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Abstract

In dynamical systems with a large number of agents, competitive, and cooperative phenomena
occur in a broad range of designed and natural settings. Such as communications, environ-
mental, biological, transportation, trading, and energy systems, and they underlie much
economic and financial behavior. Analysis of such systems is intractable using the classical
finite N-players game theoretic methods is often intractable. The mean-field games (MFG)
framework was developed to study these large systems, modeling them as a continuum of
rational agents that interact in a non-cooperative way.

In this thesis, we address some theoretical aspects and propose a definition of relaxed
solution for MFG that allows establishing uniqueness under minimal regularity hypothesis.
We also propose a price impact model, that is a modification of the Merton’s portfolio problem
where we consider that assets’ transactions influence their prices.

We also study numerical methods for continuous time finite-state MFG that satisfy a
monotonicity condition, and for time-dependent first-order nonlocal MFG. MFG is determined
by a system of di�erential equations with initial and terminal boundary conditions. These
non-standard conditions make the numerical approximation of MFG di�cult. Using the
monotonicity condition, we build a flow that is a contraction and whose fixed points solve
both for stationary and time-dependent MFG.

We also develop Fourier approximation methods for the solutions of first-order nonlocal
mean-field games systems. Using Fourier expansion techniques, we approximate a given
MFG system by a simpler one that is equivalent to a convex optimization problem over a
finite-dimensional subspace of continuous curves. We solve this problem using a variant of a
primal-dual hybrid gradient method.

Finally, we introduce a price-formation model where a large number of small players can
store and trade electricity. Our model is a constrained MFG where the price is a Lagrange
multiplier for the supply versus demand balance condition. We establish the existence of a
unique solution using a fixed-point argument. Then, we study linear-quadratic models that
hold specific solutions, and we find that the dynamic price depends linearly on the instant
aggregated consumption.

Keywords: Mean-field games, dynamical systems, optimal control, numerical methods,
partial di�erential equations, stochastic di�erential equations





Resumo

Em sistemas dinâmicos com um número elevado de agentes, frequente-

mente fenómenos competitivos e cooperativos ocorrem quer em condições

naturais quer devido a configurações projectadas. São disto exemplo sis-

temas de comunicações, fenómenos ambientais, biológicos, de transporte,

comércio e energia. E estes sistemas têm por base muitos comportamentos

económicos e financeiros.

A análise de sistemas com elevado número de agentes, utilizando os

métodos teóricos clássicos, como teoria de jogos de N-jogadores, é muitas

vezes intratável. A teoria de jogos de campo-médio (JCM) foi desenvolvida

para estudar esses sistemas dinâmicos, modelando-os como um continuum

de agentes racionais que interagem de forma não cooperativa.

Na primeira parte da tese, abordamos alguns aspectos teóricos e propo-

mos uma definição de solução relaxada para JCM, que permite estabelecer

unicidade de soluções com hipótese de regularidade mı́nimas. Também

propomos um modelo de variações do preço de activos financeiros, que é

uma modificação do problema do portfólio da Merton, onde consideramos

que as transacções dos activos influenciam as suas cotações.

Na segunda parte da tese, estudamos métodos numéricos para os JCM

com número estados finitos que variam continuamente no tempo e que

satisfazem uma condição de monotonicidade. Também desenvolvemos0

métodos numéricos para JCM de primeira ordem dependente do tempo e

com operadores não locais. Os JCP são determinados por um sistema de

equações diferenciais com condições de fronteira inicial e terminal. Estas

condições de fronteira não usuais dificultam a aproximação numérica do

JCM por métodos clássicos existentes na literatura. Portanto, impõe-se a

construção de novos métodos numéricos que sejam adaptados a esta classe

de problemas. Neste trabalho, usando a condição de monotonicidade dos

JCP, constrúımos um fluxo que provamos ser uma contracção e cujos

pontos fixos são solução tanto de JCP estacionários como dependentes do

tempo.

Também desenvolvemos métodos numéricos para JCP com operadores

não locais, utilizando para isso métodos de aproximação de Fourier para

as soluções de sistemas de primeira ordem de JCP não-locais. Usando

técnicas de expansão de Fourier, aproximamos o sistema de JCP por um

sistema mais simples que é equivalente a um problema de optimização

convexa sobre um subespaço de dimensão finita de curvas cont́ınuas. Re-

solvemos este problema de optimização usando uma variante do método

de gradiente h́ıbrido primal-dual.

Na terceira parte da tese, introduzimos ummodelo dinâmico de formação

de preços em que um grande número utilizadores pode armazenar e comer-

cializar electricidade a partir de baterias conectadas à rede de distribuição

eléctrica. O modelo que propomos é um JCP com restrições onde o preço

é um multiplicador de Lagrange para a condição de balanço da procura

versus oferta. Utilizando um argumento de ponto fixo, provamos também

a existência de uma solução única. Por fim, estudamos modelos lineares

com custo quadrático, em que obtemos soluções expĺıcitas e descobrimos

que o preço (dinânmico no tempo) depende linearmente do consumo agre-

gado de energia instantâneo.
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Chapter 1

Introduction

In this work we study di�erent aspects of the mean-field games (MFG) framework, namely,
the theory behind it, in Part I, numerical methods, in Part II, and applications, in Part III.

The mean-field games setting models a large number of identical rational agents that
interact in a non-cooperative way. These agents seek to minimize their cost (or maximize a
reward function) using statistical information on the distribution of the whole population.
This setting can be formulated as a di�erential game between a large number of players and
the aim is to find a Nash equilibrium where a generic player cannot unilaterally improve his
position.

These models were introduced in the engineering community by [117, 114] and in the
mathematical community by [131–134]. These games were modeled as a coupled system of
partial di�erential equations (PDE) that comprises a Hamilton–Jacobi and a Fokker–Planck
equation.

In a di�erential game with a small number of players, the contribution of each player
determines the state of the system. Therefore, instabilities and intractable mathematical
problems arise when we are looking for feedback-form Nash equilibria. Trying to extend this
methods for a large number of players either using particle or agent-based models frequently
lead to intractable problems from the analytical point of view. Moreover, they often do not
provide insight on the qualitative properties of the models.

For a large number of players, the contribution of each individual player to the overall
state of the system is small and no single player can change the evolution of the system by
itself. Therefore the macroscopic state of the system is determined by the average behavior
of the population. The MFG framework corresponds to a major paradigm change in the
analysis of N -players di�erential games, see [24]. In contrast with the previous existing
methods, the system of PDE in MFG is amenable to analytical tools and suitable to address
a wide range of applications and to provide quantitative and qualitative insight. Using these
models we want to find the optimal strategy of each player as well as to determine the value
function and characterize the evolution of the density of the population. In these models the



2 Introduction

information about the population state is encoded in a probability measure, m. Given the
density of players m, each agent solves an optimal control problem. This problem determines
a value function, V , and the optimal action to be performed. This gives rise to a coupled
system of PDE (Hamilton–Jacobi and a Fokker–Planck equation) for which the couple m

and u is a solution.
This thesis is organized in three di�erent parts. We now detail some background,

motivation and a brief discussion of the contribution in each part.
Part I: In the first part, of this work, we address the theoretical aspects of the mean-field

games framework. This part is based on the paper [99].
The literature on mean field games and its applications is grew fast in the recent years,

for a survey see [137] and reference therein, as well as the excellent lecture notes [53], and
the books [32] and [85].

The first results on MFG using PDE methods were established by [131, 132] and later
described in [140]. Later Gomes and his collaborators have also considered the discrete
time, finite state problem [88], and the continuous-time finite-state problem [89], [80]. Such
problems have also been addressed in [108] and [110]. Various applications and additional
models have been worked out in detail in [107], [22], [97], [107], [97], [128], [142], [152], [159],
[165], [166], [75], [111]. Problems motivated by applications with mixed populations or with
a major player were studied in [112, 113]. Mean field games have also been analyzed using
backwards-forwards stochastic di�erential equations, see, for instance [149], and [64, 63, 66, 65].
Linear quadratic problems have been considered from distinct points of view, for instance, in
[114], [19], [115], [149], [23], [34], and [138].

The rigorous derivation of mean-field models was considered in some models in the original
papers by Lions and Lasry. Further developments, using the theory of nonlinear Markov
processes were obtained in [125], [123], and [122] (see also the monograph [124]), and using
PDE methods in [22]. For finite state problems, the N player problem was studied in [89]
where a convergence result was established. For earlier works in the context of statistical
physics and interacting particle systems see [162].

In Part I we address reduced mean-field models and mean-field games in master form,
which are discussed, respectively, in Chapter 2 and Chapter 3.

In Chapter 2, we start by discussing the derivation of reduced MFG. The reduced form of
MFG was first studied by and Huang Malhamé and Caines, [117, 114], in the engineering
community and Lions and Lasry, [131–134], in the mathematical community. Later, it was
made clear that this formulation is actually a particular case of MFG where agents are
also coupled through common Brownian noise. In the general setting we have a infinite
dimensional PDE, the Master equation, that we will address in Chapter 3. The reduced mean
field games can be seen as the equations of characteristics of the Master equation.

Reduced mean-field models can be formulated as systems of a Hamilton-Jacobi-Bellman
equation coupled with a Fokker–Planck or transport equation. We start by discussing the
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derivation of those models. Then we discuss various existence results both for first and
second order equations as well as for problems with local dependence on the measure. Then
we address uniqueness questions and propose a definition of relaxed solution that allows
to establish uniqueness under minimal regularity hypothesis. A special class of mean-field
games can be regarded as the Euler-Lagrange equation of suitable functionals. This section
ends with a brief overview of the random variables point of view and some applications to
extended mean-field games models. These extended models arise in problems where the costs
incurred by the agents depend not only on the distribution of the other agents but also on
their actions.

