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Resumo
O campo magnético do Sol, transportado pelo vento Solar, é a fonte da maior magnetosfera do

Sistema Solar, a Heliosfera, e da consequente modulacão dos raios cósmicos galácticos. A modulação
Solar é dominante a baixas energias (abaixo de 10 GeV), afectando não só a intensidade dos raios
cósmicos galácticos como também a forma do seu espectro. Para cada espécie de raios cósmicos, o
fluxo observado na Terra é deformado em relação ao fluxo interestelar, dependendo da actividade do Sol.
A propagação dos raios cósmicos na Heliosfera é descrita pela Equação de Parker, formulada nos anos
sessenta. A equação incorpora uma série de fenómenos físicos que acontecem no interior da Heliosfera,
tais como processos difusivos, convecção, perdas de energia adiabáticas e drifts. Dado que não existe
uma solução analítica completa para a Equação de Parker, foram tentadas várias abordagens para a
resolver, desde aproximações analiticas até soluções numéricas. Na primeira parte deste trabalho, são
estudadas as diferentes formas de resolver a equação de transporte e são delineados métodos para a
resolução numérica a 1D e 2D. A segunda parte é a caracterização da modulação, usando os fluxos
de protões medidos em AMS-02. O detector AMS foi instalado na ISS no ano passado e espera-se
que consiga detectar fluxos de raios cósmicos até 1 TeV, de forma contínua durante 10 a 18 anos.
A taxa de eventos que chega ao detector - 40 106 de eventos por dia - nunca tinha sido alcançada
antes, representando assim uma oportunidade única de estudar, numa base diária, a modulação Solar.
Finalmente, para alguns dos resultados, é feita uma comparação entre AMS-02 e os monitores de
neutrões.

Palavras-Chave: Modulação Solar, AMS-02, Aproximação Force FIeld, Solução 1D, Solução
2D, fluxos de protões.
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Abstract
The magnetic field of the Sun, embedded in the Solar Wind, is the source of the biggest of the

Solar System magnetospheres, the heliosphere, and of the observed modulation of the galactic cosmic
rays. Solar modulation is dominant on low energy particles (below 10 GeV), and affects not only the
galactic cosmic ray intensities, but even their spectral shape. For each cosmic ray species, the particle
fluxes measured at Earth are deformed with respect to the local interstellar ones, depending on the
Solar activity. The propagation of cosmic rays in the heliosphere is described by the so called Parker
Equation, formulated in the sixties. The equation takes into account several phenomena happening
inside the Heliosphere, such as diffusion, convection, adiabatic energy changes and drifts. Since there
is no full analytical solution to the Parker Equation, several different approaches have been tried, from
numerical solutions to analytical approximations. In the first part of this work, the different ways of
solving the transport equation are studied and numerical methods (1D and 2D) are outlined. The
second part is the characterization of the modulation, using the AMS-02 proton fluxes. The AMS
detector was installed last year in the ISS and is expected to gather data from cosmic ray fluxes up to
1 TeV, continuously between 10 to 18 years. The rates of events reaching the detector - 40 106 events
per day - have never been achieved before, and represent an unique opportunity to systematically
study the Solar modulation in a daily basis. Finally, for certain results, a comparison is done between
the AMS-02 and the Neutron Monitors.

Keywords: Solar Modulation, AMS-02, Force Field approximation, 1D solution, 2D solution,
proton fluxes.
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1
Introduction

Robert Milikan was the first human being to use the term "cosmic rays" in 1925, to describe the
flux of particles coming from "the outer cosmos", capable of ionizing the air in Earth’s atmosphere.

However, even the birth of the name "cosmic ray" is not a matter of chance, since it is preceded
by almost 30 years of questions, research and peculiar experiments.

The story began after the discovery of radioactivity by Henri Bacquerel in 1896, when it was
believed that the ionization of the air was due to radiation from radioactive elements in the ground.

The method to test the veracity of the last statement is simple: to measure the ionization of the
air at various heights.

The ionization was measured in towers, including the Eiffel Tower, in attempts to figure out what
was the penetration power of the radiation coming from the ground. Nevertheless, it was only in 1912,
exactly 100 years ago, that Victor Hess flew in a balloon to altitudes of 5 km and discovered that
, instead of decreasing, the ionization of the air, strongly increases with altitude. Hess wrote in his
book,

"a radiation of very high penetrating power enters the atmosphere from above"

This marked the discovery of Cosmic Rays (CRs) for which Hess received the Nobel prize in 1936.
During the following twenty to thirty years, cosmic ray research concentrated on the high energy

properties of the cosmic radiation. CRs were the predecessors of the accelerators as the source of
high energy particles. Physicists began to study the curved tracks, produced by cosmic rays in cloud
chambers, and new discoveries were made.

In August 1932, Anderson observed particles, identical to electrons, that were curving in the op-
posite direction in the cloud chamber. These particles were positrons, and represented the first exper-
imental signature of antimatter.

During the golden age of particle accelerators, in the mid twentieth century, there was a mass
exodus of CRs’s scientists to the accelerator labs.

At the same time there was a significant advance of the field in different directions, mainly in the
area now called "Space Physics". The subject was devoted to the study of the Solar System, the mag-
netic fields in the Heliosphere or the constitution and properties of the Solar Wind. The modulation
of CRs when crossing the zone of influence of the Sun - the Heliosphere - became a major field of
research.

All these research topics were helped by the space programs of the 60’s and the 70’s. Satellites
were being sent to space at an increasingly high rate, and for the first time in history it was possible
to measure CRs’s intensities in space and compare them with the intensities measured at Earth, for
different Solar cycle epochs and different levels of Solar activity.

With experiments mounted on balloons and satellites it was possible to measure the chemical and
isotopic compositions of CRs with higher precision, since the particles were detected before entering
the atmosphere.

1



Figure 1.1: Lunar Module Pilot Edwin ’Buzz’ Aldrin unfurls the Swiss Solar Wind Composition Experiment
- the only European experiment taken to the Moon by Apollo -, and the first "flag" on the moon.

In the last years, scientists became interested in studying the nature of the highest energy CRs.
While in particle accelerators, like the LHC, laboratory energies of 108 GeV are being achieved, the
big CRs detectors at the ground are measuring particles with energy exceeding 1011 GeV. How does
Nature accelerate particles to such high energies is one of the big questions, still to be answered.

Cosmic Ray physics is a multidisciplinary field where almost every discovery is made on the edge
of different subjects, from Particle Physics to Astronomy, or Astrophysics.

The main purpose of this thesis is to study the effects of the Sun on the flux of galactic cosmic rays.
The Solar modulation effects are dominant at low energies (below ∼ 10 GeV ), and are responsible
for the little "bump" on the low energy portion of the cosmic ray spectrum. In order to quantify the
effects of the Sun on the galactic fluxes, Parker developed a transport equation in 1964. This equation
takes into account several physical phenomena occurring inside the Heliosphere and can only be solved
numerically. In the first part of this thesis some approaches of solving the equation will be derived.
The second part is devoted to the characterization of the modulation using the data from the AMS-02
spectrometer.
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2
Cosmic Ray Physics

2.1 The Spectrum of Cosmic Rays
The Cosmic Ray Spectrum, i.e. the mean number of Cosmic particles, per surface unit, per time

unit, per solid angle unit and per energy unit that reach Earth has a couple of unique features. One
of the first things that can be noticed in 2.1(a) is that the spectrum has a large extension, not only in
energy, covering 12 orders of magnitude, but also in the particle fluxes, sweeping through 10 orders of
magnitude.

This enormous variety has a few consequences. The first one is that the detectors used to study
the spectrum at 1 GeV are satellites, like the AMS-02, while the detectors used to study particles at
1012 GeV are huge surface detectors, as big as 1.2 times the size of Luxembourg, like the Pierre Auger
Observatory. The second one is the fact that it gives us the opportunity to explore completely different
aspects of astrophysics and particle physics.

The spectrum can be described by a power-law in almost all energies

J(E) =
dN

dE
∝ E−γ (2.1)

However, the spectral index changes with energy, taking the following approximate values:

• 2.7 below 4 ×1015 eV

• 3.0 between 4×1015 eV and 5×1018 eV

• 2.8 for energies higher than 5×1018 eV

The only energy region where the spectrum is not described by a power-law is the low energy
region, around 1 GeV, due to Solar Modulation. The way the Sun models the flux is the main topic of
this thesis and will be extensively discussed in the next sections. In 2.1(b) the effect of the Sun and
its activity on the proton fluxes are clearly visible.
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(a)

(b)

Figure 2.1: a) Differential all-particle spectrum of cosmic rays. [1]. b) Effects of solar modulation on the
proton fluxes (BESS) [2]
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2.2 Chemical Composition and Classification
For energies below 100 TeV the cosmic ray composition is the following

Table 2.1: Cosmic rays’ composition
Type of particle Relative abundance

Protons 86%
Helium 11%
Electrons 2%

Heavier nuclei 1%
Positrons 1%

Antiprotons 1%

It is a curious exercise to take the relative abundance of CRs, depending on the chemical element,
and compare it with the abundance of those elements in the Solar System. As can be seen in 2.2, the
two curves have a very similar behavior, having peaks in C,N,O and Fe, and in both cases Z-even nuclei
are more abundant than Z-odd (because nuclei with Z-even have a larger binding energy). The only
difference is on the abundance of elements like Li, Be and B, which are far more abundant in CRs.
This is due to the fact that these elements are a product of nuclear interactions between CRs and the
Interstellar Medium (ISM), which occur during the propagation through the Galaxy. If the spallation
cross sections are known, a measure of secondary/primary abundances can give an indication about
the amount of transversed matter. Thus, secondary to primary ratios are sensitive to the propagation
in the Galaxy and their measure is widely used in models, so that the propagation parameters can be
constrained, reducing the theoretical uncertainties.

Figure 2.2: Chemical composition of cosmic radiation as measured at 1AU from the Sun compared to the
abundances in the Solar System for elements with Z=1-30.Relative abundances are normalized to the Carbon
abundance [3].

CRs are classified as primary, those that are accelerated at the source, and secondary, those that
are produced in interactions between primaries and the interstellar gas. Unfortunately, the designations
primary and secondary are also used with a different meaning in the context of atmospheric interactions
of CRs, where a primary is a particle that comes from the outer space, and a secondary is a particle
that was formed due to the interactions of the primary with the atmosphere.
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Normally, it is possible to separate CRs in three groups:

1. Galactic Cosmic Rays (GCR), originated from outside the solar system are mainly consti-
tuted by protons (7% to 10%), Helium (1%) and heavier elements. The source of the very high energy
GCR is not clearly known. The flux of GCR measured at Earth is highly influenced by Sun’s activity.

2. Solar Cosmic Rays (SCR) or Solar Energetic Particles (SEP) can be created by a
Solar flare, a Coronal Mass Ejections (CME) or shocks in the interplanetary medium. SCR energies
range from several hundred MeV/nucleon to some GeV/nucleon, and the composition is very similar
to GCR’s. During a few hours/days after a Solar flare, the intensity of cosmic rays that reach Earth
can increase because of the SCR - this is usually called a SEP.

3. Anomalous Cosmic Rays (ACR) arise from interstellar atoms, which are caught by the
motion of the Sun in the ISM, and stay inside the heliosphere, where the magnetic field of the Sun
dominates. After that, the atoms are ionized at 1-3 AU, either by photoionization by solar UV photons
or by collisions with Solar Wind protons. The recently created charged particles, now sensible to the
Heliospheric Magnetic Field (HMF), are carried towards the termination shock (during this trip the
ions are called pickup ions), where they are accelerated (First-order Fermi acceleration) from Solar
Wind energies, of about 1 KeV/nucleon, to tens of MeV/nucleon. The acceleration continues until
they have enough energy to escape the shock (some of them diffuse into the inner heliosphere).

2.3 Sources
As mentioned in the last section, the Sun is a source of low-energy CRs, and so it is quite reasonable

to think that all the other Sun-like stars in the universe are also a possible source of CRs. However,
after calculating the production rate of CRs by Sun-like stars, the obtained numbers are too low
to explain the observed GCR intensities. As a consequence, several theories have been proposed to
explain the observed fluxes.

One of the proposed sources were SuperNovae (SNe). The principal requirement that a given kind
of object must obey in order to be considered a source of CRs is that the total power emitted must
be enough to supply the actual cosmic ray density (ρ ' 1.6 eV/cm3).

Calculating the volume of the galactic disk as

VD = πR2d ' 4× 1066cm3 (2.2)

where R = 15× 103 pc is the galactic radius and d = 200 pc is the galactic height.
Now, using the confinement time of a cosmic ray in the galactic disk calculated within the Leaky

Box Model (LBM) - τ ' 6× 106 years -, it is easy to estimate the required power of the source

P =
ρVD
τ
' 8× 1040erg/s (2.3)

Knowing the average energy realesed by a Super Nova (SN) explosion - E ' 1.6 × 1051 erg - and
the rate of these kind of events in the galaxy - 3 per century - the total power emited by SN explosions
is

PSN ' 3× 1042erg/s (2.4)

which makes a SN a strong candidate to be a source of GCR [4].
Another point in favor of this hypothesis came in 1970 when it was understood that the type

of shock occurring in a SN explosion was adequate to explain the acceleration method required to
reproduce a power-law spectra.

Recently, a new hypothesis suggested by Zatsepin and Sokolskaya [5] says that in order to fit the
experimental data on proton, helium and other nuclei, there must be three types of sources, each one
with a characteristic spectral index and maximum acceleration energy.
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The three sources are:

• Stars with mass ranging from 8 to 15 M� , that exploded into the ISM;

• Stars with mass greater than 15 M� within their own stellar wind;

• Nova stars that in the explosion produce an expanding shell like a SN;

The first two types of sources are enough to account for the proton and helium spectra above 300
GeV, while the third one is required to reproduce fluxes below 300 GeV.

2.4 Acceleration
In what concerns acceleration of CRs, there is a fairly good knowledge of the mechanisms respon-

sible for the acceleration of particles below 1 TeV, during the propagation. The two processes are
named first-order and second-order acceleration.

2.4.1 Second-order Fermi acceleration
This mechanism was proposed by Enrico Fermi in 1949 [6]. In his original paper, Fermi suggests

that the source of acceleration of particles are slowly moving magnetic clouds, with density 10 to
100 times higher than the average ISM density and an enhanced "frozen in" magnetic field. If these
magnetic clouds were stationary, the particles would just invert its motion, without any energy changes,
just like a magnetic trap. However, if the clouds were moving, the particles would lose or gain energy
depending on the direction of the cloud.

For a better understanding of the underlying phenomena, let us consider a relativistic particle, with
energy E1, entering a slowly moving magnetic cloud (head-on collision).

