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Abstract 

Nowadays, omnidirectional (or 360⸰) visual content is driving the creation of new and 

immersive services and virtual reality (VR) applications in the fields of medicine, architecture, 

arts, entertainment, education, sports, and tourism, among others. Omnidirectional visual 

content is typically captured with a circular array of cameras and represents the whole visual 

field surrounding the capture point, which allows to provide an immersive experience to the 

users. To visualize omnidirectional visual content on planar displays, a fraction of the 

omnidirectional image is projected on a plane, resulting in a 2D image known as viewport; this 

process is usually called viewport rendering. However, since a sphere is not a developable 

surface, any sphere to plane projection introduces geometrical distortions, such as the stretching 

of objects and/or the bending of straight lines, which may compromise, in a significant way, 

the user’s quality of experience (QoE). In this context, quality assessment of the viewport 

images that are produced by the rendering of omnidirectional content is much needed. 

The main objective of this Thesis is to subjectively and objectively assess the perceptual impact 

of the geometric distortions introduced in viewport rendering, mostly due to the sphere to plane 

projection. Furthermore, it is intended to optimize the sphere to plane projection in a perceptual 

way, resulting in a perceptually pleasing viewport image after rendering.  

Several subjective assessment experiments were conducted with different sphere to plane 

projections, notably the general perspective projection (GPP) and the Pannini projection (PP). 

These experiments allowed to evaluate the geometric distortions impact and were followed by 

the design of new content-aware objective quality metrics, able to assess the perceived 

geometric distortions in a reliable way. The experimental results show that the proposed metrics 

are able to assess and predict the viewport quality with a high correlation with the subjective 

quality scores, i.e., close to human perception. Additionally, the proposed objective metrics 

were used to optimize the GPP and PP, resulting in content-aware GPP and content-aware PP 

projections. This procedure allows to minimize the geometric distortions, by globally adapting 

the projection parameters to the image content, resulting in viewport images with enhanced 

perceived quality. The content-aware Pannini projection was further optimized by also applying 

a local adaptation to the content, besides the global one. This allows an extra reduction of the 

geometric distortions, especially on regions where the human perception is more sensitive, such 

as objects, resulting in viewports with significant better visual quality than the benchmark, and 

state-of-the-art, projections, particularly when high field-of-views (~150o) are used. 

 

Keywords: Omnidirectional Images, Virtual Reality, Sphere to Plane Projection, Viewport 

Rendering, Geometric Distortions, Subjective Quality Assessment, Objective Quality 

Assessment, Content-Aware Projection. 
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Resumo 

Recentemente, o vídeo omnidirecional (ou 360⸰) tem conduzido à criação de novos serviços e 

aplicações de realidade virtual (RV), nas áreas de medicina, arquitetura, artes, entretenimento, 

educação, desporto e turismo, entre outras. O conteúdo visual omnidirecional é tipicamente 

capturado com uma matriz de câmaras e representa, numa imagem esférica, todo o campo visual 

que circunda a zona de captura, permitindo oferecer uma experiência imersiva ao utilizador. 

Para visualizar este tipo de conteúdos em dispositivos planos, projecta-se uma fracção da 

imagem esférica num plano, do que resulta uma imagem 2D designada por viewport; este 

processo é genericamente designado por viewport rendering. No entanto, a projecção de uma 

superfície esférica num plano introduz sempre distorções geométricas, como o alongamento de 

objetos e/ou a flexão de linhas retas, que podem comprometer, de forma significativa, a 

qualidade da experiência (QoE) do utilizador. Neste contexto, é essencial avaliar a qualidade 

do viewport produzido pelo rendering do conteúdo omnidirecional.  

O objetivo principal desta dissertação é avaliar, de forma subjetiva e objectiva, o impacto 

perceptual das distorções geométricas introduzidas no viewport rendering, e resultantes da 

projeção da imagem esférica num plano. Para além disso, pretende-se otimizar esta projecção 

de forma perceptual, de forma a produzir viewports com boa qualidade visual, minimizando o 

impacto negativo das distorções geométricas. 

De forma a atingir os objectivos acima delineados, realizaram-se várias campanhas de avaliação 

subjectiva, utilizando viewports obtidos com diferentes projeções esfera-plano, nomeadamente 

a projeção perspectiva geral (GPP) e a projeção Pannini (PP). Estas campanhas permitiram 

avaliar o impacto das distorções geométricas, tendo sido seguidas pela proposta e 

desenvolvimento de novas métricas objectivas de avaliação de qualidade, capazes de avaliar as 

distorções geométricas introduzidas. Os resultados experimentais confirmaram que as métricas 

propostas são capazes de avaliar e prever a qualidade do viewport de forma bem correlacionada 

com os resultados da avaliação subjetiva, ou seja, próximas da percepção humana. 

Adicionalmente, as métricas objetivas propostas foram utilizadas para otimizar as projecções 

GPP e PP, de forma adaptada ao contéudo do viewport. Este procedimento permitiu minimizar 

as distorções geométricas, adaptando globalmente os parâmetros da projeção ao conteúdo da 

imagem, resultando em viewports com qualidade visual melhorada. A projeção Pannini foi 

ainda objecto de um processo de optimização adicional, de forma a ter também adaptação local, 

para além da global. A projecção resultante permitiu uma redução extra das distorções 

geométricas, especialmente em regiões onde a percepção humana é mais sensível, como sobre 

objetos, conduzindo a viewports com uma qualidade visual significativamente melhor do que a 

resultante de projecções consideradas estado-da-arte, e em particular quando são considerados 

campos de visão largos (~150o). 

 

Palavras-chave: Imagens Omnidirecionais, Realidade Virtual, Projeção Esfera-Plano, 

Viewport Rendering, Distorções Geométricas, Avaliação de Subjectiva de Qualidade, 

Avaliação Objectiva de Qualidade, Projeção Adaptada ao Conteúdo. 
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Chapter 1 
                                                                         _ 

1Introduction 

1.1 Context and Motivation 

In recent years, the popularity of omnidirectional visual content and applications is increasing 

rapidly, notably in virtual reality (VR) and augmented reality (AR). This has been driven by 

several technological advances, such as affordable 360⸰ cameras, broadband connections, and 

head-mounted displays (HMD). Omnidirectional visual content can already be found in a large 

set of applications that users can enjoy, including immersive gaming, remote education, virtual 

shopping, virtual sports, virtual tours, and even broadcasting of live content. The user can now 

virtually attend live sports and concerts or watch specially designed movies and documentaries 

(cinematographic VR). Several VR applications have also been developed for training and 

education purposes in different scenarios, e.g., military actions, mechanical repairs and 

construction, surgery and medical care, art and architectural design. Even large technological 

industries, such as Google and Facebook, provide several applications and services, notably 

Google Street view, YouTube VR and Facebook 360⸰ photos. Figure 1.1 shows some examples 

of applications which make use of omnidirectional images or videos. Moreover, the possibilities 

for future immersive applications and services are rather endless and is expected that in the next 

few years, more and more applications will emerge. The path towards immersive experiences 

and applications is also being supported by several standardization activities, e.g. the ISO/IEC 

MPEG-I, a family of standards for coded representation of immersive media [1]. However, to 

have a successful application, the user’s quality of experience (QoE) - the degree of delight or 

annoyance of the user of an application or service [2] - should be high; accordingly, techniques 

to assess and improve the user’s QoE have been an important research topic [3]–[5]. 

    

VR gaming Remote education Virtual shopping VR virtual tours 

    
Google 360o street view Facebook 360o photos 360o web virtual tours YouTube 360o videos 

Figure 1.1. Some examples of omnidirectional visual content-based applications. 
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Typically, omnidirectional visual content contains the information of the scene around the 

camera, covering the whole 360⸰ (horizontal) × 180⸰ (vertical) viewing range. When this type 

of content is played, the user can observe any parts of the visual scene by changing the viewing 

direction (“look around”), which creates the feeling of being physically present. The user can 

explore the content according to some Degree-of-Freedom (DoF), i.e., the freedom of 

movement in the three-dimensional (3D) space [6]. There are six DoF, corresponding to three 

translations - forward/backward (or surge), up/down (or heave), left/right (or sway) - each along 

a coordinate axis, and three rotations - yaw, pitch, and roll - each around a coordinate axis, as 

depicted in Figure 1.2. Nowadays, only the three rotational DoFs are supported in most 

visualization systems of omnidirectional content, which already provides a visual experience 

more immersive than what is offered by traditional 2D visual content. 

 

Figure 1.2. The six degrees of freedom (DoF) in the 3D space. 

There are several ways to display omnidirectional visual content, that includes head-mounted 

displays, HMD (e.g., HTC Vive, Sony PlayStation VR, and Oculus Rift), smartphones and 

tablets, or standard computer monitors. The users may navigate on the visual content by moving 

his head and/or body on HMDs, with a mouse or keyboard on a computer monitor, or by moving 

the position of the smartphone or tablet in the physical space. Typically, the HMD provides a 

better immersive experience, although it is somewhat uncomfortable, expensive, and not 

accessible to all users. Therefore, watching omnidirectional visual content on smartphones or 

computer monitors is rather common. Several applications and services provided by Google 

and Facebook (e.g., the already mentioned Google Street view, Facebook 360 photos, and 

YouTube VR) aim the use of smartphones and personal computers. Thus, to evaluate and 

optimize the rendering of omnidirectional images and video on conventional 2D displays is 

nowadays rather important and is the target application scenario in this Thesis. 

Omnidirectional visual content distribution pipeline involves several processing steps that 

include acquisition, stitching, mapping/inverse mapping, encoding/decoding, rendering, and 

visualization. Each one of these steps may introduce some visual distortions, such as noise, 

blurring, visible seams and, most importantly, geometrical distortions. This Thesis focus on the 

rendering step, which is responsible for the introduction of geometric distortions which may 

significantly impair the quality of experience offered to the users. Rendering must be always 

performed since the full omnidirectional image is not directly shown to the users. This process 

consists in projecting a fraction of the omnidirectional image (or spherical image) on a plane, 

as illustrated in Figure 1.3b); this generates a 2D image known as the viewport, which is viewed 

by the users.  

h
e

ave
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                                     a)                              b) 

Figure 1.3. Viewport rendering: a) Spherical image and its coordinate system; b) Spherical image 

and rendered viewport,  obtained by  projecting  a  portion  of the  spherical image  onto  a plane. 

The viewport content is defined by the viewing direction (VD) and by the horizontal and 

vertical fields of view (HFoV, VFoV), cf. Figure 1.3; when the user changes the viewing 

direction, the corresponding part of the omnidirectional visual content that is shown to the user 

changes accordingly. The rectilinear and stereographic projections - which are particular cases 

of the general perspective projection [7] - are typically used in the viewport rendering process 

[8][9]. 

Since a sphere is not a developable surface (i.e., a surface that can be flattened onto a plane 

without distortions), any mapping from a sphere to a plane introduces geometrical distortions 

on the resulting 2D image, e.g., objects are stretched (or sheared) and/or straight lines are bent. 

These distortions become more perceptually annoying as the field of view (FoV) increases, or 

when objects are close to the camera. Figure 1.4 shows an example of viewport images rendered 

from two different omnidirectional images, using the rectilinear and the stereographic 

projections, and a squared FoV of 110⸰ (a FoV value often used in VR applications).  

For the rectilinear projection, all straight lines in the visual scene remain straight in the 

viewport, thus without any bending; however, the objects close to the viewport borders are very 

stretched. As an example, in the People viewport the arm and shoulder of the boy holding a 

white light are geometrically distorted, being stretched or sheared, although the center of the 

image is acceptable. Interestingly, this stretching distortion is less visible for the Buildings 

viewport which is visually pleasing even at the viewport borders. On the other hand, the 

stereographic projection preserves, locally, the object shapes, but it severely bends the straight 

lines, a distortion also known as fisheye effect. This effect is illustrated in the stereographic 

viewports of Figure 1.4 where, for the People viewport, the boy holding a white light appears 

in the correct shape but the viewport is deformed globally due to the fisheye effect; also for the 

Buildings viewport, the horizontal and vertical lines are bent.  

As shown by Figure 1.4, the visibility of geometric distortions depends on the image content. 

However, the perceptual impact of the geometric distortions has not been much studied in the 

literature. Thus, to study and assess these distortions is rather essential to characterize the 

viewport quality that can be offered by any omnidirectional image based application. This can 

be performed with subjective assessment tests, that are very time consuming and cannot be 

performed in real time, or with objective metrics, that automatically measure the viewport 

distortions, allowing to predict the viewport quality.  
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Figure 1.4. Viewport examples from two omnidirectional images, rendered with the rectilinear 

and stereographic projections using a square FoV of 110⸰. 

Rectilinear and stereographic projections are content-unaware projections, meaning that the 

projection is always applied in the same way, regardless of the content to be projected. 

However, the viewport examples presented in Figure 1.4 show that the image content plays an 

important role on the perceived viewport quality. Accordingly, the projection should take the 

image content into account - i.e., being content-aware - to obtain a visually pleasant viewport 

image. The amount and type of geometric distortions can be controlled in most sphere to plane 

projections, including the general perspective projection (GPP) and the Pannini projection (PP), 

by the appropriate setting of the projection parameters. The GPP can be controlled by one 

parameter - the projection center - which can be used to obtain the rectilinear and stereographic 

projections, and also other intermediate projections (e.g., the Clarke, James, and orthographic 

projections). In the PP, and besides the projection center, an additional parameter - the vertical 

compression factor - can be adjusted, to decrease the bending of horizontal lines. Recently, the 

PP has been also used for viewport rendering of omnidirectional visual content [10]. Actually, 

this projection is more suitable for viewport rendering with a large FoV since it can generate 

viewports with less geometric distortions compared to the viewports obtained with rectilinear 

and stereographic [10].  

To enhance the user’s sense of immersion and engagement when exploring the omnidirectional 

visual content, the viewport FoV should be large. This is supported by several studies             

(e.g., [11][12]), showing that using a large field of view provides a more immersive and pleasant 

visual experience and maximizes the user’s sense of presence, mainly because more visual 

information is available to cover the peripheral vision (i.e., closer to human FoV). However, 

the geometrical distortions introduced by the sphere to plane projection increase, and have more  
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110⸰ FoV 120⸰ FoV 130⸰ FoV 

   

Figure 1.5. Example of viewports obtained with the rectilinear projection and varying FoV. 

perceptual impact, as the viewport FoV increases. Figure 1.5 shows examples of rectilinear 

viewports rendered from the same omnidirectional image and viewing direction, with 

increasing FoV; the rectilinear projection was selected since it is rather popular in many VR 

applications. As shown, the stretching distortion and the perspective effect become more 

noticeable and annoying as the viewport FoV increases. Thus, it is important to find out which 

FoV should be used for viewport rendering that provides a good balance between immersivity 

and geometric distortion impact. This may improve the user’s QoE. 

1.2 Objectives 

Considering that geometric distortions are introduced in the viewport during its rendering, due 

to the sphere to plane projection, and that: 

• There are not many subjective quality assessment studies that assess the perpetual impact 

of those geometric distortions.  

• There are not many subjective quality assessment studies that assess the effect of the 

FoV on the perceived viewport quality, and thus, with no clear evidence about the range 

of FoVs that should be used for viewport rendering. 

• There is no objective quality metric able to automatically assess the impact of the 

geometric distortions in viewport images, and of predicting the viewport quality in the 

presence of those distortions. 

• There are not many solutions that optimize the sphere to plane projections, aiming to 

minimize the geometric distortions of the viewport image. 

The main objectives of this Thesis are: 

1. Subjectively assess the perceptual impact of different types of geometric distortions, 

mainly stretching and bending, introduced in the rendering process. 

2. Subjectively assess the FoV impact on the perceived quality of the viewport image, to 

determine the FoV that presents the best trade-off between user’s immersive experience 

and the perceived visual degradations due to geometric distortions.  

3. Develop content-aware objective quality metrics that automatically assess the geometric 

distortions in the viewport image. 
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4. Develop a procedure to optimize well-known projections used in the viewport rendering 

process, aiming to minimize the perceived geometric distortions, by adapting the 

projection to the image content. 

1.3 Novel Contributions and Associated Publications 

Following the main objectives defined above, research has been conducted to achieve them, 

with the following novel contributions: 

1. Design and realization of subjective quality assessment studies targeting: 

i) The evaluation of the perceived geometric distortions when the general perspective 

and the Pannini projections are used for viewport rendering (see Chapters 3 and 5). 

ii) The evaluation of the FoV impact on perceived quality and to find the FoV that 

presents the best trade-off between user immersive experience and perceived 

geometric distortions, when the rectilinear projection is used for viewport rendering 

(see Chapter 3). 

2. Design, implementation and assessment of two novel objective quality metrics: 

i) A content-aware metric to assess the perceptual impact of geometric distortions, in 

the rendered viewport. The metric relies on two sets of geometric distortion 

measures, namely, bending and stretching, that characterize the bending of straight 

lines and stretching of image regions (see Chapter 4). 

ii) An object-based metric to assess the perceptual impact of stretching objects shape, 

in the rendered viewport. The metric uses semantic segmentation to identify the 

relevant objects in the viewport and computes the stretching distortion for each 

object. Two distinct approaches were exploited and evaluated. The first one is based 

on shape measurements on the sphere and on the viewport, and the second is one 

based on Tissot indicatrices (see Chapter 5). 

3. Design, implementation, and assessment of procedures for optimizing the projection 

parameters of the general perspective projection (GPP) and of the Pannini projection 

(PP), using the objective quality metrics proposed in Chapters 4 and 5. The optimum 

projection parameters are those that minimize the perceived geometric distortion in the 

viewport, adapting the projection to the viewport content (see Chapter 4 for GPP and 

Chapter 6 for PP).  

The work developed in this Thesis led to the following publications: 

1. F. Jabar, J. Ascenso, and M.P. Queluz, “Perceptual Analysis of Perspective Projection 

for Viewport Rendering in 360⸰ Images,” Proc. of IEEE International Symposium on 

Multimedia, Taichung, Taiwan, Dec. 2017. 

2. F. Jabar, M.P. Queluz, and J. Ascenso, “Objective Assessment of Line Distortions in 

Viewport Rendering of 360⸰ Images,” Proc. of the 1st IEEE International Conference on 

Artificial Intelligence and Virtual Reality, Taichung, Taiwan, Dec. 2018. 
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3. F. Jabar, J. Ascenso, and M.P. Queluz, “Content-Aware Perspective Projection 

Optimization for Viewport Rendering of 360⸰ Images,” Proc. of IEEE International 

Conference on Multimedia and Expo, Shanghai, China, Jul. 2019. 

4. F. Jabar, J. Ascenso, and M.P. Queluz, “Objective Assessment of Perceived Geometric 

Distortions in Viewport Rendering of 360⸰ Images,” IEEE J. Sel. Top. Signal Process., 

vol. 14, no. 1, pp. 49-63, Jan. 2020, Doi: 10.1109/JSTSP.2019.2962970. 

5. F. Jabar, J. Ascenso, and M.P. Queluz, “Field-of-View Effect on the Perceived Quality 

of Omnidirectional Images,” Proc. of the IEEE International Conference on Multimedia 

& Expo Workshops, Athlone, Ireland, Jul. 2020. 

6. F. Jabar, J. Ascenso, and M.P. Queluz “Object-Based Geometric Distortion Metric for 

Viewport Rendering of 360⸰ Images”, IEEE Access, vol. 10, no.1, pp. 13827-13843, Jan. 

2022, Doi:10.1109/ACCESS.2022.3147699. 

7. F. Jabar, J. Ascenso, and M.P. Queluz, “Globally and Locally Optimized Pannini 

Projection for Viewport Rendering of 360° Images”, Submitted to J. Vis. Commun. 

Image Represent., Oct. 2022. 

1.4 Structure of the Thesis 

Considering the main objectives defined in Section 1.2, this Thesis is organized as follows: 

• Chapter 1 presents the context and motivation for this Thesis, the objectives and main 

novel technical contributions, and associated publications.  

• Chapter 2 presents the omnidirectional image (or video) system architecture, from 

acquisition to display, and reviews the state-of-the-art on sphere to plane projections, 

which constitute the main step in the viewport rendering process. 

• Chapter 3 describes the subjective evaluation studies performed to evaluate the 

perceptual impact of the geometric distortions and of the considered FoV for viewport 

rendering.  

• Chapter 4 introduces a novel content-aware objective quality metric to assess the 

perceptual impact of geometric distortions, on the rendered viewport. In this chapter, a 

procedure to globally optimize the general perspective projection (GPP), according to 

the viewport content - resulting in a content-aware GPP - is also proposed.  

• Chapter 5 introduces a novel object-based metric to assess the perceptual impact of 

objects stretching, on the rendered viewport.  

• Chapter 6 proposes procedures to optimize the Pannini projection for the viewport 

rendering with high FoV, resulting in a globally adapted Pannini projection (GA-PP), 

and on a globally and locally adapted Pannini projection (GLA-PP). While GA-PP aims 

to reduce the geometric distortions globally, in GLA-PP these distortions are globally 

and locally minimized. 

• Chapter 7 concludes the Thesis and points out some possible research paths for future 

work. 
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Chapter 2 
                                                                         _ 

2State-of-the-Art on Sphere to Plane Projections  

2.1 Introduction  

Map projection is a process to flatten a spherical surface into a plane, to make a map; it involves 

the transformation of three dimensional (3D) coordinates, defining the spherical surface, into 

positions on a plane. Map projections have been used in cartography for a long time, to create 

a visual representation of the Earth’s surface on a plane (“Earth map”), which has been very 

useful for humans to navigate their way through the world. In the past, a large number of map 

projections have been developed by mathematicians and cartographers, trying to represent the 

Earth’s surface with correct shapes and dimensions. However, since a sphere is not a 

developable surface, all sphere to plane projections necessarily introduces geometrical 

distortions, by changing one or more geometric properties, such as distance, direction, shape or 

area; no sphere to plane projection can simultaneously maintain all these geometric properties. 

Thus, cartographers select a map projection according to the geometric property that should be 

preserved, at the expense of altering other properties. This means that the design of map 

projections is mostly focused on the characterization of geometric distortions. 

Some of the sphere to plane projections developed for cartography in the past play a key role 

in the omnidirectional visual content delivery and thus, in the development of VR applications. 

Typically, to encode the omnidirectional visual content, the same coding standards of traditional 

2D visual content are used and thus, a projection must be applied to obtain a planar 

representation of the spherical image. Furthermore, to display omnidirectional images or 

videos, a sphere to plane projection is applied to project a portion of the spherical image into a 

plane, resulting in the viewport image that is seen by the user. Therefore, the study, design and 

implementation of projections and their geometric distortions are very important for 

omnidirectional visual content processing. In particular, some projections may allow to save 

more bitrate for some target quality, or to improve the perceived quality of the viewports shown 

to users when navigating on this type of visual content.  

The main objective of this chapter is to review the state of the art on sphere to plane projections; 

furthermore, to introduce some concepts related with the Thesis topic, a typical omnidirectional 

image/video system architecture is briefly described.  

This chapter is organized as follows: Section 2.2 presents a typical omnidirectional image/video 

system architecture, from acquisition to display. Section 2.3 puts forward three distinct 

classifications of sphere to plane projections, considering: i) the used developable surface type;         

ii) the content characteristics that are preserved by the projection; iii) the projection content 

awareness, which is a new classification proposed in this Thesis. Sections 2.4 and 2.5 describe, 
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respectively, the state-of-the-art on content-unaware and content-aware projections. Section 2.6 

overviews related work on the subjective assessment of omnidirectional images and videos, and 

on metrics to objectively assess the geometric distortions resulting from sphere to plan 

projections. Section 2.7 concludes this chapter with some final remarks. 

2.2 Omnidirectional Image System Architecture  

Figure 2.1 depicts a typical omnidirectional image/video system architecture which illustrates 

how omnidirectional visual content is processed, from acquisition to display, i.e., the main 

processing steps. This type of architecture is rather suitable for many applications, but 

especially when omnidirectional images and videos need to be consumed by a wide range of 

users. 

 

Figure 2.1. Omnidirectional image and video system architecture. 

In the following, each step is briefly described:  

1) Acquisition - Several acquisition devices have been developed in the past to capture 

omnidirectional visual content, from single camera systems to large arrays of cameras. 

Typically, when a single camera is used, a wide-angle or fisheye lens captures a large field of 

view, which is sufficient for some applications. However, a full 360⸰ field of view, with high 

resolution, is difficult to obtain with such a device, and thus rotative arms or other optical 

arrangements (e.g., mirrors) may be used to acquire multiple images from different directions; 

however, this solution has the drawback of not capturing the entire environment at the same 

time [13]. Nowadays, the acquisition of omnidirectional visual content is typically done with a 

camera array, e.g., Facebook surround 360 [14] and GoPro Odyssey [15]. In this case, multiple 

synchronized cameras are embedded into a single device, where each camera is oriented to a 

different direction and acquires a fraction of the omnidirectional visual content. This allows the 

representation of the whole 360⸰ (horizontal) × 180⸰ (vertical) viewing range, providing a better 

acquisition than single camera devices. During acquisition, some visual distortions (or artifacts) 

may be introduced, such as optical distortions, Moiré effect, noise, and motion blur, that come 

mainly from individual camera sensors [16].  

2) Stitching - After the acquisition, images from different cameras are stitched together to 

obtain a spherical representation of the visual scene, which is usually referred to as a viewing 

sphere (VS). Stitching is a process that aligns several images that were acquired from different 
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viewing directions of the same visual scene, typically with some overlapping regions, e.g., 50% 

[17]. The stitching process has two fundamental steps: registration and blending. Registration 

is defined as the geometric alignment process between adjacent images. After, a blending 

process is performed to allow a smooth transition between the adjacent images that constitute 

the visual sphere. Some artifacts may be noticed in the output VS image, due to misregistration, 

different lighting conditions among images during acquisition, and object motion during 

acquisition. These artifacts can be visually annoying and may include blurring, visible seams, 

ghosting and broken edges, and even some geometric distortions (visible deformation on 

objects or part of it) [16].  

3) Mapping - After stitching, the visual sphere is projected on a plane, to obtain a planar 

representation required by most image or video codecs (being it standard codecs, or not). 

Several projections, such as equirectangular projection (ERP) [18], cube map projection (CMP) 

[19], and pyramid projection [20], can be used for this purpose. Since the projection from the 

spherical to the planar representation (and the back projection to the spherical domain at the 

client side) involves resampling and interpolation, some visual distortion may be introduced, 

such as aliasing, blurring and ringing. Also, the coding performance is influenced by the used 

projection [20][21]. The coding efficiency of several projections has been already evaluated, 

and the hybrid equi-angular cube map projection (HEC) was identified as the best one [22]. 

4) Encoding - To store and transmit the omnidirectional visual content, state-of-the-art 2D 

video compression schemes, such as H.264/AVC [23], HEVC [24], and VVC [25], are often 

used to compress the visual data; the encoder input corresponds to the planar representation 

obtained in the previous step. Several artifacts, such as blocking, blurring, staircase, flickering, 

ringing, among others, are introduced in the planar image due to compression [16]. The 

visibility of these artifacts may also vary according to the projection used in the previous step. 

In recent years, several coding optimization tools have been developed to improve the coding 

efficiency for omnidirectional images [26]–[28]. 

5) Transmission - In this step, the content is transmitted from the sender to the receiver; this 

can be achieved using different approaches. The simplest one corresponds to the transmission 

of the entire visual sphere, represented in a 2D format (thus, as a 2D image), being mainly used 

for omnidirectional still images, and not so for videos, since it requires a large transmission 

bandwidth. For omnidirectional videos, more efficient approaches exist, e.g., viewport-adaptive 

streaming [29]–[31] and tile-based streaming [32]–[34]. The main idea of these approaches is 

to transmit the viewport that is observed by the user, at any time, with higher quality, and the 

remaining regions with lower quality, thus reducing the data rate without impact on quality. To 

enable the easy deployment of interoperable standardized streaming services for 

omnidirectional videos, the MPEG group has developed the Omnidirectional MediA Format 

(OMAF) - MPEG-I [1]: part 2. Depending on the streaming solution, different factors may 

influence the user’s QoE, such as transmission delay, rebuffering events, and video quality 

fluctuation [16][35].  

6) Decoding - The decoding step performs the inverse operation of the encoder at the receiver 

side, to decompress the visual content.  

7) Inverse Mapping - For rendering the omnidirectional visual content, a spherical 

representation is often used. Therefore, the transmitted planar content must be mapped into a 

sphere again, by applying the corresponding inverse mapping transformation. 
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8) Rendering - The rendering is the process of producing a visual representation that can be 

consumed by the users, using some suitable device. This process consists on the projection of 

a selected part of the spherical image - corresponding to the region observed by the user - onto 

a plane, resulting in the viewport that is shown to the users, as depicted in Figure 1.3b). In the 

omnidirectional image/video processing pipeline depicted in Figure 2.1, two different sphere to 

plane projections are used, one before encoding and another for rendering. The former is needed 

to represent the visual sphere, in a 2D format, to be used as input for the encoder, and the latter 

to obtain the viewport. The projection used before encoding should represent the visual sphere, 

in a 2D format, in the best way from the point of view of compression efficiency. However, the 

projection used for rendering should represent a selected part of the viewing sphere on a plane, 

with the best perceived quality, minimizing the subjective impact of geometric distortions. 

Perspective projections, e.g., rectilinear or stereographic, are often used for viewport rendering 

of omnidirectional content. The rectilinear keeps all straight lines in the visual scene also 

straight after projection but stretches objects shape. Stereographic preserves the object shapes 

locally but bends the straight lines (fisheye effect). There are some other projections proposed 

to map wide-angle images onto a plane (e.g., [36][37]), or for omnidirectional image rendering 

[10], but no projection can avoid geometric distortions. The perspective projections, and some 

of the recently proposed projections, will be described in Sections 2.4 and 2.5. 

9) Visualization - In this last step, the rendered viewport is sent to the display device. Several 

display types can be used, including smartphones (or tablets), standard computer monitors, or 

head-mounted displays (HMDs). In a 2D monitor, the users can navigate on the omnidirectional 

visual content by changing the viewing direction through mouse movements or any other 

interactive device. In a smartphone, the viewing direction changes with the direction in which 

the smartphone is pointing to; the users can simply change the smartphone direction in the 

physical space to watch any part of omnidirectional visual content. The HMD is a wearable 

device worn on the head and has two displays close to the user’s eyes. It has sensors to track 

the user’s head movements, allowing the users to watch the different parts of the 

omnidirectional visual content, usually with 3-degree of freedom (yaw, pitch, roll), by moving 

their head. Typically, an HMD provides a more immersive experience compared to other 

visualization devices.  

2.3 Classification of Sphere to Plane Projections 

Several sphere to plane projections are available in the literature, which were designed along 

the years for different purposes and using different approaches, starting with the oldest 

cartographic Earth’s map representations [38], to the more recent mapping of wide-angle 

images [39] and the rendering of omnidirectional visual content [9][10]. Although the term 

“projection” is used to describe the various transformations that enable the representation of a 

spherical surface on a planar map, not all are true projections, in the geometric sense of the 

word. Indeed, there are two broad classes of projections: true projections, and those that are 

solely based on mathematical transformations. In the former, points on the sphere can be 

projected on a plane using projection lines, linking the projection center to the point to be 

projected; in the latter case, this projection geometry cannot be drawn. 

Classically, sphere to plane projections are classified according to the projection surface type 

or according to the geometric properties that are preserved after projection [40]. However, in 

recent years, several new sphere to plane projections were developed - mainly for photography 
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and omnidirectional image or video - allowing to devise an additional classification, according 

to the influence of the sphere content, on the projection. Accordingly, the sphere to plane 

projections can be classified based on the following dimensions:  

1) Classification by projection surface - The projection is classified based on the developable 

surface in which the spherical surface is projected onto; it applies only to true projections. The 

developable surface is a surface that can be unwrapped (or unfolded) into a plane without 

stretching, tearing, or shrinking. The most used developable surfaces are cylinder, cone, and 

plane. Most of the projections use a single developable surface; however, there are some 

projections that use a mix of developable surfaces.  

2) Classification by preserved geometric properties - The projection is classified based on 

the geometric properties that are preserved. In cartography, the most important properties to be 

preserved are area, direction, shape, and distance. These properties are also important for human 

perception, and they need to be preserved as much as possible.  

3) Classification by content awareness - The projection is classified according to its 

dependency on the content. The projection is content-aware if the projection procedure (e.g., 

the projection equations and/or parameters) depends on the content that is being projected; 

otherwise, it is content-unaware. In the latter, there is a univocal correspondence between the 

positions on the sphere and the resulting positions on the plane, after projection, regardless of 

the image content. 

The following sections detail the projection classes introduced above. 

2.3.1 Classification by Developable Surface 

Figure 2.2 depicts sphere to plane projections using the three most common developable 

surfaces, i.e., cylindrical, conical, and planar.  

Regarding this classification dimension, the following sub-classes can be identified: 

• Cylindrical projections - In cylindrical projection, a cylinder is wrapped around the sphere 

and the spherical surface is projected on the cylinder surface; after, the cylinder “is cut” along 

one of the meridians and unwrapped to obtain the final cylindrical projection, as in Figure 2.2. 

Depending on how the cylinder is placed relative to the sphere, the cylindrical projection can 

be normal, transverse, or oblique. The normal case is suited for making a map where equatorial 

regions are less distorted, and the transverse case for presenting north and south regions with 

less distortions. Furthermore, the cylindrical projection can be tangent, when the cylinder 

surface touches the sphere along a circular line (also called as standard line), or secant, when 

the cylinder surface slices the sphere surface and touch the sphere on two standard lines. After 

projection, the regions near the standard line (one line in the tangent case, or two lines in the 

secant case) have the lowest distortions, and the distortion increases as the distance to the 

standard line increases. The secant case is used when it is required to reduce the distortions for 

some regions in the map. As an important propriety of all cylindrical projections, parallels and 

meridians result in straight vertical and horizontal lines, respectively (thus, perpendicular to 

each other) and with meridians of constant spacing (for meridional intervals of constant spacing 

in the sphere). Besides being often used in Earth mapping, cylindrical projections have been 

also exploited for wide-angle or panoramic images, and more recently for omnidirectional 

images. Some examples of cylindrical projection are detailed in Section 2.4. 
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Figure 2.2. Projections based on a developable surface: cylindrical, conical, and planar        

(based on [41]).  

• Conical projections - In conical projections, a cone is wrapped around the sphere and the 

sphere surface is projected onto the cone surface; after, the cone “is cut” along one of the 

meridians and unwrapped in a plane to produce the final conical projection, as in Figure 2.2. 

The cone touches the sphere in just one standard line (or parallel line), in the tangent case, and 

on two standard lines (also parallel lines), in the secant case. The meridians result in straight 

lines, meeting at the center point (point located at the center of the map), and parallels result in 

circular arcs centred on the centre point. Figure 2.3 presents an example of an Earth map 

resulting from a conical projection. Conical projections are suited for hemispheric maps of 

Earth, but not for a complete Earth map, neither for photography nor omnidirectional images.  

 

Figure 2.3. Lambert conformal conic Earth map [42].  

• Planar projections - The planar projection projects the sphere onto a plane which is tangent 

to the sphere at (or secant near) the poles (polar aspect, cf. Figure 2.2), the equator (equatorial 

aspect), or some points in-between (oblique aspect). Planar projections may also use more than 

one plane as a developable surface, e.g., multiple plane projections [43] and cube map 

projection [19]. The latter, and besides ERP, is also often for mapping omnidirectional visual 

content before coding. Planar projections are also often used in photography and for the 

rendering of omnidirectional visual content. Relevant planar projections are detailed in Sections 

2.4 and 2.5. 

• Hybrid projections - In this case, the projection uses more than one developable surface 

type, for example, cylinder and plane. Typically, this projection is done in two steps: first, 

projection of the sphere surface onto the first developable surface (e.g., cylinder); second, 

projection of the first developable surface onto the second surface (e.g., plane). This type of 
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projection has been developed in recent years for reducing the geometric distortions in         

wide-angle or panoramic images. Examples of this projection are proposed in [37][44]. In [37], 

the sphere surface is first projected onto a swung surface, followed by the projection of the 

swung content onto a plane. The swung surface is created using a 2D profile curve which is 

rotated around an axis of revolution (more details are provided in Section 2.5.7). In [44], the 

sphere surface is projected onto a cylindrical surface, and the content on the cylinder surface is 

then projected onto a plane. These projections are detailed in Sections 2.5.7 and 2.4.7, 

respectively. 

An important property that is common to any of the aforementioned projection types, is that the 

geometric distortion is less near the points, or lines, where the developable surface touches or 

intersects the sphere. Accordingly, the surface placement relatively to the sphere will directly 

affect the map positions with the highest and the lowest amount of distortion, and its choice is 

dependent on the sphere regions, and directions, where the geometric proprieties need to be 

preserved.  

2.3.2 Classification by Preserved Characteristics  

Since a spherical surface is an undevelopable surface, no sphere to plane projection can 

simultaneously maintain all geometric properties; in cartography, area, distance, shape, and 

direction are the four most important properties that should be preserved [45]. The projection 

preserves the area if the area relationships before and after projection are maintained; however, 

no projection can preserve the object shapes and their area at the same time, i.e., area and shape 

are mutually exclusive. The projection preserves the distance, if the relationships of the 

distances before and after projection are maintained; however, no projection can maintain the 

distance for all projected points. The projection preserves the direction (where direction, also 

called azimuth, is measured in degrees relatively to the geographical north) if the directions 

from any point to every other point before and after projection are kept; no projection can have 

the correct direction for all projected points.  

Considering the most recent applications, such as wide-angle images and omnidirectional 

image rendering, besides the aforementioned properties the projection should also keep the 

straightness of the lines that are also straight in the visual scene, since the human perception is 

highly sensitive to the distortion of those lines. In the omnidirectional representation of the 

scene, straight lines in the visual scene are always over great circles of the sphere, and because 

the arc of a great circle between two points is the shortest surface path between them. 

Accordingly, the projection preserves the straightness of the lines if any great circle is projected 

as a straight line.  

Depending on the preserved properties, a projection can be classified as: 

• Conformal - Conformal projections are designed to maintain conformality, meaning that 

the shapes (and the angles) are locally preserved; also, the distance is preserved in all directions 

around a projected point. Since the angles are locally preserved, when a conformal projection 

is used to create the Earth’s map the projected parallel and meridian intersect at 90º angles on 

the plane. Small areas, e.g., the area of a small city, are mapped with the correct shape; however, 

large areas, e.g., a continent, have a wrong shape. The projection depicted in Figure 2.3 is a 

conformal projection. Mercator is another well-known conformal projection which is fully 

described in Section 2.4.5. 
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• Equidistant - Equidistant projections are designed to maintain the distance along one or 

more lines or from one or two points to all the other points on the plane. However, it is not 

possible to maintain the correct distance for all projected points on the plane. Figure 2.4a) 

depicts an equidistant projection, where the distance along a line from the central point (red 

point in Figure 2.4a) to any other point is preserved. Note that no projection can maintain the 

distance to and from all points on a map. The equirectangular projection (ERP), described in 

Section 2.4.3, is another example of an equidistant projection. 

• Azimuthal - It corresponds to a planar projection, having the projection plane tangent to the 

sphere. Because directions from the point of tangency are preserved, these projections are also 

known as azimuthal. Furthermore, all great circles that cross the tangency point are projected 

as straight lines [46]. The most popular azimuthal projections are orthographic, stereographic, 

and rectilinear (or gnomonic) projections. Rectilinear and stereographic are typically used for 

rendering omnidirectional visual content and are detailed in Section 2.4.6.  

• Equal-area - Equal-area projections are designed to maintain the relative area of regions 

before and after projection, at the expense of distorting other properties, such as shape, angle, 

and/or distance. An equal-area projection can be equidistant, but never conformal [46].       

Figure 2.4b) depicts the Lambert equal-area projection, which is fully described in Section 

2.4.4. 

• Balanced - Balanced projections are designed such that no specific property is preserved, 

but a balance between different properties is obtained. This means that instead of preserving 

the shape, area, angle, or distance, extreme distortions are avoided in any of the geometric 

properties. Figure 2.4c) presents the Robinson projection, which is a balanced one. Examples 

of this case are described in Sections 2.4.6, 2.4.7, and 2.5. 

 
  

a) b) c) 

Figure 2.4. a) Azimuthal equidistant projection [47]; b) Lambert cylindrical equal-area 

projection [48]; c) Balanced Robinson projection [49]. 

2.3.3 Classification by Content Awareness  

Content awareness is an important dimension of the projection classification, especially 

considering new applications such as wide-angle photography or omnidirectional image 

rendering, where the projection procedure may depend (or not) on the content being projected. 

In this sense, a projection can be classified as: 

• Content-unaware - A content-unaware projection projects the spherical surface (or a part 

of it) on the plane without considering the content characteristics, i.e., the projection is not 

adapted to the content; however, for the most relevant applications, such as visualizing wide-

angle images or rendering omnidirectional visual content, this may lead to images with very 
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noticeable geometric distortions (e.g., stretching), and with an unpleasant quality. Content-

unaware projections are always applied in the same way and thus cannot be used to mitigate 

the perceptual impact of some geometric distortions. Several content-unaware projections are 

detailed in Section 2.4. 

• Content-aware - Content-aware (also known as content-preserving, content-dependent, or 

content-adaptive) projections consider the image content, to preserve the visual properties of 

some image regions and structures. In this case, the projection is adapted to the content, e.g. 

guaranteeing that straight lines are kept straight in the projected image. Recently, several 

content-aware projections have been proposed in the literature. Some of these projections are 

detailed in Section 2.5. 

Due to the importance of this dimension and its relevance for the objectives of this Thesis, the 

state-of-the-art next described is organized in the two projection classes defined in this section. 

2.4 Content-unaware Projections 

Several content-unaware projections were developed in the past for cartography purposes; 

however, some of them became popular, and are used, in recent applications. Table 2.1 

summarizes the content-unaware projections most used for mapping wide-angle images, or to 

perform viewport rendering of omnidirectional visual content [8]–[10][39][50]. They are 

classified according to the used developable surface (for true projections) and preserved 

characteristic, as described before. Moreover, the typical application of each projection is also 

presented. The rectilinear, stereographic, and orthographic projections are particular cases of 

the general perspective projection (GPP), and the Pannini projection was proposed in [44], for 

mapping wide-angle images.  

Table 2.1. Selected content-unaware projections and their classification by projection surface 

(CPS), by preserved characteristic (CPC), and typical application. 

Projection CPS CPC Typical application 

Central 

Cylindrical 
Cylindrical Azimuthal Wide-angle photography, architectural photography 

Equirectangular 
n.a.  

(Cylindrical-type) 
Equidistant 

Cartography, wide-angle photography, mapping 

omnidirectional visual content 

Lambert - Equal 

Area 
Cylindrical Equal-area 

Cartography, wide-angle photography, mapping 

omnidirectional visual content 

Mercator 
n.a. 

(Cylindrical-type) 
Conformal Cartography, wide-angle photography 

Transverse 

Mercator 

n.a.  

(Cylindrical-type) 
Conformal Cartography, wide-angle photography 

Rectilinear Planar Azimuthal 
Cartography, photography, architectural photography, 

omnidirectional visual content rendering 

Stereographic Planar 
Azimuthal, 

Conformal 

Cartography, photography, omnidirectional visual 

content rendering 

Orthographic Planar Azimuthal Cartography 

Pannini Hybrid Balanced 
Wide-angle photography, omnidirectional visual 

content rendering 

The following sections describe and analyze the projections referred to in Table 2.1. The 

reference coordinate systems, used to formalize the projections, are first introduced. 
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2.4.1 Reference Coordinate Systems 

Consider the sphere depicted in Figure 2.5, with 3D Cartesian coordinates (𝑋, 𝑌, 𝑍), centered 

at point O and with unit radius. Each point on the sphere can also be defined by the longitude 

(𝜙), with origin on the Z-axis and with a range [−𝜋, 𝜋], and by the latitude (𝜃), with origin on 

the XZ plane and with a range [−𝜋 2⁄ , 𝜋 2⁄ ].  

The spherical to 3D Cartesian coordinates transform can be described by 

and the 3D Cartesian to spherical coordinates transform is given by 

 

Figure 2.5. Sphere and projection plane coordinate systems. 

The projection plane, denoted as ABCD in Figure 2.5, has 2D Cartesian coordinates (𝑥𝑝, 𝑦𝑝), 

is perpendicular to the Z-axis and is tangent to the sphere at 𝑍 = 1. 

Consider a point on the sphere, with spherical coordinates (𝜙, 𝜃); this point is projected on the 

plane using the forward projection, (𝑥𝑝, 𝑦𝑝) = 𝑃𝑟𝑜𝑗(𝜙, 𝜃); inversely, for each projected point 

on the plane, the corresponding point of the sphere can be obtained using the backward 

projection, (𝜙, 𝜃) = 𝑃𝑟𝑜𝑗−1(𝑥𝑝, 𝑦𝑝). 

2.4.2 Central Cylindrical Projection 

In central cylindrical projection (also known as perspective cylindrical projection) a vertically 

positioned cylinder is wrapped around a unit radius sphere, tangent along the equator line, and 

the sphere surface is projected on the cylinder surface from a perspective point (or projection 

centre) located at the sphere centre (O), as depicted in Figure 2.6a). After, the cylinder is cut 

vertically at Z= -1, and  unwrapped  to  obtain  the final projection, as depicted in Figure 2.6b). 