Then in Chapter 3 we continue the discussion on mean-field games by considering mean-
field games in master form. These were introduced by Lions in [140]. Such master form is
particularly useful for the study of problems where agents share a common noise. We present
various of these models as well as an application to price formation problems.

The main contributions of this first part is the theory of relaxed solutions and its
applications to uniqueness and stability of mean-field games, some of the extended models
and the price formation model discussed at the end of the paper.

Part II: In the second part, we address some numerical aspects of mean-field games.
This part is based on the papers [105] and [155].

The MFG system consists of two coupled equations, one is backward in time (Hamilton–
Jacobi equation) and the other is forward in time (Fokker–Planck), and satisfy terminal-initial
boundary conditions. This combined with a fully coupling of the system is the main source
of di�culties in the numerical simulation of time-dependent MFG.

Numerical methods for MFG problems were first studied by Achdou and Capuzzo-Dolceta
in [6]. Several improvements and developments followed in [1] and [10].

There is also a growing interest in numerical methods for these problems [130], [6], [3], [52],
[10]. For a survey of numerical methods see [1]. In [4], the authors proposed a discretization
of the Hamilton–Jacobi equation via a monotone scheme and the adjoint of the linearization
of that equation is used to discretize the Fokker–Planck equation. These equations were
solved using Newton’s method. In alternative to Newton’s method we can use monotonicity
properties. This was done in [12] for the stationary case. And we extend this approach for
the time-dependent case for finite-state MFGs in the Chapter 4, where we use projection
operators to preserve the boundary conditions.

In Chapter 5 we address first-order nonlocal MFG problems. In this setting the Hamilton–
Jacobi and the Fokker-Planck equations are coupled through a nonlocal coupling in the
Hamilton-Jacobi equation, of the kernel convolution type. The nonlocal MFG models problems
where each individual agent takes into account not only the density of players in the same
sate but also the density of players in neighboring states. We used Fourier expansion methods
from [153] to approximate the nonlocal operator, and developed a primal-dual hybrid gradient
based numerical method.
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The main contributions are the numerical method for time-dependent finite-state MFG
that satisfy a monotonicity condition. And another numerical method for nonlocal MFG.

Part III: On the third part, we address some applications of MFG models to price
formation, namely in electricity markets. This part is based on the paper [100].

Applications of mean-field games are several. From economic models, algorithmic trading
in finance, socio-economic models (opinion dynamics), biology and engineering problems.

Applications of MFG on economic models are several, a good reference is [104]. Di�erent
models in MFG have been used to study exploration of non-renewable resources, for example,
oil ([137]) and minerals ([9]). To model inequality [84], economic equilibrium [130], and
growth theory [136].

In mathematical finance, MFG models were used in high-frequency [129] and algorithmic
[67] trading. And, also price formation [48, 47, 145, 42, 41, 87].

Regarding applications in engineering, MFG models were used to study energy markets
and for the management of the power-grid, see [18, 118–120, 146]. Other applications include
risk-sensitive or robust control, [76, 77, 165, 166], adaptive control ([121, 151]), massive
communications in 5G networks [36], among others ([115, 163, 164]).

MFG models for crowd and population dynamics were investigated by [74, 43–45], for
tra�c by [46, 69], and and to related problems on networks and graphs in [28, 50, 51, 111].

Many authors studied socio-economic problems such as opinion dynamics ([27, 160, 161,
35]) and consensus ([38, 150, 152, 158, 152]), paradigm shifts ([37, 102]), social choice and
dynamics ([116, 26]), and corruption ([126, 127]).

The main contributions of this part is the price formation model and the proof of existence
of solutions to the first and second order MFG model with constraints, and uniqueness in the
second order case. Also we solved explicitly the linear-quadratic models of the price-formation
MFG formulation, and our results suggest that a price determined by a supply versus demand
condition may help stabilize the oscillations of the price.



Part I

Mean Field Games Theory





Chapter 2

Reduced mean-field models

In this chapter we consider reduced mean-field models. The reasons we start discussing
the reduced form of MFG are twofold. The first is the fact that it is a simpler and better
understood problem and appeared first in the literature. The second reason is that the main
results presented in this work regard the reduced formulation.

The models originally studied by Lasry and Lions [131–134] which consist in a system
of a Hamilton-Jacobi type equation and an associated transport or Fokker-Planck equation.
We present the derivation of such models and discuss various methods to prove existence
and uniqueness of solutions. Stationary models are then briefly discussed. These are quite
interesting in their own right but also, under appropriate conditions, encode the long-time
asymptotic for mean-field games, as shown in [59, 60] (see also [88] and [89] for discrete
models). Following [92], we consider also stationary extended models in which the cost for a
reference player depends not only in the other players distribution but also on their actions.
Then we look at certain variational structures that some of these problems enjoy, and the
connections between mean-field models and other now classical problems such as optimal
transport and Aubry-Mather theory. We then describe the random variables point of view.
This formulation is very close to the one in [117] (although many of the problems considered
in this survey are deterministic), but the presentation here reflects also the ideas and methods
from the lectures of P. L. Lions in Collège de France [140]. We will show that mean-field
games can be set up as a system of Hamilton-Jacobi equation coupled with an ODE in a
space of random variables. In this part we discuss only deterministic control problems. This
allows us to avoid using backwards stochastic di�erential equations (see for instance [149],
and [64, 63]) and therefore keeping the presentation elementary. Mean-field models with
correlations and the master equation will be considered in section 3. The random variable
point of view makes it easy to consider models where the costs incurred by players depend
not only on the distribution of other players but also on their actions. Such models were first
studied in [103] and are also briefly considered here.
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2.1 Derivation of reduced models

Let U µ Rm be a convex closed set. As it is usual in stochastic optimal control problems
(see [83], for instance), we consider a vector field f : Rd ◊ U æ Rd and a di�usion matrix
‡ : Rd ◊ U æ Md◊m

R , where Md◊m

R is the set of d ◊ m real matrices. We suppose that both
f and ‡ are globally Lipschitz in the first coordinate, that is, for all v œ U

|f(x, v) ≠ f(y, v)|, |‡(x, v) ≠ ‡(y, v)| Æ C|x ≠ y|,

where the constant C is independent of the control variable v and x, y œ Rd. We also assume
the following growth condition

|f(x, v)|, |‡(x, v)| Æ C(1 + |x| + |v|).

Let (�, F , P ) be a probability space, where � is a set, F a ‡-algebra on � and P a probability
measure. Let Wt be a Brownian motion on � and Ft the associated filtration. Fix an initial
time t0 œ [0, T ]. Let Br be the Borel ‡-algebra on [t0, r]. A control process v : [t0, T ]◊� æ U

is called {Fr}-progressively measurable if the map (s, Ê) æ v(s, Ê) from [t0, r] ◊ � into U

is Br ◊ {Fr}-measurable. We denote by U the set of all progressively measurable control
processes.

We consider a population of agents where each agent is allowed to choose a progressively
measurable control v œ U . This control determines the agent’s dynamics through the
stochastic di�erential equation (SDE)

dx = f(x, v)dt + ‡(x, v)dWt. (2.1.1)

We will assume that each agent dynamics’ is driven by an independent Brownian motion in
(2.1.1).

Let P(Rd) be the set of Borel probability measures in Rd. Let ◊ : [t0, T ] æ P(Rd) be,
for each time t, a probability distribution of agents in Rd. Assume for the moment that the
trajectory of each agent is determined by an independent copy of (2.1.1) where the control v
is given as a (non-time homogeneous) feedback Markovian control, that is

v(t) = ‚(x, t),

for some function ‚ : Rd ◊ [t0, T ] æ U . Thus each agent of this population will follow the
di�usion

dx = f(x, ‚(x, t))dt + ‡(x, ‚(x, t))dWt. (2.1.2)
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Because the Brownian motion driving each agent is independent from the remaining ones,
the population distribution will evolve according to the following Fokker-Planck equation

◊t + div(b(x, t)◊) = ˆ2
ij(aij(x, t)◊),

where
b(x, t) = f(x, ‚(x, t)), aij = 1

2

mÿ

k=1
‡ik(x, ‚(x, t))‡jk(x, ‚(x, t)),

and the initial condition ◊(x, t) is given.
We consider a Lagrangian L : Rd ◊U ◊P(Rd) æ R, and a terminal cost � : Rd ◊P(Rd) æ

R. Suppose L, and � are continuous, bounded by below, and satisfy the following quadratic
growth condition

|L(x, v, ◊)| Æ C(1 + |x|2 + |v|2), |�(x, ◊)| Æ C(1 + |x|2),

for positive constants C independent of (x, v, ◊). Assume further, if U is unbounded, that

lim
|v|æŒ

L(x, v, ◊)
|v| æ Œ.

Fix an agent, which knows the strategy ‚ used by the other players and whose objective
is to find a progressively measurable control v which minimizes the following cost functional

J(x, t; v) = E
⁄

T

t

L(x, v, ◊)ds + Â(x(T ), ◊(T )).

From the point of view of this agent, its value function is

V (x, t) = inf
vœU

J(x, t; v).

It is well known, see Appendix A, that V is then a viscosity solution to the Hamilton-Jacobi
equation

≠ Vt + H(x, DxV, D2
xxV, ◊) = 0, (2.1.3)

where H : Rd ◊ Rd ◊ Md◊d

R ◊ P(Rd) æ R is given by

H(x, p, M, ◊) = sup
vœU

5
≠f(x, v) · p ≠ 1

2‡(x, v)‡T (x, v) : M ≠ L(x, v, ◊)
6

,

and : is the trace that is defined as

A : B =
dÿ

i,j=1
AijBij ,
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for square matrices A, B œ Md◊d

R . Furthermore, V satisfies the terminal condition

V (x, T ) = Â(x, ◊(T )).

