264/AVC Baseline Profile (BP) and Main Profile (MP), respectively2. All these constraints

are also common to the other existing latest generation video standards (i.e. AVS [150], VC-1 [128]

and H.265/HEVC [129]), since these standards are all based on a similar set (in some cases, just a

subset) of the coding tools adopted in H.264/AVC.

Implementing a state-of-the-art real time video codec therefore represents a quite difficult task

for system designers, which simultaneously face four distinct challenges: i) increase the appli-

cation performance, in order to exploit all the available coding tools and thus obtain the highest

compression possible, while still achieving real time operation; ii) reducing the power consumption

to provide long time operation, a crucial problem especially in portable and handheld devices; iii)

2Note that smarthphone devices nowadays already support 2048 × 1024 @ 30 fps video streams.
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1. Introduction

reducing the chip area, to optimize the implementation costs; and iv ) shortening time-to-market

metrics, in which the existence of configurable and multi-functionality design solutions are of the

utmost importance. To achieve such goals, several different modules of both the video encoding

and decoding algorithms are commonly mapped into specialized hardware processing structures,

for which it is quite useful to have an in-depth understanding of the video encoding and decod-

ing procedures. Furthermore, it is also very important to successfully exploit the compression

efficiency vs computational complexity characteristic of the considered video standards. Such

approach allows to identify the computational hotspots of the coding procedures that must be ac-

celerated and thus to overcome undesired implementation bottlenecks. In the next subsections,

it is presented an overview of all these issues, in order to better introduce video coding and the

H.264/AVC standard to the reader.

1.1 A brief review of digital video coding

From the most simplistic point of view, a digital video signal can be seen as a sequence of

bi-dimensional pictures that are taken at fixed time intervals. Each of these pictures is composed

of a set of points, denominated as pixels, which represent the visual luminescence of the captured

scene at that specific picture location. Hence, a monochromatic digital picture can be seen as a

two-dimensional (2-D) matrix of pixel values, which are usually encoded using an 8-bits repre-

sentation. On the other hand, since most polychromatic pictures are composed of three different

components, each of them concerning one of the three components of the RGB colour space, i.e.

the red (R), green (G) and blue (B) colours, such pictures typically require 24-bits per pixel to rep-

resent the scene luminescence. Consequently, by considering a video sequence captured at 30

frames per second (fps) with a spatial resolution of 1920 × 1080 pixels, which are nowadays com-

mon values for digital television (i.e. the HD Television (HDTV) resolution), this implies a signal

bit rate of 1.49 Gbits/s, which is quite high for most communication channels. As a result, digital

video signals need to be compressed so that they can be used in most practical applications.

The main goal of video coding is therefore to minimize the bit rate of digital video signals, while

keeping the picture subjective quality at the highest quality level as possible. Hence, efficient com-

pression techniques must be used in video coding to make most practical applications feasible.

Fortunately, video signals are highly amenable to compression, due to two major factors. Firstly,

because there is a considerable amount of information in the signal that is irrelevant from the

human perceptual point of view. Secondly, due to the high degree of data correlation that exists

in these sequences, whether among spatial neighbouring pixels within the same picture (spatial

correlation), or among pixels corresponding to different pictures captured at distinct time instants

(temporal correlation), as it is illustrated in Figure 1.1. Moreover, the RGB colour space, which is

frequently used to capture and display polychromatic video sequences, adds an extra degree of
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1.1 A brief review of digital video coding

(a) Picture at time instant t. (b) Picture at time instant t+∆ t.

Figure 1.1: Two neighbouring pictures in the table tennis video sequence.

redundant information that can be further exploited to achieve maximum compression.

1.1.1 Exploiting data redundancy

One of the techniques that are commonly first used to reduce the data redundancy in video

sequences consists in the transformation of the colour space. Almost all video capturing devices

operate using the RGB colour space, in which every colour is defined by means of a linear

combination of the red (R), green (G) and blue (B) colours. However, this colour space presents

some drawbacks for video coding: the component values are not only redundant but also intensity

and application dependent [91]. In order to overcome these disadvantages, the alternative Y UV

colour space is commonly used in digital video coding. This colour space is obtained from the

RGB colour space by using Equation 1.1 [65] (CCIR-601 standard).











Y = 0.299×R+ 0.587×G+ 0.114×B

U = 0.492× (B − Y )

V = 0.878× (R− Y )

(1.1)

In the Y UV colour space, the Y component (also known as gamma-corrected luminance, or

simply as luminance) describes the range of gray values between light and dark. On the other

hand, the U and V components (known as chrominances) refer to the differences between the red

and blue colours and a reference white at the same luminance. These U and V components sub-

stantially reduce the amount of redundancy in the colour information, by subtracting the luminance

values from the red and blue components of the RBG colour space. Hence, in some extent, this

straightforward approach allows to decrease the bit rate of the resulting encoded signal. More-

over, since in this new colour space the luminance information of the video signal is completely

uncorrelated to the chrominance information, the inherent limitations of the Human Visual Sys-

tem (HVS) can be better exploited to achieve higher compression ratios. More specifically, due to

the HVS being less sensitive to the chrominance information rather than to the luminance infor-

mation [91], the two chrominance channels can be sub-sampled in both the horizontal and vertical
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1. Introduction

dimensions, in order to reduce the number of pixels required to represent each picture in the

video sequence. Note that by removing this irrelevant information from the video signal, i.e. the

one that is imperceptible to the human viewer, the reconstructed data will no longer be identical

(in value) to the original data. Nevertheless, the subjective quality of the resulting video sequence

is kept mostly unchanged. Consequently, some amount of loss is generally tolerated in the re-

sulting encoded video signal, which is already a result of the application of a lossy compression

procedure [7] for the most common digital video applications.

Although there are two distinct classes of lossy compression schemes that can be used to

compress image data, i.e. sample-based coding and block-based coding, it is the later one that is

usually exploited in video coding. This is mostly owed to the fact that block-based coding schemes

yield far better compression ratios for the same level of distortion than sample-based coding

schemes [7]. Hence, several different compression techniques have been developed to operate

in a blockwise manner. Such compression techniques are mostly used to implement predictive

transform block coding schemes, because the resulting encoders and decoders present similar

levels of complexity. In these coding schemes, the pixels from the input picture are grouped into

blocks that are first predicted and then transformed into the frequency domain. This allows to

obtain a more compact and uncorrelated representation of the data, which can be more efficiently

compressed.

According to the established signal processing theory, predictive coding schemes are the most

efficient to compress strongly correlated data [110]. In conventional predictive coding, the difference

between the current sample and a predicted one, which is based on a previously encoded sample,

is computed and encoded. Consequently, the better the prediction the smaller the prediction error,

which results in lower bit rates for the encoded signal. In what concerns the encoding of video

sequences, the search procedure for the best prediction of a particular pixel in the current picture

is quite straightforward for still scenes, i.e. it is the same pixel in the previous picture of the

scene. However, finding good predictions in sequences with motion is slightly more complicated,

since motion is a major source of temporal variations. In such cases, the displacement of moving

objects from one picture to another must be compensated, in order to guarantee the maximum

compression in the video coding procedure. Consequently, one can expect that a good prediction

for a particular pixel in the current picture will be the pixel that is located at the same area of

the moving object in a previous picture. Hence, in order to efficiently encode sequences with

motion, not only will the prediction pixels have to be found in the previous picture but also the

corresponding displacement of moving objects from one picture to another must be compensated.

These two procedures are usually known as ME and Motion Compensation (MC), respectively.

Following the previous discussion, it can be concluded that a compression process that uses

both the motion compensation and the predictive coding techniques can provide optimum com-

pression of video sequences, since the prediction error is minimized. This can be seen in Fig-
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1.1 A brief review of digital video coding

(a) Using predictive coding. (b) Using predictive coding after MC.

Figure 1.2: Prediction error resulting from the encoding of the picture presented in Fig-

ure 1.1(b).

ure 1.2, which presents the prediction error obtained for the encoding of the picture presented in

Figure 1.1(b) using only the predictive coding technique (Figure 1.2(a)) and using both techniques

(Figure 1.2(b)). Nevertheless, the pictures obtained using these predictive motion compensated

schemes still have a high degree of irrelevant information for a human viewer. On the one hand,

neighbouring pixels within the same picture have very similar values and thus present a high de-

gree of data correlation. On the other hand, the predicted pictures still have significant amounts

of information that are not perceptible to the human viewer. Therefore, by efficiently exploiting the

characteristics of the HVS (i.e. its more reduced sensitivity to higher frequency content), even

higher compression ratios for digital video signals can be achieved. In this scope, a linear trans-

form of the prediction error is usually computed to obtain much more uncorrelated data values.

The resulting data consists of a set of transform coefficients that can be quantized independently

of each other and thus more efficiently encoded, by taking into account the perceptual character-

istics of the HVS.

Several functions can be used for the transformation of a N × N image block from the spa-

tial domain to the transform domain [3,7,8], such as the Karhunen-Loève Transform (KLT), the

Discrete Fourier Transform (DFT), the Discrete Cosine Transform (DCT), the Discrete Sine Trans-

form (DST), the Discrete Hadamard Transform (DHT), the Discrete Wavelet Transform (DWT) or

integer approximations of these transforms [128,129,143,150]. Although the KLT has been proven to

be the most efficient one in terms of energy compactness efficiency, this transform is also image

dependent, which is a major drawback in image coding. Consequently, an image independent

transform, with a performance very close to the KLT has been chosen as the basis for the majority

of image and video compression standards: the DCT. As it is more thoroughly discussed in sec-

tion 2.1, this transform presents several important properties and offers many benefits to video

coding schemes.

It is worth noting that the use of a transform, by itself, does not provide any kind of data
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compression. In order to compress the data, the transform domain coefficients that are obtained

through the use of the transform must be quantized. In this procedure, higher compression ratios

can be achieved by using coarser quantization steps. However, such coarser quantization steps

may cause the loss of more information, which lowers the quality of the encoded video. Con-

sequently, the characteristics of the HVS should also be taken into account in such quantization

procedure. Accordingly, the transform coefficients corresponding to lower frequencies, to which

the HVS is much more sensitive, are usually quantized with lower quantization steps. Conversely,

the higher frequency transform coefficients are quantized using greater quantization steps. As a

result, when these characteristics of the HVS are taken into account, the quantization procedure

not only does not introduces a significant degradation in the quality of the encoded video but also

provides higher data compression ratios.

By jointly using all the previously described compression techniques, most data redundancies

and perceptual irrelevant information can be removed from the video signals, originating digital

video signals with much lower bit rates. Nonetheless, the resulting bit rates can still be further

reduced by using entropy coding techniques [7]. In these compression schemes, the symbols that

are generated by the video encoder to represent the encoded digital video are mapped into code-

words, according to the probability model of the signal. These probability models can be defined

either from the input image data or from a priori assumptions related to such data. Nevertheless,

the key idea is to use small codewords for symbols that occur with higher probability and longer

codewords for symbols occurring with lower probability. Therefore, by using a Variable Length

Code (VLC) [7] to map symbols into codewords, higher compression ratios can be achieved with-

out any degradation of the picture quality. Some examples of the application of VLC techniques

to encode digital video signals can be found in the encoding of the coordinates of a Motion Vec-

tor (MV), of the DCT coefficients and of the quantization step size.

1.1.2 Picture types

Almost all video standards define several different picture types, which are organized in

classes according to the compression techniques that are used to exploit the redundant infor-

mation contained in those pictures. Each picture may alternatively be split into one or several

regions (usually denoted as ”slices”), which represent the basic spatial coding elements of the

encoding procedure. Slices consist of groups of block-shaped units of the associated luma (Y)

and chroma (U and V) samples called macroblocks (MBs)3, which can be decoded independently

of other slices.

Slices (or whole pictures, when they are composed of a single slice) that are encoded using

techniques only exploiting the spatial redundancies, i.e. without referencing to data from any

other neighbouring picture, are defined to be of type Intra. Thus, Intra slices (I-slices) only provide

3The terms luma and chroma are used herein rather than the terms luminance and chrominance, in order to avoid the
implication of the use of linear transfer characteristics that is often associated with such terms.
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P1 P2 P3 P4 P5 P6 P7 P8 P9

I B B B P B B B P

Figure 1.3: Example of inter-dependence among I-, P- and B-pictures in a video sequence.

moderate compression ratios. Nevertheless, pictures compressed using this Intra-frame coding

allow for fast random access, which is very important in many digital video applications, such as

video recording, editing, interactive television and surveillance systems.

Conversely, a slice is said to be of the Inter type if its encoding procedure employs motion-

compensated prediction techniques. Depending on the MC scheme that is applied to encode

the data, different compression ratios can be achieved. If the slice is encoded by using data from

either past and/or future pictures (B-slices), the compression ratios are higher than those achieved

by exploiting a temporal prediction using only data from past pictures (P-slices). Consequently,

Inter type slices provide much higher compression ratios than Intra type slices.

Figure 1.3 depicts the relationship between the three main slice/picture types in a video se-

quence composed of nine pictures, each one consisting only of a single slice. Pictures P5 and P9

are P-pictures whereas P1 is a I-picture. The remaining ones are B-pictures. As it is shown in this

figure, P-pictures are predicted using only past I- and P-pictures. In contrast, B-pictures can be

predicted using both past and future I- and P-pictures, so that the temporal redundancy can be

better exploited. This can be clearly seen in this example, in which P3 is encoded using motion

compensation prediction from P1 and P5.

A new type of picture is also defined in the most recent video standards, the so-called switching

P and I pictures (SP- and SI-pictures, respectively). This approach allows exact synchronization

through replacing I pictures, which enables a decoder to switch between representations of the

video content using different data rates (bit stream switching-splicing), recover from data losses

or errors, and support trick modes (e.g. fast forward and fast reverse) and random access as well.

Consequently, SP-pictures make use of motion compensated predictive coding to exploit temporal

redundancy in a given sequence (similar to P-pictures). However, they differ from these pictures

by allowing identical frames to be reconstructed even when they are predicted using different

reference frames. Conversely, SI-pictures use only spatial prediction (just as I-pictures), but still

allow to identically reconstruct the corresponding SP-picture.

To better illustrate the use of this type of pictures, a general application scenario is illustrated

in Figure 1.4. At time t, S1 and S2 are at a switching point, which is provided for switching from bit

stream 1 to bit stream 2 and vice versa. S1, S2 and S12 are compressed as SP-pictures with a

9
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P P S2 P P

S12

P P S1 P P

Bit stream 1

Bit stream 2

Bit stream 12

Figure 1.4: Example of switching between two bit streams through SP-pictures.

slight difference. Due to this difference, S1 and S2 are referred to as primary SP-pictures, whereas

S12 is referred to as a secondary SP-picture. Assume that bit stream 1 is being transmitted to

the user. When there is a switch to bit stream 2, S12 is transmitted at time t instead of S1. By

decoding S12, the decoder obtains exactly the same reference as the one obtained by decoding

S2 at time t. As a result, it can seamlessly continue the decoding of bit stream 2 at time t+ 1.

1.1.3 Typical architectures of video codecs

The typical architecture of a video encoder that uses all the coding techniques described in

the previous sections is presented in Figure 1.5. It should be noted that since video coding

standards only define the syntax and the semantics of the coded bit streams, as well as the video

decoding process, manufacturers of video encoders are not compelled to implement any specific

architecture and, in particular, the one depicted in Figure 1.5.

As it can be seen, the encoding process usually begins with some pre-processing of the video

signal. Colour conversion to the Y UV colour space, pre-filtering, sub-sampling and format trans-

lation (e.g. from an interlaced to a progressive picture format [91]) are some of the tasks that may

be done in this stage. In the next stage of the video encoding procedure, the input picture is split

into MBs and the MBs are associated in slices. Furthermore, the encoder also selects the coding

type for each input slice at this stage, according to any pre-defined criteria. Hence, a slice can be

encoded either as an I-, P- or B-slice.

While for I-slices the encoder directly processes the pixels of each MB by applying the trans-

form to the prediction error that is obtained by considering a prediction block in the same picture,

for P- and B-slices the transform is applied to the prediction error resulting from the MC opera-

tion. Consequently, for each MB in the current picture, the motion estimator must determine the

coordinates of the MB that best matches its characteristics in a search picture. For P-slices, this

10



1.1 A brief review of digital video coding

Figure 1.5: Typical architecture of a video encoder.

ME procedure is done using data only from past pictures. In contrast, this process is done twice

for B-slices: firstly for a past picture and lastly for a future picture. As a result, the prediction error

for P-slices is obtained by using a single candidate block, while for B-slices the prediction error is

computed either from one of the two candidate blocks or from their average. After the transform

is applied to this prediction error, the obtained transform coefficients are quantized, encoded us-

ing entropy coding techniques and stored in the output buffer. Furthermore, in applications that

require a constant output bit rate, a buffer regulator is also used to adjust the quantization step

that is applied to the transform coefficients, so that only slight variations exist in the output bit rate

of the compressed bit stream.

The inherent lossy nature of this compression scheme makes it necessary to embed part of

the decoding modules in the encoder architecture, in order to guarantee that the quality of the

encoded pictures does not significantly diverge from the original ones. This is implemented by

including a feedback loop in the encoder, where the quantized transform coefficients are inverse

quantized, inverse transformed and then processed by a deblocking filter to reduce the block-

artifacts. As a consequence, a copy of the encoded picture, as seen by the decoder, is used for

future predictive coding.

In what concerns the video decoding process, it follows the opposite scheme of the encoder.

Therefore, the block diagram of a typical video decoder is very similar to the reconstruction path

in the feedback loop of the encoder, as it can be seen in Figure 1.6. First, the decoder applies

entropy decoding to the received bit stream and determines the slice type from the header infor-

mation. Then, the transform coefficients of all the MBs are inverse quantized and transformed

into the spatial (pixel) domain, by applying the inverse transform of the one used in the encoder. If

the decoded slice is of type I, the reconstructed picture data is directly stored in the output buffer.
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Figure 1.6: Typical architecture of a video decoder.

On the contrary, if the decoded slice is of types P or B, motion compensation must be performed

before this operation can be realized. Such task consists in adding the area(s) of the reference

picture(s) pointed by the MV(s) that were received in the bit stream to the decoded data.

1.2 Overview of the H.264/AVC standard

As with all popular video standards, H.264/AVC defines the syntax and the semantics of the

encoded video bit stream, as well as the processing that the decoder needs to perform when con-

verting such bit stream back into a video signal. In addition, H.264/AVC is structured in two differ-

ent conceptual layers, the Video Coding Layer (VCL) and the Network Adaptation Layer (NAL), in

order to provide the flexibility and customization options required to efficiently encode and transmit

digital video for a large variety of applications and networks, as discussed in the previous sections.

In this partitioning, the VCL defines the actual representation of the video, while the NAL formats

the VCL data and provides header information for specific network transport layers or storage

media. Although the NAL is of crucial importance to provide ”network friendliness”, therefore al-

lowing for the most efficient use of H.264/AVC bit streams in almost all types of transmission and

storage media, it is the VCL that offers all the new coding tools and techniques responsible for

the high coding efficiency of the H.264/AVC standard. Moreover, it is also the VCL that presents

the most critical computational constraints for the implementation of H.264/AVC video codecs in

both software and hardware platforms. Consequently, in this thesis only the VCL is addressed

and some of its encoding tools are discussed. The interested reader is referred to [111,143] and [69]

for more detailed descriptions of the NAL and of the H.264/AVC standard.

1.2.1 H.264/AVC data flow and encoding procedures

Just like all prior video standards defined by the ITU-T and the ISO/IEC Moving Pictures Ex-

perts Group (MPEG), H.264/AVC also adopts the block-based hybrid video coding approach for

the VCL. Each encoded picture, which is usually denominated as frame, is represented by us-

ing the Y UV color space and, typically, the 4:2:0 sub-sampling scheme [7]. In this image format,

each MB consists of a rectangular area of 16 × 16 luma samples and of two 8 × 8 chroma sam-

ples, corresponding to each chroma component. Such MBs are processed in partitions, called
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Table 1.1: Overview of the most important coding tools used in the Baseline Profile (BP),

Main Profile (MP), Extended Profile (XP) and High Profiles (HiPs) of the H.264/AVC standard.

Coding tool Baseline Profile Main Profile Extended Profile High Profiles

Picture types I, P I, P, B I, P, B, SI, SP I, P, B

FMO Yes No Yes No

Motion block size 16× 16, 16× 8, 16× 16, 16× 8, 16× 16, 16× 8, 16× 16, 16× 8,

8× 16, 8× 8, 8× 16, 8× 8, 8× 16, 8× 8, 8× 16, 8× 8,

8× 4, 4× 8, 8× 4, 4× 8, 8× 4, 4× 8, 8× 4, 4× 8,

4× 4 4× 4 4× 4 4× 4

Multiple reference frames Yes Yes Yes Yes

Motion pel accuracy 1, 1

2
, 1

4
1, 1

2
, 1

4
1, 1

2
, 1

4
1, 1

2
, 1

4

Weighted prediction No Yes Yes Yes

Transform 4× 4 4× 4 4× 4 4× 4, 8× 8

Deblocking filer Yes Yes Yes Yes

Entropy coding UVLC, CAVLC UVLC, CAVLC, UVLC, CAVLC UVLC, CAVLC,

CABAC CABAC

slices, usually in raster scan order (from left to right and from top to down), although the Flexible

Macroblock Ordering (FMO) feature can also be used in some coding modes [69].

The considered source-coding algorithm follows the classical hybrid association of Inter-

picture prediction and transform coding of the prediction residual, in order to exploit the temporal

redundancy and the spatial irrelevancy, respectively. There is no single coding element in the VCL

of H.264/AVC that makes this standard such a successful video coding scheme. In fact, its high

coding efficiency results from the combination of several new techniques and tools. However, the

joint application of all these tools also significantly increases the complexity of the encoders and

of the decoders. Therefore, such complexity constraints are not compatible with most existing

applications. This is why the H.264/AVC standard defines several profiles and levels that allow

to specifically address the requirements of every single application, while still guaranteeing the

interoperability.

By following this approach, the profiles define the set of coding tools that can be used by an en-

coder to provide compliant H.264/AVC bit streams, while the levels place constraints on the actual

parameters of such bit streams. Currently, the H.264/AVC standard defines 21 different profiles

and 17 levels, which are used for all the profiles [69]. Table 1.1 provides a summarized overview of

the coding tools used in the four most important profiles: the Baseline Profile (BP), representing

the simplest profile and being mainly used for video conferencing and mobile applications; the

Main Profile (MP), intended to be used for consumer broadcast and storage applications; the XP,

intended for streaming video and including special capabilities to improve robustness; and the

High Profile (HiP), intended for high definition broadcast and disc storage (used in HD-DVD and

Blue-ray). In the following subsections, the most important coding tools that were introduced by

H.264/AVC and used in these profiles are briefly discussed. For further details, the interested

reader is referred to [69,111,143].
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A – Intra prediction

Intra prediction consists of a coding technique in which the samples of each MB are predicted

by only using the data of neighbouring pixel values in the same slice that were already decoded

and reconstructed, i.e. already transmitted MBs. In the H.264/AVC standard, all slice-coding

types support three types of Intra prediction: Intra4×4, Intra16×16 and Intra8×8.

The Intra4×4 prediction mode is well suited to encode parts of the image with significant

amounts of detail. In this mode, each MB is divided in blocks of 4 × 4 luma samples and a

prediction for each block is computed. The H.264/AVC standard defines nine distinct prediction

modes: a DC prediction mode, in which all pixels of a given block are predicted using the average

of all neighbouring pixels to the left and to the top of the current block; and eight directional

prediction modes, that are suited to predict textures with patterns in specific directions. Figure 1.7

shows all the possible prediction directions and the corresponding prediction mode identifications.

The Intra16×16 prediction mode is more suited to encode very smooth areas of a picture.

Hence, in this mode only one prediction direction is applied to the whole 16×16 pixels luma block.

Even so, four different modes are supported: a DC prediction mode; two directional prediction

modes (vertical and horizontal), both of them with an operation entirely similar to the 4× 4 predic-

tion modes, but using 16 neighbour pixels on each side for the prediction; and a plane prediction

mode. This last mode is intended for areas of gently changing luminance and uses a linear func-

tion for the prediction of the pixel values. Since chrominance signals are very smooth in most

cases, a quite similar mode to the Intra16×16 is used to predict the chroma samples of a MB.

However, in these cases the DC, vertical, horizontal and plane prediction modes are applied on

blocks of 8× 8 pixels.

Lastly, an extra Intra8×8 prediction mode is also supported for luma blocks in the H.264/AVC

High Profile (HiP). A more detailed description of all the Intra prediction modes can be found in [69].

1

8

6

5
0

43

7

Figure 1.7: Prediction directions for the Intra4×4 mode.
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B – Inter prediction

In addition to the Intra coding modes, various predictive or motion compensated coding modes

can also be used for P- and B-slices/frames. In such cases, MBs are predicted with pixel data

corresponding to already encoded reference frames, by displacing an area of the reference picture

using a translational MV. In P-slices, only past pictures can be used as references. Nevertheless,

more than one reference picture can be used for each motion-compensated picture, which is

known as motion-compensated prediction with multiple reference pictures. Similarly, B-slices can

also use multiple reference pictures. However, in this case both past and future pictures can be

used as references to build the prediction signal. With such scheme, the prediction signal for

a given MB is built by using a weighted average of two distinct motion-compensated prediction

values. Figure 1.8 illustrates this concept.

To improve the accuracy of the prediction values, in H.264/AVC each MB can be divided into

smaller luma partitions with 16 × 8, 8 × 16 and 8 × 8 pixels, and different MVs are estimated for

each partition. Moreover, the 8 × 8 blocks in P-slices can be further partitioned in subblocks of

8 × 4, 4 × 8 and 4 × 4 pixels to increase even more the MC efficiency, as shown in Figure 1.9.

Hence, a maximum of 16 MVs can be transmitted for a single luma MB, by using this so-called

variable block size motion-compensated prediction mode.

To further increase the efficiency of the motion-compensated prediction, H.264/AVC also de-

fines the accuracy of the MVs for luma blocks as a quarter of a picture element (pel), i.e. a quarter

of the distance between luma samples. Consequently, in order to estimate MVs with fractional-pel

resolution and to compensate the corresponding displacements, the pixel data corresponding to

the reference image frequently has to be interpolated to sub-pel positions. Usually, the prediction

values at half-sample positions are obtained using an interpolation filter that is based on a 6-tap

windowed sinc function [120]. Conversely, quarter-sample interpolated positions are generated by

averaging two integer or half-sample position values. In what concerns the chroma components,

the corresponding MVs are one-eightth sample accurate, due to the lower resolution of the chroma

sampling grid. The corresponding prediction values are always obtained by bilinear interpolation.

The H.264/AVC motion-compensated prediction scheme is explained in detail in [69].

t-3 t-2 t-1

Already decoded pictures used as references Picture to encode

t

Figure 1.8: Motion-compensated prediction with multiple reference frames.
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Figure 1.9: MB and block partitioning for MC prediction.

C – Transforms

Likewise the former video standards, the H.264/AVC standard also applies transform coding

techniques to the prediction residue, in order to reduce its spatial redundancy. However, a sepa-

rable 4×4 integer DCT is used to process the luma component, instead of the classical 8×8 DCT.

Furthermore, a 2×2 integer transform is also used to encode the two chroma components. When

compared with the real DCT, such integer transforms not only minimize the inherent distortion

resulting from arithmetic and rounding mismatches but also allow its computation using 16-bits

arithmetic, by using only low complexity operations (shift, add and subtract). Moreover, this trans-

form coding tool has proved to be as efficient as the real 8 × 8 DCT, due to the reduced spatial

correlation obtained in the prediction residual after the application of the improved MC technique.

For MB predictions obtained using the Intra16×16 prediction mode, H.264/AVC also defines

that a 4 × 4 Hadamard transform should be further applied over all the 16 DC coefficients of the

already transformed luma 4 × 4 blocks. This procedure allows to better exploit the redundancies

in smoother areas of the picture. Conversely, in the High Profiles of the H.264/AVC standard,

which allow the processing of MBs composed of four 8 × 8 blocks, an 8 × 8 integer transform

can alternatively be used to compute the 64 coefficients of the luma MBs that are encoded using

either the Intra8×8 or the Inter prediction modes.

The H.264/AVC transform coding procedure is reviewed more thoroughly in subsection 2.2.1

and explained in detail in [69].

D – Entropy coding

The H.264/AVC standard introduced two classes of entropy coding techniques that represent

major improvements in the coding efficiency, when compared to the entropy coding tools that

were employed in prior video standards, i.e. Variable Length Codes (VLCs) and Context-Adaptive

Binary Coding (CABAC).

VLC is the simplest entropy coding method and applies Universal VLC (UVLC) [69] for all syntax

elements, except for the quantized transform coefficients. In UVLC, all the syntax elements are

mapped into a single codeword table. This table is based on an Exp-Golomb code with very
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simple and regular decoding properties, which is customized according to the statistics of the data

being encoded. For transmitting the quantized transform coefficients, a more sophisticated and

efficient method is used: Context-Adaptive VLC (CAVLC). In this entropy coding mode, several

VLC tables are used to encode various syntax elements, by taking into consideration the data

already transmitted. These tables implement a total of 32 different VLCs, as a result of having

been designed to match the conditioned statistics of all the syntax elements. Consequently, the

complexity of the CAVLC scheme is also significantly higher than that of UVLC. Nevertheless, for

the typical coding conditions, CAVLC provides bit rate reductions between 2% and 7% regarding

the UVLC scheme.

The efficiency of the entropy coding procedure can be further improved by using the CABAC

technique, which is based on three key elements: binarization, context modelling and binary

arithmetic coding. Binarization provides an efficient mapping of non-binary syntax elements to a

sequence of bits, the so-called bin-string. Each element of the bin-string is then context modelled

and arithmetic encoded to achieve the highest coding efficiency. Such improved performance is

owed to the following properties. Firstly, arithmetic coding allows to assign a non-integer number

of bits to each encoded symbol of the alphabet, which significantly increases the compression

for symbol probabilities that are higher than 0.5. Secondly, context modelling permits to switch

between several probability models based on conditional probabilities that are estimated from the

statistics of already encoded syntax elements. As a result, CABAC typically provides a reduction

in the bit rate between 5% and 15% when compared to CAVLC, but at the cost of a much higher

computational complexity. More details on the VLC and CABAC entropy coding tools can be found

in [69].

E – Deblocking filter

Block-based coding schemes tend to produce blocking artifacts, because block edges are

often reconstructed with less accuracy than interior pixels. The introduction of these artifacts is

often considered to be one of the most visible distortions in the decoded video. As a consequence,

deblocking filters have been generally applied around the block edges as a post-filtering measure

to reduce its visibility. In particular, the H.264/AVC standard defines a mandatory adaptive in-loop

deblocking filter that is used not only to improve the visual quality of the coded video but also to

enforce the decoder to deliver (approximately) the quality level that is intended by the producer.

The strength of this filtering process is controlled by several parameters and thresholds, as

well as by the local characteristics of the picture itself [69]. Moreover, the filter strength can be

adaptively controlled at three different levels: i) at the slice level, to adjust the filter strength to

the characteristics of the video sequence; ii) at the block edge level, where the filter strength

depends on the Inter/Intra prediction decision, motion differences, etc.; and iii) at the sample

level, to distinguish the true image edges from those created by the quantization of the transform
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coefficients. The application of the adaptive in-loop deblocking filter is explained in detail in [69].

1.2.2 The compression vs complexity dilemma

As mentioned in subsection 1.2.1, the global compression gains that are offered by the

H.264/AVC standard result from the mutual and cumulative combination of its new coding features

and not from the application of an individual or specific coding technique or tool. To increase the

flexibility and optimize the coding efficiency for any given application, almost all the H.264/AVC

coding techniques can be configured and adjusted, by using some coding parameters that are

specified in the standard. As a result, such techniques and functionalities often entail additional

complexity in the encoding and decoding procedures. Consequently, an appropriate and careful

use of the H.264/AVC coding tools is highly required, in order to avoid compromising the de-

velopment of commercially viable video solutions due to complexity issues. In fact, it has been

shown that a proper selection and parameterization of specific subsets of H.264/AVC encoding

tools roughly leads to the same compression performance that can be obtained by simultaneously

using all the tools [143]. However, such approach enables a complexity reduction factor of about

6.5 for the encoder and of up to 1.5 for the decoder.

A complexity evaluation of the H.264/AVC coding tools is therefore highly required, so that

the system designers are able to develop new processors capable of efficiently implementing real

time H.264/AVC codecs. Such evaluation should provide the information necessary to optimize

the hardware resources of a given processor for the specific requirements of the target applica-

tions. This analysis is also especially important to the design of power-aware multimedia devices,

which typically consist of portable and mobile embedded systems that dynamically adapt the com-

putational resources of the multimedia processing on the basis of the available power resources.

In such cases, it should be possible to dynamically scale the computational complexity of these

systems, by selecting the most adequate coding tools at any given time instant. This approach

allows stretching the battery life of the system at the cost of a graceful degradation of the com-

pression performance. However, such goals can only be achieved provided that the codecs are

properly optimized to minimize the computational complexity in its two major components, i.e. the

time complexity and the spatial (or storage) complexity.

In the following subsections, these two issues are briefly reviewed and the results of several

studies addressing the complexity of the coding tools considered in the H.264/AVC standard are

summarized.

A – Time complexity

Time complexity is a performance metric that relates the complexity of a given algorithm im-

plementation to the amount of time required for its execution. Hence, when hardware implemen-

tations of a given algorithm are considered, time complexity can be assessed by measuring the

18



1.2 Overview of the H.264/AVC standard

total time required by the hardware structure to produce the required results. Conversely, the

evaluation of the time complexity for software implementations requires taking into account two

different factors, i.e. i) the number of operations required to perform the algorithm implementation;

and ii) the amount of hardware specific cycle counts for the realization of each of those opera-

tions. In addition, the memory bandwidth requirements of the algorithm must be considered in

such assessments, since they reflect the time required to perform the data transfers between the

processor and the memory system.

As a result, it can be concluded that the estimation of the time complexity of a video encoder or

decoder is not a straightforward task. Firstly, because it depends on the intended use of such es-

timate. When considering hardware implementations, worst-case estimates are typically favoured

so as to guarantee the correct circuit operation for the target application. On the other hand,

average-case estimates are preferable for software implementations, due to the extra flexibility

provided by such systems to recover from abnormal or less probable steps of an algorithm. Sec-

ondly, because the complexity estimates heavily depend on the characteristics of the platform to

which the algorithm implementation is mapped into (General-Purpose Processor (GPP), Digital

Signal Processor (DSP), Field-Programmable Gate Array (FPGA), etc.). Hence, two very similar

algorithm implementations generating the same encoding results can present significantly differ-

ent time complexity values, provided that they are assessed using platforms with quite different

characteristics. Lastly, because time complexity is also greatly influenced by external factors,

such as the source video content, resolution or bit rate. As a result, a given algorithm implemen-

tation may provide low execution times for some specific video contents or resolutions (low time

complexity), but fail to do it under different conditions.

B – Storage complexity

Storage complexity evaluates the memory requirements of a given algorithm implementation.

In general, the greater the amount of memory an algorithm implementation uses, the more com-

plex it is. As a consequence, storage complexity is often traded by time complexity in many

software implementations, so as to reduce the system cost at the expense of a modest increase

in the program execution time. This is especially true for platforms based on DSPs and media

processors, where the memory cost is very high.

In the most recent video standards, the storage complexity of a given codec can be evaluated

based on two different storage classes: the memory that is used to store the constant data, which

includes the variable-length decoding tables, the Intra prediction probability tables and other small

constant tables; and the memory that is required for the data processing. This latter class can

be further divided in three different subclasses, reflecting the different levels of the encoder data

structure: i) the memory that is needed to accommodate a whole frame, which encompasses both

the reconstructed and the reference frame memories; ii) the memory that is used to store a line
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of MBs, which includes the tables employed in the loop filtering and Intra prediction; and iii) the

memory that is required to process each MB, which typically covers the temporary buffers used

to store the transform coefficients, prediction values and pixel values.

C – Complexity analysis

As it was previously mentioned, assessing the complexity of a video encoder (or even the

individual contributions of its several encoding tools to the global encoder complexity) is not a

straightforward task. This mostly results from the fact that such evaluation depends on several

different factors: the involved algorithms, the encoding options, the input video sequences and

the implementation platform (e.g. GPP, DSP, FPGA, etc). This is why multiple studies have been

presented in the later years concerning the complexity analysis of several distinct implementations

of H.264/AVC encoders and decoders using quite distinct platforms [52,100,108,124,143,155].

In what concerns the H.264/AVC encoder, the results of such studies have revealed that the

inherent complexity is more seriously influenced by the following features: use of multiple refer-

ence frames, which causes a 25% increase in the complexity for each added frame; and the ME

search range that, when combined with the use of multiple reference frames, can increase the

complexity up to 60 times whenever large search ranges are considered. Nevertheless, several

other tools also significantly contribute to increase the complexity of the encoder. The compu-

tation of the transform and quantization operations augments the time complexity between 7%

and 20%. Furthermore, it also represents a memory access stress of about 20%. The CABAC

entropy coding scheme typically rises the complexity requirements of the encoder by about 10%,

when compared to methods using a single reversible VLC table for all syntax elements. The use

of multiple modes for variable block size ME also increases the encoder time complexity by 2.5%

for each additional mode that is employed. On the other hand, reducing the MV resolution to only

half-pel accuracy allows a reduction of about 10% in the time complexity of the whole encoder. As

for Intra-prediction and deblocking filtering, their effect in the overall complexity greatly depends on

the image content to be encoded. Nevertheless, each of these tools represents a time complexity

increase of less than 10% [143].

Unlike the encoder, the complexity of the decoder has been reported to be more significantly

influenced by four different tools: inverse transform and reconstruction (including inverse quanti-

zation), MC, deblocking filter and entropy decoding. The complexity of the inverse transform and

inverse quantization operations represents, on average, 20% of the total complexity of a decoder,

both in terms of computation time and memory accesses. The use of B-frames in the MC proce-

dure causes an increase in the decoder storage complexity that can vary between 10% and 30%.

However, the extra time that is required to decode such frames only marginally increases the de-

coder complexity. Conversely, the use of the mandatory adaptive deblocking filter increases the

decoder complexity by about 6%, while CABAC represents an increase in the memory accesses
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of about 12%. Similarly to the encoder, the decoder time complexity can be reduced by 15%

provided that MVs with quarter-pel resolution are not used [143].

1.3 Motivation and objectives

The popularity of multimedia centric devices and applications based on digital video is ex-

pected to continue increasing in the near future. Furthermore, the users demand for more, inno-

vative and even better quality video services and applications, like mobile videotelephony, video

streamming over the Internet or interactive and 3-D television, shall also continue to increase in

the forthcoming years for the generality of consumer entertainment and professional video de-

vices. With the latest advances in display and capture technologies, it is also established that

such devices will be required to support even higher resolutions, such as 4096× 2160 pixels (i.e.

the 4k Ultra High Definition Television (UHDTV) format). For example, smarthphones support-

ing the 2560× 1440 Quad-HD @ 30 fps format are already available today [89], while 4k Ultra HD

(3840× 2160) TV devices are expected to be commercially viable in the next couple of years. In

addition to increased spatial resolutions, the temporal frame rates of the involved video sequences

should also increase to around 60 fps and higher.

To enable digital video services with such promising characteristics, video standards employ-

ing efficient compression technologies will have to be generally adopted (e.g. the H.264/AVC

standard) or new ones will have to be designed. In fact, at the time of writing this thesis, the

ITU-T and ISO/IEC have already published the H.265/HEVC standard [70]. When compared with

the currently established state-of-the-art H.264/AVC standard, H.265/HEVC is said not only to

double the data compression ratio at the same level of video quality but also to efficiently support

resolutions up to 8192× 4320 pixels (i.e. the 8k UHDTV format) [129].

According to the analysis presented in subsection 1.2.2, this higher coding efficiency will come

at the expense of greatly increased complexity, bandwidth and data processing rates. This poses

several additional challenges in the design of the upcoming video coding systems, especially

when real time operation and the processing of HD contents is demanded, or when mobile and

other portable and handheld devices with limited computational, storage and energy resources are

considered. These issues shall be even more problematic for the future generations of multimedia

devices, which should have to simultaneously support several different video standards due to

interoperability and compatibility issues. As a result, these systems will have to implement several

distinct video codecs and thus execute multiple coding operations and algorithms, besides all the

more general tasks that must be performed to ensure the correct system operation.