𝑋 = cos(𝜃) sin(𝜙) (2.1) 

𝑌 = sin(𝜃) (2.2) 

𝑍 = cos(𝜃) cos(𝜙) (2.3) 

𝜙 = tan−1  
𝑋

𝑍
 (2.4) 

𝜃 = tan−1
𝑌

√𝑋2 + 𝑍2
 . (2.5) 
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                                     a)                           b) 

Figure 2.6. a) Central cylindrical projection geometry; b) Cylindrical projection after 

unwrapping the cylinder. 

The forward projection is formally described by  

𝑥𝑝 = 𝜙 (2.6) 

𝑦𝑝  = tan(𝜃) (2.7) 

and the backward projection is given by 

𝜙 = 𝑥𝑝 (2.8) 

𝜃 = tan−1(𝑦𝑝) . (2.9) 

This projection keeps the vertical lines on the visual scene (lines coincident with the meridians 

on the sphere) straight after projection, but the horizontal lines are bent, except those that 

coincide with the equator line. Also, the stretching (in the horizontal direction) increases from 

the equator to the poles. This projection is often used for panoramic images with a large HFoV, 

but should not be used if the VFoV is also large (due to stretching) [39]. 

2.4.3 Equirectangular Projection 

The equirectangular projection (ERP), also known as equidistant cylindrical projection or plate 

carrée, is not a true projection (in the geometric sense of the word), directly mapping the latitude 

and longitude coordinates of the sphere, on the horizontal and vertical coordinates of the plane. 

The forward and backward projection equations are simply described by 

𝜙 = 𝑥𝑝 (2.10) 

𝜃 = 𝑦𝑝 . (2.11) 

This projection keeps the vertical lines straight, but the horizontal lines are bent, except those 

that coincide with the equator line. Also, the objects close to the sphere poles are projected with 

significant stretching in the horizontal direction. Since this is common to the cylindrical central 

projection, the ERP projection is considered as a cylindrical-type projection [46]. This 

projection is often used for mapping omnidirectional visual content before coding [20].  

2.4.4 Lambert Cylindrical Equal-area Projection  

The Lambert equal-area projection is a cylindrical projection, invented by Johann Heinrich 

Lambert in 1772. Like in the central cylinder projection, it projects the sphere on a cylindrical 

surface that is wrapped around the sphere, tangent along the equator line. After, the cylinder is 

unwrapped to obtain the final projection. The main difference to the central cylindrical 
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projection is that the sphere is projected on the cylinder surface using projection lines parallel 

to the equator plane.  

The forward projection is described by 

𝑥𝑝 = 𝜙 (2.12) 

𝑦𝑝  = sin(𝜃) (2.13) 

and the backward projection is 

𝜙 = 𝑥𝑝 (2.14) 

𝜃 = sin−1(𝑦𝑝) . (2.15) 

As the name suggests, this projection maintains the relative area of the objects. Also, it has the 

same effect on the vertical lines as the previous projections, and also introduces horizontal 

stretching. It is often useful for wide-angle or panoramic images, but less useful for panoramic 

images with a large VFoV (due to stretching) [39]. It has been also used for mapping 

omnidirectional visual content before coding [20]. 

2.4.5 Normal and Transverse Mercator Projections  

The Mercator projection was developed by the geographer and cartographer Gerardus Mercator, 

in 1569, and it is not a true projection, although being derived from the central cylindrical 

projection. It is one of the most used projections in Earth cartography, mainly because the 

projection along the y-axis coordinates is defined to guarantee conformality, and to represent 

lines of constant course, known as rhumb lines, as straight segments that conserve the angles 

with the meridians; this makes it quite useful for nautical navigation. 

The Mercator forward projection is described by 

𝑥𝑝 = 𝜙 (2.16) 

𝑦𝑝  = ln (tan (
𝜃

2
+
𝜋

4
)) (2.17) 

and the backward projection is given by 

𝜙 = 𝑥𝑝 (2.18) 

𝜃 = 2 [tan−1(exp(𝑦𝑝)) −
𝜋

4
] . (2.19) 

Being a cylindrical-type projection, the vertical lines are straight, but the horizontal lines are 

bent, except the horizontal lines that coincide with the equator line. Furthermore, the Mercator 

projection increases the relative area of objects as the latitude increases, generating area 

distortion. Accordingly, it is useful for panoramic images with a large HFoV, but is not a good 

solution for images with a large VFoV. The transverse Mercator projection is similar to the 

normal Mercator projection, except that it derives from a cylindrical projection where the 

cylindrical surface is horizontally oriented and tangent to the prime meridian (meridian line at 

𝜙 = 0). In this case, the forward projection is described by 

𝑥𝑝 = tanh−1[sin(𝜙) cos(𝜃)] (2.20) 

𝑦𝑝  = tan−1[sec(𝜙) tan(𝜃)] (2.21) 

and the backward projection is given by 

𝜙 = tan−1[sinh(𝑥𝑝) sec(𝑦𝑝)] (2.22) 
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𝜃 = sin−1[sech(𝑥𝑝) sin(𝑦𝑝)] . (2.23) 

The horizontal lines are straight, but the vertical lines are bent (except the vertical lines that 

coincide with the prime meridian line). Like the normal Mercator, the transverse Mercator is a 

conformal projection, i.e. the object shapes are locally preserved. However, the relative area of 

the objects increases as the longitude increase, generating area distortion. Thus, the transverse 

Mercator projection may be a good solution to project spherical content with a large VFoV [39].  

2.4.6 General Perspective Projection  

In the general perspective projection (GPP), points on the sphere are projected on a plane 

tangent to the sphere, using projection lines emanating from the projection center, located on 

the Z-axis and at a distance 𝑑 from the sphere center (O), as depicted on Figure 2.7 (𝑑 is 

accounted towards the negative sense of Z); in this figure, P is the projection center, and 𝑃̂ is a 

point on the sphere projected as a point 𝑃̅ on the plane.  

 

Figure 2.7. General perspective projection (GPP).  

The GPP forward projection is given by 

𝑥𝑝 = (1 + 𝑑)
cos(𝜃) sin(𝜙)

cos(𝜃) cos(𝜙) + 𝑑
 (2.24) 

𝑦𝑝  = (1 + 𝑑)
sin(𝜃)

cos(𝜃) cos(𝜙) + 𝑑
 (2.25) 

and the backward projection is   

𝜙 = tan−1
𝑞 𝑥𝑝

𝑞(1 + 𝑑) − 𝑑
 (2.26) 

𝜃 = tan−1
𝑞 𝑦𝑝

√(𝑞 𝑥𝑝)
2 + (𝑞(1 + 𝑑) − 𝑑)2

 
(2.27) 

where 𝑞 is given by  

𝑞 =  
𝑑(𝑑 + 1) + √(𝑥𝑝

2 + 𝑦𝑝
2)(1 − 𝑑2) + (𝑑 + 1)2

𝑥𝑝
2 + 𝑦𝑝

2 + (𝑑 + 1)2
 . 

(2.28) 

Different perspective projections can be obtained by moving the projection center along the 𝑍-

axis, i.e., by varying the value of 𝑑 in Figure 2.7. The popular ones are defined below:  
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i) Rectilinear - The rectilinear projection has a projection center located in the center of the 

sphere i.e., 𝑑 = 0, as depicted in Figure 2.8a). This projection is often used in photography 

and for the rendering of omnidirectional images [9][8]. Since all great circles are projected 

as straight lines [51], straight lines in the visual scene are also straight after projection (i.e., 

lines are not bent), which creates a perceptually appealing viewport when used for 

omnidirectional image rendering. However, stretching is present and increases with the 

distance to the tangency point; this stretching effect is even noticeable for FoVs which are 

not too large, e.g., 100⸰. Due to the stretching effect, this projection is less suitable for 

applications that require a large FoV.  

ii) Stereographic - The stereographic projection has a projection center located on a position 

opposite to the tangency point between the sphere and the projection plane i.e., 𝑑 = 1, as 

depicted in Figure 2.8b). This projection is conformal, being object shapes locally 

preserved. In this projection, the vertical and horizontal lines are bent, except for straight 

radial lines crossing the tangency point, which straightness is kept (these lines correspond 

to great circles crossing the tangency point). The bending of horizontal and vertical lines 

creates an effect known as a fisheye effect, making it less suitable for many applications, 

e.g. wide-angle photography. This projection is also used for the rendering of 

omnidirectional content [9], but much less often than the rectilinear one. 

iii) Orthographic - The orthographic projection has the projection center located at infinity 

i.e., 𝑑 = ∞, as in Figure 2.8c), resulting on projection lines that are orthogonal to the 

projection plane. It is neither equal-area nor conformal, thus objects are mapped with 

significant distortion in terms of area and shape. Like the stereographic projection, only the 

lines over great circles that cross the tangency point are projected without bending. The 

other lines are much more bent than in the stereographic projection; thus, it is hardly used 

in photography and not used at all for omnidirectional image rendering. 

 
a) b) c) 

Figure 2.8. Illustration of three well-known GPP instances: a) rectilinear; b) stereographic;  

c) orthographic. 

2.4.7 Pannini Projection  

The Pannini projection (PP) was proposed in [44] to map wide-angle images into a flat surface. 

This projection was derived from an analysis of a painting style popular during the 18th century 

called as vedutismo - the art of painting a highly detailed visual scene with a wide field of view 

without visible geometric distortions. The PP was named after Italian vedutisti painter, Giovani 

Paolo Pannini. 
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Figure 2.9. Pannini projection of two points, 𝑷̂𝟏 and 𝑷̂𝟐. The red lines project the points from 

the sphere to the cylinder surface; the blue lines project the points from the cylinder surface to 

the plane. 

Consider the Pannini projection represented in Figure 2.9, showing a vertically oriented 

cylindrical surface, whose axis coincides with the 𝑌-axis, tangent to the sphere along the equator 

line, and the projection plane ABCD. Points 𝑃̂ on the sphere are projected on the plane in two 

steps: i) projection from the sphere surface to the cylindrical surface with a projection center 

located in the center of the sphere (red lines in Figure 2.9), as in a central cylindrical projection; 

ii) projection from the cylindrical surface to the plane, with a certain value of 𝑑 (blue lines in 

Figure 2.9).  

In this projection, all vertical and radial lines (i.e., those that cross the tangency point) are kept 

straight, while other line orientations (including horizontal lines) are bent. To reduce the 

bending of horizontal lines, a vertical compression transformation (VC) can be applied, at the 

expense of bending the radial lines and/or stretching some image regions [44].  

The Pannini forward projection is given by 

and 𝑣𝑐 ∈ [0,1] is the vertical compression factor value. Several projections can be obtained by 

varying 𝑑 in the range [0,1], namely rectilinear projection, when 𝑑 = 0, and stereographic 

Pannini, when 𝑑 = 1. Varying 𝑣𝑐 from 0 to 1, enforces the horizontal lines to be less bent; 

however, all radial lines become bent and/or image regions are stretched. Setting 𝑣𝑐 = 0 the 

Pannini projection is referred to as basic Pannini.  

The Pannini backward projection is described by  

𝑥𝑝 = S sin(𝜙) (2.29) 

𝑦𝑝 = (1 − 𝑣𝑐)(S tan(𝜃)) + 𝑣𝑐 (
tan(𝜃)

cos(𝜙)
) (2.30) 

where 

𝑆 =
𝑑 + 1

𝑑 + cos(𝜙)
 , 

(2.31) 

𝜙  = tan−1 (
𝑥𝑝

𝑆 cos(𝜙̌)
) (2.32) 
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2.4.8 Content-unaware Projections Qualitative Evaluation 

In this section, a qualitative comparison between the projections listed in Table 2.1, and 

described in the previous sections, is presented. The viewports were rendered from the same 

omnidirectional image (presented in Figure 2.10 in equirectangular format), taken from the 

Salient360! Dataset [52], with a spatial resolution of 7500×3750 pixels, and for the same 

viewing direction. The horizontal FoV was set to 110⸰, and the viewport spatial resolution was 

set to 856×856 pixels (aspect ratio of 1), as recommended in [53]. Since the projections were 

described in the continuous spatial domain, and the viewports are defined in the discrete spatial 

domain, the conversion from these two domains - required for the viewport rendering - is firstly 

described. 

 

Figure 2.10. Omnidirectional image used for producing viewports with different projections. 

A. Viewport Rendering Procedure  

Consider a point on the sphere, with spherical coordinates (𝜙, 𝜃), that is projected on a viewport 

point, with cartesian coordinates (𝑥𝑝, 𝑦𝑝), using the forward projection (𝑥𝑝, 𝑦𝑝) = 𝑃𝑟𝑜𝑗(𝜙, 𝜃); 

thus, a point on the viewport image, (𝑥𝑝, 𝑦𝑝), can be projected onto a sphere point, (𝜙, 𝜃), using 

the backward projection (𝜙, 𝜃) = 𝑃𝑟𝑜𝑗−1(𝑥𝑝, 𝑦𝑝). Let consider the spherical coordinate system 

presented in Figure 2.5 and, for this initial description, that the front viewport is being observed; 

this viewport corresponds to the viewing direction (𝜙 = 0, 𝜃 = 0, 𝜓 = 0), where 𝜓 is the 

rotation angle around 𝑍-axis (i.e., roll angle). Consider the spherical image and the front 

viewport, as depicted in Figure 2.11a), that is projected on the plane, resulting in a viewport 

image depicted in Figure 2.11b). In this figure, (𝑥𝑝, 𝑦𝑝) are the 2D image plane coordinates, in 

length units; (𝑢, 𝑣) are the 2D image sampling coordinates, also in length units; the image 

sampling points are represented by orange dots; (𝑚, 𝑛), are the pixel position 

coordinate𝑠 corresponding, respectively, to the columns and rows of the viewport image.  

The viewport position (𝑚, 𝑛) can be rendered by applying the following four steps:  

1) Compute the viewport size - Consider Figure 2.11a), and a point, 𝑃̂, on the sphere that is 

positioned  at the  limit  of  the  vertical  field  of  view, 𝐹𝑣,  thus  has  spherical  coordinate 

𝜃 = tan−1 (𝑦𝑝  [(1 − 𝑣𝑐)𝑆 +
𝑣𝑐

cos(𝜙̌)
] ⁄ )  (2.33) 

where (2.34) 

cos(𝜙̌) =
−𝑘𝑑 + √𝑘2𝑑2 − (𝑘 + 1)(𝑘𝑑2 − 1 )

𝑘 + 1
 (2.35) 

𝑘 =
𝑥𝑝
2

(𝑑 + 1)2
 . (2.36) 
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                                  a)               b) 

Figure 2.11. a) Spherical image and observed sphere region; b) Viewport image with the related 

coordinate systems. 

(𝜙, 𝜃) = (0,
𝐹𝑣

2
). Its projection point on the plane, 𝑃̅, is consequently positioned at the 

vertical limit of the viewport, having Cartesian coordinates (𝑥𝑝, 𝑦𝑝) = (0,
𝑉𝑣𝑠

2
), where 𝑉𝑣𝑠 is 

vertical viewport size in length units. 𝑉𝑣𝑠 can be computed as 

(0,
𝑉𝑣𝑠

2
) = 𝑃𝑟𝑜𝑗 (0,

𝐹𝑣

2
) . (2.37) 

Applying a similar rational to the horizontal field of view, results in 

(
𝑉ℎ𝑠
2
, 0) = 𝑃𝑟𝑜𝑗 (

𝐹ℎ
2
, 0) , (2.38) 

where 𝑉ℎ𝑠 is the viewport horizontal size in length units; 𝐹ℎ is the horizontal field of view. 

Since to obtain a viewport with a specific aspect ratio, 𝐴𝑅 =
𝑉ℎ𝑠

𝑉𝑣𝑠
, it is not possible to define 

𝐹ℎ and 𝐹𝑣 independently, firstly it is necessary to select a value for 𝐹ℎ (or 𝐹𝑣), then to 

compute 𝑉ℎ𝑠 (or 𝑉𝑣𝑠) and finally, to compute 𝑉𝑣𝑠 (or 𝑉ℎ𝑠), from the desired 𝐴𝑅.  

2) Compute the plane coordinates, (𝒙𝒑, 𝒚𝒑) - To compute the plane coordinates, the image 

sampling coordinates, (𝑢, 𝑣), need to be firstly computed from the pixel positions, (𝑚, 𝑛). 

The (𝑚, 𝑛) and (𝑢, 𝑣) coordinates are related by 

𝑢 = (𝑚 + 0.5)
𝑉ℎ𝑠
𝑊𝑣𝑝

 , 0 ≤ 𝑚 < 𝑊𝑣𝑝 (2.39) 

𝑣 = (𝑛 + 0.5)
𝑉𝑣𝑠
𝐻𝑣𝑝

 ,             0 ≤ 𝑛 < 𝐻𝑣𝑝 (2.40) 

where 𝑊𝑣𝑝 and 𝐻𝑣𝑝 are, respectively, the viewport width and height, in pixels. The (𝑥𝑝, 𝑦𝑝) 

and (𝑢, 𝑣) coordinates are related by 

𝑥𝑝 = 𝑢 −
𝑉ℎ𝑠
2

 (2.41) 

𝑦𝑝 = −𝑣 +
𝑉𝑣𝑠
2
 . (2.42) 

At this point, the coordinates (𝑥𝑝, 𝑦𝑝) can be obtained for every pixel on the viewport. 

3) Compute the spherical coordinates, (𝝓, 𝜽) - For each position (𝑥𝑝, 𝑦𝑝), the spherical 

coordinates (𝜙, 𝜃) are computed using the backward projection, (𝜙, 𝜃) = 𝑃𝑟𝑜𝑗−1(𝑥𝑝, 𝑦𝑝). 

To obtain a viewport oriented according to a generic viewing direction (𝜙𝑉𝐷 , 𝜃𝑉𝐷 , 𝜓𝑉𝐷), the 
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spherical coordinates (𝜙, 𝜃) obtained for the front viewport are converted to Cartesian 

coordinates (𝑋, 𝑌, 𝑍), as described in Section 2.4.1, and (2.43) should then be applied:  

(𝑋́, 𝑌́, 𝑍́)
𝑇
= 𝑅 (𝜙𝑉𝐷, 𝜃𝑉𝐷, 𝜓𝑉𝐷) (𝑋, 𝑌, 𝑍)

𝑇 (2.43) 

where (𝑋́, 𝑌́, 𝑍́)  are the sphere positions in Cartesian coordinates correspondent to the 

viewport oriented according to (𝜙𝑉𝐷 , 𝜃𝑉𝐷 , 𝜓𝑉𝐷), and 𝑅(𝜙𝑉𝐷 , 𝜃𝑉𝐷 , 𝜓𝑉𝐷) is the rotation 

matrix considering 3DoF, given by: 

            𝑅(𝜙𝑉𝐷, 𝜃𝑉𝐷, 𝜓𝑉𝐷) = 

[

[cos(𝜙𝑉𝐷) cos(𝜓𝑉𝐷)] [− sin(𝜙𝑉𝐷) sin(𝜃𝑉𝐷) cos(𝜓𝑉𝐷) − cos(𝜃𝑉𝐷) sin(𝜓𝑉𝐷)] [sin(𝜙𝑉𝐷) cos(𝜃𝑉𝐷) cos(𝜓𝑉𝐷) − sin(𝜃𝑉𝐷) sin(𝜓𝑉𝐷)]

[cos(𝜙𝑉𝐷) sin(𝜓𝑉𝐷)] [− sin(𝜃𝑉𝐷) sin(𝜙𝑉𝐷) sin(𝜓𝑉𝐷) + cos(𝜃𝑉𝐷) cos(𝜓𝑉𝐷)] [sin(𝜙𝑉𝐷) cos(𝜃𝑉𝐷) sin(𝜓𝑉𝐷) + sin(𝜃𝑉𝐷) cos(𝜓𝑉𝐷)]

[− sin(𝜙𝑉𝐷)] [− cos(𝜙𝑉𝐷) sin(𝜃𝑉𝐷)] [cos(𝜙𝑉𝐷) cos(𝜃𝑉𝐷)]

]. 

 (2.44) 

Then, (𝑋́, 𝑌́, 𝑍́) is transformed back to spherical coordinates, as described in Section 2.4.1.  

4) Compute the viewport pixel values - Finally, the information contained at the spherical 

coordinates obtained in Step 3), is transferred to the correspondent viewport pixel, at 

position (𝑚, 𝑛). For the equirectangular representation of the sphere (equirectangular image 

(ERI)), the relationship between spherical coordinates, (𝜙, 𝜃), and pixel coordinates, 

(𝑚𝐸𝑅𝐼 , 𝑛𝐸𝑅𝐼) of the ERI image is given by 

𝑚𝐸𝑅𝐼 =
𝜙𝑊𝐸𝑅𝐼

2𝜋
+ 0.5(𝑊𝐸𝑅𝐼 − 1) (2.45) 

𝑛𝐸𝑅𝐼 = 0.5(𝐻𝐸𝑅𝐼 − 1) −
𝜃𝐻𝐸𝑅𝐼
𝜋

 , (2.46) 

where 𝑊𝐸𝑅𝐼 and 𝐻𝐸𝑅𝐼 are, respectively, the width and height of the equirectangular image, 

in pixels. Since (𝑚𝐸𝑅𝐼, 𝑛𝐸𝑅𝐼) obtained from (2.45), (2.46) may have fractional values, the 

bilinear interpolation is used. 

B.  Quality Evaluation  

Figure 2.12 depicts examples of the viewport obtained for each projection. For the Pannini 

projection, a projection center at 𝑑 = 1 was considered, to preserve the object conformality as 

much as possible. As shown in Figure 2.12, all projections produce stretching and/or bending 

distortions in the viewport image; no projection can preserve all lines and object shapes 

simultaneously. Accordingly, the following analysis can be made based on the resulting 

geometric distortions: 

• Horizontal line bending - Excluding transverse Mercator, rectilinear, and Pannini           

(𝑑 = 1, 𝑣𝑐 = 1), all projections bend the horizontal lines; among these, the GPP with        

𝑑 = 0.25 has the least horizontal line bending, followed by the GPP with 𝑑 = 0.5, 

stereographic, and basic Pannini (𝑑 = 1). In the Central cylindrical, Equirectangular, 

Lambert equal-area, Mercator, and orthographic projections, the horizontal lines are too 

much bent. 

• Vertical line bending - Excluding transverse Mercator, stereographic, orthographic, GPP 

(𝑑 = 0.25 and 𝑑 = 0.5), all projections keep the straightness of vertical lines. Among the 

projections that bend the vertical lines, the GPP with 𝑑 = 0.25 has the least bending, 

followed by the GPP with 𝑑 = 0.5, and stereographic. The transverse Mercator and 

orthographic projections result in strong vertical line curvature. 
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• Small objects deformation - The small objects, such as plates and bowls on the table of 

Figure 2.12, close to the top and bottom of the image, are stretched along the vertical 

direction in the central cylindrical projection, and along the horizontal direction in the 

equirectangular and Lambert equal-area projection. This does not happen for Mercator, 

transverse Mercator, stereographic, and basic Pannini (𝑑 = 1), since they are all conformal 

projections (object shapes are locally preserved). In rectilinear projection (𝑑 = 0) the 

objects close to the viewport borders are very stretched. In the GPP with 𝑑 = 0.25 and       

𝑑 = 0.5, the object shapes are less stretched compared to the rectilinear case and, as 𝑑 

increases from 0.25 to 0.5, the object conformality increases (but lines are more bent). In the 

orthographic projection, the objects are too much deformed, particularly at the viewport 

borders. In Pannini (𝑑 = 1, 𝑣𝑐 = 1), the objects on the right and left side of the image are 

stretched along the vertical direction. 

• Large objects deformation - Large objects, such as the white table in Figure 2.12, are 

deformed too much for central cylindrical, equirectangular, lambert equal-area, Mercator, 

rectilinear, and orthographic, but much less for other projections; however, in transverse 

Mercator the people on the left and right side of the image are deformed, but less than 

orthographic. In general, the objects in GPP (𝑑 = 0.25), GPP (𝑑 = 0.5), basic Pannini   

(𝑑 = 1), and Pannini (𝑑 = 1, 𝑣𝑐 = 1) appear less deformed compared to other projections, 

resulting in more pleasant viewports. 

In summary, all projections produce stretching and/or bending distortions in the viewport. 

However, GPP and PP have advantages over the other projections by producing viewports with 

less visible geometric distortions. Furthermore, these projections allow to control the perceived 

geometric distortion - in type (bending or stretching) and strength - by varying the projection 

parameters. 

2.5 Content-aware Projections 

As described earlier, content-aware projections are adapted to the content of the omnidirectional 

image, targeting a perceptually attractive viewport. Table 2.2 shows the classification of 

content-aware projections available in the literature, according to the developable surface; 

moreover, the targeted application of each projection is also presented. According to the 

preserved characteristics, these projections are classified as balanced. Note that two projections 

were proposed by Kim et al. in [10]: optimized Pannini projection (Kim et al. [10] in Table 2.2) 

and multiple optimized Pannini projection (Kim* et al. [10] in Table 2.2). 

However, since there are a few specific classes that are exclusive of content-aware projections, 

two additional dimensions for classifying these projections were defined, namely: i) how the 

projection is adapted to the visual content and, ii) the number of projection planes used to render 

the viewport image. The classes organized by each dimension are described next:  

i) Classification by content adaptation - The projection can be adapted to the image content 

locally, regionally, or globally: 

• Locally adapted - The projection parameters can change at the pixel level, i.e., from one 

pixel position to another pixel position of the viewport image, aiming to minimize the 

geometric distortions with a very flexible and localized procedure. Examples of locally 

adapted projections are briefly reviewed in Sections 2.5.1-2.5.3. 
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a) Central cylindrical b) Equirectangular c) Lambert equal-area 

   

 

d) Mercator e) Transverse Mercator f) Rectilinear 

   
g) Stereographic h) Orthographic i) GPP (𝑑 = 0.25) 

   
j) GPP (𝑑 = 0.5) k) Basic Pannini (𝑑 = 1) l) Pannini (𝑑 = 1, 𝑣𝑐 = 1) 

Figure 2.12. Examples of viewport obtained for several content-unaware projections. 
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Table 2.2. Content-aware projections with the corresponding classification and targeted 

application. 

Projection 
Classification by 

projection surface 
Targeted application 

Carroll et al. [36] Planar Wide-angle photography 

Kopf et al. [54] Hybrid Wide-angle and panoramic photography 

Shih et al. [55] Planar Wide-angle photography 

Zelni-Manor et al. [43] Planar Wide-angle photography 

Kim et al. [10] Hybrid Omnidirectional visual content rendering 

Kim* et al. [10] Hybrid Omnidirectional visual content rendering 

Chang et al. [37] Hybrid Wide-angle photography 

Chang et al. [56] Hybrid Wide-angle and panoramic photography 

• Regionally adapted - The projection parameters can change at the region level, i.e., 

from one region to another region of the viewport image. The aim is to minimize the 

geometric distortions in some image regions (usually corresponding to salient regions) 

and thus different projection parameters are used for the different regions that are being 

projected. Examples of regionally adapted projections are briefly reviewed in Sections 

2.5.4 and 2.5.6. 

• Globally adapted - The projection is adapted to the entire viewport image, meaning that 

the projection parameters do not change. This projection uses global distortion measures 

and aims to minimize the geometric distortions for all parts of the viewport with a single 

set of parameters. Examples of globally adapted projections are briefly reviewed in 

Sections 2.5.5, and 2.5.7-2.5.8. 

ii) Classification by the number of projection planes - The sphere content can be rendered 

using just one projection plane, or several intermediate projection planes, as described next: 

• Single plane - A single projection plane is defined for projecting the sphere content. The 

projection can be locally, regionally, or globally adapted to the image content. Examples 

of content-aware, single plane, projections are briefly reviewed in Sections 2.5.1, 2.5.3, 

2.5.5, 2.5.7-2.5.8.  

• Multiple planes - Several intermediate projections planes are defined, being a part of 

the sphere projected in each one. The projection can be locally, regionally, or globally 

adapted to the image content. Those planes are then combined to obtain the final 

projection. Examples of multiple planes projections are briefly reviewed in Sections 

2.5.2, 2.5.4, and 2.5.6. 

Usually, content-aware projections try to minimize the perceived geometric distortions in the 

image regions that attract more the human attention. Geometric distortions of lines and of 

salient regions (corresponding to important objects, such as human faces) may have a high 

perceptual impact, and thus deserve special attention in the projection procedure. Typically, 

content-aware projections minimize the geometric distortions for the entire image, or for some 
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image regions, through an optimization technique, where the cost function to be minimized 

includes some terms which act as constraints. In the following, some of the most often used 

constraints are described: 

• Straight line constraint - The straight lines in the visual scene should remain straight 

after projection. This constraint is defined over every, or just for some, straight lines in 

the image. Accordingly, the straight lines need to be identified in the image, either 

manually by the user, or automatically, by applying line detection techniques.  

• Conformality constraint - The shapes of regions/objects should be preserved or 

presented in a perpetually attractive way. The regions/objects can be identified 

automatically using some saliency/object detection technique, or manually by the user.  

• Smoothness constraint - To satisfy the two previous constraints, the projection 

parameters may do not change smoothly, leading to abrupt changes in some regions and 

structures in the final image. The smoothness constraint is defined to avoid abrupt 

changes in the geometric properties (such as scale or orientation) of image regions. 

Typically, a combination of constraints is used to construct the cost function. Table 2.3 presents 

the content-aware projections classification - for the projections listed in Table 2.2 - according 

to content adaptation, the number of projection planes, the constraints that are used by each 

projection and the need of user interaction. 

Table 2.3. Content-aware projection classification based on content adaptation and the number 

of projection planes, as well as used constraints. 

Projection 
Classification by 

content adaptation 

Classification by 

number of planes 

Conformality 

constraint 

Line 

constraint 

Smoothness 

constraint 

User 

interaction 

Carroll 

et al.[36] 
Locally adapted Single plane ✓ ✓ ✓ ✓ 

Kopf 

et al. [54] 
Locally adapted Multiple planes - - ✓ ✓ 

Shih 

et al. [55] 
Locally adapted Single plane ✓ ✓ ✓ - 

Zelnik-Manor 

et al. [43] 
Regionally adapted Multiple planes - - - ✓ 

Kim 

et al. [10] 
Globally adapted Single plane ✓ ✓ - - 

Kim* 

et al. [10] 
Regionally adapted Multiple planes ✓ ✓ - - 

Chang 

et al. [37] 
Globally adapted Single plane - ✓ - - 

Chang 

et al. [56] 
Globally adapted Single plane ✓ ✓ - - 

As shown in Table 2.2, most of the content-aware projections were developed to reduce the 

geometric distortions in wide-angle or panoramic images. However, these projections and the 

involved procedures may play also an important role in the context of viewport rendering of 

omnidirectional images. The following sections provide a summarized description of the 

projections listed in Table 2.3; for qualitative comparison purposes, the last section contains 

examples of rendered viewports for a subset of those projections. 
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2.5.1 Locally Adapted Projection for Wide-angle Images 

In [36], a spatially varying projection for mapping wide-angle images (up to HFoV of 180⸰) 

was proposed. The projection is locally adapted based on a set of conformality and line 

constrains measures, computed from the image, seeking to minimize the geometric distortions. 

First, the user needs to specify the type of input wide-angle image and its FoV, then the input 

image is projected on a spherical surface. The sphere content is then sampled in longitude and 

latitude with a step size (Δ𝜙, Δ𝜃), with Δ𝜙 = Δ𝜃 , resulting in a mesh of 𝑁 points, where each 

point is indexed by 𝑖𝑗 and parameterized by the spherical coordinates (𝜙𝑖𝑗, 𝜃𝑖𝑗). The sphere is 

mapped on the image plane, resulting in a mesh of points parameterized by Cartesian 

coordinates (𝑥𝑖𝑗, 𝑦𝑖𝑗), as shown in Figure 2.13. 

 

Figure 2.13. Representation of sampled points on the sphere and of their projection on the image 

plane (based on [36]). 

In the following, the main steps of this projection are briefly described: 

• Selection of straight lines by user - For the input image, and through a user interface, the 

user selects manually (i.e., drawing over the input image) the lines in the visual scene that 

should be kept straight in the final image, after projection; additionally, the user assigns one of 

the following line constraints to each selected line: fixed direction (horizontal or vertical); 

general direction. The orientation of lines with fixed direction should be kept after projection, 

while the orientation of lines with general direction is allowed to change. The selected line set 

is denoted by 𝐿, where each line 𝑙 ∈  𝐿 consists of a set of points. The subsets of lines with 

fixed direction and with general direction are denoted, respectively, as 𝐿𝑓 and 𝐿𝑔. 

• Projection calculation - For each (𝜙𝑖𝑗, 𝜃𝑖𝑗), the corresponding (𝑥𝑖𝑗 , 𝑦𝑖𝑗) is computed 

through a least-square optimization technique, where a cost function, referred to as total energy, 

𝐸𝑡, is minimized, aiming at the lowest possible distortion. The energy 𝐸𝑡 is composed by three 

sub-energies: i) conformality energy, 𝐸𝑐, which aims to measure the shape distortion; ii) line 

straightness energies, 𝐸𝑙𝑜 and 𝐸𝑙𝑑, which measure the distortion of straight lines; and  

iii) smoothness energy, 𝐸𝑠, which aims to limit the scale and orientation changes in the 𝐸𝑡 

optimization. The 𝐸𝑠 term is described in [36], whereas the 𝐸𝑐, 𝐸𝑙𝑜 , 𝐸𝑙𝑑 terms are detailed in 

Section 2.6.2. The energy 𝐸𝑡 results from a weighted sum of the conformality, smoothness, and 

line energies:  

where 𝑤𝑐, 𝑤𝑠, and 𝑤𝑙 are the weighting parameters for the corresponding energy terms. In 

(2.47), 𝐸𝑙𝑜 aims the line bending minimization while keeping the line direction specified by the 

user (if any); on the other hand, 𝐸𝑙𝑑 aims the minimization of the bending, regardless of the line  

𝐸𝑡 = 𝑤𝑐
2 𝐸𝑐 +𝑤𝑠

2𝐸𝑠 + 𝑤𝑙
2  (∑ 𝐸𝑙𝑜

 

𝑙∈𝐿𝑓

  +   ∑ 𝐸𝑙𝑜
 

𝑙∈𝐿𝑔

+  ∑ 𝐸𝑙𝑑
 

𝑙∈𝐿𝑔

) , (2.47) 
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a) b) c) 

Figure 2.14. a) Fish-eye input image with lines selected by the user; output image b) before 

cropping and c) after cropping (based on [36]). 

direction. The optimized mesh is produced by iteratively minimizing 𝐸𝑡, using a least-square 

optimization technique, seeking the lowest possible distortion. The final image is rendered by 

warping the input image according to the optimized mesh, using bilinear interpolation.  

Figure 2.14 depicts an input image, where the straight lines selected by the user are highlighted 

in green (lines with general direction), pink (lines with vertical direction), and blue (lines with 

horizontal direction). This image was captured using a fish-eye lens, having vertical and 

horizontal FoVs of 180⸰. The images resulting from the described method, before and after 

manual cropping, are presented in Figure 2.14b) and Figure 2.14c), respectively. As shown in 

Figure 2.14c), the output image is very realistic and does not present visible distortion since the 

shape of the objects is preserved, and most of the straight lines are projected without bending.  

The projection has the advantage of producing very impressive results for images with large 

FoV; however, it has some disadvantages: i) user interaction is required; ii) when a large 

number of lines with different directions are specified by the user, the likelihood of projecting 

all of them without bending is reduced; iii) lacks an automatic stopping condition and thus, the 

user must evaluate the result visually and decide if the procedure should, or not, iterate again; 

iv) the user must crop the output manually to obtain a rectangular image, which may lead to 

information loss.  

2.5.2 Locally Adapted Projection for Panoramic Images 

In [54], a locally adapted projection was proposed for mapping wide-angle or panoramic 

images, aiming to reduce the geometrical distortions, particularly in the perceptually important 

parts of the image. The final image is obtained by using the rectilinear projection for user 

specified regions and performing a seamless transition to a cylindrical projection over the rest 

of the image. In the following, the main steps of this projection are briefly described: 

• Selection of image regions - The input image (wide-angle or panoramic) is projected to a 

cylindrical surface, using a central projection, which is then unwrapped to a plane and shown 

to the user. Then, the user specifies the regions that need to be preserved. Figure 2.15a) depicts 

a cylindrical image (after unwrapping to a plane) with user specified regions. To have the 

desired orientations and region sizes on the final image, the user is able to: i) change the 

orientation of each region by rotating it around the centroid; ii) change the size of each region. 

At this step, the positions, on the cylinder surface, of user specified regions, and their desired 

orientations and sizes, are known.  
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a) b) c) 

Figure 2.15. a) Input wide-angle image and user specified regions; b) use the planar surface for 

user specified regions and cylinder surface for other regions; c) final output image (based on [54]). 

• Projection surfaces generation - The regions previously defined on the cylindrical surface 

are projected onto a plane, using rectilinear projection, cf. Figure 2.15b). This process 

introduces orientation discontinuities (dramatic changes in image regions and structures), at the 

regions close to the user specified region boundaries. This problem was addressed with a least-

square optimization procedure. The cost function is defined to satisfy the user specified 

constraints, described in the first step, and to smooth the transition between user specified 

regions as well as between the planar and cylindrical surfaces. This step outputs the image 

presented in Figure 2.15b). 

• Final image generation - The projection surface obtained in the previous step is on the 

cylinder surface and needs to be unwrapped to a plane, to obtain the final projection; however, 

this surface cannot be unwrapped to a plane without introducing some distortions (it is not a 

pure cylindrical surface). In this case, the surface is unfolded to a plane using a surface 

parameterization technique called as Most Isometric Parametrization (MIPS), proposed in [57], 

that allows to transform the obtained surface into a plane without deforming it. The final output 

image, depicted in Figure 2.15c), is rendered by warping the input image according to the 

surface generated by MIPS, using bilinear interpolation. 

An advantage of this method is that the lines of the visual scene are kept straight. However, this 

method has several disadvantages: i) it requires user interaction; ii) if the user specified regions 

have a large area, it may lead to objects stretching in the final result (as in the rectilinear 

projection); iii) straight lines may appear bent in the user specified regions; iv) orientation of 

regions may change slightly relatively to the orientation specified by the user, and thus may 

lead to the deformation of some vertical lines. 

2.5.3 Locally Adapted Projection for Wide-Angle Selfy Images 

In [55], a locally adapted projection was proposed to undistort human faces in photographic 

wide-angle images (with HFoV in the range of 70⸰-120⸰), acquired from camera phones. The 

input image is obtained with a perspective projection, thus straight lines keep their straightness, 

but the objects (e.g., faces) may be stretched. The final image is obtained by locally adapting a 

stereographic projection located on faces and performing a seamless transition to the 

background regions. In the following, the main steps of this projection are briefly described: 

• Person segmentation - The person segmentation method proposed in [58] was applied to 

the input image to identify the persons in the image (cf. Figure 2.16). Since the main purpose 

was to correct faces and hair, a face mask was generated by intersecting the person mask with 

a rectangular face bounding box obtained with a face  detector. Then,  the  face  bounds   were  
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a) b) c) d) 

Figure 2.16. a) Input image with a horizontal FoV of 97⸰; b) subject mask segmentation with 

identified facial regions; c) optimized mesh; d) final output (based on [55]). 

extended to cover the hair and other parts of the face regions. As an example, the face mask 

corresponding to Figure 2.16a) is shown in green colour in Figure 2.16b). 

• Stereographic mesh - A uniform grid mesh 𝑀𝑝 = {𝒑𝒊} was defined for the input image, 

consisting on a vertex set {𝒑𝒊}, where 𝒑𝒊 refers to a 2D mesh coordinate. Then, the stereographic 

mesh, denoted by 𝑀𝑢 = {𝒖𝒊}, is created by applying a procedure proposed in [59], to every 𝒑𝒊 
inside a facial region (identified in the previous step). Since the stereographic projection is a 

conformal projection, in 𝑀𝑢 the faces shapes are thus preserved, while straight lines remain 

straight in the background. However, this process creates visual distortions at the face 

boundaries.  

• Mesh optimization - A procedure similar to the optimization described in Section 2.5.1 was 

used to obtain a smooth transition between faces and the background. An optimized mesh, 

denoted as 𝑀∗ and aiming at the lowest possible distortion, is obtained by iteratively minimizing 

a cost function using a least-square optimization procedure; the cost function is a weighted sum 

of energy terms that account for the faces conformality and for the straightness of the 

background lines. The output mesh corresponding to Figure 2.16a) is depicted in Figure 2.16c). 

• Warping - The final output image is obtained by warping the input image according to the 

optimized mesh. In this process, the optimized mesh is used to map pixels from the input image 

to the new positions in the output image. The interpolation procedure proposed in [60] was used 

for warping. The final output image, corresponding to the input image of Figure 2.16a), is 

depicted in Figure 2.16d). 

This projection has the advantage of being fully automatic; however, it has some disadvantages: 

i) the geometric distortion correction is only performed on facial regions; ii) correcting only the 

face, without the rest of the body (e.g., human shoulders), may create an unnatural look;             

iii) straight lines and objects may be somewhat distorted if they are close to the face regions.  

2.5.4 Multiple Perspective Projections for Wide-Angle Images 

In [43], two multiple perspective projections, being one object-based, were proposed to map 

wide-angle images (up to HFoV of 180⸰) onto a plane, aiming to reduce geometric distortions 

caused by using a single perspective projection. Both projections are regionally adapted, and 

are briefly described in the following:  

i) Multiple rectilinear projections - Instead of projecting the sphere content onto a single 

plane, multiple tangent planes are used, each one covering a limited field of view.           
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Figure 2.17 shows an example of multiple rectilinear projections with three tangent planes, 

located at different points of the sphere. The main steps of this projection are: 

• Selection of plane position by user - A simple user interface was designed to allow the 

user to select the position of the tangent planes. The input image is presented to the user in 

an equirectangular format. The user must carefully choose the center of the tangent planes 

and the region covered by each, to reduce the geometric distortions. 

• Rectilinear projection - For each tangent plane, the rectilinear projection is used to map 

the corresponding regions of the sphere to that plane. Afterwards, the tangent planes are 

arranged on a single flat surface to obtain the final projection. 

Using this technique, orientation discontinuities may occur between the tangent planes, leading 

to the creation of visual artifacts. For example, the objects and straight lines located between 

two tangent planes may appear distorted.  

ii) Multiple object-based rectilinear projections - This solution was proposed to reduce the 

orientation discontinuities in some image regions and structures introduced by the multiple 

rectilinear projections, previously described. The main steps of this projection are: 

• Manually, obtain a foreground-background segmentation mask for the input image, in 

equirectangular format, and cut out the foreground objects. The GIMP [61] implementation 

of Intelligent Scissors [62], which requires user interaction, was used for this segmentation. 

• Fill the holes in the background caused by cutting out the foreground objects using a 

texture propagation technique [63]. Then, project all content with a filled background to a 

plane using multiple rectilinear projections, as previously described. 

• Project each object using a rectilinear projection centred on the object, and then paste 

objects onto the background to obtain the final image; the objects are placed according to 

their positions on the input image. 

 

Figure 2.17. Top view of multiple rectilinear projections. 

Figure 2.18 shows an example of images rendered with the two multiple rectilinear projection 

approaches. As shown, the straight lines appear straight for both projections. However, in the 

first approach (in Figure 2.18a) some objects on the left side (e.g., monitor, keyboard, and a 

part of the table), and the chair and monitor on the right side, are clearly distorted due to the 

orientation discontinuities. The multiple object-based rectilinear projections (in Figure 2.18b) 

can correct the distortion of the chair but not on the other objects.  

The main advantages of both projections are the preservation of straight lines, and the fact that 

they use the rectilinear projection only for a limited field of view, which reduces the geometric 

(mostly stretching) distortions compared to a single rectilinear projection, covering the whole  
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a) Multiple rectilinear projections b) Multiple object-based rectilinear projections 

Figure 2.18. Examples for the multiple rectilinear projections and multiple object-based 

rectilinear projections (based on [43]). 

image. However, they present also some disadvantages: i) user interaction is required;                  

ii) orientation discontinuities are introduced; iii) rectilinear projection can distort the objects if 

they are close to the projection plane borders, even for limited FoVs. 

2.5.5 Optimized Pannini Projection for Omnidirectional Visual Content Rendering  

In [10], an automatic procedure to optimize the Pannini projection [44] was proposed and 

applied for viewport rendering of omnidirectional visual content. The Pannini projection is 

globally adapted, where the parameters (𝑑, 𝑣𝑐) are found based on an optimization procedure 

that relies on automatically detected lines and salient points, i.e., points centered on perceptually 

relevant regions (e.g., a human face). The optimization procedure attempts to minimize a cost 

function, which combines line straightness and conformality measures. In the following, the 

main steps of this projection are briefly described: 

• Compute line straightness measure - The selected part of the sphere corresponding to the 

viewport is projected onto a plane using rectilinear projection; then, straight lines are 

automatically detected in the viewport using the line detector proposed in [64]. After, the line 

straightness measure, 𝐸𝑙𝑑, originally proposed in [36] and already referred to in Section 2.5.1, 

was computed for each detected line. 

• Compute conformality measure - The salient regions in the viewport are automatically 

detected using the saliency detection model proposed in [65]. For each salient region, a salient 

point is defined, centred at the salient regions. Then, the conformality measure, 𝐸𝑐, originally 

proposed in [36] and already referred to in Section 2.5.1 was computed for each salient point, 

allowing to preserve the shape of the region around that point. 