Suppose that V is a smooth enough solution to (2.1.3), and that H is di�erentiable.
Assume further that there exists a function ‚̄ : Rd ◊ [t, T ] æ U such that

H(x, DxV, D2
xxV, ◊) = ≠f(x, ‚̄) · DxV ≠ 1

2‡(x, ‚̄)‡T (x, ‚̄) : D2
xxV ≠ L(x, ‚̄, ◊).

If, for all x œ Rd and m œ P(Rd), H(x, ·, ·, m) is smooth enough, then a simple argument
shows that

f(x, ‚̄) = ≠DpH(x, DxV, D2
xxV, ◊), 1

2‡(x, ‚̄)‡T (x, ‚̄) = ≠DM H(x, DxV, D2
xxV, ◊),

and that the control ‚̄ is optimal.
We assume now that all players have access to the same information and therefore will use

the same strategy ‚̄ in (2.1.2). This gives rise to the second order mean-field games system
Y
]

[
≠Vt + H(x, DxV, D2V, ◊) = 0

◊t ≠ div(DpH◊) ≠ ˆij(DMij H◊) = 0,
(2.1.4)

coupled with the initial-terminal conditions
Y
]

[
V (x, T ) = Â(x, ◊(T ))

◊(x, 0) = ◊0.
(2.1.5)

The boundary conditions in this problem are non-standard in the sense that part of the
unknowns are subject to initial conditions and the rest of them are subject to terminal
conditions. Therefore existence of solutions is not obvious and requires some justification.
This will be discussed in section 2.2 for three model problems.

In addition to the initial-terminal conditions it is also interesting from the point of view
of applications to consider the planning problem, see [3], and [156]. In this problem we are
given two probability measures ◊0 and ◊1 and one looks for a pair (V, ◊) solving (2.1.4) under
the boundary conditions

◊(x, 0) = ◊0, ◊(x, T ) = ◊1. (2.1.6)

In [156] the existence of weak solutions for the planning problem for the second order case
was established.

At this stage the key points to address are existence and uniqueness for solutions to
(2.1.4). This will be done in the following sections.
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2.2 Existence of solutions

We now discuss the existence of solutions for the initial-terminal value problem for mean-field
games. Rather than considering the most general problem, we consider three model cases. The
first two concern first and second order Hamilton-Jacobi equations with smooth dependence
on the measure. The third case concerns local dependence on the measure.

We will follow closely in the first two parts of this section the lecture notes by P.
Cardaliaguet [54]. As such, we will not detail the more technical arguments that can be
found in that reference. The case of local potentials will be addressed by establishing various
a-priori estimates, using the techniques in [131, 132, 98, 96, 95].

2.2.1 First order case

Here we look into the case where the dynamics of the players are deterministic. Therefore,
given by an ordinary di�erential equation (ODE)

ẋ = f(x, v).

In this case we obtain the first order mean-field games system:
Y
]

[
≠Vt + H(x, DxV, ◊) = 0 in Rd ◊ [0, T )

◊t ≠ div(DpH◊) = 0 in Rd ◊ (0, T ],
(2.2.1)

with initial-terminal condition
Y
]

[
V (x, T ) = Â(x, ◊(·, T ))

◊(x, 0) = ◊0(x).
(2.2.2)

We will study the particular case where the Hamiltonian is given by

H(x, DxV, ◊) = 1
2 |DxV (x, t)|2 ≠ F (x, ◊(t)), (2.2.3)

where F is a (nonlocal) operator on probability measures. A solution to (2.2.1) is a pair (V, ◊),
where where V is a bounded locally Lipschitz continuous solution to the Hamilton-Jacobi
equation and ◊ is a weak solution to the transport equation. We denote by P1(Rd) the set of
Borel probability measures in Rd with finite first moments endowed with the 1≠Wasserstein
distance. We recall (see [167]) that the 1≠Wasserstein distance between two probability
measures ◊1 and ◊2 is defined as

d1(◊1, ◊2) = inf
fi

⁄

Rd◊Rd
|x ≠ y|dfi(x, y),
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where the infimum is taken over the set �(◊1, ◊2) of all probability measures fi in Rd ◊ Rd

whose first marginal is ◊1 and the second marginal is ◊2. We define the norm Î · ÎC2 as

ÎgÎC2 = sup
xœRd

1
|g(x)| + |Dxg(x)| + |D2

xxg(x)|
2

,

for any g œ C2(Rd).

Theorem 1. Suppose that F , and Â in (2.2.2) are continuous on Rd◊P1(Rd), ◊0 is absolutely
continuous with respect to the Lebesgue measure, and that there exists a constant C > 0
such that

ÎF (·, ◊)ÎC2 , ÎÂ(·, ◊)ÎC2 Æ C,

uniformly for ◊ œ P1. Then the system (2.2.1), for the Hamiltonian (2.2.3), and under
initial-terminal conditions (2.2.2) admits a solution.

Proof. We outline in what follows the proof by a fixed point argument from [140], as detailed
in [54].

Semiconcavity estimates We recall that a function Â : Rd æ R is semiconcave if there
exists a constant C such that Â ≠ C|x|2 is a concave function. The first step on the fixed
point argument consists in proving that the solution to the equation

≠ Vt + H(x, DxV, ◊) = 0, (2.2.4)

for a fixed ◊ : [0, T ] æ P1 is semiconcave in x, with semiconcavity modulus uniform in ◊.
This follows from standard viscosity solution techniques, see for instance [20].

Optimal trajectory synthesis Though viscosity solutions may fail to be di�erentiable,
by semiconcavity they are di�erentiable almost everywhere. Furthermore, if x œ Rd is a point
of di�erentiability of V (x, 0) then the trajectory

Y
]

[
ẋ = ≠DpH(x, È, ◊)

ṗ = DxH(x, È, ◊),

with
x(0) = x, È(0) = DxV (x, 0),

is an optimal trajectory for the optimal control associated with (2.2.4), and V is di�erentiable
at (x(t), t), with È(t) = DxV (x(t), t), for 0 < t < T .



2.2 Existence of solutions 13

Transport equation As in [54], we can define, using a measurable selection argument a
flow �(x, t, s) satisfying

�s(x, t, s) = ≠DpH(�(x, t, s), DxV (�(x, t, s), ◊), �(x, t, t) = x. (2.2.5)

Furthermore � satisfies the following properties

1.
|�(x, t, sÕ) ≠ �(x, t, s)| Æ C|s ≠ sÕ|

2.
|x ≠ y| Æ C|�(x, t, s) ≠ �(y, t, s)|.

We then define ’(t) = �(·, 0, t)˘◊0. It is not hard to check that ’ : [0, T ] æ P1 is
continuous and it is a weak solution to

ˆt’ ≠ div(DpH(x, DxV, ◊)’) = 0.

Additionally, since ◊0 is absolutely continuous, so is ’ due to the properties of the flow. The
key issue is uniqueness. If the vector field b(x, t) = ≠DpH(x, DxV, ◊) were Lipschitz in the x

variable, the uniqueness of solution of the conservative transport equation would follow by
standard methods. Unfortunately the above vector field may be discontinuous. Consequently,
to establish uniqueness one needs to use a approach due to Ambrosio [14], [15], as explained
in detail in [54].

Stability and fixed point argument The last step of the proof consists in a fixed point
argument which depends on the following stability result: for m œ C([0, T ], P1) denote by
U [m] the solution to

≠Vt + H(x, DxV, m) = 0

with V (x, T ) = �(x, m(T )). Denote by �[m] the flow induced by U [m] through (2.2.5), and
�[m] = �[m]˘◊0. Then by stability of viscosity solutions if mn æ m then U [mn] æ U [m]. By
the semiconcavity estimates, we have almost everywhere convergence of DxU [mn] to DxU [m].
In addition, �[mn] is (uniformly) absolutely continuous and so any sublimit will be absolutely
continuous. But then limnæŒ �[mn] is a solution to the transport equation for DxU [m]
and by uniqueness �[m] = limnæŒ �[mn]. This then shows that the map m ‘æ �[m] is
continuous. It is also easy to see that it is compact since the properties of the flow imply
Lipschitz continuity of �[m] as a map from [0, T ] æ P1. Therefore this map admits a fixed
point to which corresponds a solution to (2.2.1), as claimed.
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2.2.2 Second order case

Now we consider the second order reduced mean field model (2.1.4) with initial-terminal
conditions (2.1.5). In order to simplify the presentation, and to focus in the main arguments,
we assume that the Hamiltonian has the following structure

H(x, DxV, D2
xV, ◊) = ≠�V + 1

2 |DxV |2 ≠ F (x, ◊).

We assume further

A) F and Â are uniformly bounded over Rd ◊ P1, and also Lipschitz continuous,

B) ◊0 is absolutely continuous with a continuous density function with finite second
moment: ⁄

Rd
|x|2◊0(x)dx < +Œ.

Once more we follow the argument proposed in [140] and detailed in [54] to prove the existence
of solutions for the mean-field equations.

Theorem 2. Assume that conditions A) and B) hold. Then the reduced mean field game
Y
]

[
≠Vt ≠ �V + 1

2 |DxV |2 = F (x, ◊(t)) Rd ◊ [0, T )

◊t ≠ �◊ ≠ div(DxV ◊) = 0 Rd ◊ (0, T ]

with initial-terminal conditions
Y
]

[
V (x, T ) = �(x, ◊(T ))

◊(x, 0) = ◊0(x),

has a solution (V, ◊).

Proof. The proof, as in the previous section is based upon a fixed point argument, of which
we outline the main steps.

Fokker-Planck equation The first step consists in studying weak solutions, ◊ œ L1([0, T ], P1),
of the Fokker-Planck equation

Y
]

[
◊t ≠ �◊ ≠ div(B◊) = 0

◊(x, 0) = ◊0(x),
(2.2.6)

where B : Rd ◊ [0, T ] æ Rd is a vector field assumed to be continuous, bounded, and uniformly
Lipschitz continuous in x. To do so, consider the stochastic di�erential equation

dx = B(x, t)dt +
Ô

2dWt,
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where Wt is a d-dimensional Brownian motion. Suppose further that L(x0) = ◊0. Then it is
well known that ◊(t) = L(x) is a weak solution to the Fokker-Planck equation (2.2.6).

