
GiTab: Automatic Tablature Music Composition for
Classical Guitar

Martim Zanatti dos Santos Gomes da Silva

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Helena Sofia Andrade Nunes Pereira Pinto
Prof. David Manuel Martins de Matos

Examination Committee
Chairperson: Prof. Alberto Manuel Rodrigues da Silva

Supervisor: Prof. Helena Sofia Andrade Nunes Pereira Pinto
Member of the Committee: Prof. Fernando Amı́lcar Bandeira Cardoso

October 2021

Agradecimentos

Firstly, I would like to thank my two dissertation supervisors, Professor Helena Sofia Pinto
and professor David Martins de Matos, for supporting, helping and guiding me in the right
direction on the most important project of my life to date.

Second, I would like to thank two great friends of mine. To thank Filipe Azevedo for, first,
making my time at IST a thousand times better, with his friendship and companionship. And
second for helping me making this thesis possible. I had long conversations about the creation
of the system with him, where he helped me put my thoughts in order. To Gonçalo Palma
I want to thank for reading the thesis with me in order to correct some English errors. But
mainly, thank him for the friendship we have, that brought me here.

I would like to thank my parents for all the support they have given me throughout all
these years and for having insisted, during not so good times, that I not disconnect from my
studies.

I would also like to thank Nicholas Ratcliffe, my guitar teacher, for teaching me everything
I know about the instrument and about music. This was the only way I was able to pursue
this thesis topic. I would also like to thank, Pedro Quintas, Danyal Valy, Francisco Braga and
Francisco Gouveia for helping me evaluate the system.

Lastly, but not least, I want to extend my gratitude to all the colleagues and friends I made
over the years, for helping me across different times in my life. A special thanks to my friends
Fábio Faisca, Tomás Santos, Ricardo Chasqueira, Catarina Tareco, and Ana Nogueira.

Lisboa, October 11, 2021
Martim Zanatti dos Santos Gomes da Silva

I dedicate this work to all those
who give their lives for music and

guitar.

Resumo

Uma tablatura de guitarra consiste numa forma de notação musical que indica o traste e a corda
sobre a qual cada nota deve ser tocada. Para guitarristas principiantes e guitarristas que não
conseguem ler partituras, esta forma de notação é essencial. Na guitarra, ao contrário de outros
instrumentos como o piano, cada nota existe em uma ou mais posições diferentes na guitarra.
De modo que, quando se quer tocar um conjunto de notas, existem diversas maneiras de o fazer.
O objectivo da tese é produzir tablaturas automáticas de música clássica, tentando optimizar
as posições escolhidas para cada nota. Também é um objectivo desta dissertação escolher os
dedos que pressionam os trastes de modo a produzir os sons das respectivas notas. O problema
de gerar uma tablatura automaticamente, optimizando as escolhas das posições é um problema
tı́pico de IA. Dado que existem uma ou mais posições diferentes para cada nota, o crescimento
das maneiras possı́veis de tocar um conjunto de notas é exponencial. A nossa abordagem
consiste na criação do sistema GuiTab que, através de regras e heuristicas, consegue optimizar a
escolha das posições e excluir as hipoteses menos promissoras. Os resultados do nosso sistema
foram comparados com tablaturas publicadas, onde obtivemos uma media de 68% de accuracy,
valores parecidos com os obtidos por trabalhos baseados em Machine Learning. A avaliação
subjectiva mostrou-nos que as tablaturas geradas pelo sistema são sempre tocáveis e, por vezes,
são justificadas as escolhas do sistema que divergem das tablaturas publicadas.

Abstract

A guitar tablature is a form of musical notation that indicates the fret and string on which each
note should be played. For beginner guitar players and guitarists who cannot read scores, this
form of notation is essential. On the guitar, unlike other instruments such as the piano, each
note exists in one or more different positions on the guitar. So, when we want to play a set of
notes, there are several ways to do it. The goal of the thesis is to produce automatic tablatures
of classical music by trying to optimize the positions chosen for each note. It is also a goal
of this dissertation to choose the fingers that press the frets in order to produce the sounds of
the respective notes. The problem of automatically generating a tablature by optimizing the
choices of positions is a typical AI problem. Since there are one or more different positions
for each note, the growth of possible ways to play a set of notes is exponential. We create the
GuiTab system which, using a set of rules and heuristics, can optimize the choice of positions
and exclude the least promising hypotheses. The results of our system were compared with
published tablatures, where we obtained an average of 68% accuracy, values like those obtained
by works based on Machine Learning. The subjective evaluation showed us that the tablatures
generated by the system are always playable, and sometimes the system choices that diverge
from published tablatures are justified.

Palavras Chave

Keywords

Palavras Chave

Nota

Hipóteses

Posição

Corda

Optimização

Caminho

Dedos

Guitarra

Música

Tablatura

Keywords

Note

Hypotheses

Position

String

Optimization

Path

Fingers

Guitar

Music

Tablature

Index

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 The Importance of Tablatures Today . 3

1.4 Structure of the Document . 4

2 Background Concepts 5

2.1 Music Concepts . 5

2.1.1 Music Theory . 5

2.1.1.1 Pitch . 5

2.1.1.2 Rhythm Figures . 7

2.1.1.3 Form . 8

2.1.1.4 Rhythm . 8

2.1.1.5 Dynamics . 8

2.1.1.6 Timbre . 9

2.1.2 Sheet Music . 10

2.1.3 Tablature for Guitar . 10

2.1.4 Sheet Music for Guitar . 11

2.1.5 The Differences Between a Tablature and a Sheet Music 11

2.2 Guitar Concepts . 11

2.2.1 Guitar Characteristics . 12

2.2.1.1 Fretboard . 12

2.2.1.2 Guitar Techniques . 13

2.3 Midi Files . 14

i

3 Related Work 15

3.1 Introduction . 15

3.2 Complexity of Playing Classical Guitar . 15

3.3 Automatic Music Composition . 17

3.3.1 Machine learning to compose tablatures . 17

3.3.2 Compose Tablatures by a Set of Rules . 19

4 Method 21

4.1 Introduction . 21

4.2 Requirements and Features . 21

4.3 Architecture . 22

4.4 MIDI Processing . 22

4.4.1 MIDI Extraction . 22

4.4.2 Notes Division . 23

4.4.3 Tune Verification . 25

4.5 Hypotheses Generation . 25

4.5.1 Note Creation . 26

4.5.2 Generate Dependencies and Cartesian product 27

4.5.3 Different Cases in creating Hypotheses . 28

4.5.4 Repeated Notes . 30

4.5.5 Hypotheses Verification . 31

4.5.5.1 First Finger Association . 32

4.5.5.2 Hypotheses Division . 32

4.5.6 Validation Process . 33

4.5.6.1 Finger Estimation of the Remaining Notes 34

4.5.6.2 Finger Estimation Validation . 35

4.5.7 Hypotheses Creation . 41

4.6 Hypotheses Selection . 41

4.7 Finger Optimization . 43

4.7.1 Notes Division By Moments . 43

4.7.2 Changeable Fingers . 44

4.8 Change Fingers . 45

4.8.1 Checking the Moms . 45

ii

4.8.2 Moms with Only One Fretted Note . 46

4.8.3 Moms with More than One Fretted Note 47

4.8.3.1 Common Positions Between Moms 48

4.8.3.2 Choice of the best combination . 50

4.8.3.3 Comparing Notes Between Moms 51

4.8.3.4 Changes propagated to previous moments 52

5 Evaluation 55

5.1 DataSet . 55

5.2 Note Positions Evaluation . 58

5.2.1 Evaluation By Guitar players . 58

5.2.2 Prediction Accuracy, Precision and Recall 59

5.3 Fingers Evaluation . 65

6 Conclusion and Future work 67

6.1 Future Work . 67

I Appendix A 71

II Appendix B 75

iii

iv

List of Figures

1.1 Function that describes the growth of possible paths to play a set of notes. 3

1.2 Beginning of Asturias by Isaac Albéniz . 4

2.1 Representation of a keyboard. 6

2.2 C octave. 6

2.3 Recuerdos de la Alhambra by Francisco Tárrega. 7

2.4 Rhythm Figures . 7

2.5 Rest figures. 7

2.6 Dynamics . 9

2.7 Beginning of Adelita by Francisco Tárrega . 10

2.8 Guitar Characteristics . 12

2.9 Guitar Notes . 13

4.1 Architecture . 22

4.2 Spanish Romance . 23

4.3 Excerpt of Adelita. 24

4.4 Adelita . 25

4.5 Hypotheses Generation Architecture . 26

4.6 Notes Creation Example. 27

4.7 First and second cases. 28

4.8 Third case. 29

4.9 Fourth case. 30

4.10 Excerpt from Spanish Romance. 31

4.11 Spanish Romance . 32

4.12 Distance between strings example. 35

4.13 Checks that must be validated to change the estimated finger. 36

4.14 Change of the same finger associated with two different notes. 36

v

4.15 Example Hypothesis . 38

4.16 Recursion Example Hypothesis . 39

4.17 Automatically a barre. 39

4.18 Cannot be a barre. 39

4.19 Barre Example Hypothesis . 40

4.20 Example of a non-barre . 40

4.21 First Path. 42

4.22 Second Path. 42

4.23 Path Construction. 43

4.24 Moms. 45

4.25 The first two bars of Spanish Romance . 47

5.1 Fantasie txt example . 56

5.2 Fantasie - Weiss . 57

5.3 Confusion Matrix . 60

5.4 Accuracy Graph . 61

5.5 Precision Graph . 62

5.6 Recall Graph . 62

5.7 ˆAccuracy Graph . 63

5.8 Accuracy Graph . 64

5.9 Set of notes from Spanish Romance . 66

1 Example of a MIDI File . 77

vi

List of Tables

5.1 Dataset. 55

vii

viii

1Introduction
Classical music originated after the fall of Rome around 500 a.D., remanescent of some influ-
ences dating from ancient Greece (Grout, 1960). The turning point that allowed us to conceive
music as we do today was in the first period of classical music, the medieval period, where
the introduction of the musical notation form allowed, for the first time, the separation of the
musical composition from its transmission. Before, music was transmitted orally, which were
subject to transmission errors. Since the medieval period, musical language has been under
development until today. We can consider two types of musical notation: the standard musical
notation, which corresponds to the sheet music and the musical notation known as tablature.
The first gives us the notes’ pitches while the second tells us which fret and string to press in
order to get the desired note. Tablatures are easier to read than sheet music. However, their de-
ficiencies, when compared to standard notation, made them lose their popularity in the years
following their creation. Nowadays, tablatures are used mostly in musical genres such as rock,
pop and blues. The difficulty in learning how to read a score, with all its musical nuances and
the ease in learning to read a tablature, made this musical notation popular for the general pub-
lic. With the easy access to video tutorials they gained further popularity, because tablatures
provide the positions on the guitar where the notes should be played, and video tutorials help
to understand rhythm and other musical nuances. In fact, there are several world-renowned
guitarists that could not read scores, such as Paco de Lucia, Jimi Hendrix, Eric Clapton and
Slash (Mistler, 2017).

Sheet music is mostly used in two musical genres: classical music and jazz, since to per-
form these two styles, professionally, requires musicians to have a degree in music or to have
attended a conservatory. These two musical styles have a much higher degree of formality and
detail than more popular styles like pop, rock and blues. Moreover, scores are more common
in these two styles because of the theoretical musical detail present in scores as opposed to tab-
latures. Some might say that there are very few people who can fully read sheet music. This
is even more uncommon in the aforementioned genres. Knowing how to read a sheet music
requires a theoretical musical knowledge that is often not necessary in certain musical genres.

1.1 Motivation

There are several reasons why the results of this thesis are important and can add value. While
for popular styles tablatures are easy to find, for other less popular genres like classical music,
tablatures are hard to find and sometimes do not have enough quality (Tuohy, 2006). Creating
a tablature manually is complex, very time consuming and requires great musical knowledge.
As in our case they are tablatures for guitar, it also requires a great knowledge of the guitar
instrument. Being able to automatically generate good quality tablatures would make it much
easier to obtain them and would be very beneficial for learning novice guitar players. From

2 CHAPTER 1. INTRODUCTION

a more theoretical point of view, the main motivation is to be able to answer two questions
that seem pertinent to us. Is it possible for the system to present results as good as humans?
Knowing that there are countless ways of playing the same notes is it possible to define the best
set of positions or there are a set of tablatures that are the best?

Most tablatures do not indicate which fingers to use for each note. However, we also cover
the choice of fingers, because defining which fingers to use also defines whether a hypothe-
sis of notes is more appropriate than another. In other words, it allows us to have a greater
understanding of which hypotheses to choose from. Setting the fingers for each note is also
educationally advantageous, as it allows novice students to not create bad habits of playing,
which is quite common when learning an instrument on their own.

Another motivation is due to the complexity of the problem and the fact that it is still
an unsolved one. There are already commercial products such as Frettable (Frettable, 2018),
however, they are unreliable. Regarding the second reason, we think we are taking important
steps in the right direction, that is, create reliable tablatures. As for the first reason, we can easily
understand the complexity of the problem we have. Starting from the premise that each note
on the guitar can be played in several positions, between one and five different positions, let
us think about how many ways are possible to play a single music with a total of, for example,
thirteen notes.

To understand the dimension of the problem, consider that we start with two notes, each
one with four different positions to play in the guitar. We have 42 different ways to play these
two notes. If the third note also has four different positions, we have to add the four different
positions of the third note for each path of the sixteen previously calculated, so we have 43. If
we consider, as an example, that in a music there are only notes with four different positions,
we get that the growth of the different ways of playing the music is given by the following
function.

y = 4x = 22x (1.1)

This function is shown in the figure 1.1. The complexity of this function is O(2n) and has
an exponential growth. In a music where there are only thirteen notes where each one has four
different positions, the number of possible ways of playing is sixty-seven million one hundred
and eight hundred and sixty-four times. This is a typical complex AI problem: it is impossible
to process all possible paths systematically. So, we need to make choices and exclude less
promising paths. These choices emphasize the complexity of the problem and are discussed
later in detail.

1.2 Goals

The main objective of the work reported in this thesis is to produce a tablature receiving as
input a single guitar MIDI file. Unlike the piano, on the guitar, notes can be played in more
than one position. With this in mind, and knowing that the tablature gives us the positions for
each note, the aim of this work is to find the most optimal way to play the desired notes while
also assign a specific finger out of the four possible ones.

The system receives as input a MIDI audio file, with only classical guitar and returns as
output a tablature of the respective MIDI file. Therefore, the evaluation of other instruments

1.3. THE IMPORTANCE OF TABLATURES TODAY 3

Figure 1.1: Function that describes the growth of possible paths to play a set of notes.

than classical guitar are not included in this thesis and all notes in the music are played by a
single instrument.

MIDI audio files used to illustrate our work, are predominantly classical guitar music.
First, because it is a genre with a vast number of musical pieces. Finally, because in this style
one guitar plays like an orchestra, where the melody, accompaniment and bass are played
simultaneously.

1.3 The Importance of Tablatures Today

Tablatures are important since they help in the development of novice guitarists. As you can
see in the picture 1.2, a tablature consists very simply of a simplified abstraction of a score that
allows beginners, who still find it difficult to decide in which positions to play each note, a
conscious and efficient way of learning. This happens because tablatures give an optimized
way to play a music. Besides being very useful for beginners, it is also very helpful for more
advanced guitarists, who already have a very good knowledge, to use them as a facilitating
and auxiliary tool.

Tablatures are increasingly common in more popular styles, and scores are rarely spoken
when we learn music in these genres. It must be mentioned, however, that having only a
tablature as a learning tool is not possible to play any music. This is because tablatures simply
give us the notes and their positions and say nothing about the rhythmic value of each note nor
the time of the music in question.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Beginning of Asturias by Isaac Albéniz

1.4 Structure of the Document

The remainder of this document is organized as follows: In Section 2 we introduce the Back-
ground Concepts, which explain the musical concepts used throughout this paper. Section 3
presents relevant related work from the field of automatic composition. In section 4 we describe
how we implement our system. In Section 5 we present the evaluation metrics, our dataset and
the results of our work. Finally, Section 6 offers some conclusions and what can be done in the
future to complement the work that was done and presented here.

2Background Concepts

In this section we present the background concepts needed for a better understanding of
our problem and its domain. This chapter is divided in three sections: Musical concepts, section
2.1 where we introduce musical theory focused for classical guitar; Guitar concepts, section 2.2
that explains guitar concepts essential to understand the solution of our problem and finally in
section 2.3 we explain MIDI audio files.

2.1 Music Concepts

Since the goal of our thesis is the automatic production of tablatures from a MIDI guitar audio
file, it is essential to understand musical concepts, both those common to several instruments,
as well as concepts that are specific for guitar. Without these basic concepts it would be difficult
understand the dimension of the problem and its several possible approaches. First, we define
general concepts of music. Then we specify the important characteristics in a sheet music and
the important characteristics in a tablature. We conclude by comparing the differences between
a tablature and a sheet music.

2.1.1 Music Theory

2.1.1.1 Pitch

Pitch is the fundamental frequency of a note. The smallest increment of a pitch in Western
music is a half-step. In figure 2.1 there is a representation of a keyboard. From a white note
to the next black note the increment is a half-step. From a white note to the next white note
the increment is a step. In figure 2.2 we can see a C octave. An octave is the largest repeating
of pitch, twelve half-tones, so seven natural notes and five accidental notes. A pitch follows a
logarithmic scale: one octave above the other has double the frequency. For example, A4, which
is the fourth octave of A has a frequency of 440 Hz, which means that A5 has a frequency of
880 Hz and A3 has a frequency of 220 Hz.

There are several common guitar techniques that use the variation of frequency to add
expression to the music and that are not perceptible in MIDI audio files, but that influence the
positions of the notes to be played: Vibrato, Tremolo and String bending. Vibrato, a common
technique usual in guitar playing, is a regular pulsating change of pitch.

Tremolo, which is the rhythmic change in loudness, is created by playing a bass note with
the thumb (p) followed by three repeated higher notes, traditionally the ring (a), middle (m),

6 CHAPTER 2. BACKGROUND CONCEPTS

Figure 2.1: Representation of a keyboard.

and index (i) fingers play the higher notes. When played quickly, this technique creates the
illusion of a sustained upper line with a bass accompaniment, which implies that each note
of these three must be played in the same position. Figure 2.3, shows an excerpt from one of
the most famous pieces of the classical guitar repertoire, Recuerdos de la Alhambra by composer
Francisco Tárrega (Recuerdos Alhambra, 2019). It is also one of the most famous pieces using
the tremolo technique. In this excerpt, the first note is the bass note, and the (p) above indicates
that this note is played with the thumb. After this note, the same note is repeated three times,
where the first is played with the ring finger (a), the second is played with the middle finger
(m) and the last one with the index finger (i). After these three notes another bass note is played
and so on.

Finally, string bending, more usual in electric guitar, consists of increasing a pitch of a note
or notes which can result in two different notes due to the impossibility of the MIDI files to
detect this technique.

Figure 2.2: C octave.

2.1. MUSIC CONCEPTS 7

Figure 2.3: Recuerdos de la Alhambra by Francisco Tárrega.

2.1.1.2 Rhythm Figures

Rhythm figures are indispensable when the subject is music. They represent the duration of
a certain note. Six rhythmic figures are represented in figure 2.4: semibreve, minim, crotchet,
quaver, semiquaver and demisemiquaver. In figure 2.5 are represented the correspondent rests:
semibreve rest, minim rest, crotchet rest, quaver rest, semiquaver rest and demisemiquaver
rest. The semibreve has a duration of one, the minim has half the duration of a semibreve, the
crotchet has a quarter of the duration of a semibreve and so on. There are more rhythm figures
than these six, but these are the more usual ones for guitar and playing smaller notes introduce
insurmountable problems.