In the cloud’s reference frame, the energy is calculated using a Lorentz transformation

(
E′1/c
~p′

)
= Λ

(
E1/c
~p

)
(2.5)

E′1 = γE1(1− β cos θ1) (2.6)

where θ1 is is the angle between the moving directions of the particle and the cloud, β = V
c and

γ = 1√
1−β2

are related to the cloud. Defining E′2 and θ′2 as the energy and angle of the exiting particle

in the cloud’s frame, it is now possible to apply another Lorentz transformation in order to obtain

E2 = γE′2(1 + β cos θ′2) (2.7)

Assuming the hypothesis of elastic scattering - E′2 = E′1 (the total energy of the particle is conserved
in the frame of the cloud)

E2 = γ2E1(1− β cos θ1)(1 + β cos θ′2) (2.8)
E2 − E1

E1
' ∆E

E
=

1 + β(cos θ′2 − cos θ1)− β2 cos θ′2 cos θ1

1− β2
− 1 (2.9)

Now averaging the equation with respect to the two angles θ1 and θ′2

〈
∆E

E

〉
:=

∫ 1

−1

∫ 1

−1

∆E

E
fθ1fθ′2d cos θ1d cos θ′2 (2.10)

where fθ the Probability Density Function (PDF) for the angle θ.
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Since the particle is scattered many times inside the cloud, its leaving direction is randomized
and 〈cos θ′2〉 = 0. The probability of a collision at an angle θ1 is proportional to the relative velocity
between the cloud and the particle v−V cos θ1, and so fθ1 ∝ (v−V cos θ1). In the case of a relativistic
particle with v ' c the probability is proportional to 1+

(
V
c

)
cos θ. From the last relation, it is possible

to deduce that the probability of head-on encounters, p ∝ 1 +
(
V
c

)
cos θ1 is slightly greater than the

probability of following collisions, p ∝ 1−
(
V
c

)
cos θ1.

〈cos θ1〉 =

∫ 1

−1
cos θ1fθ1d cos θ1∫ 1

−1
fθ1d cos θ1

=

∫ 1

−1
(x− βx2)dx∫ 1

−1
(1− βx)dx

= −β
3

(2.11)

Substituting the mean value in expression 2.10 and expanding the result (β � 1)

〈
∆E

E

〉
=

1 + β2/3

1− β2
− 1 ' 4

3
β2 (2.12)

Since the frontal collision is more probable, the final effect for the particles interacting with the
cloud is a gain in energy.

2.4.2 First-order Fermi acceleration
As showed independently by Bell (1978) [7] and by Blandford and Ostriker (1978) [8] , a charged

particle can be efficiently accelerated by a SN remnant shock.
Let us assume a shock front that moves in the interstellar medium with velocity −u1. As the shock

wave travels through the medium all the shocked gas will flow in the opposite direction with velocity
u2 relative to the front (|u1| > |u2|).

Considering that the gas and shock front velocities are low, the velocity of the shocked gas in the
laboratory frame is just the difference between u2 and u1: V = −u1 +u2. From now on, the procedure
is exactly identical to the one applied in second-order acceleration. In other words, the formula 2.10
remains valid but V is now the velocity of the shocked gas (downstream) relative to the unshocked gas
(upstream). The only difference is in the way the average over θ is done, since the shock front is now
planar.

The probability that a particle arriving with an angle θ1 (−1 < cos θ1 < 0) crosses the shock front
is proportional to cos θ1, since the shock is planar.

Normalizing the probability distribution∫ 0

−1

A cos θ1 d cos θ1 = 1⇔ A = 2 (2.13)

fθ1 = 2 cos θ1 (2.14)

Similarly,

fθ2 = 2 cos θ2 (2.15)

And so,

〈cos θ1〉 =

∫ 0

−1

2 cos2 θ1 d cos θ1 = −2/3 (2.16)

〈cos θ2〉 =

∫ 1

0

2 cos2 θ2 d cos θ2 = 2/3 (2.17)

〈
∆E

E

〉
=

1 + 4
3β + 4

9β
2

1− β2
− 1 ' 4

3
β (2.18)

As β � 1, the first-order Fermi acceleration is more effective than the second-order. After crossing
the shock front, the particle is repeatedly scattered by magnetic field irregularities ahead of the shock,
increasing its energy. This mechanism explains the SCR and ACR acceleration.
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2.5 The Heliospheric Environment

2.5.1 Sun’s Magnetic Field
The Sun lies in the spiral arm of our Galaxy, located at a distance of approximately 8.5 kpc

from its center, and about 1 AU from the Earth. As many other stars the Sun has in its interior
flowing electric currents. These currents, combined with an high conductivity, form what is called a
Magnetohydrodynamic (MHD) dynamo, which is responsible for creating the Sun’s magnetic field.
The system is self-exciting since the rotation of the Sun enhances the magnetic field.

The field flips its polarity every 11 years, returning to its original configuration every 22 years. The
11 years periodicity is usually referred to as the Solar Activity Cycle.The details of the mechanism are
still very controversial, but it is well established that the sunspot number and the 11 years sunspot
periodicity are a direct manifestation of the ropes of the magnetic field lines emerging onto the Sun’s
photosphere.

The Sun doesn’t rotate as a rigid body, it possesses a differential rotation, which means that the
equator rotates faster than the poles. The consequence is that the Sun’s overall magnetic field becomes
distorted and twisted over time. The twisted field lines eventually come through the photosphere,
showing their presence as sunspots ( as depicted in figures 2.3 and 2.4 ).

Figure 2.3: Sunspot formation.

Figure 2.4: Sunspots are regions of the solar surface cooler than the others and visible on the photo-
sphere as dark areas of irregular shape
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The sunspot number is a good natural monitor of Sun’s activity: when activity reaches its maximum
the sunspot number also reaches its maximum and vice versa.

Experimental observations indicate that, during a solar minimum period, the magnetic field is
approximately dipole-like, with a magnetic dipole axis almost aligned with the solar rotation axis,
while during the declining phase of the solar cycle the dipole is more tilted. The angle between the
rotation axis and the magnetic axis is known as the tilt angle α.

Even though the Sun has a complex magnetic field, the dipole term nearly always dominates the
magnetic field. As the Solar activity approaches its maximum, when the polarity reversing happens,
the dipolar shape seems to be no more representative of the solar magnetic field. Depending on whether
the dipole is oriented parallel or anti-parallel relatively to the rotation axis, the solar magnetic epoch
is referred to as A > 0 or A < 0 (figure 2.5).

Figure 2.5: Sun’s magnetic field in several periods.

The link between solar activity and the modulation in intensity of the GCR is evident from the
Neutron Monitors (NM) measurements, available in the last decades. The NM are a worldwide network
of detectors that measure the number of neutrons reaching Earth’s surface, as a function of time. The
surface neutrons come from the hadronic showers, produced by the interaction of the primary particle
with the atmosphere. There are basically two contributions to the total rate of neutrons. The first
one N0 (∼ 5500 counts/min) , is approximately constant in time, and comes from the interaction of
high energy particles (∼100 GeV) with the atmosphere. The second term N(t) (∼ 500 counts/min
), comes from the interaction of the low energy particles (∼10 GeV) with the atmosphere. This low
energy contribution varies with time and depends on the activity of the Sun. Figure 2.6 shows the
Oulu NM counting rate as a function of time (top plot), and the sunspot number (bottom plot). The
clear anti-correlation between the NM counting rate and the sunspot number indicates that the Solar
activity has an influence on GCR : at solar maximum there is a minimum of the GCR intensity, while
at solar minimum there is a maximum of the GCR intensity. The flux on the top of the atmosphere
can be calculated using the NM counting rates, if the yield function of the NM station is known.
The yield function depends on the average depth of atmosphere and cut-off rigidity (see 2.5.4) for the
position of the NM station. After calculating the flux at the top of the atmosphere it is possible to
extract the Solar modulation parameter (the meaning of this parameter will be discussed in Chapter
4).

Indeed, it is well established that GCR modulation is due to the fact that CRs enter the heliosphere
and undergo processes such as scattering by the irregularities of the magnetic field, convection and
adiabatic deceleration in the expanding Solar Wind. The physical mechanisms of the modulation will
be studied in the next sections. Here it is described the structures of the heliosphere that are relevant
to the comprehension of what follows.
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Figure 2.6: Solar modulation parameter from NM network data [46] . Sunspot Number (SIDC Belgium)[9]
and neutron rates as measured by Oulu NM station. The anticorrelation between the neutron counting rates
and the sunspot number is evident.

2.5.2 Solar Wind and the Heliospheric Magnetic Field
The temperature of the ionized gas inside Sun’s corona is so high that it is not gravitationally bound

to the star and constantly blows away from Sun’s surface to maintain the hydrostatic equilibrium [10]
. The supersonic solar plasma expanding into space is called Solar Wind : it consists of a fully ionized
gas, basically composed of low energy electrons and protons (E ' 0.5MeV ), pushed radially out of
Sun’s corona.

Due to the high conductivity of the plasma, the magnetic field of the Sun is frozen into the Solar
Wind1. As the Sun rotates in approximately 27 days, the magnetic field lines, transported by the Solar
Wind, get wrapped into an Archimedean spiral in the Sun’s equatorial plane and in helices out of the
equator (figure 2.7). Variations in the Sun’s magnetic field are consequently carried outward by the
Solar Wind.

The heliosphere can be defined as the region in space where the Solar Wind dominates (figure 2.8 ).
The plasma pressure fades out with distance until a boundary layer called heliopause, where there is a
pressure balance with the ISM. The point where the Solar Wind slows down and becomes subsonic is
called Termination Shock (TS). On the other side, the point where the ISM, traveling in the opposite
direction, becomes subsonic as it collides with the heliosphere is called bow shock. In December 2004,
the Voyager 1 spacecraft found the termination shock at a distance of approximately 94 AU from the
Sun.

1see Appendix A for a proof of this effect

11



Figure 2.7: The effect of Sun’s rotation on the magnetic field lines,that bent into Archimedean spirals. They
are drawn here at Solar latitudes of 6, 45 and 84 degree respectively [11].

Figure 2.8: The heliosphere, where is clearly visible the Bow Shock, the Heliopause and the Termination
Shock.
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In a frame with origin at the Sun, the HMF has the following expression in spherical coordinates2

~B =
A

r2
(~er − tan Ψ ~eφ)

[
1− 2H

(
θ − π

2

)]
(2.19)

where Ψ is the angle between the radial and azimuthal components of the HMF,H is the Heaviside
step function and A is a constant. The two heliospheric hemispheres are separated by a flat surface
(θ = π/2) - the Heliospheric Current Sheet (HCS) - which is effectively the extension of the solar
magnetic equator into the Solar Wind. Above π/2, the field points in one direction and below π/2 the
field reverses its direction. This expression is only valid for periods when the dipole and rotation axis
are aligned (during Solar minimum). When the magnetic and rotation axes are not aligned, the flat
current heliosheet turns into a wavy one - the so called ballerina skirt (figure 2.10).

The angle between the rotation and magnetic axes (tilt angle) is of course proportional to the
latitudinal extent of the HCS, in other words, large tilt angles correspond to a more undulated HCS.

As a consequence of the wavy character of the HCS, expression 2.19 must be corrected. The
division between the two heliospheric hemispheres, which was previously a flat surface (θ = π/2), is
now a complex wavy structure.

The derivation of the HCS expression is an easy trigonometrical exercise, that can be done by
considering two planes tilted at an angle α relative to each other (fig. 2.9).

Figure 2.9: Two planes tilted at an angle α relative to each other.

According to the figure

y

x
= tan θ∗ (2.20)

y

x sinφ∗
= tanα (2.21)

Plugging these two last expressions together

tan θ∗ = sinφ∗ tanα (2.22)

2as deduced in Appendix B and depicted in 2.7

13



Now, if the plane with φ∗ is assumed to be at π/2, then the angle θ
′
can be defined as θ

′
= π/2−θ∗.

Therefore

tan(π/2− θ
′
) = sinφ∗ tanα = ξ (2.23)

And so,

θ
′

= π/2− tan−1(tanα sinφ∗) (2.24)

The last step is just the substitution of the expression for φ∗ = Ω r−r0
V + φ0, which can be easily

derived using the first two equations of Appendix B, in equation 2.24.
The final expression for the HCS (as depicted in figure 2.10(b))is

θ
′

= π/2− tan−1

[
tanα sin

(
Ω
r − r0

V
+ φ0

)]
(2.25)

and the correct expression for the HMF is

~B =
A

r2
(~er − tan Ψ ~eφ)

[
1− 2H(θ − θ

′
)
]

(2.26)

During one solar rotation, the HCS fills a region lying between π/2 − α ≤ θ
′ ≤ π/2 + α. The

frequency of the HCS depends on the angular velocity of the Sun Ω, and the Solar Wind velocity V ,
while the phase is given by φ0, V and r0, the radius of the Sun.

(a) (b)

Figure 2.10: a) HCS. Note that the current sheet separates zones with different magnetic polarities.
b) Drawing of the wavy neutral current heliosheet

The Solar magnetic polarity and the structures of the HMF are related to the modulation of
GCR depending on the charge-sign of the particle (the HCS is responsible for some of the drift terms
that appear in the transport equation of cosmic rays [12]). Actual observations and theories about
charge-dependent GCR modulation link together the solar magnetic polarity and the structures of the
magnetic field, as they result in different drift patterns for different charges in the heliosphere.

This last fact is visible in NM data of figure 2.6. It shows, in addition to the 11 years periodic-
ity,the existance of a profile that can be referred to the HMF polarity: the shape of sucessive maxima
alternates between a broad flat and a more narrow peaked one.

This kind of observation is very important and constitutes the first evidence that the solar modu-
lation has a 22 years periodicity and that the orientation of the solar magnetic dipole has an effect on
GCR propagation. This periodicity is seen in the NM counting rates but not in the Sunspot number,
which indicates that it might not be the best proxy for the solar modulation of GCR’s. It also means
that it is not the status of the Sun that directly guides the transport of the GCR’s, but rather the
status of the heliosphere they move through.
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2.5.3 Propagation in the Heliosphere: Parker Model
This model was proposed by Parker in 1964 [13], and it is based on the assumption that the GCR

reach the heliophere isotropically, and after entering it, face an outward Solar Wind and the HMF.
The HMF can be divided in two parts:

1. The large scale HMF responsible for the drifts and curvatures of the guiding centres of the
particles

2. Small scale irregularities

The inclusion of these small scale irregularities by Parker was based in the measurements done
by Explorer XVIII, that registred small fluctuations in the HMF of about 105 km -107 km. These
fluctuations play a very important role in the propagation of the GCR inside the Solar cavity, since
they are responsible for the diffusion of low energy particles. Another aspect that will help the diffusive
character of the transport is the very low density of cosmic rays when compared with the density of
Solar Wind particles.