Furthermore, there exists a constant depending only on the terminal time T , C0 = C0(T )
such that

d1 (◊(t), ◊(s)) Æ C0 (ÎfÎŒ + Î‡ÎŒ) |t ≠ s|
1
2 . (2.2.7)

Indeed, let s < t, and consider the random variables xt, xs with law L(xt) = ◊(t), and
L(xs) = ◊(s). Using the definition of the Kantorovitch-Rubinstein distance, and observing
that the joint law “ œ �(◊(t), ◊(s)) we have

d1 (◊(t), ◊(s)) Æ
⁄

Rd◊Rd
|x ≠ y|d“(x, y) = E[|xt ≠ xs|].

Since both xt, xs satisfy (2.1.1), with the same initial condition, we get

E|xt ≠ xs| Æ E
5⁄

t

s

|f(xr, r)|dr +
----
⁄

t

s

‡(xr, r)dWt

----

6
Æ K(|fÎŒ + Î‡ÎŒ)

Ô
t ≠ s.

Additionally, elementary computations show that there exists a constant C0 = C0(T ) such
that ⁄

Rd
|x|2d◊(t, x) Æ K

3⁄

Rd
|x|2d◊0(x) + ÎfÎ2

Œ + Î‡Î2
Œ

4
. (2.2.8)

The idea in [54] is to consider the set K given by

K =
I

m œ C0([0, T ], P) : sup
s ”=t

d1(m(s), m(t))
|t ≠ s|

1
2

Æ C0, sup
tœ[0,T ]

⁄

Rd
|x|2dm(t, x) Æ C0

J

,

for C0 large enough. This set is a convex compact subset of C0([0, T ], P), which is essential
to apply a fixed point argument.

Second-order Hamilton-Jacobi equation The second step consists in looking at the
Hamilton-Jacobi equation

Y
]

[
≠Vt + ≠�V + 1

2 |DxV |2 = F (x, m(t)) Rd ◊ [0, T )

V (x, T ) = �(x, m(T )) Rd,

where m is a given density measure in K. Since F and � satisfy A. and B., and m œ
C0([0, T ], K), using the Cole-Hopf transform is is possible to show that the Hamilton Jacobi
equation has unique solution V with DxV Lipschitz.
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Fixed point argument For the last step of the argument, define the map

� : K æ K

m ‘æ ◊ = �(m),

where K is the convex, compact set defined before. Note that ◊ solves the Fokker-Planck
equation and is continuous. Since V œ C2+ 1

2 we have uniqueness of solutions for the
Fokker-Planck equation and also ◊ œ C2+ 1

2 . From (2.2.7) and (2.2.8) we conclude that ◊ œ K.
We now prove that � is continuous. Take a sequence (◊n) in K convergent to ◊. Then

using the local uniformly convergence of �, and F we obtain that (Vn) is also uniformly
convergent, say, to V . Using interior regularity estimates we prove that (DxVn) is locally
uniformly Holder continuous so it converges local uniformly to DxV . Further we have that
(◊n) converges to ◊. So now we have all the results we need to state and prove the existence
result.

Use the above defined map �, between the convex set K and apply the Schauder fixed
point theorem. The solution to the reduced mean field game is precisely the fixed point
(V, ◊).

2.2.3 A-priori estimates methods

We will address a di�erent dependence of the mean-field game on the measure ◊. Rather
than a smoothing one, we consider a local dependence on the measure. Again, to simplify
the presentation we consider the following equation

Y
]

[
≠Vt + |DxV |2

2 = �V + g(◊)

◊t ≠ div(DxV ◊) = �◊,
(2.2.9)

under initial-terminal data

V (x, T ) = Â(x) ◊(x, 0) = ◊0(x), (2.2.10)

periodic boundary conditions in the spatial variable, that is x œ Td, and g(◊) = GÕ(◊), where
G is a convex increasing function. We should note that for quadratic Hamiltonians such
as (2.2.9) smooth solutions are known to exist, see [59]. However the proof depends on the
Hopf-Cole transformation and does not generalize in any obvious way for Hamiltonians which
satisfy, for instance, quadratic-type growth conditions. The techniques present here can be
generalized easily, and so more general Hamiltonians can be studied with similar techniques,
as well as somewhat more general dependence on the measure of the form g(x, ◊).
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Lasry-Lions estimates One can easily obtain the following estimate, see [132, 133], by
multiplying the first equation in (2.2.9) by ◊ and the second equation by V , subtracting these
two and integrating by parts:

⁄
T

0

⁄

Td

|DxV |2

2 ◊ + G(◊) Æ C. (2.2.11)

This estimate is related with the optimality of certain mean-field games as described in
section 2.5.

In the case g Ø 0 one can obtain the additional estimate
⁄

T

0

⁄

Td
|DxV |2dxdt Æ C. (2.2.12)

By combining the estimates (2.2.11) and (2.2.12), Lions and Lasry in [132, 133] obtained
existence of weak solutions for various mean-field games, see also the papers [157] and [58].

In [93, 94] the following estimate for mean-field games, also in the case g Ø 0 was obtained

⁄
T

0

⁄

Td
gÕ(◊)|D◊|2 + |D2V |◊ Æ C, (2.2.13)

which extends a similar estimate for the stationary case in [78], as well as in [98], for second
order problems (a similar estimate was also obtained by P. L. Lions). This result can be
established by applying the Laplacian operator to the first equation of (2.2.9) and integrating
with respect to ◊.

Fokker-Planck equation The previous estimates were obtained by looking at the first
equation, the Hamilton-Jacobi equation, in (2.2.9). However, the second equation also
has regularizing properties. By combining the previous results with iterative methods for
parabolic equations Gomes and his co-authors obtained in [93, 94] the following result, which
only depends on g Ø 0:

Theorem 3. ◊ œ LŒ((0, T ), Lr(Td)), for all 0 < r < 2ú

2 , where 2ú = 2d

d≠2 is the Sobolev
conjugated exponent to 2.

The proof of this theorem uses an iterative procedure. First we know a-priori that
◊ œ LŒ((0, T ), L1), since the Fokker-Planck equation conserves mass. The idea is to construct
a sequence —n such that at each step one has ◊ œ LŒ((0, T ), L1+—n). One first obtains the
identity

⁄

Td
◊—+1(x, ·)dx + 4—

— + 1

⁄
·

0

⁄

Td
|D◊

—+1
2 |2dx dt

=
⁄

Td
◊—+1(x, 0)dx + —

⁄
·

0

⁄

Td
div(DV )◊—+1dxdt. (2.2.14)
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The last term can be controlled by
⁄

·

0

⁄

Td
�V ◊—+1 Æ C

⁄
·

0

⁄

Td
(�V )2◊ + ”

⁄
·

0

⁄

Td
◊2—+1dxdt

The first term in the right hand side can be estimated by the inequality (2.2.13) and the
second one is handled by using a combination of Sobolev inequalities and Hölder inequality.
This allows to establish an estimate for the LŒ((0, T ), L1+—n+1) norm of ◊ in terms of the
LŒ((0, T ), L1+—n) norm of ◊. For the details we refer the reader to [93, 94].

Regularity for Hamilton-Jacobi equation From the integrability properties for ◊, we
can now look back at the Hamilton-Jacobi equation. We consider the reference case g(◊) = ◊–.
For quadratic Hamiltonians the existence of smooth solutions was established in [59]. The
proof in that paper relies on the Hopf-Cole transformation and depends strongly on the
specific quadratic form of the Hamiltonian and does not extend (except perhaps in very
specific perturbation regimes) to general Hamiltonians. For Hamiltonians with sub-quadratic
growth P.L. Lions, established in [141], the following result:

Theorem 4. Consider the Hamiltonian

H(p, x) = (1 + |p|2)
“
2 + V (x)

with 1 Æ “ < 2. If – < 2
d≠2 or 1 Æ “ < 1 + 1

d+1 and – > 0, then DtV, D2
xxV œ Lp([0, T ] ◊ Td)

for any p, and ◊ œ LŒ([0, T ], Lp).

Once this regularity is obtained then further regularity results can also be established by
bootstrapping and standard methods. In [93] this result was improved in the subquadratic
case and, through a completely di�erent proof, in [94] the authors were also able to study
also the superquadratic case. In particular the following result was proved in those papers:

Theorem 5. Consider the Hamiltonian

H(p, x) = (1 + |p|2)
“
2 + V (x).

Then if 1 + 1
d+1 < “ < 2 there exists –“,d > 2

d≠2 and for 2 Æ “ < 3 for –“,d = 2
d“≠2 , the

solutions of the corresponding mean-field game

≠Vt + H(x, DV ) = ◊– + �V, ◊t ≠ div(DpH◊) = �◊,

for – < –“,d, with smooth initial-terminal data and ◊(x, 0) bounded away from zero satisfy
DtV, D2

xxV œ Lp([0, T ] ◊ Td) for any p, and ◊ œ LŒ([0, T ], Lp).

As remarked previously, from this regularity it follows the existence of smooth solutions.
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2.3 Uniqueness by the Lions-Lasry monotonicity method

We now address the uniqueness of classical solutions for the initial-terminal value problem
for mean-field games. We start by reviewing the Lions-Lasry monotonicity method. Then we
present a definition of weak solution which allows for an improved uniqueness result.

2.3.1 Monotonicity method

We discuss here uniqueness for classical solutions in the second order case (the first order case
is just a special case of the second order case) using the technique by Lions and Lasry. This
proof yields uniqueness for classical solutions. In the next section we show how to modify
the proof so that one can prove uniqueness for viscosity solutions without any regularity
hypothesis on the solutions. We consider mean-field games in Rd, but the argument extends
to the periodic case without any di�culty.