To face this restrictions, future video coding systems will be required to include even higher

performance and cost effective processing structures, in order to being capable of competently

realizing the computation of the most critical and complex operations of the newest (as well as of

21



1. Introduction

the legacy) video standards, like ME, transform and quantization, deblocking filtering, etc. Such

structures should also consist of flexible and modular architectures, so that they can be easily

customised and adjusted (i.e. scaled or configured) to match the requirements of any given video

codec, application or implementation platform. Furthermore, their hardware and power efficiency

must also be relatively high, not only to reduce the implementation costs but also to guarantee a

long operation time for the mobile and handheld equipments that include them.

Although ME is considered to be the most time complex operation of a video encoder, which

is why many researchers have concentrated their work on this topic 4, the global performance

and the efficiency of a video codec is also constrained by other operations, as it is discussed

in section 1.1. For instance, transform and quantization are mandatory coding tools in all block-

based motion compensated transform coding schemes, independently of the considered video

standard, which greatly influence the performance of a video coding system both in terms of

compression efficiency and processing requirements.

In what concerns the H.264/AVC standard, such data processing requirements can be incred-

ibly high for video codecs capable of operating in real time or of processing HD video contents,

as it can be seen in Figure 1.10. For example, the real time encoding of video sequences in the

nowadays well established 1080p HDTV format (1920×1080 pixels @ 30 fps) requires high perfor-

mance computational systems capable of sustaining processing rates as high as 94×106 samples

(i.e. pixels) per second. To accomplish such rates, the transform and quantization modules of the

video codecs must compute over 460 Giga Operations Per Second (GOPS) and 930 GOPS, re-

spectively 5 . Moreover, they must support data transfers with the system memory of over 1 Gbps,

which requires the use of high performance memory modules (e.g. DDR3-800). In what con-

cerns the ”future” standard TV format (i.e. the 4k UHDTV format), which is already supported by

many high end and expensive TV equipments, computers, smartphones and tablets, the involved

processing requirements are even higher, as it can be seen in Figure 1.10, Figure 1.11 and Fig-

ure 1.12. The data processing requirements of video codecs supporting other modern standards

are almost identical, since most of these standards have adopted quite similar coding procedures

(including the transform and quantization algorithms).

For all these reasons, almost all the existing systems with multimedia capabilities make use

of dedicated hardware structures embedded in some specialized processing cores (i.e. Graphics

Processing Unit (GPU) and DSP) to perform these operations. In fact, this is also why transform

4The author of this document has also made some contributions to such research effort with the investigation he
performed in the scope of his Master of Science (MSc) thesis [28–30] and as leading work for this Philosophiae Doctor (PhD)
thesis [27,31,32,39,123].

5In video coding, a metric that is commonly used to assess the algorithm complexity is the amount of Reduced
Instruction Set Computer (RISC)-like operations [7]. By using this metric, it can be estimated that the computation of an
8-points one-dimensional (1-D) DCT (see Equation 4.1) requires, at least, 8 image data loads, 8 coefficient data loads, 8
intermediate results data loads, 8 multiply-and-accumulate (MAC) operations and 8 data stores, for a total of 40 operations
per image sample (i.e. pixel). As a consequence, 2× 40× 64 = 5120 operations must be realized for the computation of
the corresponding 2-D DCT, by using the row-column decomposition approach. The amount of RISC-like operations that
are required for the computation of the H.264/AVC forward and inverse quantization procedures (see Equation 5.1 and
Equation 5.4, respectively) can be estimated also by following this approach.
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Figure 1.11: Computational rate requirements of an H.264/AVC codec for real time opera-

tion. The amount of operations is specified as RISC-like operations [7].
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Figure 1.12: Bandwidth requirements of an H.264/AVC codec for real time operation.
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coding has been an active research topic for several decades, with the publication of multiple

studies addressing the definition of new transforms and the design of efficient algorithms and

circuits for their computation. Nonetheless, up until now not many of these research works have

resulted in the proposal of high performance and hardware efficient transform and quantization

architectures that can be easily customised or scaled, in order to successfully develop efficient

video encoders and decoders compliant with the requirements of the ITU-T H.264/AVC recom-

mendation (and other recent digital video standards) for several different implementation platforms

(e.g., FPGA and Application Specific Integrated Circuit (ASIC)), application domains or classes of

video coding equipment.

1.4 Original contributions

In accordance with the previous analysis, the research work presented in this PhD thesis

focuses on the development of new high performance and configurable architectures for the com-

putation of the transform and quantization operations specified in the H.264/AVC standard.

In the following paragraphs it is presented a brief description of the main contributions of the

conducted research work.

• Development of a multi-transform architecture for the computation of the H.264/AVC

transforms

One of the main contributions of this PhD research work is the proposal of an innovative high

performance and scalable transform architecture that is capable of efficiently supporting all

the transformation procedures defined in the H.264/AVC standard, even for the processing

of high definition contents in real time (e.g. the 4k UHDTV format). This Multi-Transform

Architecture (MTA) presents a modular and scalable hardware structure, which allows it to

be easily configured to efficiently compute any of the 2× 2, 4× 4 and 8× 8 H.264/AVC trans-

forms. Furthermore, it can be configured to support various sets of transforms with distinct

kernel values and sizes, making it highly suitable also for the realization of multi-standard

transform cores. The flexible design that was adopted for this architecture provides the

means required to better adapt it to the specific performance and hardware requirements of

the target video coding systems and applications.

The most relevant contributions of this study were published in the following scientific jour-

nals and conference proceedings:

[23] T. Dias, S. López, N. Roma, and L. Sousa. Efficient and programmable processing

unit for H.264/AVC systolic unified transform engines. In VII Jornadas sobre Sistemas

Reconfiguráveis (REC 2011), pages 13–19, Feb. 2011;

[24] T. Dias, S. López, N. Roma, and L. Sousa. A flexible architecture for the computation

of direct and inverse transforms in H.264/AVC video codecs. IEEE Transactions on
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Consumer Electronics, 57(2):936–944, May 2011;

[25] T. Dias, S. López, N. Roma, and L. Sousa. High throughput and scalable architecture

for unified transform coding in embedded H.264/AVC video coding systems. In Inter-

national Conference on Embedded Computer Systems: Architectures, Modeling and

Simulation (SAMOS 2011), pages 225–232, July 2011. Best Paper Award;

[26] T. Dias, S. López, N. Roma, and L. Sousa. Scalable unified transform architecture

for advanced video coding embedded systems. International Journal of Parallel Pro-

gramming, 41(2):236–260, Apr. 2013;

[36] T. Dias, N. Roma, and L. Sousa. High performance multi-standard architecture for

DCT computation in H.264/AVC high profile and HEVC codecs. In Conference on

Design & Architectures for Signal and Image Processing (DASIP 2013), pages 14–

21, Oct. 2013. Best Paper Award;

[35] T. Dias, N. Roma, and L. Sousa. Exploiting coarse-grained parallelism in multi-

transform architectures for H.264/AVC high profile codecs. In Conference on Elec-

tronics, Telecommunications and Computers (CETC 2013), pages CD–ROM, Oct.

2013. ISBN: 978-989-97531-3-6;

[37] T. Dias, N. Roma, and L. Sousa. Unified transform architecture for AVC, AVS, VC-

1 and HEVC high-performance codecs. EURASIP Journal on Advances in Signal

Processing, 2014(108), July 2014.

• Development of quantization architectures for the H.264/AVC standard

Another very important contribution of this research work consists in the definition of a new

class of high performance architectures with a reduced hardware cost for the computation of

the H.264/AVC forward and inverse quantization operations. Such processing structures are

based on a highly configurable design, which can be customised to realize both dedicated

and unified quantization modules for H.264/AVC codecs. In addition, it supports multiple

hardware configurations offering distinct performance vs hardware cost trade-offs. With this

approach, it is possible to adjust the processing rate of the quantization modules not only

to the performance of the remaining processing modules of the video codec but also to the

requirements of the target application. Hence, such remarkable versatility allows this class

of architectures to optimally address the requirements of any given quantizer.

Most of these contributions were published in the following scientific conference proceed-

ings:

[33] T. Dias, N. Roma, and L. Sousa. Optimized forward/inverse quantization unit for

H.264/AVC codecs. In Conference on Electronics, Telecommunications and Com-

puters (CETC 2011), pages CD–ROM, Nov. 2011. ISBN: 978-989-97531-0-5;
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[34] T. Dias, N. Roma, and L. Sousa. Reconfigurable unified architecture for forward and

inverse quantization in H.264/AVC. In VIII Jornadas sobre Sistemas Reconfiguráveis

(REC 2012), pages 75–82, Feb. 2012;

[40] T. Dias, L. Rosário, N. Roma, and L. Sousa. High performance unified architecture

for forward and inverse quantization in H.264/AVC. In 15th Euromicro Conference on

Digital System Design (DSD 2012), pages 632–639, Sept. 2012.

• Proposal of an integrated transform and quantization architecture for the H.264/AVC

standard

To reduce the impact of the transform coding module in the performance of video codecs

compliant with the H.264/AVC standard, this research work also comprehended the investi-

gation of a new integrated transform and quantization architecture for the H.264/AVC stan-

dard. The presented processing structure is capable of implementing not only the fun-

damental transform and quantization procedures but also the default forward and inverse

transform and quantization coding paths, the Intra16×16 transform and quantization coding

path and all the optional forward and inverse transform and quantization coding paths based

on the 8 × 8 DCT that are defined in the high profiles of the H.264/AVC standard. In order

to maximize the offered data processing rates, this architecture performs the transform and

quantization operations in parallel. Such computations are realized by using the transform

and quantization architectures that were also developed in the scope of this PhD thesis.

Some preliminary and preparatory aspects of the study that was conducted to devise this

architecture were already presented in three international scientific conferences:

[122] N. Sebastião, T. Dias, N. Roma, and P. Flores. Integrated accelerator architecture

for DNA sequences alignment with enhanced traceback phase. In International Con-

ference on High Performance Computing & Simulation (HPCS 2010), pages 16–23,

June 2010;

[31] T. Dias, N. Roma, and L. Sousa. H.264/AVC framework for multi-core embedded

video encoders. In International Symposium on System-on-Chip (SOC 2010), pages

89–92, Sept. 2010;

[32] T. Dias, N. Roma, and L. Sousa. Hardware/software co-design of H.264/AVC en-

coders for multi-core embedded systems. In International Conference on Design and

Architectures for Signal and Image Processing (DASIP 2010), pages 231–238, Oct.

2010. Best Poster Award.

In addition, the research work that was developed in the scope of this thesis was also distin-

guished with the following awards:

• Best Paper Award in the 2010 Conference on Design and Architectures for Signal and
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Image Processing (DASIP 2010), which was held in Edinburgh, United Kingdom, in October

2010;

• The ”Stamatis Vassiliadis” Best Paper Award in the 11th International Conference on Em-

bedded Computer Systems: Architectures, Modeling and Simulation (SAMOS XI), which

was held in the Greek island of Samos in July 2011;

• Best Poster Award in the 2013 Conference on Design and Architectures for Signal and

Image Processing (DASIP 2013), which was held in Cagliari, Italy, in October 2013.

1.5 Outline

This thesis is organized in seven chapters. This introductory chapter not only presents the

motivation and the objectives of the research work supporting this PhD thesis but also the most

relevant background information concerning video coding and the H.264/AVC standard. Chap-

ter 2 is devoted to the study of the transform coding modules used in digital video codecs, with a

special emphasis on the transform and quantization techniques employed in the H.264/AVC stan-

dard. For such purpose, the main principles of transform coding are briefly reviewed, together

with the presentation of an overview of the transform and quantization operations. In chapter 3 it

is presented the state of the art concerning the most relevant architectures and systems that have

been proposed in the literature to efficiently support the computation of these two operations.

Then, chapter 4 introduces the scalable Multi-Transform Architecture (MTA) that was developed in

the scope of this thesis, while chapter 5 discloses the proposed class of quantization architectures

for the H.264/AVC standard. After these two chapters, which present the major contributions of

this PhD research work, a comprehensive set of experimental results concerning the implemen-

tation of the proposed processing structures using FPGA technologies is provided in chapter 6.

Such results not only are thoroughly analysed but also compared with some of the more relevant

alternative designs described in the literature. Furthermore, an integrated transform and quan-

tization architecture for the H.264/AVC standard is also proposed and discussed in this chapter.

Finally, chapter 7 concludes the thesis with the presentation of a brief summary of the main con-

tributions of the performed research work. In addition, some possible directions for future work in

this research domain are also discussed.
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Transform coding is one of the basic tools that is used in almost all lossy audio, image

and video coding applications to improve the compression ratio of the encoded data. Similarly

to [95,142], in this thesis we consider that this tool comprehends three distinct operations that are

performed in cascade, i.e. transform, quantization and entropy coding. The transform is employed

to decorrelate the input data represented in the spatial (pixel) domain and compact its energy in

a frequency domain. Quantization is subsequently applied to the obtained transform coefficients,

the stage at which the loss of video detail is traded by the desired video compression ratio. Finally,

the quantized coefficients are entropy coded using VLCs or arithmetic codes, in order to reduce

the average number of bits that are used to represent the compressed video bit stream.

In the following sections, the typical transform coding procedure applied in block-based digital

video coding is briefly reviewed, with focus on the transform and quantization operations. First,

the basic concepts and principles of these two techniques are analysed in section 2.1. Then, the

transform and quantization procedures adopted by the H.264/AVC standard are presented and

discussed in more detail in subsections 2.2.1 and 2.2.2, respectively.

2.1 Fundamentals of transform coding

As discussed in section 1.1, transform coding is a fundamental tool used in digital video coding

to obtain the level of data compression required for a given application. To achieve such goal, this

tool exploits both the characteristics of the HVS and the correlations commonly found among

pixels in a given picture neighbourhood 1, in order to reduce the entropy of the picture and thus

minimize the amount of bits required to represent its data.

As it can be seen in Figure 2.1, such lossy compression procedure involves three distinct

tasks, each one exploiting a different kind of redundancy in the picture data. In what concerns

the operation of the encoder, the spatial redundancy in a picture is first exploited with the com-

putation of a linear transform involving the input pixels. The resulting transform coefficients are

Quantizer
Forward

Transform
Communication Channel

Or Storage Media
Source 

Data
Entropy 
Encoder

(a) Encoder.

Inverse
Quantizer

Entropy 
Decoder

Communication Channel
Or Storage Media

Source 
Data

Inverse
Transform

(b) Decoder.

Figure 2.1: Transform-based picture coding procedure.

1The tendencies of pixels to be similar to their neighbours can be the result of the gradual light changes or the
continuity, the texturing and the boundaries of the represented objects, or even due to the similarity of the multiple objects
that are represented in the picture.
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then individually quantized, by exploiting the characteristics of the HVS so as to discard the in-

formation perceptually irrelevant to the human eye, i.e. the psychovisual redundancy. Finally, the

entropy encoder employs its knowledge of the transform and quantization processes to minimize

the amount of bits required to encode the symbols generated by the quantizer, i.e. the statistical

redundancy. Regarding to the decoder, it implements a very similar 3-steps procedure to recon-

struct the picture, albeit the losses introduced by the quantization procedure. As it can be seen in

Figure 2.1(b), this approach involves the inverse operations of the ones computed by the encoder,

which are applied in the reverse order.

In the following subsections, the transform and quantization procedures commonly used in

digital video coding are analysed more thoroughly. However, since the discussion about entropy

coding is out of the scope of this thesis, for further information on this subject the interested reader

is referred to [48,91].

2.1.1 Transform

In digital video coding, linear transforms are used to reduce the inter-pixel redundancy in the

residual pictures resulting from the Intra- and Inter-prediction procedures (see subsection 1.1.1).

This is achieved with the decorrelation and the representation of the original data in the transform

domain, where the characteristics of the HVS can be more efficiently exploited to achieve data

compression, as discussed in subsection 2.1.2. Such lossless operation consists in the compu-

tation of a 2-D linear transform, as shown in Equation 2.1, which mainly redistributes the picture

energy into a small number of transform coefficients in a more compact manner. In this equation,

x represents the data in the spatial (pixel) domain and y the corresponding coefficients in the

transform domain, while c consists of the transform kernel representing the 2-D linear transforma-

tion.

ykl =

N−1
∑

i=0

N−1
∑

j=0

xijcikcjl, k, l = 0, ..., N − 1 (2.1)

In order to maximize the coefficient decorrelation, this transformation procedure should ideally

involve the whole pixels of the picture [91]. However, in block-based compression procedures, like

the ones adopted by the ITU-T H.26x [66,67,69,70] and ISO/IEC MPEG-x [61,62,68] video standards,

transforms are computed only for square blocks of pixels and on a block-by-block basis, with

the block size (N ) typically in the range of 21 to 25. This alternative computational approach

is preferable for two specific reasons. On the one hand, it allows reducing the complexity of

the transformation procedure, i.e. the computation and the storage requirements. On the other

hand, the computation of larger transforms does not offer significantly better compression levels,

since according to the rate distortion theory the pixel covariance function decays rapidly at long

distances [7]. However, when high compression ratios are required, this simplified block-based

approach can also introduce noticeable reconstruction errors at the block boundaries, i.e. blocking
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artifacts [91]. In such cases, the boundaries between adjacent blocks become highly visible, due

to the high frequency coefficients of the block being either discarded or more coarsely encoded

by the quantizer, as discussed in subsection 2.1.2.

From the previous discussion, it can be concluded that the implementation of a good transform-

domain block coding procedure requires the definition of a proper transform, as well as the optimal

size of the picture blocks. From the compression point of view, a block with N ×N pixels should

be optimally processed by using a transform with size N that presents the following characteris-

tics [48]:

• Reversibility, in order to guarantee that the input signal can be recovered to its original do-

main, and without errors, after applying the transform followed by its corresponding inverse

transform. This is an essential feature, since video decoders must recover the original data

in the spatial domain prior to displaying it;

• Energy compaction, so that the energy of the original picture can be concentrated, without

any loss, in the smallest number of transform coefficients as possible;

• Decorrelation, to maximize the compression, by guaranteeing that each transform coefficient

always conveys additional information that presents no or, at most, small repetition of the

data;

• Data independence, in order to achieve a good compression efficiency for different picture

types and with reduced complexity requirements;

• Low complexity, to enable the use of fast algorithms for its computation, which is desirable

for both software and hardware implementations.

To comply with these requirements, the transforms most commonly adopted in digital video

coding are unitary transforms [75]. This class of transforms is mainly characterized by including

kernels with orthonormal basis functions, which presents several advantages for video and im-

age compression. In fact, the kernel of a unitary transform not only provides good decorrelation,

energy compaction and energy preservation representations of the transformed data but also is

suitable to implement both the forward and the inverse transformation procedures (i.e. reversibil-

ity) with minor changes.

Among all the unitary transforms, the Karhunen-Loève Transform (KLT) [8] is an optimal trans-

form in terms of decorrelation and energy compaction representation, since it minimizes the mean

square error between the original and the transformed pictures. However, this transform presents

several implementation-related problems, because its kernel is not composed of a fixed set of

basis functions. In fact, the kernel basis functions are computed as functions of the input pic-

ture data under processing, which makes them data dependent. Consequently, the transform
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kernel must be computed for each picture block, which greatly increases the computational re-

quirements of video encoders. Since the transform kernels cannot be precomputed, the use of

the KLT in video coding also requires a continuous transmission of the transform kernel coeffi-

cients to the decoder. This significantly affects the transmission bandwidth requirements of the

video encoder, which quite often is a very serious problem in most transmission media, espe-

cially in wireless environments. Moreover, the transmission of both the kernel and the coefficient

values, typically, does not pay-off in terms of compression ratio. Lastly, the computation of the

KLT requires full matrix multiplication, therefore demanding unreasonable computation resources

due to the fact that the KLT kernel is non-separable. Consequently, the use of the optimal KLT

is rather uncommon in digital video coding, as it fails to fulfil the data independence and the low

complexity requirements demanded for a ”proper” and efficient transform. As a result, the most

relevant legacy digital video and image standards (e.g. H.261/3, MPEG-1/2/4 and JPEG) have all

adopted the type-II Discrete Cosine Transform (DCT) [119], or other DCT-like transforms, because

it consists of a modest complexity and robust approximation to the optimal KLT, while still offering

very similar performance results in terms of energy compaction, as well as fast implementations.

Mathematically, for a square picture block with N ×N samples, the forward and inverse type-II

DCT can be formulated as shown in Equations 2.2 and 2.3, respectively, with k, l = 0, 1, ..., (N−1)

and ξ(.) given by Equation 2.4.

ykl =
2

N
ξ(k)ξ(l)

N−1
∑

i=0

N−1
∑

j=0

xij cos

(

k
(2i+ 1)π

2N

)

cos

(

l
(2j + 1)π

2N

)

(2.2)

xij =
2

N
ξ(i)ξ(j)

N−1
∑

k=0

N−1
∑

l=0

ykl cos

(

i
(2k + 1)π

2N

)

cos

(

j
(2l + 1)π

2N

)

(2.3)

ξ(p) =

{

1√
2
, if p=0

1, otherwise
(2.4)

It is clear from Equation 2.2 that the first basis function of the DCT kernel ((i, j) = (0, 0)) cor-

responds to a constant function, which represents the average value of the block under trans-

formation. Consequently, this value is typically known as the DC coefficient, in analogy to what

happens with the circuits analysis theory in electrical engineering. In accordance, all the other

transform coefficients are known as AC coefficients and it can be noted that their corresponding

basis functions exhibit a progressive increase in frequency, both in the vertical and horizontal di-

rection. In Figure 2.2 it is depicted this behaviour of the DCT basis functions for N = 8, which

has been extensively used in the legacy ISO/IEC and ITU-T image and video standards, i.e. the

JPEG image standard and the MPEG-1/2/4 and H.261/3 video standards.

Several different algorithms for fast and efficient computation of the DCT have been devel-

oped, as a result of the wide application of this transform. Many of them take advantage of the

relationships between the DCT and various existing fast transforms (e.g. [4,101,119,135,136]), while
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Figure 2.2: 8× 8 DCT basis functions.

others are based on the sparse factorization of the DCT kernel [53,99]. Alternative proposals also

consist of recursive implementations [15,82], which includes the row-column decomposition strategy

as a result of the separability property that characterizes the 2-D DCT [119]. In such approach, a

2-D transform can be computed as two consecutive 1-D transforms operating on the rows and

columns of the predicted blocks. The application of such methodology to Equation 2.2 is shown

in Equations 2.5 and 2.6, respectively.

y′kj =

√

2

N
ξ(k)

N−1
∑

i=0

xij cos

(

k
(2i+ 1)π

2N

)

(2.5)

ykl =

√

2

N
ξ(l)

N−1
∑

j=0

y′kj cos

(

l
(2j + 1)π

2N

)

(2.6)

As it can be seen, the row-column decomposition strategy poses several advantages in terms

of the involved computation time, since it allows to significantly reduce the computational com-

plexity from O(N4) to O(N3) [91]. Nevertheless, the implementation of all these DCT algorithms

also presents several drawbacks, mostly resulting from the fact that all the entries in the trans-

form kernels are irrational numbers. Hence, a straightforward computation of the DCT requires

floating-point implementations involving expensive and slow arithmetic circuits. In addition, the

use of such circuitry may cause drift (i.e. mismatch between the decoded data in the decoder

and in the encoder), as a result of the forward and inverse transforms being implemented in

different machines with distinct floating-point representations and rounding operations. Modern

video standards like H.264/AVC [111] (or the AVS [150], VC-1 [128] and H.265/HEVC [129] standards)

are very sensitive to prediction drift, since they make extensive use of prediction to increase the

offered compression efficiency. Consequently, in order to avoid all the problems mentioned above,

state-of-the-art video standards have been adopting integer orthogonal transforms with the same

symmetry and energy compaction properties of the DCT.
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2.1 Fundamentals of transform coding

Although several different approaches can be used to obtain viable integer transform ker-

nels [4,92], the theory of dyadic symmetry [10] has been considered in the development of almost

all the newest video standards [111,128,129,150]. This technique allows to compute the transform not

only by using reduced bit-width integer arithmetic (e.g. 16-bits) but also by exclusively considering

integer multiplications and additions. However, the basis vectors of the resulting integer transform

kernels frequently do not have the same norm [102]. Consequently, it becomes necessary to in-

clude an additional normalization stage in the video coding algorithm. Such arrangement is shown

in Equation 2.7, which formulates the computation of the 2-D transform given in Equation 2.2 us-

ing the matrix notation in a factorized form. In this equation, A is a transform matrix whose entries

correspond to the DCT basis functions and C is the corresponding normalized transform matrix,

while E is a matrix of Scaling Factors (SFs).

Y = AXAT = (CXCT )⊗ E (2.7)

As it can be seen, the original transformation procedure is factorized into two distinct op-

erations: i) the computation of a 2-D transform based on an orthonormal kernel C and ii) an

element-by-element matrix multiplication (⊗) involving the SFs. In most video standards, these

SFs are integrated into the quantization stage of the video codecs [128,129,143,150], in order to mini-

mize the complexity of the coding procedure. In fact, that is the case of the H.264/AVC standard,

as discussed in subsection 2.2.2.

2.1.2 Quantization

In general terms, quantization can be defined as the process of mapping a large set of input

values y, described in a generic source alphabet ΛN , to a smaller set of output values ŷ that

compose the reproduction codebook C = {ŷi}i∈L ⊂ ΛN . In this definition, L is a finite or countable

infinite index set, while Λ can be a set of both real and integer scalars (N = 1) or vector values

(N > 1). Since the cardinality of the reconstruction codebook is smaller than the one of the

source alphabet, quantization can provide an effective means to achieve data compression. This

is why quantization is a technique commonly used in lossy data compression schemes, like the

ones implemented in the most relevant digital video standards (e.g. the ITU-T H.26x [66,67,69,70]

and the ISO/IEC MPEG-x [61,62,68] standards), in order to reduce the entropy of the transform

coefficients. In such systems, the implementation of the quantization algorithm (i.e. the quantizer)

is decomposed in two distinct stages, as shown in Figure 2.3.

Classification
Reconstructed

Data
Source 

Data
Reconstruction

Figure 2.3: Generic architecture of a quantizer.
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On the encoder side, the quantizer implements a classification procedure, in which the range

of the source input is classified into K non-overlapping intervals Ii, with i = 1, ...,K and K ∈ L.

According to this procedure, commonly denominated as forward quantization, all the source inputs

y that fall into a given quantization interval Ii are associated with the same quantizer index i. The

complementary reconstruction procedure, also known as inverse quantization, is implemented on

the decoder side, where each quantization interval is represented by an output (or reconstruction

value) ŷi. Naturally, all the output values are specified in the reconstruction codebook C and can

be obtained by implementing the mapping y ∈ Ii ⇒ ŷ = ŷi. Note that the quantization intervals are

defined based on the quantizer decision boundary values bi and thus the length of each interval,

which is commonly known as the Quantization Step (Qstep), is given by ∆i = [bi−1, bi[. The two

extreme limits b0 and bK correspond to the outer constraints of the source input signal, in the

range [Ymin, Ymax], and are defined as b0 = Ymin and bK = Ymax.

From the previous discussion, it can be easily concluded that the quantization procedure can

be used to compress source data, but at the cost of irreversibly introducing some amount of dis-

tortion (i.e. an error) in the output data. This results from the fact that the reconstructed data quite

frequently differs from the original one, due to the loss of precision imposed by the implemented

non-injective many-to-one mapping process. In general, the output data values ŷi are at the mid-

points i∆i − ∆i

2
. Therefore, they can present a quantization error in the range [−∆i

2
, ∆i

2
] with a

variance of
∆2

i

12
[91], assuming equal length intervals. As a result, it can be concluded that the main

goal when designing a successful quantizer is to minimize the distortion for a given source input,

given a fixed number of output values, i.e. discretization intervals.

In video coding algorithms, this rate-distortion optimized quantization approach is highly rel-

evant. In fact, it enables an encoder to insert a certain degree of distortion that is imperceptible

to the HVS in the encoded video, in order to compress such data within the limits of the bit rate

supported by the target communication channel or storage media. In fact, the most commonly

used video standards adopt this approach, by employing scalar quantizers [91] to compress all the

transform coefficients of both the Intra and Inter-predicted blocks. The involved quantization algo-

rithms typically consist in the division of each of these frequency domain coefficients (yij) by an

integer qij and then rounding the resulting value to the nearest integer, as shown in Equation 2.8,

where i, j = 1, ..., (N − 1) and N is the block size.

zij = round

(

yij

qij

)

(2.8)

The quantization step values qij are typically obtained by using quantization tables qij = Q(i, j)

that are designed based on psychovisual studies, with the goal of maximizing the compression

ratio while minimizing the perceptual losses in the encoded pictures. As a result, the entries in

such tables tend to have larger values towards the higher frequency basis functions (i.e. the lower

right corner of the transform blocks), to which the HVS is much less sensitive. Moreover, differ-

ent quantization tables are also used in the Intra and Inter-prediction procedures of some video
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2.1 Fundamentals of transform coding

standards, so that the amount of distortion that is introduced in the encoded data can be more ef-

ficiently managed before the quantization error becomes visible. As an example, in Equations 2.9

and 2.10 it is presented the quantization tables used in the ISO/IEC MPEG-1 standard for the

Intra and Inter-coding procedures, respectively.

QIntra =

























8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

























(2.9)

QInter =

























16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16

























(2.10)

For the previously mentioned reasons, different rounding operations are also commonly em-

ployed in the processing of the DC and AC coefficients of the transform blocks, as it is shown in

Figure 2.4. While the AC coefficients are quantized using a mid-treat quantizer [91], which uses the

rounding to the nearest integer operation shown in Equation 2.8, the DC coefficients are typically

quantized using a mid-rise quantizer [91]. This type of quantizer, whose definition is presented

in Equation 2.11, is based on the floor operator (⌊.⌋) and presents an average quantization er-

ror smaller than that of the mid-treat quantizer. Consequently, it can be used to encode the DC

coefficients more efficiently, since they have a significant impact in the subjective quality of the

encoded pictures and seldom are zero.

(a) Mid-tread quantizer. (b) Mid-rise quantizer.

Figure 2.4: Input-output characteristic of a uniform quantizer.
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zij =

⌊

yij

qij

⌋

(2.11)

In contrast, the mid-treat quantizer leaves a center ”dead zone” in the quantization space,

where a large input range is mapped to zero. Such characteristic, which is depicted in Fig-

ure 2.4(a), is important when the input data fluctuates between small positive and integer values,

since it can be used to represent the zero value for a much larger range of values and thus to im-

prove the compression efficiency. This is the case of the AC transform coefficients, which usually

present very small values, especially for the higher frequency basis functions of the considered

transform, to which the HVS is much less sensitive.

2.2 Transform coding in the H.264/AVC standard

The H.264/AVC standard also implements the classical block-based transform and quantiza-

tion coding procedure. However, the involved transform and quantization operations significantly

differ from the ones adopted in previous ITU-T H.26x and ISO/IEC MPEG-x standards, in order

to maximize the trade-off between the offered compression efficiency and the resulting visual dis-

tortion for the encoded video sequences. As a result, in H.264/AVC these two operations not

only present significant improvements to its classical realizations but also are much more com-

plex and tightly coupled. In the following subsections, the H.264/AVC transform and quantization

procedures are briefly reviewed.

2.2.1 Hierarchical transformation procedure

The transformation procedure defined in the H.264/AVC standard consists of a two-level hi-

erarchical transform path based on multiple integer transforms, namely, the forward and inverse

8 × 8 and 4 × 4 integer DCTs and the 4 × 4 and 2 × 2 Hadamard transforms [111]. This innovative

approach not only allows increasing the compression performance offered by video encoders, due

to the adoption of multiple transform block sizes, but also eliminating the propagation of rounding

drift errors inside the encoder loop in the streaming direction, i.e. from the encoder to the decoder.

Moreover, it alleviates the computation and the memory bandwidth requirements of the transform

operation [102], which are very important features in the design of high performance and efficient

transform computation modules, especially when video coding systems are required to operate in

real time.

As it is shown in Figure 2.5, in the first transform level of the default coding mode of the

H.264/AVC standard, a 4 × 4 ”core” transform is applied to all the 4 × 4 luma and chroma blocks

of residual data resulting from either the motion-compensated Inter-prediction or the spatial Intra-

prediction stages. This transform represents a simplified integer DCT, where the scaling factor

was transferred to the subsequent quantization stage of the encoding algorithm [120]. As a conse-
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Figure 2.5: Hierarchical transform paths defined in the H.264/AVC standard.

quence, the considered forward and inverse transform kernels contain only four different power

of 2 values each, as it can be seen in Equations 2.12 and 2.13, respectively. This characteristic

greatly minimizes the complexity of these transforms, by allowing their computation using only

addition and shift operations operated in 16-bits integer arithmetic.

C4×4f =









1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1









(2.12)

C4×4i =









1 1 1 1
1 1

2
− 1

2
−1

1 −1 −1 1
1
2

−1 1 − 1
2









(2.13)

The second level of the transform procedure is based on the Hadamard transform [8] and pro-

vides the means required to better exploit the redundancies in smoother areas of a picture. For

such purpose, the Hadamard transform is used to process the DC coefficients of the transformed

blocks, already computed in the previous level using the 4 × 4 integer DCT. Nonetheless, two

distinct Hadamard transforms are used to process the DC coefficients corresponding to the luma

and chroma blocks. For the MBs that are encoded using the Intra16×16 prediction mode, a 4× 4

Hadamard transform is used to process the sixteen DC coefficients of all the 4 × 4 luma blocks.

Conversely, a 2 × 2 Hadamard transform is used to process the two sets of 4 chroma DC coeffi-

cients belonging to the four 4× 4 chroma blocks of each MB in all the coding modes.

Likewise the 4 × 4 integer DCT, the 4 × 4 Hadamard transform is also an integer transform

but with an even more reduced complexity. In fact, it can be implemented by using only integer
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additions and subtractions, since its kernel contains only the 1 and −1 coefficients, as shown in

Equation 2.14. Moreover, the same kernel can be used to compute both the forward and inverse

transforms due to its symmetric nature. Regarding to the 2 × 2 Hadamard transform, its kernel

consist of a sub-sampled version of the 4 × 4 Hadamard transform kernel and therefore contains

only the first two entries of rows 0 and 2 of such kernel, as represented in Equation 2.15. Once

again, the same kernel is used to compute the inverse and the forward 2×2 Hadamard transforms,

as a result of its symmetric nature.

H4×4 =









1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1









(2.14)

H2×2 =

[

1 1
1 −1

]

(2.15)

The high profiles defined in the FRExt amendment of the H.264/AVC standard also allow the

processing of MBs composed of luma blocks with 8× 8 samples [111]. In such cases, the transform

process consists only of the first transform level and an 8 × 8 integer transform (based on the

type-II DCT) is used to compute all the 64 coefficients of the four luma blocks composing the MBs

that are encoded either in the Intra8×8 prediction mode or in any Inter prediction modes. Likewise

the Hadamard transforms, the forward and inverse 8 × 8 integer transforms can share the same

kernel, as shown in Equation 2.16. Nevertheless, since the involved transformed coefficients are

of greater magnitude and more diverse, the complexity of these kernels is relatively higher, as it

can be seen in Equation 2.17. Hence, the dynamic gain of these kernels is also relatively higher,

which compromises the computation of the forward transform using only 16-bits arithmetic. As a

result, in the computation of the forward 8× 8 transform, a rescaling operation must be performed

after the row-wise transform stage.

C8×8f =
1

8
× C8×8i (2.16)

C8×8i =

























8 8 8 8 8 8 8 8
12 10 6 3 −3 −6 −10 −12
8 4 −4 −8 −8 −4 4 8
10 −3 −12 −6 6 12 3 −10
8 −8 −8 8 8 −8 −8 8
6 −12 3 10 −10 −3 12 −6
4 −8 8 −4 −4 8 −8 4
3 −6 10 −12 12 −10 6 −3

























(2.17)

2.2.2 Quantization procedure

Similarly to other video standards, the H.264/AVC quantization procedure is performed by

using a scalar quantizer. However, the adopted quantizer significantly differs from the ones im-

plemented in previous ITU-T and ISO/IEC MPEG video standards, implementing a more complex
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2.2 Transform coding in the H.264/AVC standard

non-linear quantization function. This allows the video encoders not only to maximize the trade-

off between the bit rate and the picture quality but also to more accurately manage it. To achieve

such goal, the H.264/AVC quantizer comprehends 52 different Qstep values, in the range between

0.625 and 224, that are distanced apart by 6
√
2, i.e. 12%. These steps are indexed by a Quantiza-

tion Parameter (QP ) that is common to all the coefficients of a transformed block2. Moreover, any

value of the Qstep function can be derived from its first 6 values using Equation 2.18. As a result,

a wide range of quality levels can be efficiently addressed by this quantization process, since fine

control is possible at the lowest quantization levels and coarse quantization is not burdened [120].

Qstep(QP ) = Qstep(QP%6)× 2⌊QP
6 ⌋ (2.18)

The very strong inter-dependencies that the H.264/AVC standard introduced between the

transform and the quantization procedures also significantly influence the operation of the quan-

tizer. In particular, the complexity of the H.264/AVC quantization operation was greatly increased,

due to the incorporation of the SFs that were left over from the improved H.264/AVC transform

path, in order to allow the computation of the transforms by solely using integer arithmetic [120].

Nonetheless, the benefits to the whole coding algorithm that resulted from realizing the transform

coding operations in integer arithmetic greatly compensate such penalty.

By following the above considerations, Equation 2.19 represents the H.264/AVC quantization

procedure, where zij is a quantized coefficient, yij is the corresponding transform coefficient, and

i and j are the line and column indexes for the considered blocks of coefficients, respectively.

zij = round

(

yij
SFij

Qstep(QP )

)

(2.19)

As it can be seen, despite its simplicity, this formulation considers two relatively complex arith-

metic operations: a multiplication and a division, both involving rational numbers. Nonetheless,

an alternative representation based on integer arithmetic operations can also be adopted for the

H.264/AVC quantization algorithm, as it is presented in [102] and discussed in chapter 5. Such

formulation is shown in Equation 2.20 and replaces the division by an integer multiplication and

an arithmetic shift-right operation, which greatly simplifies the computational complexity of the

quantization operation.

zij = round

[

(yij ×MF (QP )ij + f)× 1

215+⌊
QP
6 ⌋

]

(2.20)

In addition, the fusion of all the possible combinations for the ratio between SF and Qstep

in a single function (MF ) not only allows to speed up the computation procedure but also to

significantly reduce its memory requirements. In fact, Look-Up Table (LUT) implementations of

this non-linear function MF for 4 × 4 and 8 × 8 blocks of coefficients include only either 18 or

36 distinct values, respectively, as it can be seen in Equation 2.21 and Equation 2.22. Note that

2In the High Profiles of H.264/AVC [120], it is possible to change the quantization step size within a block of coefficients
when the frequency-dependent quantization tool is adopted.
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QP%6 n = 0 n = 1 n = 2
0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554
3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

Table 2.1: Definition of the values for m4(QP, n).

QP%6 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
0 13107 11428 20972 12222 16777 15481

1 11916 10826 19174 11058 14980 14290
2 10082 8943 15978 9675 12710 11985

3 9362 8228 14913 8931 11984 11259
4 8192 7346 13159 7740 10486 9777

5 7282 6428 11570 6830 9118 8640

Table 2.2: Definition of the values for m8(QP, n).

only the top-left quadrant is shown in Equation 2.22, because the distribution of the data in the

other three quadrants are identical (likewise Equation 2.21). Such data consist of 14-bits positive

integer values and are presented in Table 2.1 and Table 2.2.

MF4×4(QP )ij =









m4(QP, 0) m4(QP, 2) m4(QP, 0) m4(QP, 2)
m4(QP, 2) m4(QP, 1) m4(QP, 2) m4(QP, 1)
m4(QP, 0) m4(QP, 2) m4(QP, 0) m4(QP, 2)
m4(QP, 2) m4(QP, 1) m4(QP, 2) m4(QP, 1)









(2.21)

MF8×8(QP )ij =













m8(QP, 0) m8(QP, 3) m8(QP, 4) m8(QP, 3) ...

m8(QP, 3) m8(QP, 1) m8(QP, 5) m8(QP, 1) ...

m8(QP, 4) m8(QP, 5) m8(QP, 2) m8(QP, 5) ...

m8(QP, 3) m8(QP, 1) m8(QP, 5) m8(QP, 1) ...

