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Abstract1 

This paper presents a study about the choice of input and 
sampling frequencies and the number of samples to acquire in 
order to achieve coherent sampling. This is important in the 
test of analog to digital converters (ADCs) by the Histogram 
Test Method, the Discrete Fourier Transform Method or the 
Sine-fitting Method. 

It is shown that a trade off exists between closeness to the 
desired frequencies and test duration (through the number of 
acquired samples).  

Several algorithms are presented and studied in terms of 
complexity, advantages and drawbacks.  

I. INTRODUCTION 
The most common ADC tests involve the sampling of a 

sinusoidal input signal at a constant rate (sampling frequency 
− fs) and the use of the ADC output codes to estimate several 
characteristics of the converter. For instance, the Histogram 
Method [1, 2, 3] uses the output codes to compute an 
histogram of occurring codes and from that it estimates the 
transition voltages which permit the computation off code bin 
widths, gain, offset error, integral non-linearity (INL) and 
differential non-linearity (DNL) [1]. The sine-fitting method 
involves the least-squares fitting of a sinusoidal shape to the 
ADC output codes. The values of the fitted sinusoid are 
subtracted from the output codes resulting in an error signal 
from which the additive noise, phase noise, and aperture 
uncertainty (jitter) can be estimated. The DFT test [1] 
performs a discrete Fourier Transform on the output codes 
and estimates from the obtained spectrum the ADC additive 
noise (SNR), harmonic distortion (THD, SFDR) and spurious 
distortion (TSD, SFDR). 

All these methods assume that the input signal is a perfect 
sinusoid sampled at specific time instants to guarantee that 
the amplitude distribution of the sampled voltages is known. 
To achieve this, the acquisition must be performed during 
exactly one period of the stimulus signal. The high number of 
samples (millions) that must be acquired to guarantee a good 
precision on the test results leads to a stimulus signal 
frequency much lower than the sampling frequency which is 
not desired since the performance of ADCs depends on the 
input frequency. To circumvent this problem time-equivalent 
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sampling is generally used. This involves the acquisition of 
samples during more than one sinusoid period. Special care 
must be taken to guarantee that the sample phases (in relation 
to the sinusoid) are uniformly distributed in the interval of 2π. 
This is attained if the number of periods (J) during which the 
acquisition is carried out is an integer mutually prime with the 
number of acquired samples (M). The sinusoid and sampling 
frequency must therefore satisfy [4] 
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Fig. 1 depicts the case where 40 samples are acquired 
during 2 periods of the stimulus signal. Because the integer 2 
and 40 are not mutually prime (they have at least one 
common factor greater than 1, in this case the number 2), the 
number of distinct phases is just 20 as can be seen in Fig. 2. 
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Fig. 1 – Representation of 2 periods of a sinusoid during which 40 samples 
were acquired. 
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Fig. 2 – Representation of the samples phases (z), normalized from 0 to M, 
for the case of 40 samples acquired during 2 sinusoid periods. 

The acquisition of 39 samples during the same 2 periods 
(Fig. 3) would however lead to 39 different sample phases 
since the integers 2 and 39 are mutually primes as can be seen 
in Fig. 4. 
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Fig. 3 – Representation of 2 periods of a sinusoid during which 39 samples 
were acquired. 
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Fig. 4 – Representation of the samples phases (z), normalized from 0 to M, 
for the case of 39 samples acquired during 2 sinusoid periods. 

II. FREQUENCY ERRORS 
The inevitable presence of frequency errors in the sinewave 

and in the sampling generators will cause the sample phases 
not to be uniformly distributed. To guarantee that an error ∆ρ 
in the frequencies ratio ρ leads to an error in the phases 
distribution of less than 50%, of the ideal phase spacing, the 
number of samples has to verify  
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This limit also guarantees that the variance of the number of 
counts of the cumulative histogram is lower than 1/4 [5, 6, 7]. 

Inserting (1) in (2) leads to  
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where 

 .ideal∆ρ = ρ − ρ   (4) 

Again using (1) leads to  
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Considering the real values of the frequency as being 
affected by maximum relative errors of ± fε  and ±

sf
ε , 

equation (5) can be written as 
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Expression (6) implies that 
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If the rightmost term is lower than 21 2M , then ∆ρ will 

also be lower than that. So the number of samples must 
satisfy 
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This leads finally to an expression for the maximum number 
of samples that should be acquired consecutively: 
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III. ALGORITHMS 
The choice of input frequency and number of samples that 

satisfy both (1) and (9) is not straight forward. In the 
following different algorithms are studied. 

A. Standard 

In the IEEE waveform digitizer standard [1] an algorithm is 
presented which is based on the observation that an integer is 
mutually prime with one of its multiples subtracted by 1 [4]. 
The algorithm is stated the following way: 

 

• Find an integer, n, such that the desired 
frequency (fd) is approximately fs / n. 

• Let J = int(M / n) = the number of full cycles 
that can be recorder at this frequency. 

• Let f = J×fs / (nJ−1). 
• This guarantees nJ−1 distinct sample phases. 