To better understand the underlying phenomenon, consider a particle with a gyroradius much
grater than the scale of the fluctuations in the magnetic field. This particle will follow its trajectory
without noticing the presence of the magnetic field irregularities.

Figure 2.11: Dynamics of a charged particle in a magnetic field when the dimension of the irregularities is
smaller than the gyroradius

However, if the fluctuations have the same scale as the gyroradius of the particles, there is a
significant amount of scattering. The scattering of the particles by random superposition of these
fluctuations leads to stochastic changes (random walk) in the pitch angle of the particles ( angle
between ~v and ~B ). The result is a diffusive phenomenon.

Knowing the dimensions of the fluctuations, it is easy to calculate the magnetic rigidity R, at
which the magnetic fluctuations are important in scattering the particles3.The gyroradius of a particle
in terms of its magnetic rigidity is:

rg =
pc

Ze
· 1

Bc
=

R

Bc
(2.27)

where it has been assumed ~B ⊥ ~v (pitch angle of 90◦). Equating this gyroradius to the wavelenght at
which there is more power in the power spectrum of the magnetic irregularities - 109m (assuming an
average HMF of 3nT)

R = 3nT · c · 109m ≈ 1GV (2.28)

This rigidity is remarkably similar to that at which the spectra of GCR protons and nuclei become
strongly influenced by Solar modulation 2.1(b). The important assumption is that the magnetic field
irregularities are random.

This diffusive transport is described by a diffusion coefficient, in this case a tensor Kij . The motion
is brownian and does not preserve the memory of the past, meaning that each increment is independent
of the previous one.

3notice that particles with different masses and charges, but with the same magnetic rigidity have the same dynamics
under any magnetic field distribution
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Introducing the classic particle distribution probability W (xi, t) (number of particles per unit vol-
ume) it is easy to see that the quantity −Kij

∂W
∂xj

is just the flux of particles in the frame comoving
with the magnetic irregularities responsible for the scattering. The irregularities are also moving with
velocity equal to the solar wind velocity VSW , and so giving rise to a convective flux of the form
VSWiW .

Applying the continuity equation it is possible to write the diffusion equation or Fokker-Planck
equation as:

∂W

∂t
+

∂

∂xi
(VSWiW )− ∂

∂xi
(Kij

∂W

∂xj
) = 0 (2.29)

or

∂W

∂t
+∇ · ~S = 0 (2.30)

Si = VSWiW −Kij
∂W

∂xj
(2.31)

where ~S is the flux vector containing the diffusive and convective terms.
Now, while the energetic particle is riding along with the fields in the wind, the magnetic field itself

is expanding because of the divergence of the wind, which makes the particle lose energy - adiabatic
cooling.

To prove the last statement, consider two frames of reference:

• O fixed;

• O′ moving with the Solar Wind velocity V;

If the velocities involved are non-relativistic3 :

~v′ = ~v − ~V (2.32)

~p′ = ~p−m~V (2.33)

If the electric field is negligible, when compared to the average magnetic field, the force applied in
a particle of charge q is

d~p

dt
= q(~v − ~V )× ~B (2.34)

In the moving frame, ~p′ is a function of xi, ~p and t and so

d~p′

dt
=
∂~p′

∂t
+ ~v · ∂

~p′

∂xi
+
d~p

dt
· ∂
~p′

∂~p
(2.35)

Deriving the expression 2.33 with respect to t, xi and ~p

∂~p′

∂t
= −m∂~V

∂t
(2.36)

∂~p′

∂xi
= −m∂~V

∂xi
(2.37)

∂~p′

∂~p
= I (2.38)

3The relativistic case is very similar and straightforward. The Galilean Transformation is replaced by the Lorentz
formula for adding velocities : v′ = v−V

1− v·V
c2
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Substituting 2.32 into 2.34

d~p

dt
= q~v′ × ~B (2.39)

Now, having all the terms, eq. 2.35 can be rewritten as

d~p′

dt
= −m∂~V

∂t
−mv · ∂

~V

∂xi
+ q~v′ × ~B (2.40)

The variation of the magnitude of the momentum - dp′

dt - can be obtained by deriving the expression
p′2 = ~p′ · ~p′

dp′

dt
=
~p′

p′
· d
~p′

dt
(2.41)

And finally
dp′

dt
= −

~p′

p′
·

[
m
∂~V

∂t
+ (~p′ +m~V ) · ∂

~V

∂xi

]
(2.42)

where ~p′ · (~v′ × ~B) = 0 was used.
The average dp′

dt ≡
〈
ṗ′
〉
for a group of particles, all with the same momentum magnitude p′ but

with different directions is:

〈ṗ′〉 =

∫
Ω′

dp′
dt FdΩ′∫

Ω′
F dΩ′

(2.43)

where dΩ′ is the infinitesimal solid angle interval.
Assuming an isotropic momentum distribution F (r, p′, t)∫

Ω′
dΩ′ = 4π;

∫
Ω′
~p′dΩ′ = 0;

∫
Ω′
~p′~p′dΩ′ = 4πp′2

3 I; (2.44)

expression 2.43 can be written in the following form

〈
ṗ′
〉

= −p
′

3
∇ · ~V (2.45)

or in terms of kinetic energy T ′

1

p′
〈
ṗ′
〉

=
1

p′
dp′

dT ′

〈
Ṫ ′
〉

=
E′

p′2

〈
Ṫ ′
〉

=
T ′ +m

T ′(T ′ + 2m)

〈
Ṫ ′
〉

=
1

T ′α(T ′)

〈
Ṫ ′
〉

〈
Ṫ ′
〉

= −α(T ′)
T ′

3
∇ · ~V (2.46)

where α(T ′) = T ′+2m
T ′+m . This means α(T ′) = 2 for nonrelativistic particles and α(T ′) = 1 for extreme

relativistic particles.
This result is very important and tells that particles will lose energy, regardless of the choice of the

scattering model.
Since particles will change their energy due to the movement of the Solar Wind it is more interesting

to work with the phase space density Up(xi, p, t) instead of working only with space density W (xi, t).

W (xi, t) =

∫ ∞
0

Up(xi, p, t)dp (2.47)
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Now, it is possible to apply the continuity equation not to a simple 3-dimensional volume, where
the 3 coordinates correspond to x, y, z but to a 4-dimensional volume, adding the momentum as the
fourth coordinate

dUp(xi, p, t)

dt
= −∂Φxi

∂xi
− ∂Φp

∂p
(2.48)

where Φp is the number of particles that pass through the momentum boundary per unit of time and
Φxi

is the number of particles that pass through the space boundaries per unit of time.

Up(xi, p, t)
dp

dt
= Φp (2.49)

then the Fokker-Planck equation for Up is

∂Up
∂t

+
∂

∂xi
(UpVSWi) +

∂

∂p

(
Up
dp

dt

)
− ∂

∂xi

(
Kij

∂Up
∂xj

)
= 0 (2.50)

or using 2.45

∂Up
∂t

+

convection︷ ︸︸ ︷
∂

∂xi
(UpVSWi)−

adiabatic losses︷ ︸︸ ︷
1

3
∇ · ~VSW

∂

∂p
(Upp)−

diffusion and drifts︷ ︸︸ ︷
∂

∂xi

(
Kij

∂Up
∂xj

)
= 0 (2.51)

Figure 2.12: Illustration showing the several contributions to the propagation of GCR’s inside the Heliosphere.

Now that the transport equation has been derived, the reader may have noticed that the same
equation could have been deduced using another density function, the cosmic ray number density per
unit of kinetic energy - UT -, instead of the cosmic ray number density per unit of momentum -Up.

[UT ] =
particles

m3 · T
[Up] =

particles

m3 · p
(2.52)

The derivation of the transport equation in terms of UT is very similar, but using 2.46 instead of
2.45

∂UT
∂t

+
∂

∂xi
(UTVSWi)−

1

3
∇ · ~VSW

∂

∂T
(α(T )UTT )− ∂

∂xi

(
Kij

∂UT
∂xj

)
= 0 (2.53)
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Indeed, there is also an additional third way of writing the transport equation in terms of the
omnidirectional cosmic ray distribution function f0, a function of cosmic ray position and momentum
at time t.

[f0] =
particles

m3 p3
(2.54)

In this case the transport equation is given by4

∂f0

∂t
= −∇ · ~S +

1

3
∇ · VSW

∂f0

∂ ln p
(2.55)

where

~S = 4πp2(CVSW −K · ∇f0) (2.56)

is the differential current density, and

C = −1

3

∂f0

∂ ln p
(2.57)

is the Compton-Getting coefficient,i.e., one third of the spectral index of a power law spectrum in
momentum space.

Substituting ~S in equation 2.55

∂f0

∂t
= ∇ · (K · ∇f0)− VSW · ∇f0 +

1

3
∇ · VSW p

∂f0

∂p
(2.58)

Having 3 ways of writing the same equation it is natural to study the relation between the different
number densities -UT , Up- and the omnidirectional distribution function -f0. To begin the study, it is
firstly assumed that the cosmic ray distribution function f(r, p, t) can be written as ([14],[15],[16])

f(r, p, t) = f0(r, p, t) +
3~p · ~f1

p
(2.59)

where the component f0, the omnidirectional distribution function, is a scalar that does not depend
on the direction in space, and f1 is a vectorial quantity that depends on the direction.

By definition

Up(r, p, t) = p2

∫
Ω

f(r, p, t) dΩ (2.60)

Assuming that f1 is constant in magnitude and along the x-direction

Up(r, p, t) = p2

∫ π

0

∫ 2π

0

(f0 + 3f1 sin θ cosφ) sin θ dθ dφ = 4πp2f0 (2.61)

The goal is to relate all the number densities and the distribution function with a measured quantity:
the differential intensity.

The definition of differential intensity is just the number of particles dN that cross a differential
area element dA, perpendicular to momentum vector ~p in the interval [p, p+ dp] within dΩ, in interval
dt.

dN = JP dA⊥ dt dΩ dp (2.62)

4a careful derivation of this equation can be found in Webb and Gleeson [1979] [13]
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All particles crossing the above mentioned surface must have come from a cylinder with length vdt
and cross sectional area dA⊥, implying that there were

dN = f v dt d3p dA⊥ = v f p2 dt dp dΩ dA⊥ (2.63)

and so

JP = vp2f(x, p, t) (2.64)

The mean value of JP : 〈JP 〉 is the omnidirectional differential intensity

〈JP 〉 =

∫
Ω
JP dΩ∫
Ω
dΩ

=
1

4π

∫
Ω

JP dΩ =
vUP
4π

= vp2f0 (2.65)

[JP ] =
particles
m2 s p sr

with momentum in d3p about p

[〈JP 〉] =
particles
m2 s p sr

with all the possible momentum in the interval [p,p+dp]

Geometrically, this means that 〈JP 〉 is the algebraic sum of JP , normalized to the unit solid angle.
It is also possible to calculate the differential intensity per unit of energy

JP =
dT

dp
JT = vJT (2.66)
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2.5.4 Earth’s Magnetic Field
Before reaching Earth, a charged particle has to face the opposition of the geomagnetic field, which

will curve its trajectory and consequently sets an energy limit below which, the particle cannot pass
the magnetic barrier. The Geomagnetic Field is, in first approximation, a magnetic dipole located a
few kilometers from the center of the Earth and roughly pointing south.

The Geomagnetic Coordinate System (figure 2.14(a) ) is defined so that its Z-axis is parallel to the
magnetic dipole axis. The angles are defined somehow differently from those conventionally used in
physics: the geomagnetic latitude λ is the angle measured from the geomagnetic equator, defined as
the plane normal to the dipole axis, to the point considered and containing Earth’s center.
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Figure 2.13: Rates measured by the AMS-02 detector at different geomagnetic latitudes (in radians). Note
that, as the latitude increases, the rigidity cut-off decreases.

The geomagnetic cut-off was derived by Stöermer in the mid-twentieth century, and represents the
minimal rigidity a charged particle must have to reach a point located at an altitude h above the
surface, and at the the geomagnetic latitude λ.

This cut-off also depends on the East-West angle α (figure 2.14(b) ), corresponding to the angle
between the velocity of the particle and the East-West direction.

The expression for the cut-off is

Rcut =
60(

1 + h
re

)2

cos4 λ[√
1 + cosα cos3 λ+ 1

]2 [GV] (2.67)

The cut-off rigidity is higher in the equator and lower in the poles,as can be seen in figure 2.13,
allowing that an higher number of CRs reach the poles.
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(a)

(b)

Figure 2.14: a) Geographic and Geomagnetic Coordinates. [17]. b) The Rigidity Cut-off as a function of the
geomagnetic latitude [18]
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3
The AMS-02 Experiment

Alpha Magnetic Spectrometer (AMS) is an international collaboration involving hundreds of re-
searchers from 56 institutes and 16 countries. The main goal of the collaboration was to take a particle
spectrometer to space.

This task was divided in two parts: the first one (AMS-01) took place in June 1998, when a prelimi-
nary detector flew aboard the Space Shuttle with the objective of testing the AMS concept; the second
one (AMS-02) occurred in May 2011, when the final detector was installed aboard the International
Space Station (ISS) , where it is expected to operate continuously between 10 to 18 years.

Figure 3.1: The AMS-02 detector aboard the ISS [39].
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3.1 Scientific goals of AMS-02
The physics aims of AMS-02 are:

• Measurement of cosmic ray spectra from a few hundred MeV up to 1 TeV, in particular:

– Hydrogen, helium and beryllium isotopes (D/p,3He/4He,10Be/9Be);

– Secondary to primary spectrum (B/C, sub-Fe/Fe);

– Cosmic gamma-ray spectrum;

• Search for indirect signals of non-baryonic dark-matter through the detection of annihilation
products appearing as anomalies of the cosmic-ray spectra (e+, p̄, γ and D̄);

• Search for cosmological antimatter through the detection of antinuclei with |Z|>2;

3.2 Detector Description
AMS-02 is the first large magnetic spectrometer in space, and it is able to measure, with unprece-

dented accuracy, fluxes of CRs above Earth’s atmosphere. The spectrometer is composed of several
subdetectors:

• a Transition Radiation Detector (TRD)

• a Time-of-Flight (TOF) detector

• a Silicon Tracker

• a set of Anticoincidence Counters (ACC)

• a Ring Imaging Cerenkov (RICH) detector

• an Electromagnetic Calorimeter (ECAL).

Figure 3.2: The AMS-02 detector [39].
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The permanent magnet
The AMS-02 permanent magnet was already used in the AMS-01 flight and it is a cylinder of 1m

diameter and 1m height, made of 6000 Neodimium-Iron-Boron blocks. It creates a magnetic field of
0.15 T (bending power is BL2 =0.15Tm2), uniform along the x axis, and with negligible dipole moment.