Figure 2.4: Rhythm Figures Figure 2.5: Rest figures.

8 CHAPTER 2. BACKGROUND CONCEPTS

2.1.1.3 Form

In music, form consists of several patterns that constitute a piece of music. These could be some
repetitive elements that occur along the music such as a motif, which is defined by (Scholes,
1938) as “A melodic or rhythmic musical unit which reappears throughout a composition, ei-
ther in its original form or at different pitches and perhaps with altered intervals”. Lágrima, by
Francisco Tárrega (Lagrima, 2018), is divided in two sections, that are repeated throughout the
music, section A and section B. This Composition has a consistent structure, what is called a
ternary form, ABA, with repeated sections, which does an AABBA structure. There are others
structures, as binary form and rondo.

In the context of our problem, if we think that certain sections of the piece are repeated,
mainly in pieces with a type of structure defined as the AABBA structure, it would be expected
that each section A would be played in the same way and each section B would be equal.
However, in our solution we do not identify or divide the piece into parts. Yet, we consider the
repetition of notes, but in a shorter interval of the piece.

2.1.1.4 Rhythm

Pulsation, beat and time are the base of rhythm. A pulse is the heartbeat of the rhythm/music
that you hear - and feel - when listening to music and this is what people usually tap along
to when listening. The beat is the repeated note value of the time signature. They can often
(and are usually) the same thing, or at least they cross over. For example, In a piece with time
sig 4/4, the beat is 4 crotchet beats every bar. The pulse is most likely also going to be this
however if some notes are more pronounced you may tap your foot 2 beats/bar. Time is the
interval between two beats.

Tempo, which means time in English, refers to the speed of a given piece, and is measured
in beats per minute (bpm). This tempo is usually specified in the beginning of the sheet music,
and sometimes, could be elsewhere in it, depending on the circumstances of the piece. There
are countless different types of tempo like adagio (55-65 bpm) or presto (180-200 bpm).

2.1.1.5 Dynamics

Dynamics consist of variations that occur in a piece. We can define three types of dynamics.
Variations in loudness, also called Intensity Dynamics; variations on tempo, referred as Speed
Dynamics; and variations on a single note, designated as Stress Variations. In figure 2.6, we can
see these three types and some of its constituents. These indications are fundamental when per-
forming a piece because they give information so that the interpretation reflects the atmosphere
and emotion of a certain piece.

Due to the subjectivity of these dynamic, each performer has a different interpretation of
the same piece. In classical music it is usual for the composer to compose his own dynamics.
So, when the performer performs a certain piece, he/she must follow the dynamics proposed
by the composer. Still, the result is the set of dynamics of the composer and the performer.
In other genres, such as jazz, blues and rock, the performer normally has more freedom to
perform as he wishes.

2.1. MUSIC CONCEPTS 9

Figure 2.6: Dynamics

2.1.1.6 Timbre

Timbre can be defined as the harmonic content of a note, the color of a note, and the quality
of a note. Each instrument has its own timbre. Guitar timbre is different from piano timbre,
flute timbre, and so on. In other words, given a pitch played on a guitar, timbre accounts for
the difference between this pitch and the same pitch played on a piano. Although timbre is
affected mostly by the instrument choice, on the guitar could also be changed with mutes. To
mute a string, we use the fretting hand, touching the string with one finger, but do not press
it down, and strike the string. The idea is not to completely mute the strings, but to dampen
them, so that the notes are still clear, but with less sustain. Another way to change timbre
is where the right hand is placed for right-hand guitars. If the right hand is placed near the
sound hole, the timbre is sweeter and if it is placed far from the sound hole, the sound is more
metallic. Timbre is usually discussed in terms of richness and softness, where in a rich timbre
the range of harmonics is bigger than a soft timbre, where higher harmonics are less present.

10 CHAPTER 2. BACKGROUND CONCEPTS

2.1.2 Sheet Music

In figure 2.7, we have the first three bars of the Adelita guitar piece composed by Francisco
Tárrega (Adelita, 2017). As it can be seen, some concepts explained above are directly specified
in this sheet music, like dynamics, the tempo of the piece and the rhythm figures.

A Bar is a way of organizing the writing music in sections, where each bar represents an
amount of time. Adelita is a 3/4 time signature, which means that for each bar, there are three
crotchet or equivalent rhythm figures as explain in section 2.1.1. In other words, the numerator
represents the quantity of a certain rhythm figure and the denominator represents the quality
of the rhythm figure.

Clef, which is the first symbol present in figure 2.7, is an important concept, because it
indicates the position of a pitch of a written note as reference. In this piece we have a G-clef,
where the curl of the clef is placed on the second stave, which indicates that a G4 is positioned
on that stave. Once we know the position of the G4 note, we know the positions of the other
notes. The note following the G4 note is the A4 note where it is placed on the line just after the
second stave and so on. In modern music notation the most common clefs are the G-clef, C-clef
and the F-clef. In the case of piano scores, the score intended for the right hand is usually on
the G clef while the left hand is usually on the F clef, this is because the G clef allows us to go
through higher notes while the F clef allows us to go through lower notes.

Figure 2.7: Beginning of Adelita by Francisco Tárrega

The Lento indication, that appears in the sheet music, gives us information about how fast
we should play the piece. It is the Tempo of the music, as explained in the section 2.1.1.4. The
that appears near the G-clef indicates that the F notes are accidental. The >symbol indicates
that the note underneath must be heard more than the rest of the notes. The remaining relevant
indications are explained in the following sections.

2.1.3 Tablature for Guitar

Since the output of our program consists of a tablature for guitar it is essential to present the
notations and characteristics inherent to tablatures. Tablatures are a very simplified abstraction
of a sheet music. As it is possible to see in the figure 1.2, the first three bars of the Asturias guitar

2.2. GUITAR CONCEPTS 11

piece composed by Isaac Albéniz (Asturias, 2019), the division is also made by bars, but instead
of having rhythmic figures represented in each bar it has six horizontal lines, which correspond
to each guitar string, from the highest to the lowest, and each note is presented with a number
that represents the fret in which the note is played. Looking at the first note of the tablature,
which we represent as (5.7), it tells us that this note is played on the fifth string and the seventh
fret. As stated earlier, the tablatures do not contain information about the fingers of the left
hand. However, we decided to add this information to the tablatures generated by the system.

2.1.4 Sheet Music for Guitar

In figure 2.7 there are some notations that are specific for guitar. The numbers near the notes
indicate the finger which is supposed to use to play that specific note. The number one corre-
sponds to the index finger, the number two correspond to the middle finger, the number three
corresponds to the ring finger and the number four corresponds to the little finger. When a
circle with a number inside appears next to a note or a set of notes, it indicates that these notes
should be played on the string specified by the number. The BVII6 (or CVII6) indicates that in
this position we must perform a barre. A barre consists of pressing one single fret, usually with
the first finger, and use the remaining three fingers to play other notes. B stands for barre (C
stands for cejilla which means barre in English), VII stands for the fret position and the num-
ber 6 stands for the number of strings that have to be pressed with the barre. These notations
which are common in guitar sheets, help reading the music sheet and optimize the use of the
left-hand for right-hand guitars. Given the fact that there are several ways to play the same
note or conjunction of notes, some ways are more appropriate in a certain moment than others.
In classical guitar, the unfretted notes facilitate a lot the technique of the left-hand, because for
the unfretted notes it is not necessary to press any fret to play them, which we represent as
(s, 0), where the s correspond to one of the six strings.

2.1.5 The Differences Between a Tablature and a Sheet Music

As we mentioned before, tablatures are a simplified version of sheet music and this can be veri-
fied from figures 2.7 and 1.2. While the sheet music of Adelita contains a large set of information
of musical theory, indispensable to play a piece in a correct way, the tablature presents us the
same information focused for the guitar. In the tablature we do not have any information re-
garding the time of the music nor the rhythmic values of each note. We also do not have any
information about dynamics as we presented in section 2.1.1.5. It has already been mentioned
that it is not possible to play a piece correctly having only a tablature as a learning tool. How-
ever, this limitation does not take away the popularity and usefulness of tablatures, because
together with other tools, tablatures become quite useful for the beginners or naive players.

2.2 Guitar Concepts

Since the goal of our work only address classical guitar MIDI files, and we aim at optimizing
the way a set of notes is played on the guitar and which fingers should be used for each note,
it is important to approach some concepts and specificities of the guitar, the instrument of our
problem.

12 CHAPTER 2. BACKGROUND CONCEPTS

2.2.1 Guitar Characteristics

From here on we always assume that the guitar is built for right-handed guitarists, which
means that the right hand plays the strings while the left hand presses the frets. As you can see
in figure 2.8, the right hand is positioned in the body area while the left hand walks through
the fretboard.

Figure 2.8: Guitar Characteristics

Figure 2.8 presents the physical characteristics of the guitar, considering that we are in-
terested only in the fretboard that is where pressing a string in a certain fret makes a certain
note sound. In this thesis we do not address the problem of the right hand, that is, we do not
associate each finger of the right hand with which string to play, since the choice of fingers of
the right hand also has its own set of rules and nuances.

2.2.1.1 Fretboard

We are mainly interested in fretboard given that the fretboard is where we press the frets to play
the notes. Figure 2.9 represents an abstraction of a fretboard with the standard tuning. Each
vertical line represents the division of the frets and from one horizontal line to the other, the
notes of the respective strings are represented, the first is the highest and the bottom one is the
lowest. For example, the note E4 is higher pitched than the note E2. The first fret represents the
”fret 0” or loose note, that is, the note that is played when playing the string without pressing

2.2. GUITAR CONCEPTS 13

any fret. So, the note E2 is on the sixth string, ”fret 0” while the note F2 is on the sixth string,
fret 1.

We work with fretboards with nineteen frets, which is the most common number in classi-
cal guitars. As it is possible to observe there are two notes with different colors, where we can
observe the maximum and minimum of repeated positions for each note. The E2 note painted
in green has only one position while the E4 note painted in red has five possible positions on
the guitar.

For each note it is possible to play it with four different fingers, and we have decided to
use the same notation explained in section 2.1.4. For the loose notes the finger notation will be
the 0 finger, which implies that it is not necessary to use any finger of the left hand to play the
respective note. The number one corresponds to the index finger, the number two correspond
to the middle finger, the number three corresponds to the ring finger and the number four
corresponds to the little finger.

In section 1.1 we looked at the complexity of the various ways of playing a set of notes.
Now we look at the complexity of building the possible finger paths. We know that there are 4
possible fingers to play each note. So, when we have two notes it is possible to play it (in terms
of fingers) in 16 possible ways: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1).... Imagining a number n of notes
we have that the possible paths are 4n, the same function as in figure 1.1. Therefore, both the
complexity in the choice of notes and the complexity in the choice of fingers are exponential.

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 2.9: Guitar Notes

2.2.1.2 Guitar Techniques

Besides the techniques aforementioned in section 2.1.1 there are three other techniques that are
important to mention. The slide technique consists in sliding from one note to another on the
same string either to a lower note or to a higher one while pressing the string along the slide.
A pull-off is an articulation technique that consists of plucking or ”pulling” the finger that is
grasping the sound, allowing a new sound to be heard from the same string, that is from a
lower note that is being pressed behind or the loose note of that respective string. Finally, a
hammer-on which is the opposite of a pull-off, you are pressing a lower note or playing the
loose note and you press a new higher note of the same string. These techniques work on the
same string, so they are very useful in guiding the choice of the positions of the notes that are
under these techniques.

2.3 Midi Files

A MIDI (Musical Instrument Digital Interface) is a technical standard that describes a com-
munication protocol, digital interface, and electronic connectors that connect a wide variety of
electronic musical instruments, computers, and related audio devices for playing, editing and
recording music. To extract information from the MIDI file we used the python music21 library
1 which extracts the information present in the MIDI file. The MIDI file information extracted
by music21 library is divided into three channels. Each channel has a set of notes. The first
channel has the melody notes, the second the accompaniment notes, and the third the bass
notes. Each note is an object of the Note class present in the music21 library. Each note object
has a set of attributes such as the note’s value, its duration, its onset. We explain this in more
detail in the Method section 4.

The big difference between MIDI files and other types of audio files falls under the fact
that the information present in MIDI files is discrete instead of continuous. So, we chose MIDI
files as input because the information available in these files is much more manageable than
other types of audio files as mp3 files. This is because with other types of audio files we would
have to use multi-pitch estimation to get information from the notes and the problem of multi-
pitch estimation is still an unsolved problem. It would be a problem of multi-pitch estimation
because the songs that are evaluated by our system are not monophonic songs. That is, there is
at some point in the music more than one note to be heard. Therefore, to better understand the
robustness of our solution we decided to have as input something that allows us to have the
necessary information to explore our problem.

1http://web.mit.edu/music21/

3Related Work

3.1 Introduction

The task of producing a system capable of creating an optimized tablature of a guitar piece has
been explored over the last decades but remains an unsolved and challenging problem. These
systems are at the intersection of both artificial intelligence and the field of music theory. In
the following sections we introduce some of the previous approaches that have contributed to
progress in solving this challenging problem. We also introduce theory about the complexity of
playing classical guitar that allowed us to create a robust set of rules that excels in optimizing
note positions.

3.2 Complexity of Playing Classical Guitar

The movements that guitarists must perform in order to perform well a certain piece are unnat-
ural and demanding movements that force awkward positions in relation to the biomechanical
movements of our day to day. And, since western music is extremly strict in relation to time
intervals, these positions have to be well and fast performed in a short period of time. In this
paper (Heijink & Meulenbroek, 2002), the authors perform a behavioral study of the complex-
ity of left hand movements when playing a classical guitar. For this, six professional guitarists
were asked to play a sequence of notes at a fixed time. The authors examined the movements
of the left hand in order to gain more insight into the biomechanical bases of the complexity of
the movements led by the left hand in the sequence of requested notes.

When the positions of a set of notes are chosen to play on the guitar, that set propels a
certain posture and a certain movement that have to be made by the left hand in order to per-
form that set of notes. There are three matrices that are governed when choosing the postures:
the biomechanical movements needed to perform the task, the cognitive bases and the musi-
cal ones. The authors are only interested in the first matrix of the problem, and since they are
trying to gain some insight into the biomechanical basis of the complexity of the movements
led by the left hand, they also know that there is a parameter of subjectivity which they have
to take into account, because different guitarists may have different difficulties in performing
certain movements given the guitarists’ own characteristics. In this paper, the authors consider
that the guitarists choose the set of fingers that most facilitates the biomechanical process. This
choice can be seen as the search for the lowest possible cost to accomplish the task.

Previous research in this supports the hypothesis that the postures chosen to perform a task
are chosen based on the minimum-cost principle (Rosenbaum, 1995) and (Rosenbaum, 2001).

16 CHAPTER 3. RELATED WORK

The authors in this paper (Cruse, 1990) tell us that the cost of a posture is lowest when the
joints are in the middle of their ranges and increases nonlinearly when the joint angles leave the
middle of their range. In this paper (Rosenbaum, 1996), the authors show empirical evidence
that wrist oscillation around the axis of the forearm can be done faster when the forearm is in
the middle of the pronation-supination range. Since playing guitar requires fast and precise
movements of great oscillation it is possible that this is the reason why guitarists prefer to keep
their joints in the middle of their range. In this paper (Heijink, 1999), the authors show us that
this also applies when playing guitar. So, we have two strands that provide various levels of
complexity. The first one in relation to the position of the hand along the guitar neck and the
second one in relation to the distance between the fingers. The complexity is lower when the
posture is in the middle of the guitar neck and increases the more we move to the left and right
neck positions. In relation to finger span, a smaller finger span results in a lower complexity.
This is because the position of the hand on a guitar neck is related to the shoulder and elbow
joint angles and the finger span is related to the finger joint angles. The joint angles assumed
in the postures might have determined the guitarists’ complexity ratings.

There are two types of postural transitions that are relevant to mention. The first consists
in the necessary transition of the left hand along the neck guitar, the second consists in the per-
manence of the hand in more or less the same place but which requires a change of the fingers.
As we mentioned before, since music is time constrained, and since hand replacement move-
ments are more complex than finger movements, and both have to be done in the same amount
of time, we have that the first type is the most complex of the two mentioned above. The au-
thors in this paper (Rosenbaum, 1991) show us that the arm is more suitable for movements of
large amplitude and low-frequency while the fingers are more suitable for movements of small
amplitude and high-frequency.

In the paper (Heijink & Meulenbroek, 2002), the authors experiment with six professional
guitarists, all active performers and teachers graduated from the Brabants Conservatorium in
The Netherlands. Each guitarist played a set of 144 sequences. These sequences consist of
musical scales of single notes extended upward so that the note sequences became 11 notes
in length. In these sequences the postural transitions that were mentioned above were exam-
ined. There are four blocks that correspond to small span without hand replacement, small
span with hand replacement, large span without hand replacement and large span with hand
replacement. Each of these four blocks was played in three different parts that correspond to
the low, middle and high hand position on the guitar neck and each guitarist repeats each se-
quence twelve times. Given that the experiment is performed with professional guitarists and
that the sequence of notes consists of playing scales, the cognitive and musical terms are very
simple.

In this experiment, each guitarist was asked to provide the easiest fingering for a short
note sequence. The large finger span and replacement of the hand along the guitar neck was
avoided, as expected. Above we had mentioned that the middle hand position on the guitar
neck would be the one that would facilitate a lower complexity. However, it was the low hand
position the most chosen guitar neck position. This is possibly due to the familiarity of playing
in that zone of the guitar, where it is common to play the base chords on the guitar. Another
reason is due to the proximity of the loose notes. A large number of songs are written in E
because this scale takes advantage of these same loose notes.

In conclusion the authors understood that the biomechanical bases are important in the
choice of positions since they have a direct effect on the complexity of a piece. However, cog-

3.3. AUTOMATIC MUSIC COMPOSITION 17

nitive and musical factors also play an indispensable role in the decision, even if it results in
an increase in the complexity of the performance. From a cognitive point of view, a melody
that is repeated throughout the music in different pitch heights can be, from a biomechanical
perspective, easier to play using different fingerings, each optimizing the instant of the melody
in question. However, from the cognitive point of view in these set of melodies may be eas-
ier to use a less optimized fingering that fits all the repetitions of the melody. This is because
muscular memory has a great weight on the performance of any guitarist. From the musical
perspective, a long string generates more harmonics than a shorter one of the same diameter,
therefore, if a bright, clear sound is preferred, the string length should be maximized. If, on the
other hand, a warmer sound is preferred, then the vibrating string length should be limited.

3.3 Automatic Music Composition

3.3.1 Machine learning to compose tablatures

In this paper (Chen, 2020) is built a model for composing fingerstyle guitar tabs with
Transformer-XL (Dai et al., 2019), which is a neural sequence model architecture. This architec-
ture, created as a language modeling architecture, allows learning dependency beyond a fixed
length without disrupting temporal coherence, which is quite important in musical events.
Given a set of tokens X = (x1, ..., xT), the probability of P (x) = ΠtP (xt|x<t) is estimated. To
address the limitations of a fixed-length context, the authors introduced a recurrence mech-
anism. So, during training, the hidden state sequence computed for the previous segment is
fixed and cached to be reused as an extend context when the model processes the next new seg-
ment. With this recurrence mechanism applied to every two consecutive segments of a corpus,
it creates a segment-level recurrence in the hidden states.