Theorem 6. Consider a smooth Hamiltonian of the form H(x, p, M, ◊) = H0(x, p, M) ≠
F (x, ◊), where F : Rd ◊ P(Rd) æ R. Assume further that H0 is jointly convex in p and M ,
that F is strictly monotone in ◊, that is, if ◊1, ◊2 œ P1, ◊1 ”= ◊2 then

⁄
T

0

⁄

Rd

!
F (x, ◊1) ≠ F (x, ◊2)

"
(◊1 ≠ ◊2)(x) > 0, (2.3.1)

and ⁄

Rd
(Â(x, ◊1) ≠ Â(x, ◊2)) (◊1 ≠ ◊2) Ø 0, ’◊1, ◊2 œ P1. (2.3.2)

Then the initial-terminal value problem for the mean-field game given by
Y
]

[
≠Vt + H0(x, DxV, D2

xV ) = F (x, ◊)

◊t ≠ div(DpH0◊) ≠ ˆ2
ij

(DMij H0◊) = 0,
(2.3.3)

together with conditions (2.1.5), has at most a classical solution (V, ◊).

Proof. We now follow the Lions-Lasry’s strategy to prove uniqueness. Suppose, by contradic-
tion that there exist two solutions, (V1, ◊1), and (V2, ◊2) of the above mean-field game. We
have ⁄

T

0

⁄

Rd

d

dt
(V1 ≠ V2)(◊1 ≠ ◊2) = 0.

In fact, for the uniqueness proof it su�ce to have Ø 0 in the previous expression. The
expression for the left hand side can be obtained by considering the equations for V̄ = V1 ≠V2
and ◊̄ = ◊1 ≠ ◊2 and multiply them by ◊̄ and V̄ , respectively. After subtracting the later from
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the former, rearranging various terms we obtain

0 =
⁄

Rd
V̄ (x, 0)◊̄0(x) ≠ (Â(x, ◊1(T )) ≠ Â(x, ◊2(T ))) ◊̄(x, T ) (2.3.4)

≠
⁄

T

0

⁄

Rd

1
DpH0(x, DxV1, D2

xxV1)◊1 ≠ DpH0(x, DxV2, D2
xxV2)◊2

2
ÒV̄

+
⁄

T

0

⁄

Rd

1
≠DMij H0(x, DxV1, D2

xxV1)◊1 + DMij H0(x, DxV2, D2
xxV2)◊2

2
ˆ2

ij V̄

+
⁄

T

0

⁄

Rd

1
H0(x, DxV1, D2

xxV1) ≠ H0(x, DxV2, D2
xxV2)

2
◊̄ +

⁄
T

0

⁄

Rd
(F (x, ◊2) ≠ F (x, ◊1)) ◊̄

where we have assumed enough regularity and decay to integrate by parts. Using the condition
(2.3.2), and the convexity of H0, which implies

⁄
T

0

⁄

Rd

1
H0(x, DxV2, D2

xxV2) ≠ H0(x, DxV1, D2
xxV1) ≠ DpH0(x, DxV1, D2

xxV1)(ÒV2 ≠ ÒV1)

≠DMij H0(x, DxV1, D2
xxV1)(ˆ2

ijV2 ≠ ˆ2
ijV1)

2
◊1

+
⁄

T

0

⁄

Rd

1
H0(x, DxV1, D2

xxV1) ≠ H0(x, DxV2, D2
xxV2) ≠ DpH0(x, DxV2, D2

xxV2)(ÒV1 ≠ ÒV2)

≠DMij H0(x, DxV2, D2
xxV2)(ˆ2

ijV1 ≠ ˆ2
ijV2)

2
◊2 Ø 0,

we conclude that ⁄
T

0

⁄

Rd

!
F (x, ◊1) ≠ F (x, ◊2)

"
(◊1 ≠ ◊2)(x) Æ 0,

which contradicts (2.3.1). This yields ◊1 = ◊2. Then uniqueness for viscosity solutions implies
V1 = V2, therefore the solution is unique.

In the local case one can also use a similar argument to obtain uniqueness. As discussed
in P.L. Lions course [140], as described in [109], take H(x, p, z) : Rd ◊ Rd ◊ R+

0 æ R. Then
uniqueness for the mean-field game

Y
]

[
≠Vt ≠ �V + H(x, DxV, ◊) = 0

◊t ≠ �◊ ≠ div(DpH◊) = 0

holds if the H satisfies C
zD2

ppH 1
2zD2

pzH
1
2zD2

zpH ≠DzH

D

> 0

for any (x, p, z) œ Rd ◊ Rd ◊ R+.

2.3.2 Relaxed solutions and uniqueness

We now introduce a notion of relaxed solutions for mean-field games that allows to prove
uniqueness under minimal regularity assumptions. To simplify the discussion we consider
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first order mean-field games. Let H : Rd ◊ Rd ◊ P1(Rd) æ R be a continuous function. Let
L(x, ·, ◊) be the Legendre transform of H(x, ·, ◊), for all x œ Rd and ◊ œ P1(Rd), which to
simplify we assume bounded by below.

A relaxed solution for the mean-field game
Y
]

[
≠ut + H(x, Du, ◊) = 0

◊t ≠ div(DpH◊) = 0.
(2.3.5)

is a triplet (u, ◊, J) where u : Rd ◊ [0, T ] æ R, ◊ œ C([0, T ], P(Rd)) and J is a vector valued
measure in [0, T ] ◊ Rd absolutely continuous with respect to ◊, satisfying the following
properties:

1. u œ C(Rd) is a viscosity solution of ≠ut + H(x, Du, ◊) = 0;

2. for 0 Æ t Æ T , u(·, t) œ L1(d◊(·, t));

3. as a distribution
◊t + div(J) = 0;

4. since J is absolutely continuous with respect to ◊ denote by v(x, t) its Radon-Nykodym
derivative. Then we require

⁄
u(x, 0)d◊(x, 0) Ø

⁄
T

0

⁄

Rd
L(x, v(x, t), ◊)d◊ +

⁄

Rd
u(x, T )d◊(x, T ).

Any classical solution to the mean-field game is in fact a relaxed solution, for J = ≠DpH◊.
Also we observe that (under very mild standard assumptions) from the optimal control
representation for viscosity solutions of Hamilton-Jacobi equations, for any pair (◊̃, J̃) with
◊̃ œ C([0, T ], P(Rd)) J̃ absolutely continuous with respect to ◊̃ such that J̃ = ṽ◊ we have

⁄
u(x, 0)d◊̃(x, 0) Æ

⁄
T

0

⁄

Rd
L(x, ṽ(x, t), ◊)d◊̃ +

⁄

Rd
u(x, T )d◊̃(x, T ). (2.3.6)

Indeed, under mild standard regularity hypothesis it is possible to build a sequence of C1

functions, such that un æ u uniformly, and

≠un

t + H(x, Dxun, ◊) Æ o(1),

as n æ Œ. Then

≠un

t ≠ ṽDxun Æ o(1) ≠ H(x, Dxun, ◊) ≠ ≠ṽDxun Æ o(1) + L(x, ṽ, ◊).

Integrating and passing to the limit we obtain (2.3.6).
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One advantage of this notion of relaxed solution is that uniqueness can be proved without
any regularity or di�erentiability assumptions on u.

Theorem 7. Suppose L satisfies
⁄

T

0

⁄

Rd
L(x, ṽ(x, t), ◊)d◊̃ + L(x, v(x, t), ◊̃)d◊ ≠ L(x, v(x, t), ◊)d◊ ≠ L(x, ṽ(x, t), ◊̃)d◊̃ < 0,

(2.3.7)
whenever (◊, J) ”= (◊̃, J̃), where J = v◊ and J̃ = ṽ◊̃.

Then the initial-terminal value problem for (2.3.5) has at most one relaxed solution.

Proof. Let (u, ◊, J) and (ũ, ◊̃, J̃) be relaxed solutions to (2.3.5). Then

⁄
u(x, 0)d◊(x, 0) =

⁄
T

0

⁄

Rd
L(x, v(x, t), ◊)d◊ +

⁄

Rd
u(x, T )d◊(x, T ),

⁄
ũ(x, 0)d◊̃(x, 0) =

⁄
T

0

⁄

Rd
L(x, ṽ(x, t), ◊̃)d◊̃ +

⁄

Rd
ũ(x, T )d◊̃(x, T ),

⁄
ũ(x, 0)d◊̃(x, 0) Æ

⁄
T

0

⁄

Rd
L(x, ṽ(x, t), ◊)d◊̃ +

⁄

Rd
ũ(x, T )d◊̃(x, T ),

and ⁄
u(x, 0)d◊(x, 0) Æ

⁄
T

0

⁄

Rd
L(x, v(x, t), ◊̃)d◊ +

⁄

Rd
u(x, T )d◊(x, T ).

Adding the last two inequalities and subtracting the first two equalities yields:

0 Æ
⁄

T

0

⁄

Rd
L(x, ṽ(x, t), ◊)◊̃ + L(x, v(x, t), ◊̃)◊ ≠ L(x, v(x, t), ◊)◊ ≠ L(x, ṽ(x, t), ◊̃)◊̃,

which contradicts (2.3.7) unless (◊, J) = (◊̃, J̃). Then u = ũ by uniqueness for viscosity
solutions.