• Pannini parameters optimization - The Pannini projection parameters (𝑑, 𝑣𝑐) that 

minimize the geometric distortions in the viewport were obtained by minimizing the cost 

function 𝐸, given by 

𝐸 = 𝑤𝑙∑ 𝐸𝑙𝑑
 

𝑙∈𝐿
+𝑤𝑐∑ 𝐸𝑐

 

𝑝∈𝑆𝑃
 , (2.48) 

where 𝐿 and 𝑆𝑃 are, respectively, the detected lines set, and the salient points set; 𝑤𝑙 and 𝑤𝑐 are 

the weighting parameters of corresponding terms. The final projection is obtained by iteratively 

minimizing 𝐸 using a gradient descent technique, aiming for the lowest possible distortion. 
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a) b) c) 

Figure 2.19. a) Pannini with 𝒅 = 𝟎. 𝟓, 𝒗𝒄 = 𝟎; b) Pannini with 𝒅 = 𝟏,𝒗𝒄 = 𝟎; c) Optimized 

Pannini (based on [10]). 

Figure 2.19 presents viewports rendered with a horizontal FoV of 150⸰ using the Pannini 

projection with fixed parameters (𝑑 = 0.5, 𝑣𝑐 = 0) and (𝑑 = 1, 𝑣𝑐 = 0), as well as the 

viewport obtained with the optimized Pannini projection. As can be figured out, the optimized 

Pannini projection produced a viewport with a much lower amount of line bending and 

stretching distortions than the Pannini with fixed parameters.  

The main advantage of the optimized Pannini projection is not requiring any user interaction; 

however, it lacks a local adaption to the content, since it minimizes only global distortions and 

thus stretching and/or bending may be still visible for some image regions and structures. 

Moreover, the crowdsourcing subjective test conducted in [10] showed that, on average, the 

Pannini projection with fixed parameters achieved higher quality scores than the optimized 

Pannini. 

2.5.6 Multiple Optimized Pannini Projections for Omnidirectional Visual Content 

Rendering 

In [10], a fusion of multiple Pannini projections was proposed for rendering omnidirectional 

visual content; it is regionally adapted and builds on the work of the optimized Pannini 

projection described in the previous section. However, in this case, the final rendered image 

results from the fusion of multiple optimized Pannini projections, each centered in a salient 

point. In the following, the main steps of this projection are briefly described: 

• Salient points computation - First, the fraction of the sphere corresponding to the viewport 

is forward projected onto a plane, using a rectilinear projection. Then, a saliency detection 

technique is applied to the projected image, to obtain the saliency map. For each salient region, 

a saliency point is defined and positioned in the region centroid. Finally, the corresponding 

spherical positions of the salient points are computed, using the rectilinear backward projection.  

• Global and local projection - Instead of using a single projection, a global optimized 

Pannini projection (Gproj), and a set of regionally optimized Pannini projections (RProj), are 

used. The parameters of the Gproj and RProj projections are obtained with the technique 

described in the previous section. The Gproj includes the whole viewport and is centred on the 

viewport center, thus aligned with the viewing direction; it aims to project the regions close to 

the viewport center with low distortion. Each RProj is centred at a salient point, with the aim 

of representing the regions around that point with lower distortion (compared to Gproj), in the 

viewport image.  

• Projection alignment and scaling - Before obtaining the final image, for each RProj the 

salient local region is aligned with the corresponding regions of the Gproj, allowing to combine 

Gproj and RProj. Scaling is used to adjust the size of the local region to match the size of the 
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corresponding region in Gproj. This process guarantees that the region covered by RProj has a 

similar size to the corresponding region on the Gproj and thus, the object (contained inside 

these regions) boundaries are somewhat matched and a better fusion of Gproj and RProjs can 

be obtained. 

•  Projection fusion - To obtain the final viewport, the Gproj and RProj projections are fused, 

by combining the spherical coordinates of Gproj and RProj. To obtain the final viewport with 

less geometric distortions, the fusion varies the influence of each projection along the viewport. 

In this case, image regions near a salient point are heavily influenced by its corresponding 

RProj, considering that the salient local region is projected with less distortion when its regional 

projection is used, and image regions near the viewport center are heavily influenced by the 

global projection, which has minimum geometric distortion in this area.  

Figure 2.20 presents two viewports, rendered from the same omnidirectional image and viewing 

direction, with a horizontal FoV of 150⸰, and using the optimized Pannini projection, described 

in the previous section, and the multiple optimized Pannini projection, described in this section. 

As can be observed, the multiple optimized Pannini projection produces a viewport with less 

geometric distortion than the viewport obtained with the optimized Pannini; in particular, the 

chairs and the table in the bottom-right of Figure 2.20 appear less distorted for the multiple 

optimized Pannini compared to the optimized Pannini. 

  
a) b) 

Figure 2.20. Example of viewports obtained using the projections proposed in [10]: a) Optimized 

Pannini projection; b) Multiple optimized Pannini projection (based on [10]). 

The main advantage of the multiple Pannini projection is to not require user interaction; 

however, it has some disadvantages: i) for each considered salient point, the optimized Pannini 

projection has to be regionally optimized (a large number of parameters need to be found for 

all salient points), which increases complexity; ii) when there are multiple salient points close 

to the same linear structure, this structure may be strongly distorted (because different 

projections are used over it); iii) any misalignment or incorrect scaling may result in some visual 

artifacts in the final viewport image; iv) geometric distortions on the fused viewport are not 

measured and thus the local projections are not jointly optimized, which may result in viewports 

with still some geometric distortions (bending or stretching). 

2.5.7 Rectangling Stereographic Projection for Wide-angle Images 

In [37], the rectangling stereographic projection was proposed for mapping wide-angle images 

(up to HFoV of 180⸰) onto a plane, while minimizing the geometric distortions. It uses a swung 

surface, which is a generalization of a surface of revolution in which the rotation around an 

axis, of an initial profile curve, is guided and scaled by a trajectory curve. Figure 2.21a)-c) 

illustrate the profile curve, a rounded rectangle defining the trajectory curve and the resulting 

swung surface, respectively. The projection is globally adapted and is  obtained  by projecting  
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a) b) c) 

Figure 2.21. a) Profile curve; b) trajectory curve; c) resulting swung surface (based on [37]). 

the sphere content on the swung surface using rectilinear projection, followed by the projection 

of the swung surface content on the final projection plane, using a stereographic projection. The 

construction of the swung surface is the key of this projection design and is responsible for the 

reduction of the geometrical distortions. The trajectory curve corresponds to a rounded 

rectangle, and is defined with the following geometrical parameters: roundness of corners, 𝑟𝑐, 

and aspect ratio, 𝑅𝑎𝑟 = 𝑅𝑣𝑠/𝑅ℎ𝑠, where 𝑅𝑣𝑠 and 𝑅ℎ𝑠 are, respectively, the rounded rectangle 

height and width (cf. Figure 2.21b). These parameters define the swung surface and, therefore, 

how the content is projected. In the rectangling stereographic projection, these parameters were 

optimized based on the image content, namely some detected lines of the visual scene. 

In the following, the main steps of this projection are briefly described: 

• Line detection - The sphere content is first projected on a cube, using the cube map 

projection [19]. The line detector proposed in [64] is applied to each cube face, resulting in a 

set, 𝐿, of detected straight lines. Then, lines are projected back onto the sphere to obtain their 

positions in the spherical domain. 

• Swung surface optimization - Due to the swung surface characteristics, the vertical lines 

close to the top and bottom of the image, and the horizontal lines close to the left and right of 

the image, may be projected with some bending. Therefore, the swung surface (i.e., parameters 

𝑅𝑎𝑟 and 𝑟c) is optimized by minimizing the number of lines of 𝐿 that, after their projection on 

the plane, are positioned in regions that bent them. 

• Sphere to plane projection - The content of the sphere is projected onto the already 

optimized swung surface, using the rectilinear projection. After, the content on the swung 

surface is projected onto the plane, which is tangent to the swung surface, using a stereographic 

projection, resulting in the final planar image. The stereographic projection is used since it 

preserves the local shapes. 

Figure 2.22 depicts rendered images using the described projection, with a fix 𝑅𝑎𝑟 value and 

varying 𝑟𝑐. As can be observed, for a  𝑟𝑐 value of 0.2, the geometric distortions are higher near 

the image borders. For example, the sofas on the left and right sides of Figure 2.22a) appear 

more deformed compared to an image obtained with a higher  𝑟𝑐 value. However, as stated in 

[37], an image with a rectangular boundary is more attractive. 
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a) 𝑟𝑐 = 0.2 b) 𝑟𝑐 = 0.5 c) 𝑟𝑐 = 0.8 

Figure 2.22. Results obtained with the proposed method in [37], using fixed 𝑹𝒂𝒓 and varying  𝒓𝒄 
(based on [37]). 

The main advantage of this projection is being fully automatic; also, since the content of the 

swung surface is projected onto the plane using the stereographic projection, object shapes are 

in general preserved. However, straight lines may appear bent for regions close to the image 

borders. Moreover, this projection only minimizes global distortions and thus lacks local 

adaption to the image content. 

2.5.8 Swung to Cylinder Projection for Panoramic Images 

In [56], the swung to cylinder projection was proposed for mapping wide-angle or panoramic 

images. The geometrical construction and the steps of this projection are similar to the 

projection described in the previous section. However, in this case the swung surface content is 

projected on a cylinder surface, tangent to the sphere at the equator line, instead onto a plane, 

and the final projection is obtained by unwrapping the cylinder surface. Using a cylinder instead 

of a plane allows projecting an image with a horizontal field of view covering the full 360⸰. 

Besides the swung surface parameters,  𝑟𝑐 and 𝑅𝑎𝑟, two additional parameters were introduced: 

the projection center, 𝑑, and the normal curvature of the projection cylinder, 𝑐𝑘 = 1/𝑐𝑟, where 

𝑐𝑟 is the cylinder radius. The parameter 𝑑 allows the projection center to change, and 𝑐𝑘 allows 

the final projection surface to change from a planar to a cylindrical surface. If 𝑑 = 1 and        

𝑐𝑘 = 0, the final projection surface is a plane and the projection is equivalent to the rectangling 

stereographic projection, described in the previous section. In swung to cylinder projection, the 

parameters 𝑑, 𝑐𝑘, 𝑟𝑐, 𝑅𝑎𝑟, were optimized based on the image content, namely some detected 

lines and salient regions. In the following, the main steps of this projection are briefly described: 

• Line and saliency detection - The same procedure of the previous technique is applied to 

obtain a set of lines defined on the sphere. In addition, to detect salient regions, the gradient 

magnitude (a simple measure of visual saliency) is computed for the input image and used as a 

saliency map. 

• Sphere to cylinder projection - The content of the sphere is projected onto the cylinder in 

two steps: first, the content of the sphere is projected onto the swung surface using the rectilinear 

projection; then, the content on the swung surface is projected onto the cylinder, using 

projection lines emanating from the projection center 𝑑. 

• Projection parameters optimization - The projection parameters are optimized in two 

steps: in the first step, the parameters (𝑑, 𝑐𝑘) are found by minimizing a cost function, based on 

a set of conformality and line straightness measures, that account for distortion of salient 

regions  and  bending  of straight lines,  respectively.  After  determining  the  best  (𝑑, 𝑐𝑘), the 
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Figure 2.23. Example of panorama with a HFoV of 360⸰, obtained with the swung to cylinder 

projection with  optimized  parameters  (𝒅 = 𝟎. 𝟔, 𝒄𝒌 = 𝟎. 𝟔, 𝒓𝒄 = 𝟎. 𝟕𝟓, 𝑹𝒂𝒓 = 𝟑 ) (based on [56]). 

parameters (𝑟𝑐, 𝑅𝑎𝑟) are optimized using a procedure similar to what was described in the 

previous section. 

Figure 2.23 illustrates the final image, with a FoV covering the full 360⸰, obtained with the 

swung to cylinder projection.  

This projection has the advantage of being fully automatic; moreover, it can represent the visual 

scene with a wide-angle (up to HFoV of 360⸰) better than the projection described in the 

previous section. However, this projection has some disadvantages: i) it has a higher number of 

parameters compared to the projection described in the previous section (4 vs 2), which 

increases complexity; ii) as the projection of the previous section, it lacks local adaptation to 

the content and thus the horizontal and radial lines may be bent, reducing the user perceived 

quality. 

2.5.9 Qualitative Evaluation of Content-Aware Projections 

This section presents a qualitative comparison of some selected fully automatic (i.e., user 

interaction is not required), content-aware projections. These projections were previously 

described and classified in Table 2.3, and are the following ones: rectangling stereographic 

projection [37], optimized Pannini projection [10] and multiple optimized Pannini projection 

[10]. Not all projections were included in this study since the source code was not available for 

some, while others do not work for all types of images (e.g., the method of Section 2.5.3 requires 

faces to work properly). Five content-unaware projections are also considered, for comparison 

purposes, namely: rectilinear, stereographic, basic Pannini with  𝑑 = 0.5, 𝑣𝑐 = 0, basic Pannini 

with 𝑑 = 1, 𝑣𝑐 = 0 (or stereographic Pannini), and Pannini with 𝑑 = 1, 𝑣𝑐 = 0.5. For each 

projection under evaluation, three viewports were obtained from three omnidirectional images 

(presented in Figure 2.24 in equirectangular format), available in the dataset of [10]. Each 

viewport has a HFoV of 150⸰ and a spatial resolution of 960×540 pixels (𝐴𝑅 = 16/9). 

  •  

a) Dance (3840 × 1920) b) Office1 (3200 × 1600) c) Dinner 1 (4000 × 2000) 

Figure 2.24. Omnidirectional images and their spatial resolution. 

Figure 2.25 shows three viewport examples, obtained for all the projections under evaluation, 

allowing the following analysis based on the resulting geometric distortions: 
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• Horizontal line bending - Except for the rectilinear projection, in which all straight lines in 

the visual scene remain straight in the viewport, all projections bend the horizontal lines, 

although with different strengths. In Pannini with 𝑑 = 1, 𝑣𝑐 = 0.5, the horizontal lines are 

only slightly bent (due to vertical compression) at the cost of bending the radial lines and/or 

stretching objects vertically at the left and right sides of the viewport. In the optimized 

Pannini, the horizontal lines are less bent than in the multiple optimized Pannini. The amount 

of horizontal lines bending present in the viewports obtained using the multiple optimized 

Pannini was not expected, since this projection is content-aware. 

• Vertical line bending - All vertical lines in the visual scene remain straight in the viewport 

for most of the projections, being the stereographic, rectangling stereographic, and multiple 

optimized Pannini the exception. In rectangling stereographic, the vertical lines are less bent 

than in stereographic, particularly for the lines in the regions close to the viewport center. In 

the multiple optimized Pannini, the vertical lines remain straight in Dance and Office 1 

viewports, but not in the Dinner 1 viewport (e.g., the vertical floor lamp on the left side of 

the Dinner 1 viewport is bent). 

• Small objects deformation - Excluding stereographic and Pannini (𝑑 = 1, 𝑣𝑐 = 0), all 

other projections deform small objects, notably the objects close to the viewport borders. 

Stereographic and Pannini (𝑑 = 1, 𝑣𝑐 = 0) are conformal projections and preserve objects 

locally but not globally; e.g., in the Dinner 1 viewports of these projections, while the white 

table is deformed globally, the plates on the table are not deformed.  

• Large objects deformation - The large objects (e.g., people, chairs, tables), are too much 

stretched towards the viewport borders, in the rectilinear projection; this projection has also 

a strong perspective effect (or tunnel effect), where the objects close to the viewport center 

appear further away from the camera, compared to those on the image borders. In 

stereographic and rectangling stereographic, the objects are globally too much deformed, 

particularly in Office 1 viewport. In Pannini (𝑑 = 1, 𝑣𝑐 = 0.5), the objects on the left and 

right side of the viewports are stretched vertically. In the basic Pannini, the object stretching 

is reduced when 𝑑 varies from 0.5 to 1, at the cost of more bending on horizontal lines. In 

optimized Pannini, the object shapes are preserved in the Dance viewport, but stretched in 

the Office 1 and Dinner 1 viewports, e.g., the chair on the left side of Office 1 viewport and 

the boy’s arm on the left side of the Dinner 1 viewport. In the multiple optimized Pannini, 

the object shapes are better preserved than in the optimized Pannini for Dance and Office 1 

but deformed in the Dinner 1 viewport (e.g., the white table).  

From the results of Figure 2.25, it is possible to conclude that no content-aware projection 

produces viewports without visible stretching and/or bending distortions. However, viewports 

produced by content-aware projections have less geometric distortion than those resulting from 

content-unaware projections. Also, among content-aware projections, optimized Pannini and 

multiple optimized Pannini produced viewports with less geometric distortion and thus the 

viewport quality is more pleasant. 

2.6 Quality Assessment of Sphere to Plane Projections  

This section overviews the state of the art on subjective and objective quality assessment of 

omnidirectional images, with the focus on the geometric distortions introduced by the rendering 

process.  
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Figure 2.25. Examples of viewports obtained for the selected content-aware and content-

unaware projections using a horizontal FoV of 150⸰. The viewports for optimized Pannini and 

multiple optimized Pannini were obtained from [10]. 
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2.6.1 Subjective and Objective Quality Assessment 

Omnidirectional image/video quality can be assessed using subjective or objective methods. 

The subjective quality assessment targets the perceptual quality evaluation by humans, while 

the objective quality assessment targets perceptual quality evaluation based on computational 

models, that can predict the perceived quality. 

Since humans are the target consumers of the omnidirectional visual content they are also, and 

naturally, the most reliable source to obtain a quality score for an omnidirectional image/video. 

Therefore, the subjective evaluation tests are conducted with several viewers, that are asked to 

express their opinion about a set of stimuli - images or videos - and the resulting quality scores 

are regarded as the ground truth data about the image/video quality. However, this type of 

quality assessment is costly, requires the viewers availability to do the test, and it is impossible 

to be conducted in real-time. Therefore, subjective tests are mainly performed to obtain ground 

truth data to be used in the development, and evaluation, of objective quality metrics.  

The design of a subjective quality assessment test requires some basic components that must be 

selected depending on the application and aim of the test: 

• Test environment - Typically, the subjective tests are performed in a dedicated 

laboratory room or online through a web-based platform [66]. 

• Visualization device - For omnidirectional images, different types of displays can be 

used, such as HMDs, smartphones, or personal computers with a 2D display [67]. In the 

case of smartphones, an additional mobile VR headset is often used, such as the Google 

Cardboard (Mobile VR). In this case, the smartphone is slipped into the headset, and then 

the user wears it to explore the content [68]. 

• Test materials - The test material is the content selected for the subjective experiment, 

such as omnidirectional images/videos and rendered viewports.  

• Test methodology - The test methodology specifies how the subjective experiment 

should be conducted, notably how the test materials are shown to the observers and how 

the opinion scores should be collected.  Several test methodologies are available, which 

are defined in international standards (mostly from ITU) [69]–[74]. 

• Test Subjects - According to the Recommendation ITU-R BT 500.13 [70], a minimum 

of 15 subjects should be used for a subjective assessment test to be statistically 

meaningful. However, less than 15 subjects are also possible for studies with a very 

limited scope. 

• Data Analysis - After collecting the subjective scores, the subjective scores are 

processed by applying some statistical analysis tools, as recommended in ITU standards 

[69]–[74]. 

In recent years, several subjective quality assessment studies have been conducted with 

omnidirectional images and video, to assess the perceptual impact of artifacts introduced by 

compression, transmission, stitching, or by the display. However, little has be done on the 

subjective impact of geometric distortions introduced by the rendering process. Table 2.4 

summarizes the most relevant subjective quality test studies with omnidirectional images/video.  
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Table 2.4. Subjective quality assessment of omnidirectional image/video. 

Method Artifacts Source Used display 

Pavan et al. [75], Krzysztof et al. [76], Jia et al. [77] Stitching HMD 

Jill et al. [53][78], Ashutosh et al. [79], Vladyslav et al. 

[80] 
Compression Computer monitor 

Raimund et al. [81] Transmission HMD 

Raimund et al. [82] Transmission Computer monitor 

Matt et al. [21], Mai et al. [83], Bo et al. [84],           

Francisco et. al [85]  
Compression HMD 

Evgeniy et al. [68] Compression Mobile VR 

Wenjie et al. [86] Display 
HMD, Computer 

monitor 

Kim et al. [10] Rendering Computer monitor 

Regarding the objective quality assessment, most of the objective quality metrics developed so 

far for omnidirectional visual content aimed to assess the perceptual impact of compression 

artifacts (e.g., [21], [87]–[95]), or stitching artifacts (e.g., [75]–[77]). Except for a few 

geometric distortion measures (described in the next section), which were developed for 

cartography or wide-angle images, there is no objective quality metric designed to 

automatically assess the perceptual impact of the viewport geometric distortions, due to the 

sphere to plan projection involved on the rendering process.  

2.6.2 Sphere to Plane Geometric Distortion Measures 

In Earth cartography, Tissot indicatrices [96] have been used for years by cartographers to 

evaluate and compare distortion on different Earth map projections. The metric is based on the 

geometric relationship between a circle on the sphere and its projection on the plane, called as 

indicatrix or ellipse of distortion. This indicatrix is obtained after projection, in the map, an 

infinitely small circle defined on the sphere; the relationship between the major and minor axis 

of the resulting ellipse, after projection, enables to compute the local scale (or distance), area, 

and angle distortions, at the projected point.  

Figure 2.26 depicts an infinitesimal unit circle defined on the sphere, and its corresponding 

Tissot indicatrix after projection on the plane; 𝑎̂ and 𝑏̂ are, respectively, the Tissot indicatrix 

semi major and minor axis; ℎ and 𝑘 correspond, respectively, to the scale factor along the 

projected sphere meridian and parallel. The details about the computation of the parameters 𝑎̂, 

𝑏̂, ℎ, 𝑘, and angular deformation 𝜃́, which represents the angle between the projected meridian 

and parallel at the projected point, are presented in Chapter 4 (Section 4.2.1). 

If the projection is conformal (e.g., stereographic), shapes and angles are locally preserved, and 

the ellipse is a circle; otherwise, the ellipse has a major axis and a minor axis which are directly 

related to the scale distortion and to the maximum angular deformation. When 𝜃́ = 90°, 𝑎̂ = ℎ 

and 𝑏̂ = 𝑘. The shape distortion, 𝑡, maximum angle deviation, 𝜔, and amount of inflation or 

deflation in the area, 𝑠, are given by 

𝑡 =
𝑎̂

𝑏̂
 (2.49) 
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                               a)                                    b) 

Figure 2.26. a) Infinitesimal unit circle defined on the sphere; b) Its corresponding 

Tissot indicatrix after projection on the plane.  

A conformal projection has 𝑡 = 1 and 𝜔 = 0; since 𝑎̂ = 𝑏̂ and 𝜃́ = 90°, each ellipse 

degenerates into a circle with the radius 𝑎̂ (or 𝑏̂) being equal to the scale factor (or stretching) 

in any direction. If the projection is equal-area, area relationships are locally preserved, and the 

areas of the circle on the sphere and projected ellipse are the same, and thus 𝑠 = 1. 

To show the distortions across an Earth map, the Tissot indicatrices are typically placed over 

the intersections between projected meridians and parallels, as depicted in Figure 2.27 for the 

stereographic and azimuthal equidistant projections. For the stereographic, all Tissots 

indicatrices are circles since this projection is conformal; however, they have different areas, 

showing that it is not an equal-area projection. For the azimuthal equidistant map projections, 

the scale is constant along all radial lines (lines crossing the central point, highlighted in red in 

Figure 2.27b), which is possible to visualize with the Tissot indicatrices, since all indicatrices 

minor axis have the same length and are always oriented along a radial line. Also, it shows that 

the shape and area distortions increase with the distance to the central point.  

  
a) b) 

Figure 2.27. Tissot indicatrix for a) stereographic projection and b) azimuthal equidistant 

projection (based on [97]). 

The Tissot indicatrix is very useful in the study and evaluation of map projections. More 

importantly, it quantifies the local scale, area, angular, and shape distortions precisely at each 

𝜔 = 2 sin−1 (
|𝑎̂ − 𝑏̂|

𝑎̂ + 𝑏̂
) (2.50) 

𝑠 = 𝑎̂ × 𝑏̂ . (2.51) 



 

47 

 

projected point. The Tissot metric could be also used to characterize the geometric distortions 

introduced during viewport rendering; however, it has some drawbacks: i) it does not evaluate 

the global distortion, but only local (pointwise) distortions; ii) it is content independent, i.e., the 

image content is not considered to evaluate the perceived distortion; iii) it cannot measure the 

bending of the straight lines, which is a geometric distortion type with a strong perceptual 

impact on the users.  

More recently, a few geometric distortion measures were proposed in the context of content-

aware projections for wide-angle images, seeking to minimize the resulting geometric 

distortions. As described in Section 2.5.1, in [36] local conformality and line straightness 

measures were proposed and used to adapt the projection locally to the image content and thus 

reducing the geometric distortions. The conformality measure is computed based on Cauchy-

Riemann equations [98], which are verified by a conformal projection 

𝜕𝑥𝑝
𝜕𝜃

= −
𝜕𝑦𝑝
𝜕𝜙

×
1

cos(𝜃)
 ,      

𝜕𝑦𝑝
𝜕𝜃

 =
𝜕𝑥𝑝
𝜕𝜙

×
1

cos(𝜃)
  . (2.52) 

Accordingly, the conformality measure, denoted as 𝐸𝑐 in (2.47), is given by  

𝐸𝑐 = (
𝜕𝑦𝑝
𝜕𝜙

+ cos(𝜃)
𝜕𝑥𝑝
𝜕𝜃

)

2

+ (cos(𝜃)
𝜕𝑦𝑝
𝜕𝜃

−
𝜕𝑥𝑝
𝜕𝜙

)

2

. (2.53) 

For a conformal projection 𝐸𝑐 has a value close to zero. The global conformality measure can 

be obtained by summing the local measures computed for all projected points.  

The line straightness measure is computed based on the geometry of straight lines and aims to 

preserve the image linear structures. The line straightness measure, denoted as 𝐸𝑙𝑑 in (2.47), is 

given by 

𝐸𝑙𝑑 = 
√(𝑥𝑝

𝑠 − 𝑥𝑝
𝑒)
2
+ (𝑦𝑝

𝑠 − 𝑦𝑝
𝑒)
2

√(𝑥𝑝
𝑠 − 𝑥𝑝

𝑒)
2
+ (𝑦𝑝

𝑠 − 𝑦𝑝
𝑒)
2
+ |𝑥𝑝

𝑠(𝑦𝑝
𝑒  − 𝑦𝑝

𝑚) + 𝑥𝑝
𝑒(𝑦𝑝

𝑚 − 𝑦𝑝
𝑠) + 𝑥𝑝

𝑚(𝑦𝑝
𝑠 − 𝑦𝑝

𝑒)|

 , (2.54) 

where (𝑥𝑝
𝑠 , 𝑦𝑝

𝑠), (𝑥𝑝
𝑒 , 𝑦𝑝

𝑒), and (𝑥𝑝
𝑚, 𝑦𝑝

𝑚) correspond, respectively, to the line start, end, and 

middle points of the projected line. Note that this measure is normalized by the line length, and 

thus for a straight line 𝐸𝑙𝑑 has a value close to 1, and for a curved line 𝐸𝑙𝑑 has a value lower 

than 1. The global line straightness measure can be obtained by averaging the line straightness 

measures computed for all projected lines. In (2.47), and besides 𝐸𝑙𝑑, another line distortion 

measure is described, 𝐸𝑙𝑜, which is similar to 𝐸𝑙𝑑, except that 𝐸𝑙𝑜 considers the line direction 

into accounts. Thus, 𝐸𝑙𝑜 aims the line bending minimization while keeping the line direction 

specified by the user (if any); while 𝐸𝑙𝑑 aims the minimization of the bending, regardless of the 

line direction. Note that, 𝐸𝑙𝑑 and 𝐸𝑙𝑜 need to be coherent with other terms used in (2.47) and 

(2.48), thus both 𝐸𝑙𝑑 and 𝐸𝑙𝑜 need to be subtracted from 1 and then used in (2.47) and (2.48). 

However, these measures have some drawbacks: i) similar to Tissot, the conformality measure 

is content independent; ii) the line straightness measure requires user interaction to manually 

identify the perceptually important straight lines in the scene. Also, these measures were not 

validated with respect to perceived geometric distortions. Thus, there is no evidence that these 

measures are well correlated with user perception of geometric distortions. These measures, 

without  validation,  were  also  used  in  [10]  to  optimize  the  Pannini projection parameters. 
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In (2.53), the partial derivatives need to be obtained beforehand. An alternative way to compute 

a conformality measure, without requiring the partial derivatives, was proposed in [10]. In this 

case, four points are sampled, on the spherical image, around each salient point, i; the sample 

points are some degrees apart (e.g., 0.5 degrees), to the left, right, up, and down of the salient 

point. When the points are projected on the plane, the distances 𝑑𝑖
𝑙, 𝑑𝑖

𝑟, 𝑑𝑖
𝑢, and 𝑑𝑖

𝑑, between the 

i-th projected salient point and its four projected sample points, are then computed. From these 

distances, the conformality measure, 𝐸̂𝑐, is obtained as 

𝐸̂𝑐 =
1

𝑁
∑(

Min(𝑑𝑖
𝑟, 𝑑𝑖

𝑙 , 𝑑𝑖
𝑢, 𝑑𝑖

𝑑)

Max(𝑑𝑖
𝑟, 𝑑𝑖

𝑙 , 𝑑𝑖
𝑢, 𝑑𝑖

𝑑)
)

𝑖

 , (2.55) 

where 𝑁 is the total number of salient points. 

2.7 Final Remarks 

This chapter presented the omnidirectional image/video processing pipeline and reviewed the 

state of the art on sphere to plane projections and on the quality assessment of the resulting 

geometric distortions. Several content-unaware and content-aware projections were described, 

and qualitatively evaluated. The qualitative evaluation showed that the different projections 

present a tradeoff between the different types of geometric distortions, and no projection can 

avoid geometric distortions. Moreover, in general, content-aware projections have less 

geometric distortions than content-unaware projections.  

Finally, the quality assessment of omnidirectional images, with the focus on the geometric 

distortions, was reviewed both in terms of subjective quality studies and objective quality 

assessment metrics. This showed that there is little work on the perceptual impact of geometric 

distortions resulting from sphere to plan projections, and the related literature is rather scarce. 

Accordingly, this Thesis seeks to fill this gap by assessing, through subjective experiments, and 

quantifying, through the development of objective metrics, the geometric distortions introduced 

during the viewport rendering of omnidirectional visual content.  
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Chapter 3 
                                                                         _ 

3Subjective Assessment of the General 

Perspective Projection 

3.1 Introduction 

As mentioned in Chapters 1 and 2, objects stretching (or shearing) and bending of straight lines 

are the two main geometric distortion types introduced during the viewport rendering of 

omnidirectional visual content, due to the sphere to plane projection (cf. Figure 1.4, Figure 2.12, 

Figure 2.25). However, there are not many subjective quality assessment studies in the literature 

that evaluate the perceptual impact of these distortions. Therefore, the first step in this chapter 

is to study and evaluate, through a subjective tests campaign, the perceptual impact of geometric 

distortions, using the general perspective projection (GPP) for viewport rendering. As 

mentioned in Chapter 2, GPP includes the rectilinear (or gnomic) and stereographic projects, 

which are the most used solutions for viewport rendering. Furthermore, the GPP allows to vary 

(in type and strength) the geometric distortions, by controlling the GPP projection center value; 

thus, a wide range of geometric distortions can be obtained, enabling the subjective assessment 

of their impact and thus the creation of a diverse and rich dataset, needed for the development 

and validation of an objective quality metric.  

To enhance the user sense of immersion and engagement when exploring omnidirectional visual 

content, the viewport FoV should be large. However, the geometric distortions become more 

perceptually disturbing when a large FoV is used. Thus, the used FoV may play an important 

role on the user’s QoE. So far, there are not many subjective quality assessment studies that 

assess the FoV effect on the perceived viewport quality; in particular, there is no clear evidence 

about the range of FoVs that should be used for viewport rendering, nor its dependency on the 

image content type. Thus, the second step in this chapter focuses on the study and evaluation 

of the FoV impact on the perceived quality of omnidirectional visual content rendering. This 

study is also based on a subjective tests campaign with viewport images, in this case, rendered 

with the rectilinear projection.  

In this context, this chapter addresses the two main objectives:  

• Subjectively assess the perceptual impact of geometric distortions introduced by the 

GPP, notably stretching of objects and bending of straight lines. 

• Subjectively assess the FoV impact on the perceived quality of the viewport image, to: 

i) evaluate its eventual dependency on the image content; ii) determine the FoV that 

presents the best trade-off between user’s immersive experience and the perceived visual 
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degradations due to geometric distortions, and when the rectilinear projection is used for 

viewport rendering. 

Since, as stated in Chapter 1, the target application scenario for this Thesis is the visualization 

of omnidirectional images on typical 2D displays (e.g., smartphones and personal computers), 

both studies are accomplished using 2D screens. 

This chapter is organized as follows: Section 3.2 describes the subjective assessment of 

geometric distortions impact. Section 3.3 describes the subjective assessment of the FoV 

impact. Finally, in Section 3.4, some final remarks are presented.  

3.2 Subjective Assessment of the Geometric Distortions Impact  

This section describes the subjective assessment of the geometric distortions impact, using the 

GPP for viewport rendering. To the best of our knowledge, this is the first subjective test to 

evaluate the geometric distortions introduced during rendering. It is important to note that 

subjective tests are typically very time-consuming, and in this case they were conducted in 

several sessions. In each session, new omnidirectional images were included and evaluated, and 

the resulting quality scores and viewport images were added to the GPP viewport dataset, which 

was made publicly available [99].  

The rest of this section is organized as follows: Sections 3.2.1 and 3.2.2 describe, respectively,  

the considered omnidirectional image dataset and the subjective evaluation methodology. 

Sections 3.2.3 and 3.2.4 present, respectively, the subjective test results, and the analysis of the 

subjective scores, together with the main conclusions taken from the results. 

3.2.1 Dataset  

The subjective assessment of the GPP was conducted using eight omnidirectional images, in 

equirectangular format, taken from the Salient360! dataset [52]. The images, and their spatial 

resolutions, are depicted in Figure 3.1. The selected images have different types of content, 

including indoor and outdoor scenes, objects near and far away from the camera, the presence 

or absence of people, and horizontal and vertical lines in the scene. Thus, they exhibit different 

types of dominant distortions (from bending to stretching) when the GPP is used for viewport 

rendering, with different values of the projection center, 𝑑. For each image, the viewports were 

rendered for three different viewing directions: front view (𝜙𝑉𝐷 = 0, 𝜃𝑉𝐷 = 0,𝜓𝑉𝐷 = 0), 45° 

to the right (𝜙𝑉𝐷 = 45, 𝜃𝑉𝐷 = 0,𝜓𝑉𝐷 = 0), and 45° to the left (𝜙𝑉𝐷 = −45, 𝜃𝑉𝐷 = 0,𝜓𝑉𝐷 =

0); together, the three selected views cover a large part of the viewing sphere where the users 

attention is often attracted for, as the regions located around latitude zero (equatorial line) and 

inside, or close to, the front viewport [100].  

For each viewing direction, ten viewports were produced, each one corresponding to a pair 

(𝑑,FoV), with 𝑑 ∈ {0,0.25,0.5,0.75,1} and FoV ∈ {90°, 110°}. Higher values of 𝑑 have not 

been considered, since the amount of distortion (fisheye effect) introduced by these projections 

is visually annoying to many viewers, and also to limit the test duration. The FoV of 

90° and 110° were selected since these values are often used in VR applications. The viewports 

were rendered using the GPP, and with a spatial resolution of 856×856 pixels (𝐴𝑅 = 1); besides 

being recommended in [53] for subjective tests, this resolution allows the simultaneously 

display of two viewports, side by side, in typical monitors. 
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a) Conference 

(3840×1920) 

b) Buildings 1 

(7500×3750) 

c) Photography shop 

(3840×1920) 

d) Pole vault 

(3840×1920) 

    

e) Museum  

(3840×1920) 

f) Dinner 2 

(7500×3750) 

g) Friends  

(3840×1920) 

h) Buildings 2 

(7500×3750) 

Figure 3.1. Omnidirectional images used in the subjective tests, and their spatial resolution. 

3.2.2 Subjective Evaluation Method 

The Stimulus Comparison Adjectival Categorical Judgment (SCACJ) [70] was selected as the 

evaluation method, since it is easier for observers to select the most pleasant viewport, in a pair 

of viewports rendered with different projections, than to directly rate the viewports. In this case, 

two viewports are shown simultaneously side by side, and the observer is asked to give his 

opinion about the quality of displayed viewports, giving a score to the most pleasant viewport 

using the following comparison scale: slightly better (+1), better (+2), much better (+3), or 0 in 

case no difference was detected. Since the rectilinear projection (𝑑 = 0) is typically used for 

the rendering of omnidirectional images and videos, the resulting viewports were used as the 

reference stimulus.  

A subjective assessment interface, including a graphical user interface (GUI), was designed to 

perform the visualization of the viewport images and to collect the associated subjective scores. 

Two viewport images were shown side by side, as depicted in Figure 3.2, one being the 

reference viewport (𝑑 = 0), and the other being the viewport under evaluation. To minimize 

the contextual effects, the viewports were shown in random order and position, such that the 

position of the reference is either on the right side or on the left side, and the viewport pairs 

from the same omnidirectional image were never consecutively displayed. A total of 192 stimuli 

was evaluated by each observer (4 (𝑑) × 2 (FoV) × 3 (viewing directions) × 8 (images) = 192). 

 

Figure 3.2. Subjective assessment interface designed to perform the visualization of the viewport 

images and to collect the associated subjective scores. 
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Before the subjective test, the observers were asked to read short instructions about the test 

procedures, so that they could understand the task. Subsequently, more detailed instructions 

were shown on the screen during a short training session, right before the test, to familiarize the 

observers with the projection distortions characteristics and the evaluation interface; the 

viewports used in this training session were not used for the actual test. During the test phase, 

the observer gave a score between +1 (slightly better) and +3 (much better) to the most pleasant 

viewport, or a score of 0 in case of similar quality. This score was associated to the viewport 

under evaluation, if it was considered the most pleasant one; otherwise, the symmetric score 

was given to it. Thus, any viewport (except the reference ones) got a final score between −3 

and +3.  

The subjective test was conducted with a 2D display, as recommended in the MPEG group [8], 

using a Full HD monitor, with a native resolution of 1920×1080 pixels. In total, 20 observers, 

aged between 22 and 35 years, were asked to participate in the subjective evaluation. The 

participants were seated at the distance, from the monitor screen, of approximately three times 

the picture height, as suggested in [73]. The omnidirectional images, the rendered viewports, 

and the resulting subjective score values were made available in [99]. 

3.2.3 Subjective Tests Results 

During the subjective test, every viewport (except the reference ones) got a final score between 

−3 and +3; these scores were then normalized to the interval [0,10], as recommended in [70]. 

Outliers detection was applied according to the guidelines in [70], but it was verified that none 

of the viewers’ scores deviated strongly from others (i.e., no outliers were detected). The 

comparative mean opinion score (CMOS) [71] was then computed for each viewport, according 

to 

CMOS𝑖 =
1

𝑂
∑𝜇𝑖j

𝑂

𝑗=1

 , (3.1) 

where CMOS𝑖 is the resulting CMOS for the viewport (or stimulus) 𝑖, 𝜇𝑖𝑗 is the score given by 

observer 𝑗 to the viewport 𝑖, and 𝑂 is the total number of observers after outlier’s removal. The 

reliability of the subjective assessments was determined by computing the 95% confidence 

interval associated with the CMOS scores, i.e., [CMOS𝑖  − 𝛿𝑖, CMOS𝑖 + 𝛿𝑖], where: 

 𝛿𝑖 =  1.96
𝜎𝑖

√𝑂
  (3.2) 

and 𝜎𝑖 is the standard deviation of the scores for each stimulus, given by 

𝜎𝑖 = √∑
(CMOS𝑖 − 𝜇𝑖𝑗)

2

𝑂 − 1

𝑂

𝑗=1

. (3.3) 

Figure 3.3 depicts the resulting CMOS values for each viewport and associated 95% confidence 

intervals. The smallest confidence intervals occurs when one of the comparing viewports shows 

an evident global distortion (e.g., stretching or bending) relatively to the other; the largest 

confidence intervals result for those cases where each comparing viewport shows a different 

distortion type, and the viewer gives a score based on which type is most/least annoying for 

him. 
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Figure 3.3. CMOS values for the evaluated viewports, with associated 95% confidence interval 

(CI) limits. 

Figure 3.4 shows the CMOS values for each considered image and FoV (averaged over the 

three viewing directions), versus projection center, 𝑑; the GPP particular cases for  

𝑑 = 0, 0.25, 0.5, 0.75, 1 are referred to as 𝑝𝑟0, 𝑝𝑟1, 𝑝𝑟2, 𝑝𝑟3 and 𝑝𝑟4, respectively. Due to the 

subjective scores normalization, a CMOS of 5 represents a viewport quality undistinguished 

from the reference one (𝑝𝑟0); a score of 0 represents a viewport quality much worse than the 

reference; a score of 10 represents a viewport quality much better than the reference.  

 

Figure 3.4. CMOS values as a function of the projection type, for the considered test images and 

FoV. 

3.2.4 Subjective Tests Analysis  

As shown by Figure 3.4, the best projection depends strongly on the image content and the 

rectilinear projection (𝑝𝑟0), often used in omnidirectional viewing systems, is not always the 

best. Three main groups can be identified, regarding how the viewport quality resulting from a 

given projection, 𝑝𝑟𝑖, compares  with the  viewport  quality  for the  rectilinear projection, 𝑝𝑟0: 
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• G1) 𝒑𝒓𝒊 better than 𝒑𝒓𝟎 - which happens for the cases where the stretching associated 

to 𝑝𝑟0 is the dominant distortion, as in those viewports with regions of interest close to 

the viewport borders, and where the stretching is maximum. 

• G2) 𝒑𝒓𝒊 similar to 𝒑𝒓𝟎 - which happens whenever there is no dominant distortion type, 

and the subjects do not show an overall preference for any particular projection. 

• G3) 𝒑𝒓𝒊 worse than 𝒑𝒓𝟎 - which happens for the viewports where the bending is the 

dominant distortion, typically viewports containing long straight lines (e.g., Buildings 1 

and Buildings 2). These lines bend when 𝑑 approaches 1, which negatively influences 

the perceived quality.  

To evaluate if the difference in CMOS values between these three groups is statistically 

significant, and following the procedure suggested in [101], the analysis of variance (ANOVA) 

with three groups and a significance level of 0.05 was applied per projection, and for each FoV. 

The resulting p-value, shown in Table 3.1, is always lower than 0.05, which confirms that the 

separation between the three groups is statistically significant. This result also allows to 

conclude that the impact of projection type (i.e., 𝑝𝑟𝑖), is dependent on the considered image. 

To further evaluate if the dependency of CMOS values from the FoV is statistically significant, 

a paired sample T-test was applied comparing two sets of samples, one containing the viewports 

with FoV of 90° and another containing the viewports with FoV of 110°. This procedure, also 

suggested in [101], is illustrated in Figure 3.5. The test results indicate that the null-hypothesis, 

i.e. that the two sets have the same mean, can be rejected with a p-value of 0. This confirms 

that the FoV has a significant impact on the perceived geometric distortion. 

Finally, to evaluate if the dependency of CMOS values from the projection center is statistically 

significant (for the same content and FoV), the previous procedure was applied, but now 

comparing the viewports pairs corresponding to the same image and viewing direction, 

resulting from a pair of projections, (𝑝𝑟𝑖, 𝑝𝑟𝑗), with 𝑖𝑗 (in Figure 3.5, 𝑝𝑟 swaps with FoV). In 

this case, the percentage of projection pairs resulting in viewports with significantly different 

perceived quality is quite dependent on the images group, being 40% for G1, 10% for G2               

(a low percentage was expected in this case, since 𝑝𝑟𝑖 has a similar quality to 𝑝𝑟0, as shown by 

Figure 3.4), and 90% for G3. 

From this analysis, it is possible to conclude that, in the viewport rendering of omnidirectional 

images: 

• The rectilinear projection, often used for viewport rendering, is not always the projection 

that leads to the best viewport quality. 

• The viewport content has an important impact on the perceived distortions, and thus 

condition the best projection, to be used. 

• The projection type (d value), the considered FoV, and the viewport content 

characteristics, are the three main influence factors of the perceived geometric 

distortions. 
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Table 3.1. Resulting p-value for ANOVA test. 

 p-value per projection 

FoV 𝒑𝒓𝟏 𝒑𝒓𝟐 𝒑𝒓𝟑 𝒑𝒓𝟒 

90o 1.19E-04 3.42E-06 0 0 

110o 0 0 0 0 
 

 

Figure 3.5. T-test procedure for evaluating if there is a significant impact of the FoV on the 

CMOS scores (based on [101]). 