The authors adapt this architecture to learn how to compose guitar tablatures, where each
note is represented as a set of properties such as the duration of the note, the string and the
fret, which help model the problem. They want to know if this kind of architecture is able
to learn and produce tablatures at the level of those produced by humans. For this, three
research questions are proposed: First, will the model be able to learn to generate not only the
sequences of notes, but also which fingers to use on each note? Second, Will the model be able
to generate compositions with a coherent groove? And third, will the model be able to generate
compositions as efficient as those created by humans?

To evaluate the system, they use a dataset of 333 ”fingerstyle guitar” tablatures, where
thirty tablatures are reserved for validation and only the first 16 bars of each tablature are
validated. To answer the first question, the model generates a large number of random event
sequences and checks how often plausible strings are generated after the note-on event, which
reached a high accuracy. To answer the second question, generated tablatures with and without
grooving are compared through a user study, in which the user is shown generated tablatures
with grooving and without grooving. Results shows that grooving improves the composition
of the tablatures. To answer the third question the generated tablatures are compared with
real tablatures through another user study, which shows that the generated tabaltures with
grooving are on par with real tablatures.

(Mistler, 2017) thesis on generating guitar tabs with neural networks, approaches the choice
of the positions of the notes on the guitar in two different ways. In this work, the problem of

18 CHAPTER 3. RELATED WORK

choosing the fingers that press the strings is not addressed.

The first approach is to predict the frets directly. For this, a typical LSTM (Long Short-Term
Memory) is used, to model the sequential behavior and predict new elements in the time series,
since one can consider the tablature as a time series of guitar frettings used to realize a sequence
of chords and notes. The notion of intention into LSTMs is added. In case the pitch sequence is
monophonic, i.e., a single note to be played at a given instant, the pitch of time step t is added
to the time step t− 1 so that the fretting output on t depends on the previous frettings and the
intended pitch. For polyphonic music, the chord can consist of a maximum of six simultaneous
pitches on a 6-string guitar. To model the chords several alternatives have been proposed, so
that in the time step preceding the one under evaluation, the information about the chord is
available. For the validation of the predicted frettings, there is no guarantee that the predicted
ones match the intended chord, so to correct this, that chord is compared with all the possible
frettings associated with the chord and the fretting closest to the predicted one is chosen.

The second approach is to predict the frets by cost estimation. The cost function is learned
rather than explicitly designed. The cost function is based on the conditional fretting probabil-
ity, given the context and pitch intention as shown in the equation:

P (ft|ft−T , ..., ft−2, ft−1, pt) =
count(ft−T , ..., ft−2, ft−1, pt, ft)

count(ft−T , ..., ft−2, ft−1, pt)
(3.1)

And the cost is given by negative log probabilities:

c(f) = − logPT (f) (3.2)

Where PT (f) corresponds to the equation 3.1.

The cost of the fretting sequences is given by the sum of the individual frettings:

c(s) =
∑
fεs

c(f) (3.3)

Due to the complexity of the fretting space, the calculated probabilities and costs only cover
a small fraction of the possible frettings and fretting sequences. To generalize to unseen data,
they train a Feed-forward Neural Network to predict the cost of a fretting. The demand for the
optimized tab can be seen as the minimum cost of the fretting sequence given by the equation:

min
sεS

c(s) (3.4)

Where S is the set of all possible fretting sequences.

The dataset used to train and evaluate the system consists of the 100 top-rated Guitar Pro
tablatures on Ultimate Guitar1.

To evaluate the two Machine Learning approaches in the context of the guitar fretting prob-
lem, the accuracy measure, and a number of model variations are defined.

1https://www.ultimate-guitar.com/top/tabs

3.3. AUTOMATIC MUSIC COMPOSITION 19

The calculation of the accuracy is given by:

accuracy(ŝ, s) =
1

t

∑
t

u(ŝt − st) (3.5)

where s is a published fretting sequence and ŝ is the predicted fretting sequence.

The best baseline for direct prediction used was the sequential model. This heuristic fol-
lows the sequential interpretation of chords, which consists in considering the chords as as-
cending arpeggio, in which each chord consists of a sequence of individual notes. It simply
measures the distance between individual note frettings. The generated tablatures from this
approach agree with published tablature by 72.9%.

3.3.2 Compose Tablatures by a Set of Rules

In the (Masanobu Miura, 2004) paper, the authors build a system that determines the posi-
tions of the notes on the guitar and which fingers to use for each note for melody only. In
other words, neither the accompaniment nor the bass is addressed, which entails that only one
note is evaluated at any given time. As discussed earlier in section 3.2, there are three factors
that determine how preferable a certain note position is on the guitar. In this paper only the
biomechanical aspect is addressed. This paper focuses on producing tablatures that decrease
the difficulty of the left hand when playing a melody. This work is not only useful for be-
ginners, because when choosing notes on the guitar, even the most experienced guitar players
take the biomechanical constant very much into account. As we saw earlier in section 3.2, the
movement of the left hand along the guitar neck is more complex than the movement of the
fingers keeping the position of the hand in the same place on the guitar neck. Given this, for
the complexity calculation, this paper tries to minimize the movement of the left hand along
the neck by implying a larger movement of the fingers.

The S2T, ”Score-to-Tablature” system they created, divides the melody into phrases, which
consist of a set of sounds close together in time. The user chooses the position of the first
note and then searches for a combination that does not require movement of the left hand
among the possible combinations of finger positions for each sound in a phrase. In specific
terms, the difference between the highest fret and the lowest fret used in a phrase is defined as
“the required finger position span.” A fingering system which minimizes the required finger
position span is created. When there are several sequences that minimize the required finger
position span, the position for the left hand which includes the starting finger position input by
the user for the first phrase is used. When there are multiple candidates for the first phrase, the
one with the smallest amount of overall movement for the left hand in the piece overall is used.
After the note positions are chosen, if the required finger position span in a phrase is less than
four frets, the determination of the fingers is done using a one-to-one correspondence between
the frets and fingers. If five or six frets are needed, the two frets at the end are assigned with
the index finger or little finger. However, playing two successive notes with these fingers is
difficult, so the middle finger or ring finger is used.

In order to evaluate the system, two points of view were considered: the amount of move-
ment of the left wrist between phrases and the required finger span in a phrase. For the first
point of view, the output results were analyzed for the melody part (vocal part) of the J-POP8
scores. The authors conclude that the movement of the left wrist between phrases is kept to a

20 CHAPTER 3. RELATED WORK

necessary minimum. Then they evaluate the system by comparing it to two other commercial
systems for the melody described above, which shows that this system can produce tablatures
that are played easily, which is appropriate for guitar novices.

4Method
4.1 Introduction

Here we explain our system, GuiTab created to produce a tablature receiving as input a single
guitar MIDI file, where the system finds the most optimal way to play the desired notes while
also assign a specific finger to press the fret to produce the desired note. We can say that the
system we propose is inspired in the system created by - (Masanobu Miura, 2004). However,
unlike their system, we do not focus only on the melody, but on three parts of the music: the
melody, the accompaniment and the bass. That is, we do not consider only monophonic music,
but polyphonic music. We also use the concept of phrases explained above, however, with a
different division. The finger association at its base is the same, but the complexity is much
greater since we have to associate fingers with chords and barre chords.

Our motivation to develop a system based on heuristics and rules that restrict and validate
the hypotheses of a set of notes played in certain positions with certain fingers is due to three
factors: the first factor comes from the idea that when a human reads a score and passes it to
the guitar, he relies on a set of rules (which he may not even be explicitly aware) to decide how
to play the score. For a large set of notes, there are millions of different possibilities to play
those notes, and yet, a professional and experienced guitar player can in a short period of time
define the best or one of the best ways to play them. Given this, there are certainly sets of rules,
some basic, some not so basic, by which a guitarist is based.

The second reason is due to the advantage of using this technique when evaluating un-
known set of notes as opposed to machine learning systems. Since there are few tablatures
available to train the machine learning systems, it is recurrent the existence of sets of notes that
are unknown to these systems.

Lastly, this technique does not require a dataset of tablatures, to be able to create a system
capable of composing tablatures in opposition to using machine learning where a large set of
tablatures is needed. Since for a particular music there may not be a best tablature but rather
a set of several possible tablatures, the dataset would have to be even larger to create a robust
system. Moreover, the system requires tablatures that with errors so that the system can be
more aware of what can and cannot be done in the association of positions.

4.2 Requirements and Features

The machine we use to run our system had an Intel Xeon CPU at 2.40GHz, 48GB of RAM
and was running CentOS Linux 8. The run time required to create the output of a song with
an average of 1000 notes was 3 days. However, in addition to the number of notes in each
music, it is necessary to consider dependencies between notes. When there are dependencies

22 CHAPTER 4. METHOD

between notes, there are more restrictions in the construction of the hypotheses. Songs with
fewer dependencies between notes generate many more hypotheses and the run time is much
longer. Given the memory capacity of our machine, it is not possible to keep all paths during
compilation. During our tests, there were songs that reached 70 million different paths. Given
the number of possible paths, we had to perform cuts on the least promising paths. The process
of path exclusion is explained in the section 4.6.

4.3 Architecture

In this section we present the architecture of our system GuiTab and, in a not so detailed way,
explain how the system works. The architecture of the system is shown in figure 4.1. In MIDI
processing there is MIDI extraction and a set of processing phase in order to prepare the set
of notes extracted from MIDI for our system. In Hypotheses Generation the hypotheses are
generated, they are nothing more than a set of notes with defined positions. In other words,
each hypothesis is one of the possible ways to play a set of notes. Here it is also checked
whether or not it is possible to play the hypothesis. In Hypothesis Selection, hypotheses which
are difficult to be executed are excluded, and a set of heuristics is used to rate the paths of the
various hypotheses and the best path is chosen.

In fingers optimization the choice of fingers associated with each note of the best rated path
are made. Finally, in Tablature Creation the tablature of the best path is created.

MIDI Processing Hypotheses
Generation

 Hypotheses
Selection

Fingers
Optimization

Tablature
Creation

Figure 4.1: Architecture

4.4 MIDI Processing

This section explains how we extract and process MIDI files, our system’s input, and how it is
passed to the base for our system.

4.4.1 MIDI Extraction

For extracting the MIDI file we use the python library Music211. When we extract the MIDI file,
a score is created which consists of a set of three channels. Each channel has information about
the instrument used, the time signature and has a set of notes that correspond to each part of

1http://web.mit.edu/music21/

4.4. MIDI PROCESSING 23

the music. The first channel contains the bass notes, the second channel the accompaniment
notes and the third channel the melody notes. Given that, we have to sort the notes in relation
to their appearance in the piece, each note resulting from MIDI extraction consists of an object
of the Note class present in the Music21 library with a set of attributes such as the offset of the
note, the onset of the note, the duration of the note, the pitch of the note and to which octave
it belongs. We then sort the notes by the onset associated with each note. If several notes have
the same onset, the notes are sorted from lowest to highest pitch. If we sort the notes present
in figure 4.2, we have the following set: [E2, B4, B3, G3, B4, B3, G3, B4, B3, G3].

Finally, since the MIDI file is divided into three channels corresponding to bass, accompa-
niment and melody respectively, we need to eliminate repeated notes. Let us observe figure 4.2
where the initial bar of the song Spanish Romance (Spanish Romance, 2017) is present. If we
look at the first high note, we see that it is in theory part of both the melody and the accompa-
niment, because when we look at the note in question, we see that it has both a dash upwards,
which shows that it belongs to the melody, and a dash downwards, which shows that it belongs
to the accompaniment. So, when the MIDI is extracted, this note appears both in the channel
that contains the melody notes and in the channel that contains the accompaniment notes. As
in practice there is only one note, we do not want to consider it twice. One of the notes is then
eliminated, the note which has less duration.

Figure 4.2: Spanish Romance

4.4.2 Notes Division

After we have the notes sorted as explained above, we divide them into subsets, or phrases,
using the same nomenclature as used by (Masanobu Miura, 2004). However, the division we
propose is different and more appropriate for our purposes, since our system evaluate poly-
phonic music, and therefore there are dependencies between notes. We divide the notes taking
into account the dependencies between them. We consider two types of dependencies: direct
and indirect dependency. When two notes are directly dependent it means that they are both
heard in one or more instants of the music and two notes are indirectly dependent when they
are not directly dependent, i.e., they do not coexist in one or more instants of the music but
have at least a third note in common which is directly dependent on these two. Looking at the
picture 4.3 two directly dependent notes are for example the first two notes in green, in fact,
they have the same onset. Two indirectly dependent notes are for example the two green notes
at the top, since they are independent from each other but dependent on the third green note.

Therefore, a new subset is created when a new note is independent of the notes belonging

24 CHAPTER 4. METHOD

Figure 4.3: Excerpt of Adelita.

to the previous subset. If we think about the physical aspect, i.e., the physical limits of the left
hand when we have to press a set of frets to play a set of notes, when these are dependent,
it means that several fingers have to press a number of notes at the same time instants. If we
consider two dependent notes where one is played at fret one and the other at fret twelve. It is
impossible to perform this set of notes in these two positions, since the left hand cannot press a
string at fret one with one finger and another string at fret twelve with another finger. So when
we divide the sets in this way, we are on the one hand constraining the distance between notes
within the set and, on the other hand, releasing that constraint between the sets.

Then we require the creation of the concept of moment. The moment is the instant of time
when one or more notes appear in the music. Looking at figure 4.2, we have nine different
moments, because we have ten different notes where two of them have the same onset. The
first two notes start at moment 1, and when one or more notes with a different onset appears
in the music the moment is increased by one. This concept is then added to each note, where
for each note we add the number of moments where this note is heard in the music, i.e., the
note is associated with all numbers corresponding to the moments when that note is sounding.
In composition from figure 4.2, the first lowest note lasts the whole set and therefore its set
of moments is from moment 1, when the note starts to be heard in the music, to moment 9.
This concept makes it easier to check for direct dependencies between notes. If two notes have
at least one moment in common they are directly dependent on each other, because at that
moment, both notes are heard in the music. Then, the subset is further divided into subsets
taking into account the moments at which each note starts in the song. This way notes which
start at the same instant of time belongs to the same subset. So, the notes are divided into
subsets taking into account their dependencies, which in turn is divided taking into account
their musical onset. We explain later in section 4.5 the reason of this second division.

We also need to deal with trills. A trill is a musical ornament that consists of the rapid
alternation of, usually, two adjacent notes, semitone or tone apart. A trill has no tempo. As
an example in figure 4.4, we have a bar from the piece Adelita by Francisco Tárrega. This bar is
a 3 by 4 bar, i.e. it consists of three notes of quality 4 (crotchet) or their corresponding notes.
If we look at the top notes, the ones that correspond to the melody, ignoring the first two,
we have 6 quavers that correspond to 3 crotchets, and we have a note present at the bottom,
corresponding to a minim with a dot, which also makes 3 crotchets. This means that the first
two notes correspond to a trill and do not enter into the counts, in terms of time, of the bar.

4.5. HYPOTHESES GENERATION 25

They are just a musical ornament, when we extract notes corresponding to this ornament, their
duration is 0, because, in fact, in the bar context their duration does not exist.

However, in order to deal with the dependencies between notes and their duration
throughout the music, we cannot have notes with duration 0. These first two notes not only
have duration 0, but their onset corresponds to the same onset as the next two notes. Notes
that start at the same onset are directly dependent. If we look at the gold standard of this piece,
we have that all three melody notes are played on the same string, and we know that directly
dependent notes cannot be played on the same string. This means that even though they start
on the same time instant, they are not dependent on each other. To solve this, for each set of
dependent notes we check if there are notes of this type, the duration of each note with dura-
tion 0 is changed to 0.0001 so that they have some duration but not enough to change the bar
structure, and the onset is changed too. In this example, for the second note of the trill the onset
decreased by 0.0001 and for the first note of the trill the onset is decreased by 0.0003, so that
these three notes start at different times, but do not change the bar structure.

Figure 4.4: Adelita

4.4.3 Tune Verification

Finally, we check which tuning the music is in. Our system only considers two different tun-
ings. The standard tuning (E-A-D-G-B-E) and the drop D tuning in which we lower the sixth
string by one tone from the standard tuning (D-A-D-G-B-E). We also chose to include this sec-
ond tuning because it is quite common in classical music pieces. So, we have two abstractions
of the guitar neck, one for each tuning. In fact, only the positions of the notes of the sixth string
change depending on the tuning. To check if the tuning is in Drop D, we just check for the
presence of D2 or D2# notes, which are the only notes that do not exist in E tuning and become
present in this one.

4.5 Hypotheses Generation

At this point our system generates possible hypotheses and checks if they are valid, i.e., if they
correspond to possible playing notes. As mentioned above, a hypothesis is a set of notes with
certain positions on the guitar. A path is a set of hypotheses that together make up the music
being evaluated. In figure 4.5, it is possible to see the Hypotheses Generation architecture.

26 CHAPTER 4. METHOD

Earlier we talked about how the splitting of notes is performed. We divided them into sets
based on their dependencies and into subsets based on their onset in the music. Looking at
figure 4.2, as an example, all the notes in this bar belong to the same set and are then divided
into nine subsets.

The way we generate the hypotheses is incremental, which means that we take the first
subset and generate the possible hypotheses for the notes in that subset, then we move to the
next subset, we generate the hypotheses considering the notes in the previous subset and the
present subset, and so on. This means that the notes are evaluated repeatedly. However, we
realized that doing it incrementally is much more efficient. If, when we take the first subset and
generate the possible hypotheses, some hypotheses are invalid, i.e., there is no possible way to
play that set of notes in the given positions, and they are excluded. By invalidating hypotheses,
we are cutting off paths which should not be explored further. Suppose that in the first subset
we generate 10 different hypotheses and in the next subset we generate 6 different hypothe-
ses. The set of possible paths, given these two subsets, is the Cartesian product between the
hypotheses of the first subset and the hypotheses of the second subset which are 60 possible
paths. Doing the process incrementally we take the first subset and check which hypotheses are
invalid. If four of the ten hypotheses are invalid, the number of possible paths given the two
subsets is the Cartesian product between the six valid hypotheses of the first subset and the six
hypotheses of the second subset, which are 36. The incremental process, therefore, allows us
to cut hypotheses earlier and makes the exploration of possible paths more efficient. If, instead
of the incremental process, we took all the notes in the set and tried to generate the possible
hypotheses with all the notes, the number of paths to explore would be exponentially large.

Note
Creation

Generate
Dependencies

Hypotheses
Creation

Note
Permutation

Hypothesis
Verification

Repeated
Patterns

Figure 4.5: Hypotheses Generation Architecture

4.5.1 Note Creation

After creating the sets as explained above, we move on to creating the notes for our system.
For now, the notes belong to the Note class of the Music21 library. However, because we need
to add extra attributes to the notes, we created ourselves the super class Note which has as sub
classes all the notes we consider. That is, there are 46 sub classes, from the lowest note, D2, to
the highest note, B5. The super class has a set of attributes common to all notes while the sub
classes have specific attributes to each note.

Suppose we want to create the notes in red present in figure 4.6. To create the notes E2
and B3, we have to figure out in which positions both notes exist through our abstraction of

4.5. HYPOTHESES GENERATION 27

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.6: Notes Creation Example.

the guitar neck. The note E2 only exist in one position: (6,0), while the note B3 exists in five
positions: (2,0), (3,4), (4,9), (5,14) and (6,19). So, when we create notes, we create n different
objects of the same note, only varying the position of each object. So, for note E2 only one
object is created, since this note is only in one position, and for note B3, five objects are created.
Each note object is also associated with a shared id. The id is shared between the objects of
the same note. So, the object in note E2 has the id number 1, while the five objects in note B3
have id number 2. Because objects of the same note are parallel objects, they are never be tested
together since they belong to the same note.