... ... ... ... ...













(2.22)

Finally, the formula presented in Equation 2.20 also includes the f parameter to provide a finer

control of the quantization procedure near the origin (”the dead zone”) for all types of MBs, as it

is shown in Equation 2.23.

f =







2
3

⌊QP
6 ⌋

, if Intra block

1
3

⌊QP
6 ⌋

, otherwise
(2.23)

However, such formula is only used to quantize the transform coefficients computed in the first

level of the H.264/AVC hierarchical transform path [120], i.e. the AC coefficients resulting from the

application of the integer DCT to the 4× 4 blocks of transform coefficients (see section 2.2.1). For

the remaining coefficients of the MB, which consist of all the luma and chroma DC coefficients

computed using either a 4× 4 or a 2× 2 Hadamard transform, the dead-zone control parameter f

has to be adjusted to compensate their smaller dynamic range. Such correction factor is shown in

Equation 2.24, which presents a general and complete formulation of the H.264/AVC quantization

operation. This formulation is valid for the quantization of the AC (h = 0) and the DC (h = 1)
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2.2 Transform coding in the H.264/AVC standard

coefficients of both the Intra- and Inter-predicted MBs. The h value, represented in Equation 2.24,

is defined in Equation 2.25, where H4×4 and H2×2 are the 4×4 and the 2×2 Hadamard transforms,

respectively.

zij = round

[

(

yij ×MF (QP )ij + f × 2h
)

× 1

215+⌊QP
6 ⌋+h

]

(2.24)

h =

{

1 , if H4×4 ∨H2×2

0 , otherwise
(2.25)

In what concerns the inverse quantization operation, the algorithm considered in H.264/AVC

also reflects the tighter coupling between the inverse transform and the inverse quantization pro-

cesses and, naturally, with the improved formulation of the Qstep values. Hence, similarly to

what happened with quantization, the complexity of the inverse quantization operation is also

higher than in previous video standards, which is mostly due to the same reasons. As it can be

seen in Equation 2.26, which formulates this inverse quantization operation, the reconstruction of

the quantized data (y) in H.264/AVC requires, fundamentally, two multiplications involving ratio-

nal numbers: the Qstep and a Pre-scaling Factor (PF ) resulting from the inverse transformation

procedure [120].

ySij = zij ×Qstep(QP )× PFij × 64 (2.26)

Naturally, the final multiplication by the constant value 64, which is used only to improve the

accuracy of the inverse transforms computation, does not contribute to such complexity augment,

since it can be easily implemented using a shift-left operation. Nonetheless, the resulting residue

values computed by the inverse transform functions (x̂S
ij) reflect this constant value, and thus do

not correspond to the desired reconstructed residue values x̂ij . Consequently, the x̂S
ij scaled

residue values must be adjusted in the last phase of the H.264/AVC decoding procedure, as

shown in Figure 2.6, in order to obtain the final reconstructed pixel values. Such operation is

defined in Equation 2.27 and consists in dividing by 64 and rounding towards zero the final results

of the inverse transform operation.

x̂ij =

⌊

x̂S
ij + 32

64

⌋

(2.27)

Equation 2.26 also evidences the quite similar characteristics of the operands involved in the

computation of the quantization (see Equation 2.19) and inverse quantization procedures. Con-

sequently, all the considerations mentioned above focusing on the optimization of the quantization

operation can also be applied to Equation 2.26, in order to simplify its computation. In particular,

Inverse

Transform

Inverse

Quantizer

zij

Adjustement

xij
S

xijyij
S^ ^ ^

Figure 2.6: Reconstruction of the residue values.
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all the possible combinations of the term Qstep(QP )×PFij can be precomputed and mapped into

LUTs, while the multiplications can be realized in integer arithmetic (some can even be converted

into shift-left operations). Such alternative formulation, which introduces no penalty in the Peak

Signal-to-Noise Ratio (PSNR) performance [102], is shown in Equation 2.28.

ySij = zij × V (QP )ij × 2⌊
QP
6 ⌋ (2.28)

As it can be seen, the optimizations considered in this particular case allowed replacing two mul-

tiplications by a shift-left operation and an integer multiplication. In the multiplications, the second

operand (V (QP )ij) can be obtained from LUTs indexed by QP and the position of the coefficients

within the block. Furthermore, similarly to what happens in the quantization procedure, these

LUTs only contain either 18 or 36 different pre-computed positive integer values that are encoded

using 5-bits, depending on the size of the block of coefficients. Equation 2.29 and Table 2.3 de-

scribe the content of the LUT used to process the 4× 4 blocks, while Equation 2.30 and Table 2.4

present the corresponding values for the processing of the 8× 8 blocks. In Equation 2.30 only the

top-left quadrant is shown, since the other quadrants are identical.

V4×4(QP )ij =









ν4(QP, 0) ν4(QP, 2) ν4(QP, 0) ν4(QP, 2)
ν4(QP, 2) ν4(QP, 1) ν4(QP, 2) ν4(QP, 1)
ν4(QP, 0) ν4(QP, 2) ν4(QP, 0) ν4(QP, 2)
ν4(QP, 2) ν4(QP, 1) ν4(QP, 2) ν4(QP, 1)









(2.29)

V8×8(QP )ij =













ν8(QP, 0) ν8(QP, 3) ν8(QP, 4) ν8(QP, 3) ...

ν8(QP, 3) ν8(QP, 1) ν8(QP, 5) ν8(QP, 1) ...

ν8(QP, 4) ν8(QP, 5) ν8(QP, 2) ν8(QP, 5) ...

ν8(QP, 3) ν8(QP, 1) ν8(QP, 5) ν8(QP, 1) ...

... ... ... ... ...













(2.30)

QP%6 n = 0 n = 1 n = 2
0 10 16 13
1 11 18 14

2 13 20 16

3 14 23 18
4 16 25 20

5 18 29 23

Table 2.3: Definition of the values for ν4(QP, n).

QP%6 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
0 20 18 32 19 25 24
1 22 19 35 21 28 26

2 26 23 42 24 33 31

3 28 25 45 26 35 33
4 32 28 51 30 40 38

5 36 32 58 34 46 43

Table 2.4: Definition of the values for ν8(QP, n).

44



2.3 Summary

It must be noted that the operation represented in Equation 2.28 only allows obtaining valid

scaled AC coefficients, since the values depicted in Table 2.3 strictly concern to the pre-scaling

factors required for the inverse integer DCT applied to these coefficients. To extend this new

formulation to address the reconstruction of both the AC and the DC coefficients for all types of

MBs, it is only required that: i) the dynamic range is maximized for all transform types; and ii) the

differences in the quantization step sizes for luma and chroma blocks are processed accordingly.

This more generic formula for the inverse quantization operation is presented in Equation 2.31,

where the values of δ and τ are shown in Equation 2.32 and Equation 2.33, respectively.

ySij = (zij × V (QP )ij + δ)× 2⌊
QP
6 ⌋−τ (2.31)

δ =

{

21−⌊QP
6 ⌋ , if inverse H4×4 ∧ (QP < 12)

0 , otherwise
(2.32)

τ =











2 , if inverse H4×4

1 , if inverse H2×2

0 , otherwise

(2.33)

2.3 Summary

The block-based transform coding procedure commonly employed in digital video is reviewed

in this chapter, with a special emphasis on the transform and quantization operations used in the

H.264/AVC standard. This presentation includes not only the motivation for the use of these two

tools in lossy compression systems but also an overview of the most relevant approaches that are

usually considered in digital video coding.

In what concerns the transformation procedure, different approaches to compute 2-D trans-

forms are presented and the most important properties of a transform (from the compression point

of view) are discussed. Furthermore, the set of transforms that are most frequently adopted by

modern digital video standards, such as the integer DCT, are also reviewed in this chapter.

In a similar way, the overview of the quantization procedure that is provided in this chapter

also presents not only the basic concepts and the principles of quantization but also the set of

quantization techniques and quantizers most commonly used in video coding, with a particular

emphasis on the H.264/AVC standard.
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3. State of the Art and Related Work

Transform coding has been an active research topic in the definition of video codecs for sev-

eral decades. As mentioned in the previous chapters, this is a result not only from the significant

impact of this procedure in the compression efficiency and video quality that is offered by the

video codecs but also from its multiple implications in the design of such systems (e.g. pro-

cessing rate, hardware cost and power consumption). Consequently, this research effort has

addressed the study of new transforms and quantizers to be included in novel video standards

(e.g. H.264/AVC, AVS, VC-1 and H.265/HEVC), as well as the development of efficient algorithms

and computational systems to support their realization. For all these reasons, the investigation of

high performance and hardware/computational efficient transform and quantization architectures

are very active research areas nowadays.

In this chapter, it is presented an overview of the most relevant architectures that have been

presented in the literature to perform the transform and quantization operations adopted in the

ITU-T H.264/AVC recommendation [69], as well as in other relevant digital video standards.

3.1 Transform architectures

The majority of the solutions that have been proposed for the computation of the transforms

adopted in digital image and video standards consist of dedicated processing structures targeting

efficient VLSI realizations in ASICs. However, some alternative proposals addressing the design

of specialized programmable processors [83,84], Application Specific Instruction Set Processors

(ASIPs) [109] and, more recently, efficient implementations in reconfigurable platforms [9,55,56,126,132]

have also been presented. Independently of the considered platforms and technologies, these

architectures generally implement fast and optimized algorithms and are based on high perfor-

mance processing structures, in order to mitigate the involved complexity constraints and speed

up the inherent computations. Such operations can concern the realization either of a single trans-

form or multiple and distinct transforms, whenever multi-transform or multi-standard functionality

are desired. As a consequence of this diversity of hardware implementations and functionalities,

these designs are commonly classified either as Dedicated Transform Architectures (DTAs) or

Multi-Transform Architectures (MTAs).

3.1.1 Dedicated Transform Architectures

DTAs consist of specialized hardware structures capable of efficiently supporting the computa-

tion of a single transform. Consequently, its use in video coding is usually restricted to the design

of a forward or an inverse transform core to be used by a given video codec. Typically, direct

2-D processing structures are employed when high performance implementations are desired.

These circuits consist of hardware realizations of direct methods to compute 2-D transforms (e.g.

based on polynomial transform techniques [42]) and are characterized by their relatively high paral-
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3.1 Transform architectures

lel processing capabilities. Such important property allows this class of designs to simultaneously

process several different transform coefficients, and thus to greatly speed up the computation

of the corresponding transforms. However, these architectures are also characterized by requir-

ing a significant design effort, due to their irregularity. Such characteristic also greatly reduces

their flexibility to support other transforms, and thus their reusability in the design of alternative

video codecs. Moreover, they usually impose higher hardware costs and power consumption re-

quirements, owing to the huge amount of hardware resources they involve. The typical cascaded

processing design of these architectures (with long depth processing data paths) additionally char-

acterizes them as being long latency processing structures. Altogether, and besides the offered

processing throughput, these characteristics pose important constraints in the design of efficient

and high performance video codecs, especially when real time operation is required. Conse-

quently, not so many direct 2-D transform architectures have been proposed and the majority of

them concern realizations of the classical 8-points type-II DCT [14,15,72,88,118].

The most well known architecture for the computation of the 8-points DCT consists of the

butterfly-like computation structure proposed by Chen et al [15], which has been successfully used

in codecs for the JPEG image standard and for the MPEG-1/2/4 and H.261/3 video standards.

Such architecture results from the methodology proposed by Chen et al to decompose the N ×N

matrix multiplication into two sets of operations with a more reduced complexity, as it can be seen

in Figure 3.1. The first set contains the even indexed terms, while the second set contains the

odd indexed terms. When N = 2m, for any integer m, such decomposition can be continued

until the 2-points DCT. As a result of this factorisation, the complexity of the DCT computation is

lowered from N2 to the order of N × logN . Such reduced amount of operations not only allows to

speed up the computation but also to cut down the hardware complexity of the resulting hardware

structure. For example, the computation of an 8-points DCT following this approach requires only

Figure 3.1: Signal flow graph of the 8-points DCT (extracted from [92]).
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13 multiplications and 29 additions.

Besides the architecture proposed in [15], other direct 2-D designs targeting more recent stan-

dards have also been devised by using quite similar approaches. In what concerns the H.264/AVC

standard, three high throughput architectures have been proposed in [19] for fast computation of

its mandatory transforms, i.e. the forward and inverse 4 × 4 DCTs and the Hadamard transform.

All these designs were directly derived from the formulations of the three transforms and con-

sist of parallel architectures exclusively based on integer arithmetic adders/subtractors and hard-

wired shifts. Since they are capable of computing a 2-D transform in only 2 clock cycles, they

can achieve processing rates as high as 746 Msamples/sec when synthesized using a 0.35 µm

TSMC Complementary Metal-Oxide Semiconductor (CMOS) technology and operated at about

100 MHz. Kordasiewicz et al [79] also used the same methodology to develop an optimized ar-

chitecture for the computation of the H.264/AVC forward DCT. This highly parallel direct 2-D

design computes the whole DCT in a single clock cycle, with a cycle duration closely equivalent

to a carry propagation through a 64-bits adder. Therefore, it can process about 2.5 Gsamples/sec

when synthesized using a 0.18 µm TSMC CMOS technology and operating with a clock frequency

of 100 MHz. Nevertheless, the hardware requirements of such high performance architecture are

about four times higher than those of the designs proposed in [19]. Finally, in [12] it is presented a

more generic architecture that can be used to compute both the forward and the inverse 4 × 4

DCTs and Hadamard transforms. By offering a throughput of 8 samples per clock cycle and im-

posing only 1 cycle of latency, this structure can process the 1080i HDTV (1920× 1080 @ 60 fps)

and the Digital Cinema Initiatives (DCI) 4k (4928 × 2048 @ 30 fps) formats in real time, when

synthesized using a 0.18 µm TSMC CMOS technology and operated at 50 MHz and 100 MHz,

respectively.

In contrast with these architectures, the direct 2-D structures presented in [45,59] implement

optimized algorithms for the computation of the 4 × 4 transforms defined in the H.264/AVC stan-

dard. Fan [45] considers matrix factorization techniques with Kronecker product [51] and direct sum

to realize the forward 4 × 4 DCT. As it can be seen in Figure 3.2, such design consists of a

4-stages pipelined structure with 64 adders, which can sustain a throughput of 16 samples per

clock cycle. Similarly, block multiplication and permutation matrices are employed in [59] to opti-

mize the computation of the inverse DCT and Hadamard transforms. The resulting processing

structure also consists of a direct 2-D design, which is partitioned into three components: a mul-

tiplication block and two permutation blocks, consisting only of pure hard-wired connections. The

multiplication block can be configured to support the computation of either the inverse DCT or

the inverse Hadamard transform, which requires a single clock cycle. When synthesized using a

0.18 µm Chartered CMOS technology, this design is able to process 3.25 Gsamples/sec by using

a 200 MHz clock frequency.

Meanwhile, the technique introduced by Chen et al [15] has also been frequently considered to
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Figure 3.2: Block diagram of the architecture proposed by Fan (extracted from [45]).

develop direct 1-D architectures for the computation of 1-D transforms. In this approach, these

simpler processing structures are employed to compute the 2-D transforms by using an indirect

method, i.e. the row-column decomposition strategy [7] (see section 2.1.1). Therefore, the consid-

ered 2-D transforms are computed in a two steps process and by using either a single or two 1-D

transform cores, together with some transposition logic (e.g. a transposition memory, a transpo-

sition register array or a transposition switch), as it is shown in Figure 3.3. Such additional logic

is often used not only to transpose the 1-D intermediate results but also to feed them into the 1-D

transform core responsible for the processing of the column transform, so as to obtain the final

2-D transform results. Therefore, the hardware cost of these designs is relatively lower, since the

same 1-D transform processing circuit can be used twice in the computation of a 2-D transform

(see Figure 3.3(a)). Moreover, this reduction in the hardware cost may also contribute to decrease

the power consumption associated with this type of architectures. Nonetheless, in most practical

cases such gains are usually modest, owing to the use of quite large and complex memory based

circuits to realize the transposition operation [54]. In addition, the transposition circuit not only intro-
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(a) Single core implementation.

1-D Transform
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1-D Transform
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(b) Dual core implementation.

Figure 3.3: 2-D transform architectures based on the row-column decomposition.
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duces some latency but also slightly restricts the data processing rate [12,54], which in some cases

may compromise the implementation of real time operations. Still, many designs of direct 1-D

transform architectures have been proposed for the computation of 2-D transforms.

The architectures presented in [16,71,125,152] concern implementations of the 1-D 8-points DCT.

Although they share the same functionality, these structures are quite distinct because of the

different techniques that were used to improve their computational efficiency. In particular, Coor-

dinate Rotation Digital Computer (CORDIC) arithmetic was used to design the architecture pre-

sented in [71], in order to avoid the computation of multiplications and improve the power con-

sumption. Such 1-D transform core consists of a parallel design with 6 CORDIC units, which

are combined with a couple of adders and subtractors to provide a throughput of 8 samples per

clock cycle. When synthesized using a 0.18 µm Anam CMOS technology and operated at about

60 MHz, this design is capable of providing processing rates as high as 460 Msamples/sec and

power savings of about 26%, when compared to the conventional CORDIC-based DCT designs.

The designs proposed in [16,125,152] also avoid the computation of multiplications, but by making

use of the Distributed Arithmetic (DA) technique [116,154]. In this case, the multiplications consist

of bit-serial computational operations that realize the inner product of a pair of vectors, i.e. the

transform kernel values and the transform input data. Since the kernel values are constants, this

operation can be performed very fast and by using only bit-level memories and adders/subtractors.

For example, the design presented in [152] is able to compute a 2-D DCT in just 136 clock cycles,

by using Read Only Memorys (ROMs) and shift-and-add accumulation. This allows to greatly

improve the area efficiency, as well as to increase the maximum clock frequency up to 210 MHz

for VLSI realizations based on a 0.13 µm TSMC CMOS technology. Similarly, the timing property

of the DCT is also exploited in [16] to devise a highly optimized architecture that makes use of only

11 adders to compute a 1-D DCT. The direct 1-D design proposed by Shams et al [125], which is

based on the New DA (NEDA) algorithm [114], also computes the DCT by exclusively using adders.

In this 4-stages pipelined structure, 42 additions are required to compute an 8-points DCT in a

single clock cycle. Since the clock cycle corresponds to the delay of a 3-level 4:2 compressor tree,

high performance can be easily achieved. For the implementation based on a 0.35 µm technology

process reported in [125], the achieved operating clock frequency of 1.5 GHz allows a processing

rate of 108 Gbps for image/video sequence data.

Regarding the integer transforms adopted by the H.264/AVC standard, some direct 1-D struc-

tures have also been proposed for the computation of both the forward and inverse transformation

procedures. In [73], a fast architecture is proposed for the computation of the forward 8 × 8 DCT

defined in the H.264/AVC FRExt amendment. This design consists of a butterfly structure, which

was derived directly from the formulation of the considered transform. As a result, it only re-

quires 28 additions and 10 hard-wired shifts to compute the 1-D 8 × 8 DCT. With a processing

rate of 8 samples per clock cycle, this architecture is able to fully satisfy the real time processing
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(a) Butterfly structure of the 1-D 4× 4 DCT.

(b) Butterfly structure of the 1-D 8× 8 DCT.

Figure 3.4: Block diagram of the architecture proposed by Gu et al (extracted from [49]).

requirements of the 720p and 1080p HDTV formats when synthesized using a 0.18 µm SMIC

CMOS technology and operated with a clock frequency of 300 MHz. This work was extended

in [49], where two different pipelined architectures are presented for the computation of the forward

4 × 4 and 8 × 8 DCTs. Such designs are based on one 1-D transform core and one register

array implementing the row-column transposition operation. As it can be seen in Figure 3.4, the

proposed 4 × 4 and 8 × 8 transform cores also consist of direct 1-D structures based on the but-

terfly design. Since the transform coefficients are computed in pipelined processing, the 4 × 4

and 8 × 8 DCTs are processed in 5 clock cycles and 21 clock cycles, respectively. Consequently,

these architecture are able to comply with the real time requirements of the 4k UHDTV format (i.e.

3840× 2160 @ 30 fps) when synthesized using a 0.13 µm SMIC CMOS technology and operated

at 300 MHz.

In contrast, the designs proposed by Husemann et al [58] include two 1-D transform cores and

one register array interconnected in a cascade, in order to reduce the latency in the computation

of the 2-D transforms. Moreover, the row-column transposition of the data is embedded in the

horizontal transform core, to further reduce the latency of the circuit in about 20%. Due to all

these optimizations, these pipelined processing structures require 8 clock cycles to compute the

forward 4 × 4 DCT and 4 × 4 Hadamard transform: 2 clock cycles for the processing of each 1-D

transform and 4 clock cycles to transpose the data. To further increase the processing rate of the

architecture, a dual DCT module is also proposed in [58]. This alternative design parallelizes the

computation of the 2-D transforms by duplicating the transform computation circuits. Hence, the

53



3. State of the Art and Related Work

throughput is increased from 4 to 8 samples per clock cycle, which enables this parallel design

to process about 1.9 Gsamples/sec when implemented in a Xilinx Virtex-II Pro FPGA device

(V2P30FF896) and using a 250 MHz clock frequency.

Other alternative cost effective solutions are also described in [1,79], which propose area op-

timized transform computation units based on serial algorithms. In [79], a programmable serial

multiplication module and an accumulator are used to compute the forward 1-D DCT. Although

the shift-and-add multiplications and the result accumulation only require one clock cycle, the

computation of all the 4 × 4 transform coefficients takes 112 clock cycles. The extra 6 clock cy-

cles per sample are used for synchronization (2) and to fetch the input data (4). Obviously, such

control overhead significantly degrades the performance of the architecture, which can only offer

a throughput of 11 Msamples/sec when operated at about 150 MHz and implemented in both

a Xilinx Virtex-II Pro FPGA device (XC2VP7) and as an ASIC using a 0.18 µm TSMC CMOS

technology.

Agostini et al [1] also proposed serial 1-D architectures for the computation of the forward

and inverse 4 × 4 DCTs. In these designs, the 2-D transforms are computed by using two 1-D

transform units and one transpose buffer. The two transform units are identical and consist of a

2-stages pipelined structure, in which each pipeline stage is composed of one adder, one shifter

and two multiplexers, as it can be seen in Figure 3.5. The multiplexers are used to select the

correct adder inputs, while the shifter is used to implement the multiplications and the divisions.

A finite state machine controls the circuit operation, which requires 8 clock cycles to produce a

new output value. Consequently, the global latency for the processing of a 2-D transform is 32

clock cycles: 8 cycles for the computation of each 1-D transform and 16 cycles to perform the

row-column transposition of the data. The performance of these designs is also quite modest,

since the offered throughput is only of 1 sample per clock cycle. This results in a processing

rate of 165 Msamples/sec for implementations on Altera Stratix FPGA devices (EP1S10F484C5)

operated at about 200 MHz.

Residue Number System (RNS) based architectures have also been reported for the com-

putation of the H.264/AVC transforms. For example, in [5] the 2n − 1, 2n, 2n + 1 moduli set, with

n = 5, was considered to develop a 1-D transform architecture for the computation of the forward

(a) Forward 1-D DCT design. (b) Inverse 1-D DCT design.

Figure 3.5: Block diagram of the architecture proposed by Agostini et al (extracted from [1]).

54



3.1 Transform architectures

(a) Reconfigurable cell array architecture. (b) Reconfigurable cell design.

Figure 3.6: Block diagram of the architecture proposed by Lo et al (extracted from [98]).

and inverse 4× 4 DCTs. The throughput of this RNS based transform unit is 4 samples per clock

cycle, which allows computing the DCT in just 4 clock cycles. Since all the involved transform

computations are performed using 6-bits arithmetic, relatively high processing rates can be ob-

tained with this approach by considering pipelined processing. This processing technique is highly

required because of the complexity of the forward and reverse converters that are included in the

architecture, in order to convert the data from the binary to the RNS format and vice-versa. Fur-

thermore, these mandatory modules also greatly increase the hardware cost of the architecture,

which compromises its use in many applications.

Lastly, systolic array structures for the computation of several different transforms have also

been investigated [46,85,98,113,141]. In what concerns the H.264/AVC standard, the design introduced

in [98] consists of a 4 × 4 reconfigurable array architecture that can be dynamically configured to

realize either the inverse DCT or the inverse Hadamard transform, as well as to support the decod-

ing procedures of CABAC and CAVLC. As it can be seen in Figure 3.6, the base reconfigurable

cells are composed of a processing element and a routing unit, which is used to realize the data

transfers with the neighbour processor elements. Each of the 16 processing elements computes

one distinct transform operation, by using an accumulator and a set of multiplexers in cascade.

Therefore, 64 clock cycles are required for the computation of an inverse 4 × 4 DCT or inverse

Hadamard transform. Hence, the performance and the throughput of this design are relatively

modest, despite its relatively high hardware efficiency. In fact, this architecture is only capable

of carrying out real time processing of the inverse transform operations up to the H.264/AVC

BP @ Level 3.0 (i.e. the 720p HDTV resolution - 720 × 480 pixels), when synthesized using a

0.18 µm TSMC CMOS technology and operated at 66 MHz.

3.1.2 Multi-Transform Architectures

In contrast with the dedicated transform designs, the majority of the hardware structures that

have been proposed for the newest video standards consist of a distinct class of architectures,
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denominated as Multi-Transform Architectures (MTAs). When such more elaborated designs are

capable of computing the set of transforms employed exclusively by a video standard and by using

the same hardware structure (e.g. all the forward and inverse DCTs and Hadamard transforms

defined in H.264/AVC), they are usually subclassified as Unified Transform Architectures (UTAs).

However, if they are designed to implement the several different transforms used by various stan-

dards, they are alternatively subclassified as Multi-Standard Transform (MST) architectures. In

order to achieve both goals, two different approaches can be considered to devise this type of

structures.

The simplest design strategy consists in implementing all the required transforms, by adopt-

ing a quite straightforward methodology to design an hybrid architecture: make use of a distinct,

independent and specifically optimized hardware structure to compute each of the considered

transforms and then select the proper results, according to the type of transform that is required.

Ho et al [50] followed this approach to design a MST architecture capable of performing the inverse

transforms of the H.264/AVC, VC-1, AVS, MPEG-2/4 and H.263 standards. All the 2-D trans-

forms are computed by using the row-column decomposition method, for which a single transform

core is employed. As it can be seen in Figure 3.7, such processing structure is composed of

three distinct modules: a separated part, which includes distinct circuits to compute the multipli-

cations between the input data and the transform coefficients for each of the considered video

standards; a common part that is shared by all the standards and that is used to perform the mul-

tiple additions/subtractions of the transform algorithm; and a miscellaneous part, which is used to

implement other functions, such as the Hadamard transform and the H.264/AVC inverse 4-points

DCT. Due to the use of all these highly specialized circuits, this architecture can support the

processing of the Quad Full HD (QFHD) (3840 × 2160 @ 60 fps) video format in real time when

Figure 3.7: Block diagram of the architecture proposed by Ho et al (extracted from [50]).
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synthesized using a 0.13 µm CMOS technology and operated at 384 MHz. However, such high

performance comes at the expense of a relatively high hardware cost. In fact, this is what typ-

ically characterizes the MTAs adopting this straightforward design methodology: high hardware

cost with increased memory bandwidth and power consumption requirements. These require-

ments are often prohibitive for implementations targeting platforms with more modest capabilities

or stricter design constraints, such as mobile and low power video coding systems. This results

from the fact that all the transforms are partially computed (in some cases, totally computed) in

parallel and in simultaneous. Nonetheless, most video coding systems do not require the real-

ization of multiple transforms in parallel, since only one transform needs to be computed for each

block of data at a time. As a result, almost all the existing MTAs have been developed using the

alternative resource-shared design strategy.

In this approach, several different techniques can be used to obtain more efficient multi-

transform processing structures. For example, configurable logic blocks can be used to design

reconfigurable architectures with the capability to process transforms with distinct kernels, but of

the same size. Gu et al adopted this technique to design the UTA for the H.264/AVC standard

that is also presented in [49]. Likewise the processing structures for the computation of the 4 × 4

and 8 × 8 DCTs, this architecture implements the same row-column decomposition method to

process the 4 × 4 DCT and Hadamard transform. To achieve such goal, it makes use of a direct

1-D reconfigurable transform core, whose architecture consists of a butterfly that uses multiplex-

ers to adaptively select the multiply parameters, and thus the transform being computed. With

this straightforward approach, the proposed UTA can satisfy the requirements of real time QFHD

(3840×2160 @ 30 fps) encoding when synthesized using a 0.13 µm SMIC CMOS technology and

operated at 300 MHz. The high performance UTA for H.264/AVC presented in [13] is also based on

this technique. However, this design consists of a direct 2-D processing structure with a through-

put of 8 samples per clock cycle, as it can be seen in Figure 3.8. Consequently, it is able to sustain

the processing of the 720p HD, 1080i HD and DCI 4k formats in real time when synthesized using

a 0.18 µm TSMC CMOS technology and operated at 22, 50, and 100 MHz, respectively. Wei

et al [140] also adopted a quite similar approach to develop an UTA for the computation of all the

H.264/AVC 4× 4 transforms. Such direct 2-D processing structure is the result of the combination

of the Signal Flow Graphs (SFGs) of the three transforms in a single unified SFG. Hence, it is

composed of 4 sets of 8 configurable processor elements, which are interconnected by means of

4 reconfigurable interconnection blocks. In order to support the computation of all the transforms,

three types of processor elements with distinct functionalities are also used in the architecture.

Moreover, two of these processor elements can have their functionality dynamically configured,

according to the type of transform being computed. Despite this enormous flexibility, the proposed

UTA computes the forward and inverse 4× 4 DCTs and the 4× 4 Hadamard transform in a single

clock cycle. Consequently, its ASIC implementation using a 0.18 µm TSMC CMOS technology
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Figure 3.8: Block diagram of the architecture proposed by Chen et al (extracted from [13]).

allows to process the DCI 4k format (4096× 2048 @ 60 fps) in real time using a clock frequency

of 100 MHz.

Li et al [90] considered an alternative approach in the development of a parallel UTA support-

ing all the H.264/AVC 8 × 8 and 4 × 4 transforms. Their proposed algorithm is based on matrix

decompositions and starts by decomposing the kernels of the 8 × 8 transforms into 4 × 4 bases.

Then, a unified architecture is used to process all the 4 × 4 transforms. Such processing struc-

ture computes the 2-D transforms by following the row-column decomposition approach and by

making use of a control block and two specialized units. The 1-D transform unit is capable of

computing either one 8 × 8 or two 4 × 4 transforms in parallel, for which it includes one butterfly

module and two transform operators. These modules strictly realize arithmetic shifts and integer

additions. The other specialized unit consists of a linear shift addressing circuit that is applied

to the coefficients memory buffer, in order to support parallel access both in the row and column

directions. Consequently, the proposed UTA does not include a row-column transposition circuit.

With this approach, each 8×8 block is processed in 16 cycles. When synthesized using a 0.18 µm

UMC CMOS technology, the data throughput of this UTA can achieve 800 Msamples/s by using

a clock frequency of 200 MHz, and thus comply with the real time requirements of the DCI 4k

format.

A more elaborated technique based on multiple matrix factorizations and matrix decomposi-

tions was adopted in [44] to derive a cost-effective 1-D transform architecture for the MPEG-1/2/4,

H.264/AVC, AVS and VC-1 standards. In each step of the developed algorithm, several heuristic

strategies and two guidelines are used to select the proper matrix decompositions. First, a decom-
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position form (i.e. the addition form of sparse matrices and/or the cascaded multiplication form of

sparse matrices) is chosen to simultaneously maximize the hardware sharing and minimize the

amount of mode selection multiplexers. The sparse matrices resulting from these decompositions

must be composed of the -1, 0 and 1 elements, or other integers that are a combination of powers

of two. Moreover, they should include as much zero elements as possible. With this approach,

the proposed structure is also able to process all the transforms using only shift and additions,

which further reduces its hardware cost. Regarding the performance, this multi-standard trans-

form architecture supports the encoding and decoding of video in the 1080p HDTV format in real

time. Hwangbo et al [60] also employed multiple permutations and matrix factorizations to achieve

a multi-transform architecture targeting the H.264/AVC high profiles. By using these techniques, it

was possible to derive not only the forward 4×4 DCT and the 4×4 Hadamard transforms from the

inverse 4 × 4 DCT but also to integrate them in the computation of the 8 × 8 DCTs. The resulting

hardware structure consists of a direct 1-D transform core based on four independent processing

elements, which implement butterfly-adders with shift operations to calculate all the required mul-

tiplications. Such core is used twice in the realization of the considered 2-D transforms, which are

computed using the row-column decomposition approach. The throughput of the proposed multi-

transform architecture is 8 samples per clock cycle, which enables the processing of the 4k HDTV

format (3840 × 2190 @ 50 fps) in real time for ASIC implementations based on a 0.18 µm UMC

CMOS technology operated using a clock frequency of 200 MHz. More recently, Shen et al [127]

also adopted these two techniques to design a unified VLSI architecture for the computation of

the 4×4 and 8×8 inverse transforms adopted by the MPEG-2/4, H.264/AVC, AVS and VC-1 stan-

dards, as well as the inverse 16/32-points DCTs that are defined in the emerging H.265/HEVC

recommendation. This multi-standard architecture implements a fast computational algorithm,

which applies recursive division and matrix factorization to incorporate the smaller transforms in

the computational circuit of the larger transforms. Such direct 1-D core consists of multiple permu-

tation and butterfly modules composing a pipelined datapath with 5 stages, in order to maximize

the clock frequency. To obtain a good area efficiency, regular integer multipliers are reused by

the several different butterfly modules that are used in the computation of the different transforms.

However, this approach limits the offered throughput to only 4 samples per clock cycle. Still, the

proposed MST architecture is able to support the processing the 4k UHDTV format in real time,

when synthesized using a 0.18 µm CMOS technology and operated using a clock frequency of

about 200 MHz. Such scenario considers the row-column decomposition method, where two 1-D

cores and a SRAM based transposition memory are interconnected in a cascade for the compu-

tation of the 2-D transforms.

The delta matrix mapping technique is employed in [138] to devise a resource-shared architec-

ture for the computation of the inverse 8 × 8 DCTs defined in the JPEG, MPEG-2, H.264/AVC,

AVS and VC-1 standards. The rationale behind this technique consists in computing all the trans-
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Figure 3.9: Block diagram of the architecture proposed by Chang et al (extracted from [11]).

form coefficients using a founding kernel, whose values are obtained by reducing the coefficients

of all the transform kernels to a set of common factors, and then compensating the differences

of the remaining transform kernels. Wahid et al [138] considered the AVS kernel as the founding

matrix of all the transform computations and devised specific delta matrices to compensate the

differences for the VC-1 and H.264/AC standards. Moreover, they developed scaling matrices to

allow the computation of the JPEG and MPEG-2 transforms based on the same founding matrix

and delta matrices for the VC-1 and H.264/AVC standards. To reduce the hardware cost of the

proposed 1-D transform architecture, all the values of these matrices were properly and jointly

factorized and the multiplications were designed to be performed using shift-and-add arithmetic.

The decoding capabilities of this low cost design satisfy the real time requirements of the 1080p

HD video format. Chang et al [11] also considered the delta matrix mapping technique to develop

the multi-standard architecture depicted in Figure 3.9, which performs the inverse transforms de-

fined in the MPEG-4, H.264/AVC and VC-1 standards. However, in this case those 2-D transforms

are computed using the row-column decomposition strategy, for which a single 1-D unified IDCT

core and a SRAM transposition circuit are employed. All the transforms are performed by first

using the VC-1 computation circuit. Then, the MPEG-4 transform results can be obtained by shift-

ing such data five bits to the left and subtracting the delta coefficients. Similarly, the H.264/AVC

transform results are obtained by subtracting a different set of delta coefficients from the VC-1

results. The required transform results are collected after the completion of all the computations,

which requires 798 clock cycles per macroblock. The offered processing rate is 50 fps for the

720p HD format, by considering a synthesis procedure using a 0.18 µm CMOS technology and

a clock frequency of 150 MHz. Martuza et al [104] combined the delta matrix mapping technique

with multiple matrix factorizations to design a MST architecture for the processing of the JPEG,

MPEG-2, H.264/AVC, VC-1 and AVS inverse transforms. In this approach, the 8 × 8 transform

kernels are first split into two small 4×4 matrices, by applying permutation techniques. Then, mul-

tiple matrix factorizations based on sparse matrices were employed to define two adaptable 4× 4

founding kernels suitable for the computation of all the inverse transforms of the last three stan-

dards. Finally, a delta mapping scheme was derived to enable the computation of the JPEG and
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MPEG-2 inverse transforms from the VC-1 processing circuit. To reduce the hardware complexity

and maximize the hardware efficiency, all the multipliers were replaced by adders and shifters and

the whole hardware resources are shared for the processing of all the transforms. Consequently,

only the computational units associated to the realization of one inverse DCT are activated at any

given time instant. When synthesized using a 0.18 µm CMOS technology and operated at about

200 MHz, this design is capable of decoding video bit streams in the WQXGA format (2560×1600)

in real time.

Lai et al [81] employed another technique to develop a multi-standard architecture capable of

supporting the computation of the inverse transforms defined in the MPEG-1/2/4, H.264/AVC and

VC-1 standards. These 2-D transforms are computed using the row-column decomposition strat-

egy, by employing two identical 1-D transform cores and a register-based transposition circuit.

Such transform cores follow the NEDA architecture approach, in order to avoid the use of ROMs

and multipliers, and thus optimize the hardware cost and reduce the power consumption. More-

over, their internal hardware structure can be configured to operate in two distinct modes: mode

1 is used to perform the inverse MPEG-1/2/4 8 × 8 DCT, the H.264/AVC inverse 8 × 8 DCT and

the VC-1 inverse 8 × 8 and 8 × 4 transforms, while mode 2 supports the computation of the VC-

1 inverse 4 × 8 and 4 × 4 transforms, as well as the H.264/AVC inverse 4 × 4 DCT and inverse

Hadamard transform. In both coding modes, the architecture is capable of sustaining a throughput

of 8 samples per clock cycle. Consequently, it can process the 720p HD, 1080p HD and DCI 4k

formats in real time when synthesized using a 90 nm CMOS technology and operated at 6 MHz,

12 MHz and 48 MHz, respectively.

The DA technique was also used by Chen et al [17] to develop a new algorithm for the realization

of the MPEG-1/2/4, H.264/AVC and VC-1 transforms. The proposed Common Sharing Distributed

Arithmetic (CSDA) algorithm combines the Factor Sharing (FS) and the DA sharing techniques,

in order to efficiently reduce the hardware cost. By expanding the coefficients matrix at the bit

level, the FS method first shares the same factor in each coefficient. Then, the DA method is

applied to share the same combination of the input among each coefficient position. This allows

reducing the number of non zero elements in the multi-standard transform matrix, and thus to

minimize the amount of adders in the circuit. The corresponding CSDA-MST architecture that

was devised using this approach implements the row-column decomposition method, for which it

includes two 1-D CSDA-MST cores and a transposition memory. To optimize the hardware cost,

the two 1-D cores differ in their word lengths and the transposition memory is designed using

64 12-bits registers. Since each core has four pipeline stages and the transposition operation

requires 8 clock cycles, the latency of the proposed CSDA-MST design is 16 clock cycles. In

terms of performance, the 8 samples per clock cycle throughput enables the processing of the

DCI 4k format when synthesized using a 0.18 µm TSMC CMOS technology and operated at

160 MHz.
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The 1-D MST architecture proposed by Wang et al [139] follows a different approach, based

on the reconfigurable Multiple Constant Multiplier (MCM) algorithm. This algorithm is used to

generate multiplierless MCMs [137] with multiple and distinct outputs, which are used to realize

the transform operations involved in all the considered video standards. To achieve such goal,

the different standards are supported through static reconfiguration and by using two different

fusing strategies, so that the hardware cost of the resulting circuits is optimized for all the video

standards. In the proposed 1-D transform design, which addresses the MPEG-2/4, H.264/AVC,

VC-1 and AVS standards, these reconfigurable shift-and-add MCMs are used to implement two

4× 4 matrix computation blocks. One of these blocks is used to compute all the 4× 4 transforms,

while the two blocks are used together to compute the 8 × 8 transforms by adopting the matrix

decomposition technique. As it can be seen in Figure 3.10, this architecture also includes a

reconfigurable pre/post-processing block to realize the butterfly/permutation operations for the

forward/inverse transforms, respectively, and an adder tree block to obtain the sum of the matrix

product. Together with a couple of multiplexers, the reconfigurable pre/post-processing block

allows to dynamically reconfigure the architecture for the processing of a forward transform or

the corresponding inverse transform. Therefore, the offered throughputs are 8 samples per cycle

for a forward/inverse 8-points transform and 4 samples per cycle for a forward/inverse 4-points

transform. This MTA can decode 1080p @ 60 fps HD video bit streams when synthesized using

a 0.13 µm SMIC CMOS technology and operated at 55 MHz.