It should be mentioned that, on the first subjective test session, where a subset of the 

omnidirectional images dataset was used, namely Conference, Buildings 1, Photography shop, 

and Pole vault, the FoV of 75° was also considered, besides the FoVs of 90° and 110°.        
Figure 3.6 shows the resulting CMOS values for these images (averaged over the three viewing 

directions) versus considered projection. While it is usually assumed that 𝑝𝑟0 (rectilinear 

projection) performs well for a FoV of 75°, from Figure 3.6 it can be concluded that, for some 

images, other projections perform better than rectilinear, notably 𝑝𝑟1to 𝑝𝑟4 for Conference with 

FoV of 110°, and 𝑝𝑟1 to 𝑝𝑟4 for Photography shop with FoVs of 75°, 90°, 110°. In fact, even 

for a FoV of 75°, 𝑝𝑟0 yields noticeable stretching distortion in objects that are simultaneously 

located at the viewport borders and close to the camera. 

To limit the subsequent subjective tests duration, preventing the results from being influenced 

by the viewers fatigue, the FoV of 75° was not kept for the remaining omnidirectional images; 

also, larger FoVs are closer to the human FoV. 

The subjective test results allowed to conclude that the FoV value has a statistically significant 

impact on the perceived geometric distortions. Accordingly, further studies were conducted to 

acquire a better understanding of the FoV influence on the QoE, and also to find out a possible 

dependence, from the viewport content, of the FoV value that maximizes the QoE (since this 

dependency was verified for the GPP projection center). These studies are presented on the next 

section. 

3.3 Subjective Assessment of the FoV Impact 

The subjective tests described on the previous section, showed that the GPP projection type (or 

𝑑 value) that minimizes the geometric distortions is dependent on the viewport content. This 

section evaluates, through an additional subjective tests campaign, if a similar dependence 

exists for the viewport FoV; furthermore, the impact of the FoV on the users’s QoE is further 

investigated.  
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Figure 3.6. CMOS values as a function of the projection type, for the four omnidirectional 

images, with FoV of 𝟕𝟓°, 𝟗𝟎°, and 𝟏𝟏𝟎°. 

As mentioned in Chapter 1, the geometric distortions increase with the used FoV. Despite of 

this, the rendering of omnidirectional visual content should provide an immersive visual 

experience and maximize the users sense of presence. As shown by several studies (e.g., 

[11][12]), to meet these requirements large FoVs should be used. Recently, most of the VR 

applications that make use of omnidirectional images are targeting a FoV close to human FoV 

(e.g., [102][103]), aiming to provide a better QoE to the users. In fact, in the area of virtual 

reality, the abstract concept of immersion can be measured by relating the human FoV, and the 

observed area on the sphere that is shown to the user [104]. For the horizontal direction, the 

human FoV is on the range 200°-220° for monocular vision, and around 114° for binocular 

vision; the vertical FoV is on the range 130°-135°.  

Since the FoV has an important role on the user’s QoE, the study and evaluation of the FoV 

impact are much needed. So far, few works (e.g., [11][12][105][106]) have considered the 

influence of the FoV on user’s QoE. In [105], the authors evaluated the viability of high FoVs 

(namely, 110°, 140° and 170°) in computer graphics rendition. Three different projection 

methods, namely rectilinear, Panini, and stereographic, were considered. However, the main 

goal was to compare the impact, on the rendered images quality, of the three considered 

projection methods, with varying FoV; furthermore, the test conditions only considered the 

projection of 3D virtual environments on 2D displays. Also, during the subjective assessment 

tests, the rendered content was presented to the viewers as still images, corresponding to the 

viewport on a fix and predefined viewing direction. In [11], a driving simulator was used to 

assess the impact of FoV on the user’s experience; four FoVs were consider, namely 60º, 100º, 

140º, and 180º. The test included a full-size car, and a virtual world was created around the car 

using a set of projection walls and cameras. The results indicated that the user’s presence and 

enjoyment increased with the FoV; however, FoVs beyond 140º could conduct to simulator 

sickness. Additional studies on the FoV impact were carried out in [12][106], with FoV values 

of 60º and 100º in [12], and varying between 10º and 110º in [106]; in both works, 3D virtual 

environments were rendered on 2D displays. The experimental results showed that the users 

needed less time to achieve visual search tasks, if a large FoV is used.  
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In all previous works, no conclusions were drawn about the best FoV for omnidirectional visual 

content rendering. Therefore, the subjective test campaign presented in this section was 

specifically designed with the objective of finding the FoV value that presents the best trade-

off between immersivity and geometric distortions perception, and to assess its dependency 

from the image content. Furthermore, a method to generate navigation videos from 360o images, 

using real head motion (navigation path or scanpath), is proposed; besides simulating the user 

navigation on omnidirectional images, these videos allow the comparison of results across 

different subjects for each subjective test condition. Moreover, evaluating the user immersivity 

provided by different FoVs should be done preferable with varying viewing direction (i.e., not 

using “still images”), which is the natural way to navigate the omnidirectional visual content. 

One way to do this is to generate navigation videos from 360o images. This is also supported 

by some work conducted by the MPEG group [107]. 

The rest of this section is organized as follows: Section 3.3.1 describes the proposed procedure 

to create a viewport video from real head motion; Section 3.3.2 is dedicated to the subjective 

tests procedure, including subjective test results and analysis. 

3.3.1 From Head Motion Data to User Navigation Video  

This section details the procedure to create a video that simulates the user navigation when 

exploring an omnidirectional image. First, the method to select a representative navigation path, 

from all the scanpaths available for a given image, is detailed. Then, the viewport projection 

and the video creation are described. 

A. Navigation Path Selection 

In [100][108], a dataset of omnidirectional images, designated by Salient360!, was proposed. 

The dataset includes also the scanpaths from head movement of several observers (per image), 

recorded while the observers explored the images with HMD, and the visual saliency maps 

obtained from the recorded scanpaths. Each scanpath contains 100 samples, taken with a fix 

time period, 𝑡𝑠, where the ith sample corresponds to a viewing direction, 𝑉𝐷𝑖, with spherical 

coordinates (𝜙𝑖, 𝜃𝑖) (cf. Figure 1.3a). 

Figure 3.7 presents one of the omnidirectional images available in Salient360!, the 

corresponding saliency map, and the navigation paths of three observers, drawn in green, 

yellow, and black over the saliency map. On the saliency map, the hottest coloured regions 

indicate the most salient regions and the blue areas indicate least salient regions. 

  

a) b) 

Figure 3.7. a) An omnidirectional image in equirectangular format; b) The saliency map 

generated from the head motion of several observers, and the navigation path for three different 

observers. 
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Considering the final application of the simulated navigation video - subjective assessment of 

the FoV effect on QoE - from the available paths, the selected path (per image) is the one that 

best fulfil the following criteria: i) slow temporal variation; ii) wide coverage of the 

omnidirectional image,  thus  without being stuck in the same positions;  iii) close to the salient 

regions, since distortions over the salient regions have more perceptual impact than in other 

regions. 

Accordingly, for each navigation path, three features were extracted: velocity, 𝓋, wideness, 𝓌, 

and saliency, 𝒮, defined as: 

• Navigation path velocity, 𝓿 - the distance between adjacent viewing directions, 

𝑉𝐷𝑖(𝜙𝑖, 𝜃𝑖), and 𝑉𝐷𝑖+1(𝜙𝑖+1, 𝜃𝑖+1), over the unit sphere, is given by 

𝒹𝑖 = cos−1(sin 𝜃𝑖 sin 𝜃𝑖+1 + cos 𝜃𝑖 cos 𝜃𝑖+1 cos(𝜙𝑖 −𝜙𝑖+1)) ,  (3.4) 

and the velocity of the head movement between 𝑉𝐷𝑖 and 𝑉𝐷𝑖+1, is given by 𝓋𝑖 = 𝒹𝑖/𝑡𝑠. The 

global path velocity value, 𝓋, is computed by 

𝓋 =
1

𝑁 − 1
∑𝓋𝑖

𝑁−1

𝑖=1

 , (3.5) 

where 𝑁 is the number of samples in the path. 

• Navigation path wideness, 𝔀 - The distance between adjacent viewing directions over the 

path can be computed using (3.4), and the summation of all these distances gives the path 

length. However, a high path length does not necessarily represent a wide path, since an 

observer may just navigate in a small area of the viewing sphere, without fully exploring its 

content. Instead, the path wideness, 𝓌, is computed as the distance between the path 

starting point, 𝑉𝐷1(𝜙1, 𝜃1), and its farthest viewing point.  

• Navigation path saliency, 𝓢 - Geometric distortions within salient regions are perceptually 

more relevant than in other regions. Therefore, the selected path should have most of its 

sample points close to salient regions. To compute 𝒮, each data point (𝜙𝑖 , 𝜃𝑖) of the 

navigation path is first projected on the equirectangular image saliency map. The 

relationship between spherical coordinates, (𝜙𝑖, 𝜃𝑖), on the unit radius sphere, and pixel 

coordinates, (𝑚𝐸𝑅𝐼 , 𝑛𝐸𝑅𝐼), on the equirectangular representation of the sphere, is given by 

(2.45) and (2.46). In Salient360! dataset, to obtain the saliency map, an isotropic 3.34-

degree Gaussian foveation filter, centred in a set of viewport locations, was applied to all 

scanpaths. Therefore, for each resulting pixel position, (𝑚𝐸𝑅𝐼 , 𝑛𝐸𝑅𝐼), a saliency value is 

obtained by applying a similar Gaussian filter over the saliency map; thus, not only the 

saliency at (𝑚𝐸𝑅𝐼 , 𝑛𝐸𝑅𝐼), but also the saliency at neighbouring locations, are considered. 

Finally, the path saliency, 𝒮, is computed by averaging the saliency values obtained along 

the path. 

After having computed 𝓋,𝓌, 𝒮 for all the navigation paths available for a given 

omnidirectional image, each feature is normalized by the corresponding maximum range (found 

on the computed feature values). The selected path, 𝑆𝑃, is then obtained by 

𝑆𝑃 = max
𝑘
(𝛼1𝒮𝑘 + 𝛼2𝓌𝑘 + 𝛼3

1

𝓋𝑘
)  (3.6) 

where 𝒮𝑘 ,𝓌𝑘 , 𝓋𝑘 are the normalized features computed for the kth navigation path, and 
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𝛼1,  𝛼2, 𝛼3 are weighing parameters that control the importance of each feature. For the results 

presented in this Thesis, 𝛼1 = 2,  𝛼2 = 𝛼3 = 1. These values were obtained experimentally, by 

visual inspection of the selected navigation paths, and resulting navigation videos, for some 

omnidirectional images. 

By applying the described procedure to the three navigation paths depicted in Figure 3.7b), the 

colored in green was the selected one; this path goes through the salient regions and explores 

well the content across the image. After selecting the navigation path, using all the available 

navigation paths, the corresponding video is created, as described in the next section. 

B. Navigation Video Rendering 

For each viewing direction, the corresponding viewport is obtained by projecting a fraction of 

the omnidirectional image on the image plane, using the rectilinear projection. The viewport 

rendering process is formally described in Chapter 2 (Section 2.4.8.A). In this study, only the 

rectilinear projection was considered, since: i) it is the most used projection for VR applications; 

ii) to evaluate if the best FoV is dependent, or not, on the image content, the chosen 𝑑 value 

should not be critical; iii) including, in the subjective test, several omnidirectional images, 

different projections and FoV values, would result in a too large number of viewports to be 

evaluated by the observers, causing the observers tiredness and/or fatigue.  

Since the navigation paths available in Salient360! were recorded with a sampling period, 𝑡𝑠, 
of 0.25 s, the number of viewing directions per second is just four. Thus, to produce a navigation 

video with a reasonable frame rate, and sufficient to reproduce a continuous head motion, more 

viewing points per second are required; these were obtained by linearly interpolating fourteen 

additional viewing points between each pair of adjacent samples of the recorded paths, resulting 

in 60 viewing points per second. These were then halved to obtain navigation videos with 30 

frames/s.  

It is important to mention that the proposed procedure to generate navigation videos from 

omnidirectional images could be potentially used as a basis for other interesting applications, 

such as omnidirectional video summarization and cinematography, where 2D videos are 

produced from omnidirectional videos [109].  

3.3.2 Subjective Assessment of the FoV Impact 

This section presents the subjective test evaluation of the FoV effect on perceived quality. After 

describing the considered dataset and subjective test methodology, the processing of the 

resulting subjective scores is described. Finally, the subjective test results are analyzed.  

A. Dataset 

Sixteen omnidirectional images, taken from Salient360! dataset, were used in the subjective 

test. The images,  and  their  special  resolutions,  are depicted in Figure 3.8. This set of images 

includes six images that were used in the previous subjective test, and ten additional images 

having other content types, such as indoor and outdoor scenes, presence or absence of people, 

objects close or far from the camera, and nature or urban environments. After selecting the 

navigation path for each image, as described in Section 3.3.1.A, six navigation videos were 

produced per image, as described in Section 3.3.1.B, with a length of 10 seconds each; the 

chosen   frame  resolution  was  𝑊𝑣𝑝 = 1816   and  𝐻𝑣𝑝 = 1020  pixels,   corresponding  to  a  
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a) Conference 

(3840×1920) 

b) Photography shop 

(3840×1920) 

c) Shopping mall 

(13320×6660) 

d) Dinner 2      

(7500×3750) 

    
e) Friends  

(3840×1920) 

f) Office 2  

(10000×5000) 

g) Living room  

(8000×4000) 

h) Gallery  

(5376×2688) 

    

i) Basketball  

(10236×5118) 

j) Buildings 1 

(7500×3750) 

k) Buildings 2 

(7500×3750) 
l) Sunset  

(8000×4000) 

    

m) Cave 

(5376×2688) 

n) Concert 

(5376×2688) 

o) Desert  

(16000×8000) 

p) River  

(10000×5000) 

Figure 3.8. Omnidirectional images used in the subjective tests, and their spatial resolution. 

𝐴𝑅 = 16/9, as recommended in [53]. The aspect ratio of 16/9 allows to show the navigation 

videos with a full screen size, being more immersive when compared to an aspect ratio of 1. 

Each video has a distinct horizontal field of view (𝐹ℎ), with                                                                     

𝐹ℎ ∈ {75°, 90°, 100°, 110°, 120°, 135°}. The resulting navigation videos are available in [110]. 

B. Subjective Assessment Methodology  

A preliminary subjective test with few observers showed that it was difficult for them to 

concentrate on navigation videos if they are shown side by side, since the two videos have 

different FoV. Moreover, showing just one video at a time provides a better immersivity, since 

the whole display can be used for it. Accordingly, the two navigation videos under comparison 

were shown one after the other, and a simple assessment method – the pairwise comparison 

(PC) [69] – was selected. PC is commonly used for image and video quality assessment         

(e.g., [111][112]); it is simple and easy for the observers, since they just need to indicate the 

most pleasant navigation video, in a pair of videos rendered with different FoVs.  

However, comparing all possible pairs is unfeasible due to the quadratic growth of comparisons, 

with the number of stimuli. To limit the test duration and avoid the observer fatigue, the 

navigation videos from the same omnidirectional image were arranged in pairs, according to 

the corresponding 𝐹ℎ value: {75⁰,90⁰}, {90⁰,100⁰}, {100⁰,110⁰}, {110⁰, 120⁰}, {120⁰, 135⁰}, and 

only these pairs were compared. It is worthy to note that the same error made when comparing 

distant (in terms of perceived quality) stimuli has a higher impact on the final stimuli rank, than 

when comparing close stimuli. Accordingly, it is preferable to omit pairs with farther FoVs. 
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Moreover, decisions about pairs with closer FoVs have higher informative value and increase 

the discriminatory power of the test [113]. 

To form circular triads that help the outlier detection process (details are provided in next 

section), the test images were randomly split in two groups, and an additional comparison (pair 

of videos) was included, with 𝐹ℎ ∈{90⁰,110⁰} for the images in the first group, and                         

𝐹ℎ ∈{100⁰, 120⁰} for the images in the second group. As in the previous subjective tests 

campaign, before starting the evaluation of the videos, the observers read short written 

instructions about the test procedures and participated in a short training session to understand 

the objectives of the test and the evaluation interface. The viewport videos used in the training 

session were not used for the actual test. 

During the test session, each video (or stimuli) of each pair of navigation videos was shown to 

the observers for 10 seconds, one after the other, and the observers were asked to rate the second 

video, with respect to the first video, according to the following grading scale: +1 (better), 0 

(same), or -1 (worse); an asymmetric score is automatically associated to the first video. Thus, 

six comparisons were made for each omnidirectional image, shown in random order. It is 

worthy to note that the observers were allowed to watch the navigation videos multiple times, 

before rating them; as shown in Figure 3.9, when the observer clicks on “Watch Again”, both 

navigation videos were shown again, in the same order, one after another. To limit the test 

duration to half an hour at most, avoiding the observer’s fatigue, the subjective test was 

conducted in two separate sessions. Per observer, each test session took in average 25 minutes, 

plus 3 minutes for the training phase. In each test session, eight omnidirectional images were 

evaluated. In total, 96 comparisons (6 (pairs of FoVs) × 16 (images) = 96) were made. The 

number of observers was 23 in the first session and 21 in the second session, aged between 22 

and 42 years. The experiment was conducted using a Full HD 2D computer monitor, with a 

native resolution of 1920×1080 pixels. The observers were seated in front of the monitor, at a 

distance of approximately three times the picture height, as suggested in [73]. A subjective 

assessment interface, depicted in Figure 3.9, that includes viewing and scoring panels, was 

designed to perform the visualization of the navigation videos and collect the associated 

subjective scores. 

After the subjective test, the resulting subjective scores were processed according to the analysis 

described in the next section. The processed subjective scores are available in [110]. 

 

Figure 3.9. Subjective assessment interface designed to perform the visualization of the viewport 

videos and to collect the associated subjective scores. The scoring panel is shown only after the 

second video is shown. 
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C. PC Subjective Scores Processing 

The PC scores are usually represented in a wining frequency matrix. This matrix contains the 

number of times that a given stimulus is selected against the other stimuli involved in the 

comparison. To rank the stimuli from highest to lowest preference, the winning frequency 

matrix must be translated to a continuous scale of preferences. In the following, the outlier’s 

detection method and the procedure to translate the winning frequency matrix to a continuous 

scale, are described.  

Outliers can be detected by computing the transitivity satisfaction rate, Ʀ, for each observer, 

from his/her comparison results. The transitivity rule is violated when a circular triad is formed 

among three stimuli, 𝑎, 𝑏, 𝑐 under evaluation. If the grade 0 (i.e., “same” quality) was not 

allowed, the possible circular triads would be 

(𝑎 > 𝑏) ∩ (𝑏 > 𝑐) ∩ (𝑐 > 𝑎) 
(𝑎 < 𝑏) ∩ (b < 𝑐) ∩ (𝑐 < 𝑎)  

(3.7) 

where 𝑎 > 𝑏 means that a was preferred over 𝑏. Allowing the grade 0, each case above give 

rise to three additional circular triads which, for the first case are (for the second case it will be 

similar) 

(𝑎 > 𝑏) ∩ (𝑏 > 𝑐) ∩ (𝑐 = 𝑎) 
(𝑎 > 𝑏) ∩ (𝑏 = 𝑐) ∩ (𝑐 > 𝑎) 
(𝑎 = 𝑏) ∩ (𝑏 > 𝑐) ∩ (𝑐 > 𝑎)  

(3.8) 

where 𝑎 = 𝑏 represents a tie between 𝑎 and 𝑏. Accordingly, the total number of considered 

circular triads per group of three stimuli is eight. The score reliability, Ʀ𝑜, of observer o, is given 

by 

Ʀ𝑜 = 1 −
𝑜

𝑜
   (3.9) 

where 𝑜 is number of detected circular triads for that observer, and 
𝑜
 is the total number of 

possible circular triads. If Ʀ𝑜 ≤  0.9, the observer o is considered as an outlier, as recommended 

in [111], and his subjective scores are not further considered.  

After outlier detection, the subjective scores from the observers are represented in the wining 

frequency matrix and then translated to absolute quality scores using the Bradley-Terry (BT) 

model [114]; this is one of the most popular approaches to convert winning frequencies obtained 

from PC experiment, to continuous scale scores.  

Considering three discrete rates (“better”, ”same”, and “worse”), the results obtained from 𝑂 

observers when evaluating 𝐾 stimulus, can be represented by the winning frequencies, 𝑤𝑖𝑗, 

𝑖, 𝑗 = 1,2, … , 𝐾, which represents the number of times stimulus 𝑖 was preferred over stimulus 

𝑗, where 𝑤𝑖𝑗 + 𝑤𝑗𝑖 = 𝑂 and  𝑤𝑖𝑖 = 0. The tie cases are equally split, meaning that if the observer 

chooses the option “same” a score of 0.5 is given to each stimulus. The BT score for stimulus 

𝑖 is defined by 

𝑆𝑖 = log (𝑞𝑖)  (3.10) 

where 𝑞𝑖 can be considered as the quality score for stimulus 𝑖, 𝑞𝑖 > 0 and ∑ 𝑞𝑖 = 1𝐾
𝑖=1 . The 

probability of selecting the stimulus 𝑖 against stimulus 𝑗, is estimated by 
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𝑃𝑖𝑗 = 𝑃(𝑖 > 𝑗) =
𝑤𝑖𝑗

𝑂
=

𝑞𝑖
𝑞𝑖 + 𝑞𝑗

 . (3.11) 

The parameters 𝑞𝑖 can be estimated by maximizing the log-likelihood [114] 

𝐿(𝑞1, 𝑞2, … , 𝑞𝐾) =∑∑𝑃𝑖𝑗

𝐾

𝑗=1
𝑗≠𝑖

log (
𝑞𝑖

𝑞𝑖 + 𝑞𝑗
) .

𝐾

𝑖=1

 (3.12) 

The 95% confidence interval (CI) for the estimated values of log(𝑞𝑖), can be computed as [115] 

(log𝑞𝑖 − 1.96
√𝜎𝑖𝑖/𝛼 

𝑞𝑖
, log 𝑞𝑖 + 1.96

√𝜎𝑖𝑖/𝛼

𝑞𝑖
)   (3.13) 

where 𝛼 = ∑ 𝑐𝑖𝑗𝑖<𝑗 , 𝑐𝑖𝑗 is the number of comparisons between stimuli 𝑖 and 𝑗, 𝜎𝑖𝑖 is the 𝑖th 

diagonal element of the (𝐾+1)×(𝐾+1) covariance matrix 

 = [
 𝟏
𝟏′ 0

]
−1

, where  = [𝜆𝑖𝑗] (3.14) 

and 

𝜆𝑖𝑖 =
1

𝑞𝑖
∑

𝑞𝑗𝑐𝑖𝑗

𝛼(𝑞𝑖 + 𝑞𝑗)
2

𝑗≠𝑖

 , 𝑖 = 1,2,… , 𝐾 

𝜆𝑖𝑗 =
−𝑐𝑖𝑗

𝛼(𝑞𝑖 + 𝑞𝑗)
2
 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … , 𝐾 

(3.15) 

It is worthy to note that the confidence interval given by (4.13) corresponds to the BT fitting 

model and does not represent the observers’ confidence. Also, since the BT model estimates 

the scores for each stimulus from the distance between pairs of stimuli, the estimation error is 

propagated; thus, a larger confidence interval will result for stimuli with scores farther away 

from the stimulus with the highest computed score.  

In this work, the outliers were detected for each subjective test session separately, and by 

applying (3.7) to (3.9); two outliers were detected in each test session, and their subjective 

scores were not further considered. As detailed in Section 3.3.2.A, for each considered 

omnidirectional image six navigation videos were produced, each video having a distinct 𝐹ℎ, 

𝐹ℎ ∈ {75°, 90°, 100°, 110°, 120°, 135°}. Accordingly, a 6×6 wining frequency matrix was built 

for each omnidirectional image, containing the wining frequencies for the considered paired 

comparisons. The quality score of each navigation video was then estimated by applying (4.10), 

(3.11), and (3.12). Finally, the 95% confidence interval was computed using (3.13).  

D. Subjective Test Results and Analysis 

Table 3.2 presents the preferences probabilities between compared FoVs, computed by (3.12) 

and averaged for the corresponding stimuli; Figure 3.10 and Figure 3.11 depict, respectively, 

the resulting BT scores and corresponding 95% CI, obtained per image.  

Figure 3.10 shows that, in general, when the FoV varies from 75⁰ to 110⁰, the experienced 

quality increases. This is consistent with the results from other works (e.g. [11][12][106]), that 

showed an enhancement of the user experience when the FoV increases up to a certain value. 

On the other hand, the quality scores decrease for FoV values above 110⁰, since the geometric 

distortions  resulting  from  the  sphere  to  plane  projection  became   too  much  evident  and 
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Table 3.2. Preference Probabilities for the compared FoVs. 

FoV 75⁰ 90⁰ 100⁰ 110⁰ 120⁰ 135⁰ 

75⁰ - 0.09 - - - - 

90⁰ 0.91 - 0.18 - - - 

100⁰ - 0.82 - 0.35 - - 

110⁰ - - 0.65 - 0.66 - 

120⁰ - - - 0.34 - 0.87 

135⁰ - - - - 0.13 - 

 

 

Figure 3.10. BT scores vs. FoV for each considered omnidirectional image. 

annoying. This is objectively shown by Figure 4.2 of Chapter 4, that depicts the evolution of 

some stretching distortion measures, as a function of the FoV. 

The FoV of 110⁰ was selected as the optimum FoV for most of the considered images; the 

exceptions to this are the images Photography shop, Dinner 2, and Cave, for which the preferred 

FoV was 100⁰ (although with a marginal difference compared to the FoV of 110⁰). The images 

Photography shop and Dinner 2 have human faces quite close to the camera, and their 

geometric distortion becomes rather severe for the FoV of 110⁰. Regarding the image Cave, it 

shows the interior of a cave structure that has a round shape, whose distortion is quite visible 

for a FoV of 110⁰. 

Although the BT scores do not show the same increasing or decreasing rate for the different 

types of image content, no statistically significant difference was found, not even between 

indoor and outdoor images for which a clear separation was rather expected.  

As expected, Figure 3.11 shows that the CI increases for stimuli with FoVs farther away from 

the preferred FoV (110o), due to error propagation. This could be reduced with a more complete 

winning frequency matrix, requiring more pairs of compared FoVs during the subjective tests, 

at the cost of a higher test duration. 

In summary, the subjective test results suggest that the best trade-off between user immersive 

experience and geometric distortions perception is achieved for a FoV close to 110⁰, regardless 

of the image content.  However,  the optimum  FoV  could  have  a  different   value  if  other  
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Figure 3.11. The 95% CI for each considered omnidirectional image and FoV. 

projection than the rectilinear one (e.g., GPP with 𝑑 > 0 or Pannini) was used for the viewport 

rendering. For example, as shown in Figure 3.6, for the image Buildings 1, the FoVs of 75o and 

90o obtained a similar scores for 𝑝𝑟1(𝑑 = 0.25), but different scores (the score for 75o is much 

higher than 90o) for 𝑝𝑟4(𝑑 = 1). 

3.4 Final Remarks 

The first objective of this chapter was to subjectively evaluate the perceptual impact of the 

geometric distortions that result from the viewport rendering. To achieve this objective, a 

subjective evaluation test campaign of GPP viewports was conducted, showing that the 

projection type (𝑑 value), the considered FoV, and the image content characteristics, are the 

three main factors that influence the distortion strength, and its perception.  

The second objective of this chapter was to subjectively evaluate the FoV impact on the 

perceived geometric distortion, to determine the FoV that presents the best trade-off between 

user’s immersive experience and the perceived degradations due to geometric distortions (when 

the rectilinear projection is used), and also to evaluate its dependency on the image content. 

This objective was also achieved through a subjective evaluation test campaign. The 

experimental results show that the best trade-off between user immersive experience and 

geometric distortions perception is achieved for a FoV close to 110⁰, regardless of the image 

content.  

All the subjective tests were conducted using 2D displays. If HMDs were used, other factors 

such as lens distortions, the content magnification, and the effects of peripheral vision, may 

condition the perceptibility of the geometric distortions [67][116]; therefore, the main 

conclusions of this section should be validated (and eventually updated) for HMDs, by 

conducting similar subjective assessment tests with these devices. 

The work conducted for the first objective of this chapter was included on three published 

conferences and one journal paper, referred in the first four rows of Table 3.3. As mentioned 

earlier, the GPP subjective test was conducted in several sessions, progressively over time. 

Therefore, the last column of Table 3.3 presents the omnidirectional images considered in each 
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paper. The work conducted for the second objective of this chapter was included in a published 

conference paper, referred in the last row of Table 3.3. 

Table 3.3. Publications related to this chapter. 

Paper Type 
Used omnidirectional 

images 

F. Jabar, J. Ascenso, and M.P. Queluz, “Perceptual 

Analysis of Perspective Projection for Viewport Rendering 

in 360⸰ Images,” Proc. of the IEEE International Symposium 

on Multimedia, Taichung, Taiwan, Dec. 2017. 

Conference 

Images Conference, 

Buildings 1, Photography 

shop and Pole vault, of 

Figure 3.1 

F. Jabar, M.P. Queluz, and J. Ascenso, “Objective 

Assessment of Line Distortions in Viewport Rendering of 

360⸰ Images,” Proc. of the IEEE International Conference on 

Artificial Intelligence and Virtual Reality, Taichung, 

Taiwan, Dec. 2018. 

Conference 

Images Conference, 

Buildings 1, Photography 

shop, Pole vault, 

Museum, and Buildings 2, 

of Figure 3.1 

F. Jabar, J. Ascenso, and M.P. Queluz, “Content-Aware 

Perspective Projection Optimization for Viewport 

Rendering of 360⸰ Images,” Proc. of the IEEE International 

Conference on Multimedia and Expo, Shanghai, China,  

Jul. 2019. 

Conference 
All the images of  

Figure 3.1 

F. Jabar, J. Ascenso, and M.P. Queluz, “Objective 

Assessment of Perceived Geometric Distortions in Viewport 

Rendering of 360⸰ Images,” IEEE J. Sel. Top. Signal 

Process., vol. 14, no. 1, pp. 49–63, Jan. 2020. 

Journal 
All the images of  

Figure 3.1 

F. Jabar, J. Ascenso, and M.P. Queluz, “Field-of-View 

Effect on the Perceived Quality of Omnidirectional Images,” 

Proc. of the IEEE International Conference on Multimedia 

& Expo Workshops, Athlone, Ireland, Jul. 2020. 

Conference 
All the images of  

Figure 3.1 
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Chapter 4 
                                                                         _ 

4Objective Assessment and Optimization of the 

General Perspective Projection 

4.1 Introduction 

As mentioned in Chapter 2, any sphere to a plane projection results in stretching and/or bending 

distortions on the resulting planar image, whose strength and subjective impact depends on the 

image content. Accordingly, selecting a proper projection and its parameters may have an 

important role on the user’s QoE. In the general perspective projection (GPP), the amount and 

type of geometric distortions can be controlled by changing its only projection parameter – the 

projection center – allowing to obtain the often used rectilinear and stereographic projections, 

and other intermediate projections. However, this should be done with an automatic procedure 

where the projection center is optimized (in a perceptual sense) based on the viewport content. 

Optimizing the projection center, 𝑑, based on the viewport content requires the availability of 

a content-aware objective quality metric, that automatically estimates the perceived geometric 

distortion, after rendering. Therefore, the main objectives of this chapter are: 

• Develop content-dependent geometric distortion metrics to characterize and measure the 

two main types of geometric distortion that occur during the viewport rendering of 

omnidirectional images, notably stretching of image regions and bending of straight 

lines.  

• Develop a content-aware objective quality metric that automatically assesses the 

geometric distortions in the viewport image and predicts its subjective quality, when the 

GPP is used for the rendering of omnidirectional images. 

• Develop procedures to optimize the GPP when used in the viewport rendering process, 

aiming to minimize the perceived geometric distortions, by adapting the projection 

center to the viewport content. 

The rest of this chapter is organized as follows. Sections 4.2 and 4.3 propose several stretching 

and bending distortions metrics, respectively. Section 4.4 presents a novel content-aware 

objective quality metric, that integrates some of the individual distortion metrics previously 

described; it allows to assess the perceptual impact of the geometric distortions, when the GPP 

is used for viewport rendering. Section 4.5 describes a useful application of the proposed quality 

metric - the optimization of the GPP parameter (𝑑), according to the viewport content - allowing 

to obtained viewports with enhanced visual quality. Section 4.6 finalizes this chapter by 

presenting some final remarks.   
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4.2 Stretching Distortion Metrics 

In this section, a set of potential stretching distortion metrics, based on the Tissot ellipse of 

distortion (or indicatrix) described in Chapter 2, are proposed. First, the details about the Tissot 

indicatrix parameters computation are presented; these parameters are then used to characterize 

the geometric distortions induced by the GPP on the rendered viewport. Afterwards, three 

viewports (or global) stretching measures, are suggested. 

4.2.1 GPP Stretching Characterization 

The semi-major, 𝑎̂, and semi-minor, 𝑏̂, axis of the Tissot ellipse centered at position (𝑥𝑝, 𝑦𝑝) 

of the projection plane, for the forward projection, (𝑥𝑝, 𝑦𝑝) = 𝑃𝑟𝑜𝑗(𝜙, 𝜃), where (𝜃, 𝜙) are the 

spherical coordinates of a point on the sphere of unit radius, are given by [46] 

𝑎̂ =
𝑎́ + 𝑏́

2
  (4.1) 

 𝑏̂ =
𝑎́ − 𝑏́

2
  (4.2) 

where 𝑎́ and 𝑏́ are auxiliary terms given by 

𝑎́ = √ℎ2 + 𝑘2 + 2ℎ𝑘 sin 𝜃́  (4.3) 

𝑏́ = √ℎ2 + 𝑘2 − 2ℎ𝑘 sin 𝜃́. (4.4) 

In (4.3) and (4.4), ℎ  and 𝑘 are, respectively, the vertical and horizontal stretching  factors, and 

𝜃́ is the angular deformation, representing the angle between the projected meridian and parallel 

at (𝑥𝑝, 𝑦𝑝), given by 

ℎ = √(
𝜕𝑥𝑝
𝜕𝜃

)

2

+ (
𝜕𝑦𝑝
𝜕𝜃

)

2

  (4.5) 

𝑘 =
1

cos 𝜃
√(

𝜕𝑥𝑝

𝜕𝜙
)

2

+ (
𝜕𝑦𝑝

𝜕𝜙
)

2

  (4.6) 

sin 𝜃́ =
1

ℎ𝑘 cos 𝜃
[(
𝜕𝑦𝑝
𝜕𝜃

×
𝜕𝑥𝑝
𝜕𝜙

) − (
𝜕𝑥𝑝
𝜕𝜃

×
𝜕𝑦𝑝
𝜕𝜙

)] . (4.7) 

The local shape distortion, 𝑡, maximum angle deviation, 𝜔, and amount of inflation or deflation 

in the area, 𝑠, can be computed by (2.49) to (2.51). 

To obtain the Tissot indicatrix for the GPP, the partial derivatives required by (4.5) to (4.7) 

need to be obtained. Considering the GPP forward projection equations,                                        

(𝑥𝑝, 𝑦𝑝) = 𝑃𝑟𝑜𝑗(𝜙, 𝜃, 𝑑), given by (2.24) and (2.25), results on the partial derivatives presented 

in Table 4.1. It is worthy to note that since the local Tissot parameters are content-independent, 

they can be computed for any sphere to plane projection having closed-form projection 

equations. 

Figure 4.1 presents the resulting 𝑎̂, the local area inflation, 𝑠, and the local shape distortion, 𝑡, 

as a function of the longitude (𝜙), for different values of 𝑑, and along a horizontal (𝜃 = 0) and 

diagonal (𝜃 = 𝜙) viewport direction. 
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Table 4.1. Partial derivatives for GPP forward projection equations.  

𝜕𝑥𝑝

𝜕𝜃
= −

𝑑(1 + 𝑑) sin𝜃 sin𝜙

(cos 𝜃 cos𝜙 + 𝑑)2
  (4.8) 

𝜕𝑥𝑝
𝜕𝜙

=
(1 + 𝑑)(cos2 𝜃 + 𝑑 cos 𝜃 cos𝜙)

(cos 𝜃 cos𝜙 + 𝑑)2
  (4.9) 

𝜕𝑦𝑝
𝜕𝜃

=
(1 + 𝑑)(𝑑 cos 𝜃 + cos𝜙)

(cos 𝜃 cos𝜙 + 𝑑)2
  (4.10) 

𝜕𝑦𝑝
𝜕𝜙

=
(1 + 𝑑) sin 𝜃 cos 𝜃 sin𝜙

(cos 𝜃 cos𝜙 + 𝑑)2
  (4.11) 

 

  
a) b) 

  
c) d) 

  
e) f) 

Figure 4.1. Plot of 𝒂̂ (ellipse semi-major axis), 𝒔 (area factor), and 𝒕 (shape distortion) for:  

horizontal direction, in a), c), e); diagonal direction, in b), d), f). 

In Figure 4.1a), and for any considered projection, it can be observed an exponential growth in 

the value of 𝑎̂ with 𝜙; this stretching increases significantly along the diagonal direction            
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(cf. Figure 4.1b). Similar behaviour is shown by 𝑠 and 𝑡, although less remarkably by 𝑡; in 

particular, for 𝑑 = 1 results that 𝑡 = 1; for 𝑑 > 1, the value of 𝑡 increases again.  

Accordingly, the following main conclusions can be drawn: 

• Semi-major ellipsis axis, 𝒂̂ - for 𝑑 ∈ [0,1.5], the image is stretched towards the viewport 

borders and this stretching decreases as 𝑑 increases. This can be observed in Figure 4.1a)-

b), where 𝑎̂ increases significantly towards the image borders for 𝑑 = 0 (rectilinear 

projection) while this effect is weaker for larger values of 𝑑. 

• Area factor, 𝒔 - for 𝑑 ∈ [0,1.5], relative areas are not preserved. As can be seen in Figure 

4.1c)-d), for 𝑑 = 0 the area distortion increases significantly towards the image borders and 

decreases when 𝑑 increases. 

• Shape distortion, 𝒕 - for 𝑑 ∈ [0,1.5], the shape and angle distortions decrease when 𝑑 

increases towards 1, and increase again when 𝑑 > 1. For 𝑑 = 1 (stereographic projection) 

the projection is conformal, so shapes are locally preserved.  

Figure 4.2 depicts the resulting 𝑡 as a function of the longitude (𝜙), using 𝑑 = 0 and for 

different values of HFoV, and along a horizontal (𝜃 = 0) direction. When the HFoV increases 

from 110° to 150°, the value of 𝑡 increases exponentially. This shows that the stretching of 

image regions increases significantly towards the image borders, justifying why a large FoV 

was not selected as the optimum value in the subjective test of FoV impact, presented in Chapter 

3 (Section 3.3). 

 

Figure 4.2. Plot of 𝒕 (shape distortion) for 𝜽 = 𝟎 and different HFoV values. 

4.2.2 Stretching Metric Computation  

After obtaining the Tissot indicatrix parameters, 𝑎̂ and 𝑏̂, these parameters are then used to 

compute three measures of local stretching, namely, angle, scale, and area distortions. Finally, 

the local measures are aggregated to obtain three global stretching measures, that represent the 

whole viewport distortion. Each one of these steps is detailed herein:  

• Local Tissot Parameters - The specified FoV for the viewport rendering defines a region 

on the sphere corresponding to 𝜙 ∈ [−𝐹ℎ 2⁄ , 𝐹ℎ 2⁄ ] and 𝜃 ∈ [−𝐹𝑣 2⁄ , 𝐹𝑣 2⁄ ], where 

𝐹ℎ and 𝐹𝑣 are, respectively, the horizontal and vertical FoVs. This region is then uniformly 

sampled, with intervals Δ𝜙, Δ𝜃 (set to 0.05 degrees in this Thesis). For the sampled point 𝑖, 
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with spherical coordinates (𝜙𝑖, 𝜃𝑖), the corresponding Tissot parameters, 𝑎̂𝑖 and 𝑏̂𝑖 are then 

obtained as described in Section 4.2.1. 

• Local Stretching Measures - These measures account for the local angle, scale, and area 

distortions – denoted as 𝑑𝑎𝑛𝑔𝑙𝑒, 𝑑𝑠𝑐𝑎𝑙𝑒, and 𝑑𝑎𝑟𝑒𝑎 – and are formally described by (4.12) 

to (4.14), respectively, as suggested in [117]; cos 𝜃𝑖  reflects the decrease in the area 

comprised by Δ𝜙, Δ𝜃, as 𝜃 varies from 0 to  90 degrees.  

𝑑𝑎𝑛𝑔𝑙𝑒𝑖 = 2 sin−1 (
|𝑎̂𝑖 − 𝑏̂𝑖|

𝑎̂𝑖 + 𝑏̂𝑖
) cos 𝜃𝑖  (4.12) 

𝑑𝑠𝑐𝑎𝑙𝑒𝑖 = (
𝑎̂𝑖 + 𝑏̂𝑖
2

− 1) cos𝜃𝑖  (4.13) 

𝑑𝑎𝑟𝑒𝑎𝑖 = (𝑎̂𝑖 × 𝑏̂𝑖 − 1) cos 𝜃𝑖  . (4.14) 

Since the local Tissot parameters and stretching measures are content-independent, it can be 

computed beforehand for any considered FoV and 𝑑. 

• Global Stretching Measures - These measures represent the viewport angle, scale, and 

area distortions - denoted by 𝐺𝑑𝑎𝑛𝑔𝑙𝑒 , 𝐺𝑑𝑠𝑐𝑎𝑙𝑒 , 𝐺𝑑𝑎𝑟𝑒𝑎,  respectively - and are formally 

described by  

𝐺𝑑𝑎𝑛𝑔𝑙𝑒 =
1

𝑠̀
  ∑𝑑𝑎𝑛𝑔𝑙𝑒𝑖

𝑖

 (4.15) 

𝐺𝑑𝑠𝑐𝑎𝑙𝑒 =
1

𝑠̀
  ∑𝑑𝑠𝑐𝑎𝑙𝑒𝑖

𝑖

 (4.16) 

𝐺𝑑𝑎𝑟𝑒𝑎 =
1

𝑠̀
  ∑𝑑𝑎𝑟𝑒𝑎𝑖

𝑖

 (4.17) 

where 𝑠̀ is given by  

𝑠̀ = ∑cos𝜃𝑖
𝑖

 . (4.18) 

The aforementioned stretching measures are content-independent, and thus are not enough to 

explain the dependency of the geometric distortion visibility, on the image content (as seen on 

the subjective tests). To make these measures content-dependent, they are combined with 

viewport saliency weights, which gives more importance to the viewport regions that attract 

more the user attention (e.g., objects, human faces) and thus are more sensitive to geometric 

distortions. This step will be detailed in Section 4.4.1.B. Also, the evaluation of the proposed 

metrics, and the selection of the most useful ones - from the point of view of viewport quality 

estimation - is conducted in Section 4.4.2. 

Although the Tissot indicatrix, and the proposed measures based on it, may explain some of the 

distortions that are visible on the rendered viewport, they are not able to explain, nor to measure, 

the bending of straight lines. However, this distortion plays a significant role on the user’s QoE; 

for the particular case of the GPP, lines bending becomes quite visible and annoying as the 

projection center, d, approaches 1. This issue is considered on the next section, where a set of 

potential bending distortion metrics are proposed.   
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4.3 Bending Distortion Metrics 

This section proposes a set of potential line distortion metrics, for viewport rendering of 

omnidirectional images. First, straight lines are detected and merged, and short lines are filtered 

out. After, for each remaining line, its distortion is computed. Finally, the individual distortion 

values are aggregated in a single value, that represents the viewport (or global) line distortion.  

4.3.1 Line Detection and Merging 

To compute the bending measures, straight lines are detected in the viewport obtained with the 

rectilinear projection, since this projection keeps the straightness of the lines. Each detected line 

is represented as a set of pixels. In general, the bending of short lines has a lower perceptual 

impact; therefore, lines that are close enough, thus likely belonging to the same image contour, 

are merged with some criteria; also, short lines that remain after the merging procedure, are 

removed. Each step is described next: 

• Straight Line Detection - Straight lines are detected using a line segment detector 

(EDLines) proposed in [118]. EDLines is an algorithm that aims to extract straight lines in 

the image based on the image gradient, with a validation step that allows to reduce the 

number of false detections. It is based on edge segment chains, runs faster than other line 

detection algorithms, and does not require any parameter tuning. Figure 4.3b) illustrates an 

example of the detected lines, for the viewport represented in Figure 4.3a); as can be seen, 

several broken lines may result from the line detection step. 

• Line Merging - After line detection, neighbour lines are connected, based on their 

orientations and locations. The following steps are applied: 

1) Angular clustering - Lines with a similar orientation (parallel or quasi parallel lines) 

are clustered together. A cluster represents a group of lines and is defined by some 

angular interval. According to their orientation, all lines are assigned to clusters 

which are precisely defined by their angular interval limits. The size of the uniform 

intervals is controlled by 𝐴𝑐, in degrees. 

2) Collinear clustering - For each cluster of parallel lines obtained in the previous step, 

lines are aggregated in sub-clusters of collinear lines (lines having their end points 

on the same straight line), according to their y-axis (or x-axis) intercept value 

difference. This process is controlled by the parameter 𝐶𝑐, in length units, which 

corresponds to the maximum difference between intercept values for the lines to be 

considered as collinear. 

3) Merging - Lines considered as collinear are merged if they are close to each other, 

i.e., if the start or end location of a line is close to the start or end location of another 

line. This means that the distance between lines is defined by their extremities. This 

process is controlled by the parameter 𝐿𝑚, in length units. 