Before creating the notes, we changed flat notes to the corresponding sharp or natural
notes. In theory a B2 flat is different from an A2 sharp. However, in practice they are the same
note with the same frequency. In our system we do not recognize flat notes, so we pass them
to the corresponding notes, either sharp or natural.

4.5.2 Generate Dependencies and Cartesian product

We need to generate dependencies between notes. Each object note has a list of the notes it
is directly dependent on, that is initialized empty. When generating dependencies, a single
object from each note is used to calculate the dependencies. To calculate the dependencies, we
just have to check the duration of each note and see if they both have at least one moment in
common, if they do, it means that at least in that moment they are heard momentarily and
therefore are directly dependent. Each list in this object is filled with the dependent note ids,
which is then propagated to the other objects of the respective note.

After generating dependencies between the notes, the Cartesian product is made between
the notes of the subset under evaluation. Consider that in the first subset we have notes E2
and E5 which after created are presented as two lists, where in the list for note E2 there is
only one object which corresponds to position (6, 0) while for note E5 there are two objects,
which correspond to positions (1, 12) and (2, 17). Therefore, the Cartesian product is as fol-
lows: [(E2, E5), (E2, E5)] = [((6, 0), (1, 12)), ((6, 0), (2, 17))]. We can observe that the Cartesian
product corresponds exactly to the different ways of playing a set of notes, which we call hy-
potheses.

Suppose that both hypotheses are valid and we move on to the next subset which cor-
responds only to note B3. Therefore, we create the note B3 which results in 5 objects cor-
responding to the positions (2, 0), (3, 4), (4, 9), (5, 14) and (6, 19). After creating the notes
and generating the dependencies between this note and the two previous notes we gener-
ate the new possible hypotheses. This also results in a Cartesian product between the B3
note positions and the previous two generated hypotheses, where the result is as follows:

28 CHAPTER 4. METHOD

[((6,0),(1,12),(2,0)), ((6,0),(1,12),(3,4)), ((6,0),(1,12),(4,9)), ((6,0),(1,12),(5,14)), ((6,0),(1,12),(6,19)),
((6,0),(2,17),(2,0)), ((6,0),(2,17),(3,4)), ((6,0),(2,17),(4,9)), ((6,0),(2,17),(5,14)), ((6,0),(2,17),(6,19))].
With only three notes, where one has one position, one has two different positions and one
has five different positions, the number of possible hypotheses is 10. The growth of possible
hypotheses is exponential, and this underlines our idea of creating the hypotheses incremen-
tally. Some of these hypotheses are not valid and if they are not valid, their paths should not
propagate, which results in a decrease in the growth of possible paths.

4.5.3 Different Cases in creating Hypotheses

As mentioned above, hypotheses are the possible ways to play the set of notes being evaluated.
There are four different cases in generating hypotheses. In figure 4.7 we can see the process of
the first and second case. The first case is when we are evaluating the first subset and that sub-
set contains only one note. In this case the hypotheses created are only the various positions
of this note. If we only have to play one note, there are no restrictions on playing any of its
positions. So, if we are in the first case, and the note has 3 different positions, three hypotheses
are generated each containing one of the three note objects. The second case is when we are
evaluating the first subset and that subset contains more than one note. Since there are more
than one note, it is necessary to check the dependencies between notes. The generated hy-
potheses are the result of the Cartesian product between notes. If we have two notes: note E2
with one position (6,0) and note E5 with two different positions (1,12) and (2,17), the generated
hypotheses are 2. The first hypothesis is: h1:[E2: (6,0), E5: (1,12)] and the second hypothesis is:
h2:[E2: (6,0), E5: (2,17)].

First Case

First subset
with one note

Each hypothesis has
only one of n objects

of the note

Second
Case

First subset
with more than

one note

Generate
Dependencies

between the subset
notes

Cartesian product
between the subset

notes

Each hypothesis is
the result of the

Cartesian product

Figure 4.7: First and second cases.

4.5. HYPOTHESES GENERATION 29

In figure 4.8 we can see the process of the third case. The third case consists of the case
where we are no longer in the first subset and the present subset contains only one note. We
mentioned earlier that the way we generate the hypotheses is incremental, which means that
there are already hypotheses generated from the previous subsets. Suppose that there are 3
hypotheses generated from the previous subsets, and that the note from this subset have two
different positions. The new generated hypotheses consist of the Cartesian product between
the hypotheses already generated and the new note positions as seen in section 4.5.2.

Third Case

No longer in the
first subset

Subset with one
note

Generate
Dependecies

Between

Each hypothesis
is the result of the
Cartesian product

between

The subset
note

The notes from
previous
subsets

Figure 4.8: Third case.

Finally, in figure 4.9 we can see the process of the fourth case. The fourth differs
from the third case in that the new subset contains more than one note. We have to
generate the dependencies between the subset notes and between the subset notes and
the notes from the previous subsets. Since the subset contains more than one note, it is
necessary to make the Cartesian product between the objects of the notes from the sub-
set and then make the Cartesian product with the hypotheses already generated. Sup-
pose that in the present subset we have two notes, both with two different positions:
first note: [position11, position12], second note: [position21, position22]. The Cartesian prod-
uct between these notes are the following: [position11, position21], [position11, position22],
[position12, position21] and [position12, position22]. Suppose that there is 1 hypothesis gener-
ated from the previous subsets. The new generated hypothesis is 4, resulting in the addition of
the result of the previous Cartesian product to the previously generated hypothesis.

30 CHAPTER 4. METHOD

Fourth Case

No longer in the
first subset

Subset with more
than one note

Generate
Dependecies

Between

Each hypothesis
is the result of the
Cartesian product

between

The subset
notes

The notes from
previous
subsets

Figure 4.9: Fourth case.

4.5.4 Repeated Notes

In the 2.1.1.3 section we mentioned how to check for repeating notes, that allows us to exclude
some hypotheses before we even evaluate whether they are valid or not. In figure 4.10 there
are 3 notes that repeat throughout the set. The note E5, the note B3 and the note G3. It is in
the repetition of notes within a set that there is this verification. Pretend that the first note of
each of them has already been evaluated and the hypothesis in question is as follows: [E2:(6,0),
E5:(1,12), B3:(3,4), G3:(3,0)]. The next note to be evaluated is note E5 for the second time. Are we
interested in evaluating this hypothesis [E2:(6,0), E5:(1,12), B3:(3,4), G3:(3,0), E5:(2,17)] or only
these two: [E2:(6,0), E5:(2,17), B3:(3,4), G3:(3,0), E5:(2,17)], [E2:(6,0), E5:(1,12), B3:(3,4), G3:(3,0),
E5:(1,12)]?

By doing this we are stabilizing the left hand which only has to repeat the previously
played position, thus optimizing the choice of positions. First, we have to check if the same
position can be used. This may not be possible when there is another note which is directly
dependent on the new note and is on the same string, or when the same note played earlier
in the set is dependent on this new note. When this happens, we know that the note cannot
have the same position. If it is possible to use the same position we see if we should exclude
positions that are different from the already used one. If the first note is a loose note and the

4.5. HYPOTHESES GENERATION 31

Figure 4.10: Excerpt from Spanish Romance.

same position can be repeated, we exclude all the different positions. For example, in the case
of the note G3 in our example that has position (3,0), new G3s notes that are not in position
(3.0), are excluded in the case the first G3 is in position (3.0).

Here we do not completely exclude all other positions, we just keep it consistent when
possible. There may be hypotheses where the position of G3 is (4,5), (5,10) and (6,15). We are
only trying to keep the same position when the note appears more than once in the set. If the
first note is not a loose note and the new note we want to add is, we use the heuristic given by
the following equation:

heuristic =
√

(fret1 − fret2)2 + (string1 − string2)2 (4.1)

This heuristic calculates the difference between the frets and the strings of the two notes. If
the result of the heuristic is less than a threshold the new position is excluded, otherwise it is
not excluded.

If none of the notes are loose notes, as in the case of the repeating note E5 in our example,
we calculate the heuristic shown in equation 4.1 between the position of the first note and the
current location on the guitar neck and the distance between the new position and the current
location on the guitar neck. If the first result is less than or equal to the second result, we
exclude the new position. To conclude, we are checking whether we have moved far from the
position where the first repeated note was played to see if it is worthwhile to take hypothesis
where the position changes or not. This check is only done in cases 3 and 4, because these are
the cases where there are already evaluated notes.

4.5.5 Hypotheses Verification

At this step, the hypotheses are verified, that is, of all the possible hypotheses we check which
are valid and which are not. There are two types of factors that can and cannot validate a
hypothesis. Some make a hypothesis impossible, such as two dependent notes being at a great
distance from each other, or dependent notes being played on the same string. Other factors
as we have seen in section 4.5.4 help us understand whether or not it is worth pursuing the
respective hypothesis.

32 CHAPTER 4. METHOD

Now we evaluate the hypotheses that have not been excluded. We have two factors to
work by when evaluating the hypotheses. The first factor is the distance between notes and
the second factor is whether all notes can have associated fingers. In fact, the distance between
notes has a lot to do with whether we can associate fingers with notes, because notes at a great
distance create a physical impossibility of being played. However, there are other reasons why
it may be impossible to associate fingers with all the notes as we show below.

4.5.5.1 First Finger Association

This first association of fingers to each note is not the final association one. This is because
in this first phase of validating or not validating hypotheses, each group of hypotheses does
not take into account its context, i.e., the other groups of hypotheses. One can imagine that
each group of hypotheses constitutes all we know about this piece of music, and therefore the
choice of fingers only takes into account the notes in that group. To better understand the
difference, we look at the following example: in the figure 4.11 there are three sets of a single
note, since each note is independent from the next. As we described above, when we associate
the fingers to the notes of each set, we do not take into account either the next or the previous
sets. So, which finger would be associated in the validation of each hypothesis? And which
finger would be associated to each note already taking into account its context?

Finger choices when playing a set of notes are subjective, and guitarists have different
tastes and preferences. The different physical characteristics of each guitarist mean that what
may be easy to perform for one guitarist may be extremely difficult for another. For example,
a guitar player with long fingers finds it easier to travel longer distances between notes. How-
ever, there are certain rules in finger picking that are general to all guitar players. Looking at
figure 4.11, when we only have one note to associate, we always associate it with finger 1, the
index finger. Since we know nothing of the previous and subsequent notes and as we talked
about earlier, each set at this stage is all we know of this piece of music, if a set has only one
note, this note is associated with the most common finger, which is usually the strongest. So,
as an answer to the first question, all three notes would be associated with finger 1. When the
context is analyzed, does it make sense to play all notes with the 1st finger? No, having four
possible fingers to use and a very restricted time to play each note, it does not make sense to
always use the same finger on notes with different positions. So, as an answer to the second
question: no, the fingers that would be associated at the end would not always be the 1st fin-
ger. However, without knowing the context it is not possible to know which finger we should
choose.

Figure 4.11: Spanish Romance

4.5.5.2 Hypotheses Division

Sometimes we need to divide the hypothesis into small sets. This is needed when the note that
connects the whole set is a loose note. We said earlier that one of the reasons ensembles are

4.5. HYPOTHESES GENERATION 33

defined this way is because notes which are dependent directly or indirectly force less breadth
in the use of the guitar neck. However, when the note that connects the set is loose, i.e., no
finger has to be used to press the fret of the guitar to hear it, this allows us a greater range
within the set itself. In figure 4.10, we see that the note E2:(6,0) links the whole bar, because
it is dependent on all the notes in the bar. So, in that case we need to divide the hypothesis
into small sets. Suppose that one of the hypotheses that has to be evaluates is the following:
[E2:(6,0), E5:(1,12), B3:(4,9), G3:(3,0), E5:(1,12), B3:(4,9), G3:(3,0)]. To do this division, a set is
created with the non-loose notes, which in our example would give the following set: [E5:(1,12),
B3:(4,9), E5:(1,12), B3:(4,9)]. Then the division of this new set is done in the same way as the
division of sets described in section 4.4.2, which in this example the division would therefore
be: [E5:(1,12), B3:(4, 9)] and [E5:(1,12), B3:(4, 9)].

4.5.6 Validation Process

In the validation process we try to associate fingers with all the notes of the hypothesis. For a
hypothesis to be valid we check if all notes that belong to the hypothesis have fingers associated
with them. If they do not, the hypothesis is not valid and is excluded. For case 1, where there
are no previously evaluated notes yet and there is only one note to be evaluated in this subset,
all hypotheses, which have only one note in different positions, are valid and for positions
where the fret is not 0 the finger 1 is associated and 0 for where it is.

For the other three cases the validation is more complicated. To follow the validation pro-
cess, we take the example present in figure 4.10 and we consider that the new note to be eval-
uated is the seventh note, which corresponds to a G3. One of the hypotheses that has to be
evaluated is the following: [E2:(6,0), E5:(1,12), B3:(4,9), G3:(3,0), E5:(1,12), B3:(4,9), G3:(3,0)].
Each hypothesis has a reference note, or if the hypothesis has been divided into subsets, each
subset has a reference note. The reference note is the note with the leftmost fret in each set and
if there are notes on the same leftmost fret it is the note on the lowest string. In our example,
the hypothesis is divided into two subsets: [E5:(1,12), B3:(4, 9)] and [E5:(1,12), B3:(4, 9)], and
for each subset the reference note is the note B3. We start by associating the finger to the loose
notes, i.e., these three notes in our example: [E2:(6,0), G3:(3,0), G3:(3,0)]. We start with the note
E2 and check if there is any note dependent on it on the same string that has already been
evaluated (which at this point was none). If there is not one, we assign a finger ”0” and add it
to the notes already evaluated. We do the same for the remaining loose notes. Both G3 notes
have the same position, but since they are independent of each other it is possible to play them
in the same position. If there is one note dependent on the same string, no finger is associated
and the finger attribute stays with the string it was initialized with, ”Undefined”.

Next, we associate the fingers with the reference notes. Each reference note is associated
with finger 1. Within each subset it is the leftmost note, we want to use finger 1. For obvious
reasons, notes that are further to the left than others have smaller fingers than notes that are
further to the right. Looking at these two positions, (4,9) and (1,12), it would not make any
sense to associate finger 1 to the second position and finger 2 to the first, nor finger 2 to the
second position and finger 3 to the first, and so on. Here too the same check is made as in the
case of the loose notes. In our example, so far we have that the notes evaluated are: [E2:(6,0)
finger: 0, B3:(4,9) finger: 1, G3:(3,0) finger: 0, B3:(4,9) finger: 1, G3:(3,0) finger: 0].

34 CHAPTER 4. METHOD

4.5.6.1 Finger Estimation of the Remaining Notes

Whatever the hypothesis to be evaluated the first notes evaluated are the loose notes and the
reference notes. And the process is always the same, the loose notes are associated with finger
”0” while the reference notes are associated with finger 1. For the remaining notes the fin-
ger associated depends on the distance in terms of frets between the evaluated note and the
respective reference note.

Considering the previous example, only these two notes remain to be evaluated: [E5:(1,12),
E5:(1,12)]. For each note we need to find its reference note, and from that one we associate a
finger to this one. For our example each note E5 is associated with each note B3, given the
separation of the above sets. After finding the respective reference note and check that there
is no note already evaluated that is on the same string as the one being evaluated the distance
between the frets is calculated, which is given by the following equation:

PossibleF inger = abs(fretref − freteval) + 1 (4.2)

This calculation results in the first estimate of the finger we want to associate with the
evaluation note. The PossibleFinger for the E5 note is: abs(9 - 12) + 1, which is equal to 4, where
9 is the fret of the reference note and 12 is the fret of the evaluation note. To understand why we
add another 1 to the difference between the frets, just think of two contiguous notes in relation
to the frets where the first note is the reference note. The distance between frets is 1. However,
the reference note is already associated with finger 1 and so we want to associate it with the
next finger, 2.

After the first estimation of the finger, we check if it is possible to match it. We decided to
divide the guitar neck in 4 parts, because the distance between the frets decreases from left to
right. This makes the frets that the fingers can travel vary along the arm. The first part covers
frets 1 and 2, the second covers frets 3 to 7, the third from 8 to 12, and the last from 13 to 19.
To check which part of the guitar neck we are in, simply check the fret of the reference note
associated to the note that is being evaluated. In this example we would go to the third part
since the fret of the reference note is 9. The difference between the various parts of the guitar
neck is the maximum value that the result of the equation 4.2 can have.

The result of this equation can be seen from two different angles, the first angle is which
finger we can use for the note we are evaluating, while the second angle is the real calculation
of the equation, the distance between the two notes in relation to their frets. If the distance of
the frets varies depending on the different sections, the maximum distance that the fingers can
travel also varies. The greatest distance of the frets that the hand can travel is possible by using
finger 1 and finger 4, as these are the fingers at the ends. It must be taken into account that
given the variation in hand and finger size of each guitarist, these thresholds can be small or
large for certain guitar players, so we have tried to put a value that corresponds to the distance
that a normal sized hand can travel. So, the system allows system users to change these values
as they wish. The default values are: for part one the maximum distance between the fret of
the evaluation note and the reference note is 5, for part two it is 6, for part three it is 7 and for
the last one it is 8. If the maximum distance is exceeded, no finger is associated with the note
being evaluated.

If the maximum distance is not exceeded, the distance of the strings between the two notes
is checked. Let us look at the following example in the figure 4.12. In this example we consider

4.5. HYPOTHESES GENERATION 35

the notes colored red. When calculating the distance between F#2 and G4 given by the equation
above, the possibleFinger is 2. However, given the large distance between the strings, using
finger 3 for G4 would be far more efficient and easier to perform. This distance between strings
is only checked when the finger movement is downward, i.e., when the string of the reference
note is above the string of the note to be evaluated. Therefore, 1 is added to the initial value of
the distance between the two notes if the hypothesis in question is not a barre. The possibleFinger
is increased by 1 if the distance between the strings is at least 3, and for the remaining parts, if
it is 4. Suppose that besides notes F#2 and G4, we also had notes C#4, A3 and E3 on the same
fret as F#2 present in the hypothesis. All notes of the 3rd fret would be associated with finger 1
forming a barre as explained in section 2.1.4. The difficulty of execution present in the previous
hypothesis would disappear, since finger 1 is already close to the position of the G4 note.

In our example from figure 4.10 B3:(4,9) and E5:(1,12), given the distance between the
strings, possibleFinger is not increased by 1. After we have defined the first estimation of the
finger to use, we check if it is possible to associate it, or if another one has to be associated, or
if it is possible to associate any finger at all. The result of the equation 4.2 can be greater than
4, so the possibleFinger is the minimum between the own value and 4, which is the last finger
value.

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.12: Distance between strings example.

4.5.6.2 Finger Estimation Validation

After obtaining the most suitable finger to associate with the note to be evaluated, we check if it
is possible to associate it. In this verification two different paths are followed. The first happens
when the note to be evaluated is not in the same fret as the reference note and the second when
it is. The idea is to see if of the notes that have already been evaluated, any forbids the use of
the finger we want to associate with this one.

First we present some pseudo-code to explain how the finger estimation validation process
is done and then we present some examples. In figure 4.13 we have the checks that must be
validated to try to change the estimated finger.

If the fret of the note to be evaluated differs from that of the reference note, we are in the
first path. Then we go through all the already evaluated notes and check if one of them has the
same finger associated if the position between both is different and if both are associated with
the same reference note. If these checks are met, we try to change the finger of one of the notes.
In figure 4.14 we have the pseudo-code that try to change the finger of one of the notes. If the
notes are directly dependent on each other this change has to be made, because we cannot have
the same finger associated with two note that have to be heard in one or more instant in the
music. If they are not directly dependent, we want to try to change the finger to optimize the

36 CHAPTER 4. METHOD

Figure 4.13: Checks that must be validated to change the estimated finger.

use of the fingers, but the hypothesis is not impossible if we cannot. If the estimated finger is
finger 4, we can only reduce the fingers, since finger 4 is the biggest finger we can use. If the
fingers are between 1 and 4, you can either increase or reduce them.