Transition Radiation Detector (TRD)
The TRD is the first subdetector that the majority of the particles face when entering the spec-

trometer. The working principle of the TRD is based on the emission of transition radiation by the
particles that cross it.

Transition radiation is a particular type of electromagnetic radiation in the X-ray region (1 - 50
KeV), emmited when a charged particle crosses the boundary between two media with different dielec-
tric constants. The energy of the transition radiation photons is proportional to γ = E/m, and has
a threshold of γ ≈ 500, making low mass particles, such as positrons or electrons, likely emitters of
transition radiation energy. This allows a separation between low mass and high mass particles (for
protons with momentum between 10 - 300 GeV the rejection factor is 102 - 103).

Since the emission probability of a single interface is very low (∼ 10−2), the subdetector is made in
a multilayer structure (20 layers supported by an octogonal pyramidal structure),allowing for hundreds
of transitions when a particle crosses the TRD. The building blocks of the 20 layers are 328 modules,
each having a fleece radiator with thickness of 20 mm and straw tube proportional wire chambers filled
with a Xe/CO2 (80%:20%) mixture.

Figure 3.3: TRD module.

Time-of-Flight (TOF)
The TOF is the subdetector responsible for fast triggering the particles that reach the detector,

distinguishing between upward and downward particles, measuring the velocity (σβ=3% for protons),
and estimating the value of the charge up to Z ≈ 20. The TOF system consists of four planes
with 8,8,10 and 8 plastic scintillator counters each. The planes are roughly circular with 12 cm wide
scintillator paddles, one pair of planes above the magnet called the upper TOF and the other below
the magnet TOF, called the lower TOF.The quality of the measurements is increased by having
perpendicular paddle orientations in both pairs of planes.
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Figure 3.4: TOF planes.

Silicon Tracker
The Silicon Tracker is responsible for making measurements of particle positions with a precision

of ∼ 10µm along the bending plane (yOz), and ∼ 30µm on the transverse direction. By finding the
trajectory of the particle inside the magnetic cavity, it is possible to calculate the particle rigidity with
a precision of 2% at a few GV (for protons, the Maximum Detectable Rigidity (MDR) is around 1.3
TeV ). The silicon tracker is also capable of measuring the charge of the particle up to Z ≈ 26.

The tracking system is composed of 9 layers: 1 above the TRD, 1 above the ECAL, and the
other set of 7 in the central region (inner tracker). The layers are made of ∼ 2500 double-sided silicon
microship sensors arranged on 192 ladders.

Figure 3.5: Tracker plane.

The Anti-Coincidence Counters (ACC)
The ACC are made of scintillators, surrounding the silicon tracker, and fitted tightly inside the

inner bore of the detector’s magnet. The purpose of the ACC is to detect particles entering the Tracker
laterally, outside the main acceptance, which may create signals in the detector leading to bad event
reconstruction.
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Figure 3.6: ACC view.

The Ring Imaging Cerenkov Detector (RICH)
The RICH is responsible for measuring, with high precision, the velocity of particles that emmit

a Cerenkov cone when transversing it. The opening angle of the cone depends on the velocity and on
the refractive index of the material. By measuring the number of emitted photons, it is possible to
compute the charge of the particle.

It consists of a radiator plane, a conical mirror and a photon detection plane. The radiator has
two regions: the outer region, made of thick aerogel tiles (n ≈ 1.03 − 1.05) and the central region,
composed of thick sodium fluoride (NaF) radiator (n ≈ 1.33). The detector plane is made of 680 4 ×
4-multi-anode Photomultipliers (PMT) (gain 106 at 800 V).

Figure 3.7: RICH exploded view.
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The Electromagnetic Calorimeter (ECAL)
The ECAL, placed at the bottom of the detector, is a fine grained lead-scintillating fiber sampling

calorimeter,with an active area of 648 × 648 mm2 and a thickness of 166.5 mm. It provides an
accurate 3-D imaging of the longitudinal and lateral shower development and a precise value of the
shower energy. Additionally, It serves as a powerful tool to distinguish hadrons from electrons or
positrons, as the type of shower developed inside the detector is completely different.

It is also worth noting that the ECAL is able to detect gamma-rays, either by measuring the
interaction of the photon inside the detector, or through the identification of a particle-antiparticle
pair produced in the matter preceding it.

The AMICA Star Tracker
The Astro Mapper for Instrument Check of Attitude (AMICA) consists of a pair of small optical

telescopes instaled near the Silicon Tracker structure. It serves the purpose of measuring the orientation
of the detector, allowing for the identification of γ ray sources .

3.3 AMS in the International Space Station
Since 19th May 2011, AMS is orbiting around Earth every 90 minutes, at an altitude of around 400

Km and is collecting around 40 million of events a day. When a particle triggers the AMS detector,
a signal is sent to all sub-detectors and its raw data is gathered in JMDC, the main AMS board
computer. Framed data is then downloaded to the AMS laptop computer and is sent to Earth through
the High Rate Data Link (HDRL), which uses satellites ku-band. At Earth, data is received at the
Marshall Space Center and redirected to CERN where it is stored on hard drives and processed. More
than 2 1010 events have been processed up to the present day. As output of the event processing,
root tuples are produced, storing the reconstructed information event by event. In addition, detector
calibration is also stored.

The detector is operated and its conditions are continuously monitored from a Payload Operation
and Scientific Center installed at CERN, in Geneva. A team of people performs daily 24h shifts, in
order to monitor the operative conditions of the different subdetectors (temperature, TRD gas pressure,
noise, power consumption).

Subdetector Size in bytes
Tracker 1100
RICH 250
TOF 500
ECAL 300
TRD 600

Total ∼ 2.8 KB

a)
b)

Figure 3.8: a) Average event size in bytes. b) AMS POCC at CERN
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3.4 The analysis software chain
The root tuples with the event information are stored at CERN, using the CASTOR system.

To analyze the information stored in the root tuples, a set of AMS C++ classes developed by the
collaboration are used. These classes allow to read every detector information before and after data
reconstruction. In addition, the Laboratório de Instrumentação e Física de Partículas (LIP) group
together with the french laboratory of Grenoble (LPSC) and later on Annecy (LAPP) developed a
software structure, named LxSoft, where additional user C++ classes were implemented. This classes
serve the purpose of making the analysis of the root tuples easier, creates a shareable set of analysis
tools and implements specific particle and detector selections.

The development of the LxSoft software tool, followed the following ideas:

• simplify the event analysis

• be able to access data on different locations: CERN castor data center, Lyon data center and
local data

• implement solar modulation models: force- field, numerical solutions for 1D and 2D

• implement particle reconstruction and identification, specifically to different subdetectors

• calculate the exposure time

• back-trace particles in the geomagnetic field

• implement transformations between different coordinate systems

• determine the geomagnetic cut-off and geomagnetic coordinates
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4
Solutions to the transport equation

The main objective of this chapter is to explore the several approaches to solve the Transport
Equation (TPE), from the Force Field Solution to the 1D and 2D numerical models

The transport equation 2.58 can be written in a spherical coordinate system rotating with the Sun
[19], as

∂f

∂t
=

[
1

r2

∂

∂r
(r2Krr) +

1

r sin θ

∂

∂θ
(Kθr sin θ) +

1

r sin θ

∂Kφr

∂φ
− V

]
∂f

∂r
(4.1)

+

[
1

r2

∂

∂r
(rKrθ) +

1

r2 sin θ

∂

∂θ
(Kθθ sin θ) +

1

r2 sin θ

∂Kφθ

∂φ

]
∂f

∂θ

+

[
1

r2 sin θ

∂

∂r
(rKrφ) +

1

r2 sin θ

∂

∂θ
(Kθφ) +

1

r2 sin2 θ

∂Kφφ

∂φ

]
∂f

∂φ

+ Krr
∂2f

∂r2
+
Kθθ

r2

∂2f

∂θ2
+

Kφφ

r2 sin2 θ

∂2f

∂φ2
+

2Krφ

r sin θ

∂2f

∂r∂φ

+
1

3r2

1

∂r
(r2V )

∂f

∂ ln p

with V, the radial Solar Wind velocity, and Kij the diffusion tensor in spherical coordinates.

4.1 The Diffusion Tensor and Drifts
As seen in Chapter 2, diffusion is a stochastic process, resulting from pitch-angle scattering of

charged particles at magnetic field irregularities.
When a spiraling charged particle encounters an irregularity in a magnetic field line - which has a

size similar to the gyroradius of the particle - then the trajectory of the particle depends strongly on
the phase of the gyromotion during the interaction. As can be seen in figure 4.1 Some particles will
pass through the irregularity (e), others will be reflected back along the field line (f), while still others
will effectively "get stuck" in the vicinity of the the irregularity (g). This basically means that the
pitch angle of the particle is randomly scattered.

However, when charged particles encounter magnetic field irregularities, there is an additional
variable that can change (besides the pitch angle) : the gyrophase. Physically this happens because
the gyroradius is "squeezed" when the field is suddenly stronger, or enlarged when the field is weaker.
The global effect of this phenomenon is that the particle will attach itself to a neighboring field line
(h). Since this is also a random process, it leads to a diffusive flux perpendicular to the background
magnetic field.

The diffusive flux has now a component parallel to the background magnetic field, with diffusion
tensor K‖, and one perpendicular, with diffusion tensor K⊥ (in the heliosphere the weak-scattering
limit is valid - K⊥ << K‖) .
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Figure 4.1: Charged Particle Motion in magnetic field (adapted from [20])

The theory of scattering parallel to the background magnetic field is fairly well understood in
terms of the so-called Quasi-Linear Theory (QLT) of scattering, developed by Jokipii in 1966 [21].
QLT holds for weak fluctuations, when δB2/B2 << 1, and the parallel diffusion coefficient can be
calculated if the power spectrum of the fluctuations in the magnetic field, δB2, is known. By measuring
the spectrum throughout the heliosphere it is possible to determinate a diffusion coefficient depending
on the momentum of the particle and on space position.

Potgieter and Le Roux [22] suggested that the parallel diffusion coefficient is given by the following
expression

K‖ ≈ βk1(r)kR(R)
B0

3B
(4.2)

with β, the velocity of the particle divided by c, k1(r), the term that accounts for the dependence
in position, kR(R) , the rigidity dependent term, B the magnitude of the large scale HMF and B0

the value of the HMF at Earth’s orbit. The term kR is usually expressed in GV and, to a first
approximation, can be written as

kR ≈ R (4.3)

The theory of perpendicular diffusion is much more complicated, and remains one of the biggest
theoretical problems in cosmic ray modulation theory. The current theory is non-linear in nature, and
was introduced by Mathhaeus et al. (2003) [23].

Due to the absence of a precise theory, the normal procedure when dealing with the perpendicular
diffusion coefficient is to scale it relatively to K‖. Usually

K⊥ = ρK‖ (4.4)

with ρ ≈ 0.05 .
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The last paragraphs show that the presence of a large-scale magnetic field forces the diffusion to
become anisotropic and a diffusion tensor Kij must be used.

In a reference system with the third coordinate along the average magnetic field, the symmetric
part of the diffusion tensor, for isotropic perpendicular diffusion, includes both the transverse - K‖ -
and perpendicular -K⊥ - components [24].

KS
i,j =

K‖ 0 0
0 K⊥ 0
0 0 K⊥

 (4.5)

Another effect of the presence of a large-scale magnetic field, that contributes to the transport of
particles, is the existence of curvature and gradient drifts. Curvature drifts result from the centrifugal
force a particle experiences when traveling along a curved magnetic field. Gradient drifts are a conse-
quence of changes in the particle gyroradius during one gyration, due to changes in the magnetic field
strength. As shown by Parker [1957][25], for an isotropic particle distribution, or for one with at most
a first-order anisotropy (i.e. weakly anistropic), the combined gradient and curvature drift velocity of
the distribution is given by

〈 ~vdr〉 =
βR

3
∇×

~B

B2
(4.6)

A further simplification results from a mathematical trick, which consists in formulating the drift
term as an antisymmetric element of the diffusion tensor. Defining the drift coefficient

KA =
βR

3B
(4.7)

so that

〈 ~vdr〉 = ∇× (KAeB) (4.8)

with eB =
~B
B and B the HMF expression.

Then, the combined diffusion tensor is

Ki,j = KS
i,j +KA

i,j =

K‖ 0 0
0 K⊥ KA

0 −KA K⊥

 (4.9)

which includes all the diffusive and drift terms, that can now be contracted in one single term in the
transport equation K · ∇f .

The diffusion tensor 4.9 is written in a coordinate system connected to the magnetic field. This
coordinate system will be called the magnetic coordinate system.

In this system (fig. 4.2), there is one axis e‖, parallel to the average magnetic field in the rφ -
plane, a second axis e1 in the polar direction eθ, and a third one e2 also in the rφ - plane .

e‖ = cos Ψer − sin Ψeφ (4.10)
e1 = eθ (4.11)
e2 = e‖ × e1 = sin Ψer + cos Ψeθ (4.12)

However, in equation 4.1, the diffusion tensor is written in spherical coordinates, and so a trans-
formation matrix R must be applied

R =

 cos Ψ 0 sin Ψ
0 1 0

− sin Ψ 0 cos Ψ

 (4.13)
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Figure 4.2: The magnetic coordinate system.

Krr Krθ Krφ

Kθr Kθθ Kθφ

Kφr Kφθ Kφφ

 = RKRT (4.14)

=

 cos Ψ 0 sin Ψ
0 1 0

− sin Ψ 0 cos Ψ

K‖ 0 0
0 K⊥ KA

0 −KA K⊥

cos Ψ 0 − sin Ψ
0 1 0

sin Ψ 0 cos Ψ


=

K‖ cos2 Ψ +K⊥ sin2 Ψ −KA sin Ψ (K⊥ −K‖) cos Ψ sin Ψ
KA sin Ψ K⊥ KA cos Ψ

(K⊥ −K‖) cos Ψ sin Ψ −KA cos Ψ K‖ sin2 Ψ +K⊥ cos2 Ψ


4.2 Force Field Approximation

The transport equation can only be solved numerically. However, by doing many approximations,
Gleeson and Axford (1968) [26] reduced the problem to a 1D spherically symmetric case that can be
solved analytically. This is the so called force field approximation and today it is still the simplest and
most used model for studying the effects of solar modulation.