Figure 3.10: Block diagram of the architecture proposed by Wang et al (extracted from [139]).
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3.1.3 Discussion

The description of the state of the art architectures that is presented in the previous subsec-

tions, and that is summarized in Table 3.1, clearly shows that the investigation of specialized and

dedicated transform architectures has been a quite active and very important research area in

video coding for a long time. In the last few years, such investigation mostly focused on the devel-

opment of high performance structures capable of processing the long-awaited 720p and 1080p

HD video formats for several different application domains, with a special emphasis on the digital

TV broadcast and (Internet) video streaming markets. Therefore, the vast majority of the proposed

transform architectures were developed and optimized to specifically address the requirements of

the H.264/AVC profiles targeting such classes of applications, i.e. the BP, XP and MP.

However, the most recent and forthcoming video encoding and decoding systems contrast with

such former trend by presenting significantly different and even more demanding requirements,

since they are expected to support the processing of video contents with even higher resolutions

(e.g. the 4k UHDTV format), they must be compliant also with other state-of-the-art video stan-

dards (e.g. VC-1, AVS and H.265/HEVC) and they are required to provide efficient realizations

in new and alternative implementation platforms (e.g. multi-core GPPs, GPUs, or FPGAs). In

addition, the low cost and portable nature that characterizes the vast majority of these systems

(e.g. smartphones, tablets, video and IP cameras, etc) also calls for the use of more flexible trans-

form architectures with improved hardware efficiency, and that can be easily configured (or even

adapted in run-time) to better comply with the aimed performance and power consumption re-

quirements of the considered application domains. Unfortunately, the vast majority of the existing

transform architectures fail to simultaneously comply with all these requirements.

Most high throughput solutions offering the capability to process the higher resolution image

formats are typically based on very optimized direct 2-D or highly parallel processing structures.

Therefore, they usually present huge hardware costs and power consumption constraints, which

often restricts their usefulness in the design of low cost and low power video coding systems, such

as those typically developed for portable, handheld and other battery supplied devices. In addition,

the rather rigid hardware structure of these architectures usually prevents the eventual introduction

of modifications or adaptations, in order to allow them to support other video standards and thus

to offer the demanded multi-standard functionality.

Conversely, the higher flexibility that is already offered by the existing multi-transform designs

comes at the cost of a significant reduction in the provided performance levels. In addition, many

of these architectures also duplicate some of their hardware resources to enable the processing of

several different standards, which results in poor hardware and power efficiency rates, especially

for the processing of UHDTV contents. Naturally, this greatly reduces their attractiveness for the

set of applications previously mentioned.

Lastly, none of the reviewed transform architectures can be effectively scaled in run-time and
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Table 3.1: Summary of the most relevant designs that have been presented for transform computation. The letters F and I preceding the

transform names in the column Supported transform(s) are used to denote a forward or an inverse transform, respectively.

Design Class Computation

method

Algorithm Supported

standard(s)

Supported

transform(s)

Applications

[79] (area) Dedicated Direct 2-D Shift-and-Add Serial H.264/AVC FDCT4×4 CIF

[79] (speed) Dedicated Direct 2-D Parallel using butterflies H.264/AVC FDCT4×4 4k UHDTV

[45] Dedicated Direct 2-D Parallel using matrix fac-

torizations

H.264/AVC FDCT4×4 –

[59] Dedicated Direct 2-D Parallel using matrix per-

mutations and block mul-

tiplications

H.264/AVC IDCT4×4, H4×4 4k UHDTV

[1] Dedicated R-C decomposition Serial H.264/AVC FDCT4×4, IDCT4×4 1080p HDTV

[73] Dedicated R-C decomposition Parallel using butterflies H.264/AVC FDCT8×8 4k UHDTV

[49] Dedicated R-C decomposition Parallel using butterflies H.264/AVC FDCT8×8 4k UHDTV

[49] Dedicated R-C decomposition Parallel using butterflies H.264/AVC FDCT4×4 4k UHDTV

[58] Dedicated R-C decomposition Parallel using butterflies H.264/AVC FDCT4×4, H4×4 4k UHDTV

[5] Dedicated R-C decomposition RNS based H.264/AVC FDCT4×4, IDCT4×4 –

[98] Dedicated Direct 2-D Systolic array H.264/AVC FDCT4×4, H4×4, H2×2 720p HDTV

[19] UTA Direct 2-D Parallel using butterflies H.264/AVC FDCT4×4, IDCT4×4, H4×4 DCI 4k

[12] UTA Direct 2-D Parallel using matrix fac-

torizations

H.264/AVC FDCT4×4, IDCT4×4, H4×4 DCI 4k

[13] UTA Direct 2-D Parallel using matrix fac-

torizations

H.264/AVC FDCT4×4, IDCT4×4, H4×4 DCI 4k

[140] UTA Direct 2-D Parallel using matrix fac-

torizations

H.264/AVC FDCT4×4, IDCT4×4, H4×4 DCI 4k

[90] UTA R-C decomposition Parallel using matrix de-

compositions

H.264/AVC FDCT8×8, IDCT8×8,

FDCT4×4, IDCT4×4, H4×4

DCI 4k

Continued on the next page.
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Table 3.1: Summary of the most relevant designs that have been presented for transform computation. The letters F and I preceding the

transform names in the column Supported transform(s) are used to denote a forward or an inverse transform, respectively.

Design Class Computation

method

Algorithm Supported

standard(s)

Supported

transform(s)

Applications

[49] UTA R-C decomposition Parallel using butterflies H.264/AVC FDCT4×4, H4×4 4k UHDTV

[60] UTA R-C decomposition Parallel using matrix fac-

torizations

H.264/AVC FDCT8×8, IDCT8×8,

FDCT4×4, IDCT4×4, H4×4

4k UHDTV

[44] MST R-C decomposition Hybrid MPEG-2/4, H.264/AVC,

VC-1, AVS

IDCT8×8, IDCT4×4 1080p HDTV

[50] MST R-C decomposition Hybrid MPEG-2/4, H.264/AVC,

H.263, VC-1, AVS

IDCT8×8, IDCT4×4 4k UHDTV

[127] MST R-C decomposition Parallel using matrix fac-

torizations

MPEG-2/4, H.264/AVC,

H.265/HEVC, VC-1, AVS

IDCT32×32, IDCT16×16,

IDCT8×8, IDCT4×4

4k UHDTV

[138] MST R-C decomposition Delta matrix mapping JPEG, MPEG-2/4,

H.264/AVC, VC-1, AVS

IDCT8×8 1080p HDTV

[11] MST R-C decomposition Delta matrix mapping MPEG-2/4, H.264/AVC,

VC-1

IDCT8×8, IDCT4×4, H4×4 720p HDTV

[104] MST R-C decomposition Delta matrix mapping

and matrix factorizations

JPEG, MPEG-2/4,

H.264/AVC, VC-1, AVS

IDCT8×8 DCI 4k

[81] MST R-C decomposition Parallel based on NEDA MPEG-2/4, H.264/AVC,

VC-1

IDCT8×8, IDCT4×4, H4×4 DCI 4k

[17] MST R-C decomposition Parallel based on CSDA MPEG-2/4, H.264/AVC,

VC-1

FDCT8×8, FDCT4×4,

H4×4

DCI 4k

[139] MST R-C decomposition Parallel based on the

RMCM algorithm

MPEG-2/4, H.264/AVC,

VC-1, AVS

FDCT8×8, IDCT8×8,

FDCT4×4, IDCT4×4

1080p HDTV
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very few can be (re)configured, in order to match the requirements of a particular video coding

application or system (e.g. performance, power consumption or the amount of available hardware

resources in reconfigurable platforms). In practice, the majority of these processing structures

mainly consist of pseudo-reconfigurable structures composed of fixed hardware functional blocks,

whose functionality and interconnection can be reprogrammed to support the computation of dif-

ferent transforms. Consequently, the hardware efficiency and the performance that they are able

to offer when implemented in FPGA and modern hybrid Central Processing Unit (CPU)+FPGA

platforms (e.g. the Xilinx Extensible Processing Platform [22], the Altera Cyclone V System-on-

Chip (SoC) [2] or the Intel/Altera Atom E6x5C processor series [21]) is usually very limited.

In conclusion, a new approach needs to be adopted when designing the hardware architec-

tures to be used for the implementation of the transform modules in video encoding and decoding

systems. In particular, innovative processing structures should be investigated and proposed,

in order to guarantee the success of the next generation of digital video systems for the most

common (but often rather demanding) application domains. Such high performance processing

structures must be capable not only to efficiently support the transformation procedures defined in

the H.264/AVC standard (as well as other upcoming video standards, e.g. H.265/HEVC) but also

to process UHDTV contents in real time. Moreover, they should present a very flexible and highly

configurable hardware structure, so that they can be easily used to obtain efficient realizations in

several different implementation platforms and adapted to the performance, energy and hardware

requirements of any video codec or application.

3.2 Architectures for quantization

The quantization procedures that are specified by the latest video standards, such as

H.264/AVC, are of relatively high complexity, due to requiring numerous multiplications and di-

visions involving rational operands (see subsection 2.2.2). For hardware implementations, these

computations greatly augment both the hardware cost and the power consumption of the involved

processing structures. Moreover, they penalize the performance of such architectures, since the

increased computation delay caused by the involved multiplication and division circuits reduces

the efficiency of pipeline techniques. For software implementations, the computation of these

complex operations also results in poorer quantizer performances, because more clock cycles

are spent in their realization. To make matters worse, the very tight interconnection of the trans-

form and quantization procedures further increases the complexity of the quantization module [120].

This is a consequence of the huge amount of memory handling operations and of the high pro-

cessing rates that the two procedures involve. Altogether, this poses several difficult challenges in

the design of modern video codecs, especially in those aiming at the processing of real time and

HD video contents.
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In order to overcome these constraints, several different specialized hardware structures have

been proposed to realize both the forward and the inverse quantization procedures. Such process-

ing structures are commonly classified either as Dedicated Quantization Architectures (DQAs),

Unified Quantization Architectures (UQAs) or Integrated Transform and Quantization Architec-

tures (ITQAs). DQAs consist of processing structures that are capable of implementing only the

forward or the inverse quantization procedure. Conversely, UQAs support the realization of both

procedures, by sharing some of the hardware resources in the architecture to perform the forward

and inverse quantization operations. ITQAs comprise a completely different class of designs that

are able not only to realize the forward and/or inverse quantization procedures but also some (or

even all) of the transforms defined in a given set of video standards, by sharing a couple of the

involved hardware resources.

Despite this multiplicity of classes, almost all the designs that have been proposed targeting

the H.264/AVC standard present a very similar architecture, in which multipliers, adders, shifters

and LUTs are combined in a quite straightforward manner to directly implement the desired quan-

tizer. Nevertheless, a couple of alternative implementations have also been presented to simplify

the realization of the H.264/AVC forward and inverse quantization procedures, and thus reduce

the complexity of its implementation in hardware. In the following subsections, the most prominent

H.264/AVC quantizers that are described in the literature are thoroughly reviewed.

3.2.1 Standard architectures for quantization

The design presented in [78] consists of a DQA targeting the H.264/AVC standard, which uses

16 purely combinational quantization units to compute the forward quantization procedure in a

single clock cycle. Each quantization unit directly implements Equation 2.20 by interconnecting,

in a cascade, one 16-bits binary multiplier, one 30-bits adder and one 31-bits barrel shifter. The

constants involved in these computations are stored in two LUTs, whose outputs are shared be-

tween the 16 quantization units. This approach allows to slightly reduce the hardware cost of the

architecture without compromising its performance. In fact, this high performance architecture

is capable of processing the 4k UHDTV format in real time, when synthesized using a 0.18 µm

TSMC CMOS technology and operated with a clock frequency of about 68 MHz. Kordasiewicz

et al later extended their work to design an area optimized quantizer [79]. Such alternative circuit

includes only one quantization unit, whose architecture consists of a 4 stages pipelined version of

the one previously described. As it can be seen in Figure 3.11, one LUT is used in the first pipeline

stage to store all the constant values that depend on QP . The multiplication factors (MF ) are pro-

vided by another LUT in the second pipeline stage. All the computations are performed in the last

two stages, by using the same three arithmetic/logic circuits that are described above. Namely,

the multiplication is performed in stage 3, while the addition and shift operations are realized in

stage 4. With this approach, Kordasiewicz et al proposed an area optimized architecture for the
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Figure 3.11: Block diagram of the architecture proposed by Kordasiewicz et al (extracted

from [79]).

computation of the H.264/AVC forward quantization operation, whose maximum processing rate

of 86 Msamples/sec (when synthesized using a 0.13 µm TSMC CMOS technology and operated

at about 85 MHz) is suitable for low and medium performance encoders.

The parallel design strategy employed by Kordasiewicz et al in [78] has been frequently consid-

ered by many other researchers, in order to devise fast quantization architectures suitable to be

used in high performance coding systems. For example, Elhaji et al [43] proposed a forward quanti-

zation architecture very similar to the one presented in [78], but using only eight parallel datapaths.

Therefore, such structure is capable of simultaneously processing eight coefficients in a single

clock cycle. When implemented in a Xilinx Virtex-2 Pro FPGA device, the obtained processing

rates are fully compliant with the real time requirements of the 8k UHDTV format, by using a clock

frequency of 300 MHz. The architecture presented in [57] consists of another parallel DTA, but

that can be used to realize either the forward or the inverse H.264/AVC quantization procedures.

Forward quantization is implemented by using four identical computational circuits operating in

parallel, as it can be seen in Figure 3.12. Each of these circuits implements a three stages

pipeline to compute Equation 2.20 for a different sample of a 4 × 4 sub-block of transform data.

Such computation procedure involves not only the typical binary multiplier, adder, barrel shifter

and LUT holding the multiplication factors (MF ) but also two auxiliary units that compute the ab-

solute value of the input data and assign the proper sign value to the output data. In addition, two

other LUTs holding the offset values (f ) and the constants that depend on QP are shared by the

four parallel quantization datapaths. A similar approach was also used in the design of the inverse

quantization circuit, which implements a pipeline with only two stages owing to the fact that the

inverse quantization operation does not involve an offset value. Consequently, the two circuits are

capable of sustaining identical throughputs, i.e. four samples per clock cycle, but imposing distinct

latencies. Pastuszak et al [115] also followed the same parallel design strategy, in order to develop

two high throughput architectures for the realization of the H.264/AVC forward and inverse quan-

tization procedures. Both circuits are very similar and consist of 32 identical subunits working in

parallel, each one embedding a multiplier, an adder and a shifter. Once again, the multiplicands
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Figure 3.12: Block diagram of the architecture proposed by Husemann et al (extracted

from [57]).

and the shift values are obtained from LUTs on the basis of the quantization parameter and of the

transform type. Since 32 different data values are processed in each clock cycle, one MB can be

fully processed in only 8 clock cycles. Consequently, these architectures can also process the 8k

UHDTV format when synthesized using a 0.35 µm AMS CMOS technology and operated at about

80 MHz.

The design presented in [87] consists of another parallel processing structure, but that jointly

realizes the H.264/AVC forward transform and quantization procedures. This ITQA implements

the row-column decomposition strategy to compute any generic 4-points or 8-points 2-D DCT,

owing to the fact that the transform kernel values are loaded from external sources. Moreover, the

same circuit is used to compute both types of transforms, since matrix partitioning and permuta-

tion techniques are employed in the computation of the 8-points transforms. As it can be seen

in Figure 3.13, the datapath of the proposed architecture is composed of one TQE array, two

hardwired reordering modules implementing all the required pre/post matrix permutations and

one multi-purpose buffer, which is used also as a transpose buffer for the computation of the 2-D

transforms. Both the 4-points DCT operations and the quantization operations are realized within

the TQE array, which includes four dedicated and quite similar computational units to process 16

samples at each clock cycle. Each of these computational units has several multiplexers, adders

and binary multipliers. In order to minimize the circuit size, some of the adders are shared in the

computation of the transform operations, while the multipliers are shared by the transform and

quantization procedures. This time-sharing approach does not impose any extra clock cycles in

the realization of the quantization operations, since they are performed using the spare cycles

of the transform computation procedures. In fact, when processing the 1080p HDTV format, this

architecture is able to process 70 frames per second for 8-points DCT and 121 fps for 4-points
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Figure 3.13: Block diagram of the architecture proposed by Lee et al (extracted from [87]).

DCT, when synthesized using a 0.13 µm CMOS technology and operated at 100 MHz.

Lin et al [94] also proposed combined transform and quantization architectures for H.264/AVC

codecs. In these ITQAs, the forward and inverse 4×4 transforms are computed using a direct 2-D

butterfly-like computation structure very similar to the one presented in [19]. Forward and inverse

quantization are implemented by embedding 8 very similar quantizers into this structure, which

is capable of processing 16 data values in parallel in only 2 clock cycles. This is a result of

the considered optimized transform computation procedures, in which the input data in related

positions are always added prior to the transform computation. Hence, only half of the quantizers

are required to compute the whole set of 16 results in parallel. As it can be seen in Figure 3.14,

such units were inserted after the first 1-D transform stage for forward quantization, while they

precede the 2-D transform circuit for inverse quantization. In what concerns the architecture

of the eight forward/inverse quantizers, it consists of a combinational circuit composed of only

Figure 3.14: Block diagram of the architecture proposed by Lin et al (extracted from [94]).
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Figure 3.15: Block diagram of the architecture proposed by Lee et al (extracted from [86]).

one multiplier, one barrel-shifter and one LUT storing the multiplication factors (MF /V ). These

authors did not include an adder for the compensation of the offset values (the f parameter in

Equation 2.23), in order to simplify the forward quantization procedure. To reduce the hardware

cost, a single comparator is used by the 8 quantizers to select the proper multiplication factors

and shift amounts for each coefficient.

Lee et al [86] adopted a different design strategy to devise a hardware efficient design for the

computation of the H.264/AVC forward and inverse quantization operations. The proposed hard-

ware structure consists of an UQA that is capable of processing one coefficient per clock cycle

for a given quantization operation, which is specified at run-time by the control unit of the video

coding system. As it can be seen in Figure 3.15, such flexible operation mode was achieved by

embedding some multiplexers in the datapath of the architecture. These circuits not only allow to

reconfigure the datapath to implement either the forward or the inverse quantization procedures

at a given time instant but also to share some of the hardware resources in the computation of

the involved operations. For example, distinct adders, shifters and LUTs holding the quantization

coefficients are employed for the processing of the forward and inverse quantization procedures.

However, both procedures share the same multiplier, the LUT used to obtain the constants that

depend on QP and the auxiliary units computing the absolute value of the input data and assign-

ing the proper sign value to the output data.

3.2.2 Optimized architectures for quantization

Korah et al [77] proposed an architecture for the computation of both the forward and the in-

verse quantization procedures of the H.264/AVC standard targeting video codecs with modest

performance requirements. Such processing structure consists of a reduced complexity and low

hardware cost design that only considers the subset of QP values for which QP mod 6 = 4.

In this simplified approach, the coefficients to be quantized or rescaled are first left shifted by

different amounts, in order to generate eight partial products. Then, these results are combined
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(a) Architecture of the quantizer. (b) Shift-adder-tree for Y00, Y02, Y20 and Y22.

Figure 3.16: Block diagram of the architecture proposed by Peng et al (extracted from [117]).

in an adder tree to obtain the final product value, which is subsequently adjusted in a shifter. All

the shift amounts are determined by a control module based on the value of QP .

In [117] it is presented another design of a highly optimized forward quantizer that completely

avoids multiplications and divisions to compute up to 16 coefficients in parallel. To achieve such

goal, the authors devised a parallel architecture composed of 16 shift-adder-tree circuits and one

very simple combinational control module. As it can be seen in Figure 3.16, each shift-adder-tree

circuit computes a different coefficient value, by using only adders, shifters and multiplexers to

perform the necessary multiplications and a barrel shifter to implement the divisions. To enable

this processing mode in the proposed architecture, the 52 possible multiplication factors (MF )

were encoded as a sum of 2’s exponents in the control module. This module also includes several

comparators and subtractors to decompose the QP value in two components: a tail, which is used

to configure the datapath of the shift-adder-tree circuits performing the required operations, and a

head, which is used to control the barrel shifter. As a result of this simplicity, the processing rates

offered by this parallel architecture are compatible with the 4k UHDTV format, when synthesized

using a 0.18 µm SMIC CMOS technology and operated at 156 MHz.

Zhang et al [153] also proposed an improved quantization architecture, in which the multipli-

cations are computed by using an shift-and-add algorithm that only requires multiple adders in-

terconnected in a cascade topology. To reduce the amount of adders, and thus minimize the

hardware cost of the architecture, the authors also modified the values of MF . The proposed

MF values are slightly smaller than the original ones, which reduces the necessary precision in

their computations. The imposed deviation error is limited within ±6.5% of the original MF values,

so that the proposed quantizer is capable of offering a high rate-distortion performance. Never-

theless, the proposed optimizations still introduce a minor mismatch error between the encoder

and the decoder. This causes an average decrease in the quality of the encoded video that is less

than 0.18 dB. Michael et al [107] later improved this technique to reduce the deviation error to a
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range of only ±2.4%. In addition, the improved MF values allow reducing the hardware cost and

the power consumption requirements of the proposed architecture in about 8%, when compared

to other similar designs.

Other modifications to the forward quantization equations are also proposed in [112], in order to

simplify the hardware realization of this procedure. The suggested changes remove the absolute

value and resign operations, by introducing a new set of offset values (f ′) for the negative trans-

form coefficients. Such values consist of the 2’s complement values of f , which allows to merge

the offset compensation and rounding procedures in a single operation for all the transform co-

efficients (see Equation 2.20). The resulting hardware structure consists of a parallel design,

which uses 16 multipliers, 16 adders and 16 shifters to simultaneously process 16 transform co-

efficients. The four possible offset values for a given QP are computed in parallel from a base

value of 2
3

15+
QP
6 and by using only shift operations and additions. A (2 : 1) multiplexer is used to

selected the correct offset value to be used in the computation of each of the 16 quantized coeffi-

cients. Although this hardware redundancy increases the hardware cost of the design, it enables

the architecture to achieve higher processing rates. For example, it is capable of fulfilling the re-

quirements of the 4k UHDTV format when synthesized using a 0.13 µm UMC CMOS technology

and operated at 140 MHz.

Tran et al [131] presented a different type of an area-efficient forward quantization architecture

for the H.264/AVC standard, which is based on a specialized multiplication unit. As it can be

seen in Figure 3.17, this architecture includes four quantization cores operating in parallel, each

one composed of one multiplier, one adder and one shifter. All the combinational circuits and

LUTs that are used to generate the required multiplicand and offset values are shared by the four

quantization modules. Regarding the multiplier design, it consists of a fast processing structure

implementing a conditional multiplier. By using this structure, a multiplication is computed follow-

ing a 2-steps procedure. First, a pre-multiplier block is used to determine some partial results of

the multiplication involving a given multiplication factor (MF ). Then, those results are combined

using a shift-and-add tree, in order to obtain the final multiplication result. With this strategy, the

(a) Architecture of the quantizer. (b) Architecture of the multipliers.

Figure 3.17: Block diagram of the architecture proposed by Tran et al (extracted from [131]).
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Figure 3.18: Block diagram of the architecture proposed by Ying et al (extracted from [86]).

authors claim to have reduced the latency and the hardware cost of the multiplication operation.

In what concerns the attained performance, the architecture is capable of sustaining a maximum

throughput of 445 Msamples/s that is compatible with the 4k UHDTV format, when synthesized

using a 0.13 µm TSMC CMOS technology and operated at 250 MHz.

The quantization architecture proposed by Ying et al [149] is also capable of processing four

different transform coefficients in parallel, but by following a design strategy based on time-

multiplexed MCMs (mux-MCMs) [133]. In this approach, the H.264/AVC 4 × 4 transform blocks

are processed column by column in a 4-stages pipelined datapath. Within this datapath, four

identical and independent ways are used to process the four coefficients. As it can be seen in

Figure 3.18, each way is composed of the typical absolute value, addition, shifting and resigning

circuits. Furthermore, one mux-MCM array is also shared by the four ways to compute all the

required multiplications in parallel using fewer hardware resources. This design strategy allows

improving the hardware efficiency of the architecture, without compromising its performance. In

fact, the proposed architecture is able to comply with the real time processing requirements of

the 4k UHDTV format when synthesized using a 0.18 µm SMIC CMOS technology and operated

using a clock frequency of 250 MHz.

The multi-standard ITQA proposed by Sun et al [130] consists of another multiplierless design,

where CORDIC arithmetic was employed to realize the quantization procedures. It can perform

the H.264/AVC forward 8× 8 and 4× 4 transform and quantization procedures, as well as a quan-

tized 8× 8 DCT. All the 2-D transforms are computed according to the row-column decomposition

technique, for which the architecture includes two identical 1-D transform cores that are inter-

connected with a transpose memory. Each transform core is capable of processing 8 transform

coefficients in parallel, by using only integer shift-and-add arithmetic. The outputs of the sec-

ond transform core are applied to four CORDIC-Scalers, which scale and quantize the transform

coefficients according to the considered type of transform, scaling factor and quantization level.

A Post-Quantizer is subsequently used to perform the remaining compensations, i.e. the final
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adjustments required for the implementation of the 8 × 8 DCT using integer arithmetic. In this

computational procedure, a CORDIC-Scaler Configurator is also used to retrieve all the required

configurations from a bank of LUTs, as well as to dynamically configure the internal architecture

of the four CORDIC-Scalers, so that they compute the aimed operation in the desired pipelined

computation mode.

3.2.3 Discussion

The conducted survey on state-of-the-art architectures for the computation of the H.264/AVC

quantization operations, whose results are presented in the previous subsections and summa-

rized in Table 3.2, revealed that most of the existing processing structures are capable of pro-

cessing HD video contents in real time. In fact, the obtained results even show that some of these

structures are able to comply with the real time requirements of the 4k UHDTV format. Never-

theless, such results also evidenced that very few of the reviewed designs can be used to realize

both the forward and the inverse quantization procedures. In addition, they revealed that many of

the designs do not share the hardware resources that are involved in the computation of the oper-

ations that are common to the two procedures. Consequently, the resulting hardware realizations

not only exhibit an increased hardware cost but also a quite poor hardware efficiency.

This study also allowed to conclude that the vast majority of the existing quantization archi-

tectures presents a rather rigid hardware structure. This characteristic not only poses serious

difficulties when trying to adjust the design to the requirements of a specific video coding system

(e.g. in terms of performance, hardware cost or power consumption) but also prevents its adapta-

tion to support other quantization operations defined by different video standards. Therefore, the

attractiveness of these architectures for the design of modern video coding systems, where the

multi-standard functionality is often a required requisite, is somewhat diminished.

From the presented survey results it can also be observed that not many ITQAs have been

proposed, despite the very tight coupling between the transform and quantization operations. The

integration of the two operations in a single architecture presents several important advantages

in the design of video coding systems, especially for those addressing the most recent video

standards, since it allows to optimize several aspects of the codec operation concerning time

synchronism and data manipulation. In addition, it can greatly reduce (or even eliminate) the

delays inherent to the encoding and decoding procedures, due to external control and memory

concurrency issues.

3.3 Summary

This chapter provides an extensive overview of the most relevant dedicated and specialized

architectures that were proposed in the last few years to support the computation of the transform

and quantization procedures defined in the H.264/AVC standard, as well as in other relevant
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Table 3.2: Summary of the most relevant quantization architectures that have been presented in the literature. In the column Supported

operation(s), FQ and IQ denote the forward and the inverse quantization procedures, respectively.

Design Class Computation technique(s) Supported

standard(s)

Supported

operation(s)

Applications

1080p HDTV [78] (speed) DTA Integer arithmetic; Binary Multipliers H.264/AVC FQ 4k UHDTV
[79] (area) DTA Integer arithmetic; Binary Multipliers H.264/AVC FQ 720p HDTV
[43] DTA Integer arithmetic; Binary Multipliers H.264/AVC FQ 8k UHDTV
[57] DTA Integer arithmetic; Binary Multipliers H.264/AVC FQ, IQ DCI 4k
[115] DTA Integer arithmetic; Binary Multipliers H.264/AVC FQ, IQ 8k UHDTV
[77] DTA Integer arithmetic; Shift-and-Add

Multiplications

H.264/AVC FQ, IQ 720p HDTV

[117] DTA Integer arithmetic; Shift-and-Add

Multiplications

H.264/AVC FQ 4k UHDTV

[153] DTA Algorithmic simplifications; Integer

arithmetic; Shift-and-Add Multiplica-

tions

H.264/AVC FQ -

[107] DTA Algorithmic simplifications; Integer

arithmetic; Shift-and-Add Multiplica-

tions

H.264/AVC FQ -

[112] DTA Algorithmic simplifications; Integer

arithmetic; Binary Multipliers

H.264/AVC FQ 4k UHDTV

[131] DTA Integer arithmetic; Conditional Mul-

tipliers

H.264/AVC FQ 4k UHDTV

[149] DTA Integer arithmetic; Multiplications

based on mux-MCMs

H.264/AVC FQ 4k UHDTV

[86] UQA Integer arithmetic; Binary Multipliers H.264/AVC FQ, IQ -
[94] ITQA Integer arithmetic; Binary Multipliers H.264/AVC FDCT8×8, FDCT4×4, FQ,

IDCT8×8, IDCT4×4, IQ

1080p HDTV

[87] ITQA Integer arithmetic; Binary Multipliers JPEG, MPEG-1/2/4,

H.264/AVC, VC-1

FDCT8×8, FDCT4×4, FQ,

IDCT8×8, IDCT4×4, IQ

1080p HDTV

[130] ITQA CORDIC arithmetic MPEG-2/4, H.264/AVC FDCT8×8, FDCT4×4, FQ 4k UHDTV

7
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3.3 Summary

digital video standards. Such processing structures are herein analysed and classified according

to the type of functionalities they offer. In addition, they are discussed in terms of the benefits and

disadvantages that they present in the development of modern video coding systems.

Following this study, the requirements for the design of new high performance and cost effec-

tive architectures suitable for the realization of the transform and quantization modules of the next

generation of video encoding and decoding systems were identified. Such processing structures

should be capable not only to efficiently realize these procedures for the H.264/AVC standard (as

well as for other upcoming video standards, e.g. H.265/HEVC) but also to process video contents

with even higher resolutions (e.g. the 4k or 8k UHDTV formats) in real time. Moreover, they should

present a very flexible and highly configurable hardware structure, so that they can be easily used

to obtain efficient implementations in several different implementation platforms (e.g. multi-core

GPPs, GPUs, or FPGAs) and adapted to the performance, energy and hardware requirements of

any video codec or application.
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4. Scalable multi-transform architecture

As discussed in chapter 2, the computation of the transforms defined in digital video standards

mostly consists of two consecutive N × N matrix multiplications, where N is the size of the con-

sidered 2-D transform. Typically, the value of N is a power of two (N = 2n), which nowadays is

in the range between 2 and 32 [128,129,143,150]. Therefore, these computations can be performed

by using regular algorithms that usually do not require very complex operations, due to the set of

integer transform kernels that are generally used (see section 2.2 and appendix A).

Nonetheless, the characteristics of modern digital video applications impose significant restric-

tions in the design of video coding systems, since they are often required to deal with very high

spatial and temporal resolutions in real time. This involves the processing of huge amounts of

data in a reduced amount of time. Relevant examples of such systems are portable and hand-

held devices supporting 4G video telephony or displaying HDTV contents, among others. To

make matters worse, currently these systems and applications should also support several dif-

ferent digital video standards (e.g. MPEG-2, H.263, H.264/AVC, VC-1 and AVS), which involves

the computation of multiple transforms with distinct kernels, both in terms of their size and coef-

ficient values. As a result of all these constraints and requirements, the design of modern video

coding systems and applications still requires efficient implementations (in hardware) of the in-

volved transform computation procedures. Such realizations must be capable of offering high

data throughput, high computational rates and low latency, especially when real time operation is

considered. In addition, they should preferably present a scalable architecture, as well as result

from hardware efficient design approaches.

Systolic array processors [74] offer rather convenient solutions to overcome all of the requisites

mentioned above. These hardware processing structures consist of locally connected Processing

Elements (PEs) that compute, in a particularly efficient manner, a restricted and very well defined

set of operations (e.g. the MAC operations required to compute the transforms employed in dig-

ital video coding systems), together with a communication infrastructure that allows exchanging

the data under processing among the several PEs by using a pipelined dataflow. Such modular

and massively parallel design approach usually requires a rather limited control and simple inter-

connection circuitry, which allows to obtain highly configurable and scalable hardware structures,

often capable of operating using high clock frequencies. Consequently, the obtained designs not

only can be easily resized to better adapt its amount of PEs to the computational requirements

of the implemented algorithm but also are capable of providing high computational rates and high

data throughputs with increased hardware usage efficiency.

In the following subsections, a highly configurable and scalable systolic array processor suit-

able for the realization of transform cores for H.264/AVC codecs is presented and its correspond-

ing hardware structure is thoroughly described. Furthermore, the scalability and parallel process-

ing capabilities of this innovative Multi-Transform Architecture (MTA) are also discussed, in terms

of the advantages they offer to the computation of the H.264/AVC transforms.
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4.1 Mapping of the transform algorithms into a systolic array

Although systolic array designs can be derived for most signal processing algorithms, not all

the obtained architectures result in efficient, or even feasible, hardware realizations. In fact, due

to hardware implementation restrictions, systolic array architectures are only of practical interest

when the considered designs are defined using no more than two dimensions [76]. Consequently,

designs defined over index spaces with higher dimensions are usually mapped into systolic arrays

by applying the set of methodologies first described by Kung [80], which may include the algorithm

decomposition into sub-parts, multiple projections, time scaling and delay transfer procedures,

among other techniques. This is the case for the computation of most video transforms, whose

algorithms are usually defined over a four dimensional indexed space, as it can be seen in Equa-

tion 2.1. Consequently, in order to obtain a viable, scalable and both performance and hardware

efficient architecture for the computation of multiple 2-D transforms, three different techniques

were considered in the development of the MTA herein proposed.

First, the separability property of the transform was applied to Equation 2.1, which represents

the generic definition of a 2-D transform, in order to decompose the involved computational pro-

cedure in two parts, each one defined over an index space with only two dimensions. Such

decomposition is illustrated in Equations 4.1 and 4.2, where x, y, z and c denote the input data,

the output data, the intermediate results of the first 1-D transform and a N ×N transform kernel,

respectively.

zil =

N−1
∑

j=0

xijcjl, i, l = 0, ..., N − 1 (4.1)

ykl =

N−1
∑

i=0

zilcik, k, l = 0, ..., N − 1 (4.2)

As it can bee seen, the first part (Equation 4.1) deals with indices j and l of Equation 2.1

and thus computes a 1-D row-wise transform, while the second part (Equation 4.2) is spawned

across indices i and k of Equation 2.1 and computes a 1-D column-wise transform, by using the

transposed results obtained from the first part. Hence, the considered simplification results in the

well known row-column decomposition approach [7].

Then, the transpose property applied to matrix multiplications was considered to further opti-

mize the design of the proposed MTA. Such property was exclusively applied to the computation

of the column-wise transform (Equation 4.2), in order to allow the two simpler 1-D transforms to

be computed by using exactly the same operations (i.e. MAC) and the same multiplier constants

(i.e. the same transform kernel values). To better illustrate this simplification, the final formula-

tions of these two operations using the matrix notation are presented in Equations 4.3 and 4.4,

respectively, and depicted in the Dependency Graphs (DGs) shown in Figure 4.1.

Z = CXT (4.3)
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(b) Column-wise transform (see Equation 4.2)

Figure 4.1: DGs for the computation of the row-wise and column-wise transforms.
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= CZT (4.4)

A projection and scheduling scheme was subsequently applied to the presented DGs, in order

to attain a hardware efficient 2-D systolic array capable of efficiently supporting the computation

of both the row-wise and column-wise transforms. Firstly, the processor spaces of the SFGs

describing the computation of the two 1-D transforms were derived with two different goals in

mind: i) to guarantee a similar structure for the two SFGs; and ii) to ensure that the function of

all its nodes is identical. Accordingly, the DG represented in Figure 4.1(a) was projected in the

i-direction, in order to assign all the nodes along the horizontal straight lines in the ij-planes into

a single PE. A similar linear projection, using a projection vector in the l-direction, was applied to

the DG shown in Figure 4.1(b) to achieve the same goal.

Then, a proper time schedule was specified, in order to break all the data broadcast lines in

the SFGs. This not only allowed to obtain the desired systolic processing scheme but also to

support the computation of 2-D transforms using the row-column decomposition approach, by us-

ing the same processing structure to compute both the row-wise and column-wise transforms and

without requiring additional memory circuits to perform the involved row-column data transposition

operation. In Figure 4.2 it is depicted the SFG of such hardware structure, which consists of a

unified systolic array of the class AB2 [76] for the computation of N ×N transforms.

In the presented SFG, the nodes consist of the PEs realizing the operations shown in Equa-

tions 4.1 and 4.2 (or Equations 4.3 and 4.4, by using the alternative notation), while the timing

is specified by the scheduling vector ~s = (1, 1). The numbers at the diagonal scheduling phases

denote the time instant of computation, assuming a regular input dataflow. In such scenario, the

processing of a 1-D transform requires tAB2 = (N − 1) + N + (N − 1) time instances, where N

time instances are used to effectively compute the results and the remaining 2 × (N − 1) time
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Figure 4.2: SFG for the computation of a 1-D transform.

instances are used to fill in and empty the processing structure. Note that the transform kernel

values remain fixed in the computation nodes, although they must be set prior to the transform

computation procedure starts.

Finally, a second projection was also considered to further improve the hardware efficiency

of the intended architecture, as well as to increase its flexibility. Such enhancement consisted

in enabling the processing structure to compute multiple and distinct transforms, by increasing

the amount of operations that can be supported by the involved PEs. To achieve such goal, the

considered projection allowed assigning to each PE located at coordinates (row, column) in the

systolic array, the set of operations realized by all the desired transforms for that specific location.

For example, in the H.264/AVC standard such set of transforms may consist of the forward and

inverse 8× 8 DCT, the forward and inverse 4× 4 DCT, the 4× 4 Hadamard transform or the 2× 2

Hadamard transform [69]. As it can be seen in Figure 4.3, this procedure resulted in the definition of

Figure 4.3: Block diagram of a generic multi-transform PE.
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4. Scalable multi-transform architecture

a dedicated architecture for the PEs, in which specialized and highly efficient arithmetic circuits are

used to compute the required MAC operations and local control units are employed to dynamically

select the transform kernel values required for the computation of the desired transform operation.

4.2 Proposed hardware structure

The architecture that was developed to efficiently support the computation of the eight trans-

forms defined in the H.264/AVC standard, i.e. the forward and inverse 8 × 8 DCT, the forward

and inverse 4 × 4 DCT and Hadamard transforms and the forward and inverse 2 × 2 Hadamard

transforms, consists of a highly configurable and scalable processing structure composed of only

four different functional modules, as it can be seen in Figure 4.4. The datapath of such special-

ized architecture is implemented using the Input Buffer (IB), the Transform Array (TA) and the

Transposition Switch (TS), which altogether provide the necessary mechanisms to compute all

the considered 2-D transforms using the row-column decomposition approach. Nevertheless,

the core of the devised architecture is the TA, since it is in this structure that all the transform

computations are performed.
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Figure 4.4: Block diagram of the proposed MTA.
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4.2.1 Transform array and PEs

In its base configuration, depicted in Figure 4.4, the devised TA consists of an implementation

of the 2-D systolic structure presented in subsection 4.1 with 8 × 8 PEs, which were specifically

designed to address all the H.264/AVC transforms. Nonetheless, alternative configurations of this

highly configurable and scalable 2-D systolic structure can also be easily obtained, in order to

support the computation of different sets of transforms. For example, in order to only compute

the set of transforms that are used in the H.264/AVC BP, MP and XP profiles, the TA can be

composed of a distinct (and much simpler) class of PEs [24]. The devised TA can also be efficiently

used to compute transforms with different sizes, by changing the amount of PEs that are included

in any of its two dimensions so that they can match the size of the considered highest order

transform. Such important characteristics of the architecture are explained in detail in section 4.4.