An example where the previous theorem applies is the separated case

L = |v|2

2 + g(◊),

where g is a monotone function (not necessarily local) in the sense that
⁄

Rd
(g(◊) ≠ g(◊̃))(◊ ≠ ◊̃) > 0,

if ◊ ”= ◊̃.
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2.4 Stationary problems

In addition to the terminal-initial value or planning problems discussed in the previous
section, stationary problems play an important role in many applications. The stationary
problem corresponding to (2.1.4) consists in finding a triplet (u, ◊, H̄), where u : Rd æ R,
◊ œ P(Rd) and H œ R which solves

Y
]

[
H(Dxu, x, ◊) = �u + H

≠ div(DpH◊) ≠ �◊ = 0.
(2.4.1)

The constant H is called the e�ective Hamiltonian as it arises in related problems in
homogenization theory, see [33], as well as in Aubry-Mather theory.

There are three natural questions that arise immediately when considering (2.4.1). First,
of course, is existence (and regularity) of solutions, secondly uniqueness of the constant H

and of solutions, and finally to what extend one can expect time-dependent mean-field games
to converge to stationary solutions.

Concerning existence, one can use similar proofs to the ones in the time dependent case.
In particular it is possible to prove suitable a-priori bounds for (2.4.1), see [131], [98, 96], for
instance. In certain cases uniqueness can be established by monotonicity methods using a
procedure similar to the one in Section 2.3. An important class of stationary mean-field games
admits a variational formulation. In those cases (2.4.1) is the Euler-Lagrange of a (possibly
non-coercive) convex functional. For these variational cases, once existence is established,
uniqueness follows by standard convexity arguments in the calculus of variations see [98] for
instance. We will discuss some variational structures for mean-field games in Section 2.5.
The last question, the trend to equilibrium, will be addressed in what follows. We end this
section by presenting some results on extended mean-field games.

2.4.1 Trend to equilibrium

A natural question in the initial-terminal value problem the following: suppose one is given
an initial probability measure mT (x, 0) = m0(x) and a terminal cost uT (x, T ) = u0(x) and
then lets T æ Œ - is it true that mT (x, t) and uT (x, t) converge to a stationary solution?
In some sense this would mean that by taking an initial probability distribution far in the
past and a terminal cost far in the future, the present behaves like an equilibrium. The first
positive answer to this problem in discrete state and time was given in [88] and then further
extended to the continuous time setting in [89]. The key idea in these papers is to adapt
the uniqueness proof by monotonicity to extract the convergence result. A similar idea was
also independently used in [59] and in [60] where the authors studied the continuous time
problem both for local coupling and non-local coupling. More recently, the first order case
was addressed in [55]. Further results on the finite state problem were established in [80]
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using � convergence through a di�erent set of ideas. For Hamilton-Jacobi equations, a new
class of ideas using the adjoint method is discussed in [49].

The long time convergence results in [59] hold for fairly general Hamiltonians as long as
smooth enough solutions are known to exist. In particular the results apply to the following
mean-field game: Y

]

[
≠ut ≠ �u + 1

2 |Du|2 = F (x, ◊)

◊t ≠ �◊ ≠ div(◊Du) = 0,
(2.4.2)

coupled with initial-terminal conditions
Y
]

[
◊(x, 0) = ◊0(x)

u(x, T ) = u0(x),

as well as periodic boundary conditions in the spatial variable, that is x œ Td. Let (uT , ◊T )
be a solution of (2.4.2) satisfying, the above, initial-terminal conditions. The existence and
uniqueness of solution (uT , ◊T ) of (2.4.2) was already discussed in sections 2.2.2 and 2.3. In
order to state the convergence results in [59] we need to consider the following stationary
problem (in fact in [59] more general initial-terminal conditions are considered):

Y
]

[
H ≠ �ū + 1

2 |Dū|2 = F (x, ◊̄)

≠�◊̄ ≠ div(◊̄Dū) = 0
(2.4.3)

where ū and m̄ satisfy the normalization conditions:
Y
]

[

s
Td ūdx = 0

s
Td ◊̄dx = 1.

We denote by (Hū, ◊̄) the solution to the above problem.

A convergence result In the above mentioned paper, the convergence is proved assuming
the following conditions:

A1. F : Rd ◊ R æ R, is C1, and Zd ≠ periodic in the space variable x and increasing in m,

A2. u0 : Rd æ R is Zd-periodic and of class C2,

Also, for convenience, one considers a rescaled version of (2.4.2), vT (x, t) = v(x, T t, and
◊T (x, t) = ◊(x, T t), which satisfies:

Y
]

[
≠ 1

T
vT

t ≠ �vT + 1
2 |DvT |2 = F (x, ◊T )

1
T

◊T
t ≠ �◊T ≠ div(◊T DvT ) = 0,

(2.4.4)



2.4 Stationary problems 25

with ◊T (x, 0) = ◊0(x), vT (x, 1) = u0(x).
Provided the above conditions hold, the convergence results obtained in [59] are the

following:

Theorem 8. Let (vT , ◊T ) be a solution to (2.4.4). Then

B1. vT (t, ·)/T converges uniformly in L1(Td) to (1 ≠ t)H, for t œ [0, 1],

B2. vT converges uniformly to ũ in L2((0, 1) ◊ Td), where ũ = (1 ≠ t)H,

B3. vT ≠
s
Td vT (t, y)dy converges to ū in L2((0, 1) ◊ Td),

B4. ◊T æ ◊̄ in Lp((0, 1) ◊ Td) for p < d+2
d

provided d > 2, and for p < 2 if d = 2,

B5. F (·, ◊T ) æ F (·, ◊̄) and F (·, ◊T )◊T æ F (·, ◊̄)◊̄ both in L1((0, 1) ◊ Td).

The proof of this theorem relies on the following: first by applying the same technique as
in the uniqueness proof one obtains the following identity:

⁄ 1

0

⁄

Td

◊T + ◊̄

2 |DvT ≠Dū|2+(F (x, ◊T )≠F (x, ◊̄))(◊T ≠ ◊̄)dxdt = ≠ 1
T

5⁄

Td
(vT ≠ ū)(◊T ≠ ◊̄)

61

0
.

The second key step consists in obtaining estimates to show that the right hand side is in
fact controlled and therefore implies convergence. The proof presented in that paper uses
the specific form of the Hamiltonian through the use of the Hopf-Cole transform to obtain
various estimates.

Convergence rate The convergence rate’s result proved in [59] assumes, in addition to
conditions A1.-A.2, the following one:

A3. The growth rate of F is bounded by below. Let s Ø t, so there is a “ > 0 such that

F (x, s) ≠ F (x, t) Ø “(s ≠ t), ’x œ Td.

Let C > 0 be a constant, and define ũT (x, t) = uT (x, t) ≠
s
Td uT (x, t), where uT is a

solution to (2.4.2).

Theorem 9. Under the assumptions A1.-A.3 then for ’t œ (0, T ), the following holds:

ÎũT (t) ≠ ūÎL1(Td) Æ C

T ≠ t

1
e≠C(T ≠t) + e≠Ct

2
,

Î◊T (t) ≠ ◊̄ÎL1(Td) Æ C

t

1
e≠C(T ≠t) + e≠Ct

2
,

and for all t œ (0, T ≠ 1)
.....

uT (t)
T

≠ H
3

1 ≠ t

T

4.....
L1(Td)

Æ C

T
.
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where (H, ū, ◊̄) is a solution to the associated ergodic problem (2.4.3).

2.4.2 Extended stationary models

In many applications it is important to consider mean-field games where the running cost or
the dynamics of the players depend not only on the distribution of players but also on their
actions. This leads to the class of extended mean-field games considered in [103] and [92]. In
this section we describe briefly the stationary models and refer the reader to [92] for details
and additional results.

We denote by ‰(Td) the set of continuous vector fields on Td, and by Pac the set of
absolutely continuous probability measures in Td. Let

H : Td ◊ Rd ◊ Pac(Td) ◊ ‰(Td) æ R.

Then one can consider the system:
Y
___]

___[

≠�u(x) + H(x, Du(x), ◊, V ) = H

≠�◊(x) + div(V (x)◊(x)) = 0

V (x) = ≠DpH(x, Du(x), ◊, V ).

(2.4.5)

The unknowns for this problems are u : Td æ R, identified with a Zd-periodic function on Rd

whenever convenient, a probability measure m œ P(Td), the e�ective Hamiltonian H œ R and
the e�ective velocity field V œ ‰(Td). Among the problems considered in [92] the following
example was investigated:

H(x, p, ◊, V ) = h(x, p) + ”p ·
⁄

Td
V d◊ ≠ g(◊) (2.4.6)

where h is a coercive and satisfies quadratic growth-type conditions and g : R+ æ R is
either g(z) = z– or g(z) = ln z (other possible functions can also be handled with similar
methods but these two are representative of the main techniques and di�culties). In the
above reference, the authors proved:

Theorem 10. The system (2.4.5) where H is given by (2.4.6) admits a unique classical
solution, for ” small enough, for g = ln m in any dimension, and for g(z) = z–, if d Æ 4 for
any exponent – and if d Ø 5 for – < 1

d≠4 .

The proof of this theorem, which rather is lengthy depends upon establishing careful
a-priori estimates for the solutions and applying a continuation argument.
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2.5 Potential mean-field models

Certain mean-field games admit variational formulations which allows the use of duality
and calculus of variations techniques in their study. Some of these structures were already
discussed in the papers [131–134], and used to study the planning problem in [3] or the
long-time behavior in [55]. Also, existence of weak solutions for first order problems was
addressed by variational methods in [58]. These will be addressed in section 2.5.1 and consist
in optimization problems in the space of measures whose optimality conditions are equivalent
to mean-field games. Another related class of variational structures, which are written in
terms of integral variational problems, was discovered in the study of the stochastic Evans-
Aronsson problem in [98] (see also [86]). These will be discussed in section 2.5.2 together
with some applications and extensions. Then, in section 2.5.3, we investigate, through duality,
the connection between these problems defined through multiple integrals and optimization
problems in the space of measures.