It is assumed that:

• The Solar Wind is radially moving with constant speed V

• The diffusion tensor in eq. 4.5 is isotropic (K ‖= K ⊥) and constant with radius

• The density distribution function is spherically symmetric

• There is no drift (the antisymmetric part of K is neglected)

• The system is in quasi-stationary conditions ∂f
∂t = 0

The steady-state condition means that the relaxation time of the distribution is short with respect
to the solar cycle duration (11 years), so that one can assume that the time derivative of f is zero.
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Using the previous assumptions, the majority of the terms in equation 4.1 vanish, and a simplified
TPE is obtained

∂f

∂t
= −V ∂f

∂r
+

1

r2

∂

∂r

(
r2k

∂f

∂r

)
+

1

r2

∂

∂r
(r2V )

R

3

∂f

∂R
(4.15)

where R is the particle rigidity and k the contracted diffusion tensor. It can be proved that, in case
there are no sources or sinks at r = 0 and the system is in stationary conditions ∂f

∂t = 0, it can be
assumed that the diffusive flux is equal to the convective flux, for particles with energy above 400
MeV/nucleon [26] .

k
∂f

∂r
= V f (4.16)

Inserting 4.16 in 4.15, a new differential equation arises, called force field approximation

∂f

∂r
+
V R

3k

∂f

∂R
= 0 (4.17)

The name "force field" comes from the fact that the second term has the dimensions of potential
per unit lenght, or a field. The solutions of 4.17 are characteristic curves, where f is a constant in the
(r,R) plane:

df

dr
=
∂f

∂r
+
∂f

∂R

dR

dr
(4.18)

From 4.17 and 4.18 it can concluded that

dR

dr
=
V R

3k
(4.19)

Using k = k0βR from the QLT

dR

dr
=

V R

3k0βR
(4.20)

and so
βdR =

V

3k0
dr (4.21)

The last expression can also be written in terms of E, since E =
√
p2 +m2 and βdR = dE.

dE =
V

3k0
dr (4.22)

Such expression has the following solution

E(rH)− E(r) = ΦSM
rH − r
rH − 1

(4.23)

where E(rH) and E(r) are, respectively, the energies at the external boundary of the heliosphere
and the observation point at Earth, and ΦSM is

ΦSM =

∫ rH

r1AU

V

3k0
dr =

V (rH − 1)

3k0
(4.24)
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Since f is constant along the characteristic curve

f(1AU,E(rH)− ΦSM ) = f(rH , E(rH)) (4.25)

it is possible to use the identity p2 = E2 −m2 to calculate the differential flux JT = p2f that reaches
Earth

JT (1AU,E(rH)− ΦSM ) = JT (rH , E(rH))
E(rH)2 −m2

E(1AU)2 −m2
(4.26)

where the Solar modulation parameter φSM is defined by the relation ΦSM = |Z|eφSM .
The Solar modulation parameter can be seen as an average potential, felt by a particle when crossing

the heliosphere, causing an adiabatic deceleration1.

E(1AU) = E(rH)− |Z|eφSM (4.27)

The typical values for it range from 0.5 to 1.2 GeV. The flux at the boundaries of the outer
heliosphere JT (rH) can be taken as the local interstellar flux JLIS .

Notice that originally it was assumed that the adiabatic energy losses were negligible when compared
to the two spatial streaming terms. However, the Force Field formalism ends up with a parameter
ΦSM , which causes energy losses. This is due to the fact that the coefficient V R

3k was interpreted as a
field. There is no physical explanation that relates this field/energy loss to the true adiabatic energy
loss, although it seems quite an unusual coincidence that this energy loss is a good approximation of
the adiabatic energy losses in certain circumstances. In fact, Gleeson and Urch [1971] [27] showed that
the force field energy loss is an upper limit of the true adiabatic loss.

In figure 4.3 it is shown the flux dependence on the parameter φSM , and in figure 4.4 it is possible
to see how does the φSM changes within one Solar cycle (the parameter was obtained using the NM
network data).
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Figure 4.3: Sensibility of the flux for different Solar modulation parameters (LIS: Usoskin).

1The parameter can only be seen as an energy loss because k∝R.
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Figure 4.4: Top plot: Solar modulation parameter from 1990 to 2002 (NM network). Bottom plot: Monthly
variations of φSM and respective distribution. Next to a Solar maximum, the variations of the Solar modulation
parameter can be very high (few hundred MV per month).

4.3 The LIS Spectra
The interstellar flux is quite peculiar, since it has never been directly measured before. In fact, in

the 15th of June 2012, NASA announced that Voyager 1, launched in 1977, was entering the interstellar
space at a distance where radio signals from the craft required 16 hours and 38 minutes to reach the
antennas of NASA’s Deep Space Network. Some of the detectors inside Voyager 1 are still active and
one of them is even responsible for measuring fluxes of CRs. The fluxes detected, although restricted
to a short energy range, will give a first experimental hint about the shape of the LIS spectra.

The absence of experimental data about the Local Interstellar Flux (LIS) spectra didn’t stop physi-
cists from making predictions about its structure. Many of these predictions were done using Monte
Carlo simulations, such as the Monte Carlo Diffusion Model (MCDM) and other GCR propagation
models, such as the one from Moskalenko et al.

As seen in the last section, the Force Field approximation depends on the choice of the interstellar
flux, JLIS . The following proton LIS fluxes (published in the literature) will be analyzed in order to
understand the influence of a specific LIS flux on the Solar modulation parameter [33]. For the next
parametrizations, the proton flux will be given in particles per m2 s sr (GeV/nucleon), T represents
the kinetic energy in GeV/nucleon and m the rest mass in GeV.

Usoskin et al. (2005) parametrization [28]

JUSO5 =
a

b[T (T + 2m)]1.39 + c[T (T + 2m)]0.135
(4.28)

with a = 4.157× 105, b = 21.9 and c = 10.6

Garcia-Munoz et al. (1975) parametrization [29]

JGM75 = a[103T + becT ]−2.65 (4.29)

with a = 9.9× 1011, b = 780, and c = −0.25
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Webber and Higbie (2003) parametrization [30]

JWH03 =
103

aT 2.8 + bT 1.58 + cT 0.26
(4.30)

with a = 4.75× 10−2, b = 0.278 and c = 5.62× 10−2

Langner et al. (2003) parametrization [31]

JLA03 =

{
103exp(a− b ln2(103T ) + ln 103T − d

√
103T ) if T ≥ 1GeV/nucl

exp(e− f ln(103T ) + g
T ) if T < 1GeV/nucl

(4.31)

with a = 0.823, b = 0.08, c = 1.105, d = 9.202× 10−2, e = 22.976, f = 2.86 and g = 1.5.

Webber and Higbie (2009) parametrization [32]

JWH09 = 103exp[a+ b ln2(ln(103T )) + c
√

ln(103T ) + d ln−1(103T ) + e ln−2(103T )] (4.32)

For T < 1GeV/nucl the parameters are a = −124.5, b = −51.8, c = 131.6, d = −241.7, e = 376.7,
whereas for T ≥ 1GeV/nucl, a = 0, b = −51.7, c = 103.6, d = −709.7 and e = 1161.6 .

In figure 4.5 , all the above LIS fluxes are ploted as a function of the kinetic energy. As can be seen
in the ratio plot, the difference between some of the fluxes is quite significant in the low energy region,
whereas in the high energy region the agreement is substancially better. Dispite the differences, all
the LIS fluxes can parametrize the flux in the vicinity of the Earth by using a modulation parameter
- φSM . As shown by Herbst and Heber [33], all the LIS fluxes can represent fairly well the modulated
flux with their individual modulation parameter. It is possible to find relations between all these
model-dependent φSM , which was firstly done by Usoskin et al [2005] [28], who found a set of linear
relations between the modulation parameters.
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proton fluxes and JUSO5.
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4.4 The 1D numerical solution
In the 1D numerical solution, the assumptions are the same as in the Force Field approximation,

except for the fact that the adiabatic energy losses are kept, i.e, equation 4.16 is not used, and the
Solar Wind speed can be space dependent.

The objective is to solve 4.15 and determine f in the region r0 ≤ r ≤ rH , where rH is the outer
boundary of the heliosphere. The functions V (r), k(r, T ) and also the unmodulated spectrum at the
boundary of the heliosphere, are known.

Since 4.15 is a parabolic Partial Differential Equation (PDE) that is second order in space and
only first order in energy - there should exist two boundary conditions and one initial condition. The
first boundary condition is at r0 (Sun’s radius), where the absence of any sources or sinks is assumed,
since only GCR are being concerned. Mathematically speaking, this is assured by requiring that the
differential current density - ~S in equation 2.56 vanishes at the origin.

~S = 4πp2

(
CVSW − k

∂f

∂r

)
(4.33)

One way of accomplishing this requirement is if

VSW |r=r0 = 0 (4.34)
∂f

∂r

∣∣∣
r=r0

= 0 (4.35)

The other boundary condition is just requiring that the flux of GCR at the boundary of the
heliosphere is equal to the interstellar flux

JT

∣∣∣
r=rH

= p2f = JLIS (4.36)

The initial condition results from the fact that at sufficient high energies, the flux inside the
heliosphere is equal to the interstellar flux.

JT (r, p′) = JLIS(p′) for all r0 < r < rH (4.37)

The general method to solve this equation is using finite differences. The domain will be divided
in a rectangular grid, with r ranging from r0 to rH and ln p ranging from ln pmin to ln pmax.

r = r0 + ih (4.38)
ln p = ln pmin + nk

(4.39)

It begans with the initial condition at ln pmax and then proceeds to lower energies in a iterative
way.

For the finite difference treatment it is convinient to rewrite the transport equation 4.15 in the form

a
∂2f

∂r2
+ b

∂f

∂r
+ c

∂f

∂ ln p
= 0 (4.40)

After some algebra, it is possible to obtain some expressions for the coefficients a,b and c:

a = k (4.41)

b = −V +
2k

r
+
∂k

∂r
(4.42)

c =
2

3

V

r
+

1

3

∂V

∂r
(4.43)
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Figure 4.6: Rectangular grid.

When dealing with numerical problems, it is always recommendable to rewrite the equation in a
non-dimensional form, by defining some typical momentum and space scales - PS and LS .

r̃ =
r

LS
, p̃ =

p

PS
(4.44)

From now on, the use of r̃ or p̃ will be avoided in order to simplify the notation, and every time an
r or p appears, its meaning is the non-dimensional variable.

The next step - and this is what makes this procedure a finite difference method - is to approximate
the partial derivatives as differences in near grid points.

∂f

∂ ln p
=

fn+1
i − fni

k
(4.45)

∂f

∂r
=

fn+1
i+1 − f

n+1
i−1

2h

∂2f

∂r2
=

fn+1
i+1 − 2fn+1

i + fn+1
i−1

h2

fni = f(rmin + ih, ln pmin + nk)

In the space direction, the differences have been centered about the point (i, n+ 1) to give second
order accuracy to the approximation. These expressions could then be substituted into the transport
equation, giving the following solution

fni =

(
−ka
h2

+
kb

2h

)
fn+1
i−1 +

(
2kc

h2
+ 1− kc

)
fn+1
i +

(
−ka
h2
− kb

2h

)
fn+1
i+1 (4.46)

Now, it is possible to compute all the fni from the fn+1
i and obtain f for the entire grid. Note that

at each iteration the boundary conditions must be verified.
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The solution to this equation is second order accurate in space, but only first order accurate in
ln p, and very easy to implement. However there are some drawbacks, mainly because the numerical
solution is unstable unless the ratio k/h2 is sufficiently small. Instability means that small errors due,
either to arithmetic inaccuracies, or to the approximate nature of the derivative expressions will tend
to accumulate and grow as one proceeds rather than dampen out (see Lapidus and Pinder 1982 [36]
for a careful discussion of stability issues).

The instability problem can be solved if an implicit finite difference scheme is used, in this case
the Cranck Nicholson (CN) algorithm. The CN has the advantage of being unconditionally stable,
regardless of the value of k/h2, and also is second order accurate in both the space and momentum
directions. The key difference in this kind of algorithm is that the partial derivatives are averages for
momentum n and n+ 1:

∂f

∂ ln p
=

fn+1
i − fni

k
(4.47)

∂f

∂r
=

fn+1
i+1 − f

n+1
i−1 + fni+1 − fni−1

4h

∂2f

∂r2
=

fni+1 − 2fni + fni−1 + fn+1
i+1 − 2fn+1

i + fn+1
i−1

2h2

Substituting the last expressions in the transport equation

Bi︷ ︸︸ ︷( c
k

+
a

h2

)
fni +

Ai︷ ︸︸ ︷(
b

4h
− a

h2

)
fni−1 +

Ci︷ ︸︸ ︷(
− b

4h
− a

h2

)
fni+1 = (4.48)( c

k
− a

h2

)
fn+1
i +

(
− b

4h
+

a

h2

)
fn+1
i−1 +

(
b

4h
+

a

h2

)
fn+1
i+1︸ ︷︷ ︸

Di

The fni cannot be calculated as a simple linear combination of fn+1
i , but are rather the solution of

a system of linear equations. This system forms a matrix with a particular shape
B0 C0 0 0 0 · · · 0
A1 B1 C1 0 0 · · · 0
0 A2 B2 C2 0 · · · 0
...

. . . . . . . . . 0 · · · 0
0 · · · · · · · · · 0 AI BI




fn0
fn1
fn2
...
fnI

 =


D0

D1

D2

...
DI


After inverting this matrix, the expression for fn at all space points is obtained. Repeating the

procedure several times it is possible to determine f for all grid points.

4.5 Force Field and 1D comparison
The purpose of this section is to compare the Force Field and the 1D solutions and see how they

differ. To do so, the data from the AMS-01 flight and from IMP 1987 and 1997 was used.
The GCR LIS fluxes used were the ones from Webber and Lockwood [2001] [37]

JLIS(H) =
21.1(103T )−2.8

1 + 5.85(103T )−1.22 + 1.18(103T )−2.54
(4.49)

JLIS(He) =
1.075(103T )−2.8

1 + 3.91(103T )−1.09 + 0.9(103T )−2.54
(4.50)

in particles/m2.sr.s.MeV and T is the kinetic energy in GeV.
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The value used for the boundary of the Heliosphere was rH = 90 AU, the diffusion coefficient and
the solar wind radial velocity were set to

Table 4.1: Solar Wind and diffusion coefficient for AMS-01, IMP87, IMP97
Variable AMS-02 IMP87 IMP97
k0[cm2/s] 3.6 × 1022 4.38 × 1022 4.38 × 1022

V0[km/s] 430 400 400

For the 1D solution, the Solar Wind velocity expression used was

V (r) = V0(1− e−13r) (4.51)

which is in accord with experimental measurements of the Solar Wind velocity [49]
For the IMP87 and IMP97, the fluxes are calculated at 1,20,60 and 80 AU (fig. 5.7), and are offset

by factors of
√

10, so that the lines can be clearly visible. The first aspect to notice in fig. 5.7 is that,
both the 1D and the Force Field solutions (although not considering drift terms), can fit reasonably
well experimental data in solar minimum periods with opposite drift states. It is also evident that the
Force Field solution diverges from the 1D solution at low energies (this phenomenon gets worse as the
distance increases), proving that the energy losses estimated by the Solar modulation parameter are
not the true adiabatic losses.