Independently of the configuration that is adopted for the TA, all the involved PEs perform the

same operations and share an identical architecture, capable of supporting the calculations re-

quired by all the considered transforms. The PEs communicate with each other by using small

point-to-point interconnections and a simple and reduced signal interface, as it can be seen in

Figure 4.5. By using this approach, the local connections between the several PEs that compose

the TA can be optimized to meet a target delay (and/or power consumption requirement), there-

fore allowing to increase the throughput offered by such processing units. Moreover, to minimize

the delays resulting from the control operations, and thus to maximize the offered data process-

ing rate, all the control logic that is required for the correct circuit operation was distributed and

Figure 4.5: Block diagram of the devised PEs for the H.264/AVC standard.
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4. Scalable multi-transform architecture

Table 4.1: Encoding of the Type T signal for the implementation of the proposed H.264/AVC

multi-transform architecture.

Type T Transform

0 Forward 2× 2 Hadamard transform
1 Forward 4× 4 Hadamard transform

2 Forward 4× 4 DCT

3 Forward 8× 8 DCT
4 Inverse 2× 2 Hadamard transform

5 Inverse 4× 4 Hadamard transform

6 Inverse 4× 4 DCT
7 Inverse 8× 8 DCT

partially embedded in the architecture of the PEs. As a consequence, the internal structure of the

PEs is divided in two main modules: the control module and the arithmetic module.

The control module is responsible for guaranteeing the correct flow of all the control signals of

the architecture inside the TA, giving support to the desired systolic dataflow model. Furthermore,

it is also responsible for generating the control signals that command the transform computation

procedure inside the PE. One of the key operations that is realized by this module consists in

the generation of the multiplier values (i.e. the transform kernel values) to be used in the MAC

operations that are performed by the PE. Such values are generated by taking into consideration

the horizontal and vertical coordinates of the PE inside the TA (identified by the Coord X and

Coord Y signals), as well as the type of transform that must be computed. The transform type is

specified by the TYPE T signal, according to the encoding shown in Table 4.1.

The rationale behind the algorithm that was implemented to generate the kernel values for any

given transform results from the observation that only N−1 different basis values exist in a N×N

transform kernel [119]. As it can be seen in Equation 4.5 and Equation 4.6, which represent generic

8×8 and 4×4 transform kernels, respectively, such values consist of the first column-vector of the

kernel. These basis values correspond to the subset of kernel values matching the angles in the

range
[

0, π
2

]

. Consequently, they can also be used to generate the remaining (N − 1) × (N − 1)

values of the transform kernel, provided that the symmetry and periodicity trigonometric properties

of the cosine function are properly exploited. This is illustrated in Figure 4.6 for the case of the

generic 4×4 transform kernel presented in Equation 4.6, where the value located at position (2,2)

of the transform kernel (−a) is obtained by reducing the corresponding angle (α) to an elementary

angle (α′) located in the first quadrant of the trigonometric circle.
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(4.5)
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Figure 4.6: Definition of a transform kernel value. Definition of the −a value located at position

(2, 2) of the generic 4 × 4 transform kernel shown in Equation 4.6, according to the proposed
algorithm.
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To implement the devised algorithm, the control module of the PEs makes use of a quite

simple combinational circuit (identified as Multiplier Decoder in Figure 4.5) and of a small ROM.

Together, they generate all the multiplier values corresponding to all the kernel values of the

considered transforms. The operation of such circuit for a N ×N transform kernel is the following.

First, the vertical (r = Coord Y) and the horizontal (c = Coord X) coordinates of the PE inside

the TA are used to determine the amount (ω) of π
2N

angular segments of the angle corresponding

to the considered kernel value (e.g. ω = (2c+ 1) × r for the computation of the row-wise trans-

forms), as specified in the generic formulation of the 2-D DCT shown in Equation 2.2. Although

such computations should be performed with integer arithmetic by using 2 × ⌈log2 N⌉ + 1 bits,

only the ⌈log2 N⌉+ 2 least significant bits of ω are of practical interest, because they identify the

corresponding angular value constrained to the range [0, 2π[. The remaining bits only specify the

amount of times the 2π domain is exceeded, and therefore can be ignored. To exemplify this pro-

cedure, Figure 4.6 also illustrates the definition of all the angles corresponding to the entries of

the generic order-4 transform kernel (N = 4) presented in Equation 4.6. In particular, the angles

corresponding to all the values in the second column of this matrix (c = 2; r = 0...3) are also

highlighted in yellow color ((r, c) → α = ω × π
2×4

).

The two most significant bits of the obtained constrained result (ω′ = ω<log
2
N+1:0>) are then

evaluated, in order to determine if the corresponding angle is in one of the following three ranges:
[

π
2
, π
[

,
[

π, 3π
2

[

or
[

3π
2
, 2π
[

. In such cases, the constrained value ω′ is computed, which corre-

sponds to a reduction of the original angle into the range
[

0, π
2

]

. This final result is used to address

the ROM, in order to retrieve the required multiplier control word. Such data, which corresponds
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4. Scalable multi-transform architecture

to the absolute value of the considered transform kernel entry, is then used to control the opera-

tion of the specialized multiplication circuit that is embedded in the PE arithmetic module, as it is

described below and is represented in Figure 4.5. In addition, the sign information of the kernel

value is computed by considering the two most significant bits of ω′. If such data corresponds to

an angle in the range
[

π
2
, 3π

2

]

(1 ≤ ω′
<log

2
N+1:log

2
N> ≤ 2), the considered transform kernel entry

represents a negative number. Otherwise, it represents a positive number.

As it can be seen in Figure 4.5, the obtained multiplier control word (Mult Ctrl) and the

corresponding sign information bit (Signal) are not directly applied to the multiplication circuit

embedded in the PE. Instead, such data is stored in an internal data-standing register of the PE,

so that it can be used to compute the MAC operations in the subsequent clock cycles. This ap-

proach allows to significantly improve the processing rate of the PEs, since it greatly reduces the

critical path of the circuit. This aspect is of the utmost importance in the proposed MTA, because

all the computations that are performed in the arithmetic module of the PEs are realized using

integer arithmetic circuits with a relatively high resolution. This is a result of the increased dy-

namic gains imposed by the higher order integer transform kernels adopted in the state-of-the-art

video standards (e.g. the H.264/AVC forward and inverse 8× 8 transform kernels). Nevertheless,

this procedure also imposes an explicit PE configuration stage prior to the computation of a new

transform, whenever the architecture is reprogrammed to make use of a different transform kernel.

Such operation requires only one clock cycle and can be performed in a pipelined fashion within

the TA, as explained in detail in section 4.3.

The arithmetic module of the PEs makes use of an accumulator and of a specialized multipli-

cation circuit to perform all the required transform operations (see Figure 4.5). In this scope, the

data values to be processed (Xin) are placed at one of the inputs of the multiplier. Conversely,

the partial value of the transform operation being computed (ACC in), which was calculated by an

adjacent PE in the previous clock cycle, is placed at one of the inputs of the accumulator. Then,

this partial value is updated with the result of the multiplication involving Xin and the kernel value

corresponding to the multiplier control word stored in the internal standing-data register of the PE.

This operation also takes into consideration the sign information bit stored in the same internal

standing-data register. The resulting value is stored in another internal standing-data register be-

fore being propagated to the following PEs in the array, in order to shorten the critical path of the

architecture and to guarantee the systolic dataflow.

As it can be easily concluded, this highly flexible PE architecture allows a designer to efficiently

adapt the functionality offered by the PEs, so that it can support several different combinations of

transform kernels. In fact, in order to design a new PE structure that is capable of supporting a

given set of transforms, it is only necessary to encode all the involved kernel values in the ROM

and develop the corresponding multiplication circuit. In appendix A, this feature is jointly exploited

with the modularity and reconfigurable properties of the proposed multi-transform architecture, in
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4.2 Proposed hardware structure

order to to realize several different PEs addressing other state-of-the-art video standards, such as

the AVS, VC-1 and H.265/HEVC standards. Furthermore, it is also presented a resource-shared

multi-standard PE, which is capable of processing all the transforms defined in these standards,

as well as the ones defined in H.264/AVC.

4.2.2 PE architecture for the H.264/AVC standard

In order to fully support the computation of all the transforms defined in the H.264/AVC stan-

dard, a PE for the proposed MTA must be capable of computing all the MAC operations required

by 8 different transforms (see subsection 2.2.1). This involves 18 distinct transform kernel values

in the range of −12 and +12. However, only one of these constants is used by the PE to perform

the required MAC operation at any moment. Consequently, this opens the opportunity to make

use of mux-MCM structures [133], in order to implement reduced-area and faster multipliers for the

PE.

Although several different approaches can be considered to develop this class of multipliers

based on the shift-and-add algorithm, the addition chain method [6] for multiplying by a constant

and a Directed Acyclic Graph (DAG) fusion algorithm similar to the one presented in [133] are

adopted in this work. The first technique is used to reduce the number of additions, by allowing the

results of the intermediate operations to be shifted and reused in arbitrary subsequent additions.

For the considered type of MCM problems, where an input value must be multiplied by one of p

given preset constants, the addition chain method is able to provide some potential extra savings,

since it allows the sharing of common subexpressions for the computation of the p constants. The

considered DAG fusion algorithm is applied in a later development stage, in order to ”fuse” the

addition chains corresponding to the several individual constants into a single network of adders,

wired shifts and multiplexers, suitable for time-multiplexing. Furthermore, the application of this

algorithm also guarantees that the resulting fused addition chain circuit only includes as many

adders as the largest of its fundamental addition chains.

In what concerns the development of a PE for the H.264/AVC standard implementing the

architecture presented in Figure 4.5, the first step in the design of its mux-MCM consisted in the

definition of a DAG, representing an optimal addition chain, for each of the considered kernel

values, i.e. the basis values of all the considered transform kernels presented in Equations 2.12,

2.13, 2.14, 2.15 and 2.17. The next design step aimed at finding and exploiting the similarities in

all these graphs, in order to obtain the best composite DAG jointly representing the addition chains

of all the individual DAGs. Such graph consists exclusively of additions, shifts and multiplexers,

as it can be seen in Figure 4.7.

Then, a proper hardware structure was devised to implement the DAG that was obtained in the

previous design step. As it can be seen in Figure 4.8, such circuit requires only three adders and

four (2 : 1) multiplexers, in order to perform all the MAC operations involved in the computation of

89



4. Scalable multi-transform architecture

Xin

0 04 32

Mult’

-1

Figure 4.7: DAG of the mux-MCM used in the arithmetic module of the H.264/AVC PE.
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Figure 4.8: Architecture of the mux-MCM used in the arithmetic module of the H.264/AVC

PE.

the eight H.264/AVC transforms.

In the following design step, a 7-bits control word was defined for each of the considered

kernel values. These 7-bits are used to command the operation of all the multiplexers and addi-

tion/subtraction circuits composing the hardware structure obtained in the previous design step.

Such control words are presented (in hexadecimal notation) in Table 4.2 for the set of kernel

values shown in Equations 2.12, 2.13, 2.14, 2.15 and 2.17.

Finally, the contents of the ROM that is embedded in the control module of the proposed

H.264/AVC PE (see Figure 4.5) were specified, by properly disposing all the multiplier control

words in six different memory segments. As it can be seen in Figure 4.9, each of these memory

segments concerns a distinct transform kernel of order-N , which can be addressed by using the

Table 4.2: Multiplier control words for the H.264/AVC transform kernels (see Equations 2.12,
2.13, 2.14, 2.15 and 2.17).

Kernel Value 1
2

1 2 3 4 6 8 10 12

ROM Word 0x44 0x4 0x6 0x26 0x20 0x75 0x28 0x65 0x35
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Figure 4.9: Memory map of the ROM used in the H.264/AVC PE.

previously mentioned Type T signal, according to the data presented in Table 4.1. Within each

memory segment, N consecutive memory positions are occupied with the multiplier control words

corresponding to the N basis values of the considered transform kernel. This data is disposed

in the same manner as its corresponding kernel values in the first column of the transform kernel

matrix. As a result, in order to address and retrieve a given transform kernel value from the PE

ROM, it is only necessary to combine the bits of the Type T signal with those of the address

value generated in the Multiplier Decoder block (ω′), which represents the offset inside the

memory segment. Consequently, by using this memory layout to program the H.264/AVC PE

ROM with all the required multiplier control words, it is possible to greatly reduce the complexity

of the Multiplier Decoder in the PE.

4.2.3 Transposition switch

The Transposition Switch (TS) is used to implement a hardwired row-column transposition of

the data that has been processed in the TA, which corresponds to the computation of a single

1-D transform. Hence, it provides the necessary mechanisms to support the computation of 2-D

transforms using the considered row-column decomposition approach.

Unlike other transposition units that have been proposed [16,49,60,73,96,97,127], the devised TS

does not include any Random Access Memory (RAM) modules. In fact, it mostly consists of a set

of multiplexers that allow a fast and direct row-column transposition of the data. This alternative

design allows saving significant hardware resources for the implementation of the transposition

operation, since it avoids the use of the typical memory companion cells. In practice, the func-

tionality of such cells is already implemented by the PEs within the TA, which store such data in

their internal standing-data registers (see Figure 4.5). The proposed TS also does not impose

any penalty in the performance on the whole system operation, owing both to the pipelined pro-

cessing nature of the PE array and to the much lower propagation time of its switching circuitry,

when compared to the latency of the PEs.

As it can be seen in Figure 4.10, this scalable switching circuit mostly consists of a set of N

distinct (M : 1) multiplexers, where N and M correspond to the amount of PE lines and columns

in the TA, respectively. Typically, N = M = T and T corresponds to the size of the largest
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Figure 4.10: Block diagram of the devised Transposition Switch (TS).

transform kernel supported by the TA. This is why there are eight lines and eight columns of PEs

(N = M = 8) in the base configuration of the proposed MTA targeting the H.264/AVC standard,

as it is depicted in Figure 4.4. For configurations of the TA in which M < N , the TA additionally

includes N distinct Variable Delay Element (VDE) blocks to guarantee the correct dataflow, as it

is explained in subsection 4.4.1. In both cases, all the circuits operate in parallel to perform the

required row-column transposition of the data, commanded by local control units. Hence, there is

a control unit per multiplexer that is used to define the proper value for that multiplexer’s selection

input on each clock cycle: the ith processed data value output at column j of the TA corresponds

to the data input i of multiplexer j, where i = 0, ..., N − 1 and j = 0, ...,M − 1.

As a result of this quite simple operation mode, all the local control units can be implemented

using only a ⌈log2 M⌉-bits up counter. The operation of these counters is commanded by using

the set of control signals that are propagated from the TA into the TS, namely, the New T and

Calc control signals. The New T signal, which is asserted by the MTA control unit whenever

the processing of a new 1-D transform is initiated, is used to reset the counter value to zero.

Conversely, the Calc signal is used to allow the increment of the counter, since it indicates that a

new data value is available at the TS input corresponding to that control unit. Note that the Calc

signal is asserted by the MTA control unit only for the clock cycles in which a new data value is

loaded from the IB into the TA. As it was mentioned above, this signal is subsequently propagated

inside the TA, to enable the processing of such data by the PEs until it arrives at the TS.

4.2.4 Input buffer

The Input Buffer (IB) is used to feed the PEs of the TA either with the residue data resulting

from the Intra- and Inter-predictions or the previously computed transform coefficients, according

to the type of transform that is being computed, i.e. a forward or an inverse transform. This

unit is highly required to minimize the delays when accessing the external data memories where

such data is stored, as well as to guarantee the necessary regular dataflow within the TA (as it is
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Figure 4.11: Block diagram of the developed Input Buffer (IB) PISO FIFOs.

discussed in section 4.1). As a consequence, the devised IB was designed to operate in parallel

with the remaining computational circuits of the proposed MTA, therefore allowing to optimize the

overall system data processing rate.

To achieve such goal, the developed IB consists of a scalable structure composed of N distinct

First-In-First-Out (FIFO) buffering elements of depth N , which operate concurrently with each

other. N corresponds to the size of the largest transform kernel supported by the TA, and thus

to the amount of PE lines it includes. As it can be seen in Figure 4.4, with this approach the

input data is loaded from the external memory into these FIFOs in a round-robin fashion through

the input data port of the IB, which allows to immediately start (or resume) the computation of

a transform as soon as new data values are loaded into the empty FIFOs. Furthermore, it also

allows to efficiently exploit cache access patterns, since the input data is typically stored in the

external memory using the raster scan format. These data values are then serially transferred to

the several lines of the TA in the subsequent clock cycles, in order to comply with the implemented

pipelined dataflow and in response to the commands issued by the MTA control unit.

To minimize the data loading time, the designed IB also offers two other important features.

On the one hand, the size of its input data port can be configured to match the size of the external

memory data bus, which allows to optimize the number of memory accesses that are required to

efficiently retrieve the input data from the external memory. On the other hand, it is also possible

to configure the amount of data values that are simultaneously loaded into the FIFO buffering

elements, as a result of such circuits being implemented using Parallel-In-Serial-Out (PISO) shift-

registers, as shown in Figure 4.11. Consequently, in the best case scenario, a full line of residue

values of a given block (or transform coefficients, for the computation of the inverse transforms)

can be loaded into the IB in a single clock cycle, which allows to compute a 1-D N ×N transform

in 4×N − 2 clock cycles.

4.2.5 Control unit

The Control Unit (CU) is responsible for controlling the operation of the TA, as well as for

commanding both the IB and the TS. It is also in charge of implementing the necessary syn-

chronization mechanisms between the proposed MTA and the outer video coding system that is

incorporating this dedicated processing structure. Consequently, in order to simplify the design
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Figure 4.12: Block diagram of the developed Control Unit (CU).

of this controller and guarantee the desired multi-transform functionality of the proposed MTA

(namely, support a scalable hardware structure), this design is decomposed into the system main

controller and two simpler control circuits, as shown in Figure 4.12. The functionality of each of

these controllers, which are synchronized through a quite restricted set of signals, is the following:

i) the main control unit manages the overall operation of the MTA and is composed of:

• a state machine, which coordinates the several tasks of the transform computation

procedure and the synchronization mechanisms with the outer video coding system;

• the TT register, to store the type of the transform being computed during the whole 2-D

transform computation procedure;

• the RC register, which holds the information regarding the nature of the 1-D transform

being computed, i.e. a row-wise or a column-wise transform.

ii) the 1-D Transform Iteration Controller is used to assist the control of the computation of the

1-D row-wise and column-wise transforms, by monitoring the amount of transform compu-

tations that have been computed;

iii) the TA Input Data Selector is employed to control the transfer of the TA input data, by

commanding the set of (2 : 1) multiplexers that select the source of such data, i.e. the IB

output when a row-wise transform is being computed or the TS output for the computation

of the column-wise transforms.

Table 4.3 summarizes the most relevant signals for the operation of the CU’s state machine,

which consists of a Mealy sequential circuit with only six different states, as it can be seen in the

Algorithmic State Machine (ASM) chart [20] depicted in Figure 4.13.

Sstdby is the initial state, which is used to initialize the whole system and to wait for the

external command to start the computation of a new 2-D transform, i.e. the assertion of the STC

signal. As soon as this signal is asserted, the code of the transform type is captured into the TT
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Figure 4.13: ASM chart [20] of the Control Unit’s state machine.
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Table 4.3: List of the most relevant signals for the operation of the CU’s state machine.

Signal Description

CLK Clock signal.

En Enables the normal circuit operation.
ETC Signals the completion of the computation of a 2-D transform.

RDA Signals that new data is available in the IB, ready to be loaded into the TA.

Rst Sets all the circuits into their initial states.
STC Triggers the computation of a new 2-D transform.

TT Type of transform to be computed (see Table 4.1).

register and the circuit advances to state SldIBs. In this state, the FIFOs of the IB are loaded

with data from the external memory. Moreover, the processing of the row-wise transform is also

initiated, owing to the fact that data values are immediately transferred to the TA, as soon as they

are available in the FIFOs (see subsection 4.2.1). After all the FIFOs are completely loaded, the

circuit goes into state SrunS1, which is used to complete the computation of the first 1-D transform.

The state SinitS2 is subsequently used to reinitialize the architecture for the computation of the

column-wise transform. Such computations are performed in states SinitS2 and SrunS2. The

completion of the 2-D transform procedure is signalled in state Sdone, with the assertion of the

signal ETC. Such notification requires a single clock cycle, after which the state machine is put

back into its initial state (Sstdby) waiting for a new command to start the computation of another

2-D transform.

It should be noted that this operation loop is slightly simplified whenever the size of the trans-

form to be computed (k) is smaller than the height of the TA (N ), where k and N are integer

powers of two and k = 2i with i = 1, ..., log2 N − 1. In such cases, only k FIFOs must be loaded

with input data from the external memory, which reduces the duration of state SldIBs. Moreover,

since the 1-D row-wise transform is also simultaneously computed with the loading of such data,

the EOT signal is asserted still in state SldIBs. This is also valid for the computation of the column-

wise transform, but involving state SinitS2. As a result, the control flow for the computation of a

2-D transform in these particular cases involves neither the state SrunS1 nor the state SrunS2.

4.3 Dataflow

The dataflow model of the proposed MTA was designed not only to maximize the data pro-

cessing rate within the TA but also the occupancy rate of the PEs. Consequently, it employs a

simple and distributed control scheme, which enables the computation of all the transform co-

efficients in a pipelined fashion and without any stalls. Figure 4.14 illustrates such dataflow for

the processing of a 2-D N × N transform using a TA with N × N PEs. The three represented

data-sets correspond to the processing of two consecutive N × N blocks: the two data-sets of

predicted residue values (or transform coefficients, for the computation of inverse transforms) are

represented using a solid-line, while the data-set comprehending the intermediate values of the
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(a) t=T0 (b) t=T0+1 (c) t=T0+2 (d) t=T0+N (e) t=T0+N+1

(f) t=T0+N+2 (g) t=T0+2N (h) t=T0+2N+1 (i) t=T0+2N+2 (j) t=T0+3N-1

Figure 4.14: Dataflow in a TA with N ×N PEs for the processing of N ×N data blocks.

row-column decomposition is depicted using a dashed-line.

As it can be seen in Figure 4.14, the data values within the TA are processed by the PEs in a

wavefront manner, by following a regular data streaming model. Accordingly, the data is fed into

the TA rows through the input buffers in the left column of the array (see section 4.2). Then, it

is processed by each PE (as explained in subsection 4.2.1) and subsequently propagated in the

horizontal and vertical directions to the neighbour PEs inside the TA, advancing one PE level in

both directions at each clock cycle. Conversely, the control signals for all the PEs enter the array

through the top-left corner PE and are propagated to the other PEs also in both directions and

synchronously with the data propagation. Such signals are also propagated into the TS, where

they are used by the control logic to select the proper data to be feedback to each row of the TA,

as discussed in section 4.2.3.

Therefore, the devised dataflow model makes it possible to start the computation of a different

transform value in each row of the TA ay each clock cycle, provided that the IBs are not empty.

Simultaneously, it also allows executing another iteration of the considered transform for all the

values that are being processed in the remaining rows of PEs. Hence, this approach offers a

maximization of the data processing rate within the TA, since the only PEs that will be stalled at any

given time instant are those lacking some data to be processed, or the ones being reprogrammed

to support the computations involving a distinct transform kernel in the subsequent clock cycles,

as it is explained in section 4.2.1.

In such reprogramming stage, the PEs are also configured in a wavefront manner. The com-

mand that triggers such event is sent through the top-left corner PE, which then propagates it to

the remaining PEs in both the horizontal and vertical directions. Since this operation requires only

a single clock cycle and is performed in a pipelined fashion, it is possible to initiate the computation
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(a) t=T0 (b) t=T0+1 (c) t=T0+2 (d) t=T0+3 (e) t=T0+4

(f) t=T0+5 (g) t=T0+6 (h) t=T0+7 (i) t=T0+8 (j) t=T0+9

Figure 4.15: Reprogramming of a TA with 4× 4 PEs.

of the new transform on the clock cycle that immediately succeeds the reconfiguration of a PE.

Consequently, the reprogrammable nature of the PEs only increases the latency of the proposed

MTA in one single clock cycle. Still, the complete reprogramming of a TA with N ×N PEs always

requires 2N − 1 clock cycles. This reprogramming procedure is illustrated in Figure 4.15 for a TA

with 4× 4 PEs, where the data-sets represented in light and dark blue colours correspond to the

processing of two different blocks using distinct transform kernels and the reprogramming stage

of the TA is represented in yellow colour.

From the previous discussion, it can be easily concluded that the reprogrammable character-

istic of the proposed MTA does not affect its performance. Consequently, in steady conditions (i.e.

the computation of the same transform for several consecutive blocks) the architecture is capable

of sustaining a throughput of N samples per clock cycle, which enables the computation of 2-D

N ×N transforms in 2×N clock cycles, with a repetition interval of 2×N clock cycles. Naturally,

(N − 1) additional clock cycles are also required to fill in the TA with the data of the first block to

be processed, so that it is possible to sustain this fully pipelined dataflow in the subsequent clock

cycles. Similarly, retrieving all the computed data from the TA after the processing of the last data

block requires another time period of (N − 1) clock cycles.

4.4 Scalability and parallelism

When compared with other existing processing structures offering a similar functionality, the

proposed MTA offers increased advantages also in terms of scalability and parallelism. Nowadays,

these are two very important characteristics that are highly required by most transform architec-

tures, in order to allow the realization of high performance and hardware efficient multi-transform

cores capable of complying with the requirements of the H.264/AVC standard. Furthermore, these

98



4.4 Scalability and parallelism

features are also most relevant in the design of other transform computational circuits addressing

not only alternative state-of-the-art video standards (e.g. VC-1 and AVS) but also the next genera-

tion of video standards (i.e. H.265/HEVC [129]), whose definitions include multiple and higher-order

transforms and present optimizations regarding the application of parallel processing techniques.

4.4.1 Scalability

Due to the modular and highly flexible interconnection structure that was devised for the pro-

posed MTA, this architecture can be easily scaled to realize transform cores that are capable of

efficiently supporting the computation of transforms with distinct sizes. Although this scaling ca-

pability is common to all the modules of the architecture, it is applied differently to the TA, the TS,

the IB and the CU.

In what concerns the TA, the offered scalability is used to resize the hardware structure of

this module by changing the amount of PEs that it includes in both the vertical and horizontal

dimensions, so that it can match the size of the considered transform kernel. As a result of the

devised systolic dataflow model, such resizing operation only requires the extension of the control

and data exchange signals that are used to interconnect all the PEs within the TA to a different

amount of PEs.

Similarly, the scaling capabilities of the TS and of the IB allow adjusting the amount of multi-

plexers and buffers that compose these modules to the number of lines of the considered TA. In

addition, the offered scalability is also used to adapt the internal structure of these circuits to the

amount of columns of the TA, in order to maximize the performance vs hardware cost trade-off

for any given architecture configuration. For example, employing multiplexers with only as much

data inputs as the amount of columns (M ) available in the considered TA to build the TS allows

sustaining the maximum data processing rate offered by the TA when performing the row-column

transposition operation (i.e. M samples per clock cycle) , as well as to minimize the hardware cost

of the TS for such architecture configuration. In the same manner, it is possible to minimize the

hardware cost of the IB without compromising the dataflow within the TA, by changing the depth

of the buffers that compose the IB to match the amount of columns of the considered TA.

In contrast with all these modules, the architecture of the CU is not affected by the scalable na-

ture of the proposed MTA. This is a result of its modular design (see section 4.2.5), since only the

operation of the 1-D Transform Iteration Controller depends on the size of the considered

TA, i.e. the size of the transform kernel. Consequently, the CU can easily support the scalability of

the architecture, by using the number of lines (N ) and columns (M ) of the TA as threshold values

to control the operation of its auxiliary control circuits.

As it can be easily concluded, the enormous flexibility that is offered by the proposed MTA

to realize transform cores with different sizes (scalability) and using distinct PEs (modularity) not

only confers it the desired multi-transform capability but also provides significant advantages in
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the design of hardware efficient and high performance multi-transform cores. Furthermore, these

scalability and modularity characteristics also make it possible to successfully use the proposed

MTA in the design of very efficient transform cores for alternative application domains, where the

video codec performance might not be a highly critical issue. In such cases, the scalability of the

architecture can also be exploited to adapt, in a different perspective, the hardware structure of

the transform core to the specific requisites of the target application, i.e. the balance between the

hardware cost and the desired performance. For example, designs with fewer PEs can be ob-

tained by resizing the TA in its horizontal dimension and by considering setups where the number

of columns in the TA (M ) is a submultiple of the transform size to be computed (N ). However,

by using a smaller N × M array to compute a N × N transform, where N and M are integer

powers of two and M = 2i with i = 0, ..., log2 N − 1, these designs require
(

N
M

− 1
)

×N additional

clock cycles to complete the computation procedure of the involved 1-D transforms. In these sit-

uations, the input data must go N
M

− 1 additional times through the M columns of PEs in the TA,

so that all the N2 output results can be processed. Consequently, these transform cores reflect

quite specific compromise solutions between the desired hardware savings and the resulting data

processing capabilities of the design.

As an example, Figure 4.16 shows two possible lower cost designs that can be obtained by

applying the scalability property to the transform core presented in Figure 4.4. Both designs are

able to compute exactly the same set of transforms as the original transform core, i.e. the forward

and inverse 8×8 and 4×4 DCTs and the forward and inverse 4×4 and 2×2 Hadamard transforms.

The 8×4 PEs setup that is presented in Figure 4.16(a) comes as a compromise solution between

performance and hardware cost. When compared with the base setup using 8× 8 PEs, it offers a

reduction of the required hardware resources by using only eight lines and four columns of PEs.

As a consequence, it imposes a moderate penalty in the resulting throughput of the architecture.

Nevertheless, the performance is only affected for the computation of the 8× 8 transforms, which

require twice as much clock cycles as in the 8 × 8 PEs setup. Conversely, the setup with 8 × 1

PEs depicted in Figure 4.16(b) offers the greatest savings in terms of hardware cost, due to the

use of only a single column with eight lines of PEs. Nonetheless, this comes at the expense of a

significant reduction in the computational performance of the resulting transform core, since this

architecture configuration requires either 8, 4 or 2 times more clock cycles to process a 8 × 8, a

4× 4 or a 2× 2 transform, respectively. Consequently, it can be concluded that this setup is more

suitable for applications that need to comply with strict hardware restrictions, or that do not require

very high performance levels.

Despite the obvious advantages that can be obtained by efficiently exploiting the scalable

nature of the proposed MTA to design low cost transform cores, such approach also has some

minor drawbacks. On the one hand, it imposes some modifications in the architecture of the IB

and of the TS, in order to ensure the computation of a N × N transform when using a smaller
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Figure 4.16: Alternative setups for the proposed MTA.
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Figure 4.17: Architecture of the circular buffers.

N × M array. On the other hand, it slightly increases the complexity of the CU, which has to

interface with the datapath in a different manner to avoid stalls in the processing of the input data.

To overcome such problems in a quite efficient manner, the IB offers an alternative operation

mode in these smaller rectangular array configurations for which the FIFOs are configured to

implement circular buffers, as shown in Figure 4.17. The resulting cyclic dataflow model provides

the required means to feed the TA with the same input data (either corresponding to the first or

the second 1-D transform) multiple times, as it is explained above. Consequently, this approach

allows the computation of a N ×N transform in N −M independent iterations.

Regarding the TS, the necessary architecture modifications mostly consist in the embedding

of M Variable Delay Elements (VDEs) in this processing structure, as shown in Figure 4.16. This

results from the fact that by eliminating N −M columns of PEs in the TA, it becomes impossible

to implement the row-column transposition operation for transforms larger than N ×M by solely

using multiplexers. More specifically, in such scenarios the TA no longer contains enough registers

to hold the N × N intermediate data values under processing, which must be transposed and

feedback into the array for the computation of the column-wise transforms. Consequently, M

VDEs are employed to store such temporary data in these rectangular TA configurations.

As it can be seen in Figure 4.18, which depicts the architecture of a generic VDE, these circuits

mostly consist of a set of data registers and programmable bypass multiplexers. The multiplexers

are used to compensate the lower or higher amount of PE columns in the TA, by including more

(lower values of M ) or less (higher values of M ) registers in the TS datapath, respectively.

It should be highlighted that due to the interconnection scheme that was adopted for the pro-

posed MTA, the VDEs mostly extend the TA pipeline into the TS, and therefore do not influence

the overall system performance. Moreover, the hardware cost for the necessary transposition op-
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Figure 4.18: Architecture of the VDE.
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eration also does not significantly increases in these smaller array configurations, since the total

amount of registers used in the TA and in the TS is always the same.

4.4.2 Coarse-grain data-level parallelism

The scalability that is offered by the proposed MTA is most useful to improve both the function-

ality and the hardware efficiency of the devised architecture for the implementation of transform

cores supporting the computation of any given transform. Nevertheless, by itself, such feature

allows increasing the architecture’s hardware efficiency only when the considered hardware real-

izations compute a single transform, or multiple transforms of the same size. In such situations,

the TA includes as much PEs as the size of the largest transform to be computed, which allows

to obtain the maximum throughput and PE occupation rate that can be provided by that specific

architecture configuration, as it is explained in section 4.4.1. However, this is not the case of the

hardware designs targeting modern video standards, which require the computation of several dif-

ferent transforms with distinct kernel sizes. In the H.264/AVC standard, it is necessary to compute

the 8× 8 DCTs, the 4× 4 DCTs and the 4× 4 and 2× 2 Hadamard transforms [143].

In these scenarios, both the performance and the hardware efficiency of the implemented

transform cores are greatly reduced when computing all the considered lower order transforms.

This results from the fact that the involved TA, TS and IB permanently include all the hardware re-

sources required to compute the highest order transforms, albeit only some of such resources are

employed in the processing of the lower order transforms. Nonetheless, it is still possible to obtain

hardware efficient and high performance multi-transform designs for these application domains,

by exploiting the modular and flexible interconnection structure that characterizes the proposed

MTA to implement a different processing mode involving coarse-grain data-level parallelism.

In this alternative processing mode, the proposed MTA is capable of efficiently and simul-

taneously computing several different transforms, by using the same hardware structure. More

specifically, a transform core based on a TA with N × N PEs supporting this processing mode

is capable of efficiently computing k transforms of size N
k
× N

k
in parallel, where k = 2i with

i = 0, ..., log2 N − 1.

As it can be easily concluded, this parallel processing mode allows to greatly improve both the

performance and the hardware efficiency of the proposed MTA for the implementation of trans-

form cores supporting the computation of multiple transforms with distinct sizes. In what concerns

the performance, this processing mode not only allows to accelerate the transform computation

procedure of the N
k

lower order transforms by k times but also to guarantee the optimal through-

put of N processed samples per clock cycle, as a consequence of k different transforms being

simultaneously computed. Regarding the hardware efficiency, the simultaneous computation of

all the N
k
× N

k
smaller transforms makes use of the whole TA, composed by N ×N PEs, as well

as of all the multiplexers and FIFOs available in the TS and IB, respectively. As a result, the archi-
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(a) t=T0 (b) t=T0+1 (c) t=T0+2 (d) t=T0+3

(e) t=T0+4 (f) t=T0+5 (g) t=T0+6 (h) t=T0+7

Figure 4.19: Dataflow in a 8 × 8 TA for the simultaneous processing of four 2 × 2 data
blocks. The two data-sets depicted using a solid-line concern the residue values (or the transform

coefficients, when inverse transforms are considered), while the data-sets represented using a
dashed-line consist of the intermediate values of the row-column decomposition.

tecture’s hardware efficiency increases about (k − 1)× 1
k2 , since the global hardware cost of the

MTA is mostly influenced by the TA. These gains can be clearly seen in Figure 4.19, which shows

the dataflow for the parallel processing of four different 2 × 2 transforms, by using the transform

core depicted in Figure 4.20. Such transform core, which consists of an implementation of the

proposed MTA with added support for coarse-grain data-level parallelism, is based on a TA with

8 × 8 PEs (N = 8), which is capable of efficiently computing not only a single 8 × 8 transform

in 30 clock cycles but also two 4 × 4 transforms (k = 2) and four 2 × 2 transforms (k = 4), in

simultaneous, in just 14 and 6 clock cycles, respectively.

As it can be seen in Figure 4.20, the hardware structure of a transform core offering support for

coarse-grain data-level parallelism is slightly more complex than the base design of the proposed

MTA. In what concerns the TA, this module is rearranged as a set of k2 independent processing

units, which allows to simultaneously process up to k distinct N
k
× N

k
transforms. Each processing

unit is composed of N
k
× N

k
PEs and is capable of fully processing an N

k
× N

k
transform. All the
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Figure 4.20: Architecture of a transform core supporting coarse-grain data-level paral-
lelism.

k processing units available in the (N × N ) TA have identical processing capabilities and can be

interconnected with each other by using two different strategies, in order to make the best use

of the available processing modules for the computation of any given transform size. In the first

case, all the processing units are interconnected in cascade, just like in the base design of the

proposed MTA, which provides the means required to support the computation of the larger N×N

transforms. In the other case, all the processing units are left detached from one another and the k

leftmost units of the TA are independently operated, so as to allow the computation of the several

smaller transforms in parallel. Such flexible interconnection scheme is achieved by including a

new set of multiplexers at the accumulated data inputs (ACC in) of the topmost PEs of each one

of the considered k processing units. As a consequence of this new PE interconnection scheme,

the output interface of the TA also presents some minor differences regarding the base design

of the proposed MTA. As it can be seen in Figure 4.20, such interface provides an additional

set of output signals for the new data buses transporting the computation results of the smaller

transforms into the TS.

The modifications that must be introduced in the TS also concern the interface and the ar-

chitecture of this processing module. More specifically, the input interface of the TS has to be
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extended to accommodate the new output data buses of the parallel TA. Conversely, the modi-

fications that were introduced in the architecture of the TS provide the mechanisms required to

parallelize the realization of the row-column data transposition operation, whenever k different

transforms are processed in simultaneous within the TA. To achieve such goal, this enhanced

architecture of the TS not only includes the N multiplexers that were already employed in its base

design but also an additional set of
log

2
K

∑

j=1

(

2j − 2j−1
)

× N
2j

+N −K multiplexers, where K repre-

sents the size of the smallest transform that can be processed. All these circuits are organized

in several different units, which are properly combined to implement a hierarchical data switching

structure with two selection levels, as it is illustrated in Figure 4.20.

In the first level of this structure, N +
log

2
K

∑

j=1

(

2j − 2j−1
)

× N
2j

of such units are employed to

perform, in parallel, the row-column data transposition operations concerning all the possible N
k
×

N
k

transforms that can be computed in the TA. Each of these units, which is composed exclusively

of
(

N
2j

: 1
)

multiplexers, is used to process a single transform size. In particular, a unit composed of
(

N
2j

: 1
)

multiplexers performs the transposition of the data blocks strictly resulting from the parallel

computation of all the transforms with size N
k
× N

k
. The output values provided by all these units

are subsequently processed in the second level of the architecture, where another group of N−K

multiplexers selects the proper transposed data to be sent back to the TA, according to the size

of the transforms under computation. As a result, by using this enhanced architecture of the TS it

is possible to perform the transposition of the data generated by a N ×N TA not only as a whole

N ×N block but also as k smaller N
k
× N

k
blocks.

Naturally, the extra multiplexers that are used to implement this hierarchical data switching

structure have some influence in the maximum clock frequency of the devised transform cores,

since they slightly increase the critical path of such designs. Nevertheless, the corresponding

impact in the global performance of these transform cores should be almost negligible for two

specific reasons. Firstly, because the critical path of the proposed MTA is only limited by the

latency of its slowest functional module, as a result of the implemented pipelined processing

scheme. Secondly, owing to the fact that the PEs are, usually, the slowest functional modules of

the MTA, due to all the arithmetic circuits that they include.