 
This algorithm as some ambiguity in choosing the integer n 

(first step), which represents the number of samples acquired 
during one period of the sinusoid, because it does not state if 
one should round the ratio fs/fd up or down, 
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In Fig. 5 the actual frequency ratio f/fs is represented as a 
function of the desired frequency ratio fd/fs, for large values of 
M (>100) where 1nJ nJ− ≈ and 1/ nρ ≈ . The thin and thick 



lines represent the cases where the ratio fs/fd is rounded up or 
down respectively. For instance, when the desired frequency 
is half the sampling frequency (ρd=1/2) the ratio fs/fd would be 
exactly 2 and no rounding would be required (n= fs/fd =2) 
which corresponds to exactly the center of the figure and 
means that 2 samples are acquired in each sinusoid period. 
Now, if the desired frequency is higher than half the sampling 
frequency and lower than the sampling frequency, 1/2<ρd<1 
(right side of the figure), the ratio fs/fd would be a number 
from 1 to 2. Rounding it up would lead to 2 samples per 
period (n=2) which would mean always ρ=1/2, leading to a 
considerable difference between the desired sinusoid 
frequency and the actual frequency used. This is an artifact of 
limiting the number of samples per period to an integer 
number (first step of the algorithm). Note that what was stated 
previously was that the samples acquisition has to be carried 
out during an integer number of sinusoid periods which is not 
the same thing. 

 
Fig. 5 – Representation of the actual frequency ratio as a function of the 

desired frequency ratio. The thin line represents the situation where fs/fd is 
rounded up and the thick line when it is rounded down. 

The algorithm suggested in [1] also does not state which is 
the value one should use for M. Attending to what was said in 
the previous section, namely that the number of samples 
should be lower than Mmax given by (9) one would 
presumably use this value in place of M to determine J. There 
is however a problem. The algorithm described guarantees 
that the number of samples to acquire (nJ−1) will be smaller 
that the value used for M but this could lead to an higher 
frequency than the desired one which would lower the bound 
Mmax, given by (9), causing the number of samples, nJ−1, to 
be higher that Mmax , which can be seen in Fig. 6 (thin line) 
where the relative difference between the actual number of 
samples to acquire and the maximum limit given by (9) was 
computed using: 
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This situation happens when the ratio fs/fd is rounded down 
to obtain n. The correct approach would be then to always 
round up fs/fd. As seen in Fig. 6 (thick line), this would lead to 
(9) being always satisfied. This would also imply a frequency 

lower that the desired one as can be seen in the thick line in 
Fig. 5. 

 
Fig. 6 – Representation of the relative difference of the number of samples 
defined by (11) as a function of the desired frequency ratio. The thin line 

represents the situation where fs/fd is rounded up and the thick line when it is 
rounded down. Frequency errors of 25ppm were used. 

The actual frequency ratio and number of samples to 
acquire would be  

max and 1 with  and s
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B. Analytical 

Note that the frequency ratio determined using (12) depends 
on the maximum number of samples (Mmax) which in turn 
depends on the frequency ratio (equation (9)). These two 
expressions may be combined the following way. Substituting 
fsideal/fideal by M/J in (9) leads to 
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Using M=nJ−1 expression (13) can be rewritten as 
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After some simplification, 
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Solving the second order equation leads to 

 

1
1 1 2

2

s

s

f

f f

n

M

− ε
− + +

ε + ε
≤ .  (16) 

Inserting again M=nJ−1: 
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And finally solving for J and rounding down the right 
member of (17) leads to 
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This is a more efficient way, in terms of the number of 
samples, of calculating J than the one given by (12) as can be 
seen in Fig. 7 (thick line). 

 
Fig. 7 – Representation of the relative difference of the number of samples 

defined by (11), using expression (18), as a function of the desired 
frequency ratio. The thin line represents the optimal solution described in 

III.C and the thick line the use of equation (18). Frequency errors of 25ppm 
were used. 

The frequency however will still be in some cases far from 
the desired one (thick line in Fig. 8). 

 
Fig. 8 – Representation of the actual frequency ratio as a function of the 

desired one. The thick line represents the situation when expression (18) is 
used and the thin line when the optimal solution is used (finding J that is 

mutually prime with M given by (9)). Frequency errors of 25ppm were used. 

C. Optimal 

An optimal solution is to use the number of samples given 
by (9): 

 maxM M=     (19) 

and look for an integer J lower than  

 max dJ M= ρ ⋅    (20) 

so that J and M have no common dividers. This has to be 
done with the help of a computer which in most cases is not a 
problem since it is used anyway to process the results or even 
execute the ADC test. The efficiency of this method is seen in 

Fig. 7 (thin line) and especially in Fig. 8 (thin line) that shows 
the actual frequency ratio to be practically equal to the 
desired one. 

IV. CONCLUSIONS 
It was seen that the need to have, as much as possible, 

uniformly distributed phase samples, even in the presence of 
frequency errors, constrains the values of the number of 
consecutive samples that can be acquired. The algorithm 
suggested in [1] was clarified and a better solution was 
presented that more efficiently determines the number of 
samples (equation (18)).  

Also the efficiency of the optimal solution based on a 
exhaustive search of two integers that are mutually prime was 
presented which highlights the advantages of using this 
alternative in terms of the closeness to the desired input 
frequency (thin line of Fig. 7) and the maximum number of 
samples (thin line of Fig. 8) that can be used, even though 
there is an added complexity and the need for a computer in 
the process.  
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