Figure 4.14: Change of the same finger associated with two different notes.

Now, let us look at the example we have been following. Here, we have to check if from
these notes: [E2:(6,0) finger: 0, B3:(4,9) finger: 1, G3:(3,0) finger: 0, B3:(4,9) finger: 1, G3:(3,0)
finger: 0], any of them forbids the use of finger 4 on the note to be evaluated, the E5:(1,12)
note. Each note object has a list of the fingers already used. This list lets us know which fingers
have already been analyzed by the system. So, in our example the list of E5 already contains
finger 4, which is the first finger to be analyzed for this note. We then go through the notes
already evaluated and for each note we check if this note has the same finger as the one we
want to associate. In our example this does not happen, just see that none of the notes already
evaluated has the finger 4 associated. Therefore, this note E5 is associated with finger 4.

We now go to the second note E5 where the already evaluated notes are the following:
[E2:(6,0) finger: 0, E5:(1,12) finger: 4, B3:(4,9) finger: 1, G3:(3,0) finger: 0, B3:(4,9) finger: 1,
G3:(3,0) finger: 0]. When we evaluate the second E5, the previous E5 note have the same
finger that we want to associate with this one. However, besides the condition that both notes
have the same finger two other conditions must be met. First, the notes must not have the
same position, which is not the case here. Previously it is checked, for each note, if there are
dependent notes on the same string. Then we know that these two notes E5 are independent

4.5. HYPOTHESES GENERATION 37

of each other. If they are independent and played in the same position it makes sense to keep
the same finger if possible. The other condition, which is also not met, is that both notes must
have the same associated reference note. Notes associated with the same reference note belong
to the same set where there are direct and indirect dependencies. Since each reference note is
associated with finger 1 and it is through it that we associate the fingers of the other notes, we
only consider changing a note finger if there is an impossibility of a note belonging to the same
set. The result of this hypothesis would then be: [E2:(6,0) finger: 0, E5:(1,12) finger: 4, B3:(4,9)
finger: 1, G3:(3,0) finger: 0, E5:(1,12) finger: 4, B3:(4,9) finger: 1, G3:(3,0) finger: 0].

This example is quite simple since it is not necessary to change any finger. For a more
complex example let us look at the following example from figure 4.15, where we have the
following notes: [E3: (4,2), C3: (5,3), D4: (2,3), G#4: (1,4)]. This set has only one reference note,
which is E3 note. After associating it with finger 1 we go to the remaining ones. The first note
to be evaluated is the note C3, where the distance given by equation 4.2 is two. Up until now
we only have the reference note evaluated, this note is associated with finger 2. The second
note to be evaluated is note D4 where the distance is also 2. In this case, the three conditions
mentioned above are met. Finger two is already associated with note C3, both have the same
reference note associated with them, and they are not in the same position.

After checking the conditions, it is necessary to see if the notes are directly dependent on
each other. If they are it is mandatory that the associated finger is different, because we cannot
have the same finger in two different positions. If they are not directly dependent we want to
try to change the finger to optimize the use of the fingers, but the hypothesis is not impossible
if we cannot. So, we try to change the finger of the note C3 in order to find a possible way to
play the hypothesis if the notes are dependent or a more optimal way to play it if they are not
dependent. If the finger estimation is finger 4, which is not the case, we can only reduce the
fingers, since finger 4 is the biggest finger that we can use. If the fingers are between 1 and
4, you can either increase or reduce them. Then, we try to decrease the finger that went from
finger 2 to 1. It is necessary to check if this finger has already been used through the list of
used fingers of this note, where for now only finger 2 is found. Finger 1 is added to this list.
Without going through the notes already evaluated to see if it is possible to associate this note
with finger 1, a set of checks are made to see if this finger is possible to associate. These checks
check two things: The first is to verify if the finger that we want to associate is the finger one.
If it is, we check if the hypothesis is a barre, if it is not a barre this note cannot be associated
with finger 1, if it is a barre, we must check if this note is in the same fret of the reference note,
if it is not also cannot be associated with finger 1. The second check is whether the distance
between contiguous fingers is large. Above we talked about the maximum distance between
the reference note and the note being evaluated. Here we want to find out whether we are
associating a finger that is far enough, in fretting terms, from the adjacent fingers, to make it
impossible to associate it.

In our example, the attempt to associate finger 1 has failed in the first check, because neither
the hypothesis is a barre nor is the note in the same fret as the reference note. After finger 1, it is
impossible to decrease the finger any further as there are no more fingers and so the finger of the
note that is being evaluated is incremented, since fingers 3 and 4 have not yet been evaluated.
The next finger to be evaluated is the finger 3, here it is only checked if the finger has already
been evaluated before, and if not, it is associated to the note D4. This is because the association
of fingers to notes is made from left to right, from the leftmost fret on the lowest string to the
rightmost fret on the highest string. So we know that on the notes already evaluated there are

38 CHAPTER 4. METHOD

no notes that can disturb this association.

The next and last note to be evaluated is the note G#4. For now the notes already evaluated
are: [E3: (4,2) finger: 1, C3: (5,3) finger: 2, D4: (2,3) finger: 3]. The distance between G#4 and
E3 in terms of frets is 3. Since the finger we want to associate is the same as the one associated
with the note D4 we try to change it. We try finger 2 for the note D4, however, finger 2 has
already been evaluated for this note, so it is decremented to finger 1. Here finger 1 fails for the
same reasons as above. As there are no more fingers to decrease, we increment the finger of the
note to be evaluated, which is finger 4 where the final association is made.

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.15: Example Hypothesis

Our last example is more complex, as it requires the use of recursion. Basically, it is some-
times necessary to change fingers of notes that have already been evaluated, and when this is
the case, we have to check if this change affects the other notes already evaluated. Our example
consists of the following notes: [E3: (4,2), B3: (3,4), E4: (2,5), A4: (1,5)]. The reference note is
note E3 which we associate with finger 1. Then we associate note B3 with finger 3 and the note
E4 with the finger 4. For now, there is nothing new compared to the previous examples. The
distance from the last note, A4, to the reference note is also 4. As in the previous example we
decrease the finger of note E4 to 3 and try to match it. This finger has not yet been evaluated
for the note in question and passes the checks mentioned above. Then a recursive function is
used, because we have several decisions depending on each other. To verify if it is possible
to associate finger 3 to note E4 we go through the notes already evaluated, remember that the
hypothesis at this moment is like this: [E3: (4,2) finger: 1, B3: (3,4) finger: 3, E4: (2,5) finger:
4/3?].

Note B3 is associated with finger 3. The same checks are made as above, i.e., if there is
a note that uses the same finger that we want to associate, if they have the same associated
reference note and if they have different positions. Another check is necessary, because now
we do not guarantee that the evaluated notes are further to the left with respect to the fret or
on the same fret on a lower string. So, we check if note B3 is further to the left than E4, because
only then does it make sense to decrease its finger. After all this checking, the finger of note
B3 is decremented to two, leaving the hypothesis like this: [E3: (4,2) finger: 1, B3: (3,4) finger:
3/2?, E4: (2,5) finger: 4/3?]. The process of associating note E4 stays in standby in order to
see if it is possible to associate note B3 with finger 2. It is possible, because no other note is
associated with finger 2, and being this association possible, the association of finger 3 with
note E4 is also possible and, therefore, the finger 4 associated with the note A4 is also satisfied.

For the second possible path, in addition to the checks made in the previous path, two
more checks are made in order to verify that we constructing a barre.

If we have one note already evaluated that there is not the reference note and the associated
finger is finger 1, we know that at least two notes are associated with finger 1, and this only

4.5. HYPOTHESES GENERATION 39

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.16: Recursion Example Hypothesis

Figure 4.17: Automatically a barre.

happens when we have a barre. So as the evaluated note is in the same fret as the reference
note, the evaluated is associated with finger 1. The pseudo-code is present in figure 4.17.

Figure 4.18: Cannot be a barre.

In figure 4.18 we have a check that excludes the possibility of the hypothesis being a barre.
If we have one note already evaluated that is a loose note and the string of this note is below
the reference note string and the reference note associated with the evaluated note and the n
note is the same, we know that we cannot have a barre, because if this loose string has to be
heard during the supposed barre, the position of finger 1 along the fret would not allow this to
happen.

For the second possible path, we address a hypothesis that results in a barre. The example
is present in figure 4.19. The hypothesis consists of the following notes [F#2: (6,2), B2: (5,2),

40 CHAPTER 4. METHOD

F#4: (1,2)]. The reference note is the note F#2 that is associated with finger 1. Next, we try to
associate a finger with the note B2. The finger that we want to associate, given the distance, is
finger 1. In this case, this note is in the same fret as the reference note. For now, the only note
evaluated is the reference note. It is also checked if there are notes with the same finger. In this
case, both the note that is being evaluated and the reference one uses the same finger. However,
as there is a possibility of a barre in which the finger 1 is used for both notes, we only try to
find another finger to be associated if the note that has the same finger is not the reference note.
Given this, finger 1 is associated with the note B2 and the hypothesis is assumed to be a barre.
Next, we evaluate the note F#4. Now there is a note, B2, which is not the reference note, and
it is associated with finger 1 and has the same reference note associated. Because it is also on
the same fret as the reference note, it is also associated with finger 1. Because if a barre is being
made on that fret, other fingers cannot be used while the barre is being performed.

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.19: Barre Example Hypothesis

Our last example from this path is a hypothesis that gives the idea of being a barre, but it
cannot be. The example is shown in the figure 4.20. The hypothesis consists of the following
notes: [B3: (2,0), F#2: (6,2), B2: (5,2), A3: (3,2)]. First the ”0” finger is associated to the loose
note, the note B3. Then a finger 1 is assigned to the reference note, the note F#2. Next, we try
to associate a finger to the note B2. The distance remains the same as in the previous case, 1.
However, now it is not possible to associate the finger 1 to this note, because there is a loose
note on one of the strings below the reference note. If this loose string has to be heard during
the supposed barre, the position of finger 1 along fret 2 would not allow this to be happen. If
the unfretted note were on a string above the reference note string, it would already be possible
to make the barre, because the barre starts on the reference note string. As it is not possible to
decrease finger 1 of the reference note, the finger of the note to be evaluated is incremented to
2 and associated to the note. Next the note A3 is evaluated, where the distance is 2, given the
distance between strings. Here the same process is done as explained in the previous path, we
try to decrease the note B2, since it is associated with the same finger, which is not possible,
and so the finger of note A3 is incremented to 3.

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.20: Example of a non-barre

4.6. HYPOTHESES SELECTION 41

4.5.7 Hypotheses Creation

We mentioned above that the process of generating, checking and creating hypotheses is done
incrementally. That is, you take a subset of one or more notes with the same onset belonging to
a set of notes dependent on each other, and the various hypotheses are generated and checked
as explained above. After the hypotheses are verified, the valid hypotheses are created. For a
hypothesis to be valid it is sufficient to check that all notes that belong to the hypothesis have
fingers associated with them. If they do not, the hypothesis is not valid and is excluded. The
notes of the following subset are added only with the valid hypothesis of the previous subset.

Due to MIDI errors, which quite often create dependencies between notes that do not cor-
respond to the dependencies between notes present in scores of the respective piece of music.
It can happen that these dependencies create only hypotheses that are impossible to perform.
A simple example is when E2 and G2 are dependent notes in standard tuning. Both only exist
on string 6 and, therefore, it is impossible to play them at the same time. In order to always
create at least one valid hypothesis for a set of notes, the system splits the set from the note
or notes which made all hypotheses invalid. Consider this set: [[E2, E5],[B3],[G2,E3], [G4]]. If
notes E2 and G2 are directly dependent on each other, no valid hypotheses are generated given
the impossibility of playing both notes at the same instant in the music. Then we split this set
into two subsets: [[E2, E5], [B3]], [[G2,E3], [G4]].

4.6 Hypotheses Selection

After all notes in a set have been evaluated and all valid hypotheses have been created, some
are excluded. Given the characteristics of the guitar - the frets from the 12th fret onwards
already belong to the guitar body, which makes it difficult to use the left hand to press these
frets. Given this extra difficulty, the system considers that hypotheses with notes from the 12th
fret on are only considered if those notes are notes that only exist from the 12th fret on, or if
the exclusion of a hypothesis with notes after the 12th fret empties the set of valid hypotheses.
The notes that only exist from the 12th fret on are: E5, F5, F#5, G5, G#5, A5, A#5 and B5. This
allows us to cut paths that are not the most optimal.

If in the first set of notes we have these hypotheses: [h11, h12, h13, h14] and in the second set
these: [h21, h22, h23, h24], the possible paths correspond to the Cartesian product of these two
lists. Each hypothesis has a certain cost and the path which has the lowest cost, i.e., where
the sum of the costs of the hypotheses is smallest, is chosen to represent the tablature of the
respective piece of music. If we are in the first set of notes, where the first hypotheses are
created, only the 10 best hypotheses move on to the next set. It is necessary to make cuts in
the number of hypotheses, because the growth in the number of possible ways to play the
respective piece of music is exponential. To calculate the cost of each hypothesis, the distance
between each fretted note and the remaining fretted notes is calculated. Unfretted notes since
they do not use any finger of the left hand do not enter into the distance count. The distance
between two notes is given by the equation 4.1.

For the second set of hypotheses, the individual cost of each hypothesis is also calculated
as above where the 10 best hypotheses are also chosen. From the 10 best hypotheses in the first
set of hypotheses and the 10 best hypotheses in the second set, paths are made. For each path,
the distance from one hypothesis to the other is calculated in the same way as the individual

42 CHAPTER 4. METHOD

hypotheses are calculated, that is, we calculate the distances of all the notes of one hypothe-
sis with all the notes of the other hypothesis. The distance between sets of hypotheses is only
calculated between the current set and the previous one. By calculating the hypotheses indi-
vidually we are calculating the finger span and by calculating the distance from one hypothesis
to the other we are calculating the movement that the left hand has to make.

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.21: First Path.

E4
B3
G3
D3
A2

E2

F4
C4
G#3
D#3
A#2

F2

F#4
C#4
A3
E3
B2

F#2

G4
D4
A#3
F3
C3

G2

G#4
D#4
B3
F#3
C#3

G#2

A4
E4
C4
G3
D3

A2

A#4
F4
C#4
G#3
D#3

A#2

B4
F#4
D4
A3
E3

B2

C5
G4
D#4

F3

C3

A#3

C#5
G#4
E4
B3
F#3

C#3

D5
A4
F4
C4
G3

D3

D#5
A#4
F#4
C#4
G#3

D#3

E5
B4
G4
D4
A3

E3

F5
C5
G#4
D#4
A#3

F3

F#5
C#5
A4
E4
B3

F#3

G5
D5
A#4
F4
C4

G3

G#5
D#5
B4
F#4
C#4

G#3

A5
E5
C5
G4
D4

A3

A#5
F5
C#5
G#4
D#4

A#3

B5
F#5
D5
A4
E4

B3

Figure 4.22: Second Path.

In figures 4.21 and4.22 we have two alternative paths. The first hypothesis is constituted
by the notes in red and the second hypothesis is constituted by the orange notes. To calculate
the distance between hypotheses, in this example, we calculate the distance between note A#3
and F#4, A#3 and D4, E3 and F#4, E3 and D4, C3 and f#4 and C3 and D4. The cost of the
second path is considerably lower than the cost of the first path, because the notes are much
closer together. So, the movement of the left hand along the guitar neck is much smaller. We
discussed in section 3.2 that this kind of movement is the most complex one, and is therefore a
movement to be avoided.

When there are more than two sets of hypotheses the process is similar to the previous
one, however two thresholds are used so that the growth of paths is not impossible to process.
For each set the cost of the individual hypotheses is calculated, but in the previous cases the
top 10 hypotheses were chosen, From the third set the number of hypotheses can vary as the
user chooses, the default threshold is also 10, the user can also make the value vary throughout
the evaluation of the music, if the number of different paths is growing exponentially. After
the paths are scored the second threshold consists of how far apart in terms of score the other
paths are from the top scored path, the higher the threshold the more paths are encompassed,
the default threshold is 25, The user can also make this value vary throughout the evaluation
of the music.

4.7. FINGER OPTIMIZATION 43

4.7 Finger Optimization

In figure 4.23 we have the possible paths. One possible path is composed of: h11, h22, · · ·, hm3.
After the paths are complete, the best path, that is, the path that got the lowest cost is chosen
for this phase. In this phase the optimization of the fingers is done. We stated above that all
notes have fingers associated with them, taking into account only the context of the hypothesis
where the notes are inserted. Here we change the fingers taking into account the previous and
the next hypotheses. When we change the fingers of the hypothesis of the second group, we
take into account the hypotheses of the first and third groups of hypotheses. The context has
great importance in the choice of fingers, because it often happens that the choice of fingers
in one hypothesis is not the most optimal, but it facilitates the change to the next hypothesis.
From now on, we explain how this whole process is done where we show some examples
where changing fingers facilitate the performance of the respective piece of music. Note that
since the path has already been chosen, the hypotheses that are spoken of here are the chosen
hypothesis of each group.

First group of
hypotheses

h11, h12, h13, ... h1n

Second group of
hypotheses

h 21, h 22, h 23,
... h 2n

...
M group of

hypotheses
h m1, h m2, h m3,

... h mn,

Figure 4.23: Path Construction.

4.7.1 Notes Division By Moments

For each set of notes of the chosen path, a new division is required. This division is similar to
the previous division mentioned in section 4.5.5.2 when the existence of a loose note connects
the whole set.

However, here a new class is created, the class MomentDivision. Each object of this class
contains the following attributes: a set of notes, which are the notes that belong to this Moment-
Division object. The id of the hypothesis that the MomentDivision object belongs to and the id of
the MomentDivision object itself, where the conjunction of the two ids makes this object unique.
An attribute consisting of a boolean that indicates whether the fingers of this MomentDivison
object can be changed or not. A list which indicates which fingers are used by the respective
notes of the MomentDivision object. A boolean wasChanged which indicates if this object has
already been changed by the previous or next object, i.e., if given the previous or next context
some finger of some note was changed. A list that contains the moments of the longest fretted
note in that MomentDivision object. Finally, a list indicating by which MomentDivision object
this one was changed.

From now on the path is not a set of hypotheses, as it was until then, but a set of MomentDi-
visions objects. This new division was necessary because it allows us to divide the hypothesis
into smaller parts having more detail in each new set, and thus better understand how the fin-

44 CHAPTER 4. METHOD

gers are affected by their external context. If there is not a loose note that links the whole set of
notes, the object MomentDivisions is composed of all the notes of the hypothesis.

To better understand how this division is made let us look at the following example present
in the figure 4.2, where one of the possible hypotheses is as follows: [E2: (6,0), B4: (1,7), B3: (2,0),
G3: (3,0), B4: (1,7), B3: (2,0), G3: (3,0), B4: (1,7), B3: (2,0), G3: (3,0)]. Loose notes are separated
from non-loose notes. From the fretted notes the divisions are created as explained in section
4.5.5.2, where the fretted notes are divided taking into account the dependency between them.
The resulting division of the fretted notes results in three objects MomentDivisions: [B4: (1,7)],
[B4: (1,7)] and [B4: (1,7)], since all B4 notes are independent on each other and the rest notes
are loose notes.