• Line Filtering - Since short lines do not have a relevant perceptual impact (as its bending is 

barely perceived), only the lines longer than a pre-defined threshold in length units, 𝐿𝑓, are 

kept. By increasing the value of 𝐿𝑓, more lines will be filtered out. 
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a) Rectilinear viewport b) Detected lines 

  
c) Merged lines d) Projected lines 

Figure 4.3. a) Rectilinear viewport with a square FoV of 𝟏𝟏𝟎°; b) Detected lines using EDLines; 

c) Merged lines with 𝑨𝒄 = 𝟑, 𝑪𝒄 = 𝟏𝟎, 𝑳𝒎 = 𝟐𝟓 and 𝑳𝒇 = 𝟒𝟓; d) Projected lines with 𝒅 = 𝟏. 

The line merging parameters were determined by visual inspection of the results obtained for 

several viewports, rendered from different omnidirectional images.  Following this procedure, 

𝐴𝑐, 𝐶𝑐, 𝐿𝑚 and 𝐿𝑓 were set, respectively, to 3°, 0.033, 0.083, 0.150. Figure 4.3c) shows the 

resulting lines after applying the described procedure to the lines of Figure 4.3b). 

To get the lines on the viewport resulting from a given projection, (𝑥𝑝, 𝑦𝑝) = 𝑃𝑟𝑜𝑗(𝜙, 𝜃),   

every pixel position of the resulting lines is first backward projected to the spherical 

representation, using the rectilinear projection, and then forward projected to the viewport 

plane, using the intended projection, (𝑥𝑝, 𝑦𝑝) = 𝑃𝑟𝑜𝑗(𝜙, 𝜃). As an example, Figure 4.3d) 

shows the resulting lines for GPP with 𝑑 = 1, after applying the backward (with 𝑑 = 0) and 

the forward (with 𝑑 = 1) projections, to the lines of Figure 4.3c). 

4.3.2 Bending Metric Computation 

The bending metrics are computed by measuring two characteristics of each projected straight 

line - the line curvature and the line inclination - for the projection under consideration. Then, 

a pooling procedure is performed to fuse all measures into a single metric value, representing 

the whole (i.e., global) viewport line bending. The following steps are performed: 

• Line Distortion Computation - Depending on the used projection, the projected lines can 

be distorted in two different ways: i) bending, and ii) direction change (or inclination). As 

an example, Figure 4.3d) shows that the lines of the windows located on the right part are 

unnaturally deformed and have odd angles. Consider that 𝐿 = {ℓ1, ℓ2, ℓ3, … , ℓ𝑇} is the set 

of projected lines for a given viewport, where ℓ𝑖 is a projected line indexed by 𝑖, and 𝑇 is 
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the total number of projected lines. In this context, two line distortion measures are 

proposed: 

1) Line curvature measure - Consider a projected line, ℓ𝑖 (represented in green in 

Figure 4.4), and the straight line joining the line endpoints, 𝑠𝑖 (represented in blue in 

Figure 4.4), whose length is 𝐿̂𝑖. Two measures are then defined: the line curvature 

𝐿𝐶𝑖, defined as the maximum distance between ℓ𝑖  and 𝑠𝑖 (along the perpendicular 

direction to 𝑠𝑖), and the normalized line curvature 𝑁𝐿𝐶𝑖, defined by (4.19) 

which is rather similar to a metric proposed in [36]. As the projected line tends to a 

straight line, 𝐿𝐶𝑖 tends to 0, and 𝑁𝐿𝐶𝑖 tends to 1; otherwise, 𝐿𝐶𝑖 has a value greater 

than 0, and 𝑁𝐿𝐶𝑖 has a value lower than 1. 

 

Figure 4.4. Illustration of the line curvature measure. 

2) Line inclination measure - Now, consider a new line, 𝑜𝑖 (shown in red in Figure 

4.5) with the same angle as the straight line obtained with the rectilinear projection 

(𝑑 = 0), and starting at one endpoint of the corresponding projected line. Again, two 

measures are defined: the line inclination 𝐿𝐼𝑖, defined as the maximum distance 

between 𝑜𝑖  and 𝑠𝑖 (and along the perpendicular direction to 𝑠𝑖), and the normalized 

line inclination 𝑁𝐿𝐼𝑖, defined by (4.20) 

As the projected line inclination tends to the original straight line inclination, 𝐿𝐼𝑖 

tends to 0, and 𝑁𝐿𝐼𝑖 tends to 1; otherwise, 𝐿𝐼𝑖 has a value greater than 0, and 𝑁𝐿𝐼𝑖 
has a value lower than 1.  

 

Figure 4.5. Illustration of the line inclination measure. 

3) Line distortion combination - In this case, the previously defined line curvature and 

inclination measures are combined in a single distortion measure, according to 

                      𝑁𝐿𝐶𝑖 =
𝐿̂𝑖

𝐿𝐶𝑖 + 𝐿̂𝑖 
 . (4.19) 

𝑁𝐿𝐼𝑖 =
𝐿̂𝑖

𝐿𝐼𝑖 + 𝐿̂𝑖
 . (4.20) 

𝐿𝑀𝐶𝑖 = 𝐿𝐶𝑖 + 𝐿𝐼𝑖 (4.21) 

𝑁𝐿𝑀𝐶𝑖 =
𝐿̂𝑖

𝐿𝑀𝐶𝑖 + 𝐿̂𝑖
  . (4.22) 
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Figure 4.6 shows five straight lines (red color) obtained with the rectilinear (𝑑 = 0) 
projection, the corresponding projected lines (green color) obtained with GPP projection 

(𝑑 = 1) and all the measure values for each line. All line distortion measures vary as 

expected from the perceived distortions, having higher distinctive values for the 𝐿𝐶 and 𝐿𝐼 
metrics.  

 

Figure 4.6. Example of line distortion values for a few projected lines (scaled by a scale factor of 

300).  

• Line Pooling - To fuse, in one single value, the line distortion values computed for all 

projected lines, several pooling functions (𝑃𝑠
𝑙) were considered, which are listed in Table 

4.2. In this table, K is a vector containing one of the distortion measures - LC, NLC, LI or 

NLI - for all projected lines; 𝐾𝑝 is a vector containing all the elements of K higher or equal 

to , where  corresponds to the p percentile of K (i.e., p% of the elements of K are lower 

than ); 𝐾𝑝̅̅̅̅  is a vector containing all the elements of K lower or equal to ̅, where ̅ 

corresponds to the (100 − 𝑝) percentile of K. Poolings 𝑃1
𝑙 and 𝑃5

𝑙 assume that the subjective 

impact of the line distortion increases with the number of lines, while pooling 𝑃2
𝑙, 𝑃6

𝑙, and 

𝑃7
𝑙, consider that the impact varies with the average line distortion; poolings 𝑃3

𝑙 and 𝑃4
𝑙 

presume that the perceptual impact is mainly influenced by the most distorted lines. The 

reason for the percentile (𝑝%) is to exclude the lines with low distortion values (e.g., the 

distortion for lines at the viewport center is low and may not be visible). The best value for 

𝑝 was 90%, obtained as described in Annex A. 

Table 4.2. Line pooling strategies. 

𝑷𝒔
𝒍  Distortion Measure 

𝑃1
𝑙 = Sum(𝐾) LC, LI, LMC 

𝑃2
𝑙 = Average(𝐾) LC, NLC, LI, NLI, LMC, NLMC 

𝑃3
𝑙 = Max(𝐾) LC, LI, LMC 

𝑃4
𝑙 = Min(𝐾) NLC, NLI, NLMC 

𝑃5
𝑙 = Sum(𝐾𝑝) LC, LI, LMC 

𝑃6
𝑙 = Average(𝐾𝑝) LC, LI, LMC 

𝑃7
𝑙 = Average(𝐾𝑝̅̅̅̅ ) NLC, NLI, NLMC 
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It is worthy to mention that the normalized measures, 𝑁𝐿𝐶 and 𝑁𝐿𝐼, vary inversely with the 

line distortion values, resulting that pooling 𝑃1
𝑙, 𝑃3

𝑙, 𝑃5
𝑙 and 𝑃6

𝑙 cannot be applied to them. In fact, 

these pooling functions sum the vector elements or consider the highest values of the vector 

(which correspond to the lowest distortions for these measures). Pooling 𝑃4
𝑙 and 𝑃7

𝑙 were 

specifically designed for these cases. 

Considering the possible combinations of pooling strategies with distortion measures, a total of 

24 potential line distortion metrics are obtained. 

In [119], and besides the proposal of the line bending metrics and pooling functions presented 

above (with exception for LMC and NLMC, which were introduced later), a preliminary SVM-

based model for objectively assessing the GPP was also proposed (which is included in Annex 

A). This model uses only the described line bending metrics and pooling functions and is able 

to classify a viewport obtained with a given GPP projection in one of the three quality groups 

referred to in Chapter 3, Section 3.2.4 (i.e., G1, G2 or G3), with an accuracy close to 91%. 

Accordingly, and besides validating the proposed line bending metrics, it allows to decide if it 

is worth to use a projection other than the conventional rectilinear one, for the considered 

viewport. However, for a reliable estimation of the viewport quality scores, a more complete 

model, that also incorporates an objective measure of the stretching distortion - besides some 

of the described line distortion measures - is required, as described in the next section.  

4.4 Content-Aware Objective Quality Metric  

This section describes the proposed content-aware objective metric, for assessing the perceived 

geometric distortions in viewport rendering of omnidirectional images, under GPP projection. 

The metric takes into account the image content, namely straight lines and salient regions, to 

compute two sets of geometric distortion measures (or features) described previously, that 

quantify the dominant distortion types - stretching of the objects and bending of straight lines - 

and predicts the CMOS value of a viewport rendered with the GPP. 

4.4.1 Methodology 

Figure 4.7 depicts the block diagram of the proposed metric. For a given input equirectangular 

image (ERI) image, viewport horizontal FoV, 𝐹ℎ, spatial resolution (𝑊𝑣𝑝, 𝐻𝑣𝑝), and viewing 

direction (𝜙𝑉𝐷 , 𝜃𝑉𝐷), two viewports are obtained with the GPP: the reference one, rendered 

with the rectilinear projection, and the viewport under evaluation, rendered with 𝑑 = 𝑑𝑞. After 

computing the viewport saliency map, stretching and bending features are extracted, which are 

then fed to a Support Vector Regression (SVR) model that outputs the predicted CMOS value 

for 𝑑 = 𝑑𝑞.  

 

Figure 4.7. The block diagram of the proposed quality assessment metric. 
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The following sections detail the main steps of the metric. 

A. Saliency Map Computation 

Saliency detection models aim at identifying the image regions where the human attention is 

more focused on. To detect the salient regions in the viewport, the ML-Net saliency detection 

method [120] was used, since it is computationally efficient and has a good performance. In 

this method, the saliency map is computed based on features extracted at different levels of a 

Deep Convolutional Neural Network (DCNN). As in many saliency detection models, the 

resulting saliency map has the highest values at the center of salient regions, which 

progressively decrease towards the region borders (as shown in Figure 4.8b). However, the 

straight lines are typically located on the regions borders or objects contours. Thus, to increase 

the saliency values over these important structures, a power-law transformation was applied to 

the whole saliency map, according to 

𝐷(𝑚, 𝑛) = λ × 𝑆γ(𝑚, 𝑛)  (4.23) 

where 𝑆(𝑚, 𝑛) and 𝐷(𝑚, 𝑛) are, respectively, the input and output saliency values (in the range 

[0,255]) at the viewport pixel position (𝑚, 𝑛), and λ  and 𝛾 are positive values that condition 

the transformation behavior. 

   
a) b) c) 

Figure 4.8. a) Viewport obtained with GPP,  𝒅 = 𝟎 and a square FoV of 𝟏𝟏𝟎°;  
b) Saliency map obtained with the ML-Net method; c) Saliency map after applying the power-

law transformation, with 𝝀 = 𝟏 and 𝜸 = 𝟎. 𝟖. 

For 𝛾 < 1, a narrow range of the lowest input values is mapped into a wider range of output 

values. For the results presented in this Thesis, 𝛾 = 0.8 and λ = 1, which slowly expands the 

saliency from the regions center, towards their borders. These values were determined by visual 

inspection of the resulting viewport saliency maps, and by their impact in the final metric 

results. After applying the power-law transformation, the resulting saliency maps are 

normalized to the range [0,1]; each pixel value is then considered as a saliency weight.         

Figure 4.8b) shows the saliency map resulting from the ML-Net method, for the viewport 

depicted in Figure 4.8a); Figure 4.8c) shows the obtained map after power-law transformation. 

B. Stretching Feature Extraction 

The stretching features are based on the global Tissot distortion measures described in Section 

4.2.2, namely angle, scale, and area distortion. However, to make it content-dependent, these 

measures are weighted by the viewport saliency scores, according to 
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𝐺𝑑𝑎𝑛𝑔𝑙𝑒
𝑤 =

1

𝑠𝑤
  ∑𝑑𝑎𝑛𝑔𝑙𝑒𝑖

𝑖

× 𝑤𝑖 (4.24) 

𝐺𝑑𝑠𝑐𝑎𝑙𝑒
𝑤 =

1

𝑠𝑤
  ∑𝑑𝑠𝑐𝑎𝑙𝑒𝑖 ×𝑤𝑖

𝑖

 (4.25) 

𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 =

1

𝑠𝑤
  ∑𝑑𝑎𝑟𝑒𝑎𝑖 ×𝑤𝑖

𝑖

 , (4.26) 

where 𝑑𝑎𝑛𝑔𝑙𝑒𝑖, 𝑑𝑠𝑐𝑎𝑙𝑒𝑖,  𝑑𝑎𝑟𝑒𝑎𝑖 are, respectively, the local angle, scale and area distortion at 

(𝜙𝑖, 𝜃𝑖), given by (4.12) to (4.14), 𝑤𝑖 is the saliency weight at (𝜙𝑖, 𝜃𝑖), and 𝑠𝑤 is given by 

𝑠𝑤 =∑cos𝜃𝑖
𝑖

× 𝑤𝑖 . (4.27) 

Since the saliency was obtained on the viewport plane, with pixel coordinates (𝑚,𝑛), to get the 

saliency weigh at (𝜙𝑖, 𝜃𝑖) these coordinates are first projected on the viewport plane, using 

(2.24) and (2.25), and the corresponding viewport position is then obtained by (2.39) to (2.42). 

This final step integrates the saliency maps into the local stretching measures, thus resulting in 

a global measure that considers the content characteristics; this brings an added value compared 

to the content-independent Tissot measures.  

Figure 4.9c) presents the global stretching measures with respect to different projection centers, 

resulting for the two viewport images depicted in Figure 4.9a) and Figure 4.9b). As shown, all 

measures have the highest value for 𝑑 = 0 (𝑝𝑟0) and decrease when the projection center tends 

to 1 (𝑝𝑟4). But more importantly, Figure 4.9c) shows that the proposed measures, with saliency, 

allows to discriminate both images according to the perceived stretching distortion; in fact, the 

distortion values represented in solid lines (corresponding to Figure 4.9a), which have a higher 

amount of perceived stretching, as in the boy on the left, and on the table) are higher than the 

ones represented in dashed lines, corresponding to Figure 4.9b). Without the use of the saliency, 

the stretching measures would be the same for both images.  

Since the CMOS values obtained experimentally have, as a reference, the viewport rendered 

with 𝑑=0, the three stretching features for a query projection center, 𝑑𝑞, are defined as 

𝑆𝐹𝑑𝑎𝑛𝑔𝑙𝑒 = 𝐺𝑑𝑎𝑛𝑔𝑙𝑒
𝑤 (0) − 𝐺𝑑𝑎𝑛𝑔𝑙𝑒

𝑤 (𝑑𝑞)  (4.28) 

𝑆𝐹𝑑𝑠𝑐𝑎𝑙𝑒 = 𝐺𝑑𝑠𝑐𝑎𝑙𝑒
𝑤 (0) − 𝐺𝑑𝑠𝑐𝑎𝑙𝑒

𝑤 (𝑑𝑞)  (4.29) 

𝑆𝐹𝑑𝑎𝑟𝑒𝑎 = 𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 (0) − 𝐺𝑑𝑎𝑟𝑒𝑎

𝑤 (𝑑𝑞) . (4.30) 

where 𝑆𝐹𝑑𝑎𝑛𝑔𝑙𝑒, 𝑆𝐹𝑑𝑠𝑐𝑎𝑙𝑒, 𝑆𝐹𝑑𝑎𝑟𝑒𝑎, obtained by (4.28) to (4.30), represent relative measures of 

global angle, scale, and area distortion, respectively. 

C. Line Detection and Bending Feature Extraction 

To compute the line bending features for 𝑑 = 𝑑𝑞, straight lines are first detected in the viewport 

rendered with 𝑑 = 0, according to the procedure described in Section 4.3.1. The resulting lines 

are then transformed to spherical coordinates, using the backward-projection with 𝑑 = 0, and 

re-projected on the viewport plane using the forward-projection, with 𝑑 = 𝑑𝑞. Finally, bending 

features are computed based on the line distortion measures, and pooling functions, proposed 

in Section 4.3.2. However, since line distortions occurring in salient regions of the viewport are 

likely to have a higher  perceptual impact,  these measures  are  weighted  by  saliency  scores,  
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a) b) 

 
c) 

Figure 4.9. a)-b) Two rendered viewports with a square FoV of 110° and with a high and low 

amount of perceived stretching distortion, respectively; c) Plot of global stretching distortion 

values with   respect   to  different  projection   centers,  𝒅,  and  computed forFigure 4.9a) and b). 

similarly to what was done for the stretching features. Thus, six new line distortion measures 

are obtained, which are presented in Table 4.3. 

In Table 4.3, 𝐿𝐶𝑤, 𝐿𝐼𝑤, and 𝐿𝑀𝐶𝑤 are the weighted line distortion measures and their 

corresponding normalized measures 𝑁𝐿𝐶𝑤, 𝑁𝐿𝐼𝑤, and 𝑁𝐿𝑀𝐶𝑤, respectively; 𝑖 is the line index 

and 𝐿̂ is the line length; 𝑤𝑙 is the line saliency weight, computed by averaging all the saliency 

values coincident with the projected line.  

Figure 4.10b) depicts the line distortion measures for a few straight lines, projected with          

𝑑 = 1. As shown, all line distortion measures vary as expected from the perceived distortions.  

To aggregate, in a single global value, the line distortion values computed for all projected lines, 

the proposed line pooling functions presented in Table 4.2 are applied, with a 𝑝 value that was 

fixed at 90%. This value was found according to the procedure explained in Annex A. 

Considering the possible combinations of pooling strategies with distortion measures, a total of 

24 potential line bending features are obtained. 
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Table 4.3. Weighted line distortion measures. 

𝐿𝐶𝑖
𝑤 = 𝑤𝑖

𝑙 × 𝐿𝐶𝑖  
(4.31) 𝑁𝐿𝐶𝑖

𝑤 =
𝐿̂𝑖

𝐿𝐶𝑖
𝑤 + 𝐿̂𝑖

  (4.32) 

𝐿𝐼𝑖
𝑤 = 𝑤𝑖

𝑙 × 𝐿𝐼𝑖 
(4.33) 𝑁𝐿𝐼𝑖

𝑤 =
𝐿̂𝑖

𝐿𝐼𝑖
𝑤 + 𝐿̂𝑖

   (4.34) 

𝐿𝑀𝐶𝑖
𝑤 = 𝐿𝐶𝑖

𝑤 + 𝐿𝐼𝑖
𝑤   (4.35) 𝑁𝐿𝑀𝐶𝑖

𝑤 =
𝐿̂𝑖

𝐿𝑀𝐶𝑖
𝑤 + 𝐿̂𝑖

   (4.36) 

 

  
a) b) 

Figure 4.10. a) Projected lines with a square FoV of 110° and 𝒅 =  𝟏; b) A few projected lines 

and the respective line distortion measure values (scaled by 300); corresponding straight lines 

are depicted in red. 

The bending features for a query projection center, 𝑑𝑞, are not subtracted from the reference, 

as in stretching features, since the values of these features for the reference viewport are always 

zero (no bending occurs for the rectilinear image).  

D. SVR-based Quality Prediction 

To predict a quality score for the viewport obtained with 𝑑 = 𝑑𝑞, the selected stretching and 

bending features are computed, and are combined using Support Vector Regression (SVR). The 

choice for the SVR is justified by its proved efficiency in existing solutions for image and video 

quality assessment, e.g. [85][121][122].  

To find a regression function that accurately predicts the quality scores from the input features, 

an SVR model has to be computed with some training data. This step was accomplished using 

a part of the GPP viewport dataset described in Chapter 3 (Section 3.2) and associated CMOS 

values, that are considered the target ground truth quality values. A linear SVR was used with 

a margin of tolerance 𝜀 (influences the number of support vectors used for prediction) and 

penalty factor 𝐶, also referred as cost or regularization constant. The 𝜀 and 𝐶 parameters were 

optimized by grid-search: a finite set of reasonable values was evaluated, and the best values 

found for 𝜀 and 𝐶 were 1.2 and 1.4, respectively. The Matlab SVR implementation was used. 
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4.4.2 Experimental Procedure and Performance Evaluation 

In this section, the proposed stretching and bending features are first evaluated, with the goal 

of selecting a subset of potentially relevant features to be used in the final quality prediction 

model. After describing the SVR training and testing procedures, the performance of the trained 

model is then assessed and compared to benchmark solutions. 

A. Feature Selection 

In Sections 4.4.1.B and 4.4.1.C, several stretching and bending features have been defined. 

However, it is very likely that some of them are more relevant than others, to the perceived 

viewport quality prediction, or are highly correlated with others, and may have less impact on 

the SVR performance. Furthermore, training the model with a too high number of features may 

lead to overfitting. Since it will be very time consuming to train and test the model for all 

possible subset of features, the following procedure was adopted to select a subset of potentially 

relevant features (as suggested in [123]): 

• Feature correlation with perceptual scores - a good feature is expected to be well 

correlated with the CMOS values obtained in the subjective evaluation. In this step, the 

Pearson Linear Correlation Coefficient (PLCC) between each feature and the CMOS values 

is computed. 

• Correlation between features - highly correlated features convey similar information and 

thus are potentially redundant, if both are kept. In this step, the PLCC between features 

(inter-features) is computed. 

• Decision step - If the PLCC between two features (or a group of features), is higher than 

0.9, then the selected feature is the one having the highest PLCC value, relative to CMOS 

values, and the other feature is (are) removed. 

For the stretching feature selection, the proposed stretching features were extracted only for the 

viewports where the bending distortion was not dominant; from the analysis of Figure 3.4 in 

the previous chapter, these correspond to the images contained in the group "𝑝𝑟𝑖 better than 

𝑝𝑟0". Since images Photography shop and Museum are in this group for both FoVs, the 48 

viewports from these images were used. Table 4.4 presents the results of the first two steps. 

Since the inter-features PLCC values are higher than 0.9, after step 3 only the  𝑆𝐹𝑑𝑎𝑟𝑒𝑎 feature 

was selected. 

Table 4.4. Stretching feature correlation (PLCC) between feature and CMOS values and 

between features. 

Feature correlation with 

perceptual scores 

 

Correlation between features 

 𝑆𝐹𝑑𝑎𝑛𝑔𝑙𝑒 𝑆𝐹𝑑𝑠𝑐𝑎𝑙𝑒 𝑆𝐹𝑑𝑎𝑟𝑒𝑎 

𝑆𝐹𝑑𝑎𝑛𝑔𝑙𝑒 0.44 𝑆𝐹𝑑𝑎𝑛𝑔𝑙𝑒 - - - 

𝑆𝐹𝑑𝑠𝑐𝑎𝑙𝑒 0.51 𝑆𝐹𝑑𝑠𝑐𝑎𝑙𝑒 0.97 - - 

𝑆𝐹𝑑𝑎𝑟𝑒𝑎 0.54 𝑆𝐹𝑑𝑎𝑟𝑒𝑎 0.93 0.99 - 
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Figure 4.11. Correlation between bending features and CMOS values; the black arrows signalize 

the selected features. 

Table 4.5. Correlation between selected bending features. 

 𝑃3
𝑙(𝐿𝐶𝑤) 𝑃7

𝑙(𝑁𝐿𝐶𝑤) 𝑃3
𝑙(𝐿𝐼𝑤) 𝑃5

𝑙(𝐿𝑀𝐶𝑤) 𝑃7
𝑙(𝑁𝐿𝑀𝐶𝑤) 

𝑃3
𝑙(𝐿𝐶𝑤) - - - - - 

𝑃7
𝑙(𝑁𝐿𝐶𝑤) 0.82 - - - - 

𝑃3
𝑙(𝐿𝐼𝑤) 0.73 0.88 - - - 

𝑃5
𝑙(𝐿𝑀𝐶𝑤) 0.69 0.86 0.85 - - 

𝑃7
𝑙(𝑁𝐿𝑀𝐶𝑤) 0.67 0.84 0.82 0.76 - 

For the bending feature selection, the proposed bending features were extracted only for the 

viewports where the stretching distortion was not dominant; this happens for images      

Buildings 1 and Buildings 2 contained in the group "𝑝𝑟𝑖 worse than 𝑝𝑟0" of Figure 3.4 in the 

previous chapter; accordingly, the 48 viewports from these images were used. Figure 4.11 

depicts the resulting PLCC values between each feature and CMOS values; the black arrows 

signalize the features remaining after step 3; Table 4.5 presents the correlation (PLCC) between 

the selected features. 

As shown by Table 4.4 and Figure 4.11, while the selected bending metric showed to be well 

correlated with the perceptual scores (CMOS), this correlation is not so good for the stretching 

measures. Thus, additional experiments were performed (which are included in Annex B), 

considering the viewport depth map. The goal was to see if the performance of the stretching 

features could be improved if they were weighted by depth scores instead of saliency scores. 

This is based on the fact that geometric distortions have a higher perceptual impact for objects 

closer to the camera. However, as shown in Annex B, the performance of the stretching feature 

was not improved much. Furthermore, computing the depth map was more computationally 

demanding than the saliency map, thus the depth map was no further considered.  

Concluding, from the initial set of features, only six are included in the subset of potentially 

relevant ones: 𝑆𝐹𝑑𝑎𝑟𝑒𝑎, 𝑃3
𝑙(𝐿𝐶𝑤), 𝑃7

𝑙(𝑁𝐿𝐶𝑤), 𝑃3
𝑙(𝐿𝐼𝑤), 𝑃5

𝑙(𝐿𝑀𝐶𝑤) and 𝑃7
𝑙(𝑁𝐿𝑀𝐶𝑤). After 

having evaluated the proposed metric with this reduced subset, the impact of the complete set 

of features will be also assessed, to understand the contribution of the remaining features. 

B. SVR Training and Testing 

After feature selection, the SVR training and testing steps were performed using the Cross-
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Validation (CV) procedure, which was applied 200 times. In each complete CV run, the GPP 

viewport dataset, described in the previous chapter (Section 3.2), was first randomly split into 

ten subsets (or folds) of equal size. Then, nine of the ten folders, together with the corresponding 

CMOS values, were used to train the model, and the remaining fold was used as testing              

(or validation) set. After ten CV iterations, each fold was used exactly once as testing data. 

Thus, in each complete run of the CV procedure, all viewports were used for training and testing 

of the SVR model.  

C. CMOS Prediction Evaluation 

The metric performance was evaluated using the PLCC, the Spearman rank-order correlation 

coefficient (SROCC), and the root-mean-square error (RMSE), between ground truth and 

predicted CMOS values. Figure 4.12 depicts the resulting PLCC value for each CV run 

(averaged over the ten folds), using the six selected features on the prediction model, showing 

that the metric performance is quite stable along the different runs.  

 

Figure 4.12. PLCC values for each run of the CV procedure. 

The resulting PLCC, SROCC, and RMSE (averaged over the 200 CV runs) are presented in 

Table 4.6 for the proposed metric, using the selected features and also all features. Moreover, 

two additional benchmark metrics were included; their description and results analysis are 

performed in the next section.  

To evaluate the power-law transformation impact on the final results, the six selected features 

were extracted without the use of this transformation; the SVR model train and test was repeated 

using these features, resulting in PLCC, SROCC, and RMSE values of, respectively, 0.68, 0.76 

and 1.39, which are lower than those resulting from the use of this transformation. 

Table 4.6. Quality prediction performance for proposed and benchmark metrics. 

Proposed metric, with selected features 

PLCC 0.78 

SROCC 0.79 

RMSE 1.19 

Benchmark metric from [36] 

PLCC 0.65 

SROCC 0.68 

RMSE 1.42 
 

Proposed metric, with all features 

PLCC 0.82 

SROCC 0.83 

RMSE 1.08 

Benchmark metric from “Scenario 3” 

described in Annex A 

PLCC 0.51 

SROCC 0.59 

RMSE 1.62 
 

To evaluate the impact, on the metric performance, of each feature (including those considered 

as not relevant in the feature selection procedure) the SVR model was built with the stretching 
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feature, 𝑆𝐹𝑎𝑟𝑒𝑎, and with the bending feature having the highest individual PLCC (shown in 

Figure 4.11), 𝑃7
𝑙(𝑁𝐿𝑀𝐶𝑤). The remaining features were ordered by their individual PLCC 

values and each feature was added to the model one by one (iteratively). At each iteration, the 

SVR model was trained and tested using the CV procedure described before. Figure 4.13 depicts 

the evolution of the resulting PLCC value. As can be observed, the model performance is 

marginally improved when the number of features increases above the six previously selected, 

showing that, from a performance perspective, it is worthy to keep only those features.  

 

Figure 4.13. PLCC evolution for the proposed metric, when the features are added one by one. 

Figure 4.14a) and Figure 4.14b) show the scatter plots of the ground truth versus predicted 

CMOS values considering all viewports on the dataset, for the proposed metric with the six 

selected features, and using all the features. 

D. Comparison with Related Work 

For comparison purposes, a benchmark metric with the conformality and bending measures 

proposed in [36], was defined. The bending measure is similar to (4.19) with poolings 𝑃2
𝑙(. ) 

and 𝑃4
𝑙(. ), and the conformality measurement, denoted as 𝐶𝑀, is described by (2.55), in Chapter 

2. In this work, both measures have been weighted additionally by the saliency. Since the 

CMOS scores represent the perceived quality relatively to the reference viewport (with 𝑑=0), a 

conformality feature was defined as 

𝑆𝐹𝐶𝑀 = 𝐶𝑀(0) − 𝐶𝑀(𝑑𝑞)  (4.37) 

where 𝐶𝑀(𝑑) is the conformality obtained for the viewport projected with 𝑑. The bending and 

conformality features were then used for SVR-based quality prediction (which was not used in 

[36]) using the GPP viewport dataset and the cross-validation procedure, previously described. 

The resulting PLCC, SROCC and RMSE are presented in Table 4.6, and the scatter plot of 

ground-truth versus predicted CMOS is depicted in Figure 4.14c). To assess the impact of using 

a stretching feature and the saliency weighing of the features, the SVR model was also trained 

and tested with the line bending features proposed in “Scenario 3” of [119], and described in   

Annex A. The resulting PLCC, SROCC and RMSE are included in Table 4.6, and the scatter 

plot of ground-truth versus predicted CMOS is depicted in Figure 4.14d). Both Table 4.6 and 

Figure 4.14 show that, with the proposed set of features, the predicted CMOS values are better 

correlated with the values resulting from subjective assessment. 

0.4

0.6

0.8

1.0

2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

P
L

C
C

Number of features



 

87 

 

  
a) b) 

  
c) d) 

Figure 4.14. Ground truth CMOS versus predicted CMOS for: a) Proposed metric, with selected 

features; b) Proposed metric, with all features; c) Benchmark metric from [36]; d) Benchmark 

metric from “Scenario 3” described in Annex A. 

4.5 GPP Optimization 

This section describes a useful application of the proposed content-aware objective quality 

metric proposed in Section 4.4, which is the computation of the optimum value for the GPP 

parameter (𝑑), to be used on the viewport rendering. This allows to minimize the perceived 

geometric distortions, by adapting the projection center, globally, to the viewport content, 

resulting in a content-aware general perspective projection (CA-GPP). The optimum value for 

parameter 𝑑 can be obtained by iteratively running the SVR model for several 𝑑 values and 

selecting the one that results in the highest CMOS value. Yet, an alternative procedure was also 

implemented and evaluated, where the viewport geometric distortion is modeled by a simple 

cost function, defined by one bending and one stretching metric; the optimum 𝑑 is then obtained 

by iteratively minimizing this function, over a pre-defined set of 𝑑 values. Both approaches are 

next presented. 

4.5.1 SVR-based CA-GPP 

The GPP projection parameter is optimized based on the predicted perceptual score obtained 

from SVR, as depicted in Figure 4.15. To automatically select the “best” GPP projection center, 

viewports are iteratively rendered for 𝑑 values in the interval [0,1], with a step-size of  

Δ𝑑 = 0.25; 𝑑 values higher than 1 were not considered, since the fisheye effect becomes too 

much visible. For each rendered viewport, the six selected features described in Section 4.4.2.A, 

are extracted and fed to the SVR model that was built in Section 4.4.1.D, which predicts the 

corresponding quality score, CMOSPre. The selected projection center (𝑑𝑒𝑠𝑡) is the one resulting  
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Figure 4.15. Proposed CA-GPP framework based on the SVR-based quality scores prediction. 

in the highest CMOSPre value. Since the predicted quality scores are relative to a reference 

viewport (obtained with 𝑑 = 0) if the highest CMOSPre value is less than 5, then the selected 

projection center is 𝑑𝑒𝑠𝑡 = 0, which is the best one in this case (cf. Figure 3.4).  

To perform a quantitative evaluation of the automatic GPP parameter selection, a suitable 

metric must be first defined. Consider 𝑑𝑒𝑠𝑡
𝑣  the estimated optimum projection center for 

viewport 𝑣, obtained with the proposed CA-GPP, and 𝑑𝑜𝑝𝑡
𝑣  the optimum projection center for 

the same viewport, obtained from the GPP subjective assessment (the 𝑑 value corresponding to 

the highest CMOS score). Note that using 𝑑 = 0.25 on the CA-GPP, the evaluated 𝑑 values 

are the same as those used on the GPP subjective assessment tests described in Chapter 3, i.e.,  

𝑑 = 0, 0.25, 0.5, 0.75, 1. A simple metric could be the absolute difference between 𝑑𝑒𝑠𝑡
𝑣  and 

𝑑𝑜𝑝𝑡
𝑣 . However, a high difference in 𝑑𝑒𝑠𝑡

𝑣  and 𝑑𝑜𝑝𝑡
𝑣  is not meaningful if the corresponding 

subjective scores are similar, meaning that the perceived quality of the corresponding viewports 

are also similar; on the contrary, a small difference in 𝑑𝑒𝑠𝑡
𝑣  and 𝑑𝑜𝑝𝑡

𝑣  should be penalized if the 

perceived quality of the corresponding viewports is rather different. Thus, the proposed metric 

uses the corresponding CMOS values to make the evaluation and considering the perceived 

quality of different values for the projection center parameter. The prediction error for viewport 

𝑣 (𝑃𝑃𝐸𝑣), is then defined as the absolute difference in the CMOS scores resulting for 𝑣 when 

rendered with 𝑑𝑒𝑠𝑡
𝑣  and 𝑑𝑜𝑝𝑡

𝑣   

𝑃𝑃𝐸𝑣 = |CMOS𝑑𝑒𝑠𝑡
𝑣 − CMOS𝑑𝑜𝑝𝑡

𝑣 | . (4.38) 

Table 4.7 presents the average 𝑃𝑃𝐸 per quality groupe (G1 - 𝑝𝑟𝑖 better than 𝑝𝑟0, G2 -  𝑝𝑟𝑖 

similar to 𝑝𝑟0, G3 - 𝑝𝑟𝑖 worse than 𝑝𝑟0, as defined in Chapter 3 (Section 3.2.4), and shown in 

Figure 3.4), and the global maximum and average values (considering all the viewports 

evaluated on the subjective assessment) for the rectilinear, stereographic, and the proposed CA-

GPP. The optimized projection achieves the lowest average PPE (per group) for groups G1 and 

G3, and also the lowest global "max PPE" and "average PPE" by a significant margin, which 

validates the proposed CA- GPP projection. As expected, the rectilinear projection achieves the 

minimum 𝑃𝑃𝐸 average value for G3, which is mainly composed by viewports with linear 

structures; this also justifies why the stereographic projection has the highest average PPE (per 

class) for group G3. 

Table 4.7. Quantitative evaluation of compared projections. 

 Average PPE per group Max 

PPE 

Average 

PPE Projection G1 G2 G3 

Rectilinear 2.17 0.41 0.00 3.33 1.08 

Sterographic 0.48 1.04 3.14 4.42 1.32 

CA-GPP 0.42 0.42 0.00 2.42 0.32 
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4.5.2 Cost Function-based CA-GPP  

The proposed SVR-based procedure to optimize the GPP could be also applied to globally 

optimize other sphere to plane projections. However, it requires subjective tests to obtain the 

ground truth quality scores, to be used for SVR training. For a projection with more than one 

parameter (e.g., Pannini, which has two parameters, 𝑑 and 𝑣𝑐) it would be also more time 

consuming to perform those tests. Thus, a simpler procedure was also conceived, where the 

projection parameter (𝑑) is optimized based on a simple cost function, that includes just two 

geometric distortions measures, one for stretching and another for bending. Although in 

[10][56] a similar procedure was used, it was not validated with respect to the perceived 

distortion, nor the cost function parameters, that determine how much weight should be applied 

to each type of geometric distortion, were obtained perceptually. 

 

Figure 4.16. Cost function-based CA-GPP framework. 

Figure 4.16 depicts the architecture of the proposed cost function-based CA-GPP, which has 

several common points with the SVR-based CA-GPP (cf. Figure 4.7 and Figure 4.15); the 

differentiating ones are the used distortion features and cost function, which are detailed below:   

• Stretching and Bending Feature Extraction - The best stretching feature, 𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 , 

proposed in Section 4.4.1.B, and one of the best bending features - Line Measure 

Combination, 𝐿𝑀𝐶𝑤, with line pooling function, 𝑃5
𝑙 proposed in Section 4.4.1.C, were 

used. Both measures are weighted by saliency scores, obtained from the viewport saliency 

map as described in Section 4.4.1.A. The line detection and merging, required before 

bending feature extraction, is accomplished as presented in Section 4.3.1. 

• Cost Function Computation - To estimate the optimum projection center (𝑑𝑒𝑠𝑡), that 

minimizes the perceived geometric distortions in the viewport, the stretching and bending 

features are combined in a distortion cost function, defined as 

𝐷(𝑣, 𝑑) = 𝛼𝑆𝑑
𝑣 + 𝛽𝐵𝑑

𝑣  ,  (4.39) 

where 𝑆𝑑
𝑣 and 𝐵𝑑

𝑣 are, respectively, the stretching and bending features of viewport 𝑣, when 

rendered with projection center 𝑑; 𝛼 and 𝛽 are parameters that determine how much weight 

should be applied to each type of geometric distortion. The optimum projection center for 

rendering the viewport 𝑣, is then estimated by 

𝑑𝑒𝑠𝑡
𝑣 = min

𝑑
(𝐷(𝑣, 𝑑)) . (4.40) 

In this Thesis, (4.40) was solved by evaluating the cost function 𝐷(𝑣, 𝑑) for every 𝑑 in the 

interval [0,1], with a step-size 𝑑 = 0.1. Parameters 𝛼 and 𝛽, that must be obtained beforehand, 

have a critical importance in the context of the minimization of (4.40) and thus on the predicted 

projection center value. Related works [10][36][55] have established these parameters 
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heuristically, with no defined method. In this work, they are derived from the subjective tests 

results, to guarantee that the importance of each factor reflects the human sensibility to each 

type of geometric distortion. Accordingly, it was assumed a linear relationship between the 

CMOS scores (before normalization) obtained from the GPP subjective tests and the difference 

on geometric distortion for the compared viewports. This relationship can be defined as 

CMOS𝑑
𝑣 = 𝑘(𝐷0

𝑣 − 𝐷𝑑
𝑣) = 𝛼′(𝑆0

𝑣 − 𝑆𝑑
𝑣) + 𝛽′(−𝐵𝑑

𝑣)  (4.41) 

where 𝑘 is a positive constant and (𝛼′, 𝛽′) = 𝑘 × (𝛼, 𝛽); 𝐷0
𝑣 and 𝑆0

𝑣 are, respectively, the 

distortion cost function and the stretching feature for the reference viewport (𝑑 = 0), for which 

𝐵0
𝑣 = 0; CMOS𝑑

𝑣  is the comparative MOS value for viewport 𝑣 when rendered with projection 

center 𝑑. For the optimum 𝑑 solution, (4.41) becomes 

CMOS𝑑𝑜𝑝𝑡
𝑣 = 𝛼′ (𝑆0

𝑣 − 𝑆𝑑𝑜𝑝𝑡
𝑣 ) + 𝛽′ (−𝐵𝑑𝑜𝑝𝑡

𝑣 ).  (4.42) 

and subtracting (4.42) to (4.41), results in 

CMOS𝑑
𝑣 = 𝛼′ (𝑆𝑑𝑜𝑝𝑡

𝑣 − 𝑆𝑑
𝑣) + 𝛽′ (𝐵𝑑𝑜𝑝𝑡

𝑣 −𝐵𝑑
𝑣) + CMOS𝑑𝑜𝑝𝑡

𝑣  .  (4.43) 

For 𝐾 viewports, whose 𝑑𝑜𝑝𝑡 and CMOS values are obtained from the GPP subjective 

assessment tests, (4.43) results in 4 × 𝐾 equations (as there are four 𝑑 values, besides the 

optimum one), that can be solved for 𝛼′ and 𝛽′ using a linear least squares method. Since 𝛼′, 

𝛽′ are related with 𝛼, 𝛽 by the same multiplicative constant, 𝑘, they can also be used in the 

minimization problem defined by (4.40). The best values for 𝛼′ and 𝛽′ were found at 0.67 and 

0.99, respectively. 

4.5.3 Comparative Results 

Table 4.8 presents the average 𝑃𝑃𝐸 per groupe of viewport qualities (G1, G2 and G3), and the 

global maximum and average 𝑃𝑃𝐸 values, for the SVR-based (CA-GPP) and for the cost 

function-based (CA-GPP*), GPP optimization; the 𝑃𝑃𝐸 values were computed according to the 

procedure explained in the previous section.  

As shown by Table 4.8, the CA-GPP has the best performance for G1 and G2, and the same 

performance as CA-GPP* for G3. Both CA-GPP and CA-GPP* achieved the same 𝑃𝑃𝐸 max 

value, but the 𝑃𝑃𝐸 average value for CA-GPP is lower than for CA-GPP*. Also, both 

outperform the rectilinear and stereographic projections.  

Table 4.8. Quantitative evaluation of compared projections. 

 Average PPE per group Max 

PPE 

Average 

PPE Projection G1 G2 G3 

Rectilinear 2.17 0.41 0.00 3.33 1.08 

Sterographic 0.48 1.04 3.14 4.42 1.32 

CA-GPP* 0.46 0.75 0.00 2.42 0.44 

CA-GPP 0.42 0.42 0.00 2.42 0.32 

It is worthy to note that the cost function-based approach also requires subjective tests to obtain 

the ground truth quality scores, that are used to establish the cost function parameters; however, 

in this case only a small number of viewports and associated quality scores is needed, so the 

subjective tests can be implemented in a fast way. On the contrary, the SVR-based approach 

requires a large number of viewports and associated quality scores to train the model, involving  



 

91 

 

 Rectilinear Stereographic CA-GPP* CA-GPP 
B

u
il

d
in

g
s 

1
 

    

 𝒅 = 𝟎 𝑑 = 1 𝒅𝒆𝒔𝒕 = 𝟎 𝒅𝒆𝒔𝒕 = 𝟎 

P
o

le
 v

a
u

lt
 

    

 𝑑 = 0 𝑑 = 1 𝑑𝑒𝑠𝑡 = 0.5 𝒅𝒆𝒔𝒕 = 𝟎. 𝟐𝟓 

C
o
n
fe

re
n
ce

 

    

 𝑑 = 0 𝑑 = 1 𝑑𝑒𝑠𝑡 = 0.4 𝒅𝒆𝒔𝒕 = 𝟎. 𝟕𝟓 

M
u
se

u
m

 

    

 𝑑 = 0 𝑑 = 1 𝑑𝑒𝑠𝑡 = 0.3 𝒅𝒆𝒔𝒕 = 𝟎. 𝟕𝟓 

Figure 4.17. Example of viewports rendered with different projections. The red, orange, and 

green arrows indicate, respectively, the objects/regions with high, medium, and low geometric 

distortions.  

very time-consuming subjective tests, notably for those projection with more than one 

parameter (e.g., the Pannini projection).  

Figure 4.17 shows a few viewports obtained with rectilinear, stereographic, and CA-GPP 

projections, using a squared FoV of 110°. As can be figured out, the viewports obtained with 

the content-aware projections result in less geometric distortions. For Buildings 1, which has 

predominant straight lines, both CA-GPP and CA-GPP* coincide with the rectilinear. For Pole 

vault, both CA-GPP and CA-GPP* achieved a better balance between bending and stretching 

than rectilinear and stereographic; however, the pole on the left side is less deformed for         
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CA-GPP than for CA-GPP*. For Conference and Museum, which have salient objects located 

at the viewport borders and close to the camera, both CA-GPP and CA-GPP* preserve the object 

shapes better than rectilinear. For these two images, the CA-GPP results in viewports with a 

visual quality close to the ones obtained with stereographic, and thus with better object 

conformality than with CA-GPP*.  