Rather than developing here a complete theory we present several examples and applica-
tions. More general problems can be handled by adapting the ideas outlined in the present
paper. Throughout this section we will work on the periodic setting, that is the state space is
Td, the d-dimensional torus, identified with [0, 1]d. The main reason is to avoid problems that
could arise by computing integral functionals on non-compact domains. By similar methods,
one can consider boundary value problems of various types.

2.5.1 Optimal control in the space of measures

We discuss in this section a class of planning problems for mean-field games which can be
seen as optimal control problems in the space of measures.

Let F : P(Td) æ R be a convex function. Suppose that F is di�erentiable with gradient
with respect to the L2 inner product ÒF (fl). We will work in the setting of section 2.1 under
the following simplifying assumptions U = Rd, f(x, v) = v, and L : Td ◊ Rd æ R. Consider
the problem of minimizing over all (smooth enough) vector fields b : Td ◊ [0, T ] æ Rd and
measures fl in Td ◊ [0, T ] the functional

⁄
T

0

⁄

Td
F (fl) + L(x, b(x, t))fl (2.5.1)

under the constraint
flt + div(bfl) = �fl, (2.5.2)

with fl(x, 0) = ◊0 and fl(x, T ) = ◊1.
In order to study this problem and obtain optimality conditions we will introduce the

dual problem through the minimax principle. Our discussion will be mostly informal as
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our main objective in this section is to obtain optimality conditions. However, a rigorous
discussion of duality in this setting can be found in [3].

Let „ : Td ◊ [0, T ] æ R be a smooth function that will act as the Lagrange multiplier for
(2.5.2). The problem of minimizing (2.5.1) under the constraint (2.5.2) is equivalent to

min
b,fl

max
„

⁄
T

0

⁄

Td
F (fl) + L(x, b(x, t))fl ≠ „(flt + div(bfl) ≠ �fl). (2.5.3)

By definition, the dual problem is the variational problem obtained by switching the minimum
with the maximum. In general, the value for the dual problem is a lower bound for the
original problem. In many cases, it is possible to show that their values coincide using the
Legendre-Fenchel-Rockafellar theorem, see [3]. Note that the dual problem is simply

max
„

min
b,fl

⁄
T

0

⁄

Td
F (fl) + L(x, b(x, t))fl ≠ „(flt + div(bfl) ≠ �fl).

By integrating by parts and performing the minimization over the vector fields b we obtain
that the dual problem is simply

max
„

min
fl

⁄
T

0

⁄

Td
F (fl) + (�„ ≠ H(x, Dx„) + „t) fl +

⁄

Td
„(x, 0)◊0 ≠

⁄

Td
„(x, T )◊1, (2.5.4)

where
H(x, p) = sup

vœRd
[≠v · p ≠ L(x, v)] .

Proposition 1. Let (V, ◊) be a solution to
Y
]

[
≠Vt ≠ �V + H(x, DxV ) = ÒF (◊)

◊t ≠ �◊ ≠ div(DpH(x, DxV )◊) = 0

satisfying ◊(x, 0) = ◊0, ◊(x, T ) = ◊T . Then V is optimal for (2.5.4), (fl, b) = (◊, ≠DpH(x, DxV ))
is optimal for (2.5.1). Furthermore there is no duality gap, that is, the value of the primal
agrees with the one of the dual.

Proof. Denote by P the value in (2.5.3), and Q the value of (2.5.4). We always have P Ø Q.
Clearly, by choosing „ = V in (2.5.4) we obtain the following lower bound:

Q Ø min
fl

⁄
T

0

⁄

Td
F (fl) + (�V ≠ H(x, Dxu) + Vt) fl +

⁄

Td
V (x, 0)◊0 ≠

⁄

Td
V (x, T )◊1

= min
fl

⁄
T

0

⁄

Td
F (fl) ≠ ÒF (◊)fl +

⁄

Td
V (x, 0)◊0 ≠

⁄

Td
V (x, T )◊1.
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By convexity we have therefore

Q +
⁄

Td
V (x, T )◊1 ≠

⁄

Td
V (x, 0)◊0 Ø

⁄
T

0

⁄

Td
F (fl) ≠ ÒF (◊)fl Ø

⁄
T

0

⁄

Td
F (◊) ≠ ÒF (◊)◊.

Choosing in (2.5.1) fl = ◊ and b = ≠DpH(x, DxV ), which by definition satisfy (2.5.2) we
have the following upper bound:

P Æ
⁄

T

0

⁄

Td
F (◊) + L(x, ≠DpH(x, DxV ))◊.

Using the identity

L(x, ≠DpH(x, DxV )) ≠ DxV · DpH(x, DxV ) = ≠H(x, DxV ),

we have that

P Æ
⁄

T

0

⁄

Td
F (◊) + (Vt ≠ H(x, DxV ) + �V ) ◊ + (≠Vt ≠ �V + DpH(x, DxV )DxV ) ◊.

From this we get

P +
⁄

Td
V (x, T )◊1 ≠

⁄

Td
V (x, 0)◊0 Æ

⁄
T

0

⁄

Td
F (◊) ≠ ÒF (◊)◊,

that is P Æ Q. This shows that there is no duality gap and the optimality of (◊, ≠DpH(x, Dxu))
and u.

It is important to observe, however, that not every mean-field game will have such a
variational structure. Additionally, it is also not true, in general, that variational problems
which involve general costs L(x, b, fl) rather than a sum of a linear functional in fl and a
nonlinear function of fl have optimality conditions equivalent to mean-field games.

2.5.2 Calculus of variations with convex non-linear integrands

We consider now a class of variational problems than gives rise to mean-field games through
the minimization of functionals defined by multiple integrals. The discussion here is based
upon the ideas first developed in [98], [96], and [86]. The connection by duality theory
between these problems and the ones considered in the previous section will be discussed in
section 2.5.3.

In this setting it is more convenient to start in a somewhat more general setting which
includes various important examples, such as initial-terminal, planning and stationary
problems. Let W be a compact set, in most examples either W = Td ◊ [0, T ] or W = Td.
Consider a nonlinear operator denoted by N : CŒ(W ) æ CŒ(W ). Important examples of
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such operators are
N (V ) = ≠Vt + H(x, DxV ) ≠ �V, (2.5.5)

with W = Td ◊ [0, T ] and
N (V ) = H(x, DxV ) ≠ �V, (2.5.6)

for W = Td. To simplify we will assume H smooth. Note that many other variations,
including first order (simply by omitting the Laplacian), general fully non-linear elliptic
operators or even non-local operators can also be considered by the same methods. We will
assume N to be di�erentiable with respect to u, that is, for any v œ Cc(W ) the following
directional derivative exists and defines a linear operator Lu : CŒ(W ) æ CŒ(W )

d

d‘
N (u + ‘v)

----
‘=0

= Luv.

The linear operators corresponding to examples (2.5.5), and (2.5.6) are

LV v = ≠vt + DpH(x, DxV )Dxv ≠ �v,

and
LV v = DpH(x, DxV )Dxv ≠ �v.

Let G : R æ R be a convex increasing function. Consider the integral functional
⁄

W

G(N (V ))dx. (2.5.7)

Let V be a minimizer of (2.5.7). Then, assuming enough regularity, an elementary computa-
tion shows that the Euler-Lagrange equation in weak form is

⁄

W

GÕ(N (V ))LV vdx = 0, for all v œ CŒ
c (W ).

If we define
◊ = GÕ(N (V )),

the above Euler-Lagrange equation can be written in strong form as
Y
]

[
N (V ) = (GÕ)≠1(◊)

Lú
V

◊ = 0,
(2.5.8)

where Lú
V

is the adjoint of LV with respect to the L2 inner product.
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For illustration purposes, we consider now some possible choices of G and N . First set
G(z) = z–, and W = [0, T ] ◊ Td in (2.5.7). Then, for – ”= 1, (2.5.8) is simply

Y
_]

_[
≠Vt + H(x, DxV ) ≠ �V =

1
◊

–

2 1
–≠1

◊t ≠ div(DpH(x, DxV )◊) ≠ �◊ = 0.

Consider also the case G(z) = ez, then (2.5.8) becomes
Y
]

[
≠Vt + H(x, DxV ) ≠ �V = ln ◊

◊t ≠ div(DpH(x, DxV )◊) ≠ �◊ = 0.

This variational interpretation of mean-field games is quite remarkable as it shows that
various problems which have been researched intensely in the last few years are closely related
to mean-field games. Take for instance

N (V ) = |DV |, G(z) = zp.

The Euler-Lagrange equation for this functional is simply the p-Laplace equation.
Also certain mean-field games have surprising regularizing properties. Take for instance

N (V ) = |DV |2

2 + W (x), G(z) = ez.

This corresponds to the mean-field game
Y
]

[

|DV |2
2 + W (x) = ln ◊

≠ div(DV ◊) = 0.

Though in general first order equations have only Lipschitz or semiconcave solutions, this
mean-field game in fact has smooth classical solutions. This was proved in the periodic
setting in [78]. In [98] the second order case, which is associated with the non-coercive,
convex functional ⁄

Td
e≠�V + |DV |2

2 +W (x),

was also studied and shown to admit smooth solutions which are minimizers of the above
functional. For further results, see also [92].

In certain applications, it may be necessary to modify the structure of the mean-field
game equations. For instance, there may be a source f of agents, or they may die at a rate “.
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In this case it is natural to consider equations of the form
Y
]

[
“V + H(x, DV ) = �u + ln ◊

“◊ ≠ div(DpH(x, DV )◊) = �◊ + f(x).

The previous equation is also a Euler-Lagrange equation of the functional
⁄

e“V +H(x,DV )≠�V ≠ fV.

Various other modifications can also be considered to study optimal switching and obstacle
type problems, see [91]. Mean-field games with a non-linear Fokker-Planck equation were
considered in [97].

2.5.3 Duality revisited

We now apply duality theory to the problems discussed in the previous section. We will work
a specific example but it should be clear how to apply these ideas in di�erent settings.