To complete the construction of each MomentDivisions object, we need to add the loose
notes to the corresponding MomentDivisions object. To add the loose notes to existing Moment-
Divisions, we simply check which MomentDivisions object they belong to. Each object contains
a list of the longest note moments in the set, as discussed above. In our example the list of mo-
ments of the first object is as follows: [1,2,3]. By trying to figure out to which MomentDivision
object the note E2 belongs we check to which object the smallest moment of the note E2 belongs
to, or in other words, figure out when the note E2 starts. The E2 note moments are as follows:
[1,2,3,4,5,6,7,8,9], because this note is heard throughout the whole set. The E2 note is added to
the first object because the first moment of E2 is the moment 1 and the moment 1 appears in
the list of moments of the first object. After joining the loose notes the three objects would look
like this: [E2: (6,0), B4: (1,7), B3: (2,0), G3: (3,0)], [B4: (1,7), B3: (2,0), G3: (3,0)] and [B4: (1,7), B3:
(2,0), G3: (3,0)].

Suppose that in addition to the previous notes we have three new ones: [E4: (1,0), B3: (2,0),
G3: (3,0)] where their moments are: [[10,11,12], [11], [12]] respectively and that the moments of
note E2 were extended to [1,2,3,4,5,6,7,8,9,10,11,12]. These three notes are independent of the
others except note E2. Therefore, they do not belong to any of the previous moments, but to a
new moment. A special moment which is made up of loose notes only.

4.7.2 Changeable Fingers

After dividing the hypothesis, we check whether the fingers of each MomentDivisions object can
be changed. This information allows us to see if there are moments when the notes are already
with the final finger choice and therefore no other possibilities are tried. The MomentDivisions
object when only one finger is being used, either because it has only one note, or because the
others notes are loose notes, can be changed. Since only one finger is being used, three other
fingers are liable to be used. When two fingers are currently being used, only the use of fingers
1 and 4 can make it impossible to change fingers. If the distance between the notes in terms
of their frets using the respective fingers is greater than or equal to 4 we know that the use
of other fingers is impossible, this is because the distance forces the use of the two fingers on
the ends. All the MomentDivisions objects when 4 fingers are being used cannot be changed,
this is because the way we associate the fingers when constructing the hypothesis is optimized
and the most correct without taking the context into account, however when 4 fingers are being
used the rules used previously for finger association override a possible optimization taking the
context into account. MomentDivisions object when 3 fingers are being used can be changed.

4.8. CHANGE FINGERS 45

4.8 Change Fingers

Here we explain how the fingers are changed when appropriate. For easier reading each Mo-
mentDivisions object is called mom.

In figure 4.24 are present the moms resulting from the division explained in the previous
section. We start with mom 1 and we analyze the mom 1 and the next mom. The analysis that
is done is to understand if we could change any finger of either mom 1 or mom 2 in order to
facilitate the passage from mom 1 to mom 2. Then we go to the mom 2 where we analyze mom
2 with the previous and next moms and so on. However, it is necessary to go in the opposite
direction when any of the fingers of a mom is changed. Suppose that we are in mom 4 and
when we analyze the three moms: mom 3, mom 4 and mom 5, one of the fingers of mom 3
is changed. We need to check if this change alters any of the fingers of the previous moms.
However, we do not have to go through all the existing moms before mom 3, if, for example,
mom 2 were unchanged by the new mom 3 change, there would be no need to check mom 1.

Mom1 Mom 2 Mom 3 ... Mom n

Figure 4.24: Moms.

In the analysis of the moms two different approaches are followed: the first one is followed
when we are dealing only with MomentDivisions objects with only one fretted note. the second
one is followed when we are dealing with at least one MomentDivisions object with more than
one fretted note. However, for the system to understand what kind of moments it is analyzing
it needs to make some checks that are covered next.

4.8.1 Checking the Moms

When the system is analyzing the moms the first check to be made is whether the moms are
changeable. If no mom that is being analyzed is changeable then the system goes to the next
mom. When only one mom is changeable, the analysis is done knowing that only the mom that
is changeable can be changed, i.e., that is, it is possible that the changeable mom can be changed
in order to make it easier to go from one mom to another. When all moms are changeable, the
analysis is done knowing that all moms can be changed. To check if a mom is changeable just
check the attribute associated with each object that gives us this information. The second check
checks if at least one mom has more than one fretted note. To check this we check if the list
which indicates which fingers are used by the respective notes of the mom has more than one
finger. In the first approach we are dealing with moms that contain only one note and there is
one case that let us know that no changes are made. If the fretted note of all the moms being
analyzed use the same finger and all the notes are in the same position, then no change is made.
If the notes are in the same position, it makes sense that they use the same finger, since then we
just keep the finger where it already is.

46 CHAPTER 4. METHOD

4.8.2 Moms with Only One Fretted Note

We show now an example of the first approach, that consists of the first two bars of the piece
Spanish Romance 4.25. As the issue of creating MomentDivisions objects has already been dis-
cussed, we only present them next: Mom1: [E2: (6,0), B4: (1,7), B3: (2,0), G3: (3,0)], Mom2: [B4:
(1,7), B3: (2,0), G3: (3,0)], Mom3: [B4: (1,7), B3: (2,0), G3: (3,0)], Mom4: [E2: (6,0), B4: (1,7),
B3: (2,0), G3: (3,0)], Mom5: [A4: (1,5), B3: (2,0), G3: (3,0)] and Mom6: [G4: (1,3), B3: (2,0), G3:
(3,0)]. We start by evaluating the first mom, [E2: (6.0), B4: (1.7), B3: (2.0), G3: (3.0)] and we look
only at the next mom, since there is no previous mom. We know that both moms are liable to
be changed. Since only one finger is used at each mom, we also know that both moms use the
finger 1 and since both notes have the same position no changes are made. The next mom to be
evaluated is mom 2, [B4: (1,7), B3: (2,0), G3: (3,0)], which now is evaluated with the previous
mom and with the next mom. The three moms are changeable, all use only one finger, finger 1,
and finger 1 is used in the same position at all three moms. So, no changes are made. The same
process happens when evaluating mom 3.

In evaluating mom 4 we analyze moms 3, 4 and 5. All three moms are changeable, they
only use one finger, finger 1. However, the note that uses finger 1 at mom 5 is in a different
position than the notes of moms 4 and 3. With 4 possible fingers to use, it does not make sense
to use the same finger for different positions and so we try to change some finger of one of the
3 notes. The three notes are: [B4 (1,7) f: 1, B4 (1,7) f: 1, A4 (1,5) f: 1]. We know that the first
two notes are in the same position, so we just need to check which of the notes in moms 4 and
5 has the highest fret. In this case it is note B4, so we calculate the new finger to this note. The
calculation of the new finger is given by the following equation:

FingerCalculus = abs(freti − freti+1) + fingeri+1 (4.3)

Where freti is the fret of the B4 note, freti+1 is the fret of the A4 note and the fingeri+1 is
the finger associated with the A4 note. The result of this equation is: abs(7− 5) + 1) = 3.

The new finger is the minimum between this result and 4. The finger that is changed when
comparing two notes is the finger of the note with the highest fret. The finger of the note with
the lowest fret is only changed when the distance between two adjacent fingers is large. So, the
new finger of note B4 is updated along with the following updates: The list of used fingers of
mom 4 is updated, because the new used finger is 3 and not 1, the flag wasChanged mentioned
about above becomes true, because this moment was changed and it is added to mom 4 the
information that it was mom 5 the reason for the change.

Since mom 4 was changed we need to see if this change alters mom 3. Since they have
the same position, the same change is made for mom 3. Then the wasChanged attribute of
mom 3 is checked, and if it is true, it is necessary to check the previous moms. Because it is
necessary to understand if the change of mom 3 does not influence any change of mom 2. So,
next we evaluate the moms 3 and 2. Both are changeable, both use only one finger only this
time they use different fingers, mom 3 uses finger 3 in position (1,7) while mom 2 uses finger 1
in the same position. As in both moms the note has the same position, something needs to be
clarified, which note has priority over the other? To understand which of the moms has priority
over the other it is necessary to verify which of the two moments was the last to be modified.
In this case only mom 3 was modified, thus having priority over mom 2. Then we try to change
mom 2, where the process is the same as before, the Fingercalculus is 3 and therefore the note

4.8. CHANGE FINGERS 47

Figure 4.25: The first two bars of Spanish Romance

of mom 2 is associated with finger 3, the same finger that is associated with the note of mom
3, which makes since the note is in the same position. As the mom 2 has been changed it is
necessary to check mom 1, where the process is the same since it is also the same note in the
same position with different fingers being associated.

We now evaluate mom 5 where we analyze moms 4, 5 and 6. All three moms are change-
able, they use only one finger, however, different fingers. Mom 4 uses finger 3 for position (1,7),
mom 5 finger 1 for position (1,5) and mom 6 finger 1 for position (1,3). In this case, unlike the
previous cases, all positions differ from each other. Then we need to check the order of the
frets, in this case we are in a descending movement. So, mom 6 has predominance over mom
5 and mom 5 over mom 4. In other words, the smallest fret always has predominance over the
highest fret, if the fret is the same, the highest string has predominance over the smallest.

We try to change the finger of the note of mom 5 by looking at mom 6. The FingerCalculus
is 3 being this the finger associated to the note of mom 5. Then we change the finger of mom
4 taking into account the new update of mom 5. The distance between the frets is 2 and the
Fingercalculus is 5, so the new finger that we associate to the note of mom 4 is the finger 4. We
mentioned above that the finger of the smallest fret is only changed when the distance between
two adjacent fingers is large. The note of mom 5 is associated with finger 3 while the note of
mom 4 is associated with finger 4. The distance between the two frets is two, which implies a
large stretch between finger 3 and finger 4, then the finger of the note with the lowest fret is
decremented by 1. As mom 4 was changed it is necessary to verify how this change influences
the previous moments as explained above. The end result, after optimizing the fingers is this:
M1: [E2: (6,0) f:0, B4: (1,7) f:4, B3: (2,0) f:0, G3: (3,0) f:0], M2: [B4: (1,7) f:4, B3: (2,0) f:0, G3: (3,0)
f:0], M3: [B4: (1,7) f:4, B3: (2,0) f:0, G3: (3,0) f:0], M4: [E2: (6,0) f:0, B4: (1,7) f:4, B3: (2,0) f:0, G3:
(3,0) f:0], M5: [A4: (1,5) f:2, B3: (2,0) f:0, G3: (3,0) f:0] and M6: [G4: (1,3) f:1, B3: (2,0) f:0, G3:
(3,0) f:0]. We went from a set of moms where all non-fretted notes were associated with finger
1, since they were reference notes of the mom itself, to a much more optimized association that
takes into account the context where the note is inserted.

4.8.3 Moms with More than One Fretted Note

We now look at the second approach where at least one of the moms contains more than one
fretted note. In the first approach where all moms contain only a single fretted note, the change
of finger associated with that note has no implications for the other notes of the moment, be-
cause either the moment contains only that note or because it contains only loose notes besides

48 CHAPTER 4. METHOD

that note. Loose notes are played without the need to press any fret, so it is not necessary to
use any finger of the left hand to play them. If we are optimizing the use of the fingers of the
left hand, the loose notes are not taken into account in this optimization. Since moments that
contain only one fretted note only depend, in terms of finger optimization, on the note in ques-
tion, we are allowed to approach these types of moments as we showed above, by checking the
arrangement of frets between notes of the various moments.

Pretend that we have the following mom: M1: [A3: (2,3) f: 1, D4: (3,2) f:2] where the notes
A3 and D4 are dependent on each other, i.e., they have to be heard during a certain period of
time in the music. Suppose that we have a mom M2 that causes a change from finger 1 to finger
2 of note A3. If we did not consider the other notes of the mom 1, we would have the following
mom1: [A3: (2,3) f: 2, D4: (3,2) f:2]. This mom would be impossible to perform, because if
notes A3 and D4 are dependent, they cannot both be associated with finger 2, because the same
finger cannot be on two notes at the same time. In fact, if the finger associated with note A3 was
finger 2, the finger associated with note D4 that would make the most sense would be finger
3. This shows us that a change in one finger of a note of a mom with more than one fretted
note, can lead to changes in the other notes of the mom. So, it is necessary to make sure that the
change of a finger from a note is made taking into account the possible changes propagating
from that change.

This approach is divided into three parts: the first part consists in comparing common
positions between moms, the second part consists in comparing the last notes of mom i with
the first notes of mom i + 1 and the third part consists in checking if the change of a mom
triggers changes in the previous moms, i.e., if there is a change at mom i - 1 it is necessary to
check if this change influences any of the previous moms. These three parts are explained in
detail below, but the general idea is, given two moms i and i + 1, to understand whether by
changing any of the fingers of one or both moments we can facilitate the passage from mom i
to mom i + 1.

4.8.3.1 Common Positions Between Moms

The first part of this second approach consists in checking whether there are positions in com-
mon between two moms. If there is a position in common between the two moms where each
position is associated with a different finger, it is possible that by changing the finger of one of
the moms, the transition from mom i to mom i + 1 is easier to perform. We want to try that for
common positions the finger that was used at mom i is also used at mom i + 1. Let us consider
that moms 1 and 2 are as follows: mom1: [E3: (4,2) f: 1, D4#: (2,4) f:3], mom2: [A3#: (3,3) f:1,
D4#: (2,4) f:2]. In this example the note D4# is a common position and is associated whit finger
3 in mom 1 and associates with finger 2 in mom 2. We want to create a better mom1mom2
combination than the current one. To do this we create two alternative moms which are copies
of the mom 1 and mom 2 respectively. These copies have a small difference which is the finger
associated with the note in common between moms. So, alternative mom 1 would be: mom1
alternative: [E3: (4,2) f: 1, D4#: (2,4) f:2] and alternative mom 2 would be: mom2 alternative:
[A3#: (3,3) f:1, D4#: (2,4) f:3]. The fingers associated with the D4# in the alternative moms are
switched, the finger that was associated with the D4# note of mom 1 became associated with
the D4# note of mom 2 and vice versa.

As we said above, when a finger on one of the notes is changed it is necessary to check if
this change alters anything within the mom itself. To check if any changes are needed we do

4.8. CHANGE FINGERS 49

the same as in section 4.5.5 where the hypotheses are checked. The process is the same with
a few minor changes. In section 4.5.5 we described the concept of reference note, which was
the leftmost note on the guitar neck and if there were two or more notes in the leftmost fret on
the guitar neck, it was the note that was on the lowest string. Here, the reference note is the
leftmost note on the guitar neck, or if there are two or more notes in the leftmost fret on the
neck, it is the one on the lowest string among the notes in common between the moms. The
reason is that here we want to keep the fingers of the common notes that were assigned when
creating the alternative moms, and from that assignment associate the fingers with the notes
that are not common between the moms. Looking at the mom 1 alternative, we have that the
note D4# is associated with finger 2 and it remains for us to evaluate the note E3. Here the
calculation of the distance is different from the one explained in section 4.5.5. Before, since the
reference note was the leftmost note on the guitar neck, we knew that all the other notes to be
evaluated would be further to the right on the guitar neck, thus, for that notes, higher fingers
than the finger of the reference note are always chosen. Here there is no guarantee that the
evaluated note is not further to the left than the reference note. If the note is further to the left
than the reference note, the possible finger is given by the following equation:

ˆFingerCalculus = fingerrefnote − abs(fretevalnote − fretrefnote) (4.4)

If the note is further to the right on the guitar neck the possible finger is given by the
following equation:

FingerCalculus = fingerrefnote + abs(fretevalnote − fretrefnote) (4.5)

If the note to be evaluated is in the same fret the possible finger is equal to the finger value
of the reference note. In our example the possible finger is 0: 2 - abs(4-2), where the first two is
the finger value of the reference note, the number for is the fret value of the reference note and
the second two is the fret value of the evaluated note. We are trying to associate a fretted note
with the finger ”0”, so this moment becomes impossible to play and is discarded.

Then the same process is done for the mom2 alternative: [A3#: (3,3) f:1, D4#: (2,4) f:3]. First
the note D4# is associated with finger 3, then we evaluate the note A3# in order to see if the new
finger associated with the note D4# change the finger of this note. The finger calculus is: 3 - 1 =
2. Then we do the same process as in section 4.5.5, where we check whether the finger we want
to associate is possible to be associated. In this case, it is possible, and the second alternative
mom results in the following: mom2 alternative: [A3#: (3,3) f:2, D4#: (2,4) f:3]. After analyzing
the alternative moms, we are left with three possible moms: mom 1, mom 2 and alternative
mom 2. We then have to figure out which is the best combination, if the best combination is the
one we had before: mom 1 and mom 2, or if the best combination results in the substitution of
mom 2 by alternative mom 2.

If besides the note D4#, the note E3 was also common to both moms and was associated
with different fingers at both moms, the alternative moms created would no longer be two as in
the previous example. the first alternative moms with the fingers associated with the note D#4
switched, the second with the fingers associated with the note E3 switched, and the third with
the fingers associated with the note D#4 and the fingers associated with the note E3 switched.

50 CHAPTER 4. METHOD

4.8.3.2 Choice of the best combination

Consider the example of the previous section where we have two possible combinations. still
without taking into account the behavior of the system in choosing the best combination, let
us think about what the best combination would be. Looking at the first combination: mom1:
[E3: (4,2) f: 1, D4#: (2,4) f:3], mom2: [A3#: (3,3) f:1, D4#: (2,4) f:2], let us think about the effort
needed to go from mom 1 to mom 2. Looking at finger 1, it is used in both moms. Of course,
the difficulty of this transition, the transition of finger 1 from position (4,2) to position (3,3),
depends on the speed of the music, on the temporal restriction imposed. But imagined that the
music is played at a high speed this transition would bring a high degree of difficulty. On the
other hand we have a common note that is being played with different fingers which implies
a change of finger in order to play the same note, which in fact in terms of effort, is a useless
effort. Of course, there may be times when finger changes to play the same note are necessary
and even quite useful, but this is not the case.

Let us now look at the second combination: mom1: [E3: (4,2) f: 1, D4#: (2,4) f:3], mom2
alternative: [A3#: (3,3) f:2, D4#: (2,4) f:3]. In this second combination, finger 1 is no longer used
at both moms, where it has been replaced by finger 2 at the second alternative mom. Therefore,
instead of the transition that finger 1 had to make from one mom to the next, a finger is now
used that is free and ready to be used, thus causing no effort. As for the note in common
between the two moms, in this second combination both use the same finger, just keeping the
finger where it already is from one mom to the next. The effort required to move from one
mom to another in the first combination is much higher than the effort required in the second
combination, thus showing that an optimization is made in the choice of fingers taking into
account the context of the music.

The system has to assign some sort of score to each combination in order to be able to
evaluate which of the combinations is the best combination. Two heuristics are made for each
combination: the first heuristic is the cost of common fingers and the second heuristic is the
cost of common positions.

The first heuristic checks the fingers in common between the two moms, and if the com-
mons fingers are in different positions the cost is as follows:

CommonFingersCost = abs(fretnote1 − fretnote2) + abs(stringnote1 − stringnote2)/2 (4.6)

The distance between strings is divided by two, because the distance between strings does
not have as much weight as the distance between frets. The second heuristic checks if there are
positions in common, if the common positions have different associated fingers the cost is as
follows:

CommonPositionsCost = abs(fingernote1 − fingernote2) (4.7)

The greater the distance between the fingers the longer the path to press the same posi-
tion with another finger. The final cost of the combination is the sum of the cost of these two
heuristics, and the combination with the lowest cost is chosen.