4.6 Final Remarks  

This chapter proposed a content-aware objective quality metric to assess the perceived 

geometric distortions of viewport images, obtained by rendering omnidirectional images with 

the general perspective projection (GPP). The proposed metric is based on a set of features, 

extracted from the viewport images, that account for the two main perceived geometric 

distortions resulting from the sphere to the plane projection: objects deformation due to 

stretching, and straight line distortion due to bending. A selected subset of features, and the 

viewport comparative MOS (CMOS) scores, obtained using the rectilinear projection as 

reference, were used to build a quality prediction model based on SVR. The experimental 

results show that the proposed quality prediction model allows to predict the viewport CMOS 

score with a Pearson correlation coefficient close to 0.8, and when the GPP projection center 

varies between 0 (rectilinear projection) and 1 (stereographic projection).  

Moreover, two procedures were developed to automatically optimize the GPP projection 

parameter, 𝑑, in a perceptual sense, resulting in content-aware general perspective projections, 

CA-GPP and CA-GPP*. In CA-GPP, 𝑑 is obtained based on the proposed SVR-based quality 

prediction model. In CA-GPP*, 𝑑 is obtained by minimizing a simple cost function that models 

the resulting geometric distortions through a linear combination of a bending and a stretching 

metric. Both CA-GPP and CA-GPP* showed significant performance improvement when 

compared to the popular rectilinear and stereographic projections.  

The work achieved in this chapter was included in three published conferences and one journal 

paper, presented in Table 3.3.  

Table 4.9. Publications related to this chapter. 

Paper Type 

F. Jabar, J. Ascenso, and M.P. Queluz, “Perceptual Analysis of Perspective Projection 

for Viewport Rendering in 360⸰ Images,” Proc. of IEEE International Symposium on 

Multimedia, Taichung, Taiwan, Dec. 2017. 

Conference 

F. Jabar, M.P. Queluz, and J. Ascenso, “Objective Assessment of Line Distortions in 

Viewport Rendering of 360⸰ Images,” Proc. of the IEEE International Conference on 

Artificial Intelligence and Virtual Reality, Taichung, Taiwan, Dec. 2018. 

Conference 

F. Jabar, J. Ascenso, and M.P. Queluz, “Content-Aware Perspective Projection 

Optimization for Viewport Rendering of 360⸰ Images,” Proc. of IEEE International 

Conference on Multimedia and Expo, Shanghai, China, Jul. 2019. 

Conference 

F. Jabar, J. Ascenso, and M.P. Queluz, “Objective Assessment of Perceived Geometric 

Distortions in Viewport Rendering of 360⸰ Images,” IEEE J. Sel. Top. Signal Process., 

vol. 14, no. 1, pp. 49–63, Jan. 2020. 

Journal 
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Chapter 5 
                                                                         _ 

5Object-based Geometric Distortion Metric  

5.1 Introduction 

The stretching distortions metrics proposed in the previous chapter were based on the Tissot 

indicatrices, which are content independent, and cannot capture the perceptual impact of the 

stretching distortion with high accuracy, even when weighed by saliency scores. The work 

developed in this chapter seeks to overcome this limitation, by measuring the stretching 

distortion of semantic objects, and thus achieving a higher correlation with the perceived 

distortions. This approach was inspired by the fact that human perception is more sensitive to 

the stretching distortion of objects with semantic meaning, e.g., the human body. 

The subjective tests reported on Chapter 3 did not discriminate between stretching and bending, 

i.e., both distortion types were simultaneously visible in several viewports. Accordingly, to 

better evaluate the perceptual impact of the stretching distortion (thus, without the influence of 

the bending) and collect the ground truth subjective scores required for the design of object-

based stretching distortion metrics, an additional set of subjective tests was conducted, that are 

described in this chapter. Moreover, the Pannini projection was used in these tests, since it 

allows to have different levels of object stretching (by changing the projection center, 𝑑) while 

keeping the vertical lines straight. 

In this context, this chapter addresses the following objectives:  

• Subjectively assess the stretching distortion impact on the perceived quality of the 

viewport image, using the Pannini projection for viewport rendering.  

• Develop an object-based distortion metric that automatically assesses the stretching 

distortions in the viewport image, after rendering.  

The rest of this chapter is organized as follows. Section 5.2 describes the subjective test 

campaign to assess the perceptual impact of stretching distortion and the corresponding 

analysis. Section 5.3 details the proposed object-based stretching distortion metrics. Section 5.4 

presents, and analyses, the metrics performance evaluation results. Finally, Section 5.5 

summarizes and concludes this chapter.  

5.2 Subjective Assessment of the Stretching Distortion Effect 

This section describes a crowdsourcing-based subjective evaluation of viewport images, aiming 

to assess the perceptual impact of the stretching distortion; the viewport images were rendered 

using the Pannini projection which, for a particular choice of its projection parameters, results 
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in a pure rectilinear projection, for which the stretching effect is most evident. After describing 

the considered omnidirectional images dataset and the subjective evaluation methodology, the 

final subjective test results and its analysis are then successively presented.  

5.2.1 Dataset 

Ten omnidirectional images in equirectangular format (ERI), extracted from the datasets 

available in [10] and [52], were used in the subjective assessment. The images, and their spatial 

resolutions, are depicted in Figure 5.1. This set of images includes six images that were already 

used in the previous subjective tests, described in Chapter 3, and four new images which are          

Dinner 1, Dance, Lunch, and Snow. These images were selected carefully to have perceptual 

relevant objects (such as people near and far away from the camera) where the stretching has a 

high perceptual impact.  

For each image, three viewports were rendered, corresponding to three different viewing 

directions, with 70% overlapping FoV between successive directions. This allows to compare 

different levels of stretching distortion of the same objects, when these objects appear in 

different positions on the viewports. In the subjective test described in Chapter3 (Section 3.2), 

the viewports correspond to the front view, 45° to the right, and 45° to the left. In this work, to 

guarantee that the viewports are rendered from the part of omnidirectional image that includes 

the objects or regions where the users attention is often attracted for, the saliency maps available 

for the images taken from [52], and the attention-related model proposed in [124] for the images 

taken from [10], were used. As an example, Figure 5.2 depicts the Museum image and its 

saliency map (available in [52]) with the three identified viewport regions, confirming that the 

viewports used for the subjective assessment contain image regions which attract a significant 

amount of attention.  

    
a) Photography shop 

(3840×1920) 

b) Museum     

(3840×1920) 

c) Dinner 1               

(4000×2000)  

d) Dinner 2              

(7500×3750) 

    
e) Conference 

(3840×1920) 
f) Dance                    

(3840×1920) 
g) Lunch                   

(5376×2688) 
h) Buildings 1           

(7500×3750) 

 

  

 

 
i) Desert                     

(7500×3750) 

j) Snow                      

(5376×2688) 
 

Figure 5.1. Omnidirectional images used in the subjective tests, and their spatial resolution. 
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a) b) 

Figure 5.2. a) Museum image and b) its saliency map available in Salient360! [52], and the 

viewport regions with 70% overlapping between successive directions. 

For each viewing direction, two viewports were rendered with the Pannini projection (PP), 

using different parameter values: 𝑃𝑃1 (𝑑 = 0, 𝑣𝑐 = 0); 𝑃𝑃2 (𝑑 = 0.5, 𝑣𝑐 = 0). Thus, for each 

image, six viewports were produced, denoted as 𝑉𝑃𝑖, 𝑖 = 1, 2, … , 6, where 𝑉𝑃1,𝑉𝑃2,𝑉𝑃3 

correspond to 𝑃𝑃1, and 𝑉𝑃4, 𝑉𝑃5,𝑉𝑃6 are correspond to 𝑃𝑃2 (cf. Figure 5.3). 𝑃𝑃1, which is a 

rectilinear projection, was selected since it is often used for viewport rendering of 

omnidirectional images and results on strong objects stretching. 𝑃𝑃2 was included to get, for 

the same viewing directions, different levels of stretching distortion of the objects. The 

viewports were rendered with a 𝐹ℎ of either 110° or 115° (presented for each ERI on the bottom 

of Table 5.1), and with a spatial resolution of 856×856 pixels (𝐴𝑅 = 1); as already mention in 

Chapter 3, this resolution was recommended in [53] for subjective tests, and allows the 

simultaneously display of two viewports, side-by-side, in typical monitors. The 𝐹ℎ of 110° was 

selected based on the study described in Chapter 3 (Section 3.3). As shown in Table 5.1, for 

some of the images a 𝐹ℎ of 115° was used to guarantee that the main objects were not cut by 

the image borders. 

𝑃
𝑃 1

 

   

 𝑉𝑃1 𝑉𝑃2 𝑉𝑃3 

𝑃
𝑃
2
 

   

 𝑉𝑃4 𝑉𝑃5 𝑉𝑃6 

Figure 5.3. Viewport examples rendered from Museum image with 𝑷𝑷𝟏 and 𝑷𝑷𝟐. 
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Table 5.1. Selected pairs (indicted in ✓), and 𝑭𝒉  for each omnidirectional images. 

Pair 
Photography 

shop 
Museum Dinner 1 Dinner 2 Conference Dance Lunch Buildings 1 Desert Snow 

(𝑉𝑃1, 𝑉𝑃2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

(𝑉𝑃2, 𝑉𝑃3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

(𝑉𝑃1, 𝑉𝑃3) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

(𝑉𝑃1, 𝑉𝑃4) ✓ ✓ 🞨 🞨 🞨 ✓ 🞨 🞨 ✓ ✓ 

(𝑉𝑃2, 𝑉𝑃5) ✓ ✓ 🞨 🞨 🞨 🞨 ✓ 🞨 ✓ ✓ 

(𝑉𝑃3, 𝑉𝑃6) 🞨 ✓ ✓ 🞨 🞨 🞨 ✓ 🞨 ✓ ✓ 

𝐹ℎ 110° 110° 115° 110° 115° 115° 115° 115° 110° 115° 

5.2.2 Subjective Evaluation Method 

As in Chapter 3 (Section 3.3.2), where the FoV impact was subjectively assessed, the pairwise 

comparison (PC) method was also chosen for the subjective evaluation of the stretching 

distortion. However, in this case, the viewer is asked to observe a pair of rendered viewports 

that are shown side by side, and to either select the one that has higher quality in his opinion, 

or to consider that both have the same quality. 

As depicted in Figure 5.4, six comparisons were made per omnidirectional image: a complete 

set of comparisons between the viewports rendered with 𝑃𝑃1, and three additional comparisons 

between the viewports rendered with 𝑃𝑃1 and 𝑃𝑃2, and having the same viewing direction. The 

comparisons between viewports rendered with 𝑃𝑃2 were not considered to limit the test 

duration; furthermore, these viewports have a similar level of stretching distortion. Also, since 

for some of the omnidirectional images and viewing directions the bending distortion was 

visible for viewports rendered with 𝑃𝑃2, these were excluded from the subjective test. Table 

5.1 presents the selected pairs and horizontal field of view, 𝐹ℎ, for each omnidirectional image.  

 

Figure 5.4. Considered comparisons per omnidirectional image. 

In total, 45 viewport pairs were considered. Due to the COVID-19 pandemic, the subjective 

tests were no longer performed on IST premises, as the previous ones; instead, a web-based 

crowdsourcing interface was designed to perform the visualization of the stimuli and to collect 

the subjective scores. This interface, similar to the one described in Section 3.3.2 (except for 

the grading scale and viewport visualization), presents two viewport images, ‘A’ and ‘B’, side 

by side as shown in Figure 5.5, and requires a monitor with a minimum resolution of 1920×1080 

pixels, and with a minimum diagonal size of 13-inch. To participate in the test, an invitation 

email with detailed instructions was sent to several observers; the observers were asked to not 

perform the test if they do not have a monitor with the aforementioned characteristics. Before 

starting the subjective test, the observers were asked to: i) open the subjective test interface in 

their web browser and put it on full-screen mode; ii) type their name and age in the top of the 

page; iii) select their monitor size in inches. The instructions about the subjective test procedure 

were shown on the same page. Subsequently, to familiarize  the  observer with  the  stretching  

𝑃𝑃1

𝑃𝑃2

𝑉𝑃1 𝑉𝑃2 𝑉𝑃3

𝑉𝑃4 𝑉𝑃5 𝑉𝑃6
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Figure 5.5. Web-based crowdsourcing interface. 

distortion’s characteristics and the evaluation interface, a short training video was shown. The 

viewports used in the training video were not used for the actual test. During the test, the 

viewport pairs were shown in random order and position, and the observers were asked to judge 

which viewport image (‘A’ or ‘B’) had the best quality. To avoid random preference selections, 

the option ‘A=B’ was also included. A total of 32 subjects, aged between 21 and 58 years, from 

Instituto Superior Técnico (IST), performed the online subjective evaluation. The 

omnidirectional images, the rendered viewports, and the resulting subjective scores were made 

publicly available in [125]. 

5.2.3 Subjective Tests Results and Analysis 

Outliers were first detected by computing the transitivity satisfaction rate, Ʀ, as described in 

Chapter 3 (Section 3.3.2.C). Four outliers were detected, and their subjective scores were not 

further considered. Next, for each compared viewports pair, (𝑉𝑃𝑖 , 𝑉𝑃𝑗), the winning frequency, 

𝑤𝑖𝑗, which represents the number of times 𝑉𝑃𝑖 was preferred over 𝑉𝑃𝑗 , was computed. To solve 

the tie cases, a score of 0.5 was given to each viewport whenever the observer had chosen the 

option ‘A=B’. Note that 𝑤𝑖𝑗 + 𝑤𝑗𝑖 = 𝑂, where 𝑂 is the number of observers, and  𝑤𝑖𝑖 = 0. The 

probability of selecting 𝑉𝑃𝑖 against 𝑉𝑃𝑗, is given by 

𝑃𝑖𝑗 = 𝑃(𝑉𝑃𝑖 > 𝑉𝑃𝑗) =
𝑤𝑖𝑗

𝑂
 . (5.1) 

To determine whether the difference on the number of times 𝑉𝑃𝑖 was preferred over 𝑉𝑃𝑗 (and 

vice-versa) is statistically significant, a statistical hypothesis test was performed according to 

the procedure suggested in [126]. After solving the tie cases, the subjective scores roughly 

follow a Bernoulli process 𝐵(𝑂, 𝑝), where 𝑂 is the number of subjects and 𝑝 is the probability 

of success in a Bernoulli trial. Figure 5.6 depicts the cumulative distribution function (CDF) for 

a Binomial distribution with 𝑂 = 28 (the final number of observers, after outliers removal) and 

𝑝=0.5, as suggested in [126], meaning that when comparing 𝑉𝑃𝑖 and 𝑉𝑃𝑗 both have the same 

chance  of  being selected.  The  CDF  of  the  Bernoulli  distribution can be expressed as [127] 

𝐶𝐷𝐹(𝑘; 𝑂, 𝑝) =∑(
𝑂
𝑖
) 𝑝𝑖  (1 − 𝑝)(𝑂−𝑖)

⌊𝑘⌋

𝑖=1

  (5.2) 
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Figure 5.6. CDF with 𝑶 = 𝟐𝟖 and 𝒑 = 𝟎. 𝟓. 

where 𝑘 is the number of times that 𝑉𝑃𝑖  was selected over 𝑉𝑃𝑗, 𝑝 is the probability of selecting 

𝑉𝑃𝑖 over the 𝑉𝑃𝑗 in the Bernoulli trial, and ⌊. ⌋ is the floor operator.  

The resulting 𝐶𝐷𝐹 value is the probability that the observers select, 𝑘 times, 𝑉𝑃𝑖 over 𝑉𝑃𝑗 . The 

critical region for the statistical test is obtained from the CDF. To find out whether the number 

of times 𝑉𝑃𝑖 was preferred over 𝑉𝑃𝑗 is statistically significant, thus allowing to conclude that “ 

𝑉𝑃𝑖 is better than 𝑉𝑃𝑗”, a one-tailed binomial test was performed with a significant level of 

0.05, with the following hypothesizes: H0 (𝑉𝑃𝑖 is equal or worse than 𝑉𝑃𝑗); H1 (𝑉𝑃𝑖 is better 

than 𝑉𝑃𝑗). In Figure 5.6, the CDF has values above the probability of 0.95 for 𝑂 ≥ 18 

(𝐹(18,28,0.5) = 0.9564). Therefore, if 𝑘 ≥ 18 , the null hypothesis (H0) can be rejected. A 

similar statistical test was applied to find out if the number of times that 𝑉𝑃𝑗 was preferred over 

𝑉𝑃𝑖 is statistically significant, thus allowing to conclude that “𝑉𝑃𝑖 is worse than 𝑉𝑃𝑗", with the 

following hypothesizes: H0 (𝑉𝑃𝑖 is equal or better than 𝑉𝑃𝑗); H1 (𝑉𝑃𝑖 is worse than 𝑉𝑃𝑗). In 

Figure 5.6, the CDF has values below the probability of 0.05 for 𝑂 ≤ 9                    

(𝐹(9,28,0.5) = 0.0436). Therefore, if 𝑘 ≤ 9, the null hypothesis (H0) can be rejected. Note 

that the Bernoulli process is defined only for integer values, and non-integer values need to be 

rounded; the floor function is used for this purpose. 

Figure 5.7 presents the probability of selecting 𝑉𝑃𝑖 over 𝑉𝑃𝑗 , computed by (5.1), for each 

compared pair, and for all considered omnidirectional images. The horizontal blue dashed line 

corresponds to the case where the vote count for 𝑉𝑃𝑖 is equal to, or greater than, 18,                     

i.e., 𝑃(𝑉𝑃𝑖 > 𝑉𝑃𝑗) = 18/28 = 0.643. The horizontal red dashed line corresponds to the case 

where the vote count for 𝑉𝑃𝑖 is equal or less than 9, i.e. 𝑃(𝑉𝑃𝑖 > 𝑉𝑃𝑗) = 9/28 = 0.321. Values 

on or above the horizontal blue dashed line, and on or below the horizontal red dashed line, 

correspond to the cases where the difference in the votes between 𝑉𝑃𝑖 and 𝑉𝑃𝑗 is statistically 

significant; in the first case, 𝑉𝑃𝑖 has a higher perceived quality than 𝑉𝑃𝑗; on the second case, 

𝑉𝑃𝑖 has a lower perceived quality than 𝑉𝑃𝑗. The values between the two horizontal dashed lines 

correspond to the cases where the difference in the votes between 𝑉𝑃𝑖 and 𝑉𝑃𝑗 is not statistically 

significant.  
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Figure 5.7. Preference probability of selecting 𝑽𝑷𝒊 over 𝑽𝑷𝒋 for compared pairs. 

From the experimental results, the following conclusions can be obtained: 

• As can be observed in Figure 5.7, the viewports rendered with 𝑃𝑃2 (𝑑 = 0.5, 𝑣𝑐 = 0) 

were selected over those rendered with 𝑃𝑃1 (𝑑 = 0, 𝑣𝑐 = 0), for most of the considered 

images (values inside the shaded area in Figure 5.7). This was expected since the 

rectilinear projection has a strong stretching effect, and this stretching decreases as the 

value of 𝑑 increases.  

• For the viewports rendered with 𝑃𝑃1, the preferred ones (by the subjects) are strongly 

dependent on the position of the main objects, because the stretching distortion has a 

higher perceptual impact when the objects are close to the image borders, and/or close 

to the camera. As an example, Figure 5.8 shows three pairs of viewports rendered with 

𝑃𝑃1, together with the subject selections; due to the difference on viewing direction, the 

same objects are rendered in different positions of a viewport pair, having different 

perspective distortion.  

• The human perception is very sensitive to the stretching distortion of the human body, 

which may justify why, as shown in Figure 5.8, most of the observers have selected 𝑉𝑃2 

over 𝑉𝑃3 for Desert, and 𝑉𝑃2 over 𝑉𝑃1 for Museum, while for Buildings 1 there is no 

clear choice between 𝑉𝑃2 and 𝑉𝑃3 . 

• The stretching distortion of the background, e.g., sky, floor, building walls, has a lower 

perceptual impact than the stretching of foreground objects. 

Finally, and since the subjects have used different monitor sizes, the impact of it on the 

subjective results was assessed. For that, and based on the used monitor size, the observes were 

divided into two groups: 𝑂𝑔1, containing the observers that have a monitor size in the range 

[13,16] inch, and 𝑂𝑔2, contains the observers that have a monitor size in the range [22,27] inch. 

Then, a paired sample T-test with a significant level of 0.05 was applied, to compare the 

preference probability, 𝑃(𝑉𝑃𝑖 >  𝑉𝑃𝑗), between groups. This procedure is illustrated in Figure 

5.9. The T-test results indicate that the null-hypothesis, i.e., that the two groups have similar 

means, cannot be rejected since the resulting p-value, 0.57, is much higher than the significant 

level of 0.05; this confirms that the difference on the subjective results from the two groups is 

not statistically significant. 
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Pair 1: observer 

selection 𝑉𝑃2 > 𝑉𝑃3 

Pair 2: observer 

selection 𝑉𝑃2 = 𝑉𝑃3 

Pair 3:observer 

selection 𝑉𝑃1 < 𝑉𝑃2 

   

a) Desert - 𝑉𝑃2 c) Buildings 1 - 𝑉𝑃2 e) Museum - 𝑉𝑃1 

   

b) Desert - 𝑉𝑃3 d) Buildings 1 - 𝑉𝑃3 f) Museum - 𝑉𝑃2 

Figure 5.8. Rectilinear viewports, in pairs, evaluated by observers. 

 

Figure 5.9. T-test procedure for evaluating if there is a significant impact of screen size on the 

preference probability. 

5.3 Object-Based Stretching Distortion Measurement 

This section describes two new approaches for measuring the object shape distortion in 

viewport rendering of omnidirectional images. The first one directly computes and compares 

object shape measures on the sphere and on the viewport, thus before and after rendering, while 

the second is based on the Tissot indicatrices [96], which are computed for individual objects 

in the rendered viewport. As depicted in Figure 5.10, the process starts with the semantic 

segmentation of the omnidirectional image, in equirectangular format (ERI), producing a 

segmentation map denoted as 𝐸𝑅𝐼𝑠𝑒𝑔. Afterwards, for a required viewport horizontal field-of-

view, 𝐹ℎ, spatial resolution (𝑊𝑣𝑝, 𝐻𝑣𝑝) and viewing direction (𝜙𝑉𝐷 , 𝜃𝑉𝐷), the viewport 

rendering process is applied to 𝐸𝑅𝐼𝑠𝑒𝑔, resulting in the viewport segmentation map. For the 

rendering, the Pannini projection, with parameters (𝑑, 𝑣𝑐), is used. The objects distortion is 

then computed, using the two approaches aforementioned.  

𝑂𝑔1 𝑂𝑔2

T-test

0/1
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Figure 5.10. The main architecture of the proposed object-based stretching metrics. 

The main steps are described in the following sections. 

5.3.1 Semantic Segmentation 

Semantic segmentation is a process of assigning a label (e.g., person, car, bicycle, and so on) 

to objects in the image; in this process, multiple objects of the same class have the same label; 

it has been used in many computer vision tasks, using 2D images. Although some semantic 

segmentation models have been developed for omnidirectional images (e.g., [128]–[131]), they 

were designed for the purpose of autonomous driving, with outdoor images. In this Thesis, to 

obtain the semantic segmentation of both indoor and outdoor omnidirectional images, the input 

equirectangular image (ERI) is transformed to cubic format, which results in six 2D, rectilinear 

projected images (the cube faces), with horizontal and vertical FoVs of 90º. The DeepLab 

semantic segmentation model, proposed in [132], is then applied to each cube face. This model 

is a deep learning-based approach designed for semantic segmentation of 2D images, that was 

trained, validated, and tested on several datasets that include indoor and outdoor scenes, and 

has high accuracy. In this case, it was used the Auto-DeepLab with multi-scale inference and 

the network backbone Xception-65, pretrained on ImageNet [133] and on MS-COCO [134] 

datasets. The training was performed on the PASCAL VOC 2012 dataset [135], which contains 

20 foreground object classes and one background class. As described in [132], the training was 

performed with a polynomial learning rate with an initial value of 0.05, and a crop size of         

513 × 513 pixels. Batch normalization parameters were fine-tuned during training. After 

obtaining the semantic segmentation for all six cube face images, it is transformed back to 

equirectangular format. As an example, Figure 5.11a) depicts the semantic segmentation of 

Museum image, using DeepLab. As already mentioned, multiple objects of the same class have 

the same label. To obtain different labels for disconnected objects, the connected component 

analysis (CCA) [136], with 4-connectivity, is applied to the segmented ERI. Figure 5.11b) 

depicts the resulting ERI segmentation map after CCA, where each disconnected object is 

represented with a different color. 

 
 

a) b) 

Figure 5.11. a) Semantic segmentation of Museum; b) Disconnected objects. 
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5.3.2 Object Shape Measurement 

The object shape distortion measure can be obtained by relating the object shape on the viewing 

sphere and on the viewport. Several object shape measures have been proposed on the literature 

[137][138]. Since the sphere to plan projections typically alter the area of the objects, or objects 

are stretched in the horizontal and/or vertical directions towards the viewport borders (cf. Figure 

5.5 and Figure 5.8), three shape measures were considered: area, average width and average 

height. In cartography, these measures showed good performance when used to characterize 

the distortion of continents and countries for different map projections [139]; this justifies why 

they were chosen for the study described in this Thesis. 

After semantic segmentation of the ERI image, it is possible to obtain the semantic 

segmentation map for any viewport by projecting 𝐸𝑅𝐼𝑠𝑒𝑔; this allows to obtain the objects in 

the viewport, 𝑂𝑏𝑗𝑣𝑝, linked to the same objects on the viewing sphere, 𝑂𝑏𝑗𝑠. Figure 5.12a) 

depicts an example of a viewport from Museum image and its segmentation map, with three 

objects (Figure 5.12b), obtained by projecting 𝐸𝑅𝐼𝑠𝑒𝑔; the same objects are also identified in 

𝐸𝑅𝐼𝑠𝑒𝑔 (Figure 5.12c).  

 

 

 

                                   a)                        b) 

 

 

 

 c)  

Figure 5.12. a) A viewport of Museum image; b) Three identified objects in the viewport;            

c) Corresponding objects in the ERI. 

The following object shape measures were considered: 

• Object area - On the sphere, the object area can be computed by summing up the area 

covered by parallel lines (defined as a sequence of pixels) within the object. At latitude 

𝜃, the parallel line area, 𝑃𝐿𝐴𝑠(𝜃), contained in an object is given by 
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𝑃𝐿𝐴𝑠(𝜃) =  𝑃𝐴𝑠(𝜃)  𝑁𝐸𝑅𝐼
𝑃𝐿 (𝜃)  (5.3) 

where 𝑃𝐴𝑠(𝜃) is the area covered by a pixel at latitude 𝜃, and 𝑁𝐸𝑅𝐼
𝑃𝐿 (𝜃) is the total number 

of pixels within the object at latitude 𝜃. 𝑃𝐴𝑠(𝜃) can be approximated by 

𝑃𝐴𝑠(𝜃) = Δ𝜙  Δ𝜃   cos(𝜃) =
2𝜋 

𝑊𝐸𝑅𝐼


𝜋 

 𝐻𝐸𝑅𝐼
 cos(𝜃)   (5.4) 

where 𝑊𝐸𝑅𝐼 and 𝐻𝐸𝑅𝐼 are, respectively, the width and height of the ERI image, in pixels, 

Δ𝜙Δ𝜃 is the area covered by a pixel in the ERI image, and cos(𝜃) reflects the decrease 

in the area (on the sphere) comprised by Δ𝜙, Δ𝜃, as 𝜃 varies from 0 to  90 degrees. 

The object area, on the sphere, is computed by  

𝑂𝐴𝑠 = ∑ 𝑃𝐿𝐴𝑠

𝐾𝐸𝑅𝐼
𝑃𝐿

𝑘=1

(𝜃𝑘)  (5.5) 

where 𝐾𝐸𝑅𝐼
𝑃𝐿  is the total number of parallel lines covered by the object, 𝑘 = 1…𝐾𝐸𝑅𝐼

𝑃𝐿  is 

the index of those lines, and 𝜃𝑘 is the latitude of the k-th parallel line.  

The area covered by a pixel on the viewport, 𝑃𝐴𝑣𝑝, is given by 

𝑃𝐴𝑣𝑝 =
𝑉ℎ𝑠 

𝑊𝑣𝑝

 𝑉𝑣𝑠 

 𝐻𝑣𝑝
  (5.6) 

where 𝑉ℎ𝑠 and 𝑉𝑣𝑠 are, respectively, the viewport width and height, in length unit. For 

the Pannini projection, they are given by 

𝑉ℎ𝑠 = 2  (𝑑 + 1)
sin (

𝐹ℎ
2 )

𝑑 + cos (
𝐹ℎ
2
)
   (5.7) 

𝑉𝑣𝑠 = 2 tan (
𝐹𝑣
2
)  (5.8) 

The object area in the viewport is computed by 

𝑂𝐴𝑣𝑝 = 𝑃𝐴𝑣𝑝  𝑁𝑣𝑝
𝑜𝑏𝑗
  (5.9) 

where 𝑁𝑣𝑝
𝑜𝑏𝑗

 is the total number of pixels within the object. 

• Object average width - On the sphere, and at latitude 𝜃, the width of the object, 𝑂𝑊𝑠(𝜃), 

is the length of the parallel line at 𝜃, covered by the object. Since in discrete domain, 

each parallel corresponds to a line on the ERI image, 𝑂𝑊𝑠(𝜃) can be computed as  

𝑂𝑊𝑠(𝜃)  =
2𝜋

𝑊𝐸𝑅𝐼
  𝑁𝐸𝑅𝐼

𝑃𝐿 (𝜃)  cos(𝜃)  (5.10) 

where 𝑁𝐸𝑅𝐼
𝑃𝐿 (𝜃) is the total number of pixels within the object at latitude 𝜃, and 2𝜋/𝑊𝐸𝑅𝐼 

is the width covered by a pixel in the ERI image. The object average width, on the sphere, 

is computed by 

𝑂𝑊𝑠 =
1

𝐾𝐸𝑅𝐼
𝑃𝐿 ∑ 𝑂𝑊𝑠

𝐾𝐸𝑅𝐼
𝑃𝐿

𝑘=1

(𝜃𝑘) . (5.11) 

On the viewport, the width of the object at line 𝑖 can be computed as 
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𝑂𝑊𝑣𝑝(𝑖) =
𝑉ℎ𝑠
𝑊𝑣𝑝

   𝑁𝑣𝑝
𝑙 (𝑖)  (5.12) 

where  𝑁𝑣𝑝
𝑙 (𝑖) is the total number of pixels covered by the object at line 𝑖, and 𝑉ℎ𝑠/𝑊𝑣𝑝 is 

the width covered by a pixel in the viewport image. The object average width, on the 

viewport, is given by 

𝑂𝑊𝑣𝑝 =
1

𝐾𝑣𝑝
𝑙

∑ 𝑂𝑊𝑣𝑝(𝑖)

𝑖 ∈ Obj

  (5.13) 

with the summation applied to the viewport lines covered by the object, and 𝐾𝑣𝑝
𝑙  being 

the total number of those lines. 

• Object average height - On the sphere, at longitude 𝜙, the object height is the length of 

the meridian line (ML) at 𝜙 - which corresponds to a column of the ERI image - covered 

by the object 

𝑂𝐻𝑠(𝜙) =
𝜋

𝐻𝐸𝑅𝐼
  𝑁𝐸𝑅𝐼

𝑀𝐿(𝜙)  (5.14) 

where 𝑁𝐸𝑅𝐼
𝑀𝐿(𝜙) is the total number of pixels within the object at longitude 𝜙, and 𝜋/𝐻𝐸𝑅𝐼 

is the height covered by a pixel in the ERI image. The object average height, on the 

sphere, is given by 

𝑂𝐻𝑠 =
1

𝐾𝐸𝑅𝐼
𝑀𝐿 ∑ 𝑂𝐻𝑠

𝐾𝐸𝑅𝐼
𝑀𝐿

𝑘=1

(𝜙𝑘) (5.15) 

where 𝐾𝐸𝑅𝐼
𝑀𝐿  is the total number of meridian lines covered by the object, 𝑘 = 1…𝐾𝐸𝑅𝐼

𝑀𝐿  is 

the index of those lines, and 𝜙𝑘 is the longitude of the k-th meridian line.  

On the viewport, the height of the object at viewport column 𝑗, can be computed as 

𝑂𝐻𝑣𝑝(𝑗) =
𝑉𝑣𝑠
𝐻𝑣𝑝

   𝑁𝑣𝑝
𝑐  (𝑗) (5.16) 

where 𝑁𝑣𝑝
𝑐 (𝑗) is the total number of pixels covered by the object at column 𝑗, and 

𝑉𝑣𝑠/𝐻𝑣𝑝 is the height covered by a pixel in the viewport image. The object average 

height, on the viewport, is given by 

𝑂𝐻𝑣𝑝 =
1

𝐾𝑣𝑝
𝑐 ∑ 𝑂𝐻𝑣𝑝(𝑗)

𝑗 ∈ Obj

  (5.17) 

with the summation applied to the viewport columns covered by the object, and 𝐾𝑣𝑝
𝑐  

being the total number of those lines. 

It is important to note that all the shape measurements are in length units and are obtained only 

for the objects (or parts of the objects) that are rendered on the viewport. As an example, only 

the parts of objects 1 and 3 that can be seen in Figure 5.12b), were used for the shape measures. 

Table 5.2 presents the resulting 𝑂𝐴, 𝑂𝑊, and OH values, on the sphere and on the viewport, for 

the three objects of Figure 5.12b). All the measures increase after projection, especially for the 

objects closer to the viewport borders.  
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Table 5.2. Resulting 𝑶𝑨,𝑶𝑾, OH values for three objects on the sphere, before projection, and 

in the viewport, after projection. 

         Object 

 Measure 
 

1 2 3 

𝑂𝐴𝑠 0.067 0.132 0.807 

𝑂𝐴𝑣𝑝 0.336 0.220 1.990 

𝑂𝑊𝑠 0.073 0.161 0.605 

𝑂𝑊𝑣𝑝 0.215 0.183 1.066 

𝑂𝐻𝑠 0.564 0.470 0.913 

𝑂𝐻𝑣𝑝 1.084 0.652 1.386 

5.3.3 Shape Distortion Computation 

Based on the object shape measures previously presented, the following object shape distortion 

metrics are defined: 

• Area distortion - For each object in the viewport, the area distortion is expressed by 

𝑂𝐴𝐷 = |𝑂𝐴𝑠 − 𝑂𝐴𝑣𝑝|  (5.18) 

where the 𝑂𝐴𝑠 and 𝑂𝐴𝑣𝑝 are computed by (5.5) and (5.9), respectively. 

• Width distortion - The object width distortion is given by 

𝑂𝑊𝐷 = |𝑂𝑊𝑠 − 𝑂𝑊𝑣𝑝|   (5.19) 

where 𝑂𝑊𝑠 and 𝑂𝑊𝑣𝑝 are given by (5.11) and (5.13), respectively. This measure 

characterizes the horizontal stretching of the object. 

• Height distortion - The object height distortion is computed by 

𝑂𝐻𝐷 = |𝑂𝐻𝑠 − 𝑂𝐻𝑣𝑝|   (5.20) 

where 𝑂𝐻𝑠 and 𝑂𝐻𝑣𝑝 are computed by (5.15) and (5.17), respectively. This measure 

characterizes the vertical stretching of the object.  

• Total length distortion - The total length distortion of an object is defined as 

𝑂𝑇𝐷 = 𝑂𝑊𝐷 +𝑂𝐻𝐷  (5.21) 

where 𝑂𝑊𝐷 and 𝑂𝐻𝐷 are computed by (5.19) and (5.20), respectively.  

It is important to mention that, besides the absolute difference expressed by (5.18) to (5.20), the 

relative difference was also considered, but did not improve the performance of the metric, 

since it gives more important to the distortion of small objects than to the large ones. 

To obtain a global viewport stretching distortion measure, several pooling functions were 

considered to aggregate the shape distortion measure of all detected objects in the viewport. 

The considered pooling functions are listed in Table 5.3, where, 𝑫 is a vector containing one of 

the distortion measures for all objects in the viewport, and 𝑫𝒑 is a vector containing the 𝑝% 

highest elements of 𝑫; 𝑶𝑨𝒗𝒑 is a vector containing the object area on the viewport, and ⊙ 

denotes element-wise product. Poolings 𝑃1
𝑜 and 𝑃2

𝑜 assume that the subjective impact of the 

distortion increases with the number of objects, while pooling 𝑃3
𝑜 and 𝑃4

𝑜 consider that the 

impact varies with the average objects distortion; pooling 𝑃5
𝑜 presume that the perceptual impact 

is mainly influenced by the most distorted object, while pooling 𝑃6
𝑜 considers the object area in  
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Table 5.3. Object distortion pooling functions. 

𝑃1
𝑜 = Sum(𝑫) (5.22) 𝑃2

𝑜 = Sum(𝑫𝒑) (5.23) 

𝑃3
𝑜 = Average(𝑫) (5.24) 𝑃4

𝑜 = Average(𝑫𝒑) (5.25) 

𝑃5
𝑜 = Max(𝑫) (5.26) 𝑃6

𝑜 =
Sum(𝑶𝑨𝒗𝒑  ⊙  𝑫)

Sum(𝐎𝐀𝒗𝒑)
 (5.27) 

the viewport, giving more emphasis to the distortion of large objects. The reason for the 

percentile (𝑝%) is to exclude the objects with low distortion values (e.g., the distortion for 

objects at the viewport center is low and may not be visible); as 𝑝% approaches 100%, 𝑃2
𝑜 and 

𝑃4
𝑜 will be closer to 𝑃5

𝑜; if 𝑝% approaches 0%, 𝑃2
𝑜 will be closer to 𝑃1

𝑜 and 𝑃4
𝑜 will be closer to 

𝑃3
𝑜. In summary, considering four shape distortion measures with six pooling functions, results 

in 24 potential shape-based stretching measures. 

5.3.4 Tissot-Based Object Distortion Computation 

In the previous chapter, three global viewport Tissot distortion measures - namely, area 

distortion (𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 ), scale distortion (𝐺𝑑𝑠𝑐𝑎𝑙𝑒

𝑤 ), and angle distortion (𝐺𝑑𝑎𝑛𝑔𝑙𝑒
𝑤 ) - were defined to 

measure the stretching distortion in the viewport rendering of omnidirectional images; to make 

these measures content dependent, saliency weights were used. In this Thesis, object based 

Tissot distortion measures are proposed, and obtained according to the two following steps: 

1) Compute local Tissot distortion metrics - For a given horizontal and vertical field of 

view, 𝐹ℎ and 𝐹𝑣, the viewing area on the sphere is defined by 𝜙 ∈  [−𝐹ℎ/2, 𝐹ℎ/2] and 

𝜃 ∈  [−𝐹𝑣/2, 𝐹𝑣/2]; this region is then uniformly sampled with a fixed interval 𝛥𝜙, 𝛥𝜃  

(set to 0.05 degrees). For each sampled point, indexed by 𝑖, with spherical coordinates 

(𝜙𝑖, 𝜃𝑖), the corresponding Tissot scale factors ℎ𝑖  and 𝑘𝑖  , semi-major, 𝑎̂𝑖, and semi-

minor, 𝑏̂𝑖, axis of the Tissot ellipse are obtained. The details about the computation of 

these parameters were presented in Chapter 4 (Section 4.2.1). To compute these 

parameters for the PP, the partial derivatives of (𝑥𝑝, 𝑦𝑝) with respect to (𝜙, 𝜃) need to 

be computed. From (2.29) and (2.30), it follows: 

𝜕𝑥𝑝
𝜕𝜙

=
(𝑑 + 1)  (𝑑  cos(𝜙) + 1)

(𝑑 + cos(𝜙))2
  (5.28) 

𝜕𝑥𝑝
𝜕𝜃

= 0   (5.29) 

𝜕𝑦𝑝
𝜕𝜙

=
(1 − 𝑣𝑐)(𝑑 + 1 ) tan(𝜃) sin(𝜙)

(𝑑 + cos(𝜙))2
+
𝑣𝑐  tan(𝜃) sin(𝜙)

cos2(𝜙)
  (5.30) 

𝜕𝑦𝑝
𝜕𝜃

=
1

cos2(𝜃)
 [(1 − 𝑣𝑐) 

𝑑 + 1 

𝑑 + cos(𝜙)
+

𝑣𝑐

cos (𝜙)
] . (5.31) 

Afterwards, the local area distortion, 𝑠𝑖, and local shape distortion, 𝑡𝑖, are computed as  

𝑠𝑖 = (𝑎̂𝑖  𝑏̂𝑖 − 1)  cos 𝜃𝑖  (5.32) 

     𝑡𝑖 =
𝑎̂𝑖

𝑏̂𝑖
  . (5.33) 

Although the local angle distortion was also initially considered, it did not improve the 

results, and was not retained for further assessment. 
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a) b) 

Figure 5.13. The plot of 𝒕 along the equatorial line ( = 𝟎) under the PP for: a) varying 𝒅 

and 𝒗𝒄 = 𝟎; b) varying 𝒗𝒄 and 𝒅 = 𝟏. 

 

  

a) b) 

  

c) d) 

Figure 5.14. Histogram plots of 𝒔, 𝒕, 𝒉, 𝒌 for two identified viewport objects, Object 2 and 

Object 3 of Figure 5.12b): a) Local area distortion, 𝒔; b) Local shape distortion, 𝒕; c) 

Scale factor, 𝒉; d) Scale factors, 𝒌. 

Figure 5.13 depicts the local shape distortion, 𝑡, along the equatorial line ( = 0) and 

𝜙 ∈ [−55o, 55o], for PP with varying parameters 𝑑 and 𝑣𝑐, one at a time. As can be seen 

in Figure 5.13a), local shape distortion is maximum for the rectilinear projection         

(𝑑 = 0). On the other hand, the stereographic PP (𝑑 = 1, 𝑣𝑐 = 0), is locally conformal 

(𝑡 = 1), although horizontal lines are bended. In the PP, the bending of horizontal lines 

can be corrected by applying 𝑣𝑐, however shape distortion is introduced, as can be 

concluded from Figure 5.13b).  

Figure 5.14 presents histogram plots of 𝑠, 𝑡, ℎ, 𝑘 for two objects of Figure 5.12b), namely 

Object 2 (close to the viewport center and with low distortion), and Object 3 (close to 
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the border and with high distortion). In this figure, the frequency represents the number 

of occurrences of the values in the x-axis. As can be seen, 𝑠, 𝑡, ℎ, 𝑘 have a wider range of 

values (and with higher variance) for Object 3, than for Object 2.  

2) Compute Tissot-based object distortion metrics - For each object in the viewport, the 

following object-based Tissot distortion metrics are obtained: 

𝑂𝐴𝐷𝑇𝑂 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒔)   (5.34) 

𝑂𝑆𝐻𝐷𝑇𝑂 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒕)   (5.35) 

𝑂𝑆𝐷𝑇𝑂 = Max(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒉), 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒌)) , (5.36) 

where 𝑂𝐴𝐷𝑇𝑂, 𝑂𝑆𝐻𝐷𝑇𝑂 and 𝑂𝑆𝐷𝑇𝑂 are, respectively, the object based Tissot area, 

shape, and scale distortion metrics. The superscript 𝑇𝑂 denotes object-based Tissot 

measure; 𝒔 and 𝒕 are vectors containing, respectively, the local area and shape distortions 

for all points within an object; 𝒉 and 𝒌 are vectors containing the scale factors for all 

points within an object. To obtain a single measure per object, the Variance and Average 

functions were considered in (5.34) to (5.36); however, the Variance function was 

selected as it showed the best performance. 

To obtain a global viewport stretching distortion measure, the pooling functions presented in 

Table 5.3 were used. In this case, using three Tissot based object distortion measures, with six 

pooling functions, results in 18 potential Tissot based stretching distortion metrics.  

Figure 5.15 presents the resulting stretching distortion values for a sub-set of the proposed 

object based stretching measures with pooling function 𝑃6
𝑜, and the three stretching measures - 

𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 , 𝐺𝑑𝑠𝑐𝑎𝑙𝑒

𝑤 , and 𝐺𝑑𝑎𝑛𝑔𝑙𝑒
𝑤  - proposed in Chapter 4 (Section 4.4.1.B), computed for a pair of 

viewports, Museum-𝑉𝑃1 and Museum-𝑉𝑃2 (depicted in Figure 5.8e) and Figure 5.8f); the blue 

and orange bars correspond, respectively, to Museum-𝑉𝑃1 and to Museum-𝑉𝑃2. As can be 

figured out, the proposed object based stretching measures allow a higher discrimination 

between the quality of the two viewport images, than the metrics proposed in Chapter 4, since 

for the former the difference between blue and orange bars are much more evident.  

 

Figure 5.15. Stretching distortion values for the proposed object-based measures, and for the 

stretching measures proposed in Chapter 4 (Section 4.4.1.B), computed for a pair of viewports, 

Museum-𝑽𝑷𝟏   and   Museum-𝑽𝑷𝟐,   presented   respectively   in   Figure 5.8e)   and  Figure 5.8f). 
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5.4 Metrics Performance Evaluation  

In this section, the proposed object-based stretching distortion metrics are evaluated and 

compared to benchmark solutions. The usual measure to evaluate an objective quality metric is 

the correlation (Pearson and/or Spearman) between objective scores and ground truth opinion 

scores (typically, MOS or DMOS). However, since in this work a pairwise comparison (PC) 

method was used on the subjective tests, it is not possible to obtain MOS or DMOS values for 

each individual stimulus. Accordingly, the proposed metrics are assessed versus the subjective 

scores using the classification errors approach, as suggested in Rec. ITU-T J.149 [72], and 

applied in related literature [126][140]. 