Finally, the CU also comprises a couple of adjustments in the architecture of its three main

modules, in order to being able to support the parallel processing mode offered by the proposed

MTA. In what concerns the CU’s main control unit, the required changes consist in the defini-

tion of an additional set of output signals for the state machine. Such control signals are used

to command the extra multiplexers that must be embedded in the TA and in the TS to support

this alternative processing mode, as it is explained above. Likewise the base design of the

architecture, these signals enter the TA through the top-left corner PEs of each TA unit in the

same clock cycle and are subsequently propagated to the other PEs within that same unit, syn-

chronously with the data propagation. Regarding the other two controllers, i.e. the 1-D Transform
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Iteration Controller and the TA Input Data Selector, the necessary modifications consist

only in the definition of a broader set of threshold values for the involved auxiliary control circuits

(see section 4.2.5). For example, the 1-D Transform Iteration Controllermust take into con-

sideration the value N
k

instead of N , when signalling the completion of the computation of a 1-D

transform to the CU’s main control unit in the parallel processing mode.

4.5 Summary

A novel high throughput Multi-Transform Architecture (MTA) for the computation of the multiple

2-D transforms defined in the H.264/AVC standard is presented in this chapter. Such processing

structure is based on a 2-D systolic array and on a RAM free row-column data transposition cir-

cuit, which are used to compute the H.264/AVC forward and inverse 8× 8 and 4× 4 DCTs and the

forward and inverse 4×4 and 2×2 Hadamard transforms by using the row-column decomposition

approach. Due to its highly modular and flexible hardware structure, the proposed architecture

can be easily scaled in terms of performance and hardware cost, in order to provide hardware

realizations capable of complying with the specific requirements of any given video coding ap-

plication. In addition, the proposed MTA also supports coarse-grain data-level parallelism. This

allows it to simultaneously compute several different transforms, and thus to improve its hardware

efficiency and speed up the transform computation procedure.
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As discussed in chapter 2, the most recent video standards have been adopting improved pre-

diction schemes and more elaborate compression techniques, which has resulted in the definition

of considerably more complex quantization algorithms. In the H.264/AVC standard, such aug-

ment in complexity is mainly due to the inclusion of multiplications and divisions involving rational

operands, as well as to the numerous memory accesses that the quantization procedure involves.

In addition, the very tight interconnection between the transform and quantization procedures

further increases such complexity requirements.

These forward and inverse quantization procedures significantly influence the performance of

video coding systems, both in terms of throughput and latency (see section 1.1). Consequently,

the increased complexity of the H.264/AVC quantization operations poses several additional and

difficult challenges in the design and implementation of their corresponding video codecs, espe-

cially when HD contents must be supported or real time operation is demanded.

In order to overcome all these constraints, this chapter presents a new class of high perfor-

mance architectures for the computation of the H.264/AVC quantization operations. Such pro-

cessing structures can be used to realize not only forward and inverse quantizers but also unified

quantization circuits with reduced hardware cost. Furthermore, they can be easily configured

to provide implementations offering different trade-offs between performance and hardware cost,

which makes them suitable to be used in multiple application domains with distinct requisites.

5.1 Forward Quantization Architecture

Although the quantization formulation presented in Equation 2.24 seems to be relatively

straightforward, its direct implementation in hardware presents significant difficulties in terms of

the demanded performance and involved implementation complexity. Such penalties are mostly

owed to the inherent multiplication and division operations, whose computations require circuits

imposing long latencies and high hardware costs, especially when high performance is de-

manded. Fortunately, the implementation complexity of Equation 2.24 can be greatly reduced,

by exploiting the quite specific properties of the H.264/AVC quantization procedure [102].

On the one hand, the underlying quantization algorithm was developed to allow its implemen-

tation using 16-bits integer arithmetic, for integer input data encoded using 9-bits1. Nevertheless,

the computation of the intermediate results requires arithmetic circuits with higher resolution. For

example, the computation of the multiplication involving the transform coefficients (yij) and the

multiplication factors (MF (QP )ij) produces a 31-bits result. Still, all the quantized values are

guaranteed to fall within the required 16-bits range, due to the final rescaling and rounding stage

that is imposed by the H.264/AVC specification (see Equation 2.24).

On the other hand, the operands of almost all the operations that are specified in Equation 2.24

1The inputs to the transform process are the prediction residuals and thus they are encoded using 9-bits for 8-bits
pixel data, which originates transform coefficient values that can be encoded using, at least, 16-bits.

110
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(i.e. additions, multiplications and divisions) are integer power of 2 values. Therefore, the corre-

sponding multiplications and divisions can be replaced by arithmetic shift-left/right operations,

respectively, in order to reduce the associated implementation complexity. The quantization pro-

cedure can still be further simplified by applying the distributive property to the division shown in

Equation 2.24. This allows using a single arithmetic shift-right circuit to implement the rescaling

and rounding operations.

As a result of all these observations, the formulation presented in Equation 2.24 can be rewrit-

ten as Equation 5.1, where the >> symbol denotes an arithmetic shift-right operation and h is

given by Equation 2.25. The dead-zone control parameter (ρ) can be computed as shown in

Equation 5.2, where the << symbol represents a shift-left operation and β is given by Equa-

tion 5.3.

zij = (yij ×MF (QP )ij + ρ) >>

(

15 +

⌊

QP

6

⌋

+ h

)

(5.1)

ρ = f × 2h =

(

2

3

⌊QP
6 ⌋

× 2−β

)

× 2h =

(

2

3

⌊QP
6 ⌋

>> β

)

<< h (5.2)

β =

{

0, if Intra block

1, otherwise
(5.3)

This less complex formulation of the quantization operation evidences that the computation of

a quantized coefficient consists of a four stages procedure, involving very few integer arithmetic

operators. As it can be seen in Figure 5.1, the Forward Quantization Architecture (FQA) that was

developed to support such computation procedure consist of a very efficient and purely combina-

tional integer datapath, with five different processing phases and only three distinct computational

circuits, i.e. a 16 × 15-bits signed multiplier, a 31-bits adder and a 31-bits arithmetic shift-right

circuit. In addition, it includes other less complex logical elements for the computation of some

intermediate values, such as a 4-bits adder to determine the shift-amount and a couple of ROMs

to provide all the required constant values (i.e. QP%6,
⌊

QP
6

⌋

, 2
3

⌊QP
6 ⌋

and MF ).

Figure 5.1: Block diagram of the proposed FQA.
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Table 5.1: Possible configurations of the proposed FQA.

Pipeline registers
Architecture configuration

A/B B/C C/D D/E

Non-pipelined - - - -
2 pipeline stages - -

√
-

3 pipeline stages -
√ √

-

4 pipeline stages -
√ √ √

5 pipeline stages
√ √ √ √

Figure 5.1 also evidences the very flexible structure of the proposed FQA, which not only is ca-

pable of providing high processing rates but also of supporting different configurations with distinct

performance vs hardware cost characteristics. Such configurations consist of non-pipelined and

pipelined versions of the proposed architecture, as it is shown in Table 5.1. The configuration with

the most reduced hardware cost is also the one providing the longest critical path and consists of

the non-pipelined version of the architecture, in which all the pipeline registers are replaced by di-

rect point-to-point circuit interconnections. On the other hand, the highest performance levels are

offered by the configuration implementing a fully pipelined architecture with the five stages A, B,

C, D and E, as defined in the bottom of Figure 5.1. The remaining architecture configurations also

implement pipelined designs, but with fewer pipeline stages. This allows to guarantee the desired

trade-off between hardware cost and performance, which includes also the latency. For all the

considered configurations, the obtained throughput is always one quantized transform coefficient

per clock cycle. Moreover, the data processing rate is also maximized in each configuration, as

a result of all the efforts that were devised to keep the pipeline stages properly balanced. This

aspect is discussed in more detail in section 6.3.

In what concerns the functionality of the devised FQA, phases A and B are used to fetch

all the data related to QP and the scaling factors (MF ) from the ROMs. The shift-amount
(

15 +
⌊

QP
6

⌋

+ h
)

for the final adjustment of the quantized coefficient is computed in phase C,

as well as the required rounding factors (ρ). Nevertheless, the preliminary steps in the computa-

tion of such value are realized in phase B, so as to keep all the pipeline stages as balanced as

possible. The rounding operation is then realized in phase D, by using the scaled data values that

are determined in phase C. Lastly, the ultimate value of the quantized coefficient is adjusted in

phase E, by using the arithmetic right shifter. Such value is made available at the circuit’s output

port zij .

5.2 Inverse Quantization Architecture

As discussed in subsection 2.2.2, the H.264/AVC forward and inverse quantization operations

are based on the same principles. Consequently, the set of observations and simplifications

that are presented in section 5.1 can also be applied to Equation 2.31, in order to develop a
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5.2 Inverse Quantization Architecture

high performance and hardware efficient architecture for the realization of the H.264/AVC inverse

quantization operation. Therefore, the following two optimizations were considered to develop the

proposed Inverse Quantization Architecture (IQA): i) perform all the required computations using

integer arithmetic; and ii) employ shift operations to realize the 22-bits signed multiplications in-

volved in the rescaling and rounding steps of the algorithm. According to Equation 2.31, these

shift operations may result either in an arithmetic shift-right or in a shift-left displacement, depend-

ing on the sign of the required shift-amount
(⌊

QP
6

⌋

− τ
)

. As a result, the obtained alternative and

less complex formulation of Equation 2.31 is the following:

ySij =







(zij × V (QP )ij + δ) >>
(

τ −
⌊

QP
6

⌋)

, if c1 ∨ c2

(zij × V (QP )ij + δ) <<
(⌊

QP
6

⌋

− τ
)

, otherwise

c1 : inverse H4×4 ∧ (QP < 12)

c2 : inverse H2×2 ∧ (QP < 6)

(5.4)

According to Equation 5.4, the computation of the scaled transform coefficients (ySij) consists

of a five stages procedure very similar to the one presented in section 5.1 for the computation of

the forward quantization operation. As a consequence, the devised IQA is also based on a flexible

hardware structure that can be configured to implement both pipelined and non-pipelined integer

datapaths. As it can be seen in Figure 5.2, such processing structure is mostly composed of three

computational circuits: a 16 × 6-bits signed multiplier, a 22-bits adder and one 22-bits arithmetic

barrel shifter. In addition, it makes use of two ROMs to obtain all the required constant values

(i.e. QP%6,
⌊

QP
6

⌋

, QP < 12, QP < 6 and V ), as well as of a couple of combinational circuits to

generate the values of δ, τ and η. Table 5.2 describes the functionality of block η, which is used

to determine the shift direction and the absolute value of the shift-amount to be considered by the

barrel shifter. The encoding of the Type T signal is shown in Table 4.1.

By comparing Figure 5.2 with Figure 5.1 it is possible to conclude that the proposed IQA and

FQA consist of two very similar structures, with comparable operation modes. In fact, the IQA can

Figure 5.2: Block diagram of the proposed IQA.
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Table 5.2: Functionality of the block η.

Type T QP < 12 QP < 6 η

0, 4 - 0 0

0, 4 - 1 1
1, 5 0 - 0

1, 5 1 - 1

2, 3, 6, 7 - - 0

Table 5.3: Possible configurations of the proposed IQA.

Pipeline registers
Architecture configuration

A/B B/C C/D D/E

Non-pipelined - - - -
2 pipeline stages - -

√
-

3 pipeline stages -
√ √

-

4 pipeline stages -
√ √ √

5 pipeline stages
√ √ √ √

also be configured to implement one out of five distinct configurations, whose characteristics and

offered performance levels are identical to the corresponding configurations of the FQA described

in section 5.1. Table 5.3 clearly demonstrates this property.

The similarities in the functionality of the two processing structures are also quite evident. In

fact, the most significant difference in their operation modes concerns the computation of the

rounding factor (i.e. ρ and δ). In the IQA, such computation takes place exclusively in phase B,

while in the FQA it is computed throughout phases B and C to balance the pipeline stages. Conse-

quently, the functionality of the proposed IQA can be easily extrapolated from the corresponding

description presented in subsection 5.1.

5.3 Unified Quantization Architecture

A careful analysis of the formulations of the H.264/AVC forward and inverse quantization oper-

ations shown in Equations 2.24 and 2.31, respectively, reveals that they can be represented using

a unique and more generic expression:

oij = (sij × σ(QP )ij + ϕ)× 2ε (5.5)

In this formulation, σ represents a quantization function, while ϕ consists of a control parameter

that can be used to improve the accuracy of the quantization procedure near the origin and ε

is a rescaling/rounding factor. Hence, oij can be either the quantized or the scaled transform

coefficient of line i and column j of the block of coefficients that is being forward or inverse

quantized, respectively, while sij is the corresponding transform or quantized coefficient.

Equation 5.5 evidences that the realization of the two quantization procedures involves not

only the same set of operations but also very similar operands. Therefore, it can be used to de-

velop resource-shared architectures capable of computing both procedures. In terms of hardware
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5.3 Unified Quantization Architecture

cost, such unified hardware structures offer some important advantages in the design of video

encoders, since they enable the use of the same computational circuit to implement both the for-

ward and the inverse quantization modules depicted in Figure 1.5. In addition, they are also very

relevant for the implementation of Integrated Transform and Quantization Architectures (ITQAs)

supporting the H.264/AVC encoding and decoding procedures. In such cases, the hardware

cost and the efficiency of these processing structures can be greatly improved by using also a

resource-shared Unified Quantization Architecture (UQA) to realize the quantization module sup-

porting the necessary computations of the forward and inverse quantization procedures.

The hardware cost of such UQAs can be further reduced by recalling the set of considerations

and simplifications that are presented in the previous subsections. Such approach not only allows

realizing all the operations exclusively using integer arithmetic but also replacing most of the

involved multiplications and divisions by arithmetic and logical shift operations. As a consequence,

the performance of these processing structures can also be greatly improved, due to the use of

faster and less complex circuits.

By following this methodology, Equation 5.5 can be applied to compute the forward quantiza-

tion operation by using the MF function (see Equation 2.21 and Equation 2.22) as the adopted

quantization function σ (i.e. σQ = MF ), and by computing the control parameter ϕ as specified in

Equation 5.5 (i.e. ϕQ = ρ). The multiplication involving ε can be realized with an arithmetic shift-

right operation, where the shift-amount is given by Equation 5.6. Such important simplification re-

sults from the fact that this scaling factor always takes positive integer values (see Equation 2.24

and Equation 5.1).

εQ = 15 +

⌊

QP

6

⌋

+ h (5.6)

As a result of all these simplifications, Equation 5.5 can be rewritten for the quantization operation

as shown in Equation 5.7.

oQij
= (sij × σQ(QP )ij + ϕQ) >> εQ (5.7)

Regarding the inverse quantization operation, the computation of the involved control param-

eter ϕIQ can be optimized by carefully analyzing Equation 2.32. Such observation reveals that

ϕIQ can take only the three values shown in Equation 5.8.

ϕIQ =







0 , if inverse H4×4 ∧ (QP ≥ 12)
1 , if inverse H4×4 ∧ (QP ≥ 6) ∧ (QP < 12)
2 , otherwise

(5.8)

As it is discussed in section 5.2, the scaling factor for the inverse quantization operation (εIQ)

can take both positive and negative integer values. Therefore, the corresponding multiplication

can be implemented by using either an arithmetic shift-right or shift-left operation. The involved

shift-amount is obtained by replacing Equation 2.33 in Equation 5.4, as shown in Equation 5.9.

115



5. Configurable and low cost quantization architectures

εIQ =



















−
(

2−
⌊

QP
6

⌋)

, if c1

−
(

1−
⌊

QP
6

⌋)

, if c2
⌊

QP
6

⌋

, otherwise

c1 : inverse H4×4 ∧ (QP < 12)

c2 : inverse H2×2 ∧ (QP < 6)

(5.9)

By considering all the above simplifications, Equation 5.5 is rewritten as Equation 5.10 for the

implementation of the inverse quantization operation, where the quantization function σ consists

of the V function (see Equation 2.29 and Equation 2.30), i.e. σIQ = V .

oIQij
=

{

(sij × σIQ(QP )ij + ϕIQ) >> |εIQ| , if c1 ∨ c2

(sij × σIQ(QP )ij + ϕIQ) << εIQ, otherwise

c1 : inverse H4×4 ∧ (QP < 12)

c2 : inverse H2×2 ∧ (QP < 6)

(5.10)

Accordingly, the UQA that was developed to realize the forward and the inverse H.264/AVC

quantization procedures implements the functionalities represented in Equation 5.7 and Equa-

tion 5.10 (or more generally, in Equation 5.5), by sharing the hardware resources that are com-

mon to both procedures. More specifically, the UQA depicted in Figure 5.3 makes use of one

16 × 15-bits signed multiplier, one 31-bits adder and one 31-bits barrel shifter to compute the

product (sij × σ(QP )ij + ϕ) × 2ε for the two operations. Moreover, a couple of ROMs are also

shared in these computations. ROMσ is used to implement the MF and V quantization functions,

while ROMQP provides all the constant values depending on QP , i.e. QP%6,
⌊

QP
6

⌋

, QP < 12 and

QP < 6. In addition, a 4-bis adder is used in conjunction with the combinational block µ and

some logic gates to determine the required shift-amount for the two operations. Nonetheless, the

Figure 5.3: Block diagram of the proposed UQA.
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Table 5.4: Functionality of the µ block.

Opcode Type T µ

0 0, 1 1

0 2, 3 0
1 4 1

1 5 2

1 6, 7 0

Table 5.5: Possible configurations of the proposed UQA.

Pipeline registers
Architecture configuration

A/B B/C C/D D/E

Non-pipelined - - - -

2 pipeline stages - -
√

-
3 pipeline stages -

√ √
-

4 pipeline stages -
√ √ √

5 pipeline stages
√ √ √ √

proposed UQA also includes other circuits that are exclusively used to realize only one of the

two possible quantization procedures. For example, the ρ block is solely involved in the compu-

tation of the forward quantization operation, while the δ and η blocks are exclusively employed

to perform the inverse quantization procedure. The functionality of these blocks is presented in

Equations 2.25, 5.2, 2.32 and 2.33, respectively, while Table 5.4 describes the functionality of

block µ. The Opcode signal defines the type of quantization to be performed, i.e. forward quanti-

zation (Opcode=0) or inverse quantization (Opcode=1).

As it can be seen in Figure 5.3, the proposed UQA also implements a purely combinational

integer datapath with four different processing phases. Likewise the FQA and the IQA, this pro-

cessing structure can be configured to provide one non-pipelined and several pipelined hardware

realizations with distinct performance vs hardware cost characteristics, in order to optimally ad-

dress the requirements of any given application. Table 5.5 lists the five possible architecture

configurations, whose characteristics and offered performance levels are almost identical to the

ones discussed in section 5.1 and section 5.2.

In what concerns the functionality of the proposed UQA, phase A is used to fetch all the con-

stant coefficients dependent on QP from ROMQP , while the quantization function values MF (QP )ij

and V (QP )ij are retrieved from ROMσ in phase B. The amount and direction of the shift for the final

adjustment of the processed values are computed in phase C, together with the rounding control

parameter (ϕ). Nevertheless, the preliminary steps in the computation of such values are realized

in phase B, in order to keep all the processing phases as balanced as possible. The rounding

operation is realized in phase D, by using the scaled data value that is selected in phase C. In

phase E, the final values of the quantized/scaled transform coefficients are adjusted using the

barrel shifter. The resulting 16-bits value of both the quantized and scaled transform coefficients

are provided at the oij output port of the architecture.
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5.4 Summary

A new class of architectures for the computation of the forward and inverse H.264/AVC quan-

tization procedures is presented in this chapter. Such processing structures are based on a

configurable integer datapath with reduce hardware cost, which can be used to realize not only

forward and inverse quantizers but also resource-shared hardware structures capable of com-

puting both operations. The highly flexible hardware structure that was devised for this datapath

allows it to be easily configured to provide several different pipelined and non-pipelined hardware

realizations, reflecting distinct hardware cost vs performance (both in terms of data processing

rate and latency) optimization goals. Such enormous versatility allows these quantizers to opti-

mally address the requirements of any given application. Consequently, the application scenarios

of the proposed class of quantization architectures range from the implementation of hardware

accelerators in modern SoCs to specialized functional units of ASIPs. In addition, the devised

quantization architectures can also be integrated with other existing processing structures for the

computation of the H.264/AVC transforms, in order to develop integrated transform and quantiza-

tion specialized processors.
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The proposed multi-transform and quantization architectures are evaluated in this chapter, re-

garding their effectiveness and efficiency in the design of H.264/AVC compliant video encoding

and decoding systems for multiple application domains, including their adequacy for the process-

ing of ultra HD video formats in real time.

Accordingly, the considered analysis comprises the experimental assessment of the perfor-

mance levels that can be attained by using such processing structures in the most common video

coding scenarios, as well as the evaluation of the corresponding hardware costs and hardware

efficiency levels. In addition, it comprehends the relative assessment of the proposed architec-

tures, by considering the most related and prominent alternative designs that were proposed in

the literature.

6.1 Experimental setup and implementation considerations

The conducted experimental procedures considered several different proof of concept trans-

form cores and quantizers based on the architectures presented in chapters 4 and 5, respectively.

In what concerns the evaluation of the proposed MTA, four distinct transform cores were im-

plemented and assessed. Each of these circuits supports the computation of the forward and

inverse 8 × 8 and 4 × 4 DCTs, as well as the forward and inverse 4 × 4 and 2 × 2 Hadamard

transforms. However, they reflect distinct architectural configurations that offer different trade-offs

between performance and hardware cost. More specifically, three of the considered hardware

realizations concern standard implementations of the proposed MTA that are based on specific

setups of the TAs using 8 × 8, 8 × 4 and 8 × 2 PEs. The remaining hardware realization is also

based on an 8× 8 PEs TA, but with added support for coarse-grain data-level parallelism. Hence,

this transform core is capable of simultaneously computing not only one 8 × 8 transform but also

two 4× 4 transforms or four 2× 2 transforms.

The evaluation of the proposed class of quantization architectures is based on fifteen distinct

forward, inverse and unified quantizers. Such circuits implement the non-pipelined and the four

pipelined architecture configurations presented in Table 5.1, Table 5.3 and Table 5.5, thus offering

distinct performance vs hardware cost characteristics. All these configurations are capable of

processing the two types of quantization blocks defined in the H.264/AVC standard, i.e. the 4× 4

and the 8× 8 blocks of coefficients.

All the considered proof of concept processing structures, whose characteristics are sum-

marized in Table 6.1 and Table 6.2, were experimentally assessed by using the Xilinx Virtex-7

XC7VX485T-2FFG1761C FPGA device [146] included in a Xilinx VC707 Evaluation Kit [148]. In addi-

tion, some structures were also synthesized for other Xilinx FPGA devices, so that the presented

discussions concerning their relative assessment regarding alternative state-of-the-art designs

can be as fair as possible. All these implementation and evaluation procedures were conducted
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Table 6.1: Characteristics of the considered proof of concept transform cores.

TA Data-level Supported
Design

configuration parallelism transforms

T8×2 8× 2 ◦
FDCT8×8, IDCT8×8,
FDCT4×4, IDCT4×4,

H4×4, H2×2

T8×4 8× 4 ◦
T8×8 8× 8 ◦
T8×8p 8× 8 •

Table 6.2: Characteristics of the considered proof of concept quantizers.

Architecture Quantization Supported
Design

configuration Forward Inverse block sizes

FQNP Non-pipelined • ◦

8× 8, 4× 4

FQP2 2 pipeline stages • ◦
FQP3 3 pipeline stages • ◦
FQP4 4 pipeline stages • ◦
FQP5 5 pipeline stages • ◦
IQNP Non-pipelined ◦ •
IQP2 2 pipeline stages ◦ •
IQP3 3 pipeline stages ◦ •
IQP4 4 pipeline stages ◦ •
IQP5 5 pipeline stages • ◦
UQNP Non-pipelined • •
UQP2 2 pipeline stages • •
UQP3 3 pipeline stages • •
UQP4 4 pipeline stages • •
UQP5 5 pipeline stages • ◦

with the Xilinx ISE 13.2i and 10.1i development toolchains [144,145], by considering a slightly mod-

ified version of the standard synthesis and place and route strategies, in order to achieve a bal-

anced optimization of the performance vs area occupation results.

To accomplish this evaluation, the proposed transform and quantization architectures were

fully described using the VHSIC Hardware Description Language (VHDL). These descriptions

follow a modular design approach based on independent and self-contained functional blocks,

making an extensive use of generic configuration and parameterization inputs to better support

all the architecture functionalities and their ample configuration options. Furthermore, such de-

scriptions mostly adopt a quite generic coding style, in order to achieve efficient implementations

not only when using FPGA devices but also when other alternative technologies might be con-

sidered (e.g. ASIC). Nonetheless, a special attention was given to the description of the most

performance critical blocks (e.g. the PE in the MTA; the multiplier, the adders and the ROMs in

the quantization architecture), so as to assist the synthesis tools in inferring the most efficient

primitives for its implementation, according to the chosen design constraints, synthesis strategy

and implementation technology. This design effort was especially relevant in the realization of

all the proof of concept quantization circuits, since it allowed making a good use of the DSP48E1

slices [147] available in the considered Virtex-7 FPGA device. In particular, this slice was used to

ensure an efficient computation of the multiplication operation in the non-pipelined configurations
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of all the implemented quantizers. In the pipelined configurations, the DSP48E1 slice was used to

implement the MAC operation required in processing phases C and D (see Figure 5.1, Figure 5.2

and Figure 5.3). The impact of these optimizations in terms of the resulting performance and

hardware cost is more thoroughly discussed in section 6.3.1.

The functionality of all the considered hardware implementations was also properly and suc-

cessfully validated with several test vectors that were generated using the H.264/AVC JM ref-

erence software [63]. Such data was obtained with the encoding of a collection of benchmark

standard test video sequences of the MPEG-4 Video Verification Model [64], by considering not

only the 8× 8 DCT but also a wide range of quantization steps. Appendix B provides more details

about the considered test conditions.

As it can be easily concluded from the previous presentation, the adopted experimental setup

provides the means required to validate the functionality of all the considered transform cores

and quantizers, as well as to perform the required evaluation of the proposed transform and

quantization architectures regarding their effectiveness and efficiency in the design of H.264/AVC

codecs for multiple application domains. Furthermore, it is worth noting that,

• All the considered proof of concept processing structures are able to perform the complete

set of operations specified in the four most important profiles of the H.264/AVC standard,

i.e. the BP, MP, XP and HiPs, therefore addressing all the intended application domains;

• The several different transform cores and quantizers that are considered in this evaluation

offer distinct hardware cost vs performance trade-offs, which allows using them to build

both low cost and high performance video coding systems and thus cover all the aimed

classes of devices;

• The presented discussion is based on experimental results obtained using a Xilinx

XC7VX485T-2FFG1761C Virtex-7 FPGA device, which has shown to be adequate for the

realization of modern video coding systems (including the ones based on the H.264/AVC

standard) due to offering high logic density and supporting relatively high clock frequen-

cies. Naturally, better results (in terms of performance) could be obtained by implementing

all the considered proof of concept transform cores and quantizers using an ASIC tech-

nology. However, such alternative approach is out of the scope of this PhD thesis, since it

would require an extremely expensive and time consuming engineering effort that would not

add much to the presented discussion, owing to the Intellectual Property (IP) core nature

of the proposed multi-transform and quantization architectures.

6.2 Evaluation of the proposed MTA

The experimental results that were obtained with the prototyping of the considered four proof

of concept transform cores in the adopted Xilinx Virtex-7 FPGA device are reported and anal-
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ysed in this section. Relative assessment is also discussed, by considering the most related and

prominent alternative designs that were proposed in the literature.

6.2.1 FPGA implementation results

Table 6.3 summarizes the implementation results that were obtained for the conducted T8×8

proof of concept hardware realization, which evidence the advantages offered by the proposed

MTA for the design of high performance H.264/AVC compliant transform cores based on FPGA

platforms.

On the one hand, the presented maximum clock frequency values reveal that the devised proof

of concept structure not only is able to compute almost 18 GOPS but also to offer a sustained

processing throughput of about 2.2 × 109 Samples per Second (S/s), by using 64 PEs operating

in simultaneous. Such considerably high performance levels allow this processing structure to

compute the whole set of H.264/AVC transforms in real time for video sequences with resolutions

up to 3840× 2160 pixels and with a frame rate of 30 fps (i.e., the 4k UHDTV video format). More

specifically, by assuming the usual 4:2:0 chrominance subsampling format, this proof of concept

transform core is capable of processing 1.40×106 MB/s in the default coding mode, 1.35×106 MB/s

when the Intra16×16 prediction mode is adopted, or 2.06× 106 MB/s when the 8 × 8 transform is

adopted in the high profiles.

As it can be seen in Table 6.3, these results are due to the following three reasons: i) the

highly optimized and very efficient architecture that was devised for the PEs, which can be oper-

ated using a clock frequency of almost 300 MHz despite supporting all the operations involved in

the computation of all the H.264/AVC transforms; ii) the highly parallel and pipelined processing

nature of the proposed MTA; and iii) the distribution of the architecture control circuits and signals

among the main CU and the several PEs composing the TA, which allowed shortening its critical

path.

On the other hand, the remaining data that is presented in Table 6.3 also demonstrates the

reduced hardware cost of the T8×8 transform core, while offering a remarkable processing rate. As

it can be seen, about 7% of the total hardware resources that are available in the adopted medium-

Table 6.3: Implementation results of the proof of concept T8×8 transform core in a Xilinx

Virtex-7 XC7VX485T-2FFG1761C FPGA device.

FPGA Utilization
Processing structure

Registers LUTs
Max. Freq.

⊟ Transform core 6420 1.06 % 21452 7.07 % 280.6 MHz

⊞ IB 1681 0.28 % 1254 0.41 % 344.8 MHz

⊟ TA (with 8× 8 PEs) 1501 0.25 % 15727 5.18 % 296.5 MHz
⊞ PE 70 0.01 % 254 0.08 % 298.5 MHz

⊞ TS 1462 0.24 % 2161 0.71 % 360.0 MHz
⊞ CU 97 0.02 % 77 0.03 % 366.4 MHz
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size FPGA device1 were used in the realization of the considered transform core. Almost all of

these hardware resources (about 73%) were employed to implement the 2-D systolic array, with

each of its 8 × 8 PEs requiring only 44 slices to perform the transform computations involving 20

distinct kernel values. This corresponds to only about 1% of the total implementation resources.

From the previous discussion, it can be concluded that the hardware cost of the proposed MTA

mostly results from the adopted configuration for its TA (i.e. the amount of PEs), while its maximum

clock frequency is limited by the internal critical path of the PEs. Consequently, it can be stated

that other optimized and efficient transform cores addressing alternative application domains, with

distinct requirements in terms of performance and hardware cost, can be obtained by exploiting

the highly configurable and scalable characteristics of the presented transform architecture. The

results presented in Table 6.4 and Table 6.5, which concern the implementation of the T8×4 and

T8×2 transform cores, sustain this observation and emphasize the advantages of the proposed

MTA in terms of scalability.

As it can be seen, the use of TAs with different dimensions does not significantly constrain

the maximum frequency of the clock signal that is applied to the architecture. However, it allows

to efficiently trade-off the offered performance (in terms of throughput) for hardware savings. For

example, the 8×4 configuration allows to reduce the hardware cost in about 37%, when compared

with the base 8× 8 PEs setup. For greater savings, the 8× 2 configuration reduces the hardware

requirements of the proposed MTA by 56%. This is a very important factor for reconfigurable

Table 6.4: Implementation results of the proof of concept T8×4 transform core in a Xilinx
Virtex-7 XC7VX485T-2FFG1761C FPGA device.

FPGA Utilization
Processing structure

Registers LUTs
Max. Freq.

⊟ Transform core 4068 0.67 % 13591 4.48 % 288.7 MHz
⊞ IB 1681 0.28 % 1254 0.41 % 344.8 MHz

⊟ TA (with 8× 8 PEs) 2578 0.42 % 8614 2.84 % 297.3 MHz

⊞ PE 70 0.01 % 254 0.08 % 298.5 MHz
⊞ TS 1462 0.24 % 2161 0.71 % 360.0 MHz

⊞ CU 97 0.02 % 77 0.03 % 366.4 MHz

Table 6.5: Implementation results of the proof of concept T8×2 transform core in a Xilinx
Virtex-7 XC7VX485T-2FFG1761C FPGA device.

FPGA Utilization
Processing structure

Registers LUTs
Max. Freq.

⊟ Transform core 2852 0.47 % 9530 3.14 % 290.1 MHz
⊞ IB 1681 0.28 % 1254 0.41 % 344.8 MHz

⊟ TA (with 8× 8 PEs) 1346 0.22 % 4497 1.48 % 297.8 MHz

⊞ PE 70 0.01 % 254 0.08 % 298.5 MHz
⊞ TS 1462 0.24 % 2161 0.71 % 360.0 MHz

⊞ CU 97 0.02 % 77 0.03 % 366.4 MHz

1The considered Xilinx Virtex-7 XC7VX485T-2FFG1761C FPGA device [146] contains a total of 75,900 slices. Each
Virtex-7 slice contains four 6-input LUTs and eight D-type flip-flops (i.e. one bit registers).
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implementation platforms (as well as for ASIC realizations), since the ability to choose different

architecture configurations for the proposed MTA enables the implementation of transform cores

in FPGA devices with both reduced and greater amounts of hardware resources.

It should be noted that the set of functionalities that are offered by the implemented transform

cores are not diminished as a result of these hardware savings. In fact, such reductions only imply

an increase in the amount of time required to perform all the necessary computations. Neverthe-

less, both the T8×4 and the T8×2 proof of concept transform cores are still capable of achieving

real time operation for video sequences in the 1080p HDTV format (1920 × 1080 @ 60 fps), as

it is shown in Figure 6.1. This results not only from the highly efficient pipeline structure that

was devised for the TA, which is capable of providing the maximum achievable throughput rate

(without any need for eventual data stalls) but also from the significantly high operating frequency

value that is supported by the devised PE. Hence, it can be concluded that the scaling capabilities

of the proposed MTA enables the design of transform cores with the most suitable architecture

configuration for any given application. For example, smaller configurations can be adopted by

applications with stricter restrictions in terms of hardware cost, but where the data processing rate

can be slower. Conversely, larger configurations should be employed to support the more time

critical applications, which demand the maximum performance and where the hardware cost is

not a limitation.

In another direction, Table 6.6 shows the impact of the devised coarse-grain data-level parallel

processing technique in the performance and hardware cost of the implemented proof of concept

8 × 8 transform cores. As it can be seen, the T8×8p transform core can be operated using the

Figure 6.1: Performance comparison of the several implemented transform cores, when

operated at their maximum clock frequency. For each transform core, the figure shows the
amount of MBs that can be processed when using the Intra16×16 prediction mode (lowest value),

the default coding mode (middle value) and the 8× 8 transforms (highest value).
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Table 6.6: Implementation results of the proof of concept T8×8p transform core in a Xilinx

Virtex-7 XC7VX485T-2FFG1761C FPGA device.

Registers LUTs Max. Freq.
Processing structure

# ∆T8×8 # ∆T8×8 MHz ∆T8×8

⊟ Transform core 6420 +0.0% 22972 +7.1% 279.8 -0.3%

⊞ IB 1681 +0.0% 1254 +0.0% 344.8 -0.0%

⊟ TA (with 8× 8 PEs) 1501 +0.0% 15857 +0.8% 294.7 -0.6%
⊞ PE 70 +0.0% 254 +0.0% 298.5 -0.0%

⊞ TS 1462 +0.0% 3047 +41.0% 335.7 -6.8%

⊞ CU 97 +0.0% 86 +11.7% 365.2 -0.3%

maximum clock frequency of 279.8 MHz. This value is very similar to the one attained by its

corresponding non-parallel design (i.e. T8×8), as shown in Table 6.3. Therefore, it can be con-

cluded that the devised coarse-grain data-level parallelism technique has a negligible impact (less

than 0.3%) in the clock frequency of the implemented transform cores. In line with the previous

discussion, this was already expected owing to the fact that the maximum clock frequency of the

proposed MTA is mostly limited by the critical path of its PEs, rather than by the critical path of the

TS or CU.

As a consequence, the T8×8p proof of concept transform core is able to compute up to

17.91 GOPS by using a clock frequency of 279.8 MHz, while offering a maximum throughput

of 8 samples per clock cycle. Such values correspond to the computation of the 8× 8 transforms,

in which each of the 64 PEs that compose the TA computes one different transform operation

at each clock cycle. For the computation of the smaller 4 × 4 and 2 × 2 transforms the result-

ing throughput is also 8 samples per clock cycle, since 2 different transforms (or 4 transforms

in the last case) are simultaneously computed within the datapath of the implemented parallel

architecture. However, only half of the PEs (a quarter of the PEs for the 2 × 2 transforms) are

used in such computations, which constrains the offered computational rate to 8.95 GOPS and

4.48 GOPS, respectively. Nevertheless, by using the devised parallel processing structure it is

possible to compute one 8× 8 transform in 16 clock cycles, two 4× 4 transforms in 8 clock cycles

or four 2 × 2 transforms in 4 clock cycles, where the period of the clock signal is 3.57 ns. This

results in speedup values of about 1, 2 and 4 times for the computation of the 8 × 8, 4 × 4 and

2 × 2 transforms regarding the T8×8 processing structure, whose clock cycle period is 3.56 ns

(see Table 6.3). It should be noted that such proof of concept transform core is able to compute

only one 8 × 8, 4× 4 and 2 × 2 transform at a time, which requires also 16, 8 and 4 clock cycles,

respectively.

The data corresponding to the used hardware resources that is presented in Table 6.6 also

shows that the hardware requirements of the T8×8p and T8×8 proof of concept processing struc-

tures are very similar and small. More specifically, less than 8% of the total hardware resources

available in the considered medium-sized FPGA are used in the implementation of the T8×8p

transform core. The minor differences that can be observed between the two hardware structures
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mostly concern to the resources required to implement the TS, as a result of all the extra mul-

tiplexers that the T8×8p includes to support the implemented coarse-grain data-level parallelism

technique. Although such extra resources cause an increase of about 40% in the hardware cost

of the TS, it only augments the total hardware cost of the transform core in about 7%. This results

from the fact that the majority of the consumed hardware resources are used in the implementa-

tion of the TA (about 74%). Conversely, the hardware cost of the 8× 8 PEs TA and of the CU are

almost identical in both structures, due to the quite negligible impact of the inherent modifications

that were implemented in their hardware structures. Such modifications mostly consisted in i)

the addition of some extra buses in the TA, in order to feed the TS with the output data of all the

smaller transforms; and ii) the definition of earlier stop points in the control algorithm implemented

by the CU (see section 4.4.2).

From the previous discussion it can be concluded that the coarse-grain data-level parallel

processing capabilities improve the computational performance of an 8×8 transform core in about

2 times for the computation of the 4× 4 transforms and in about 4 times for the computation of the

2 × 2 transforms. This allows the considered T8×8p proof of concept transform core to compute

the whole set of H.264/AVC transforms in real time for video sequences in the 4k UHDTV format

(3840× 2160 @ 60 fps), when operated using a clock frequency of 279.8 MHz. In addition, it can

be observed that the hardware efficiency of this processing structure is also greatly enhanced,

i.e. about 50% for the computation of the 4 × 4 transforms and about 25% for the computation

of the 2 × 2 transforms. Such improvements are the result of the application of the considered

coarse-grain data-level parallelism technique, which imposes a marginal increase of about 7% in

the global hardware cost of the parallel architecture.