Another quantity that was also calculated for the two solutions was the radial intensity gradient,
defined as

gr =
1

JT

∂JT
∂r

(4.52)

Figures 4.8(a) and 4.8(b) show averages of gr

gr ≈
ln (JT1/JT2)

r2 − r1
(4.53)

for four different space intervals: [1;20] AU, [20;40] AU, [40;60] AU and [60;80] AU. The quantity gr
gives information about flux variations with distance in different regions. The full line solutions in
figure 4.8 indicate the well-known behavior that the gradients peak between 20 and 200 MeV, and that
they recede to zero at low energies due to adiabatic energy losses. The dashed lines are the force field
gradients, which show again that the true adiabatic energy losses are not being taken into account.

Figure 4.9 shows that it is difficult to distinguish between the Force Field and 1D numerical solu-
tion in the rigidity region covered by the AMS-01 experiment. As the AMS-02 detector operates in
approximately the same rigidity region as AMS-01, it will also be hard to see any discrepancies between
the Force Field and 1D solutions using the AMS-02 data, even with the huge amount of statistics.

The Force Field and the 1D are both approximate solutions of the transport equation. They assume
that there is no dependence of the flux on the θ and φ coordinates, disregarding all the effects related,
for instance, with the rotation of the Sun. This of course leads to the neglection of the HMF and the
HCS structures and the drift terms.

For this reason, in these kind of models, it only makes sense to study variations on a monthly basis
(approximately over one Solar rotation ∼ 27 days).
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(a)

(b)

Figure 4.7: a) Proton fluxes at various distances from the Sun . b) Helium fluxes at various distances from
the Sun. IMP data are from Goddard Medium Energy Detector (MED) (P.I.: R. E. McGuire).
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(a)

(b)

Figure 4.8: a) Radial Intensity Gradients for Protons at various distances from the Sun . b) Radial Intensity
Gradients for Helium at various distances from the Sun. Experimental Data from IMP 1987 and 1997
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Figure 4.9: a) Proton and Helium calculated with Force Field and 1D . b) Ratio p/He calculated with Force
Field and 1D. Experimental points from AMS-01 [34] [35]
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4.6 The 2D numerical solution
If in equation 4.1, azimuthal symmetry is assumed (∂/∂φ=0), the new expression for the TPE is

∂f

∂t
=

diffusion︷ ︸︸ ︷
1

r2

∂

∂r
(r2Krr)

∂f

∂r
+

1

r2 sin θ

∂

∂θ
(Kθθ sin θ)

∂f

∂θ
(4.54)

+

diffusion︷ ︸︸ ︷
Krr

∂2f

∂r2
+
Kθθ

r2

∂2f

∂θ2
+

drifts︷ ︸︸ ︷
1

r2

∂

∂r
(rKrθ)

∂f

∂θ
+

1

r sin θ

∂

∂θ
(Kθr sin θ)

∂f

∂r

−

convection︷ ︸︸ ︷
V
∂f

∂r
+

adiabatic losses︷ ︸︸ ︷
1

3r2

1

∂r
(r2V )

∂f

∂ ln p

The drift terms can be written in terms of the drift velocities ~vdr = ∇× (KAeB)

〈vdr〉r = −sign(qA)
1

r sin θ

∂

∂θ
(Kθr sin θ) (4.55)

〈vdr〉θ = −sign(qA)
1

r2

∂

∂r
(rKrθ) (4.56)

where sign(qA) determines the drift direction of the particle in the heliosphere (q is the charge and A
is the magnetic field polarity).

The diffusion coefficients Krr = K‖ cos2 Ψ + K⊥ sin2 Ψ and Kθθ = K⊥ ( as deduced in the trans-
formation 4.15) are just the diagonal elements of the diffusion tensor, where K⊥ and K‖ represent,
respectively, the diffusion coefficients perpendicular and parallel to the average HMF. Ψ is the angle
between the radial and mean HMF directions. The coefficients Krθ and Kθr are the off diagonal
elements and can be expressed as Krθ = −Kθr = −KA sin Ψ, where KA is the antisymmetric element
of the diffusion tensor, describing the effects of particle gradient and curvature drifts in the large-scale
HMF.

The drift velocity, as mentioned in equation 4.8 is

~vdr = ∇× (KAeB [1− 2H(θ − θ′)]) (4.57)
= ∇× (KAeB)[1− 2H(θ − θ′)] + 2δ(θ − θ′)KAeB ×∇(θ − θ′)
= ~vD[1− 2H(θ − θ′)] + ~vHCSδ(θ − θ′)

where [1 − 2H(θ − θ′)] was introduced to take into account the fact that the field changes polarity
when crossing the HCS, eB is the HMF direction and θ′ is just the HCS expression (equation 2.25).

The first term in the last equation describes the gradient and curvature drifts, which are caused
by the global magnetic field, and the second term describes the drifts along the HCS. A particle in an
external magnetic field ~B gyrates in a plane perpendicular to the field direction. If a particle is moving
within two gyroradii from HCS it will be affected by it. The effect is showed in figure 4.10, for a flat
HCS.

Figure 4.10: An illustration of the trajectory of a particle along a flat HCS.The wavy curves represent the
trajectory of the particle.

46



In order to separate the effect of the HCS drift from other drift effects at a certain latitude, it
is necessary to define the region swept out by particles drifting along the HCS in one solar rotation.
This region (figure 4.11 ) is known as the HCS region and is defined by the latitude θ such that,

π

2
− α−∆θHCS < θ <

π

2
+ α+ ∆θHCS (4.58)

where α is the tilt angle and ∆θHCS is the angle spanned by two gyroradii of a particle at a radial
distance r from the Sun, i.e.∆θHCS = sin−1(rg/r), or ∆θHCS = 2rg/r when the gyroradius rg << r.

Figure 4.11: Scheme of the HCS region.

The expressions ~vD = ∇× (KAeB) and ~vHCS = 2KAeB ×∇(θ − θ′), can be computed, since KA,
eB and θ′ are known. The projections of ~vD and ~vHCS in the meridional plane are shown in figure
4.12, for positive charges and for A > 0 and A < 0.

Figure 4.12: The projections of drift directions onto the meridional plane for positively-charged particles in a
Parker HMF during an A>0 and A<0 epoch [47].

Structures like the HCS depend on r, θ and φ, which means they are three dimensional. Potgieter
and Moraal [48] showed that a way of including the HCS drift effects in a 2D model was to assume an
antisymmetric diffusion coefficient of the form K ′A = KA F (θ), with

F (θ) =

{
(1/a) arctan(1− 2θ/π) tan a if c < π/2
1− 2H[θ − π/2] if c = π/2

(4.59)
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a = arcos
( π

2c
− 1
)

(4.60)

c =
π

2
− sin(α+ ∆θHCS)

2
(4.61)

The resulting drift velocity in a 2D model is

~vdr = F (θ)∇× (KAeB) +
∂F

∂θ

KA

r
eθ × eB (4.62)

The method that will be used to solve equation 4.54 is the Alternating Direction Implicit (ADI)
method, in particular the Peaceman-Rachford scheme. The ADI method is an extension of the CN,
used to solve the 1D TPE. It preserves the trigonal nature of the matrices to be inverted by employing
an operator splitting technique that produces two independent differential equations.

In this particular case the equation has the form (assuming the steady state condition ∂f/∂t = 0)

∂f

∂ ln p
+ Lrf + Lθf = 0 (4.63)

with

Lr = a1(r, θ)
∂

∂r
+ a2(r, θ)

∂

∂r2
(4.64)

Lθ = b1(r, θ)
∂

∂θ
+ b2(r, θ)

∂

∂θ2
(4.65)

Lθ and Lr are differential operators. In the 1D case, the way to solve the equation was to transform
the domain in a rectangular grid (r, ln p) and use finite differences. The problem is that in the 2D case
there are three variables r ∈ [ln pmin, ln pmax], r ∈ [r0, rH ] and θ ∈ [0, π/2] in the equation. What the
ADI does is to solve the equation in two steps.

1.
fn − fn−1/2

(∆ ln p)/2
+ Lrf

n−1/2 + Lθf
n = 0 (4.66)

2.
fn−1/2 − fn−1

(∆ ln p)/2
+ Lrf

n−1/2 + Lθf
n−1 = 0

where Lr and Lθ are now the discretized operators Lθ and Lr, i. e., written using finite differences.
The first step is used to solve implicitly in r for all θ, in order to obtain a solution at a half momentum
step fn−1/2, using fn as an initial condition. A second solution is now obtained by solving implicitly
in θ for all r to get the solution at a full momentum step fn−1, by using the previously calculated
solution at half a momentum step fn−1/2. That is why it is called an alternating method, because in
the first step the equation is solved implicitly for r and in the second step is solved implicitly for θ.

Just like in the 1D case, it is important to assure that the boundary conditions are always being
respected. In the 2D model, besides the boundary conditions at r = r0 and r = rH , there are two
additional ones:

∂f

∂θ

∣∣∣
θ=0

=
∂f

∂θ

∣∣∣
θ=π/2

= 0 (4.67)

which result from the fact that the heliosphere is assumed to be symmetrical about the poles and the
equatorial plane. Repeating the procedure in 4.66, it is possible to calculate f for all θ and r.

As can be easily seen, the complexity changes abruptly when considering two dimensions. The
diffusion is now treated as a complex tensor, with symmetric components, accounting for the per-
pendicular and parallel diffusion, and antisymmetric components, responsible for the drifts. Some of
these quantities, like K⊥ are still not completely understood, which means that a lot of work is still
needed to fully comprehend its effects on the flux. The purpose of this section was not to study in
detail the 2D solution, but rather to give an outline on how to solve it. There are a lot of parameters
that enter the 2D equation, which have to be carefully analyzed in order to understand its effects.
The Peaceman-Rachford scheme, described above, was implemented using a C++ classes framework
(integrated in the analysis sofware chain - LxSoft).
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5
Solar Modulation effects on AMS-02 proton
fluxes

The first part of this chapter describe all the procedures related to the calculation of the primary
proton flux. Protons correspond to approximately 90% of the 40 million events that reach the AMS-02
detector every day, and so, contamination from other species is not a major problem. Given that, all
the particle selection procedures are more focused on having a high efficiency, rather than a perfectly
clean sample.

The second part of this chapter is about the monitorization of Solar Events,a periodic survey of
fluxes variations and the application of a Solar modulation model. The results are also compared with
the NM network data.

5.1 Measuring Proton Fluxes
The flux of particles that reaches the detector are influenced by two physical phenomena: Solar

Modulation and the Geomagnetic Cut-off. The goal is to select primary protons, i.e, protons with
rigidity above the cut-off rigidity.

The flux of primary protons can be expressed by:

Jp(R) =
1

Acc(R)∆t(R)
· ∆Np(R)

∆R
(5.1)

The various terms are:

• ∆Np - The number of primary protons between [R;R+∆R].

• ∆R - The width of the rigidity bin.

• ∆t - The exposure time of the detector between [R;R+∆R].

• Acc - The Acceptance of the detector as a function of rigidity (which includes the geometrical
acceptance and the selection efficiencies)

5.1.1 Proton Selection
The main goal of the selection was to distinguish protons from the other particles that constitute

the flux of cosmic rays, mainly heliums (11%) and electrons (2%) without reducing too much the
proton sample, i.e., with high efficiency.

As seen in Chapter 3 some of the AMS-02 subdetectors, such as the TRD and the ECAL, were
built to separate e+/e− from p/p̄. However, there are some characteristics of these subdetectors, such
as the low geometrical acceptance of the ECAL, that reduce dramatically the selection efficiencies, i.e,
the number of protons in the sample, and so these detectors will not be used in the selection.
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The proton selection was divided in two parts: general data selection and particle selection.
The general data selection assured that the events analyzed passed the quality cuts necessary for a
proper particle identification (analyzing the rigidity and velocity measurements). The particle selection
was focused in selecting a specific particle, in this case the proton.

The data selection cuts (DS) were applied as follows:

DS1 One particle and one track per event.
The aim of this cut was to exclude events with multiple particles transversing the detector.

DS2 One hit with X and Y coordinates per pair of inner Tracker planes (3/4, 5/6 and 7/8).
This assures a minimal number of hits required for a good measurement of the rigidity in the
Tracker. The rigidity is calculated interpolating the track.

DS3 χ2
y < 10.

Tracker track quality in the bending direction.

DS4 At least one hit on every TOF plane (4/4)

DS5 Matching between the Tracker track and the TOF hits position.
The fitted track was extrapolated to the TOF and the compatibility was checked by computing
the distance between the trace and the TOF hits position.

DS6 χ2
β < 4.
βTOF quality

DS7 β > 0 .
This cut rejects all particles that entered the detector from the bottom position. The majority of
these particles are secondaries, created below the detector via interactions of the primary particle
with the atmosphere.

(a) (b)
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Figure 5.1: a) Normalized χ2 in the bending direction. b) Distribution of the relative differences between
TOF and TRK reconstructed charges. c) Distribution of longitudinal distance between TOF hits position and
track, for bar 1 of layer 3. d) χ2

β distribution. All these plots correspond to one day of data acquisition.
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The Particle Selection cuts (PS) were based on the charge measurements given by the TOF and
Tracker, and on the rigidity measurements given by the Tracker. In this case, for proton selection, the
cuts were:

PS1 Positive Rigidity.
Choosing particles with positive charge.

PS2 Charge Compatibility between TOF and Tracker (relative difference must be lower than 30%)

PS3 Q=1.
Choosing particles with absolute charge equal to 1.

Table 5.1: Cuts efficiencies
Cut average efficiency Description
DS1 50% Npart = 1 and NTRK = 1
DS2 41% Number of track hits
DS3 39% Track Quality
DS4 37% TOF hits
DS5 30% Matching Tracker-TOF
DS6 28% Velocity quality
DS7 26% Downward particles
PS1 24% Positive rigidity
PS2 20% Charge compatibility Tracker-TOF
PS3 16% Charge = 1

After these cuts, the sample was mainly constituted by particles with positive unit charge, but it
was not a primary proton sample. In order to accomplish that, all the particles with rigidity below
the cut-off rigidity were rejected.

Yet, the rejection of particles below the cut-off must be dealt with some precautions. As showed in
section 2.5.4, the Stöermer cut-off rigidity depends not only on the detector position, but also on the
direction of the particle. However, even if the particles direction, rigidity (R) and cut-off (RCUT ) are
known, the inequality that tells if the particle is primary is not as simple as

R > RCUT (5.2)

This is due to the fact that Earth’s magnetic field has a more complex shape than a dipole 1,
and so the formula 2.67 is not exact . As a consequence, for each position and incoming direction,
a penumbra region is created. This penumbra region is bounded by two rigidity limits: RU , above
which all trajectories of the galactic particle are allowed, and a lower rigidity RL, below which no
trajectory of the galactic particle is allowed; the Stöermer cut-off rigidity RCUT is a value between RL
and RU . Figure 5.2 shows this concept for an arbitrary position and incoming direction of the galactic
particle. Using numerical methods to solve the motion equation in the magnetic field, it is possible to
back-trace a measured particle (of known rigidity and incoming direction). As can be seen there are
regions below RCUT , where the particle is galactic, and regions above the RCUT is not galactic, which
show the limitations of the Stöermer’s formula.