5.4.1 Classification Errors 

According to Rec. ITU-T J.149 [72], a classification error (CE) occurs when the objective and 

subjective scores lead to different conclusions about the relative quality of a pair of stimuli, 

𝑉𝑃𝑖 and 𝑉𝑃𝑗. Three types of errors may happen: 

• False Tie (FT) - when the subjective score indicates that 𝑉𝑃𝑖  and 𝑉𝑃𝑗 are different, but 

the objective score indicates that they are similar. 

• False Differentiation (FD) - when the subjective score indicates that 𝑉𝑃𝑖  and 𝑉𝑃𝑗 are 

similar, but the objective score indicates that they are different. 

• False Ranking (FR) - when the subjective score indicates that 𝑉𝑃𝑖 (𝑉𝑃𝑗) is better than 

𝑉𝑃𝑗  (𝑉𝑃𝑖), but the objective score indicates the opposite. 

Let ∆OM represent the minimum difference, between the objective quality scores of two stimuli, 

that defines when the two stimuli become perceptually distinguishable. As ∆OM increases, 

more stimuli pairs are considered similar, increasing the occurrence of FT, but the occurrences 

of FD and FR will decrease. On the contrary, as ∆OM decreases, the occurrence of FT also 

decreases, but the occurrence of FD and FR will increase. Following ITU-T J.149, the 

percentage of each error type and of correct decisions are obtained from the considered stimuli 

pairs as a function of ∆OM, for individual metrics; this allows to compare the metrics and 

determine the best one for the application under analysis. The best ∆OM value is the one that 

maximizes the correct decision percentage [72][140]. 

5.4.2 Experimental Results and Analysis  

To evaluate the proposed distortion metrics, the viewport dataset described in Section 5.2.1, 

and the processed PC scores after outlier’s removal, as described in Section 5.2.3, were used. 

Moreover, the performance of the metrics were compared to the following benchmark 

solutions: area distortion (𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 ), scale distortion (𝐺𝑑𝑠𝑐𝑎𝑙𝑒

𝑤 ), and angle distortion (𝐺𝑑𝑎𝑛𝑔𝑙𝑒
𝑤 ), 

proposed in Chapter 4 (Section 4.4.1.B), the conformality measure (𝐶𝑀) proposed in [36], and 

the content-dependent conformality (𝐶𝑀𝑠𝑎𝑙); the latter is a modified 𝐶𝑀, by integrating the 

viewport saliency on it. For poolings 𝑃2
𝑜, 𝑃4

𝑜, several values of 𝑝% were considered, and the 

resulting classification errors and correct decision were obtained. The best performance was 

obtained for 𝑝 = 50%. 

Table 5.4 reports the classification errors and correct decision values for each proposed 

distortion measure, using the pooling functions described in Section 5.3.3, and for the 
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benchmark solutions; the ∆OM value that maximized the correct decision percentage was used. 

As can be figured out, there is a significant performance improvement for the object-based 

metrics, when compared with the benchmark solutions. Among the proposed metrics, the 

object-based Tissot metrics achieved the highest Correct Decision and the lowest False Tie 

percentages. Among the benchmark metrics, the 𝐶𝑀 has the worst performance. This metric is 

content independent, and the same metric value is obtained for any viewport image. When the 

conformality integrates the saliency, as in 𝐶𝑀𝑠𝑎𝑙 , the performance increases, confirming that it 

brings some additional value to the metric. To find out the best solution among the proposed 

ones, the true positive rate (TPR), defined by (5.37), was computed 

𝑇𝑃𝑅 =
CD

CD + FT + FD + FR
 . (5.37) 

Table 5.4. Classification errors and correct decision values, in percentage (%), for the proposed 

and benchmark metrics. 
 

Correct Decision (%) False Tie (%) 

𝑷𝒊
𝒐 

 Metric 
 

𝑃1
𝑜 𝑃2

𝑜 𝑃3
𝑜 𝑃4

𝑜 𝑃5
𝑜 𝑃6

𝑜 
𝑷𝒊
𝒐 

 Metric 
 

𝑃1
𝑜 𝑃2

𝑜 𝑃3
𝑜 𝑃4

𝑜 𝑃5
𝑜 𝑃6

𝑜 

𝑂𝐴𝐷 80.0 84.4 82.2 82.2 84.4 82.2 𝑂𝐴𝐷 2.2 0.0 0.0 0.0 2.2 4.4 

𝑂𝑊𝐷 64.4 71.1 82.2 75.6 73.3 80.0 𝑂𝑊𝐷 0.0 2.2 15.6 24.4 4.4 0.0 

𝑂𝐻𝐷 71.1 68.9 82.2 80.0 71.1 77.8 𝑂𝐻𝐷 2.2 2.2 0.0 2.2 0.0 6.7 

𝑂𝑇𝐷 68.9 68.9 84.4 86.7 71.1 82.2 𝑂𝑇𝐷 0.0 4.4 2.2 2.2 2.2 8.9 

𝑂𝑆𝐷𝑇𝑂 84.4 84.4 86.7 86.7 84.4 84.4 𝑂𝑆𝐷𝑇𝑂 0.0 0.0 0.0 2.2 0.0 2.2 

𝑂𝐴𝐷𝑇𝑂 84.4 82.2 86.7 86.7 86.7 88.9 𝑂𝐴𝐷𝑇𝑂 0.0 0.0 0.0 0.0 0.0 0.0 

𝑂𝑆𝐻𝐷𝑇𝑂 82.2 84.4 84.4 84.4 84.4 82.2 𝑂𝑆𝐻𝐷𝑇𝑂 0.0 0.0 0.0 0.0 0.0 2.2 
 

False Differentiation (%) False Ranking (%) 

𝑷𝒊
𝒐 

 Metric 
 

𝑃1
𝑜 𝑃2

𝑜 𝑃3
𝑜 𝑃4

𝑜 𝑃5
𝑜 𝑃6

𝑜 
𝑷𝒊
𝒐 

 Metric 
 

𝑃1
𝑜 𝑃2

𝑜 𝑃3
𝑜 𝑃4

𝑜 𝑃5
𝑜 𝑃6

𝑜 

𝑂𝐴𝐷 11.1 8.9 13.3 15.6 8.9 8.9 𝑂𝐴𝐷 6.7 6.7 4.4 2.2 4.4 4.4 

𝑂𝑊𝐷 17.8 15.6 2.2 0.0 13.3 15.6 𝑂𝑊𝐷 17.8 11.1 0.0 0.0 8.9 4.4 

𝑂𝐻𝐷 13.3 13.3 13.3 11.1 13.3 6.7 𝑂𝐻𝐷 13.3 15.6 4.4 6.7 15.6 8.9 

𝑂𝑇𝐷 17.8 13.3 8.9 6.7 13.3 6.7 𝑂𝑇𝐷 13.3 13.3 4.4 4.4 13.3 2.2 

𝑂𝑆𝐷𝑇𝑂 11.1 8.9 8.9 8.9 13.3 11.1 𝑂𝑆𝐷𝑇𝑂 4.4 6.7 4.4 2.2 2.2 2.2 

𝑂𝐴𝐷𝑇𝑂 13.3 13.3 13.3 13.3 13.3 11.1 𝑂𝐴𝐷𝑇𝑂 2.2 4.4 0.0 0.0 0.0 0.0 

𝑂𝑆𝐻𝐷𝑇𝑂 11.1 11.1 8.9 11.1 11.1 11.1 𝑂𝑆𝐻𝐷𝑇𝑂 6.7 4.4 6.7 4.4 4.4 4.4 
 

Benchmark Metrics 

Metric Correct Decision False Tie False Differentiation False Ranking 

𝐺𝑑𝑎𝑟𝑒𝑎
𝑤  68.9 0.0 17.8 13.3 

𝐺𝑑𝑠𝑐𝑎𝑙𝑒
𝑤  68.9 0.0 15.6 15.6 

𝐺𝑑𝑎𝑛𝑔𝑙𝑒
𝑤  66.7 17.8 6.7 8.9 

𝐶𝑀𝑠𝑎𝑙 66.7 0.0 15.5 17.8 

𝐶𝑀 42.2 53.3 4.4 0.0 
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Table 5.5. Selected pooling function for each metric and corresponding 𝑻𝑷𝑹 values. 

Metric 𝑂𝐴𝐷 𝑂𝑊𝐷 𝑂𝐻𝐷 𝑂𝑇𝐷 𝑂𝑆𝐷𝑇𝑂 𝑂𝐴𝐷𝑇𝑂 𝑂𝑆𝐻𝐷𝑇𝑂 

Pooling 𝑃5
𝑜 𝑃3

𝑜 𝑃3
𝑜 𝑃4

𝑜 𝑃4
𝑜 𝑷𝟔

𝒐 𝑃5
𝑜 

𝑻𝑷𝑹 0.84 0.82 0.82 0.87 0.87 0.89 0.84 

 

Table 5.6. Classification errors and correct decision values, in percentage (%), for the best 

proposed metric, 𝑶𝑨𝑫𝑻𝑶 with 𝑷𝟔
𝒐, considering, or not, the background distortion. 

 
Not Considering the background 

distortion 

Considering the background 

distortion 

Correct Decision 88.9 71.1 

False Tie 0.0 2.2 

False Differentiation 11.1 15.6 

False Ranking 0.0 11.1 

Table 5.5 presents the best pooling function for each metric and the resulting 𝑇𝑃𝑅 values. Since 

the metric 𝑂𝐴𝐷𝑇𝑂 with 𝑃6
𝑜 has the highest 𝑇𝑃𝑅 value, it was the selected one. For the 

benchmark metrics, the 𝑇𝑃𝑅 have values of 0.69, 0.69, 0.67, 0.67, and 0.42, for 𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 , 𝐺𝑑𝑠𝑐𝑎𝑙𝑒

𝑤 , 

𝐺𝑑𝑎𝑛𝑔𝑙𝑒
𝑤 , 𝐶𝑀𝑠𝑎𝑙 , and 𝐶𝑀, respectively. These values are much lower than the 𝑇𝑃𝑅 value of 0.89 

obtained for 𝑂𝐴𝐷𝑇𝑂 with 𝑃6
𝑜, being also lower than the 𝑇𝑃𝑅 values obtained for the other 

proposed metrics. Taking into account the evaluation results of the different metrics, the object-

based Tissot area distortion (𝑂𝐴𝐷𝑇𝑂), with pooling function 𝑃6
𝑜, is then the proposed one to 

assess the subjective impact of the viewport stretching distortion, in omnidirectional image 

rendering. 

Figure 5.16 depicts the plots of classification errors and correct decision for the selected metric, 

𝑂𝐴𝐷𝑇𝑂 with 𝑃6
𝑜, and for the benchmark metric 𝐺𝑑𝑎𝑟𝑒𝑎

𝑤 , where the dashed line indicates 

the ∆OM value that maximizes the correct decision. For 𝑂𝐴𝐷𝑇𝑂 with 𝑃6
𝑜, and with ∆OM = 0 

(all stimuli pairs are considered as perceptually different by the objective metric), the correct 

decision percentage is 82%, which agrees with the results of the subjective test, where the 

difference was statistically significant in 82% of the pairs (cf. Figure 5.7); on the other hand, 

the correct decision percentage is just 68.9% for 𝐺𝑑𝑎𝑟𝑒𝑎
𝑤 . Also, for ∆OM = 0, the false 

differentiation percentage is 18% and 17.8% for 𝑂𝐴𝐷𝑇𝑂 with 𝑃6
𝑜 and 𝐺𝑑𝑎𝑟𝑒𝑎

𝑤  respectively; 

however, the false ranking percentage is 0% for 𝑂𝐴𝐷𝑇𝑂  with 𝑃6
𝑜 and 13.3% for 𝐺𝑑𝑎𝑟𝑒𝑎

𝑤 .  

To evaluate the impact, on the metric performance, of considering or not the background, the 

background distortion was computed using the selected metric (𝑂𝐴𝐷𝑇𝑂 with 𝑃6
𝑜), and included 

in the metric as an additional measure; after, the classification errors and correct decision values 

with/without considering the background distortion were compared. Table 5.6 presents the 

resulting classification errors and correct decision values, showing that the metric performance 

decreases when the background distortion is included. This is consistent with fact that the 

stretching in the background is not as visible as the stretching of foreground objects, and shows 

the advantage of having an object-based stretching metric.  

5.5 Final Remarks  

In this chapter, a novel object-based quality metric to assess the subjective impact of the objects 

shape deformation in viewport images, rendered from omnidirectional images, was proposed.  
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a) b) 

  

c) d) 

Figure 5.16. Plots of classification errors and correct decision for the best proposed metric and 

for the benchmark metric 𝑮𝒅𝒂𝒓𝒆𝒂
𝒘 . For a better visualization, the shaded area on the left side 

plots are represented in the right-side plot, using a larger scale. 

The metric uses semantic segmentation to identify the relevant objects in the viewport, where 

the stretching distortion has a higher perceptual impact, and computes the stretching distortion 

for each object. Two distinct approaches were exploited and evaluated: the first one, directly 

computes and compares object shape measures on the sphere and on the viewport; the second 

one is based on Tissot indicatrices, which are computed for individual objects in the viewport. 

The experimental results show that while the Tissot based method performs slightly better than 

the direct shape measurement, both approaches outperform benchmark solutions; furthermore, 

they were able to classify the viewport quality, with respect to quality scores obtained in a 

subjective crowdsourcing study, with a correct decision percentage close to 90%.  

The next chapter describes a useful application for the proposed metric, where it is integrated 

in a procedure to globally optimize the Pannini projection parameters, according to the viewport 

content.  

The work presented in this chapter has been included in the following journal paper:  

• F. Jabar, J. Ascenso, and M.P. Queluz, “Object-Based Geometric Distortion Metric for 

Viewport Rendering of 360⸰ Images”, IEEE Access, vol.10, no.1, 13827-13843, Jan. 2022. 



 

114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 

 

Chapter 6 
                                                                         _ 

6Pannini Projection Optimization 

6.1  Introduction 

As mentioned in Chapter 1, the most often used perspective projections for viewport rendering 

(i.e., rectilinear, and stereographic) are content-unaware. Therefore, in Chapter 4 a content-

aware general perspective projection (CA-GPP) was proposed. Although the CA-GPP allows 

to obtain visually pleasant viewport images for FoVs (~ 110⸰), the geometric distortion becomes 

quite visible and annoying for higher FoVs; however, larger FoVs offer a higher user’s sense 

of immersion and presence. Also, as seen in Chapter 2, current state-of-the-art content-aware 

projections [10][36][37][43][54]–[56] are not able to provide viewports with large FoVs 

(~150o), without noticeable distortions. Excluding [36][54][55], these projections are globally 

or regionally adapted to the content, but are not able to provide a good balance between bending 

and stretching, while others are not fully automatic and require user interaction [36][43][54], 

or are used to only to reduce the geometric distortions for human faces without considering 

general objects that may appear in the scene [55]. 

This chapter addresses the rendering of viewports with large FoVs (~150o), targeting new 

content adapted sphere to plan projections, with reduced geometric distortions comparatively 

to state-of-the-art methods. The solutions here proposed are built over the Pannini projection, 

due to its good performance compared to other content-unaware projections, notably its 

suitability for viewport rendering with high FoV values. In this context, this chapter has the 

following main objectives:  

• To globally adapt the Pannini projection parameters (𝑑  and 𝑣𝑐) to the viewport content, 

aiming to minimize the geometric distortions with a single set of parameters (similarly to 

what was done in CA-GPP).  

• To further improve the conformality of semantically relevant objects, by locally optimizing 

the Pannini projection parameters resulting from the previous step.  

The rest of this chapter is organized as follows. Section 6.2 describes the global optimization 

of the Pannini projection parameters. Section 6.3 proposes a two-step procedure where the 

Pannini parameters are firstly globally optimized, followed by a local conformality 

improvement of relevant viewport objects. Section 6.4 presents the evaluation of the proposed 

Pannini projection optimization. Section 6.5 finalizes this chapter with some final remarks. 
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6.2 Globally Adapted Pannini Projection 

This section describes the global adaptation of the Pannini projection to the viewport content; 

it consists in obtaining the optimal - in the perceived quality sense - projection parameters for 

the viewport rendering of omnidirectional images, resulting in the globally adapted Pannini 

projection (GA-PP). 

As shown in Chapters 1 and 2, the stretching of objects and the bending of straight lines are the 

two main artifacts that condition the perceived geometric distortion of the rendered viewports. 

Furthermore, they have an opposite evolution with the variation of the projection parameters, 

i.e., stretching decreases and bending increases when 𝑑 varies from 0 to 1, and/or 𝑣𝑐 varies 

from 1 to 0. Thus, the procedure to find the optimal parameters, (𝑑𝑜𝑝𝑡, 𝑣𝑐𝑜𝑝𝑡), seeks the best 

compromise between these two types of artifacts.  

6.2.1 Methodology 

In Chapter 4, two solutions were proposed to optimize the general perspective projection, one 

based on SVR and another based on a simple cost function. In this work, the cost function-based 

solution was chosen to optimize the Pannini projection parameters. In fact, since this projection 

has two parameters, a large number of viewports and associated ground truth quality scores would 

be required for training the SVR model, which will be very time consuming 

The proposed GA-PP framework is illustrated in Figure 6.1. For a given input equirectangular 

(ERI) image, viewing direction (𝜙𝑉𝐷 , 𝜃𝑉𝐷), and horizontal FoV, 𝐹ℎ, the resulting viewport 

stretching and bending metrics are iteratively computed for different combinations of 𝑑 and 𝑣𝑐 

values, varying 𝑑 between 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥, with a step-size Δ𝑑, and 𝑣𝑐 between 𝑣𝑐𝑚𝑖𝑛 and 𝑣𝑐𝑚𝑎𝑥, 

with a step-size Δ𝑣𝑐. For the results presented in this Thesis, 𝑑𝑚𝑖𝑛 = 0.1, 𝑑𝑚𝑎𝑥 = 1,          

𝑣𝑐𝑚𝑖𝑛 = 0  and 𝑣𝑐𝑚𝑎𝑥 = 1; Δ𝑑 and Δ𝑣𝑐 were both set to 0.1, resulting in 𝑁=110 possible 

(𝑑, 𝑣𝑐) pairs. In Figure 6.1, 𝑳 is the set of detected lines, after line merging and filtering; 𝑲 is a 

2D matrix with size 𝑁 × 2, which contains the (𝑑, 𝑣𝑐) pairs, indexed by 𝑖, 𝑖 = 1,2, … ,𝑁. The 

projection with (𝑑 = 0, 𝑣𝑐 = 0) - pure rectilinear projection - was not considered in the 𝑑, 𝑣𝑐 set, 

since it results in too much stretching in the viewport. The optimum parameters, (𝑑𝑒𝑠𝑡, 𝑣𝑐𝑒𝑠𝑡), are 

obtained by minimizing, over the considered (𝑑, 𝑣𝑐) pairs, a simple cost function similar to 

(4.39).  

 

Figure 6.1. Proposed GA-PP framework. 

Every procedure in Figure 6.1 has been already introduced previously, except the two last steps 

– Distortion Measure Computation and Cost Function Computation – which are detailed herein: 
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• Distortion Measures Computation - For the stretching distortion measure, the best 

proposed Tissot object-based stretching measure - 𝑂𝐴𝐷𝑇𝑂 with pooling function 𝑃6
𝑜 - 

detailed in the previous chapter (Section 5.3.4) was considered. Note that the 𝑂𝐴𝐷𝑇𝑂 

requires the omnidirectional image semantic segmentation, which justifies the need for the 

segmentation block in Figure 6.1. For the bending distortion measure, one of the best 

bending measures - Line Measure Combination 𝐿𝑀𝐶, with line pooling function 𝑃5
𝑙 - 

proposed in Chapter 4 (Section 4.3) was selected.  

• Cost Function Computation - The optimum parameters, (𝑑𝑒𝑠𝑡, 𝑣𝑐𝑒𝑠𝑡), to be used on the 

final viewport rendering, are obtained by minimizing, over the considered (𝑑, 𝑣𝑐) pairs, a 

simple cost function, described by: 

(𝑑𝑒𝑠𝑡 , 𝑣𝑐𝑒𝑠𝑡) = min
(𝑑,𝑣𝑐)

(𝛼 [
𝑆(𝑑, 𝑣𝑐)  − 𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

] + [
𝐵(𝑑, 𝑣𝑐)  − 𝐵𝑚𝑖𝑛
𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛

]) (6.1) 

where 𝑆(𝑑, 𝑣𝑐) and B(𝑑, 𝑣𝑐)  are, respectively, the viewport stretching and bending measures 

for projection parameters (𝑑, 𝑣𝑐) ; 𝛼 is the stretching to bending ratio; 

𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥, 𝐵𝑚𝑖𝑛, and 𝐵𝑚𝑎𝑥 are normalizing constants guaranteeing that the metric values are 

on the interval [0,1]. The normalization constants correspond to the minimum and maximum 

𝑆 and B values that were found for a set of 2200 viewports, rendered from 20 omnidirectional 

images, and using (𝑑, 𝑣𝑐) values on the intervals previously specified.  

In (6.1), parameter α seeks the best balance between stretching and bending subjective impact, 

and it was learned in a perceptual way using a small data set of Pannini viewports, not contained 

in the final evaluation dataset. The details about the procedure to obtain this parameter are 

provided in the next section.  

6.2.2 Cost Function Parameter Selection 

As mentioned above, parameter 𝛼 used in (6.1) was obtained in a perceptual way. For that, a 

short subjective assessment session was conducted with just three observers (the author of this 

Thesis and his supervisors), to build a Pannini viewport dataset with associated ground-truth 

(GT) optimal projection parameters, (𝑑𝑔𝑡, 𝑣𝑐𝑔𝑡). The considered dataset, subjective test 

methodology, and resulting GT projection parameters, are detailed herein: 

• Dataset - Ten omnidirectional images in equirectangular format (ERI), taken from [10][52], 

were used in the subjective assessment. The images and their resolutions are depicted in 

Figure 6.2. This set of images includes six images that were already used in previous 

subjective tests, and four new images, namely Bus, Car repair, Office 3, Exhibition. The new 

images were included to have contents with/without people, and different types of dominant 

distortion (from stretching to bending) when the Pannini projection is used with different 

values of 𝑑 and 𝑣𝑐. For each omnidirectional image, one viewing direction was considered, 

which was selected with the procedure described in the previous chapter (Section 5.2.1). For 

each viewing direction, 25 viewports were rendered, corresponding to the possible 

combinations of 𝑑 and 𝑣𝑐 values, varying 𝑑 between 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥, with a step-size Δ𝑑, 

and 𝑣𝑐 between 𝑣𝑐𝑚𝑖𝑛 and 𝑣𝑐𝑚𝑎𝑥, with a step-size Δ𝑣𝑐, where 𝑑𝑚𝑖𝑛 = 0.2,                      

𝑑𝑚𝑎𝑥 = 1, 𝑣𝑐𝑚𝑖𝑛 = 0  and 𝑣𝑐𝑚𝑎𝑥 = 1. In (6.1), Δ𝑑 and Δ𝑣𝑐 were both set to 0.1; however, 

to reduce the number of comparisons and thus limit the test duration less than half an hour, 

in this test Δ𝑑 was set to 0.2 and Δ𝑣𝑐 was set to 0.25. Moreover, since there were only three  
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Figure 6.2. Omnidirectional images used in the subjective tests, and their spatial resolution. 

observers, having a higher granularity for 𝑑 and 𝑣𝑐 increases the chance of having similar 

choices between the observers. The rendered viewports had a spatial resolution of 960×540 

pixels (𝐴𝑅 = 16/9)) and a 𝐹ℎ of 150°. This resolution allows the simultaneously display of 

two viewports, side by side, in typical monitors. 

• Subjective Evaluation Method - The objective of the test was to find out, for each 

omnidirectional image and considered viewing direction, the Pannini parameters, the 

projection parameters that resulted in the most pleasant viewport. As on the subjective test 

described in the previous chapter, the pairwise comparison (PC) method was selected for the 

subjective evaluation. The subjective assessment interface was similar to the one designed 

in the previous chapter, except that the option “A=B” was excluded from the grading scale. 

For each omnidirectional image, two viewports were shown side by side (each rendered with 

a different (𝑑, 𝑣𝑐) pair) and the observers were asked to select the best one, in his opinion. 

The selected viewport remained on the screen and the next viewport, from the same 

omnidirectional image, was then shown; this procedure was repeat for all (𝑑, 𝑣𝑐) pairs. The 

projection parameters of the last selected viewport were then considered as the best ones for 

that image and viewing direction. Each viewport was shown in random order and position. 

The subjective test was conducted with a 2D display, using a Full HD monitor, with a native 

resolution of 1920×1080 pixels.   

• GT Pannini Viewport - For each omnidirectional image, a pair of GT parameters, 

(𝑑𝑔𝑡, 𝑣𝑐𝑔𝑡), was obtained. Since parameters selection was quite similar among the observers 

and there were at least two observers selected the same viewport, it was possible to obtain 

the (𝑑𝑔𝑡, 𝑣𝑐𝑔𝑡) for each omnidirectional image by counting the number of votes. The ten 

resulting GT parameters, (𝑑𝑔𝑡, 𝑣𝑐𝑔𝑡), and corresponding viewports, were made available in 

[125]. 

    
a) Photography shop 

(3840×1920) 

b) Museum           

(3840×1920) 

c) Buildings 2           

(7500×3750) 

d) Bus                   

(5376×2688) 

    
e) Conference                 

(3840×1920) 

f) Car repair          

(1000×5000) 

g) Friends             

(3840×1920) 

h) Office 3             

(6000×3000) 

 

  

 

 
i) Exhibition 

(13320×6660) 

j) Snow                  

(5376×2688) 
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For each viewport in the resulting dataset, the optimum projection parameters were predicted 

using (6.1), and varying 𝛼 between 0 and 10 with an increment of 0.01. For each 𝛼, the training 

error, TE( 𝛼), given by:  

𝑇𝐸(𝛼) =
1

𝑁𝑡
∑

|𝑑𝑒𝑠𝑡
𝑖 (𝛼) − 𝑑𝑔𝑡

𝑖 | + |𝑣𝑐𝑒𝑠𝑡
𝑖 (𝛼) − 𝑣𝑐𝑔𝑡

𝑖 |

2

𝑁𝑡

𝑖=1

 , (6.2) 

was computed and stored. In (6.2), 𝑖 is the viewport index, 𝑁𝑡 is the number of viewports in the 

dataset (in this case, 𝑁𝑡 = 10), (𝑑𝑒𝑠𝑡
𝑖 (𝛼), 𝑣𝑐𝑒𝑠𝑡

𝑖 (𝛼)) are the predicted optimum parameters for 

viewport i when 𝛼 is used in (6.1), and (𝑑𝑔𝑡
𝑖 , 𝑣𝑐𝑔𝑡

𝑖 ) are the GT parameters for viewport i. The 𝛼 

value resulting in the lowest training error was 0.24 and was the selected value.  

6.2.3 GA-PP Qualitative Evaluation 

The proposed GA-PP projection was compared with several benchmark projections that include 

rectilinear, stereographic, two Pannini with fixed parameters - (𝑑 = 0.5, 𝑣𝑐 = 0) and                         

(𝑑 = 1, 𝑣𝑐 = 0) - and the globally adapted Pannini (OP) projection proposed in [10]. For 

comparison purposes, four viewports were rendered from four different omnidirectional images 

available in the datasets of [10][52]. The equirectangular images and their spatial resolution are 

presented in Figure 6.3. The viewports were rendered with a horizontal FoV, 𝐹ℎ, of 150° and a 

spatial resolution of 960×540 pixels (aspect ratio, 𝐴𝑅 = 16/9), as in [10].  

  
a) Bedroom (2000×1000) b) Office 4 (8000×4000) 

  
c) Buildings 1 (7500×3750) d) Dinner 2 (7500×3750) 

Figure 6.3. Omnidirectional images and their spatial resolution used for producing viewports 

with different projections. 

Figure 6.4 depicts the viewports obtained with the proposed GA-PP and with the considered 

benchmark projections; the OP viewports were obtained from the authors of [10]. As can be 

figured out, the GA-PP viewports are generally more pleasant, providing a good compromise 

between bending and stretching distortions; in particular, the following qualitative comparisons 

can be made: 

• GA-PP vs rectilinear and stereographic - The viewports resulting from GA-PP are clearly 

more pleasant than those resulting from rectilinear and stereographic projections. While the 

lines are straight in the rectilinear viewports, the perspective effect is very strong and 

annoying, and the object shapes are too much stretched, notably for the Office 4, Buildings 

1, and Dinner 2 viewports. Although the objects shape is preserved in the stereographic 

viewports, the lines are severely bent (fisheye effect).  
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Bedroom Office 4 Buildings 1 Dinner 2 
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Figure 6.4. Example of viewports rendered  with different projections and using a horizontal 

FoV of 150°. NA corresponds to Not Available. The red and green arrows indicate, respectively, 

objects/regions with high and low geometric distortions. 

• GA-PP vs Pannini with fixed parameters - The proposed GA-PP generates viewports with 

a good balance between the stretching of objects and bending of lines. This cannot be 

achieved for Pannini with fixed parameters, as for 𝑣𝑐 = 0 the horizontal lines are rather bent, 

particularly for 𝑑 = 1.   

• GA-PP vs OP - The viewports obtained for GA-PP have less global geometric distortion 

than the viewports resulting from OP. In particular, for the Bedroom viewport, the horizontal 

lines on the ceiling and on the floor are straighter for GA-PP. In the Office 4 viewport, the 

GA-PP kept the horizontal lines as straight as OP, but the objects shape (e.g., the chair and 

monitor on the left side) is more conformal for GA-PP.  

An additional evaluation of the GA-PP, within a crowdsourcing subjective assessment test, is 

provided in Section 6.4. 
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The previous analysis showed that the GA-PP results in viewports with a more pleasant visual 

quality than the considered benchmark solutions. However, since this projection is globally 

adapted to the viewport content (i.e., 𝑑 and 𝑣𝑐 have the same values for the whole viewport), 

stretching and/or bending may be still visible for some image regions and structures; as an 

example, in Figure 6.4 the lady on the left side of the Dinner 2 viewport resulting from GA-PP 

is stretched in the vertical direction. If the projection parameters are allowed to vary locally, the 

geometric distortions could be further reduced. This possibility is exploited in the next section, 

where a procedure to globally and locally optimize the Pannini projection is proposed. 

6.3 Globally and Locally Adapted Pannini Projection 

In this section, a globally and locally adapted Pannini projection (GLA-PP) is proposed. In this 

projection, a two-step procedure was conceived to minimize the geometric distortions, first 

globally, based on the optimization of the Pannini projection parameters (as in GA-PP), and 

then locally for some regions using a content-aware mesh optimization, to improve the 

conformality of perceptually relevant viewport objects. 

6.3.1 Methodology 

Figure 6.5 depicts the GLA-PP framework. To minimize the viewport distortions when high 

FoVs are used, this projection is globally and regionally adapted to the viewport content, 

according to two optimization steps: 

1)  Global optimization - The Pannini projection is optimized considering the whole viewport, 

resulting in the projection parameters (𝑑𝑏,𝑣𝑐𝑏) that present the best compromise between 

stretching and bending. Due to the higher visual impact of lines bending, the optimization 

procedure gives more importance to this distortion. 

2)  Local optimization - The projection resulting from the previous step is further improved 

for relevant objects. This is obtained by defining two meshes, 𝑀𝑏 and 𝑀𝑓, on the viewport 

plane, that are iteratively combined in one optimized mesh, 𝑀𝑜, as suggested in [55]. While 

𝑀𝑏 corresponds to the globally optimized projection, 𝑀𝑓 corresponds to a conformal (or 

quasi conformal) projection. The goal is to increase the conformality of the foreground 

objects, using 𝑀𝑓, while assuring a seamless transition to 𝑀𝑏, which is mainly applied over 

the background. 

 

Figure 6.5. Globally and locally adapted Pannini (GLA-PP) projection framework. 
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a) b) c) 

Figure 6.6. a) Example of an ERI image; b) Its semantic segmentation; c) Its final segmentation 

map, 𝑬𝑹𝑰𝒔𝒆𝒈.   

Both optimization procedures require the detection of relevant objects, which is accomplished 

by the semantic segmentation block, producing a segmentation map, 𝐸𝑅𝐼𝑠𝑒𝑔, of the input image. 

The semantic segmentation (including the connected component analysis (CCA)), is obtained 

according to the procedure described in the previous chapter (Section 5.3.1). Figure 6.6 depicts 

an example of an equirectangular image 𝐸𝑅𝐼, its semantic segmentation, and the resulting ERI 

segmentation map (𝐸𝑅𝐼𝑠𝑒𝑔) after CCA, where disconnected objects are represented with 

different colors. 

The Pannini projection with the globally optimized parameters, (𝑑𝑏, 𝑣𝑐𝑏), is applied to the input 

image and to 𝐸𝑅𝐼𝑠𝑒𝑔 producing, respectively, a viewport image denoted as 𝑉𝑃𝑏, and its 

corresponding segmentation map, denoted as 𝑉𝑃𝑏
𝑠𝑒𝑔

, which is used by the mesh optimization 

procedure. Finally, 𝑉𝑃𝑏 is warped according to the optimized mesh, to obtain the final output 

viewport, 𝑉𝑃𝑜𝑢𝑡. The main steps involved in the GLA-PP projection are described in the 

following sections.  

A. Global Optimization  

The global optimization aims to find out the Pannini projection parameters, (𝑑𝑏 , 𝑣𝑐𝑏), that 

result in the least perceived global geometric distortion, for a viewport rendered according to 

the user viewing direction, (𝜙𝑉𝐷 , 𝜃𝑉𝐷), and with a predefined horizontal field of view, 𝐹ℎ, and 

spatial resolution (𝑊𝑣𝑝, 𝐻𝑣𝑝). This is obtained by applying the procedure described in Section 

6.2, and where the projection parameters, (𝑑𝑏 , 𝑣𝑐𝑏), are obtained by minimizing a simple cost 

function defined by (6.1). 

In (6.1), parameter 𝛼 - stretching to bending ratio - seeks the best balance between bending and 

stretching distortions, and was set to 0.24 in Section 6.2.2. In GLA-PP, to better preserve the 

straightness of the lines, more importance was given to the line bending than to the stretching 

of the objects, by reducing 𝛼 to 0.17. This value was obtained by varying 𝛼 in the range         

[0.05, 0.24] with a step size of 0.01, and retaining the value that leads to viewports (rendered 

from several omnidirectional images) with straighter background lines, at the expense of a 

slightly decrease of the objects conformality (and since the local optimization will only improve 

the latter). 

B. Meshes Creation  

Two meshes, 𝑀𝑏 and 𝑀𝑓, are generated on the viewport plane, as depicted in Figure 6.7, using 

the Pannini backward and forward projections. This allows to obtain, for a given position in the 

viewport, the corresponding positions in both 𝑀𝑏 and 𝑀𝑓: 
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• 𝑴𝒃 mesh creation - A uniform grid mesh, 𝑀𝑏 = {𝒃𝑖}, is defined over 𝑉𝑃𝑏, consisting of a 

vertex set {𝒃𝑖}, where 𝒃𝒊 refers to the i-th vertex Cartesian coordinates, (𝑥𝑏 , 𝑦𝑏), in length 

units, with origin at the center of the viewport plane. For a given integer position of 𝑉𝑃𝑏, 

(𝑛,𝑚), with a coordinate system centered on the top-left corner of the viewport plane, the 

corresponding Cartesian coordinates, (𝑥𝑛𝑚
𝑏 , 𝑦𝑛𝑚

𝑏 ), can be computed by (see Section 2.4.8.A)  

𝑥𝑛𝑚
𝑏 = 2  (𝑑𝑏 + 1)

sin (
𝐹ℎ
2 )

𝑑𝑏 + cos (
𝐹ℎ
2
)
 (
𝑚 + 0.5

𝑊𝑚
−
1

2
) , 0 ≤ 𝑚 < 𝑊𝑚 (6.3) 

𝑦𝑛𝑚
𝑏 = 2 tan (

𝐹𝑣
2
) (

1

2
−
𝑛 + 0.5

𝐻𝑚
) , 0 ≤ 𝑛 < 𝐻𝑚 (6.4) 

where 𝐹𝑣 is the vertical FoV, obtained by (cf. (5.7) and (5.8)) 

𝐹𝑣 = 2 tan−1 (
(𝑑𝑏 + 1) sin (

𝐹ℎ
2
)

𝐴𝑅 (𝑑𝑏 + cos (
𝐹ℎ
2
))
) , (6.5) 

and 𝑊𝑚 and 𝐻𝑚 are the horizontal and vertical mesh resolution, respectively, which were 

set to 𝑊𝑚 = 𝑊𝑣𝑝/𝑐 and 𝐻𝑚 = 𝑊𝑣𝑝/𝑐, being 𝑐 a constant; 𝐴𝑅 is the viewport aspect ratio.  

• 𝑴𝒇 mesh creation - The 𝑀𝑏 mesh coordinates, (𝑥𝑛𝑚
𝑏 , 𝑦𝑛𝑚

𝑏 ), are projected back to the sphere, 

using the Pannini backward projection with parameters (𝑑𝑏 , 𝑣𝑐𝑏), resulting in the 

corresponding spherical coordinates (𝜙𝑛𝑚, 𝜃𝑛𝑚) . These are then projected to the plane using 

the Pannini forward projection with parameters (𝑑𝑓 , 𝑣𝑐𝑓), resulting in the corresponding 

𝑀𝑓 mesh coordinates, (𝑥𝑛𝑚
𝑓
, 𝑦𝑛𝑚

𝑓
), of a vertex set {𝒇𝑖}; thus, 𝑀𝑓 represents the initial 

viewport reprojected according to (𝑑𝑓 , 𝑣𝑐𝑓), that should preserve the objects conformality 

(e.g., stereographic Pannini (𝑑𝑓 = 1, 𝑣𝑐𝑓 = 0)). The selection of these parameters is detailed 

in Section 6.3.2. 

 

Figure 6.7. 𝑴𝒃 and 𝑴𝒇 meshes generation procedure. 

Note that to get a uniform 𝑀𝑓 mesh with the same resolution as 𝑀𝑏, the procedure was 

implemented in the other way around: for each integer position (𝑛,𝑚) associated with a 

vertex 𝒇𝑖, the corresponding Cartesian coordinates (𝑥𝑛𝑚
𝑓
, 𝑦𝑛𝑚

𝑓
), were obtained by first back 

projecting to the sphere with (𝑑𝑓 , 𝑣𝑐𝑓), and then forward projecting to the viewport plan with 

(𝑑𝑏 , 𝑣𝑐𝑏). The pseudocode explaining this procedure is provided below. 
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Algorithm: Pannini meshes creation 

1: Input: 𝑑𝑓 , 𝑣𝑐𝑓 , 𝑑𝑏 , 𝑣𝑐𝑏 ,𝑊𝑚, 𝐻𝑚, 𝐹ℎ 

2: Output: 𝑀𝑏 ,𝑀𝑓 

3: for 𝑛 = 1 to 𝐻𝑚  

4:  for 𝑚 = 1 to 𝑊𝑚  

5:   compute 𝑥𝑛𝑚
𝑏 , 𝑦𝑛𝑚

𝑏  using (6.3) to (6.5) 

6:   compute (𝜙𝑛𝑚, 𝜃𝑛𝑚) using (2.32) to (2.36) with 𝑑𝑓 , 𝑣𝑐𝑓 

7:   compute 𝑥𝑛𝑚
𝑓
, 𝑦𝑛𝑚

𝑓
  using (2.29) to (2.31) with 𝑑𝑏 , 𝑣𝑐𝑏  

8:  end 

9: end 

C. Mesh Optimization 

Based on [55], a mesh optimization algorithm is applied which iterates locally between 𝑀𝑏 and 

𝑀𝑓, adding smooth changes, to obtain an optimal mesh 𝑀𝑜 = {𝒐𝑖}, having the following 

properties: i) object shapes are preserved; ii) straightness of background lines are preserved; iii) 

abrupt transitions at the object borders (due to the use of two different meshes) are avoided. 

A mesh denoted as 𝑀𝑣 = {𝒗𝑖} is defined, consisting of a vertex set {𝒗𝑖}, where initially             

{𝒗𝑖} = {𝒃𝑖}. The optimized mesh results from minimizing the following cost function: 

{𝒐𝒊} = min
{𝒗𝒊}

 𝐸𝑡({𝒗𝑖})  (6.6) 

where 𝐸𝑡 is a weighted sum of energy terms, expressed by 

   𝐸𝑡 = 𝜆𝑐𝐸𝑐 + 𝜆𝑏𝐸𝑏 + 𝜆𝑠𝐸𝑠 + 𝜆𝑎𝐸𝑎    (6.7) 

and 𝐸𝑐 , 𝐸𝑏 , 𝐸𝑠, and 𝐸𝑎 are, respectively, object conformality, line distortion, smoothness, and 

asymmetric energy terms; 𝜆𝑐 , 𝜆𝑏 , 𝜆𝑠 , and 𝜆𝑎 are the weights for the corresponding energy 

terms. Each one of these energy terms is explained below: 

• Object conformality term - For each object identified in 𝑉𝑃𝑏
𝑠𝑒𝑔

, a conformality term is 

computed by 

   𝑂𝑐 = ∑ 𝑚𝑖‖𝒗𝑖 − 𝒇𝑖‖2
2  

𝑖∈𝑩𝑘

 (6.8) 

where 𝑘 is the object index; 𝑩𝑘 is the set of vertices on the k-th object; 𝑚𝑖 is the correction 

strength; 𝒇𝒊 is the vertex in the 𝑀𝑓 mesh; 𝒗𝒊 is the vertex in the 𝑀𝑣 mesh; ‖. ‖2
2 denotes the 

squared Euclidean distance. The 𝑂𝑐 encourages the object regions to follow the 𝑀𝑓 mesh, where 

the object shapes are preserved.  

Objects located at the viewport borders have higher distortions than the objects close to the 

viewport center, and thus require more correction; to account it, the following sigmoid function 

is defined 

   𝑚𝑖 =
1

1 + exp (−
𝑟𝑖 − 𝑟1
𝑟2

)
   (6.9) 
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where 𝑟𝑖 is the radial distance of 𝒃𝑖 from the viewport center, 𝑟1 and 𝑟2 are parameters 

controlling the attenuations of the correction strength and chosen such that 𝑚𝑖 =  0.01 at the 

viewport center, and 𝑚𝑖 =  1  at the viewport border. 

The total object conformality is then computed by the sum of all objects conformality and is 

expressed by 

   𝐸𝑐 =∑𝑂𝑐(𝑘)

𝑘

  (6.10) 

• Line distortion term - To preserve the straightness of the lines on the boundaries between 

objects and background, where different projections are applied, the following line distortion 

energy term is computed 

   𝐸𝑏 =∑ ∑ ‖𝒗𝑛−𝒗𝑚 × 𝑒𝑛𝑚‖2
2 

𝑚∈𝑁(𝑛)𝑛

 (6.11) 

where 𝑒𝑛𝑚 is the unit vector along the direction 𝒃𝑛 − 𝒃𝑚 in the 𝑀𝑏 mesh, that preserves the 

lines straightness, and × denotes the cross product. 

• Smoothness term - To have a smooth transition at the object borders, the following 

smoothness term is computed 

   𝐸𝑠 =∑ ∑ ‖𝒗𝑛−𝒗𝑚‖2
2 .

𝑚∈𝑁(𝑛)𝑛

 (6.12) 

This term encourages smoothness between 4-way adjacent vertices and thus avoids abrupt 

changes in the final viewport. 

• Asymmetric cost term - Due to the mesh optimization that tries to satisfy the previous 

terms, some visual artifacts (e.g., geometric distortions and black regions) may appear at 

regions close to the viewport borders. Thus, to reduce these artifacts, the following asymmetric 

cost term is computed 

   𝐸𝑎 = 𝐸𝑙 + 𝐸𝑟 + 𝐸𝑡 + 𝐸𝑏  (6.13) 

where 𝐸𝑙 , 𝐸𝑟 , 𝐸𝑡 , and 𝐸𝑏 are, respectively, left, right, top, and bottom mesh boundary 

constraints, given by  

𝐸𝑙 = 𝕀(𝑣𝑖,𝑥 > 0) × ‖𝑣𝑖,𝑥‖2
2
 ,       ∀𝑖 ∈  𝜕𝑙𝑒𝑓𝑡  (6.14) 

𝐸𝑟 = 𝕀(𝑣𝑖,𝑥 > 𝑊𝑚) × ‖𝑣𝑖,𝑥 −𝑊𝑚‖2
2
 , ∀𝑖 ∈  𝜕𝑟𝑖𝑔ℎ𝑡   (6.15) 

𝐸𝑡 = 𝕀(𝑣𝑖,𝑦 > 0) × ‖𝑣𝑖,𝑦‖2
2
 , ∀𝑖 ∈  𝜕𝑡𝑜𝑝  (6.16) 

𝐸𝑏 = 𝕀(𝑣𝑖,𝑦 > 𝐻𝑚) × ‖𝑣𝑖,𝑦 −𝐻𝑚‖2
2
 , ∀𝑖 ∈  𝜕𝑏𝑜𝑡𝑡𝑜𝑚  (6.17) 

where 𝕀(. ) is the indicator function that returns 1 for the true condition and 0 otherwise; 𝜕∗ are 

the original mesh boundary. 