4.8. CHANGE FINGERS 51

4.8.3.3 Comparing Notes Between Moms

If there are no common positions between the two moms, we follow to the second part of the
approach. If we think about the set of notes between the two moms, the crucial notes when we
pass from one mom to the other are the last notes to be heard at mom i and the first notes to be
heard at mom i + 1. Because they are the last notes that have to be pressed in mom i, and the
first notes that have to be pressed in mom i + 1. Given this, the last notes to be heard in mom
i and the first notes to be heard in mom i + 1 are extracted. Then it is checked whether all the
notes extracted are loose notes at any of the moms. If they are, no changes are made in moms.
If we think that the last notes of mom i are loose notes, i.e., it is not necessary to press any fret
with the left hand for the notes to be heard, when we move to the first notes of mom i + 1, all
fingers are free and ready to be used, since no optimization of the choice of fingers is needed. If
the first notes to be heard from mom i + 1 are loose notes, it means that the passage from mom
i to mom i + 1 was done without problem, because no finger of the left hand is needed to hear
the first notes of mom i + 1.

If there is at least one fretted note in each set of notes that has been extracted from the
moms, it is possible that there is some change in the fingers that could facilitate the passage
from mom i to mom i + 1. Let us imagine that the notes extracted from each mom are as
follows: notes extracted from mom1: [E3: (4,2) f: 1, C3: (5,3) f:2, D4: (3,4) f: 3] and from mom2:
[C4: (3,5) f: 1, B4: (1,7) f: 3]. The goal is to figure out what fingers exist in common between
the two sets. Between these two sets there are two fingers in common, finger 1 and finger
3. So we try to find alternatives to these fingers in order to understand if by changing these
fingers the passage from mom 1 to mom 2 is facilitated. A number of different possibilities are
created that then result in the creation of alternative moms as in the case discussed in section
4.8.3.1. Looking at the notes that are associated with finger 1 it is necessary to check if they are
in different positions, if they were in the same position, we would not be interested in trying
to change the associated fingers, since they are not we try to check which possible alternatives
fingers are useful to try.

To do this we check the arrangement of the frets between the positions with common fin-
gers. Since the common finger is finger 1, we know that we cannot decrease its value, since it
is the leftmost finger. So, checking the frets we see that the rightmost note on the guitar neck is
the fret of note C4: (3,5). So one of the possible changes would be to increase the value of the
finger from note C4 to finger 2. Let us save these possible changes. Possible changes for the
mom1: [], for the mom2: [(C4, 2)], where the first position of the tuple is the note of the finger
we want to change and the second position is the new finger we want to associate. We now
move on to finger 3, where we also check if the positions associated with finger 3 are equal.
As they are not, we check the arrangement of the frets between the two notes. As the common
finger is finger 3 we know that we can either decrease or increase its value. For the leftmost
note on the guitar arm the finger value is decreased to two and for the leftmost note on the
guitar arm the finger value is increased to 4. Thus the possible changes are: mom1: [(D4, 2)]
and mom2: [(C4, 2), (B4, 4)].

Our goal is to reduce the fingers in common between these two sets, so we do not want
to change a finger from a note to another finger that is already at the other mom, that is, if
we change the finger of note C4 from finger 1 to finger 2, instead of there being a note at each
moment with finger 1 there are a note at each mom with finger 2, since at mom 1 the note C3 is
associated with finger 2.

52 CHAPTER 4. METHOD

Then we add the concept of danger finger. This concept consists of checking whether one
of the new possibilities we want to try out makes new fingers common between moms. To do
this, we check if any of the fingers here: mom1: [(D4, 2)] exists in the notes extracted from mom
2 and if any of these fingers: mom2: [(C4, 2), (B4, 4)] exists in the notes extracted from mom
1. In our example only the attempt to associate finger 2 with the note C4 can make finger 2
common to both moments. So we compare the frets between notes C4 and note C3 which has
finger 2 associated at mom 1. If the fret of note C4 is greater than the fret of note C3 the value
of the finger is increased to 3, if it is less the value of the finger becomes 1. In our example, the
fret of C4 is greater than C3, so a new possibility is added to the possibilities of mom2: [(C4, 2),
(B4, 4), (C4, 3)]. The possibility of adding finger 2 to the note C4 is not excluded because even
making a new finger common between the moms can facilitate the passage between the mom1
and mom2.

The creation of the alternative moms happens in the same way as in the part one. For the
mom1 only one alternative mom is created since we have only one different possibility, which
is to associate finger 2 to the note D4. For the mom2 5 alternative moms are created, three are
considering the new possibilities individually and 2 are considering the new possibilities given
the Cartesian product between them. The new possibilities of mom2 can be seen like this: [(C4,
2), (C4, 3)], [(B4, 4)]. So the resulting Cartesian product is as follows: [(C4, 2), (B4, 4)], [(C4, 3),
(B4, 4)]. After the alternative moms are created, they are processed in the same way as in the
part 1 of this approach, which results in various mom1mom2 combinations. The combination
with the lowest cost is chosen.

4.8.3.4 Changes propagated to previous moments

The third part of this approach checks if a change in mom propagates changes to the previous
moms. When we are dealing with the evaluation of the first mom, where we look at the first and
second moment, if there is a change at mom 1 or mom 2, that change not have consequences
for the previous moms since this is the first and second moms of the music. It is only in the
following moms that a change in one mom can trigger changes in the previous moms.

When we consider 3 moms, what happens from mom 2 on, our approach is as follows: we
analyze the moms i and i + 1, remember that moments i - 1 and i have already been evaluated
in the previous iteration. If moms i and i + 1 have positions in common we follow the first part
of our approach, if not we follow the second part of our approach. If the mom i was changed,
it means that when we calculate the costs of the combinations between mom i and mom i + 1,
the chosen combination has one of the alternative moms of mom i. Therefore it is necessary
to check whether this change propagates changes in mom i - 1. If the mom i in the previous
iteration was changed by mom i - 1, it means that the mom i was changed by both mom i - 1
and mom i + 1. When a mom i is changed by both the previous and the next mom, the three
moms are considered and the combinations become the combinations between moms i - 1, i
and i + 1. These combinations are created with the same process: it is checked if there are
positions in common between mom i - 1 and i and if there are positions in common between
mom i and i + 1. If there are, the first part of the approach is followed, if not , the second part
is followed. The combination with the lowest cost is chosen. If mom i - 1 is changed, i.e. if the
chosen combination contains an alternative mom of mom i - 1, it is necessary to check if mom
i - 1 has also been changed by mom i - 2. If it was, it means that mom i - 1 was changed by
both mom i and mom i - 2, so the combinations of the four moms are considered. When the
mom with the smallest index is unchanged, the back propagation ends and we move on to the

4.8. CHANGE FINGERS 53

next iteration. If mom i is changed by mom i + 1, but was not changed by mom i - 1, we only
consider the combinations of mom i - 1 and mom i.

54 CHAPTER 4. METHOD

5Evaluation
In this section we describe how we evaluate our system. After the system receiving as input a
MIDI file and returned, as output, its score, we evaluated the chosen positions of each note and
their associated fingers. While the first is evaluated from two different angles where, on the one
hand, the positions given by the system are compared to the ground truth positions and, on the
other hand, three guitar players evaluated a smaller set of tunes to see if the chosen positions
which are different from the ground truth positions are also valid. We tried to evaluate if,
even when the system chooses positions that are different from the ground truth positions, the
chosen positions are also good alternatives to the ground truth positions. Since the choice of
fingers is much more subjective and there is no ground truth, the evaluation of the associated
fingers is done with three guitar players who evaluate, for a smaller set of pieces, if the fingers
chosen by the system are the best choice or one of the best choices, since the choice of fingers
can vary from guitar player to guitar player.

5.1 DataSet

The dataset used to test the system consists of 16 pieces of classical music. Table 5.1 provides
information about the 16 pieces, about their period and their composer. The period ranges from
the Renaissance period that occurred between 1400 and 1600 until the 20th century.

Table 5.1: Dataset.
Dataset

Composer Pieces Period
John Dowland John Smith Renaissence
Sebastian Bach Allemande 996 Baroque
Leopold Weiss Fantasie Baroque
Francisco Tarrega Adelita Romantic
Napoléon Coste Barcarole Romantic
Luigi Legnani Caprice op20 n2 Romantic

Caprice op20 n3 Romantic
Caprice op20 n9 Romantic
Caprice op20 n15 Romantic

Matteo Carcassi Op5 n6 Romantic
Isaac Albeniz Asturias Post-Romantic
Augustı́n Barrios La Catedral Folk

Prelude in C Minor Folk
Estudio del Ligado Re Folk

Enrique Granados Dedicatoria 20th Century

56 CHAPTER 5. EVALUATION

In order to understand the robustness of the system, we have tried to diversify the set of
pieces to be evaluated. Having music from several periods and several composers, we have a
greater diversity of musical characteristics proper to each of the different periods and the differ-
ent composers. We also try to evaluate the system with pieces, which in the context of classical
music, are very well known and important. Every classical guitar player studies, throughout
his or her life, pieces such as the Asturias and the Cathedral. They are therefore important
pieces in the context of our domain, classical guitar music.

The tablatures for the dataset, that is, our ground truth were made by Allen Mathews who
has a website1 where he shares a large set of sheet music and tablatures for free. Allen Mathews
has a B.A in classical guitar performance and is a classical guitar teacher and concert performer
having also released a classical guitar album in 2010. Since the tablatures created by Allen
Mathews are in pdf format, as in figure 5.2, the tablature information needs to be converted
into txt format manually.

Figure 5.1: Fantasie txt example

Initially we aimed to evaluate 50 different pieces, but given the difficulty in evaluating
each piece, the number was reduced to 16. The work of converting the information from the
tablature to txt was done for the 50 musics, where more than 30,000 notes were converted into
txt format. For each piece a txt file was created where the position of each note was taken
from the tablature and written to the txt file. In figure 5.1 we can see the beginning of the
tablature extraction presented in figure 5.2 that corresponds to the piece Fantasie by Weiss. The
first note is on string 6 fret 0, the second is on the third string fret 0, and so on. After creating
this txt, a script was used to transform the information equal to the system’s output. The script
transforms the first line of this txt where only the following information is present: 6 0 into:
Name: E2 position: (6, 0) id: 1, where two new pieces of information are added, the name of
the note and its id.

1https://www.classicalguitarshed.com/

5.1. DATASET 57

Figure 5.2: Fantasie - Weiss

Besides creating the Dataset, we have the MIDI files that are our system input and a set of
txt files that are our ground truth. The idea was to automatically compare the system output
with its ground truth, but that was not possible, because the MIDI files contain many errors.In
fact there are so many errors that we divided them in three types of errors. The first kind
consists of wrong notes which are divided into wrong notes that are replacing ground truth
notes or wrong notes that are extra to the ground truth. We take as a piece of ground truth:
[A4: (1,5), B4(1,7)] and in MIDI this set of notes has been extracted as: [D3: (4,0), A4#: (1,6),
B4(1,7)]. If the notes A4 and A4# have the same behavior, i.e., if they have the same duration, if
their dependency on the note B4 is the same, the note A4# is considered a wrong note replacing
the ground truth note. However note D3, having no ground truth correspondent, is a wrong
note which is extra, since it has no ground truth correspondent. Obviously, when there are
wrong notes in the MIDI, the system cannot find the correct positions, which are in the ground
truth, since they are not the same note. Since the choice of positions for each note takes into
account the context where the note fits in the musical piece, the existence of a wrong note can
have a negative impact on the choice of positions for the remaining notes.

The second error is the lack of notes present in the ground truth. In this case suppose the
MIDI file does not contain the note information and therefore, when extracting the notes from
MIDI the system has no way to extract the notes that exist in the music. Finally, the third type
of error and the most difficult to figure out is due to dependency errors between notes. This
third type are notes that in the ground truth are independent on each other but in the MIDI
file are dependent and vice versa. This error is quite visible in a case that was quite common
throughout the evaluation of the notes. In the music Asturias, one of the pieces evaluated, it is
quite common for the note B3 to be played twice in a row. In the ground truth these two notes
are independent and played at the same position, position (2,0). However, the corresponding
MIDI considers the two notes directly dependent on each other, which makes it impossible to
use the same position for both notes. As we saw above the way notes depend on each other
and notes independent of each other are treated is quite different, so this error means that the
choice of positions can be quite different from the ground truth positions, without any fault on

58 CHAPTER 5. EVALUATION

the part of the system. In 4.5.7 section we talked about how errors of this type forced the system
to split the dependent note sets, because sometimes MIDI creates dependencies that make the
note set impossible to play.

A subset of three MIDI files was corrected and it was found that on average 20% of the
MIDI files contain errors of these 3 types, with type 3 being the most common error. This is
not to say that if these errors did not exist, the system would always find the correct position
of the notes, but we know that in these 20% of errors the system has much more tendency to
make mistakes in the choice of positions because it is given wrong input. In the first and second
type of errors the implication is direct. In the first type, as the notes are wrong, the choice of
positions are logically wrong, and in the second type of errors, that is, the lack of notes that
exist in the ground truth also logically imply that the note in the ground truth is not identified.
However, the third type does not guarantee that the system makes a mistake in the choice of
the position, because even though the dependencies are different the system can choose the
correct positions when possible.

Since there is a large percentage of errors in MIDI files, files evaluation had to be done
manually. Therefore, given the output the system checks, looking at the ground truth, which
positions are correct and which are wrong, which notes are missing and which notes are extra
notes present on the MIDI. Given the need to evaluate manually the output of each piece of
music (which for some pieces was up to 3 days of compilation) it was not possible to evaluate
the 50 pieces of music that we had initially planned to evaluate.

In appendix II there is an example of the notation of a midi file, so that you can see how
difficult it is to change it and correct existing errors.

5.2 Note Positions Evaluation

In this section we discuss the evaluation of the system’s choice of note positions. As mentioned
above, for the evaluation of the positions, the output of the system is compared with the ground
truth of the musical pieces and they were also evaluated by three guitarists.

5.2.1 Evaluation By Guitar players

In the evaluation of the system by users, three guitarists evaluated a set of 5 musical pieces
from the dataset to understand the quality of the alternative choices, in relation to the ground
truth ones. One of the guitar player evaluators had classical guitar lessons with a teacher from
the age of 12 to 18, attended the Hot Club studying jazz guitar and has a 5th degree from
the Metropolitana de Lisboa Conservatory. He also accompanies a choir he founded and is a
founding member of the ISCTE orchestra. Another evaluator studied jazz guitar at the Hot Club
while the third evaluator has a degree in basic education teaching at the Instituto Politécnico de
Lisboa. He also has a classical guitar course at the Academia de Amadores de Musica de Lisboa. He
has been teaching for over 20 years, is the founder and composer of the band Café D’Alma that
has an album released in 2016 among many other musical projects.

When evaluating this set of 5 pieces, it was unanimous that the system always finds
playable alternatives. This is not to say that they are better alternatives than the ground truth
ones, but that given the context where the positions are inserted, they are easily playable, not

5.2. NOTE POSITIONS EVALUATION 59

creating extreme difficulties for the guitarist who plays them. When we say that a set of notes
(positions) are playable, we mean that, first, notes dependent on each other can be played at
the same time. For example, if the system assigned two dependent notes to the same string,
that set of notes would not be possible to play, since dependent notes cannot be played on the
same string. Second, that dependent notes are not at a very large distance from each other,
since if they were it would not be possible, given the physical issue of the fingers of the left
hand, to perform them. This is what we wanted to ensure in the first place, that the system
always chooses playable positions. We do not want the system to create impossible tablatures
to play. The tablatures created by the system may not be as good as the tablatures created by
professional guitarists, but since they are always playable, they have value.

Now we need to understand how good the alternatives created by the system are. The
heuristics that the system uses to choose the best positions take into account the finger span
between notes and the distance between notes along the guitar neck, as discussed in section
4.6. However, there are pieces that use a regular pattern of the right hand, such as the Spanish
Romance, which throughout the piece plays the strings 1,2,3,1,2,3. This entails that sometimes
sets of positions chosen are more difficult to perform but keep that right hand pattern constant.
Our system does not take into account the behavior of the right hand and therefore does not
take into account these patterns embedded in pieces of music. We talked in section 3.2 about
two other factors in the choice of note positions, the musical and cognitive factors. These types
of factors can override the biomechanical factor, i.e., instead of looking for the easier set of
positions, another less easy set is looked for by making use of the other two factors. Our system
only takes into account the biomechanical factor, always looking for the easiest set of positions
to execute. Another reason why there are differences between the systems choices and the
ground truth is due to the errors that exist in MIDI, especially the errors in the dependencies
between notes. The choice of positions depends heavily on the dependencies between notes
as we have seen throughout the 4 section. A change in the dependencies between notes can
completely change their context, forcing the chosen positions to be different from the ground
truth.

In conclusion, the system chooses alternative possible positions to play, sometimes it
chooses alternatives that are easier to play than the canonical ones but that were chosen with-
out taking into account other factors than the ease of playing the set of notes, and sometimes
the system is forced to choose alternative positions because of the errors in the MIDI files.

See appendix I for the comments made by the evaluators when evaluating the positions.

5.2.2 Prediction Accuracy, Precision and Recall

To calculate accuracy, precision and recall metrics, we used the confusion matrix in figure 5.3.
We now explain, in the context of our problem, what are our true positives, false positives,
false negatives and true negatives. The true positives are the positions chosen by the system
correctly according to the ground truth positions. The system has identified the correct note
and has chosen the same position that is in the ground truth for the equivalent note. The False
Negatives correspond to the notes in the ground truth that the system did not identify, because
they were not in the MIDI file, and they are also the notes that the system identified but chose a
different position from the ground truth position. The False Positives are the extra notes present
in the system, notes that the system has identified, because they exist in MIDI file, but do not
exist in the ground truth, i.e., they are notes that do not exist in the music evaluated. They are

60 CHAPTER 5. EVALUATION

also the notes that the system identified but chose a different position from the ground truth
position. True negatives do not exist in the context of our problem, since it is a binary problem,
either the system chooses the correct position or it does not, true negatives do not make sense
in this context.

The positions chosen by the system that differ from the ground truth positions belong to
both false positives and false negatives. On the one hand, false negatives tell us that the system
has, in this case, a position and the ground truth does not have it, because the chosen position
differs from the right position. On the other hand, false positives tell us that the system does
not have the respective position and the ground truth does, which is also what happens when
a wrong position is chosen by the system.

Figure 5.3: Confusion Matrix

The accuracy of the confusion matrix is given by the following formula:

accuracy = tp + tn/(tp + tn + fp + fn) (5.1)

Figure 5.4 shows the accuracy of the 16 evaluated songs. The piece Spanish Romance has a
much higher accuracy than the other pieces for two reasons. The first is due to the fact that the
MIDI file was corrected manually. Extra notes were eliminated, missing notes added and note
dependencies corrected. This correction allowed the system to come much closer to the choices
that are in the ground truth. The second reason is due to the fact that there are a lot of loose
notes in the music in question and our system, when choosing the best choices, benefits the use
of loose notes.

The music Dedicatoria has an extremely low accuracy compared to the other pieces. This is
due to dependency errors between notes, and to the choice of a different path of positions from
the one those chosen by the ground truth. We know that the choice of positions is made taking
into account the context in which they are inserted, so if a set of notes has positions different
from the ground truth, the positions of the following notes will be different from the ground
truth positions because, given the positions of the previous notes, they make more sense to be
chosen by the system. An error in the choice of one position is usually not an isolated error,
since it can propagate to other positions.

5.2. NOTE POSITIONS EVALUATION 61

The accuracy of the remaining pieces is close to the average, which is 51%. These values are
low but expected, considering the 20% of errors present in the MIDI files and considering that
both the false positives and the false negatives contain the system’s choice of wrong positions.
Since each wrong position chosen by the system is counted twice, two other accuracy metrics
were created and are going to be explained next. For now we present the precision and recall
graphs where the values are much higher.