6.2.2 Comparative analysis and discussion

In order to further evaluate the advantages that are offered by the proposed MTA when com-

pared with other alternative solutions for the design of video codecs supporting the H.264/AVC

standard, several related designs described in the literature were thoroughly analysed. Besides

offering different functionalities, such hardware realizations are based on a diverse set of imple-

mentation technologies and involve distinct design considerations. Consequently, the performed

study is mostly focused on the assessment of the functionalities and processing capabilities of-

fered by the various structures, in order to achieve a comparison as fair as possible. Accordingly,

the presented comparative analysis uses as figures of merit the type and the amount of sup-

ported transforms, as well as the latency (L) (defined in Clock Cycles (CCs)), the throughput (T)

(computed as the number of samples (S) processed in one CC), and the real time encoding and

decoding capabilities of all the considered transform cores. Table 6.7 and Table 6.8 summarize

the results of the conducted evaluation, which concerns only the implementation of the transform

computation module(s) of all the reviewed designs.
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A straightforward analysis of the collected data reveals that almost all the reviewed designs can

be used to process the same video formats in real time. However, it also evidences that besides

the four devised proof of concept transform cores only a few of such hardware structures [41,60]

have the capability to compute all the transforms defined in the H.264/AVC standard. In fact,

the vast majority of the analysed processing structures only support restricted subsets of the

H.264/AVC transforms, since they were especially designed either to accelerate the computation

of specific transforms (i.e. the 8 × 8 or the 4 × 4 DCTs) or optimized for a given transform coding

path of a video encoder or decoder. Consequently, their application domain is rather limited,

which makes them unsuitable to implement video encoders and decoders fully compliant with the

H.264/AVC standard.

By analysing the presented results in terms of the offered performance levels, the comparison

that is presented in Table 6.7 clearly shows that the proposed MTA allows designing transform

cores capable of attaining some of the highest processing rates (2.2 × 109 S/s), despite being

one of the few designs with the ability to compute all the H.264/AVC transforms. In fact, it can be

observed that the implemented T8×8 and T8×8p transform cores outperform almost all the other

considered architectures by, at least, about 1.7 times. The only exception is the transform core

presented in [115]. In addition, the designs described in [41,79] can also provide higher performance

levels, since they consist of pipelined direct 2-D hardware structures requiring only half of the

clock cycles to compute the considered transforms. Nevertheless, it is important to observe that

none of these processing structures is able to compute all the H.264/AVC transforms and that they

consist of specifically optimized and dedicated hardware structures, which means that their higher

performance (and lower hardware cost) is the result of several algorithmic optimizations. As a

consequence, and contrasting to the proposed MTA, all these optimizations considerably restrict

the flexibility offered by these architectures and prevent the implementation of any changes or

adaptations to their structure, in order to extend their functionality to fully support the H.264/AVC

standard.

The previous observations are still valid when the devised proof of concept transform cores

are compared with the considered alternative designs implemented using ASIC technologies. As

it can be seen in Table 6.8, most of the enumerated processing structures offer performance levels

similar to those presented by the T8×8 and T8×8p transform cores. The only exceptions are the

designs presented in [49,60,73]. Nevertheless, these faster processing structures can only compute

a reduced subset of the transforms supported by the devised proof of concept transform cores (al-

though many also offer multi-standard functionality), since they were either specifically designed

to accelerate the inverse 8× 8 DCT [73], optimized for the implementation of the forward transform

coding path of a video encoder [49], or consist of a highly optimized and extremely hardware costly

parallel design based on multiple matrix factorizations and permutations [60].

The results presented in Table 6.7 and in Table 6.8 also demonstrate that the latency that is
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Table 6.7: Comparison with other related transform architectures implemented in FPGA devices. The letters F and I preceding the transform

names in the column Supported Transforms are used to denote a forward or an inverse transform, respectively. The hardware cost is assessed in terms

of the number of required Virtex slices for implementations based on Xilinx FPGA devices and in terms of LEs for the hardware realisations based on
Altera FPGAs.

Supported Supported L T HW Cost Max. Freq. Proc. Rate Target
Design

Standards Transforms (CCs) (S/CC)
Technology

(×103) (MHz) (×109 S/s) Applications

[79] (area) H.264/AVC FDCT4×4 7 0.14 Virtex-2 Pro 103 153.9 0.02 CIF

[79] (speed) H.264/AVC FDCT4×4 5 16 Virtex-2 Pro 644 107.5 1.72 4k UHDTV

[1] H.264/AVC FDCT4×4 32 1 Stratix 216 168.9 0.17 1080p HDTV

[1] H.264/AVC IDCT4×4 32 1 Stratix 465 168.9 0.16 1080p HDTV

[41] H.264/AVC FDCT8×8, FDCT4×4, H4×4 8 8 Virtex-4 2100 167.0 1.34 4k UHDTV

[41] H.264/AVC IDCT8×8, IDCT4×4, H4×4 8 8 Virtex-4 2100 133.5 1.07 4k UHDTV

[115] H.264/AVC FDCT8×8, FDCT4×4 1 64 Stratix 5143 100.0 6.40 4k UHDTV

[115] H.264/AVC IDCT8×8, IDCT4×4 1 64 Stratix 5258 100.0 6.40 4k UHDTV

[58] H.264/AVC FDCT4×4 8 4 Virtex-2 Pro 155 234.2 0.94 4k UHDTV

[58] H.264/AVC IDCT4×4 8 4 Virtex-2 Pro 259 190.1 0.76 4k UHDTV

[58] H.264/AVC FH4×4, FH2×2 8 8 Virtex-2 Pro 426 215.5 1.72 4k UHDTV

[58] H.264/AVC IH4×4, IH2×2 8 4 Virtex-2 Pro 276 242.1 0.97 4k UHDTV

[97] H.264/AVC, VC-1, AVS,
MPEG-4

real IDCT8×8, IDCT4×4, H4×4,
H2×2

19 / 18 / 17 8 Virtex-4 1217 110.8 0.89 4k UHDTV

T8×8 H.264/AVC FDCT8×8, IDCT8×8, FDCT4×4,
IDCT4×4, H4×4, H2×2

16 / 8 / 4 8 Virtex-7 5363 280.6 2.24 4k UHDTV

T8×4 H.264/AVC FDCT8×8, IDCT8×8, FDCT4×4,
IDCT4×4, H4×4, H2×2

32 / 16 / 8 4 Virtex-7 3398 288.7 1.15 4k UHDTV

T8×2 H.264/AVC FDCT8×8, IDCT8×8, FDCT4×4,
IDCT4×4, H4×4, H2×2

64 / 32 / 16 2 Virtex-7 2383 290.1 0.58 1080p HDTV

T8×8p H.264/AVC FDCT8×8, IDCT8×8, FDCT4×4,
IDCT4×4, H4×4, H2×2

16 / 8 / 4 8 Virtex-7 5743 279.8 2.24 4k UHDTV
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Table 6.8: Comparison with other related transform architectures implemented as ASICs. The letters F and I preceding the transform names in

the column Supported Transforms are used to denote a forward or an inverse transform, respectively. The hardware cost is assessed in terms of the
number of two input NAND gate equivalent gates.

Supported Supported L T HW Cost Max. Freq. Proc. Rate Target
Design

Standards Transforms (CCs) (S/CC)
Technology

(×103) (MHz) (×109 S/s) Applications

[13] H.264/AVC FDCT4×4, IDCT4×4, H4×4 2 8 180 nm 6.48 100.0 0.80 DCI 4k

[73] H.264/AVC IDCT8×8 1 8 180 nm – 300.0 2.40 4k HDTV

[60] H.264/AVC FDCT8×8, IDCT8×8, FDCT4×4,
IDCT4×4, H4×4, H2×2

2 20.5 180 nm 63.62 200.0 4.10 4k UHDTV

[49] H.264/AVC FDCT4×4, H4×4 2 16 130 nm 10.40 363.6 3.66 4k UHDTV

[49] H.264/AVC FDCT8×8 16 8 130 nm 8.46 367.7 0.91 4k UHDTV

[127] H.264/AVC, VC-1, AVS,
MPEG-2/4, HEVC

IDCT4×4, IDCT8×8,
IDCT16×16 , IDCT32×32

2 / 3 / 4 / 5 4 130 nm 10.92 350.0 1.40 4k UHDTV

[104] H.264/AVC, VC-1, AVS,
MPEG-2, JPEG

IDCT8×8 – 1 180 nm 45.90 202.8 0.20 DCI 4k

[105] H.264/AVC, HEVC IDCT8×8 – 1 180 nm 12.30 211.4 0.21 1080p HDTV

[50] H.264/AVC, VC-1, AVS,
MPEG-2/4, H.263

IDCT4×4, IDCT8×8 3 4 / 2 130 nm 56.99 384.0 1.54 / 0.77 4k UHDTV

[139] H.264/AVC, VC-1, AVS,
MPEG-2/4

FDCT8×8, IDCT8×8, FDCT4×4,
IDCT4×4

3 8 130 nm 23.06 100.0 0.80 1080p HDTV

[138] H.264/AVC, VC-1, AVS,
MPEG-2, JPEG

IDCT8×8 8 1 180 nm 12.60 146.0 0.15 1080p HDTV

1
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6.3 Evaluation of the proposed quantization architectures

imposed by the implemented transform cores in the processing of the video bit streams is not

only low but also similar to the one imposed by the majority of the considered alternative designs

computing the same transforms. This is a very important aspect when real time operation is

considered, since the overall delay that is imposed in the encoding of each video frame may

compromise the operation of the codec when employed in interactive application domains (e.g.

live broadcast or video conference).

6.3 Evaluation of the proposed quantization architectures

This section discusses the experimental results that were obtained by implementing the proof

of concept quantizers listed in Table 6.2 in the considered Virtex-7 FPGA device. Relative as-

sessment is also presented by considering the related state of the art and implementations of the

devised hardware structures using a Xilinx Virtex II Pro FPGA.

6.3.1 FPGA implementation results

Table 6.9 summarizes the obtained performance and hardware cost results for the fifteen con-

sidered quantization circuits. Such data shows the rather small and similar hardware requirements

of the forward, inverse and unified quantizers for any of its possible four architecture configura-

tions, despite the offered flexibility in terms of functionality. In fact, the minor differences that can

be observed among the five considered implementations of each quantizer result from two dis-

tinct factors: i) the hardware resources that are required to implement the rounding adder in the

non-pipelined implementations, since the minimal latency offered by these architecture configu-

rations prevents making use of the 48 bits adder that is embedded in the DSP48E1 slices; ii) the

extra resources that are used to partition the datapath into multiple stages in the pipelined con-

figurations. Still, the implementation of the faster configurations of the devised proof of concept

quantization circuits requires only a single DSP48E1 slice (to jointly compute the multiplication and

rounding operations) and between 135 and 301 ordinary Virtex-7 slices. This consists of less

than 1% of the total capacity of the adopted medium size FPGA device [146]. Therefore, it can be

expected that the hardware requirements of the proposed class of quantization architectures do

not compromise its use in the design of H.264/AVC encoders or decoders.

In what concerns the performance, the maximum clock frequency values presented in Ta-

ble 6.9 evidence the high processing rates that can be attained by using the proposed quanti-

zation architectures, i.e. up to 464.7 × 106 coefficients per second. According to such results, it

can be concluded that the devised proof of concept quantizers are able to comply (at least) with

the real time processing requirements of the 1080p HDTV format (1920 × 1080 @ 30fps). This

is illustrated in Figure 6.2, which shows the upper bound limits for the processing rates that are

offered by each configuration of the three quantizers, when operated using their maximum clock
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Table 6.9: Implementation results of the considered proof of concept quantizers in a Xilinx

Virtex-7 XC7VX485T-2FFG1761C FPGA device.

L T FPGA Utilization Max Freq.
Design

(CCs) (S/CC) FFs LUTs DSP48E1s (MHz)
Applications

FQNP 1 1 0 165 1 126.0 1080p HDTV

FQP2 2 1 4 115 1 154.3 1080p HDTV

FQP3 3 1 18 125 1 249.6 1080p HDTV
FQP4 4 1 26 121 1 367.4 DCI 4k

FQP5 5 1 40 119 1 414.9 4k UHDTV

IQNP 1 1 0 170 1 125.3 1080p HDTV
IQP2 2 1 5 137 1 144.9 1080p HDTV

IQP3 3 1 20 145 1 224.7 1080p HDTV

IQP4 4 1 35 127 1 356.5 DCI 4k
IQP5 5 1 44 130 1 464.7 4k UHDTV

UQNP 1 1 0 310 1 119.0 1080p HDTV

UQP2 2 1 6 248 1 135.1 1080p HDTV

UQP3 3 1 24 256 1 201.3 1080p HDTV
UQP4 4 1 30 257 1 343.2 DCI 4k

UQP5 5 1 48 253 1 394.5 4k UHDTV

frequencies.

As it can be observed, the non-pipelined configurations allow the processing of more than

119× 106 coefficients per second, while the throughput offered by the fastest pipelined configura-

tion is about 400× 106 coefficients per second and enough to support the processing in real time

of the 4k UHDTV format (3840× 2160 @ 30fps). The differences in the attained performance are

owed not only to the application of the multi-stage pipeline technique but also to a better use of the

DSP48E1 slice in the pipelined configurations. As it was previously mentioned, the DSP48E1 slices

are exclusively employed to implement fast multipliers for the non-pipelined configurations, there-

fore avoiding the much slower and hardware costly LUT-based implementations. Conversely, the

DSP48E1 macrocells are used to implement a very optimized and fast MAC unit in the pipelined

configurations, where some of the pipeline registers are pushed into the DSP48E1 slice due to the

synthesis tool being capable to successfully infer the MAC coding pattern. In such implemen-

tations, the observed performance differences between the 4 pipelined designs are owed to the

different amounts of pipeline stages that can be fully implemented within a DSP48E1 slice. Hence,

by exploiting the internal registers of a DSP48E1 slice to implement more pipeline registers, it be-

comes possible to have the DSP48E1 MAC unit operating at much higher clock frequencies, and

thus to significantly improve the global circuit performance without greatly increasing its hardware

cost.

The implementation results presented in Table 6.9 also demonstrate that the five possible

architecture configurations that can be used to realize forward, inverse and unified quantizers ef-

fectively allow to trade-off performance for hardware cost. As it can be seen in Figure 6.3, the

amount of hardware resources that are required by such processing structures scales well with

the increase of its maximum clock frequencies. In fact, while the 3-stages pipelined implementa-
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6.3 Evaluation of the proposed quantization architectures

Figure 6.2: Performance comparison of the several implemented quantizers, when oper-

ated at their maximum clock frequency.

tions cost about 10 more slices than the 2-stages pipelined designs, the performance attained by

these structures is also over 50% higher than that offered by their corresponding configurations

with 2 pipeline stages. The comparison between the deeper pipelined designs reveals a similar

tendency, but with not so high relative increases both in the performance and hardware cost.

The use of the proposed UQA in the design of a video coding system also allows to trade-off

performance for hardware cost in a different perspective. In fact, an encoding system that includes

a single instance of such unified quantization circuit is able to compute both the forward and the

inverse quantization operations with some savings in terms of hardware cost, when compared to

another system that uses two independent and dedicated functional units (FQ and IQ) to realize

the same operations, i.e. up to 7.5% of the LUTs, between 33% and 50% of the flip-flops and

50% of the DSP48E1 slices (see Table 6.9). This is especially relevant not only when such video

coding systems are implemented using FPGA devices, in which designs with higher hardware

costs usually demand the use of larger (and thus more expensive) devices, but also when realized

as ASICs due to the final cost of the corresponding Integrated Circuits (ICs) being directly and

significantly affected by the amount of hardware resources that are required to implement the

quantizers.

Nonetheless, the advantages offered by the UQA in terms of hardware cost also result in

some inherent degradation of the performance of the video coding systems. Such performance

penalty is owed to the lower clock frequencies provided by the devised UQA, which are at least

3% lower than those offered by the proposed FQA and IQA, as well as to the time share use

of the unified quantizer. In fact, it should be noted that a single design based on two dedicated

functional units offers the added possibility of having the forward and inverse quantization modules

133



6. Experimental evaluation

4k UHDVT4k DCI1080p HDTVn�n�	i	
�ined

� 	i	
�ine stages


 	i	
�ine stages
4 	i	
�ine stages

5 	i	
�ine stages

n�n�	i	
�ined

� 	i	
�ine stages

 	i	
�ine stages 4 	i	
�ine stages

5 	i	
�ine stagesn�n�	i	
�ined

� 	i	
�ine stages
� ������ne stages 4 	i	
�ine stages

5 	i	
�ine stages

0

80

160

0 50 100 150 500

H
a
rd

w
a

re
 C

o
s

t 
[#

 S
li

c
e
s

]

Frequency [MHz]

FQ

IQ

UQ

Figure 6.3: Comparison of the hardware cost of the several implemented quantizers.

working in parallel, while the one using a single instance of the proposed UQA can only process

one of the two operations for a block of coefficients at a given time instant. Consequently, the

data processing rate of this unified system is actually reduced by up to 60% regarding the more

hardware costly one. Still, the high performance levels that can be attained by using the proposed

UQA allow alternating its operation mode along the time, in order to compute the forward and

inverse quantization operations for the most typical application scenarios, i.e. the processing in

real time of video sequences up to the 1080p HDTV format. Hence, it can be concluded that this

alternative use of the proposed UQA is most suitable for the implementation of reduced complexity

and cost video coding systems with moderate requirements in terms of performance.

6.3.2 Comparative analysis and discussion

In order to evaluate the benefits of the proposed class of quantization architectures when

compared with other alternative solutions, the most related and prominent designs described

in the literature were revised and analysed. Such hardware structures are listed in Table 6.10

and Table 6.11, which summarize the results of the performed comparative study grouped by

implementation technology, i.e. FPGA or ASIC, respectively.

As it can be seen, besides offering different functionalities, the reviewed quantization circuits

were implemented using multiple FPGA and ASIC technologies. Furthermore, in most cases,

such implementations were achieved by taking into account several different design considera-

tions and optimizations. Consequently, an extra effort had to be devised to perform the presented

discussion, in order to guarantee a comparison as fair as possible. More specifically, the con-

ducted study not only assesses the functionalities and the processing rates that are offered by

the various designs but also compares the hardware efficiency of those implemented in FPGA
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Table 6.10: Comparison with other related quantization architectures implemented in FPGA devices.

Supported Supported L T HW Cost Max. Freq. DTUA (×106)
Design

Operations Block Sizes (CCs) (S/CC)
Technology

FFs LUTs Slices Other (MHz) S/LUT/s S/Slice/s
Applications

[79] (area) FQ 4× 4 4 0.25 Virtex-2 Pro 176 - 143 - 135.2 - 0.24 720p HDTV
[131] FQ 4× 4 8 4 Virtex-2 Pro - - - - 115.0 - - 4k UHDTV
[57] FQ 4× 4 3 4 Virtex-2 Pro - 965 - - 107.6 0.45 - DCI 4k
[43] FQ 4× 4, 8× 8 1 8 Virtex-2 Pro - - 5104 - 297.0 - 0.47 8k UHDTV

[79] (speed) FQ 4× 4 1 16 Virtex-2 Pro 257 - 992 - 97.1 - 1.57 4k UHDTV
[115] FQ 4× 4, 8× 8 1 32 Stratix II - 2180 - 32 DSP 100.0 1.16 - 8k UHDTV
[57] IQ 4× 4 2 4 Virtex-2 Pro - 443 - - 136.1 0.45 - DCI 4k
[115] IQ 4× 4, 8× 8 1 32 Stratix II - 2049 - 32 DSP 100.0 1.23 - 8k UHDTV
[86] FQ, IQ 4× 4 1 1 Virtex-2 - - - - 38.0 - - 4CIF
[77] FQ, IQ 4× 4 1 1 Virtex-2 Pro - - - - 82.0 - - 720p HDTV

FQNP FQ 4× 4, 8× 8 1 1 Virtex-2 Pro 0 311 161 1 MULT18X18 67.9 0.22 0.42 720p HDTV
FQP2 FQ 4× 4, 8× 8 1 2 Virtex-2 Pro 44 303 159 1 MULT18X18 94.3 0.31 0.59 1080p HDTV
FQP3 FQ 4× 4, 8× 8 1 3 Virtex-2 Pro 89 292 153 1 MULT18X18 144.8 0.50 0.95 1080p HDTV
FQP4 FQ 4× 4, 8× 8 1 4 Virtex-2 Pro 114 295 165 1 MULT18X18 174.6 0.59 1.06 1080p HDTV
FQP5 FQ 4× 4, 8× 8 1 5 Virtex-2 Pro 144 280 167 1 MULT18X18 174.6 0.62 1.05 1080p HDTV
IQNP IQ 4× 4, 8× 8 1 1 Virtex-2 Pro 0 287 149 1 MULT18X18 73.4 0.26 0.49 720p HDTV
IQP2 IQ 4× 4, 8× 8 1 2 Virtex-2 Pro 30 265 139 1 MULT18X18 109.1 0.41 0.78 1080p HDTV
IQP3 IQ 4× 4, 8× 8 1 3 Virtex-2 Pro 71 257 135 1 MULT18X18 144.8 0.56 1.07 1080p HDTV
IQP4 IQ 4× 4, 8× 8 1 4 Virtex-2 Pro 124 268 145 1 MULT18X18 180.3 0.67 1.24 1080p HDTV
IQP5 IQ 4× 4, 8× 8 1 5 Virtex-2 Pro 139 251 143 1 MULT18X18 204.5 0.81 1.44 1080p HDTV
UQNP FQ, IQ 4× 4, 8× 8 1 1 Virtex-2 Pro 0 638 329 1 MULT18X18 64.2 0.10 0.20 720p HDTV
UQP2 FQ, IQ 4× 4, 8× 8 1 2 Virtex-2 Pro 46 597 311 1 MULT18X18 92.3 0.15 0.30 1080p HDTV
UQP3 FQ, IQ 4× 4, 8× 8 1 3 Virtex-2 Pro 105 605 313 1 MULT18X18 126.6 0.21 0.40 1080p HDTV
UQP4 FQ, IQ 4× 4, 8× 8 1 4 Virtex-2 Pro 160 597 313 1 MULT18X18 154.4 0.26 0.49 1080p HDTV
UQP5 FQ, IQ 4× 4, 8× 8 1 5 Virtex-2 Pro 185 571 304 1 MULT18X18 174.6 0.31 0.57 1080p HDTV

Table 6.11: Comparison with other related quantization architectures implemented as ASICs.

Supported Supported L T HW Cost Max. Freq.
Design

Operation(s) Block Sizes (CC) (S/CC)
Technology

(×103 gates) (MHz)
Applications

[149] FQ 4× 4 4 4 SMIC 0.18 µm 25.56 250.0 4k UHDTV
[112] FQ 4× 4 1 16 UMC 0.13 µm - 156.5 4k UHDTV
[117] FQ 4× 4 2 16 SMIC 0.18 µm 20.96 160.5 4k UHDTV
[115] FQ 4× 4 1 32 AMS 0.35 µm 77.67 79.0 DCI 4k
[115] IQ 4× 4 1 32 AMS 0.35 µm 55.39 79.0 DCI 4k1
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devices with the devised proof of concept quantizers, by using the Data Throughput per Unit of

Area (DTUA) metric.

The DTUA performance index is defined as the ratio between the data throughput, in pro-

cessed samples (S) per second, and the hardware cost, in terms of unit of area. Although the

number of slices is generally used to represent the unit of area in FPGA implementations [41], the

number of LUTs was also adopted as the unit of area in the presented comparative analysis, due

to the fact that this is the only data that was reported for some of the considered state-of-the-art

designs. Moreover, since almost all the reviewed designs implemented using reconfigurable logic

are based on Xilinx Virtex II FPGAs, whose slices and LUTs are rather different from the ones

available in the the adopted Virtex-7 prototyping device, the considered proof of concept quantiz-

ers were also re-synthesized for a XC2VP30 FPGA. Such task was conducted using the Xilinx

ISE 10.1i development toolchain [144] and by following the same synthesis strategy described in

section 6.1, without any further or specific optimizations to the involved VHDL circuit descriptions.

The obtained implementation results are presented in the bottom of Table 6.10.

A straightforward analysis of the data presented in Table 6.9, Table 6.10 and Table 6.11 shows

that only the devised proof of concept quantizers and a few other hardware structures [43,115] are

capable of processing the two types of quantization blocks defined in the H.264/AVC standard,

and thus to comply with the requirements of its High Profiles. In addition, the obtained experimen-

tal data reveals that, despite the extra logic that is required to provide such enhanced functionality

(which also imposes a small penalty in the offered computation rates), the proposed class of

quantization architectures can be used to realize quantization circuits with a reduced hardware

cost that are capable of processing in real time the same video formats as the reviewed designs,

when implemented in a Xilinx Virtex-7 FPGA device. The only exception is the set of structures

presented in [43,115], which can also be used to perform the encoding and the decoding of video se-

quences in the 8k UHDTV format. However, it is important to observe that these designs consist

of highly parallel processing structures that share many of their hardware resources to compute a

single quantization operation. Nevertheless, it should be observed that this same approach can

also be adopted to design higher performance parallel forward, inverse and unified quantizers

based on the proposed class of quantization architectures. To achieve such goal, it would only

be required to combine several instances of the same quantization circuit in a single quantizer

and have them operating in parallel, in order to simultaneously process more than one coefficient

at each clock cycle. For example, the throughput of a forward quantizer using eight instances of

FQP3 can be as high as 2.0 × 106 S/s, while an inverse quantizer using eight instances of IQP3

should be capable of processing up to 1.8 × 106 S/s. These processing rates are enough to fulfil

the real time encoding and decoding requirements of the 8k UHDTV format.

Naturally, the hardware cost of such parallel processing structures would also be higher. How-

ever, this should not constitute a problem when fully implementing parallel forward, inverse and
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6.3 Evaluation of the proposed quantization architectures

unified quantizers using FPGA devices (or ASIC technologies), owing to the quite diminished

hardware requirements of the proposed class of quantization architectures (even when its higher

performance configurations are considered). For instance, the hardware cost of the two parallel

quantizers mentioned above could be as high as 1008 slices or 1184 slices, respectively, when

implemented using the considered Virtex-7 prototyping device. This consists of less than 2% of

the total amount of hardware resources available in such device. Nevertheless, it is still possi-

ble to reduce the hardware cost of these parallel quantizers, by having many of their hardware

resources shared among the multiple instances of the base quantization circuit (i.e. all the logic

except the ROMs storing the MF and V scaling factors, the multiplier, the rounding adder and the

barrel-shifter depicted in Figure 5.1, Figure 5.2 and Figure 5.3). Such optimizations would also

allow improving their hardware efficiency, which is already relatively high when implemented in a

XC7VX485T-2FFG1761C FPGA, i.e. between 0.8×106 S/slice/s and 3.1×106 S/slice/s for the for-

ward and inverse proof of concept quantizers and between 0.4×106 S/slice/s and 1.5×106 S/slice/s

for the unified proof of concept quantizers (see the DTUA columns in Table 6.9).

When prototyped using the same technology as the vast majority of the reviewed state-of-the-

art quantizers, i.e. a Xilinx Virtex II Pro FPGA, the obtained DTUA results are (at least) as good

as those provided by the alternative designs. The only exceptions are the structures presented

in [58,79] that achieve relatively higher DTUAs values. Regarding the forward quantizer proposed

in [79], it is important to observe that it consists of a highly parallel processing structure capable

of processing sixteen different coefficients at each clock cycle. Furthermore, the reported data

strictly concerns the datapath. By taking into consideration also the hardware requirements (86

slices) and the latency (3.2 ns) imposed by the two LUTs contained in the control module of

the quantizer, the DTUA of this architecture is reduced to 1.1 × 106 S/slice/s. Conversely, the

hardware structure introduced in [58] consists of a 4-ways parallel architecture for the computation

of the inverse quantization operation. Such quantizer is based on an optimized pipelined datapath

with two stages that avoids the computation of the rounding operation to improve its performance.

This optimization not only allows reducing the circuit latency in about 1.9 ns but also saving about

50% of its original hardware requirements. However, it also introduces some error in the de-

quantization procedure, which does not happen when using the proposed inverse quantization

architecture. Also, these two architectures can only process one of the two types of quantization

blocks defined in the H.264/AVC standard, i.e. the 4 × 4 block type. Consequently, their use is

restricted to the development of H.264/AVC codecs that do not fully support the high profiles of

the standard, which is not acceptable for the design of the current and upcoming video coding

systems aiming at the processing of the UHDTV formats. In contrast, the performance levels

that are already offered by the considered proof of concept quantizers can be easily increased to

match such demanding requirements without degrading the hardware efficiency, by having several

instances simultaneously operating in parallel in a single quantization circuit, as discussed above.
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6.4 Generalized design of integrated transform and quantiza-

tion circuits

The discussion presented in the previous sections shows that the proposed transform and

quantization architectures can be successfully used to realize dedicated processing structures

for fast and efficient computation of all the transform and quantization operations defined in the

H.264/AVC standard. Possible application scenarios for such processing structures therefore

comprehend their integration in video encoders and decoders not only as specialized functional

units of GPPs or ASIPs but also as hardware accelerators in SoCs or specialized processing

cores in heterogeneous multi-core systems, where they can implement the necessary transform

and quantization modules.

Nonetheless, the application scope of the proposed transform and quantization architectures

is much broader, since they can also be combined in a single circuit to develop high performance

and hardware efficient integrated transform and quantization processing structures. As mentioned

in chapter 3, these processing structures present several important advantages in the design of

efficient video coding systems, since they provide the means required to optimize several aspects

of the codec operation (e.g. time synchronism, data manipulation, memory concurrency issues,

etc.).

To attest the above observation, an integrated transform and quantization circuit based on

the multi-transform and quantization architectures presented in chapters 4 and 5, respectively, is

now discussed and theoretically evaluated in terms of the offered data processing capabilities.

Figure 6.4 depicts the block digram of such processing structure, which not only is capable of

computing all the H.264/AVC transforms and quantization procedures but also of autonomously

realizing all the operations defined in all the forward and inverse hierarchical transform coding

paths specified by the standard, i.e. the default forward and inverse transform and quantization

paths, the Intra16×16 forward and inverse transform and quantization paths, the optional forward

and inverse transform and quantization paths based on the 8 × 8 DCT that can be employed in

the H.264/AVC high profiles, and the corresponding complete coding loops. The set of operations

computed in each one of the supported coding paths is detailed in Table 6.12.

As it can be seen in Figure 6.4, the proposed circuit consists of a dedicated processing

structure based on two distinct computational modules, i.e. a Transform Engine (TE) and a

Quantization Engine (QE), which are interconnected using a quite flexible and configurable

hardware structure. The TE is used to perform the computation of all the possible H.264/AVC

transforms, while the QE is employed for the realization of the necessary forward and inverse

quantization operations for the two possible block sizes. The Control Unit is responsible for

commanding the operation of all the circuits, including the dynamic configuration of the inter-

connection structure to implement the several coding paths, as well as the establishment of an
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Figure 6.4: Block diagram of the considered integrated transform and quantization circuit

for the H.264/AVC standard.

efficient data streaming interface between the integrated transform and quantization circuit and

the remaining modules of the video codec.

Although any configuration of the proposed multi-transform and quantization architectures can

be used to implement the TE and the QE, the suggested proof of concept structure is based on the

T8×8p and UQP4 setups described in Tables 6.1 and 6.2, respectively. This approach allows ob-

taining the desired functionality, while maximizing the overall hardware efficiency and performance

of the circuit. Nevertheless, the presented processing structure further exploits two distinct design

strategies to achieve such goals.

To compensate the different latencies and the maximum processing rates offered by the T8×8p

and UQP4 hardware structures, the TE is implemented using a single instance of the T8×8p ar-

chitecture whilst four instances of the UQP4 architecture are used to realize the QE. As a con-

sequence, both modules are able to fully process the luma and chroma components of a MB in

the same amount of time (tMB), by using a single clock signal (CLK). Such time frame can be

determined by using Equation 6.1, where TCLK denotes the period of the circuit’s clock signal and

the number of clock cycles required by each engine to process the luma and chroma components

of a MB (i.e. CPMBTE and CPMBQE) is given by Equation 6.2 and Equation 6.4, respectively.

In these equations, B represents the number of N ×N blocks composing a MB, PTE expresses

the amount of transforms that are computed in parallel (given by Equation 6.3), while LTE , LQE ,

TTE and TQE denote the latency and the throughput of the TE and QE modules, respectively. For

this particular implementation, LTE = N − 1, TTE = 8, LQE = 4 and TQE = 4.

tMB = max {CPMBTE , CPMBQE} × TCLK (6.1)

CPMBTE = LTE + 2N ×max

(

1,
B

PTE

)

+ LTE (6.2)
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Table 6.12: Operations supported by the several configurations of the considered integrated transform and quantization circuit for the
H.264/AVC standard.

Transform operations Quantization operations
Processing path

FDCT8×8 IDCT8×8 FDCT4×4 IDCT4×4 FH4×4 IH4×4 FH2×2 IH2×2 FQ8×8 IQ8×8 FQ4×4 IQ4×4

Default / Intra16×16 forward transform ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦

Default inverse transform ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦

Default forward quantization ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦

Default inverse quantization ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Default / Intra16×16 forward transform and quantization ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦

Default / Intra16×16 inverse quantization and transform ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ •

Default / Intra16×16 complete coding loop ◦ ◦ • • • • • • ◦ ◦ • •

8× 8 forward transform • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

8× 8 inverse transform ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

8× 8 forward quantization ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

8× 8 inverse quantization ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦

8× 8 forward transform and quantization • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

8× 8 inverse quantization and transform ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦

8× 8 complete coding loop • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦

1
4
0



6.4 Generalized design of integrated transform and quantization circuits

PTE =
TTE

N
(6.3)

CPMBQE = LQE +max

(

1,
N2

TQE

)

×B (6.4)

The transform and quantization engines are also interconnected in a fully configurable

pipelined chain, by using four dual port memory banks with double buffering streaming capability

and a set of multiplexers. Each of these buffers is capable of storing all the data corresponding to

two consecutive MBs, which enables a high degree of parallel processing at the MB level for the

following two reasons: i) the TE and the QE can be operated in parallel; ii) the processing of a MB

can occur simultaneously with either the fetching of the data corresponding to the next MB to be

processed, or with the output of the computation results corresponding to the previous MB.

To support the implementation of all the considered processing paths, Memory Bank 0 can

be connected either to the input data port of the circuit or to the output data port of the QE, as

shown in Figure 6.5. In the first case, it is used to store the residual data of a MB when a forward

coding path is configured, or the quantized transform coefficients when an inverse coding path

is selected. In the second case, it initially holds the residual data of a MB and is later used

to store the corresponding quantized transform coefficients that are produced by the QE, so as

to support the implementation of the complete forward transform, forward quantization, inverse

quantization and inverse transform loop of the codec. This consists of a two steps procedure in

which the interconnection structure is initially configured to implement the forward coding path and

is later reconfigured to implement the inverse coding path. In both cases, Memory Bank 1 is used

to buffer the data between the transform and quantization engines, as illustrated in Figure 6.5.

Consequently, the data input port of Memory Bank 1 can be connected to the output port of either

the TE or the QE, depending on the processing path that has been selected. Conversely, Memory

Bank 2 is always connected to the circuit’s output data port and is exclusively used to store the

results generated in all the transform and quantization coding paths.

The smaller Memory Bank DC (capable of storing two 4×4 blocks of data) is only used in some

of the considered dataflows, so that the second level Hadamard transforms can be computed

more efficiently. Such improved efficiency mostly results from keeping the memory accesses

local to the integrated transform and quantization circuit, and thus allowing the TE and the Memory

Bank 0 to operate in parallel. For the Intra16×16 forward processing paths, this approach allows

to directly store in Memory Bank DC all the DC coefficients that are computed using the 4 × 4

DCT. The Hadamard transform coefficients can be immediately computed by using these values

and the corresponding transform kernel, while the quantized transform coefficients for all the AC

coefficients of the MB are also simultaneously computed by the quantization engine. As soon as

both procedures are completed, the QE is reused to quantize the obtained Hadamard transform

coefficients. Similarly, Memory Bank DC also stores the MB DC coefficients when the circuit is

configured to implement the inverse transform and quantization path. However, such data is
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(b) Intra16×16 forward transform path.
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(c) Intra16×16 inverse transform path.

Figure 6.5: Processing paths supported by the considered integrated transform and quan-
tization circuit. (Continued on the next page.)
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Figure 6.5: Processing paths supported by the considered integrated transform and quan-
tization circuit.
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initially copied from Memory Bank 0, so that the computation of the inverse Hadamard transform

can occur in parallel with the inverse quantization of the AC coefficients of the MB, which are also

stored in Memory Bank 0. Immediately after the completion of the two procedures, the inverse

4× 4 DCT is computed by combining the data stored in Memory Bank 1 and Memory Bank DC, i.e.

the scaled AC transform coefficients and the inverse transform DC coefficients.

By taking into account the fully pipelined processing scheme and the double buffering capa-

bilities of the presented proof of concept integrated transform and quantization circuit, its perfor-

mance can be theoretically evaluated based on the amount of Clock Cycles (CCs) that are re-

quired to encode and decode the several possible MB types defined in the H.264/AVC standard.

Such amount of CCs can be evaluated by using Equation 6.5, where CPMBTE and CPMBQE

are given by Equation 6.2 and Equation 6.4, respectively.

CPMB = max
{

CPMBTEluma
+ CPMBTEchroma

, CPMBQEluma
+ CPMBQEchroma

}

(6.5)

Accordingly, Table 6.13 presents the amount of CCs that must be spent to process a single MB

using the forward and inverse coding paths enumerated in Table 6.12, while Figure 6.6 depicts

estimates of the data processing rates that can be attained by the proposed processing structure

when it is operated using several different clock frequencies.

The performance analysis presented in Figure 6.6 suggests that the presented integrated

transform and quantization circuit can be used not only to encode but also to decode video se-

quences in the 4k UHDTV format (3840 × 2160 @ 60 fps) in real time, by using a clock signal

with a frequency of 240 MHz. Such value is lower than the maximum clock frequency values

obtained for the implementation of the T8×8p and UQP4 proof of concept hardware structures in

the considered prototyping platform, as it is shown in Table 6.6 and Table 6.9. Therefore, it can

be expected that successful implementations of high performance integrated transform and quan-

tization circuits based on the envisioned processing structure can also be obtained using Xilinx

Virtex-7 XC7VX485T-2FFG1761C FPGA devices.

For the processing in real time of video sequences with even higher resolutions or frame rates,

such as the 8k UHDTV format (7680×4320@ 30 fps), the results depicted in Figure 6.6 instruct the

use of clock frequencies higher than 300 MHz. In fact, the data presented in Table 6.13 suggests

that the decoding of a whole MB using the Intra16×16 inverse transform and quantization path (i.e.

the processing path that requires the highest amount of clock cycles to process a MB) demands

a clock frequency of about 470 MHz. Nowadays, such relatively high clock frequency values can

be easily attained by using ASIC implementations based on modern CMOS processes, which

justifies the use of the proposed transform and quantization architectures in the development of

ITQAs also for ultra high performance video coding systems.
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Table 6.13: Amount of CCs that are required to encode one MB using the considered integrated transform and quantization circuit.

TE QE CPMBTE CPMBQE Total
Processing path N B

LTE TTE PTE LQE TQE Luma Chroma Luma Chroma CPMB

Default forward /inverse transform 4 16 3 8 2 4 4 70 42 0 0 112

Default forward / inverse quantization 4 16 3 8 2 4 4 0 0 68 38 106

Default forward /inverse transform and quantization 4 16 3 8 2 4 4 70 42 68 38 112

Intra16×16 forward transform and quantization 4 16 3 8 2 4 4 78 42 68 38 120

Intra16×16 inverse transform and quantization 4 16 3 8 2 4 4 82 42 68 38 124

8× 8 forward / inverse transform 8 8 7 8 1 4 4 78 0 0 0 78

8× 8 forward / inverse quantization 8 8 7 8 1 4 4 0 42 68 38 106

8× 8 forward / inverse transform and quantization 8 8 7 8 1 4 4 78 42 68 38 120

1
4
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Figure 6.6: Theoretical performance assessment of the considered integrated transform

and quantization circuit.

6.5 Summary

In this chapter, the proposed multi-transform and quantization architectures are evaluated

based on experimental results that were attained with the implementation of several different proof

of concept transform cores and quantizers compliant with the complete H.264/AVC standard in a

Xilinx Virtex-7 XC7VX485T-2FFG1761C FPGA device.

The collected data shows that the proposed MTA can be successfully used to realize transform

cores with a reduced hardware cost (i.e. less than 7% of the hardware resources available in

the considered medium size FPGA device) and that are capable of computing almost 18 GOPS

and sustaining processing throughputs of about 2.2 × 109 S/s, by using a clock frequency of

280.6 MHz. Such high performance levels are competitive regarding the state of the art and allow

the processing of the whole set of H.264/AVC transforms in real time for video sequences with

resolutions up to 3840 × 2160 pixels and with a frame rate of 30 fps (i.e. the 4k UHDTV video

format).