1The Earth’s magnetic field is usually expressed as a truncated series expansion whose coefficients are periodically
measured - the International Geomagnetic Reference Field (IGRF)
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Figure 5.2: Schematic representation of the penumbra region [43] [51].

Additionally, Stöermer’s formula shows that two particles, with the same rigidity, can be classified
differently (primary or secondary), depending on their direction. So being, for each position of the
detector in space, equation 2.67 says that there is not an unique cut-off rigidity but rather a rigidity
interval [RminCUT ;RmaxCUT ].

Figure 5.3: Schematic representation of the different regions created by the geomagnetic cut-off.

In figure 5.3, all particles falling into zone 1 are secondaries,whereas all particles inside zone 3
are primaries. However, for particles with rigidities between [RminCUT ;RmaxCUT ] the distinction is not so
obvious, because the cut-off depends on the direction.

52



Since between [RminCUT ;RmaxCUT ] not all trajectories are allowed, the galactic protons are not isotropic
in that region. It was therefore necessary to avoid it and only particles with rigidities above RmaxCUT , in
a zone of rigidities where all detected particles are galactic, were selected. In order to stay clear from
any penumbra effects, a "safe margin" was adopted and the decision about the origin of the particle
was based on the inequality

R > C ·RmaxCUT (5.3)

with C=1.3
Finally, a mass cut was applied to exclude particles with Q=1, other than protons, that were

contaminating the sample. Figure 5.4 shows the mass plot, before and after the band cut. This cut
was only effective for low energies where the 1/β curves of the particles are considerably different.

(a) (b)

Figure 5.4: a)Inverse β versus momentum before the mass cut . b)Inverse β versus momentum after the mass
cut .

5.1.2 Exposure Time and Livetime
The computation of the flux requires, as seen before, the calculation of the exposure time for each

rigidity bin, i.e., the time the detector is "able" to measure particles in a certain rigidity interval. For
instance, near the equator, the cut-off rigidity is around a few tens of GV, which doesn’t allow particles
to fill up low rigidity bins. As a consequence, the time is counted only for bins above the cut-off.

Using the same "safe" factor - C, the bin time is counted, if and only if

Rminbin > C ·RmaxCUT (5.4)

where Rminbin is the lower boundary of the rigidity bin.

Figure 5.5: Schematic representation of exposure time counting.

Another important aspect regarding time counting is the livetime. By definition, dead time is the
time required by the electronics and acquisition system of the apparatus to register each event. During
this time (200 µs for the AMS-02 detector), the apparatus cannot register any particle reaching it.

53



R(GV)
-110 1 10 210

 t 
(s

ec
)

310

410

510

Figure 5.6: Exposure Time during one day of acquisition.For rigidities above ≈ 50 GV, the detector is always
able to count times.

The payback is that the rate at which the events are reaching the detector, R0, is not equal to the
rate at which the events are being registered - R. Therefore, the number of events in a certain rigidity
bin i must be corrected by the livetime

∆Ni = R0 ·∆ti =
R

L
·∆ti (5.5)

where

L =
R

R0
(5.6)

is the livetime.
If the rates are very high, the livetime can be excessively low, and the detector "loses" a lot of

events during the event processing time. In AMS-02, the highest rates (≈ 1500 Hz) occur at the poles
and when the detector passes through the South Atlantic Anomaly (SAA)2. Figure 5.7(a) shows the
livetime increasing with the geomagnetic latitude. All the events having livetimes lower than 0.65 were
rejected. Figure 5.7(b) shows the orbit of the detector during one day and excluding the SAA.
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Figure 5.7: a)Livetime versus geomagnetic latitude for 1 day of events . b) Orbits for 1 day, excluding the
SAA.

2The SAA is the area where the Earth’s magnetic field has its lowest value, allowing that the inner Van Allen
radiation belt comes closely to the Earth’s surface. The effect is caused by the non-concentricity of the Earth’s dipole.
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5.1.3 Acceptance
The detector’s acceptance was computed using a Monte Carlo proton sample. The acceptance can

be grouped in one single expression, which includes the generation acceptance and the efficiencies

Acc(R) = Acc0 · εtrigger(R) · εSel(R) (5.7)

where Acc0 is the generation acceptance, εtrigger(R) is the trigger efficiency and εSel(R) is the selection
efficiency. Each set of selections for the flux sample under study, also called cuts, must be evaluated
over a subset of events, representative of the galactic flux aiming to measure. This subset is called
efficiency sample.

The efficiency of a generic set of selections is defined as:

ε(R) =
N(R)

N0(R)
(5.8)

where N0(R) is the number of events distributed in rigidity in the efficiency sample, and N(R) is the
subset of events that passed the cuts.

The trigger efficiency is defined as the number of protons that passed the AMS-02 Level 1 trigger
divided by number of generated protons. The Level 1 proton trigger consists of two conditions :

• The particle must cross all the 4 TOF planes.

• No ACC signal.
This rejects events having a particle interaction occurring inside the inner Tracker, which leads
to a deficient rigidity measurement.

The selection efficiency is the ratio of particles that, having passed the trigger, passed all the data
selection and particle selection cuts.

In the Monte Carlo, the detector is simulated inside a cube of (3.9)3 m3. The events are generated
isotropically on the faces of the cube, and distributed uniformly in log p. The generation acceptance
in each face is:

Acc0 =

∫
S

dS⊥

∫
Ω

dΩ = S0

∫
cosθ

∫
φ

cos θ d cos θdφ (5.9)

Since the events are generated with a random 0<φ<2π and cos θmin < cos θ < cosπ, the last
expression is just

Acc0 = πS0(1− cos2 θmin) (5.10)

Figure 5.8: Schematic representation of the Monte Carlo generation method on the top face of the cube.
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In this work, the acceptance was calculated using a sample of 6×106 protons, generated isotropically
on the top face, and uniformly distributed in log p between 0.5 GV and 200 GV.

The acceptance after trigger and after selection, i.e,

AccTrig(R) = Acc0 · εtrigger(R) (5.11)
Acc(R) = Acc0 · εtrigger(R) · εSel(R) (5.12)

are ploted in figure 5.9.

Figure 5.9: Selection and Trigger Acceptances.

5.1.4 Results
All the steps towards the determination of the flux are now completed, and so it is possible to

calculate the AMS-02 primary proton flux. The AMS-02 computed flux is displayed in 5.10 together
with data from several other experiments. Since these experiments were performed under different
Solar activity conditions, the low rigidity region of the flux is substantially different among them. The
AMS-02 flux is "folded", i.e, the rigidity distribution of selected protons was not corrected for the
effects of rigidity displacement due to the finite spectrometer resolution. For events above 50 GV, the
rigidity uncertainties can result in a wrong assignment of the particle’s rigidity. As a result, the slope
of the proton flux, for rigidities above 50 GV, can be slightly affected.
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Figure 5.10: Proton flux from several experiments.

56



5.2 Solar effects on fluxes
This section serves the purpose of monitoring and studying the effects of the Sun on the AMS-02

primary proton flux, both the sporadic, caused by Solar Flares or CME, and the long term Solar
modulation. This will be done by integrating the proton flux at low rigidities (2 to 30 GV) and high
rigidities (30 - 100 GV) and studying its variations.

5.2.1 Observation of Solar Events
As described in Chapter 2, SCR or SEP, which are originated due to Solar phenomena, constitute

a percentage of the total cosmic ray flux reaching Earth. The origin of these Solar particles is normally
associated with events like Solar flares and CME, which also influence the flux of GCR.

Solar Flares are huge explosions on Sun’s surface, usually occuring near sunspots. When the
tangled magnetic fields, coming out of the surface, reach a "breaking point", like a rubber band that
snaps when wound too tight, huge bursts of energy are released as the field lines reconnect. This can
lead to the formation of a Solar flare, as depicted in figure 5.11.

In the magnetic reconnection process, a huge amount of magnetic energy is rapidly released and
transformed to thermal and kinetic energy of the particles. Reconnection can accelerate particles to
a high energy (few GeV) within a short time, as required by the very impulsive SEP events. Ejected
particles may either remain trapped, or escape into the interplanetary space, if the upper magnetic
configuration becomes open.

The particles emitted during these kind of events are mainly photons (γ-rays and X-rays), protons
and electrons.

Figure 5.11: Schematic representation of the formation of a Solar flare (Credit: NSF).

Solar flares can be classified by their brightness, i. e., the peak flux (in watts per square meter,
W/m2) of 100 to 800 picometer X-rays.

Classification peak flux (W/m2)
X ≥ 10−4

M 10−5 - 10−4

C 10−6 - 10−5

B 10−7 - 10−6

A ≤ 10−7

Table 5.2: Solar flares Classification
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Within a class there is a linear scale from 1 to 9 (apart from X), so an M2 flare is twice as powerful
as an M1 flare.

CME are quite common during periods of high Solar Activity and are characterized by being
spatially larger and temporarily slower than Solar flares. During a CME, huge quantities of plasma,
initially trapped in closed coronal magnetic field lines, are ejected into interplanetary space (involving
typically 1012 to 1013 kg of mass, and kinetic energies of 1024 to 1025 J).

The disruption of a large, stable, magnetically closed structure still poses fundamental questions
for the MHD theory. However, it is probable that large-scale magnetic reconnection is involved in the
formation of a CME. It is also worth noting that, although flares and CME are often connected, this
is not always true.

A CME often leads to a huge hot plasmoid (a closed magnetic structure) moving with a high speed
in the interplanetary space, and to an interplanetary shock located at the front edge of the plasmoid
(the shock can also accelerate particles by Fermi-acceleration).

Thus, a Solar flare or a CME can generate a shock that propagates through the Heliosphere. This
shock will reduce the flux of GCR that reaches Earth, originating what is called a Forbush decrease
[44]. The causes of the Forbush decrease are still not completely understood, but it is believed that the
shock increases the magnetic field as it passes through the Heliosphere, creating an effective barrier
for the cosmic ray particles. Usually, the shock front also "collects" and accelerates particles, which
are seen as a small intensification of the flux before the Forbush decrease.

In order to monitor variations, the AMS-02 proton flux was integrated between [2 ; 30 ] GV, which
corresponds to the rigidity zone where the flux is sensible to these kind of effects.The Oulu NM’s
counting rates were also analyzed.

The most intense Solar flares between 8/2011 and 4/2012 are listed in table 5.3.

Table 5.3: Solar flares’ list between 8/2011 and 4/2012 [45]
Classification Date Sunspot Region

X6.9 August 9 2011 1263
X5.4 March 7 2012 1429
X2.1 September 6 2011 1283
X1.9 November 3 2011 1339
X1.9 September 24 2011 1302
X1.8 September 7 2011 1283
X1.7 January 27 2012 1402
X1.4 September 22 2011 1302
X1.3 March 7 2012 1429
X1.1 March 4 2012 1429
M9.3 August 4 2011 1261
M8.7 January 23 2012 1402
M8.4 March 10 2012 1429
M7.9 March 13 2012 1429

Note that the majority of these Solar flares were accompanied by a CME.
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Figure 5.12: a) Integrated proton flux [2 ; 30] GV and Oulu NM’s rates in a daily basis (days of the month
in the X-axis), for the months with the most powerful Solar flares (August 2011 September 2011 and March
2012). The plots reveal the expected reduction of the low energy proton flux during a flare. Additionally, they
show a strong temporal correlation between the variation of the integrated flux and the number of neutrons
reaching Earth’s surface. b) This figure shows the several phases of 7th March flare. The first one is the
arrival of the SEP protons, which were accelerated in the shock front, and will increase the proton flux at low
rigidities. After the passage of the shock front, there is a sudden decrease in the flux due to the enhancement
of the magnetic field.Finally, the flux takes almost 20 days to return to its original form.
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5.2.2 Stability of the fluxes
A detailed study of the daily integrated fluxes, at low and high energies, was performed with the

AMS-02 proton data. Figure 5.13 shows the integrated fluxes for data between August 2011 and April
2012. The low energy integrated flux in 5.13(a) reveals relative flux variations up to ∼ 30%, due to
Solar events, whereas the high energy integrated flux in 5.13(b) is stable within 2% to 3%.

In the first days of December, 6 ladders of the Tracker, measuring the X-coordinate (non bending
coo.) were lost. The ladders caused a drop on the acceptance in the order of 10%. Monte Carlo proton
samples are needed to accurately evaluate the new acceptance. Since no Monte Carlo was available
including this effect, an average correction was applied to acceptance from December on. Nevertheless,
this correction is still preliminary and more studies need to be done in order to understand all the
impacts of the lost.

(a)

(b)

Figure 5.13: a) Integrated proton flux (low energy) between 8/2011 and 4/2012 . b) Integrated proton flux
(high energy) between 8/2011 and 4/2012.
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5.2.3 Solar modulation parameter analysis
The study of the Solar modulation with AMS-02 proton fluxes was done using the Force Field

approximation. As seen in the last chapter, the Solar modulation parameter - φSM - depends on
the form of the LIS used. The expression for the modulated flux in particles

m2 s GeV sr is given by 4.26.
However, the units of the measured flux are particles

m2 s GV sr and so, expression 4.26 must be multiplied
by the correspondent jacobian, in order to be dimensionally equivalent. The modulated flux per unit
of rigidity is

JR = JT
dT

dR
= A

R

E

E2 −m2

(E + ZφSM )2 −m2
JLIST

(5.13)

where

• R is the particle rigidity in GV

• T is the kinetic energy in GeV

• E is the kinetic energy in GeV

• φSM is the solar modulation parameter in GV

• Z is the charge of the particle

• m is the mass of the particle in GeV

• A is a normalization constant, to account for slight variations in absolute fluxes between the
observations

• JLIST
is the interstellar flux in particles

m2 s GeV sr

The procedure to determine the Solar modulation parameter is to fit the measured fluxes with
expression 5.13. Since the fluxes under study are primary proton fluxes, some of the parameters were
fixed: m = 0.938 GeV and Z = 1.