A gradient-based algorithm [141], with 100 iterations and a learning rate of 0.02, was used for 

the mesh optimization. This method was implemented in PyTorch [142], which is 

computationally efficient and suitable for mesh optimization. 
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D. Viewport Warping 

The final viewport,  𝑉𝑃𝑜𝑢𝑡, is obtained by warping the globally optimized viewport, 𝑉𝑃𝑏, 

according to the optimized mesh, 𝑀𝑜. The warping package available in [143] was used for this 

purpose. This process requires interpolation for non-integer pixel positions; in this work, 

bilinear interpolation was used. 

Figure 6.8 depicts a viewport, 𝑉𝑃𝑏, obtained from the globally optimized Pannini projection 

with 𝑑𝑏 = 0.5, 𝑣𝑐𝑏 = 0.6; its segmentation map, 𝑉𝑃𝑏
𝑠𝑒𝑔

; a viewport, 𝑉𝑃𝑓, obtained by warping 

𝑉𝑃𝑏 according to a 𝑀𝑓 mesh generated with 𝑑𝑓 = 0.5, 𝑣𝑐𝑓 = 0; and the final optimized 

viewport, 𝑉𝑃𝑜𝑢𝑡. As can be seen, the objects stretching presented in 𝑉𝑃𝑏 (e.g., the girl on the 

left side is vertically stretched), is reduced significantly in the 𝑉𝑃𝑜𝑢𝑡, while straight lines in the 

background remain straight. Figure 6.8e) shows the optical flow mask [144] overlaid on 𝑉𝑃𝑏. 

This mask was computed between the two meshes, 𝑀𝑏 and 𝑀𝑜, and it shows the 𝑉𝑃𝑏 regions 

that are modified by the mesh optimization procedure. As shown in Figure 6.8e), the bottom-

left and the bottom-right have the strongest flow (or projection modifications, to reduce the 

stretching) compared to other regions, which  was expected since there are two objects (lady on 

the left and boy on the right, in Figure 6.8) located in these regions, too much stretched in the 

vertical direction. 

  

a) 𝑉𝑃𝑏 b) 𝑉𝑃𝑏
𝑠𝑒𝑔

 

  
c) 𝑉𝑃𝑓 d) 𝑉𝑃𝑜𝑢𝑡 

 

 

 

 e) 𝑉𝑃𝑏 with optical flow mask  

Figure 6.8. a) Globally optimized Pannini viewport with HFoV of 150º; b) its segmentation map; 

c) viewport obtained by warping 𝑽𝑷𝒃, according to the 𝑴𝒇 mesh; d) final output viewport;  

e) 𝑽𝑷𝒃 with optical flow mask. 
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6.3.2 GLA-PP Projection Parameters Selection 

To obtain the 𝑀𝑓 mesh, the corresponding (𝑑𝑓 , 𝑣𝑐𝑓) Pannini projection parameters need to be 

found. While a stereographic Pannini (𝑑𝑓 = 1, 𝑣𝑐𝑓 = 0) favours the conformality of the objects, 

it may result in visible distortions on the objects boundaries if the global projection parameters 

have very distinct values. 

The appropriate values of (𝑑𝑓 , 𝑣𝑐𝑓) were obtained by visual inspection of the optimized 

viewports, 𝑉𝑃𝑜𝑢𝑡, for several omnidirectional images, varying 𝑑𝑓 in the range of [0.1, 1] with a 

step 𝛥𝑑 = 0.1, and 𝑣𝑐𝑓 = 0. The 𝑣𝑐𝑓 value was set to 0 since, for 𝑑𝑓 ≠ 0 and 𝑣𝑐𝑓 > 0, object 

stretching becomes visible. It was found that if |𝑑𝑏 − 𝑑𝑓| > 0.2, the regions close to the object 

boundaries may be distorted on the final viewport, particularly the straight lines. Accordingly, 

𝑑𝑓 was set to  𝑑𝑏 + 0.2, being 𝑑𝑏 automatically obtained by the global optimization procedure.  

The cost function defined by (6.7) has four parameters 𝜆𝑐 , 𝜆𝑏 , 𝜆𝑠 , and 𝜆𝑎. To tune these 

parameters, the following steps were applied: 

1) Initialize the parameters according to 𝜆𝑐 = 4,  𝜆𝑏 = 2,  𝜆𝑠 = 0.5 and 𝜆𝑎 = 4. Although other 

values are possible, this initialization provided a good starting point. 

2) Tune these parameters sequentially, one at a time, varying the parameter in the range         

[0.1, 6] with a step size of 0.1, and retain the value that leads to the best viewport quality, by 

visual inspection.  

The steps were applied to several omnidirectional images, and the best values found for 

𝜆𝑐 , 𝜆𝑏 , 𝜆𝑠 , and 𝜆𝑎 were, respectively, 0.3, 1.5, 0.5, 3. To evaluate the impact of these parameters 

on the final output, the GLA-PP viewport was obtained with the tuned parameter values, being 

the result shown in Figure 6.9a); after, the projection was repeated with each parameter set to 

0, one at a time, and the results are shown in Figure 6.9b)-e). When 𝜆𝑐 = 0, the objects are 

stretched in the output viewport (cf. Figure 6.9b). When 𝜆𝑏 = 0, the straight lines between the 

objects and background are deformed, e.g., the radial lines behind the girl on the left side of 

Figure 6.9c). When 𝜆𝑠 = 0, dramatic changes happen for some image regions, e.g., the painting 

behind the girl on the left side of Figure 6.9d). When 𝜆𝑎 = 0,  the regions close to the viewport 

borders are distorted (cf. Figure 6.9e). 

6.4 Projection Performance Evaluation  

This section describes the crowdsourcing subjective assessment of the proposed GA-PP and 

GLA-PP projections. For comparison purposes, the following benchmark projections were also 

included on the test: PP with fixed parameters, (𝑑 = 0.5, 𝑣𝑐 = 0); GPP with fixed parameter, 

𝑑 = 0.5; and OP and MOP projections proposed in [10]. While the PP and GPP projections are 

widely established content-unaware projections, the OP and MOP are automatic content-aware 

projections, both based on the Pannini projection. The OP and MOP viewports were obtained 

from the authors of [10], since the source code was not available. 

6.4.1 Test Conditions 

The GA-PP and the GLA-PP viewports were obtained as described in Sections 6.2.2 and 6.3.2, 

respectively. The viewports had a horizontal FoV, 𝐹ℎ, of 150° and a spatial resolution of 

960×540 pixels (aspect ratio, 𝐴𝑅 = 16/9), as in [10]. In GLA-PP, and to speed up the mesh 
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optimization procedure, the mesh dimension was set to 192 × 108, which corresponds to 

⌊
𝑊𝑣𝑝

5
⌋ , ⌊

𝐻𝑣𝑝

5
⌋, where ⌊. ⌋ is the floor operator. After optimization, the optimized mesh was resized 

with bilinear interpolation to the viewport resolution.  

  

a) Tuned parameters f) 𝑉𝑃𝑏 with optical flow mask 

  

b) Tuned parameters, with 𝜆𝑐 = 0 g) 𝑉𝑃𝑏 with optical flow mask 

  

c) Tuned parameters, with 𝜆𝑏 = 0 h) 𝑉𝑃𝑏 with optical flow mask 

  

d) Tuned parameters, with 𝜆𝑠 = 0 i) 𝑉𝑃𝑏 with optical flow mask 

  

e) Tuned parameters, with 𝜆𝑎 = 0 j) 𝑉𝑃𝑏 with optical flow mask 

Figure 6.9. Viewports on the left side were obtained with GLA-PP using a HFoV of 150º, using 

several parameters configuration; viewports on the right side correspond to 𝑽𝑷𝒃 with optical 

flow mask, showing (in green) the viewport regions modified by the mesh optimization 

procedure. 
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Table 6.1. The omnidirectional images, the used projections, and the total number of 

comparisons for each image group. 

Group 360º images Dataset Projections 
Number of 

Comparisons 

G1 
Dance, Bedroom, Office 1, 

Office 4 
[10] 

GPP, PP, OP, MOP, GA-PP, 

GLA-PP 
60 

G2 
Car repair, Conference, 

Dinner 2, Bus 
[52] GPP, PP, GA-PP, GLA-PP 24 

 

Figure 6.10. Omnidirectional images used in the subjective test, and their spatial resolutions. 

Eight omnidirectional images in equirectangular format (ERI) were used in the subjective 

assessment. To have different image content characteristics, e.g., objects near and far away 

from the camera and the presence or absence of people, two groups of images, G1 and G2 

(presented in Table 6.1), were taken from two different datasets: G1 from [10] and G2 from 

[52]. The images taken from [52] and also Dance, taken from [10], were already considered in 

the previous subjective tests. These three images were included to be able to compare the 

proposed projections to OP and MOP, since the source code was not available. Per image, one 

viewing  direction  was  considered.  Thus,  six viewports  were  obtained, corresponding to the 

proposed and the benchmark projections. The omnidirectional images resolutions are depicted 

in Figure 6.10. 

6.4.2 Subjective Evaluation Method 

The pairwise comparison (PC) method was chosen for the subjective evaluation of projections. 

For each omnidirectional image, a complete set of comparisons was performed (i.e., all possible 

pairs of comparisons), which resulted in 15 comparisons per omnidirectional image in G1. 

However, to limit the test duration to less than half an hour, thus avoiding the observer fatigue, 

viewports from OP and MOP were excluded from the test in G2, thus reducing to six the number 

of comparisons per omnidirectional image. Table 6.1 presents the used omnidirectional images, 

projections, and the total number of comparisons, for G1 (15 (comparisons/image) ×

4(images) =  60) and G2 (6 (comparisons/image) × 4(images)  =  24). 

As on the previous chapter, the subjective test was conducted online through a web-based 

crowdsourcing interface, described in the previous chapter (Section 5.2.2) that allows to display 

two viewports, ‘A’ and ‘B’, side by side, with random order and position. The observers were 

    
a) Car repair 

(1000 × 5000) 

b) Conference 

(5000 × 2500) 

c) Dinner 2 

(6000 × 3000) 

d) Bus 

(5376 × 2688) 

    
e) Dance 

(3840 × 1920) 

f) Bedroom 
(2000 × 1000) 

g) Office 1 
(8000 × 4000) 

h) Office 4 
(8000 × 4000) 
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asked to select the viewport, ‘A’ or ‘B’, that has the best quality in his/her opinion, or option 

‘A=B’ in case of no difference, to avoid random preference selections. The total number of 

observers that participated in the online subjective test was 30. The used viewports and the 

resulting PC subjective scores are available in [145].  

6.4.3 Subjective Test Results and Analysis 

The outliers were detected according to the procedure described in Chapter 3 (Section 3.3.2.C). 

Four outliers were detected, and their subjective scores were not further considered. Next, for 

each compared viewport pair (𝑖, 𝑗), the winning frequency, 𝑤𝑖𝑗 and preference probability 𝑃𝑖𝑗 

were computed. The preference probabilities were then translated to absolute quality scores 

using the Bradley-Terry (BT) model. The computation of winning frequencies, preference 

probabilities, and BT scores were detailed in Chapter 3 (Section 3.3.2.C). 

Table 6.2 presents the preferences probabilities for the considered projections, and per image 

group, averaged over the different images in each group. In Table 6.2, the values in green and 

blue color correspond, respectively,  to the preference probabilities for the images in G1 and in 

G2. Accordingly, the following conclusions can be taken: 

• GA-PP vs benchmark - For the images in G1, the proposed GA-PP projection is preferred 

over all benchmark projections by 68% (minimum) to 75% (maximum) of the subjects. The 

GA-PP is prefereed over MOP by 74%. For the images in G2, the GA-PP projection is 

preferred over the GPP projections by 78%, and over PP by 77%, of the subjects.  

• GLA-PP vs benchmark - For the images in G1, the proposed GLA-PP projection is 

preferred over all benchmark projections by 73% (minimum) to 84% (maximum) of the 

subjects. The GLA-PP outperforms the best content-aware benchmark projection available 

in the literature, MOP, by a large margin, since 79% of the subjects prefered it. For the 

images in G2, the GLA-PP is preferred over the GPP and PP, by 85% and 89% of the 

subjects, respectively.  

• GLA-PP vs GA-PP - The GLA-PP is prefereed over GA-PP by 72% for the images in G1, 

and by a large margin, 91%, for images in G2, showing the advantage of having the 

projection locally adapted to the content. 

Table 6.2. Preference probabilities for compared projections in G1/G2. NA corresponds to Not 

Available. 

 GPP [14] PP [17] OP [28] MOP [28] GA-PP GLA-PP 

GPP - 0.28/0.67 0.29/NA 0.19/NA 0.25/0.22 0.16/0.15 

PP 0.72/0.33 - 0.39/NA 0.56/NA 0.30/0.23 0.16/0.11 

OP 0.71/NA 0.61/NA - 0.61/NA 0.32/NA 0.27/NA 

MOP 0.81/NA 0.44/NA 0.39/NA - 0.26/NA 0.21/NA 

GA-PP 0.75/0.78 0.70/0.77 0.68/NA 0.74/NA - 0.28/0.09 

GLA-PP 0.84/0.85 0.84/0.89 0.73/NA 0.79/NA 0.72/0.91 - 

Figure 6.11 depicts the resulting BT scores obtained for each projection and image group. As 

shown, the proposed GLA-PP obtained the highest quality scores for all images in both G1 and 

G2. Interestingly, in G1 the benchmark projections results are not consistent and highly depend 

on the image content, e.g. for Office 4, MOP and GA-PP result in a similar quality (the second  
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a) 

 
b) 

Figure 6.11. BT scores vs. projections for each considered 360º image in a) G1 and b) G2. 

highest for that image), while for the Bedroom the quality is even lower than the resulting for 

the content-unaware Pannini projection (PP). This behaviour also happened for  GA-PP but not 

for GLA-PP. In G1, and excluding the GLA-PP projection, GA-PP obtained the highest quality 

scores for Bedroom and Office 4, while for Dance the highest quality scores were obtained for 

OP and PP, and for Office 1 it were OP and GA-PP that got the best results. In G2, the GA-PP 

obtained better scores than  GPP and PP; the quality scores are higher for GPP than for PP for 

images Car repair, Conference, and Bus. These images have more relevant horizontal lines 

than vertical lines, and the horizontal line bending is more visible on PP than on GPP viewports. 

If the relevant lines were vertical, the results would be more favorable to PP, since the vertical 

lines remain straight in the viewports rendered with PP. The GPP had the lowest quality scores 

in G1, but in G2 it was PP the lowest performing projection, except for Dinner 2, where PP is 

slightly better than GPP. 

In summary, the proposed projections, CA-PP and GLA-PP, lead to higher perceived quality 

compared to previous state-of-the-art, notable content-aware projections based on the Pannini 

projection. 

6.4.4 Projection Qualitative Evaluations  

Figure 6.12 depicts some viewport examples obtained for the proposed GLA-PP and for the OP 

and MOP proposed in [10], allowing the following comparisons:  
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Figure 6.12. Viewport examples obtained with OP and MOP in [10], and with GLA-PP, using a 

HFoV of 150º. The red, orange, and green arrows indicate, respectively, the objects/regions with 

high, medium, and low geometric distortions. 

• GLA-PP vs OP - The GLA-PP viewports have less geometric distortion than the viewports 

resulting from OP. For Bedroom, the horizontal lines on the ceiling and on the floor are 

straighter for GLA-PP. In Office 1, the chair on the left side is more conformal and the 

horizontal line on the ceiling is straighter for GLA-PP. In Office 4, the monitor and the chair 

on the left side are stretched too much for OP. In Furniture, GLA-PP kept the horizontal 

lines as straight as OP, but the objects shape (e.g., the table and the chairs on the right side) 

is more conformal for GLA-PP.  

• GLA-PP vs MOP - The viewports obtained for MOP have more geometric distortions than 

the viewports resulting from GLA-PP. MOP has a poor balance between bending and 

stretching; the horizontal lines are too much bent, and some vertical lines are also bent for 

some images, e.g., in Furniture. Also in Furniture, the table on the right side is globally 

deformed. 

• OP vs MOP - In OP, straight lines are better preserved than in MOP, but the objects are 

more stretched, e.g., the chair on the left side of Office 1, the monitor and the chair on the 

left side of Office 4, the table and the chairs on the right side of Furniture. 

Figure 6.13 depicts examples of viewports obtained for GA-PP and GLA-PP. For this 

evaluation, the locally optimized projection (LOP) proposed in [55] was also considered, but 

for correcting general objects (and not just for correcting human faces, as in [55]). Figure 6.14 
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depicts the same viewports of Figure 6.13, but with cropped objects to better compare their 

conformality for different projections. The following conclusions can be taken: 

• GLA-PP vs LOP - The GLA-PP viewports have a much better perceived quality than LOP 

viewports. The LOP stretches the objects too much since it uses a mixture of two projections, 

rectilinear and stereographic, and the former is known for a strong perspective effect and 

objects stretching, notably when a large FoV is used. 

• GLA-PP vs GA-PP - The horizontal lines are less bent for the GLA-PP, particularly for the 

Conference, Carrepair, and Bus viewports. The stretching distortion, that is visible for some 

objects/regions, are significantly reduced in the GLA-PP viewports.  

• GA-PP vs LOP - In general, the GA-PP viewports have a more pleasant visual quality than 

the LOP viewports. In LOP, the straight lines are better preserved than in GA-PP, but the 

perceptual impact of object distortions, in the former, is very strong and annoying (cf. Figure 

6.14). The GA-PP provides a good balance between stretching and bending.  
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Figure 6.13. Viewport examples obtained with LOP from [55], and with GA-PP and GLA-PP 

projections, using a HFoV of 150º. 
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Figure 6.14. Comparing object conformality for viewport examples obtained with LOP from 

[55], and with GA-PP and GLA-PP projections, using a HFoV of 150º. 

It is important to mention that the proposed GA-PP and GLA-PP could be useful for other 

interesting applications; for example, in photography, they could be applied for reducing the 

geometric distortions in photos taken from wide-angle cameras. In this case, and assuming that 

the distorted image can be approximated by a rectilinear image, an improved image could be 

obtained by transforming the distorted one to the spherical domain with the backward rectilinear 

projection, followed by a forward projection with the proposed GA-PP and GLA-PP. 

6.5 Final Remarks 

In this chapter, two fully automatic Pannini-based projections - the globally adapted Pannini 

(GA-PP) and the globally and locally adapted Pannini (GLA-PP) - were proposed for the 

viewport rendering of omnidirectional images, aiming to reduce the geometric distortions when 
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high FoVs (~150º) are used. In GA-PP the projection parameters are globally optimized based 

on the viewport content, resulting in a single pair of parameters, (𝑑, 𝑣𝑐),  that is use in the whole 

viewport. In GLA-PP, the Pannini projections parameters are firstly globally optimized 

according to the image content (as in GA-PP), followed by a local conformality improvement 

of relevant viewport objects, where the human perception is more sensitive. A crowdsourcing 

subjective test was conducted to evaluate the proposed projections, showing that they were the 

most preferred solutions among the considered state-of-the-art, sphere to plan projections, 

producing viewports with a more pleasant visual quality. This may allow to enhance the user’s 

QoE for several applications and services that uses omnidirectional images (e.g., VR and AR 

applications).  

The GA-PP has been included in the journal paper (presented in the first row of Table 6.3), and 

the GLAP-PP has been submitted to a conference, and is presently under revision process 

(presented in the second row of Table 6.3). 

Table 6.3. Publications related to this chapter. 

Paper Type 

F. Jabar, J. Ascenso, and M.P. Queluz, “Object-Based Geometric Distortion Metric 

for Viewport Rendering of 360⸰ Images”, IEEE Access, vol.10, no.1, 13827-13843, Jan. 

2022. 
Journal 

F. Jabar, J. Ascenso, and M.P. Queluz, “Globally and Locally Optimized Pannini 

Projection for Viewport Rendering of 360° Images”, Submitted to J. Vis. Commun. 

Image Represent., Oct. 2022. 
Journal 
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Chapter 7 
                                                                         _ 

7Conclusions and Future Work 

7.1 Conclusions 

The research topic of this Thesis is on the subjective and objective quality assessment of 

omnidirectional images viewport rendering, and its optimization. It considers the perceptual 

impact of the geometric distortions (such as stretching of image regions/objects and bending of 

straight lines) introduced during the rendering process, due to the sphere to plane projection. 

Subjective evaluation is essential to assess the perceptual impact of these geometric distortions 

reliably, and objective quality metrics are needed to automate the quality assessment process. 

In fact, objective quality metrics allow the optimization of the sphere to plane projection used 

for viewport rendering in a perceptual way, and thus to obtain viewports with enhanced quality. 

Several subjective quality assessment studies were performed to evaluate the perceptual impact 

of geometric distortions. Based on the analysis of the subjective test results, novel content-

dependent geometric distortion metrics were proposed. Moreover, the proposed metrics were 

used to optimize two well-known sphere to plane projections, namely the general perspective 

projection (GPP) and the Pannini projection (PP), for the viewport rendering of omnidirectional 

images.  

The work developed throughout this Thesis, and the main conclusions that were reached, can 

be summarized as follows: 

• Chapter 2 - In this chapter, several content-unaware and content-aware sphere to plane 

projections were reviewed, and a new classification method for these projections was 

proposed; moreover, the relevant projections were qualitatively evaluated. The qualitative 

evaluation showed that the different projections present a trade-off between the different 

types of geometric distortions, and no projection can avoid the visibility of some of those 

distortions. Moreover, in general, content-aware projections have less visible geometric 

distortions than content-unaware projections.  

• Chapter 3 - In this chapter, subjective quality assessment test campaigns were conducted 

to evaluate: i) the impact of geometric distortions on the perceived viewport quality, using 

the GPP for viewport rendering; ii) the impact of the FoV on the user immersive experience, 

using the rectilinear projection for viewport rendering. In the first study, the subjective test 

results showed that the projection type, the considered FoV, and the image content 

characteristics, are the three main factors that influence the geometric distortion strength, 

and its visibility. An important part of this study is the resulting GPP viewport dataset and 

associated quality scores, which are needed for the development, and validation, of 
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objective quality metrics. The second study showed that the best trade-off between user 

immersive experience and geometric distortion perception is achieved for a FoV close to 

110⁰, regardless of the image content. 

• Chapter 4 - In this chapter, several content-dependent stretching and bending metrics were 

proposed to characterize and measure the stretching of image regions and the bending of 

straight lines. The stretching metrics are based on Tissot indicatrices, while the bending 

metrics use some characteristics of the projected lines. Both metrics were evaluated by 

correlating their values with the quality scores, obtained from the subjective test campaign; 

while the bending metrics showed to be well correlated with those scores, the stretching 

measures achieved a low performance, requiring further study. Moreover, a quality 

prediction model was built to automatically assess the geometric distortions and predict the 

viewport quality when the GPP is used for viewport rendering. The model is based on 

Support Vector Regression (SVR), and was built using the best performing stretching and 

bending metrics, proposed previously. The experimental results showed that this model can 

predict the viewport quality with a Pearson correlation coefficient close to 0.8. The last part 

of this chapter was dedicated to the automatic optimization of the GPP projection parameter, 

𝑑, in a perceptual sense, resulting in content-aware general perspective projections, CA-

GPP and CA-GPP*. In CA-GPP, 𝑑 is obtained based on the proposed SVR-based quality 

prediction model. In CA-GPP*, 𝑑 is obtained by minimizing a simple cost function that 

models the resulting geometric distortions through a linear combination of bending and 

stretching metrics. Both CA-GPP and CA-GPP* showed significant performance 

improvement when compared to the popular rectilinear and stereographic projections.  

• Chapter 5 - This chapter was dedicated to further improve the stretching distortion metric. 

First, a subjective crowdsourcing campaign was conducted to evaluate the perceptual 

impact of the stretching distortion, free of the influence of the bending, and to collect the 

required ground truth quality scores for the metric development and assessment. The key 

idea was to identify the relevant objects in the viewport, using semantic segmentation, and 

to compute the stretching distortion for each object. Two distinct approaches were exploited 

and evaluated: the first one, directly computes and compares object shape measures on the 

sphere and on the viewport; the second one is based on Tissot indicatrices, which are 

computed for individual objects in the viewport. The experimental results showed that while 

the Tissot based method performed slightly better than the direct shape measurement, both 

approaches outperformed the considered benchmark solutions; furthermore, they were able 

to classify the viewport quality, with respect to the ground truth quality scores, with a correct 

decision percentage close to 90%.  

• Chapter 6 - This chapter addressed the viewport rendering of omnidirectional images with 

large FoVs (~150o), using the Pannini projection. Two content-aware, Pannini-based 

projections were proposed: the globally adapted Pannini (GA-PP), and the globally and 

locally adapted Pannini (GLA-PP). In GA-PP, the projection parameters, 𝑑 and 𝑣𝑐, are 

globally optimized based on the viewport content, resulting in a single pair of parameters, 

(𝑑, 𝑣𝑐),  that is use in the whole viewport. Accordingly, stretching and/or bending 

distortions may be still visible in some image regions and structures. In GLA-PP, the 

Pannini projections parameters are firstly globally optimized according to the image content 

(as in GA-PP), followed by a local conformality improvement of relevant viewport objects, 

where the human perception is more sensitive. A crowdsourcing subjective test was 



 

139 

 

conducted to evaluate the proposed projections, showing that they were the most preferred 

solutions among the considered state-of-the-art, sphere to plane projections, producing 

viewports with a more pleasant visual quality.  

7.2 Future Work 

The research conducted in this Thesis has resulted in several subjective quality assessment 

studies and objective distortion metrics, which have shown good performance on the quality 

assessment, and optimization, of omnidirectional images viewport rendering. Still, additional 

research work could be conducted, notably:  

• Subjectively assess the FoV impact for the projections proposed in this Thesis, namely CA-

GPP, GAP and GLAP, by conducting tests similar to those described in Chapter 3.  

• Integrate a line detection technique on the mesh optimization procedure, for GLAP, so that 

the mesh optimization procedure would not deform those lines.  

• Subjectively assess the perceptual impact of the stretching distortion on different object 

classes, such as people, furniture, cars, and so on. This may allow to obtain weights for 

object classes, that could be integrated with the geometric distortions metrics to further 

improve their performance. 

Besides the above future work, which is a direct extension of this Thesis developments, other 

and more challenging future research directions can be envisioned, notably: 

• Projection optimization under user navigation - Except for the FoV impact, where user 

navigation was considered on the subjective tests, all studies and developments of this 

Thesis were conducted with static viewports. However, and depending on the 

omnidirectional image content, the best projection could vary with the viewing direction; 

yet, the subjective impact of the projection variation during navigation, and how to cope 

with it, needs to be further investigated, requiring additional and specific subjective tests 

where user interaction is allowed or simulated. Some existing work (e.g., [146]) has 

revealed that when the user navigation velocity is slow (changing the viewing direction 

slowly, or keeping a static direction) the users pay more attention to regions/objects and 

thus the distortions have a higher perceptual impact, compared to the case when the 

navigation velocity is fast (users actively search for the next salient regions/objects). 

Therefore, it could be sufficient to smoothly vary the projection during slow navigation. A 

related topic, also worthy to be investigated, is the projection optimization for 

omnidirectional videos rendering. In this case, other factors may have an impact on the 

optimization, such as objects motion, camera motion and the existence of scene cuts. 

• Projection optimization for HMD devices - Only 2D displays, namely standard personal 

computer monitors, were considered in this Thesis. However, and as mentioned in Chapter 

1, there are other ways to display omnidirectional visual content, including head-mounted 

displays (HMDs), smartphones and tablets, and it is expected that the geometric distortions 

impact will be not the same for all these devices, since they have different characteristics. 

In the case of HMDs, there are two displays close to the user’s eyes, and thus the users may 

pay more attention to the regions near the point of fixation (foveated vision), compared to 

the regions away from that point (peripheral vision). Accordingly, the proposed objective 
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quality metrics and content-aware projections should be validated (and eventually modified, 

if needed) for other devices, requiring also additional subjective evaluation assessments.   

• Deep learning-based geometric distortion correction - To further reduce viewport 

geometric distortions, another interesting direction for future work is to employ deep 

learning-based techniques. In [148], global geometric artifacts in 2D images, due to camera 

lens characteristics (e.g., barrel and pincushion distortions) are reduced as well as 

corrections to the viewing perspective (e.g., rotation, shearing, perspective change). In 

[148], convolutional neural networks are used with classical model fitting and a new 

resampling method to reduce 2D images geometric distortions and thus further improve 

their quality. In the context of this Thesis, this type of approach introduces other challenges 

such as the development of a large viewport dataset, which may require user interaction to 

have viewport-free geometric distortions images (reference) for which a known model is 

not available as in previous work. Moreover, if local adaptation is desired, multiple models 

may be necessary for a single image, which may require more complex fitting procedures. 
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Annex A 
                                                                         _ 

SVM-based Model for Objectively Assessing the 

GPP 

This annex describes an SVM-based model for objectively assessing the general perspective 

projection (GPP), and which uses the line bending metrics and pooling functions detailed in 

Section 4.3; it exploits the fact that geometric distortions on structural lines have a high 

subjective impact. The model output is a label that indicates if the viewport quality obtained 

with a given projection center, 𝑑𝑞  0 (or query 𝑑), is better, worse or similar, to the quality 

obtained with the rectilinear projection. Then, for a typical omnidirectional image rendering 

system, this model allows to decide if it is beneficial to use a projection other than the 

conventional rectilinear projection; in such a case, the perceptual quality of the viewport image 

may increase (in some cases rather significantly) the quality of experience when users interact 

with omnidirectional images. 

A.1 Methodology  

The model architecture is illustrated in Figure A.1. First, for an input equirectangular image 

(ERI), viewport viewing direction (𝜙𝑉𝐷 , 𝜃𝑉𝐷), spatial resolution (𝑊𝑣𝑝, 𝐻𝑣𝑝), and horizontal 

FoV, 𝐹ℎ, the model renders the viewport with rectilinear projection (𝑑 = 0). After, straight 

lines are detected from the obtained viewport image and then merged and filtered out (as 

described in Section 4.3.1). Then, several line bending metrics (or features), described in 

Section 4.3.2, are extracted considering a specific projection defined by parameter 𝑑𝑞, with 

𝑑𝑞]0,1]. The features represent the bending and inclination of the projected lines, which 

reflect the distortion introduced by this process. From these features, a Support Vector Machine 

(SVM) classifier outputs the relative quality (or quality class) that could be obtained if 𝑑𝑞 is 

used in the viewport rendering, instead of applying 𝑑 = 0. The possible SVM output 

corresponds to the groups identified in Figure A.2: i) G1 - viewport quality with 𝑑𝑞 is better 

than with 𝑑 = 0; ii) G2 - viewport quality with 𝑑𝑞 and with 𝑑 = 0 are similar; and iii) G3 - 

viewport quality with 𝑑𝑞 is worse than with 𝑑 = 0. Note that, due to the way that features are 

computed, it is not necessary to compute the viewport projection for 𝑑𝑞. Thus, several 𝑑𝑞 values 

can be quickly evaluated to find out if other projections, different from the rectilinear, may 

provide better quality.  
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Figure A.1. Proposed SVM-based model for objectively assessing the GPP projection.  

 

Figure A.2. CMOS values for six omnidirectional images (obtained in the subjective test presented 

in Chapter 3 (Section 3.2) and FoV of 𝟗𝟎° and 𝟏𝟏𝟎° (averaged over the three viewing directions), 

versus projection center, 𝒅. The GPP with 𝒅 = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓, 𝟏 are referred to as 

𝒑𝒓𝟎, 𝒑𝒓𝟏, 𝒑𝒓𝟐, 𝒑𝒓𝟑 and 𝒑𝒓𝟒, respectively. 

A detailed description of each step is presented in the following sections. 

A.2 SVM-based Classifier 

The SVM is a machine learning technique used for classification problems and thus it is rather 

suitable to assess the relative viewport image quality. Naturally, the SVM classifier needs to be 

trained to obtain a model to predict the relative quality of a viewport obtained with any 

projection center parameter. As described in Chapter 3, a dataset of viewports of 

omnidirectional images, obtained with the GPP for a set of projection centers                   

(including 𝑑 = 0), along with the corresponding opinion scores (CMOS), was produced. 

However, at the time of this work, the GPP viewport dataset included only six omnidirectional 

images (as shown in Figure A.2); thus, only these images were used for SVM training and 

testing. The dataset was split into training and testing sets, and a common cross-validation 

procedure was applied. To perform the quality classification of a viewport obtained with a 

projection center 𝑑𝑞, the following steps are applied: 

• Viewport Labelling - The viewports used on the subjective tests were labeled according to 

the subjective scores shown in Figure A.2: scores in the range ]6,10] were labeled as G1; in 

the range [4,6] ere labelled as G2; in the range [0,4[ were labelled as G3. If more than three 

groups were considered, it will be difficult to establish a clear boundary between them, as 

shown in Figure A.2; in that case, it would also be quite difficult to design an automatic 

classifier to separate the groups. 
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• Feature Extraction - Line bending features are extracted as described in Section 4.3, and 

for all viewports except the reference ones (those with 𝑑 = 0). 

• Training Step - The SVM model is trained using the extracted features and the 

corresponding ground truth viewport labels. The trained SVM model can be used to classify 

any viewport obtained from an omnidirectional image, using the GPP with a projection 

center parameter in [0,1].  

• Testing Step - Using the SVM model that was built during the training step, the features 

extracted from test viewports are mapped to one of the pre-defined groups, for some 

projection center values. The same set of projection centers was used to evaluate the 

proposed SVM model performance.  

Since three quality groups were considered - G1, G2 and G3 - this work adopted the one-versus-

one-based multiclass SVM approach. Regarding the 𝐶 soft-margin penalty cost, also known as 

the regularization constant, it was optimized by full search. This parameter controls the margin 

of the hyperplane that separate groups and helps to prevent overfitting [147]. As usual, all 

features are normalized (by subtracting the mean and dividing by the variance) to avoid that 

features with large values dominate (or influence) the SVM distance metric. Also, the SVM 

training and testing steps were conducted with a cross-validation procedure. It consists in 

splitting the dataset into subsets (or folds), then train the model on some subsets (training sets), 

and test the model on the remaining subsets (testing sets). In this work, the viewport dataset 

was split into 10 folds; after repeating the process 10 times, each fold was used exactly once as 

the validation data, and the predicted labels are kept. Thus, all viewports are used for both 

training and testing. 

A.3 Performance Evaluation 

In this section, the proposed model performance is evaluated with some test conditions; a 

comparison with a metric defined in [36] is also presented. 

i) Test Conditions 

To evaluate the proposed model, the following three different scenarios were considered: 

1) Scenario 1 - Using measures 𝐿𝐶 and 𝑁𝐿𝐶 only. 

2) Scenario 2 - Using measures 𝐿𝐼 and 𝑁𝐿𝐼 only. 

3) Scenario 3 - Using all measures: 𝐿𝐶, 𝑁𝐿𝐶, 𝐿𝐼 or 𝑁𝐿𝐼. 

These scenarios allow to evaluate the impact, on the overall performance, of different types of 

features independently, namely those that measure the line curvature and those that measure 

the line inclination. The following statistical measures were used to assess the metric 

performance: Accuracy (Acc), Precision (Prec), Recall (Rec), and F1 score (F1), which are 

typical performance measures in classification problems. The values for these metrics are 

computed from the classifier confusion matrix, as described in [148]. To find the best value of 

𝑝% for poolings 𝑃5
𝑙, 𝑃6

𝑙, and 𝑃7
𝑙, a classifier was built with “Scenario 3” including only 𝑃5

𝑙, 𝑃6
𝑙, 

and 𝑃7
𝑙; several values of 𝑝% were considered, and the resulting Acc, Prec, Rec, F1 were 

obtained. The best performance was obtained for 𝑝 = 90%. 
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Table A.1. SVM feature selection process. 

Features 𝐀𝐜𝐜̅̅ ̅̅ ̅ % 

𝑃1
𝑙(𝐿𝐶) 52.8 

𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶) 64.6 

𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶) 67.4 

𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶), 𝑃5

𝑙(𝐿𝐶) 68.1 

𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶), 𝑃5

𝑙(𝐿𝐶), 𝑃6
𝑙(𝐿𝐶) 67.4 

𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶), 𝑃5

𝑙(𝐿𝐶), 𝑃6
𝑙(𝐿𝐶), 𝑃2

𝑙(𝑁𝐿𝐶) 72.9 

𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶), 𝑃5

𝑙(𝐿𝐶), 𝑃6
𝑙(𝐿𝐶), 𝑃2

𝑙(𝑁𝐿𝐶), 𝑃4
𝑙(𝑁𝐿𝐶) 76.4 

𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶), 𝑃5

𝑙(𝐿𝐶), 𝑃6
𝑙(𝐿𝐶), 𝑃2

𝑙(𝑁𝐿𝐶), 𝑃4
𝑙(𝑁𝐿𝐶), 𝑃7

𝑙(𝑁𝐿𝐶) 75.1 

Also, the SVM model complexity was reduced by performing feature selection, so that only the 

most relevant features are used. For each scenario, an SVM model is created for a set of features, 

using the default 𝐶 parameter value. Initially, this set contains only one feature and then the 

remaining features are added one-by-one and its impact evaluated. A feature is not kept on the 

set if the overall metric performance is maintained or decreased. Table A.1 presents the 

resulting average accuracy (Acc̅̅ ̅̅̅), when features are added one-by-one, for scenario 1; in this 

case, features 𝑃6
𝑙(𝐿𝐶) and 𝑃7

𝑙(𝑁𝐿𝐶) were excluded. The same process was applied to scenarios 

2 and 3. Also, several values were tested for parameter 𝐶, and the best value found was 1.5, for 

all scenarios under evaluation.  

Since the 𝑁𝐿𝐶 measure was already proposed in [36], and used in [10] with two pooling 

functions, 𝑃2
𝑙 and 𝑃4

𝑙, it was used as benchmark to assess how much improvement were obtained 

with the proposed metric. As in experimental validation of [36], the 𝑁𝐿𝐶 measure was used 

with pooling functions 𝑃2
𝑙 and 𝑃4

𝑙. Since only two features are available, to assess the relative 

image quality a simple neareast neighboor classifier was used. First, the feature values are 

normalized. Then, the value of each feature is scaled to the range of [0,10]. In the training 

procedure, three clusters are obtained by dividing the data into the three quality groups. As in 

the viewport labelling, described in Section A.2, values in the range ]6,10] are assigned to a 

cluster that represents G3, values in the range [4,6] are assigned to the G2 cluster, and values 

in the range [0,4[ are assigned to the G1 cluster. After, the mean value is computed for each 

cluster. During the testing step, feature values are mapped into one of the three clusters by 

selecting the cluster which has the minimum distance between the feature value and the cluster 

mean. Since each cluster represents a group, a label can be assigned and the classification 

performance (using Prec, Rec, F1, and Acc) can be computed using the ground-truth groups.  

ii) Experimental Results 

Table A.2 presents the performance measures per group, and the corresponding average values, 

for all the three scenarios under evaluation. The selected features for each scenario and the 

benchmark classifier performance are also presented. 

The following conclusions can be taken:  

• Scenario 1 - Features based on the line curvature (bending of image structures) are 

evaluated. The proposed metric provides the best results for G3 and the worst results for 

G2. This was expected since when other than rectilinear projections are employed in images  
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Table A.2. Overall model performance measures for scenarios 1, 2, 3, and for the benchmark 

solution (𝑵𝑳𝑪 metric). 

Scenario: 1 

Features: 𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶), 𝑃5

𝑙(𝐿𝐶), 𝑃2
𝑙(𝑁𝐿𝐶), 𝑃4

𝑙(𝑁𝐿𝐶) 

Groups  G1 G2 G3 Average 

Prec % 83.3 73.6 87.3 81.4 

Rec % 62.5 81.3 100.0 81.3 

F1 % 71.4 77.2 93.2 80.6 

Acc % 83.3 84.0 95.1 87.5 

Scenario: 2 

Features: 𝑃1
𝑙(𝐿𝐼), 𝑃2

𝑙(𝐿𝐼), 𝑃3
𝑙(𝐿𝐼), 𝑃5

𝑙(𝐿𝐼), 𝑃6
𝑙(𝐿𝐼), 𝑃2

𝑙(𝑁𝐿𝐼) 

Groups  G1 G2 G3 Average 

Prec % 84.6 71.7 92.3 82.9 

Rec % 68.8 79.2 100.0 82.6 

F1 % 75.9 75.2 96.0 82.4 

Acc % 85.4 82.6 97.2 88.4 

Scenario: 3 

Features: 𝑃1
𝑙(𝐿𝐶), 𝑃2

𝑙(𝐿𝐶), 𝑃3
𝑙(𝐿𝐶), 𝑃6

𝑙(𝐿𝐶), 𝑃2
𝑙(𝑁𝐿𝐶), 𝑃4

𝑙(𝑁𝐿𝐶), 𝑃7
𝑙(𝑁𝐿𝐶), 𝑃1

𝑙(𝐿𝐼), 𝑃5
𝑙(𝐿𝐼 ),𝑃2

𝑙(𝑁𝐿𝐼 ) 

Groups  G1 G2 G3 Average 

Prec % 84.8 84.4 90.6 85.0 

Rec % 81.3 79.2 100.0 86.8 

F1 % 83.0 81.7 95.0 86.6 

Acc % 88.8 88.1 96.5 91.2 

𝑵𝑳𝑪 metric 

Features: 𝑃2
𝑙(𝑁𝐿𝐶), 𝑃4

𝑙(𝑁𝐿𝐶) 

Groups  G1 G2 G3 Average 

Prec % 39.3 38.9 40.8 39.7 

Rec % 57.3 41.7 18.8 39.2 

F1 % 46.6 40.2 25.7 37.5 

Acc % 56.3 58.7 63.5 59.5 

with long lines, a negative perceptual impact is usually observed, which is easy to predict 

from line curvatures. 

• Scenario 2 - Features based on the line inclination are evaluated. In this case, the 

classification has the best performance for G3 and the worst performance for G2 as in the 

previous scenario. This scenario provides slightly better performance than the previous one, 

increasing all average performance values for G1 and G3; however, the average 

performance decreases for G2.  

• Scenario 3 - In this scenario, 10 features are used. By combining all these features, the best 

performance (for all metrics) was achieved; a higher improvement was obtained for G2, for 

which is harder to identify the correct class from the features. 

• 𝑵𝑳𝑪 metric standalone - As shown in Table A.2, when only the 𝑁𝐿𝐶 measure is used, the 

performance is poor and the metric cannot provide a reliable estimate of the geometric 

distortions; in particular, for G1, the precision is rather low. The main problem is that 𝑁𝐿𝐶 
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is normalized with the line length and thus, for lines with high length values, the curvature 

of the corresponding projected line does not have much influence. This makes harder for 

the classifier to distinguish the groups using this type of feature (especially after the pooling 

of all lines in the image). However, this metric was used for the optimization of the 

parameters of the Panini projection in [10] and was not perceptually validated. 

Concluding, the proposed model can evaluate the relative quality of viewports in all groups 

with a high performance. When both line curvature and inclination features are used, the 

proposed model achieves an average precision of 85.0%, average recall of 86.8%, average F1 

of 86.6%, and an average accuracy of 91.2%. The proposed model has lower performance for 

G1 and G2 comparing to G3. In fact, group G3 is composed by two images having large 

buildings with several straight lines, that bent for 𝑑 ≠ 0, which is the main influencing factor 

for the perceived quality. 
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Annex B 
                                                                         _ 

Stretching Features Weighted by Depth Scores 

This annex describes additional experiments that were performed to improve the stretching 

features proposed in Section 4.4.1.B, considering the viewport depth map instead of the 

viewport saliency map.  

The viewport depth map was computed using the method proposed in [149], which is a deep 

learning-based approach designed for monocular depth estimation of 2D images. Figure B.1b) 

depicts an example of a depth map obtained for the viewport in Figure B.1a); this depth map is 

represented in grey scale, with values between 0 and 255 - the closest a region is to the camera, 

the lowest (and darkest) will be the corresponding pixel values in the depth map. To obtain the 

depth-based weighs, the grey level values are normalized to the range [0,1] and subtracted from 

1; the stretching features are then weighted and evaluated as described in Section 4.4.2.A.     

Table B.1 presents the resulting PLCC values considering the saliency and the depth map. As 

shown, the stretching feature performance was not improved much with the use of depth-based 

weights. 

  
a) b) 

Figure B.1. a) Viewport rendered with rectilinear projection and with a square FoV of 110°;  

b) corresponding depth map obtained with the method proposed in [149]. 

Table B.1. Correlation (PLCC) between stretching feature and CMOS values, considering 

saliency-based and depth-based weighting. 

Saliency-based weighting Depth-based weighting 

𝑆𝐹𝑑𝑎𝑛𝑔𝑙𝑒 0.44 𝑆𝐹𝑑𝑎𝑛𝑔𝑙𝑒 0.46 

𝑆𝐹𝑑𝑠𝑐𝑎𝑙𝑒 0.51 𝑆𝐹𝑑𝑠𝑐𝑎𝑙𝑒 0.54 

𝑆𝐹𝑑𝑎𝑟𝑒𝑎 0.54 𝑆𝐹𝑑𝑎𝑟𝑒𝑎 0.58 
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