The obtained results also suggest that the hardware requirements of the proposed MTA scale

well with the configuration adopted for the TA, which accounts for about 2
3

of the total hardware

resources of the implemented transform cores albeit the quite reduced cost of the devised PE (i.e.

about 44 Virtex-7 slices). This is a very important aspect, since it enables to effectively trade-off

performance for hardware cost and thus to design processing structures suitable for both low cost

and high performance video coding systems. Furthermore, the presented data shows that the

coarse-grain data-level parallel processing capability offered by the proposed MTA not only allows

to improve the hardware efficiency of a given transform core up to 50% but also to speed up the

146



6.5 Summary

transform computation procedure up to 4 times, with a negligible impact (less than 0.3%) in the

clock frequency of the implemented 8× 8 PEs transform cores.

In what concerns the proposed class of quantization architectures, the obtained experimental

results show that it can be used to design high performance forward, inverse and unified quan-

tizers capable of processing up to 464 × 106 S/s, and thus support the real time processing of

video sequences in the 4k UHDTV format. Moreover, they also show that the hardware require-

ments of such quantizers not only are quite diminished (i.e. they require between 135 and 301

Virtex-7 slices and a single DSP48E1 slice) but also scale well with the amount of implemented

pipeline stages, suggesting that several different quantization circuits offering distinct performance

vs hardware cost trade-offs can be obtained by using the proposed architectures. As mentioned

above, this is a very important aspect because it allows the presented class of quantization archi-

tectures to be used in a much wider range of video coding systems, ranging from low-end systems

to high performance codecs. The collected data further suggests that the proposed class of quan-

tization architectures is competitive regarding the state of the art in all these application domains,

not only owing to its improved hardware efficiency but also to the possibility to easily combine

several instances of the same quantization circuit in a single quantizer, in order to obtain highly

parallel processing structures capable of processing even higher resolution video formats in real

time.

The obtained experimental results also suggest that the proposed multi-transform and quan-

tization architectures can be successfully used to design high performance and autonomous

H.264/AVC integrated transform and quantization circuits, highly suitable for the realization of

the transform coding modules that mandatoroly integrate all video coding systems.

147



6. Experimental evaluation

148



7
Conclusions

Contents

7.1 Thesis summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

149



7. Conclusions

This chapter presents an overview of the research work that was performed in the scope of

this PhD thesis and summarizes the most important conclusions and original contributions of such

investigation. In addition, it briefly discusses the most relevant open research issues and points

out some directions for future work. Finally, it provides the list of all the scientific articles that

were published in scientific journals and conference proceedings presenting the most relevant

contributions and findings of the performed research work.

7.1 Thesis summary and conclusions

In the last years, the H.264/AVC standard emerged as one of the most important and widely

used digital video standards, both for non-conversational and conversational services. This is

mostly a result of the greatly increased compression performance that this standard is capable of

offering. However, such improved coding efficiency comes at the expense of higher computational

complexity, data processing rates and memory bandwidth requirements. These constraints pose

several difficult challenges in the design of video encoding and decoding systems, especially when

real time operation and the processing of HD contents is demanded, or computing systems with

limited computational, storage and energy resources are considered (e.g. mobile and portable

devices). In practice, such requirements can only be met by using highly specialized hardware

structures to accelerate the realization of the most critical and time consuming operations of the

video codecs.

Accordingly, this PhD thesis addresses the problem of efficiently computing the H.264/AVC

mandatory transform and quantization procedures by exploiting the use of dedicated hardware

structures in video coding systems implemented using VLSI and reconfigurable technologies. In

particular, this thesis presents a novel high performance and scalable multi-transform architecture

for the computation of all the transforms defined in the H.264/AVC standard. In addition, a new

class of high performance architectures with reduced hardware cost is also presented for the

realization of H.264/AVC quantizers. Furthermore, an integrated transform and quantization circuit

based on these multi-transform and quantization architectures is also herein proposed to optimize

the joint computation of the H.264/AVC transform and quantization procedures.

Regarding the computation of the H.264/AVC transforms, the key conclusion of this thesis is

that systolic array processors can be successfully used to develop high performance, hardware

efficient and scalable transform cores. In particular, this thesis demonstrates that by jointly ex-

ploiting the use of the row-column decomposition algorithm and 2-D systolic arrays it is possible

to obtain highly parallel data-stream driven processing structures that are capable of efficiently

computing all the DCTs defined in the H.264/AVC standard, i.e. the forward and inverse 8× 8 and

4 × 4 DCTs and the forward and inverse 4 × 4 and 2 × 2 Hadamard transforms. Furthermore, it

is herein shown that the modular and regular pipelined design style of systolic arrays can be effi-
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ciently exploited in several different ways, in order to obtain hardware structures that are capable

of supporting various transforms with distinct sizes and kernels.

More specifically, this thesis thoroughly discusses how to efficiently map the operations re-

quired by a given set of transforms into single- and multi-transform PE architectures. On top of

that, it presents an innovative methodology to design highly specialized and parameterizable PEs

for the computation of any given DCT, which exploits the use of mux-MCM structures to imple-

ment fast multipliers with a reduced hardware cost. Due to all the considered techniques and

optimization procedures, the resulting PEs can be operated using high clock frequencies, thus

offering enhanced computational and data processing rates.

In another direction, this thesis also shows how to exploit the modularity, regularity and pipelin-

ability properties of systolic arrays, in order to efficiently adapt the hardware structure of a systolic

transform core to the specific requirements of any given video coding system or application. In this

scope, the presented work introduces three distinct techniques that can be used to adjust these

transform architectures either to match the size of the considered transform kernels, to scale them

according to the performance and hardware cost requirements of the target implementation, or

implement coarse-grain data-level parallelism to enable the simultaneous computation of several

different transforms.

All these conclusions are supported by multiple experimental results concerning the implemen-

tation and evaluation of several different H.264/AVC transform cores in a Xilinx Virtex-7 FPGA

device. In fact, the obtained results not only prove that systolic arrays can be used to design

transform cores capable of supporting the real time processing requirements of the 4k UHDTV

format (3840× 2160 pixels @ 30 fps) with a reduced hardware cost but also demonstrate the ad-

vantages offered by all the proposed techniques to effectively manage the balance between the

performance and the hardware requirements of such transform cores.

In what concerns the realization of the H.264/AVC forward and inverse quantization schemes,

two major conclusions can be drawn from the performed research work. On the one hand, this

thesis demonstrates that both schemes can be represented by using a single and more generic

formulation, since they follow very similar procedures involving operands with comparable char-

acteristics and the same combination of operations. Moreover, it also shows that such alternative

definition offers important advantages in the development of highly specialized architectures for

the realization of the forward and inverse quantization procedures, as well as enables the design

of resource-shared unified architectures that can be used to efficiently implement both procedures

with a more reduced hardware cost.

On the other hand, this thesis shows that the non-linear quantization functions that are used

by the H.264/AVC forward and inverse quantization schemes can be realized by using not only

integer arithmetic but also relatively simple combinational circuits, comprising only three com-

putational modules, i.e. one integer multiplier, one integer adder and one shifter. Based on
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these observations, two dedicated architectures are herein proposed for the computation of the

H.264/AVC forward and inverse quantization procedures and one very efficient resource-shared

unified quantization architecture supporting the realization of both procedures is also presented.

These high performance architectures exhibit low hardware cost and extensively exploit pipeline

parallelism techniques, in order to attain the high computational and data processing rates that are

required for the processing in real time of the HD and ultra-HD video formats. Furthermore, they

present a very flexible and configurable hardware structure that allows them to be customized, in

order to provide implementations offering different trade-offs between performance and hardware

cost, thus making them highly suitable for multiple application domains.

The experimental results that were obtained with the implementation of several different for-

ward, inverse and unified H.264/AVC quantization cores in a Xilinx Virtex-7 FPGA device show

that such circuits can meet the real time processing requirements of the 4k UHDTV format

(4096× 2160 pixels @ 30 fps) when operated with a minimum clock frequency of 374 MHz.

With regard to the joint optimization of the H.264/AVC transform and quantization procedures,

this thesis shows that the proposed multi-transform and quantization architectures can also be

successfully combined to design ITQAs compliant with the H.264/AVC standard. Furthermore, it

presents a high performance and hardware efficient ITQA that is capable of autonomously imple-

menting all the hierarchical transform and quantization paths defined in the H.264/AVC standard,

i.e. i) the computation of the forward transform and quantization procedures in cascade, employed

in the encoding of video sequences; ii) the computation of the inverse quantization and transform

procedures in cascade, required to decode the video bit streams; and iii) the complete forward

transform, forward quantization, inverse quantization and inverse transform loop, so that a single

hardware circuit can be used in the realization of H.264/AVC video codecs.

7.2 Future research directions

Considering the objectives of this PhD research plan, and by taking into account the work that

was already developed and that is herein reported, several different topics can still be identified

as open research questions. Consequently, the following tasks can be defined as highly relevant

directions for future work:

• Implementation of the ITQA presented in section 6.4 as a configurable IP core supporting

the autonomous computation of the H.264/AVC transform and quantization procedures.

This processing structure should be described by using a parametrizable circuit description,

which can be written in VHDL or in another alternative hardware description language (e.g.

Verilog), and by considering a generic coding style, so that efficient hardware realizations

can be obtained not only when using distinct technologies (i.e. FPGA and ASIC) but also

different implementation processes.
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• Investigation of efficient techniques to enable the dynamic reconfiguration of the proposed

MTA, not only to implement TAs with distinct sizes but also to make use of different PEs. In

reconfigurable platforms, this feature can be used to dynamically adjust the requirements

(in terms of performance and hardware cost) and the functionality of the instantiated trans-

form cores to the constraints and requisites of the considered video coding application in

run time. Therefore, it should provide the means required to obtain a more efficient man-

agement of the hardware resources available in the FPGA, as well as of the usable energy

stored in the batteries of mobile and portable video coding systems.

• Increase the versatility and functionality of the H.265/HEVC and multi-standard PEs pre-

sented in appendix A, so that they are also able to support the computation of the forward

and inverse 4× 4 DST defined in the H.265/HEVC standard.

• Extend the use of the devised scalable MTA to the MPEG-2, MJPEG an JPEG standards.

This research should involve a comprehensive study of the forward and inverse 8 × 8 real

DCT adopted by these video standards, in order to allow its computation using integer

arithmetic with the required precision levels, as well as the definition of a new PE for the

efficient computation of all the required operations. In addition, the results of such study

could also be used to develop a new unified architecture for the PEs, suitable for the realiza-

tion of multi-standard transform cores supporting the H.264/AVC, VC-1, AVS, H.265/HEVC,

MPEG-2, MJEPG and JPEG standards.

• Enhance the processing capabilities of the proposed quantization architectures, by increas-

ing the amount of coefficients that can be computed at each clock cycle. In particular,

data-level parallelism techniques should be investigated and exploited to support the repli-

cation of the datapath in an efficient manner, so that several different coefficients can be

simultaneously computed by using the same control data.

• Adaptation and extension of the proposed class of quantization architectures to support the

quantization procedures defined in other video standards, such as VC-1, AVS, H.265/HEVC

and MPEG-2. In this scope, alternative hardware structures based on the MCM paradigm

should be investigated and special attention should be devoted to the H.265/HEVC stan-

dard, since at the time of writing this thesis it is emerging as the newest state-of-the-art

video standard.

7.3 List of publications

In the realization of this PhD thesis, a special attention was given to the validation and the

dissemination of the developed hardware structures and techniques within the related scientific
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community. Accordingly, the most relevant topics, results and conclusions of the conducted re-

search work resulted in the publication of three articles in international scientific journals and ten

articles in the proceedings of several international (6) and national (4) scientific conferences. The

following is a list of these publications, which are presented in reverse chronological order.

• International Scientific Journals:

[37] T. Dias, N. Roma, and L. Sousa. Unified transform architecture for AVC, AVS, VC-

1 and HEVC high-performance codecs. EURASIP Journal on Advances in Signal

Processing, 2014(108), July 2014.

[26] T. Dias, S. López, N. Roma, and L. Sousa. Scalable unified transform architecture

for advanced video coding embedded systems. International Journal of Parallel Pro-

gramming, 41(2):236–260, Apr. 2013;

[24] T. Dias, S. López, N. Roma, and L. Sousa. A flexible architecture for the computation

of direct and inverse transforms in H.264/AVC video codecs. IEEE Transactions on

Consumer Electronics, 57(2):936–944, May 2011.

• Proceedings of International Scientific Conferences:

[38] T. Dias, N. Roma, and L. Sousa. High performance quantization architectures for

HEVC transform coding IP cores. In IEEE International Symposium on Circuits and

Systems (ISCAS 2015), May 2015. (To appear);

[36] T. Dias, N. Roma, and L. Sousa. High performance multi-standard architecture for

DCT computation in H.264/AVC high profile and HEVC codecs. In Conference on

Design & Architectures for Signal and Image Processing (DASIP 2013), pages 14–

21, Oct. 2013. Best Paper Award;

[40] T. Dias, L. Rosário, N. Roma, and L. Sousa. High performance unified architecture

for forward and inverse quantization in H.264/AVC. In 15th Euromicro Conference on

Digital System Design (DSD 2012), pages 632–639, Sept. 2012;

[25] T. Dias, S. López, N. Roma, and L. Sousa. High throughput and scalable architecture

for unified transform coding in embedded H.264/AVC video coding systems. In Inter-

national Conference on Embedded Computer Systems: Architectures, Modeling and

Simulation (SAMOS 2011), pages 225–232, July 2011. Best Paper Award;

[31] T. Dias, N. Roma, and L. Sousa. H.264/AVC framework for multi-core embedded

video encoders. In International Symposium on System-on-Chip (SOC 2010), pages

89–92, Sept. 2010;

[32] T. Dias, N. Roma, and L. Sousa. Hardware/software co-design of H.264/AVC en-

coders for multi-core embedded systems. In International Conference on Design and
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Architectures for Signal and Image Processing (DASIP 2010), pages 231–238, Oct.

2010. Best Poster Award;

[122] N. Sebastião, T. Dias, N. Roma, and P. Flores. Integrated accelerator architecture

for DNA sequences alignment with enhanced traceback phase. In International Con-

ference on High Performance Computing & Simulation (HPCS 2010), pages 16–23,

June 2010.

• Proceedings of National Scientific Conferences:

[35] T. Dias, N. Roma, and L. Sousa. Exploiting coarse-grained parallelism in multi-

transform architectures for H.264/AVC high profile codecs. In Conference on Elec-

tronics, Telecommunications and Computers (CETC 2013), pages CD–ROM, Oct.

2013. ISBN: 978-989-97531-3-6;

[34] T. Dias, N. Roma, and L. Sousa. Reconfigurable unified architecture for forward and

inverse quantization in H.264/AVC. In VIII Jornadas sobre Sistemas Reconfiguráveis

(REC 2012), pages 75–82, Feb. 2012;

[33] T. Dias, N. Roma, and L. Sousa. Optimized forward/inverse quantization unit for

H.264/AVC codecs. In Conference on Electronics, Telecommunications and Com-

puters (CETC 2011), pages CD–ROM, Nov. 2011. ISBN: 978-989-97531-0-5;

[23] T. Dias, S. López, N. Roma, and L. Sousa. Efficient and programmable processing

unit for H.264/AVC systolic unified transform engines. In VII Jornadas sobre Sistemas

Reconfiguráveis (REC 2011), pages 13–19, Feb. 2011.

In addition, the performed research work was also distinguished with the following three

awards:

• Best Paper Award in the 2013 Conference on Design and Architectures for Signal and

Image Processing (DASIP 2013), which was held in Cagliari, Italy, in October 2013.

• The ”Stamatis Vassiliadis” Best Paper Award in the 11th International Conference on Em-

bedded Computer Systems: Architectures, Modeling and Simulation (SAMOS XI), which

was held in the Greek island of Samos in July 2011;

• Best Poster Award in the 2010 Conference on Design and Architectures for Signal and

Image Processing (DASIP 2010), which was held in Edinburgh, United Kingdom, in October

2010.
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The MTA presented in chapter 4 was designed to fully address the data processing require-

ments of the modern video codecs supporting the H.264/AVC standard. Nevertheless, it can also

be used to realize high performance and hardware efficient dedicated transform cores addressing

other state-of-the-art video standards, as well as to implement MST cores supporting multiple

video standards. Such alternative processing structures can be easily obtained by successfully

exploiting the scaling capabilities and the modular nature of the proposed MTA, as explained in

section 4.4.

In this appendix, the modularity of the proposed MTA is exploited, in order to extend its func-

tionality to also support the other current state-of-the-art video standards, i.e. VC-1 [128], Audio

Video coding Standard (AVS) [150] and H.265/HEVC [134]. Accordingly, three new PEs targeting

the VC-1, AVS and H.265/High Efficiency Video Coding (HEVC) standards are first introduced in

section A.2. Then, a resource-shared multi-standard PE suitable for the processing of the four

video standards in MST cores is presented in section A.3.

A.1 Overview of the VC-1, AVS and H.265/HEVC transform

coding procedures

A.1.1 VC-1

One of the main goals of the VC-1 standard [128], which was initially developed by the Microsoft

Corporation as WMV-9 and later standardized by the Society of Motion Picture and Television

Engineers (SMTPE), is to provide efficient codec implementations for online video services. This

type of video services usually requires low complexity codecs that must be capable of producing

low bit rate video streams. To comply with both requirements, VC-1 also implements a hybrid

motion compensated and transform coding scheme. However, the complexity of this coding pro-

cedure is much lower than the one adopted in the H.264/AVC standard.

The VC-1 transform process is similar to the one adopted by the H.264/AVC standard in the

sense that it also makes use of variable-size transforms, in order to better exploit the spatial

correlation of the data and to improve the coding efficiency. However, VC-1 only considers a

single transform level and two distinct kernels to process all the possible block sizes, i.e. 4 × 4,

8×4, 4×8, and 8×8. The 8×8 transform is used to encode the Intra MBs. Conversely, the Inter MBs

can be encoded using any of the four available separable transforms, provided that the optional

variable-size transform mode has been enabled in the encoder [128]. Table A.1 enumerates the

transform coefficient values of such 8 × 8 and 4 × 4 kernels, whose generic representations are

presented in Equation 4.5 and Equation 4.6, respectively.

The VC-1 transform process also allows fast algorithm implementations to compute the inverse

transforms. These transforms, which do not involve any rescaling operations, can be computed

using 16-bits arithmetic and without any multiplications. In contrast, the computation of the forward
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Table A.1: Coefficients of the VC-1 transform kernels.

Kernel Values
Transform

a b c d e f g

4× 4 DCT 17 - - - - 22 10

8× 8 DCT 12 16 15 9 4 16 9

transforms is slightly more complex, due to requiring an extra normalization stage to compensate

the different norms of its basis functions. Similarly to the H.264/AVC standard, such scaling factors

are also absorbed by the quantization procedure [128].

A.1.2 AVS

The AVS [150] standard was developed in China and adopts a coding scheme analogous to

H.264/AVC, which is why the two standards offer quite similar coding performances. Nevertheless,

contrary to what happens with the H.264/AVC standard, the transform process of AVS considers

the computation of a single 2-D transform for the processing of all the luma and chroma blocks

composing the 16× 16 pixels MBs.

In AVS Part 2 (a.k.a. AVS 1.0), which targets high definition digital video broadcasting and

high density storage media, a MB is composed of four 8×8 luma blocks and of two chroma blocks

with 8 × 8 samples each. All these blocks are processed by an 8 × 8 integer transform with the

generic transform kernel shown in Equation 4.5. This transform was designed in conjunction with

the quantization process by using the Pre-Scaled Integer Transform (PIT) technique [151], in order

to reduce the rounding errors and minimize the complexity of the decoder implementation. As a

result, it consists of a separable and integer precise 2-D transform that can be computed using 16-

bits arithmetic, thanks to the reduced magnitude of the involved kernel values, as it can be seen

in Table A.2. However, rounding and rescaling operations must be applied after the computation

of the row and column transforms, not only to guarantee the accuracy of the 16-bits operation but

also to harmonize the transform/quantization and entropy coding procedures.

The alternative Part 7 of AVS [47], commonly known as AVS-M, was proposed for video commu-

nication applications targeting mobile devices. Typically, these devices deal with lower resolution

videos and possess limited processing capabilities and memory resources. To better adjust the

complexity of the video codec to these characteristics, AVS Part 7 defines the 4× 4 block size as

the basic unit for the transform process. Accordingly, it specifies a 2-D separable transform for

the processing of all the luma and chroma blocks, whose generic kernel is shown in Equation 4.6.

Table A.2: Coefficients of the AVS transform kernels.

Kernel Values
Transform

a b c d e f g

4× 4 DCTs 2 - - - - 3 1

8× 8 DCTs 8 10 9 6 2 10 4
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Due to the considered kernel values (enumerated in Table A.2), such 4× 4 integer transform can

also be computed using 16-bits arithmetic and by using only integer additions and shift operations.

A.1.3 H.265/HEVC

In H.265/HEVC [134], the basic units defined for the transform and quantization processes are

called Transform Units (TUs). The TUs consist of square blocks of data that can be recursively

subdivided in four equally sized blocks, starting from the 32 × 32 samples TU format and going

all the way down to a minimum of 4 × 4 samples. As a result of this segmentation, several dif-

ferent integer transforms with multiple sizes are specified for the H.265/HEVC transform process.

Nevertheless, all the transform kernels are better approximations of the DCT than those that were

adopted by the H.264/AVC standard.

The H.265/HEVC transform kernels were defined by approximating scaled DCT basis func-

tions under specific considerations, such as limiting the necessary dynamic range for transform

computation or maximizing the precision and closeness to orthogonality, whenever the kernel en-

tries are specified as integer values. Consequently, the basis vectors of these transforms have

equal energy and there is no need to compensate for the different norms, as in previous video

standards. Furthermore, such property also allows using the same kernels to compute both the

forward and the inverse transforms. However, due to the increased dynamic range of the involved

transform kernels, H.265/HEVC explicitly inserts rescaling and 16-bits clipping operations after

the row-wise transform stage. This guarantees that all the transforms can be computed using

16-bits integer arithmetic.

To reduce the complexity of the encoder and to simplify the computation of the transforms,

only one order-32 transform kernel is specified in the H.265/HEVC standard (see [134]). The re-

maining lower order kernels consist of sub-sampled versions of this kernel. The entries of such

order-k kernels (with k = 4, 8, 16) consist of the first k values of rows j × 32
k

(with j = 0...k − 1)

of the 32× 32 kernel. All the lower order kernels also present key symmetry properties, to enable

fast ”partially-factored” implementations using very few mathematical operations. As an example

of this feature, the H.265/HEVC 8 × 8 and 4 × 4 transform kernels can be obtained from Equa-

tion 4.5 and Equation 4.6, respectively, by considering the corresponding coefficients enumerated

in Table A.3.

Table A.3: Coefficients of the H.265/HEVC transform kernels.

Kernel Values
Transform

a b c d e f g

4× 4 DCT 64 - - - - 83 36

8× 8 DCT 64 89 75 50 18 83 36
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A.2 PE architectures for the VC-1, AVS and H.265/HEVC stan-

dards

The PEs that were developed to support the computation of all the transforms defined in

the VC-1, AVS and H.265/HEVC standards are also based on the generic hardware structure

introduced in subsection 4.2.1 and whose block diagram is depicted in Figure 4.5. Consequently,

they were derived by exactly following the same methodology that was adopted to realize the

H.264/AVC PE (see subsection 4.2.2), which can be summarized in the following eight design

steps:

Step 1: Define the values of the Type T signal, by properly encoding the set of transforms to be

supported;

Step 2: Evaluate and select all the distinct positive kernel values that are required for the com-

putation of the considered set of transforms, i.e. the basis values of all the involved

transform kernels;

Step 3: Define a DAG representing an optimal addition chain for each one of the kernel values

that are defined;

Step 4: Find and exploit the similarities in all the devised graphs, in order to obtain the best com-

posite DAG jointly representing the addition chains of all the individual DAGs. If possible,

such graph should consist exclusively of additions, subtractions, shifts and multiplexers;

Step 5: Develop a fast and hardware efficient hardware structure to implement the composite

DAG, which should be exclusively composed of adders, subtractors and multiplexers;

Step 6: Define a control word to command the operation of all the multiplexers and addi-

tion/subtraction circuits composing the hardware structure obtained in the previous de-

sign step for each of the considered kernel values;

Step 7: Properly dispose all the multiplier control words in distinct memory segments of the ROM

that is embedded in the control module of the PE, according to the encoding of the Type T

signal. Within each memory segment, N consecutive memory positions must be occu-

pied with the multiplier control words corresponding to the N basis values of each of

the considered order-N transform kernels. In addition, this data must be disposed in

the same manner as its corresponding kernel values in the first column of the transform

kernel matrix.

In the following subsections, this methodology is briefly reviewed for the design of each of the

considered PEs.
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A.2.1 PE for the VC-1 standard

Step 1: The 8 transforms defined in the VC-1 standard were encoded using 3 bits, as shown in

Table A.4.

Table A.4: Encoding of the Type T signal for the implementation of the VC-1 PE.

Type T Transform

0 Forward 4× 4 DCT

1 Forward 4× 8 DCT
2 Forward 8× 4 DCT

3 Forward 8× 8 DCT

4 Inverse 4× 4 DCT
5 Inverse 4× 8 DCT

6 Inverse 8× 4 DCT
7 Inverse 8× 8 DCT

Step 2: The values of the basis functions of all the considered transform kernels are listed in

Table A.1.

Step 3/4: The composite DAG representing all the possible addition chains is shown in Figure A.1.

Xin

0 016 2

Mult’

8

0 4

Figure A.1: DAG of the mux-MCM used in the arithmetic module of the VC-1 PE.

Step 5: Figure A.2 shows the hardware structure that was devised to implement the DAG pre-

sented in Figure A.1, which is composed of 1 addition and 1 addition/subtraction circuits,

2 multiplexers and a couple of AND gates. The multiplexers are used to realize the spe-

cialized barrel shifters involved in the computation of all the required multiplications, while

the AND gates are used to set all the required zero values.
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Figure A.2: Architecture of the mux-MCM used in the arithmetic module of the VC-1 PE.

Step 6: The 8 control words that are used to define the operation of the architecture presented in

Figure A.2 are listed in Table A.5. The numbers shown in Figure A.2 identify the position

of the bits controlling each of the architecture’s circuits within the control word.

Table A.5: Multiplier control words for the VC-1 transform kernels (see Equation 4.5, Equa-

tion 4.6 and Table A.1).

Kernel Value 4 9 10 12 15 16 17 22

ROM Word 0x20 0xA 0xE 0x22 0x1B 0x3 0xB 0x1F

Step 7: The 8 distinct multiplier control words listed in Table A.5 were properly disposed through-

out two separate memory segments, as shown in Figure A.3. The segment comprehend-

ing the memory positions 0-7 holds the values of the 8 × 8 transforms basis functions,

which are also used in the computation of the 8 × 4 and 4 × 8 transforms. The other

segment occupies the memory positions 8-13 and holds the values of the basis functions

for the 4 × 4 transforms. The two most significant bits of the Type T signal are used to

select the desired memory segment.

Figure A.3: Memory map of the ROM used in the VC-1 PE.
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A.2.2 PE for the AVS standard

Step 1: Step 1: The 4 transforms defined in the AVS standard were encoded using 2 bits, as

shown in Table A.6.

Table A.6: Encoding of the Type T signal for the implementation of the AVS PE.

Type T Transform

0 Forward 4× 4 DCT
1 Forward 8× 8 DCT

2 Inverse 4× 4 DCT

3 Inverse 8× 8 DCT

Step 2: The values of the basis functions of all the considered transform kernels are listed in

Table A.2.

Step 3/4: The composite DAG representing all the possible addition chains is shown in Figure A.4.

Xin

0 04 32

Mult’

-1

Figure A.4: DAG of the mux-MCM used in the arithmetic module of the AVS PE.

Step 5: Figure A.5 shows the hardware structure that was devised to implement the DAG pre-

sented in Figure A.4, which is composed of 1 addition/subtraction circuit, 2 multiplexers

and a couple of AND gates. The multiplexers are used to realize the specialized barrel

shifters involved in the computation of all the required multiplications, while the AND gates

are used to set all the required zero values.

Step 6: The 8 control words that are used to define the operation of the architecture presented in

Figure A.5 are listed in Table A.7. The numbers shown in Figure A.5 identify the position

of the bits controlling each of the architecture’s circuits within the control word.
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Mult Ctrl

in << 2
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Figure A.5: Architecture of the mux-MCM used in the arithmetic module of the AVS PE.

Table A.7: Multiplier control words for the AVS transform kernels (see Equation 4.5, Equa-

tion 4.6 and Table A.2).

Kernel Value 1 2 3 4 6 8 9 10

ROM Word 0x8 0xC 0x1A 0x2 0xE 0x3 0xB 0xF

Step 7: The 8 distinct multiplier control words listed in Table A.7 were properly disposed through-

out two separate memory segments, as shown in Figure A.6. The segment comprehend-

ing the memory positions 0-7 holds the values of the 8 × 8 transforms basis functions,

while the segment occupying the memory positions 8-13 holds the values of the basis

functions for the 4× 4 transforms. The most significant bit of the Type T signal is used to

select the desired memory segment.

Figure A.6: Memory map of the ROM used in the AVS PE.

A.2.3 PE for the H.265/HEVC standard

Step 1: The 8 DCTs defined in the H.265/HEVC standard were encoded using 3 bits, as shown

in Table A.8.

Step 2: The values of the basis functions of all the considered transform kernels are presented

in [134] and partially listed in Table A.3 for the 8× 8 and 4× 4 kernels.
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Table A.8: Encoding of the Type T signal for the implementation of the H.265/HEVC PE.

Type T Transform

0 Forward 4× 4 DCT

1 Forward 8× 8 DCT
2 Forward 16× 16 DCT

3 Forward 32× 32 DCT

4 Inverse 4× 4 DCT
5 Inverse 8× 8 DCT

6 Inverse 16× 16 DCT

7 Inverse 32× 32 DCT

Step 3/4: The composite DAG representing all the possible addition chains is shown in Figure A.7.

Xin

0
16 8

4
0

0 02 6432

Mult’

Figure A.7: DAG of the mux-MCM used in the arithmetic module of the H.265/HEVC PE.

Step 5: Figure A.8 shows the hardware structure that was devised to implement the DAG pre-

sented in Figure A.7, which is composed of 1 addition and 2 addition/subtraction circuits,

3 multiplexers and some AND gates. The multiplexers are used to realize the specialized

barrel shifters involved in the computation of all the required multiplications, while the AND

gates are used to set all the required zero values.

Step 6: The 8 control words that are used to define the operation of the architecture presented in

Figure A.8 are listed in Table A.9. The numbers shown in Figure A.8 identify the position

of the bits controlling each of the architecture’s circuits within the control word.

Step 7: The 29 distinct multiplier control words listed in Table A.9 were properly disposed through-
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Figure A.8: Architecture of the mux-MCM used in the arithmetic module of the H.265/HEVC

PE.

Table A.9: Multiplier control words for the H.265/HEVC DCT kernels (see [134], Equation 4.5,

Equation 4.6 and Table A.3).

Kernel Value 4 9 13 18 22 25 31 36 38 43

ROM Word 0x80 0xC4 0x185 0x7 0xCF 0xC5 0x2C 0xA0 0xA6 0x1AD

Kernel Value 46 50 54 57 61 64 67 70 73 75

ROM Word 0x2F 0x27 0xA7 0xE5 0x1B4 0x30 0xBC 0xB6 0xF4 0x1BD

Kernel Value 78 80 82 83 85 87 88 89 90

ROM Word 0x3F 0x31 0x37 0xBD 0xB5 0xFD 0xF1 0xF5 0xF7

out a unique memory segment with 32 memory positions, as shown in Figure A.9. This

segment holds the values of the basis functions of the 32× 32 DCTs, which are also used

in the computation of the 16× 16, 8× 8 and 4× 4 DCTs.

Inverse 32×32 DCT

0x0

a

0 1
4

Figure A.9: Memory map of the ROM used in the H.265/HEVC PE.
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A.3 Resource-shared architecture of the multi-standard PE

The methodology described in section A.2 was also used to develop a high performance and

hardware efficient PE for the computation of all the DCTs defined in the H.264/AVC, VC-1, AVS

and H.265/HEVC standards. The devised multi-standard architecture shares all its hardware

resources for the computation of the MAC operations required by the considered 28 DCTs, which

comprehend 80 distinct transform kernel values in the range from −90 to +90. The design steps

that were considered to devise this architecture are the following:

Step 1: All the considered DCTs were encoded using 5 bits, as shown in Table A.10.

Table A.10: Encoding of the Type T signal for the implementation of the multi-standard PE.

Type T Standard Transform

0 H.264/AVC Forward 2× 2 Hadamard transform

1 H.264/AVC Forward 4× 4 Hadamard transform
2 H.264/AVC Forward 4× 4 DCT

3 H.264/AVC Forward 8× 8 DCT

4 H.264/AVC Inverse 2× 2 Hadamard transform
5 H.264/AVC Inverse 4× 4 Hadamard transform

6 H.264/AVC Inverse 4× 4 DCT

7 H.264/AVC Inverse 8× 8 DCT
8 H.265/HEVC Forward 4× 4 DCT

9 H.265/HEVC Forward 8× 8 DCT
10 H.265/HEVC Forward 16× 16 DCT

11 H.265/HEVC Forward 32× 32 DCT

12 H.265/HEVC Inverse 4× 4 DCT
13 H.265/HEVC Inverse 8× 8 DCT

14 H.265/HEVC Inverse 16× 16 DCT

15 H.265/HEVC Inverse 32× 32 DCT
16 VC-1 Forward 4× 4 DCT

17 VC-1 Forward 4× 8 DCT
18 VC-1 Forward 8× 4 DCT

19 VC-1 Forward 8× 8 DCT

20 VC-1 Inverse 4× 4 DCT
21 VC-1 Inverse 4× 8 DCT

22 VC-1 Inverse 8× 4 DCT

23 VC-1 Inverse 8× 8 DCT
24 AVS Forward 4× 4 DCT

25 AVS Forward 8× 8 DCT
26 AVS Inverse 4× 4 DCT

27 AVS Inverse 8× 8 DCT

Step 2: The values of all the involved basis functions of all the considered DCTs are presented in

Equations 2.12, 2.13, 2.14, 2.15 and 2.17 for the H.264/AVC standard, Table A.1 for

the VC-1 standard, Table A.2 for the AVS standard and in Table A.3 and [134] for the

H.265/HEVC standard.

Step 3/4: The composite DAG representing all the possible addition chains is shown in Figure A.10.
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Figure A.10: DAG of the mux-MCM used in the arithmetic module of the multi-standard PE.

Step 5: Figure A.11 shows the hardware structure that was devised to implement the DAG pre-

sented in Figure A.10, which is composed of 1 addition and 2 addition/subtraction circuits,

<< 4

>> 1

<< 1

<< 5

<< 6

<< 2

<< 3

(0) (1) (2) (3) (4)AddSub

(5) (6) (7) (8) (9)#AddSub

Mult’

Mult_Ctrl

Xin

Figure A.11: Architecture of the mux-MCM used in the arithmetic module of the multi-

standard PE.
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4 multiplexers and some AND gates. The multiplexers are used to realize the specialized

barrel shifters involved in the computation of all the required multiplications, while the AND

gates are used to set all the required zero values.

Step 6: The control words that are used to define the operation of the architecture presented

in Figure A.11 are listed in Table A.11. The numbers shown in Figure A.11 identify the

position of the bits controlling each of the architecture’s circuits within the control word.

Table A.11: Multiplier control words for the H.264/AVC, VC-1, AVS and H.265/HEVC DCT
kernels (see Equations 4.5, 4.6, 2.12, 2.13, 2.14, 2.15 and 2.17, Tables A.3, A.1, A.2 and A.3

and [134]).

Kernel Value 1
2

1 2 3 4 6 8 9 10 12

ROM Word 0x3 0x8 0xC 0x118 0x100 0x10C 0x180 0x188 0x18C 0x302

Kernel Value 13 15 16 17 18 22 25 31 36 38

ROM Word 0x30A 0x1A 0x2 0xA 0xE 0x19E 0x18A 0x58 0x140 0x15C

Kernel Value 43 46 50 54 57 61 64 67 70 73

ROM Word 0x35A 0x05E 0x4E 0x14E 0x1CA 0x368 0x60 0x178 0x16C 0x1E8

Kernel Value 75 78 80 82 83 85 87 88 89 90

ROM Word 0x37A 0x7E 0x62 0x6E 0x17A 0x16A 0x1FA 0x1E2 0x1EA 0x1EE

Step 7: The 40 distinct multiplier control words listed in Table A.11 were properly disposed

throughout eleven memory segments comprising four distinct mega segments, as it is

shown in Figure A.12. The first mega segment, which is located between memory posi-

tions 0 and 31, comprehends the six memory segments holding the values of the basis

functions of the all the H.264/AVC DCTs and Hadamard transforms. The mega segment

occupying the memory positions 32-63 consists of the second memory segment, which

holds the values of the basis functions of the 32× 32 H.265/HEVC DCTs. As mentioned

in subsection A.2.3, these values are also used in the computation of the 16 × 16, 8 × 8

and 4 × 4 H.265/HEVC DCTs. The remaining two mega segments store the data re-

quired for the computation of all the VC-1 and AVS DCTs. Although each of these mega

segments comprehends 32 memory positions, only the segment local addresses in the

ranges 0x0-0x3 and 0x8-0xF are used to store the values of the basis functions of the

involved 4× 4 and 8× 8 DCTs, respectively. This approach, which was adopted to reduce

the complexity of the address decoder and thus improve the overall performance, does

not increases the memory capacity requirements of the resulting ROM module.
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Figure A.12: Memory map of the ROM used in the multi-standard PE.
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The functionality of the proof of concept transform cores and quantizers presented in chap-

ter 6 was assessed by using the Modelsim simulator (version 10.0b [106]) and several different test

vectors. Such data was obtained with the H.264/AVC JM reference software [63], which was used

to encode the first 30 frames of six benchmark standard test video sequences of classes A, B and

C of the MPEG-4 Video Verification Model [64], under the following conditions:

• Adoption of the H.264/AVC HiP;

• Group of Pictures (GOP) structure using M=3 and N=14 (IBBPBBPBBPBBPBB);

• 8× 8 transform mode enabled;

• Picture level quantization using fixed QP values. For the I- and P-pictures the QP was set

to {8, 16, 24, 32, 40}, while for the B-pictures it was set to its double value.

The considered test video sequences, which were in the uncompressed 4:2:0 Y UV Common

Intermediate Format (CIF) (352× 288 pixels) with a frame rate of 30 fps, present different spatial

detail and amount of movement:

• Akiyo (Class A) – characterized by reduced spatial detail and reduced amount of move-

ment. The movement, which is almost static, consists in the local displacements of the

head and lips of the person in the scene;

• Carphone (Class C) – characterized by moderate spatial detail and amount of movement.

The movement consists in the local displacements of the head and lips of the person in the

scene, as well as in the regular translational movements of the background (car window);

• Coastguard (Class B) – characterized by medium spatial detail and medium amount of

movement. The spatial detail consist in the spume over the water and the rocks on the

shore, while the movement consists in the regular translational displacements of the two

boats in the scene;

• Foreman (Class B) – characterized by medium spatial detail and medium amount of move-

ment. The movement consists in the brusque displacements of the head of the person in

the scene, as well as in the pan right displacement of the camera promoting the scene

change;

• Mother & Daughter (Class A) – characterized by reduced spatial detail and reduced amount

of movement. The small mount of movement consists in the local displacements of the

head, lips and arms of one of the people in the scene (the mother);

• Table-Tennis (Class C) – characterized by moderate spatial detail and by a significant

amount of movement of the translational (ball) and zoom-out types (video camera).

Figure B.1 depicts the the first frame of all the considered test video sequences.
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(a) Akiyo. (b) Carphone.

(c) Coastguard. (d) Foreman.

(e) Mother & Daughter. (f) Table-Tennis.

Figure B.1: Considered benchmark standard test video sequences.
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