Figure 5.4: Accuracy Graph

The precision of the confusion matrix is given by the following formula:

precision = tp/(tp + fp) (5.2)

Since the positions misplaced by the system are no longer counted twice in both precision
and recall calculations, significantly higher values are expected. The difference between pre-
cision and recall, in the context of our problem, is that precision takes into account the extra
notes in the MIDI file while recall takes into account the missing notes in the MIDI file.

The precision average is 67%, which means a big increase in comparison to the accuracy
values as expected. Except for the two songs already mentioned above, the remaining pieces of
music are close to the average, as can be observed in figure 5.5. This shows one of two things:
either the % of wrong positions chosen by the system is similar for all the musical pieces, or
when it is not, there is a high number of extra notes that makes the value close to the average.

The recall of the confusion matrix is given by the following formula:

recall = tp/(tp + fn) (5.3)

62 CHAPTER 5. EVALUATION

Figure 5.5: Precision Graph

Figure 5.6: Recall Graph

5.2. NOTE POSITIONS EVALUATION 63

The recall average is 66%, which is quite similar to the precision average, showing us that
the number of extra notes is quite similar to the number of missing notes, and looking at both
figures 5.5 and 5.6 we see that this is true for each song, since the values between precision and
recall are very similar.

Since accuracy calculus is impaired by the repetition of the system’s chosen wrong posi-
tions, which are either false positives or false negatives, it is not possible for us to conclude
what is the weight of the system’s chosen wrong positions and what is the weight of the first
two types of errors in the MIDI files.

For this reason we define the prediction accuracy on a sequence of positions as the agree-
ment between the ground truth positions and the ones chosen by the system, as formulated in
the equation 5.4. u is a binary function that returns 1 if the input is 0̂ and 0 otherwise. The
summation takes into account all the positions that exist in the ground truth. After the sum is
done, it is divided by all the notes present in the ground truth plus the extra notes identified by
the system. We exclude extra notes from the summation because they are automatically wrong
notes and would be undermining the number of correct positions identified by the system.

ˆaccuracy(p̂, p) =
1

notesall

∑
notesgroundTruth

u(p̂− p) (5.4)

Looking at the graphs presenting the metrics precision 5.5, recall 5.6 and ˆaccuracy 5.7 we
observe that the values are quite similar, thus concluding that the causes of the differences
between the ground truth and the output of our system are the wrong positions chosen by the
system and the wrong dependencies between notes. We also know that the existence of an
extra note, which is present between correctly identified notes, can change the system’s choice
of positions, and the same is true for missing notes. An exhaustive manual evaluation would
be required to understand the real weight of the existing errors in MIDI files. The solution
would be to correct all MIDI files, but we are talking about thousands of notes and hours of
work which was not possible to do during out thesis.

Figure 5.7: ˆAccuracy Graph

64 CHAPTER 5. EVALUATION

Finally, another prediction accuracy was defined in the equation 5.5. This new accuracy
does not take into account the first two types of errors present in MIDI files. That is, it does not
account for the missing notes in the MIDI that are present in the ground truth and it does not
account for the notes that are in the MIDI but are not in the ground truth. The note variable
present in equation 5.5 is the intersection between the notes in ground truth and the notes
present in MIDI files. Unfortunately, given the difficulty of identifying and correcting the third
type of error in MIDI files, it is not possible for us to exclude it, but we have the notion that this
error, since it is the most common one, undermines the results of the system evaluation.

accuracy(p̂, p) =
1

notes

∑
notes

u(p̂− p) (5.5)

Figure 5.8: Accuracy Graph

5.3. FINGERS EVALUATION 65

Figure 5.8 shows the accuracy of the 16 songs without taking into account the first two
types of errors present in the MIDI files. The average accuracy is 68% while the accuracy taking
into account these two types of errors is 64%. This shows us that these two errors are not the
errors that have more weight in the differences between the ground truth and the output of the
system. Since these two errors are easy to identify, this is the most relevant accuracy and tells us
how well the system behaves. The system behaves relatively well when choosing the canonical
positions of the respective songs, however it can still present much more promising results.
In the analysis made by the guitar players we noticed that, even though the chosen positions
are different from the canonical ones, they are equally playable, which gives us confidence in
the system’s behavior. However, the canonical positions are chosen because in the context of
the piece they are the most effective to play. Musical pieces as well-known as those evaluated
are usually played in the same way by every professional guitarist. So we are aware that the
system has sometimes failed to choose the most efficient positions and this is what we should
focus on in the future.

5.3 Fingers Evaluation

To evaluate the fingers associated with the notes, three guitar players were asked to evaluate
the associated fingers of the first 100 notes of a set of 5 pieces of music. We wanted the notes
to be contiguous to each other because the choice of fingers depends on the context where the
notes are inserted, i.e., given a note the following and previous notes are essential in the choice
of the finger of the respective note. Given the repetition of patterns in the pieces, which is
common in almost all pieces of music, the first 100 notes are enough to evaluate each piece of
music. Each guitarist was also given the version before the fingering optimization, in order
to see if the system can, in fact, by understanding the context in which the notes are inserted,
optimize his or her fingers.

Two of our guitarists evaluators are different from the ones which evaluated the positions.
Only the third evaluator who evaluated the note positions also evaluated the fingers. These two
new evaluators learned guitar on their own. We wanted to find out if for guitarists with less
formal education, the association also made sense. One of the guitar players has been playing
electric guitar for many years and already has a lot of experience on stage. The second guitarist
is still an apprentice, having just started to play guitar. The creation of tablatures is useful, as we
mentioned at the beginning of our thesis, for people who have just started learning the guitar
and we also wanted to understand how this guitarist adapted to the choices of the system. The
third guitarist who also evaluated the choice of positions is the guitarist who has been teaching
guitar for more than 20 years, as mentioned above.

We have always said that the choice of fingers is subjective, that it depends from guitarist
to guitarist, and that the genre of music the guitarist usually plays also plays a role in the
choice of fingers. One of the guitar players who evaluated the set of musical pieces does not
play classical guitar but electric guitar, where he plays genres like blues and rock. He was
asked to play the set of notes in figure 5.9. He played them using only the 1st finger, as it is
common to do this when playing the blues in order to leave the other fingers free for blues
techniques. However, on the classical guitar, it is unthinkable to use only the 1st finger to play
this set of notes, showing that the musical genres, with their own techniques and ornaments
also contributes to choose differently which fingers to use to press each note.

66 CHAPTER 5. EVALUATION

Figure 5.9: Set of notes from Spanish Romance

We did not try to make the guitarists’ choice of fingers equal to the system’s choice of
fingers, since it is not a matter of choosing the right fingers or not, given the subjectivity of the
choice. The goal of the evaluation was, first, to understand whether the optimization that the
system performs in finger association given the context of the notes improves finger choice.
Second, to understand whether or not the choice of associated fingers makes it impossible to
play any notes. For example, if the same finger is associated with two notes directly dependent
on each other, there is an impossibility to play that set of notes. Third, whether the system can
tell when to use a barre or not, something that is quite common and important when playing
classical guitar. Fourth, to understand how difficult it was to play the proposed set of pieces
using the fingers chosen by the system.

Comparing the associated fingers before and after the optimization of the fingers it was
unanimous that there was a huge improvement in the choice of fingers. After the optimiza-
tion of the fingers taking into account the context where the notes are inserted, the difficulty of
playing the respective pieces decrease a lot. This proves that the context where the notes are
inserted is essential for the finger choice to be more appropriate. However, the guitarists con-
cluded that there were certain parts that were not optimized, which the system may not have
considered necessary to optimize. We recall that in the optimization section, moments that had
more than four fretted notes were not considered for optimization. It should also be noted that
there are cases where the the optimization of the fingers made it more difficult to pass from one
set of notes to another than before the optimization. Although we did not have many cases like
this, we had some.

Regarding finger choices that make it impossible to perform the note set, none were found
by the guitarists. The system is always able to associate fingers so that the note set is always
possible to play. The system is well able to tell when to make use of the barre and when
not to. There are several examples of barres throughout the evaluated note set, and both the
system and the guitarists chose to make use of the barre in the same situations, i.e. when they
encountered the same note set. Given the high difficulty of execution of the pieces evaluated, it
was not easy, on the part of the performers, to play them. But the difficulty did not come from
the fingers used to press each note, but from the difficult execution of the pieces. In general,
the system’s choice of fingers is a correct one that makes it easier for the player to perform.

See appendix I for the comments made by the three evaluators when evaluating the fingers.

6Conclusion and Future

work

This first version of the GuiTab system has shown us, through system analysis, that it is possible
to create a system, through the use of heuristics and rules, that can produce tablatures from a
MIDI file. In section 1.1 we set out to answer some questions that we felt were pertinent. The
first question was whether it would be possible to present results as good as those produced
by humans. The analysis of the system showed us that yes, it is possible to create a system
that presents tablatures as good as those produced by humans. Even if our system could not
produce them, for all the reasons mentioned in the evaluation section, it showed us promising
signs that it is possible to produce them.

The other question was about the subjectivity of choosing note positions in order to pro-
duce the best tablature, or whether there are several tablatures that are considered the best. The
choice of the best tablature is actually subjective and has to do with the three factors mentioned
in section 3.2. These are the biomechanical, cognitive and musical factors. So, for different
guitarists these factors have different weights, thus showing that there is no best tablature, but
rather a small set of tablatures that are considered the best. Our system, even though it did not
always choose the canonical positions for the evaluated musical pieces, was able to produce
tablatures that belong to this small set of tablatures.

6.1 Future Work

As future work it would be an improvement in the performance of the system to be able to
understand when guitar techniques are used, as explained in section 2.2.1.2. These techniques
require that the notes present in the respective technique are played on the same string, which
automatically excludes a set of other possibilities. Another future work would be the complete
correction of the MIDI files which would also greatly improve the performance of the system
and allow it to be better analyzed.

We mentioned in the evaluation section that there are patterns in the use of the right hand
that influence the choice of note positions. Given this, it would be interesting instead of only
analyzing the behavior of the left hand to also analyze the behavior of the right hand and try to
find out if there is a pattern in the respective music in order to try to maintain it when possible.
It would also be interesting to make the system more dynamic for the user. To make it more
dynamic one of the possible ideas would be to allow the user to change note positions manually.
The user would choose the positions he/she wanted to change, and the system would check
if they were possible to change and make the changes, i.e. it would check if changing the
position changed both the positions of the surrounding notes and the fingers associated with
the respective notes.

Finally, in section 2.1.1.3 we mentioned that classical guitar music is usually made up of
sections. It would be an improvement for the system if it could find patterns in the music

68 CHAPTER 6. CONCLUSION AND FUTURE WORK

so that it could associate the same positions with the notes of the repeated patterns without
having to analyze them again.

Bibliography

Allen Mathews. (2017). Spanish romance. (https://www.classicalguitarshed.com/sm
-spanish-romance//)

Allen Mathews. (2018). Lágrima. (https://www.classicalguitarshed.com/sm-tarrega
-lagrima/)

Allen Mathews. (2019). Asturias. (https://www.classicalguitarshed.com/sm-albeniz
-isaac/)

Allen Mathews. (2019). Recuerdos da la alhambra. (https://www.classicalguitarshed
.com/sm-tarrega-recuerdos/)

Benetos, E., Dixon, S., Duan, Z., & Ewertr, S. (2019). Automatic Music Transcription: An
Overview. IEEE Signal Processing Magazine, 20–30.

Bradford Werner. (2017). Adelita. (https://www.thisisclassicalguitar.com/wp
-content/uploads/2015/05/Tarrega-Adelita-Free.pdf)

Chen, Y. H. (2020). Automatic Composition of Guitar Tabs By Transformers And Groove Mod-
eling. arXiv preprint arXiv:2008.01431.

Cruse, H. (1990). On the cost functions for the control of the human arm movement. Biological
Cybernetics, 62, 519–528.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xl: At-
tentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

Greg Burlet. (2018). Frettable. (https://www.frettable.com/)

Grout, D. J. (1960). . In C. V. Palisca (Ed.), A History of Western Music. New York City: W. W.
Norton & Company.

Heijink, H. (1999). Take it easy: A model of left-hand fingering on the classical guitar. Proceedings
of the 1999 Conference of the Society for Music Perception and Cognition, 96.

Heijink, H., & Meulenbroek, R. G. J. (2002). On the Complexity of Classical Guitar Playing:
Functional Adaptations to Task Constraints. Journal of Motor Behavior, 339–350.

Masanobu Miura, N. H. M. Y., Isao Hirota. (2004). Constructing a System for Finger-Position
Determination and Tablature Generation for Playing Melodies on Guitars. Systems and
Computers in Japan, 35(6), 755–763.

Mistler, E. (2017). Generating Guitar Tablatures with Neural Networks (Master of Science Disserta-
tion). The University of Edinburgh, Edinburgh, Scotland.

69

https://www.classicalguitarshed.com/sm-spanish-romance//
https://www.classicalguitarshed.com/sm-spanish-romance//
https://www.classicalguitarshed.com/sm-tarrega-lagrima/
https://www.classicalguitarshed.com/sm-tarrega-lagrima/
https://www.classicalguitarshed.com/sm-albeniz-isaac/
https://www.classicalguitarshed.com/sm-albeniz-isaac/
https://www.classicalguitarshed.com/sm-tarrega-recuerdos/
https://www.classicalguitarshed.com/sm-tarrega-recuerdos/
https://www.thisisclassicalguitar.com/wp-content/uploads/2015/05/Tarrega-Adelita-Free.pdf
https://www.thisisclassicalguitar.com/wp-content/uploads/2015/05/Tarrega-Adelita-Free.pdf
https://www.frettable.com/

70 BIBLIOGRAPHY

Rosenbaum, D. A. (1991). Optimal movement selection. Psychological Science, 86–91.

Rosenbaum, D. A. (1995). Planning Reaches by Evaluating Stored Postures. Psychological Review,
102(1), 28–67.

Rosenbaum, D. A. (1996). From cognition to biomechanics and back: The end-state comfort
effect and the middle-is-faster effect. Acta Psychologica, 94, 59–85.

Rosenbaum, D. A. (2001). Posture-based motion planning: Applications to grasping. Psychologi-
cal Review, 108, 709–734.

Scholes, P. (1938). . In The Oxford Companion to Music. Oxford University Press.

Tuohy, D. R. (2006). Creating tablature and arranging music for guitar with genetic algorithms and
artificial neural networks. (Master of Science). The University of Georgia, Athens, Georgia.

IAppendix A

73

Here we present the comments made by the three evaluators who evaluated the note posi-
tions. Comment from the first evaluator:

”In general, the system choices are quite playable and are occasionally even more comfort-
able than the canonical versions! However the canonical versions tend to make more sense in
the overall context of the piece (for example, in Romance Anonymous the canonical version is
markedly harder to play than the system version, but the system to achieve that ease breaks
the very regular pattern of the right hand).

Honestly, I think what the system lacks to really be there is knowledge of the right hand,
not the left hand! I think if the system knew that the right hand likes to arpeggiate adjacent
strings in relatively regular patterns, that would help the system choose options that are more
realistic and closer to canonical. But that is just my gut feeling, I might be wrong...”.

Comment from the second evaluator:

”The alternative positions chosen by the system are always playable. Some are even more
comfortable than the canonical ones. However, the most comfortable choices are not always
the best choices, because it is necessary take into account other factors besides the ease of use
of the left hand. As I tried to play the pieces in the alternative positions I felt that the canonical
positions were more logical.”

Comment from the third evaluator:

”Even if the alternative positions are playable, I do not think they add anything to the
music. The canonical positions are more logical. However, I think that a lot of the alternative
positions chosen by the system are due to the wrong dependencies between note. If the system
chooses the best positions by taking into account the finger span and the movement of the
left hand along the guitar neck, the canonical positions in relation to the alternative positions
chosen by the system would make more sense.”

Here we present the comments made by the three evaluators who evaluated the fingers
association. Comment from the first evaluator:

”I compared the choice of fingers before and after the optimization made by the system
and there is no doubt that there is an improvement after the optimization. Before optimization
the use of finger 1 was often used when another of the 4 fingers would make more sense.
Changing chords to others after optimization was much easier, since given that in positions
that were repeated between the two chords the same finger was used and also because the
system tries to use free fingers on the second chord. I did not detect any impossibility to use
the associated fingers. One negative point is that sometimes the passage from one chord to the
next could be optimized. Since I am not used to playing classical guitar I found it difficult to
play the requested set of songs and sometimes I used different fingers than those chosen by the
system.”

Comment from the second evaluator:

”I had never thought about the question which fingers to associate with each note and
how there can be several possibilities. I compared the choice of fingers before and after the
optimization and no doubt the optimization makes the performance of the music easier. The
set of songs is quite difficult to play, but this is not due to the choice of fingers, but to the
difficulty of the pieces themselves. I have paid attention to the use of barres and the system can

74

identify them every time. I realized that the system can choose which fingers to associate with
the notes better than I can.”

Comment form the third evaluator:

”I know all the songs evaluated and most of the fingers are well associated. Much of the as-
sociated fingers before optimization do not make sense, yet after optimization, the new choices
are correct. I have played and taught the songs in question, which made them easier to per-
form. I used barres in the same chords as the system. Some of my finger choices associated
with the notes were different from the system. Sometimes because the system did not opti-
mize optimally and sometimes any of the possibilities would be a good possibility. Overall the
system manages to choose the best associated fingers.”

IIAppendix B

77

In the picture 1 is an example of MIDI file notation. The piano on the left tells us the
note value, the size of the rectangles tells us the duration of each note, and the color of the
rectangles tells us whether the notes belong to the bass, the melody or the accompaniment. To
correct the MIDI file it is necessary to take a close look at this notation and compare it with the
corresponding score.

Figure 1: Example of a MIDI File

78

	Introduction
	Motivation
	Goals
	The Importance of Tablatures Today
	Structure of the Document

	Background Concepts
	Music Concepts
	Music Theory
	Pitch
	Rhythm Figures
	Form
	Rhythm
	Dynamics
	Timbre

	Sheet Music
	Tablature for Guitar
	Sheet Music for Guitar
	The Differences Between a Tablature and a Sheet Music

	Guitar Concepts
	Guitar Characteristics
	Fretboard
	Guitar Techniques

	Midi Files

	Related Work
	Introduction
	Complexity of Playing Classical Guitar
	Automatic Music Composition
	Machine learning to compose tablatures
	Compose Tablatures by a Set of Rules

	Method
	Introduction
	Requirements and Features
	Architecture
	MIDI Processing
	MIDI Extraction
	Notes Division
	Tune Verification

	Hypotheses Generation
	Note Creation
	Generate Dependencies and Cartesian product
	Different Cases in creating Hypotheses
	Repeated Notes
	Hypotheses Verification
	First Finger Association
	Hypotheses Division

	Validation Process
	Finger Estimation of the Remaining Notes
	Finger Estimation Validation

	Hypotheses Creation

	Hypotheses Selection
	Finger Optimization
	Notes Division By Moments
	Changeable Fingers

	Change Fingers
	Checking the Moms
	Moms with Only One Fretted Note
	Moms with More than One Fretted Note
	Common Positions Between Moms
	Choice of the best combination
	Comparing Notes Between Moms
	Changes propagated to previous moments

	Evaluation
	DataSet
	Note Positions Evaluation
	Evaluation By Guitar players
	Prediction Accuracy, Precision and Recall

	Fingers Evaluation

	Conclusion and Future work
	Future Work

	I Appendix A
	II Appendix B