As previously discussed in section 4.5, the Force Field is a simplistic approximation that neglects
some terms of the transport equation, like the drifts, and fails to estimate the correct adiabatic losses
at low energies. As a consequence, there is a possibility that the Force Field is not able to reproduce
the observed flux at some energy regions where this terms cannot be neglected and have an important
impact on the flux. In order to detect these kind of effects, a study of the optimal fitting region,
i.e., the rigidity region where the model explains the modulated flux most accurately, was done. The
AMS-02 primary proton fluxes were fitted in a daily basis, between [Rmin; 50] GV using the expression
5.13. With the daily φSM obtained between August 2011 and December 2011, a monthly average was
calculated, and the results are shown in figure 5.14 for two different LIS models. Note that, all days
corresponding to periods of Solar events (Solar flares and CME) were excluded from this analysis.
During these days, the flux is deformed at low energies, influencing the value of the Solar modulation
parameter. The reason to choose 50 GV and not an higher value, as the upper fitting boundary, has
to do with two issues. The first one is because there is not much interest in fitting the flux at high
rigidities, where the Solar modulation effects are negligible, and the event statistics is low. Secondly,
because the unfolding of the flux was not performed, and so, at high rigidities, the flux may be partially
distorted.
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Figure 5.14: a) Monthly Solar modulation parameter between 8/2011 and 4/2012 as function of Rmin, using
the Usoskin LIS . b) Monthly Solar modulation parameter between 8/2011 and 4/2012 as function of Rmin,
using the Weber and Higbie 2003 LIS.

The plots in 5.14 show a degradation of the Force Field parameter for lower fitting boundaries below
∼ 6 GV. This effect is independent of the LIS model used. Additionally, the χ2/ndf of the fit visibly
degrades if Rmin < 6 GV (as can be seen in figure 5.15 for a particular day). This can indicate that
the flux, for low rigidities, cannot be properly explained by the Force Field approximation. However,
for rigidities above 6 GV, the Force Field is able to reproduce the corresponding modulation. With
this in mind, the calculation of the AMS-02 Solar modulation parameter from August 2011 to April
2012 was performed using the JUSO5 LIS model (figure 5.16).
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Figure 5.15: Solar modulation parameter derived from the AMS-02 proton fluxes (1st January 2012) for Rmin
= 1 GV and Rmin = 6GV using the JUSO5 LIS model. As can be seen, for Rmin=1 GV, the Force Field cannot
fit properly the measured flux.
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Figure 5.16: Smooth Sunspot number between August 2011 and April 2012 (SIDC Belgium).Solar modulation
parameter derived from the AMS-02 proton fluxes between August 2011 and April 2012, using the JUSO5 LIS
model.

The evolution of the Solar modulation parameter from August 2011 to April 2012 (figure 5.16)
does not show a specific trend, even considering that presently we are near a Solar maximum and the
modulation effects are increasing very rapidly. This behavior is also present in the Sunspot number
from the Solar Influences Data Analysis Center (SIDC). In fact, as can be seen in figure 2.6 that
shows the solar parameter derived using NM values since 1960, data analysis of 9 months periods are
sometimes insufficient to spot a general increasing or decreasing trend. As a consequence, the expected
increasing tendency will only be visible with some more months of data.
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5.2.4 Compatibility with NM
As mentioned before in section 2.5.1, the flux on the top of the atmosphere can be calculated using

the neutron rates, and the specific yield function of each station. Given this, the Solar modulation
parameter can be derived using the NM network data. The interstellar flux normally used to compute
the NM’s Solar modulation parameter is JUSO5 [46]. As a result, the parameters extracted from the
NM and the AMS-02 proton fluxes are directly comparable, since both used the same LIS model.
Unfortunately, the NM modulation parameters for the year 2012 haven’t yet been published, and the
comparison can only be done with the values between August 2011 and December 2011 [50]. This
comparison is shown in figure 5.17, where the dashed line is just a guiding line of slope equal to one.
As can be seen, all the points, except one, have an error compatible with the line of unity slope.
This proves that a relatively good agreement exists between the Solar modulation parameter derived
independently from AMS-02 and NM data.
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Figure 5.17: The plot shows the correlation between the Solar modulation parameter obtained from AMS-02
and the NM network. The dashed line has slope equal to 1.

Figure 5.18 shows a comparison between the NM φSM from August 2010 to April 2011 and the
AMS-02 φSM from August 2011 to April 2012. Although it is not possible to see a distinctive increasing
tendency in the evolution of the AMS-02 modulation parameter from August 2011 to April 2012, when
compared to the values obtained from the NM network one year before, from August 2010 to April
2011, an average increase is observed.
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Figure 5.18: The plot shows a comparison between the NM φSM from August 2010 to April 2011 and the
AMS-02 φSM from August 2011 to April 2012.

Additionally, figure 5.19 shows the correlation between the number of neutrons reaching the Oulu
NM station and the low rigidity integrated proton flux, from August 2011 to April 2012. There is an
evident correlation between the integrated flux and the neutron rates. The correlation factor obtained
was r = 0.79.
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Figure 5.19: Correlation between the number of neutrons reaching the Oulu NM station and the low rigidity
integrated proton flux. Each point corresponds to 1 day, beginning in August 2011 and ending in April 2012.
The total number of points is 183.
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6
Conclusions and Prospects

The installation of AMS on the ISS, on May 2011, constituted a milestone in cosmic rays physics.
For the first time, a long term cosmic ray observatory of intermediate energies is in permanent operation
in the outer space. Due to the large acceptance of the detector it is possible to collect data at
an unprecedented statistical precision, which associated with the continuous operation, makes it a
privileged monitor of any cosmic ray perturbation event, like a Solar occurrence.

The aim of this thesis was to study the Solar modulation models and the characterization of the
effects of the Sun on the AMS-02 data. The first part of this work was dedicated to study of the
several approaches to solve the TPE in the Heliosphere. Three solutions were derived: the Force Field
approximation, which is the most widely used solution to study the solar modulation effects, 1D and
2D numerical solutions. All the three solutions depend on the choice of the interstellar flux. The Force
Field and the 1D solution are very similar for energies above 0.1 GeV, which reduces the chances of
distinguishing them using the AMS-02 proton fluxes, since the detector is not able to measure proton
fluxes below 0.1 GeV. The Force Field and the 1D solution assume a spherically symmetric Heliosphere,
disregarding the effects related to the drifts in the HMF and the HCS. The 2D solution is by far the
most complex of the three and depends on a lot of parameters, when compared with the other two.
It also takes into account the drift effects and perpendicular diffusion, which were neglected before.
Numerical methods were developed to solve the 1D and 2D solutions.

The analysis of AMS-02 data was based on the measurement of the primary proton fluxes on a daily
basis. The proton fluxes were determined using all the available data, since AMS-02 started collecting
data last year, which is approximately 20 billion events. The variations of the integrated fluxes for
low [2;30] GV and high [30;100] GV rigidities were also systematically studied. As expected, the low
energy portion of the flux is sensible to Solar events, showing 20% to 30% decreases (Forbush decreases)
during the most intense Solar flares. The low energy integrated proton fluxes were compared with the
rate of neutrons that reach Earth’s surface using the data from the Oulu NM station, and a clear
correlation was found. The high energy integrated fluxes show variations of only 2% to 3%.The Force
Field modulation parameter was calculated using the AMS-02 proton fluxes for all the months, between
August 2011 and April 2012. For rigidities below 6 GV the Force Field parameter is consecutively
degraded, as the model seems to have difficulties in fitting the observed flux. However, for rigidities
above 6 GV, the model seems to fit correctly the data. The Force Field parameter, calculated using
AMS-02 proton fluxes (above 6 GV), was compared with the one obtained independently from the
NM network available data, and a relatively good agreement was found.

The apparent difficulty of the Force Field to fit the fluxes below 6 GV might be related to the fact
that the model is neglecting terms in the transport equation that cannot be discarded, such as the
drift terms. This might indicate that a more complex model, such as the 2D model, must be used
in order to explain the observed fluxes below 6 GV. The complete study of the 2D model is out of
the scope of this thesis. There are a lot of parameters that enter the 2D equation, which have to be
carefully analyzed in order to understand its effects. However, the numerical method to solve the 2D
equation, explained in chapter 3, and developed using a C++ classes framework (integrated in the
analysis sofware chain - LxSoft), is available and can serve as a starting point to a complete data
analysis using the 2D model.
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A Magnetic Field frozen in a Plasma

The plasma formed by the solar wind has a high electric conductivity which allows the Solar
magnetic field to be "frozen" and transported throughout the heliosphere. The goal of this section is
to demonstrate how this mechanism takes place.

Considering a volume of plasma with surface area S, moving with velocity V, there are two frames

• O’ - that is moving with the plasma

• O - that is fixed

Ohm’s law in O’ is just

~J ′ = σ ~E′ (1)

Using Lorentz transformations, it becomes easy to calculate the electric field in the moving frame

~E′ = ~E + ~V × ~B (2)

where ~V is the velocity of the plasma, and so

~J ′ = σ( ~E + ~V × ~B)⇔
~J ′

σ
= ( ~E + ~V × ~B) (3)

Since the plasma has a very high conductivity σ →∞, the last expression can be approximated by

~E = −~V × ~B (4)

Making use of Faraday’s law

∂B

∂t
= −∇× ~E = ∇× [~V × ~B] (5)

To fully understand the consequences of the last equation, let us look at the temporal change in
the flux through a surface of the plasma.

dφ

dt
=

d

dt

∫
S

~B · ~n dS =

∫
S

∂ ~B

∂t
· ~n dS︸ ︷︷ ︸

~B changing over time

+

∫
L

~B · (~V × ~dl)︸ ︷︷ ︸
motion of the surface

(6)
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where L is the boundary of S. The first term represents the variations of the magnetic field over
time, and the second term is the flux changes due to the motion of the surface.

The second term can be rewritten using Stoke’s theorem

∫
L

~B · (~V × ~dl) = −
∫
L

( ~B × ~V ) · ~dl = −
∫
S

∇× ( ~B × ~V ) · ~n dS (7)

Finally,

dφ

dt
=

∫
S

(
∂ ~B

∂t
−∇× ( ~B × ~V )

)
· ~n dS = 0 (8)

φ = cte (9)

The flux through the surface moving with the plasma remains constant, which implies that the
magnetic field is frozen in the motion of the plasma. Figure 1 illustrates two situations where the last
result can be applied.

In the first one, a plasma is created in a magnetic field (a) and so, as it begins to move, the frozen-in
condition will lead to the bending of the magnetic field lines (b). In the second one, the plasma is
created in a region without any magnetic field (c) and so, as it moves to a zone with a magnetic field,
the field lines are repelled in order to keep the initial flux condition φ = 0 (d).

Figure 1: Plasma with high electric conductivity interacting with a magnetic field.
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B The Archimedean spiral

The solar wind flows radially off the Sun with velocity ~VSW as it rotates, creating a spiral pattern
known as the Archimedean spiral. Considering a portion of plasma that is emitted from a point at the
solar equator and with longitude φ0. After a time t, the polar coordinates of the plasma portion in
the rotating frame will be

r = V · t+ r0 (10)
φ = Ω · t+ φ0 (11)

where Ω = 2π
26 days−1 is the angular velocity of the Sun. Plugging the two last expressions it is

possible to find a relation between radial distance and longitude, which characterizes an Archimedean
spiral.

r = V · φ− φ0

Ω
+ r0 (12)

As seen in the previous appendix, the high electric conductivity of the plasma ejected from the Sun
leads to the transport of the Solar magnetic field throughout the heliosphere. In this appendix, the
expression of the HMF will be derived.

Remaining still in the equatorial plane for simplicity, the velocity vector and the magnetic field
only have the r and φ components:

~VSW = (Vr, 0, Vφ) (13)
~B = (Br, 0, Bφ) (14)

Note that the components of ~VSW are just

Vr = V (15)
Vφ = Ω(r − r0) sin θ (16)

The absolute value of ~VSW and ~B only depends on the r and θ coordinates

|~VSW | = VSW (r, θ) (17)

| ~B| = B(r, θ) (18)

The magnetic field must also obey Maxwell’s law

∇ · ~B = 0 (19)
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Figure 2: Archimedean Spiral.

or in spherical coordinates

∇ ·B =
1

r2

∂

∂r
(r2Br) +

1

rsinθ

∂

∂θ
(Bθsinθ) +

1

rsinθ

∂Bφ
∂φ

(20)

Since the field is axially symmetric and Bθ = 0, the only remaining term is

1

r2

∂

∂r
(r2Br) = 0⇔ r2Br = r2

0B0 = cte (21)

Solving for Br,

Br = B0

(r0

r

)2

(22)

In a steady flow (temporally constant)

∂ ~B

∂t
= 0 (23)

and so the frozen-in field equation attains the form

∇× (~VSW × ~B) = 0 (24)

~VSW × ~B = (0, VφBr − VrBφ, 0) (25)
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Writing the curl in spherical coordinates

1

r

∂

∂r
[r(VφBr − VrBφ)] = 0 (26)

Integrating

r(VφBr − VrBφ) = cte (27)

Making use of the initial conditions Bφ0 = 0 and Br0 = B0, the last expression can be rewritten

r(VφBr − VrBφ) = r0Vφ0B0 (28)

The initial azimuthal velocity is just

Vφ0
= r0Ω (29)

And so equation 28 becomes

r2
0ΩB0 = rVφBr − rVrBφ (30)

Solving for Bφ

Bφ =
rVφBr − r2

0ΩB0

rVr
=
VφBr − rΩ( r0r )2B0

Vr
=
Vφ − rΩ
Vr

Br (31)

Far from the Sun rΩ >> Vφ, whence

Bφ ' −
rΩ

Vr
Br = −r

2
0Ω

rVr
B0 (32)

Assuming that Vr is approximately constant over distance, equation 31 shows that Bφ decreases
much slower than Br.

Bφ ∝
1

r
(33)

Br ∝
1

r2
(34)

Far from the Sun, the azimuthal component of the magnetic field dominates over the radial com-
ponent.

Another interesting quantity to calculate is the angle Ψ, between the radial and azimuthal compo-
nent of the magnetic field

tan Ψ =
r2
0Ω

rVr
B0 ·

r2

B0r2
0

=
rΩ

Vr
(35)

At large distances, tan Ψ→∞ and Ψ→ 90◦. At Earth, tan Ψ ' 1 and Ψ ' 45◦, which is in good
agreement with the average observed angle.
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It is also worth noting that knowing the radial dependences and average values of the several
components of the magnetic field as well as the angle Ψ at Earth is sufficient to calculate the values of
the HMF at any distance from the Sun.

The final expression for the HMF, also known as the Parker Field 1, is

~B =
A

r2
(~er − tan Ψ ~eφ)

[
1− 2H

(
θ − π

2

)]
(36)

| ~B| =
A

r2

√
1 + tan2 Ψ

[
1− 2H

(
θ − π

2

)]
where H is the Heaviside step function and A is a normalization constant which is choosen so that
| ~B(r = re)| equals the average HMF on Earth (around 5 nT for periods of low Solar activity).

A = (1AU)2 B1AU√
1 + tan2 Ψ

(37)

1since it was first derived by Parker in 1958
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