Consider the problem
min

C

⁄

Td
G(≠q(x) + H(p(x), x)),

where C is the set of smooth functions („, p, q), „ : Td æ R, p : Td æ Rd, and q : Td æ R,
which satisfy the constraints

p = Dx„, q = �„.

We introduce two Lagrange multipliers J : Td æ Rd and ◊ : Td æ R. Proceeding as before,
we look at the functional

⁄

Td
G(≠q + H(p, x)) + J(p ≠ Dx„) + ◊(q ≠ �„).

The Euler-Lagrange equation for the previous functional can be written as

◊ = GÕ(≠q + H(p, x)), J = ◊DpH(p, x), (2.5.9)

and
div(J) ≠ �◊ = 0. (2.5.10)

Now note that if ◊ and J are given by (2.5.9) then

G(≠q + H(p, x)) + Jp + ◊q = inf
p,q

[G(≠q + H(p, x)) + Jp + ◊q] = Z(J, ◊).
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That is objective functional of dual problem is then
⁄

Td
Z(J, ◊)dx,

together with the constraint (2.5.10).

2.6 Random variables point of view

We discuss in this section the random variables point of view for deterministic mean-field
games. This allows us, in the first order case, to reformulate (2.1.4) as a system of a Hamilton-
Jacobi equation and a ordinary di�erential equation in a space of random variables. This
formulation is very close to the one originally considered in [117, 114]. The presentation
here reflects also ideas discussed by P. L. Lions in [140]. The random variables point of view
is also convenient to the study extended mean-field games, where the costs incurred by a
player depend not only on the positions of the other players but also on their actions. A
further application of this framework is the stochastic case where the players have a common
noise. The latter problem will be briefly discussed in section 3. See also the recent papers
[149, 64, 63, 66, 65] where these problems are addressed using backward-forward stochastic
di�erential equations. This is approach is also natural to address the limit as the number
of players N tends to infinity using the interaction particle framework. Such limit is a
fundamental problem also in statistical physics, see for instance [162] and references therein.

2.6.1 Random variables

Let (�, F , P ) be a probability space, where � is a non-empty set, F a ‡-algebra on � and P

a probability measure. As usual in probability theory we denote integration with respect to
P by the expected value, that is, for any P -integrable real valued function Ï we set

EÏ ©
⁄

�
ÏdP.

A Rd valued random variable X is a measurable map X : � æ Rd. For definiteness, we will
consider random variables which are Lp integrable. The law of a Rd valued random variable
is the probability measure L(X) in Rd defined by

⁄

Rd
„dL(X) = E„(X),

for any bounded continuous function „ : Rd æ R. We say that a function � : Lp(�) æ R
depends only on the law of a random variable if for any pair of random variables X, Y œ Lp(�)
such that L(X) = L(Y ) we have �(X) = �(Y ).
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Let ÷ : P(Rd) æ R, ÷(◊). We define a function, ÷̃ : Lp(�;Rd) æ R which depends only
on the law of the argument, by

÷̃(X) = ÷(L(X)).

This allows us to identify functions in P(�) with functions in Lp(�) which depend only on
the law.

2.6.2 Dynamics

We regard the set � as the collection of all players. We will consider a time dependent family
of random variables X : � ◊ [t, T ] æ Rd. If Ê œ �, we interpret Xs(Ê) as the position of the
player Ê at time s. For the moment we suppose we are given a vector field determined by a
function

B : Rd ◊ Lp(�) ◊ [t, T ] æ Rd,

depending only on the law on the second coordinate. We suppose the players in � follow the
deterministic trajectory

Ẋs(Ê) = B(Xs(Ê), Xs, s).

We observe that for our purposes it is important to distinguish between the dependence of B

on the position of a player Ê at Xs(Ê) and the law of the random variable Xs. We consider
now a reference player, which has a dynamic

ẋ = f(x, v),

where f is as in Section 2.1, and v : [t, T ] æ U is the control of this reference player. As
before, we denote by U the set of bounded controls on [t, T ] with values in U .

In this new setting, the Lagrangian is a function L : Rd ◊ Lp(�) ◊ U æ R, that we denote
by L(x, X, v), which in the second coordinate depends only on the law. An example of such
a Lagrangian is

L(x, X, v) = |v|2

2 ≠ EW (x, X),

where W : Rd ◊ Rp(�) æ R is, for instance, a bounded Lipschitz function. The terminal
cost is given by a function Â : Rd ◊ Lp(�) æ R which depends only on the law of the second
coordinate.

The objective of the reference player is to minimize

V (x, t) = inf
vœU

⁄
T

t

L(x, Xs, v)ds + Â(x(T ), XT ).
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As before, for (x, X, p) œ Rd ◊ Lp(�) ◊ Rd, the Hamiltonian is given by

H(x, X, p) = sup
vœU

[≠f(x, v) · p ≠ L(x, X, v)] .

The Hamiltonian H : Rd ◊Lp(�)◊Rd æ R, depends only on the law of the second coordinate.
Then, from standard viscosity solution methods, V is the unique viscosity solution of the

Hamilton-Jacobi equation

≠Vt(x, t) + H(x, Xt, DxV (x, t)) = 0

with the terminal condition V (x, T ) = Â(x, XT ). As before, the optimal feedback strategy
for the reference player yields the dynamics

ẋ = ≠DpH(x, Xt, DxV (x, t)).

We assume at this stage that each of the players is faced with the same optimization
problem. Thus they all have a similar strategy and consequently

B(x, X, t) = ≠DpH(x, X, DxV (x, t)).

Hence, for Ê œ �
Ẋs(Ê) = ≠DpH(Xs(Ê), Xs, DxV (Xs(Ê), s)).

Therefore the mean-field equations can be written as
Y
]

[
≠Vt + H(x, X, DxV ) = 0

Ẋs(Ê) = ≠DpH(Xs(Ê), Xs, DxV (Xs(Ê), s)),

with the initial-terminal condition
Y
]

[
V (x, T ) = Â(x, XT )

X0 = X0.

2.7 Extended mean-field models

We now consider extended mean-field models. These di�er from the ones discussed in the
previous section because the cost function depends not only on the state of the other players,
but also on their strategies. Here, as before, we will formulate the problem using the random
variables point of view as in [103].
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2.7.1 Model set up

We consider the same set up as in the previous subsection, except that the Lagrangian
now depends also on the other players actions. More precisely we consider a Lagrangian
L : Rd ◊Rd ◊ Lq(�) ◊ Lq(�) æ R. We further assume that the L(x, v, X, Z) depends only on
the joint law of (X, Z) œ Lq(�) ◊ Lq(�). The players positions are determined by a random
variable X, and its velocities by the random variable Z.

We consider a reference player and assume as before that the dynamics of the re-
maining players is described by a di�erentiable trajectory X : [t, T ] æ Lq(�), Ẋs(Ê) =
B(Xs(Ê), Xs, s), with B fixed for now and known by the reference player. This player, which
we assume to be at time t in the state x œ Rd, faces the following optimal control problem:

V (x, t) = inf
vœU

⁄
T

t

L(x, v, Xs, B)ds + �(x(T ), X(T )).

The Hamiltonian H : Rd ◊ Lq(�) ◊ Rd ◊ Lq(�) æ R, is given by

H(x, X, p, Z) = sup
vœU

[≠f(x, v) · p ≠ L(x, X, v, Z)] ,

and depends only on the joint law of (X, Z) œ Lq(�) ◊ Lq(�). Assuming enough regularity
on the value function, V is the unique viscosity solution of the following Hamilton-Jacobi
equation

≠Vt(x, t) + H(x, Xt, DxV (x, t), Ẋ) = 0.

As before, all players act rationally, therefore follow optimal trajectories. Then the dynamics,
for all players Ê œ �, is

Ẋs(Ê) = ≠DpH(Xs(Ê), Ẋs, DxV (Xs(Ê), s), Ẋs).

Henceforth the mean-field equations are
Y
]

[
≠Vt(x, t) + H(x, X, DxV (x, t), Ẋ) = 0

Ẋs(Ê) = ≠DpH(Xs(Ê), Xs, DxV (Xs(Ê), s), Ẋs),
(2.7.1)

with the following initial-terminal condition
Y
]

[
V (x, T ) = Â(x, X(T ))

X(0) = X0.
(2.7.2)
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2.7.2 Existence

Following [103], we address now existence and uniqueness of solutions of the extended mean-
field games, (2.7.1) with initial-terminal conditions (2.7.2). Consider that the following
conditions, for 1 Æ q < Œ and a Lipschitz bounded function Â, hold

1. For all x œ Rd, X, Z œ Lq(�), the Lagrangian L(x, v, X, Z) is strictly convex in v and
satisfies the coercivity condition

lim
|v|æŒ

L(x, v, X, Z)
|v| æ Œ,

uniformly in x.

2. L(x, v, X, Z) > ≠c0E[|X|q + |Z|q + 1].

3. For all X, Z œ Lq(�) there exists a continuous function v0 : Lq(�) ◊ Lq(�) æ Rd such
that L(x, v0(X, Z), X, Z) Æ c1.

4. |DvL|, |D2
vv|L Æ (c2L + c3)E[|X|q + |Z|q + 1], and |DxL|, |D2

x,vL|, |D2
xx| Æ c2L + c3.

5. DxH is Lipschitz in Rd ◊ Rd ◊ Lq(�) ◊ Lq(�), where H = Lú.

6. For any X, Y, P œ Lq(�) the equation Z = ≠DpH(X, P, Y, Z) can be solved with
respect to Z as

Z = G(X, P, Y ),

where G : Lq(�) ◊ Lq(�) ◊ Lq(�) æ Lq(�) is a Lipschitz map.

7. The Hamiltonian H is continuous with respect to X, Z, and locally uniformly in x, p.

8. For any R > 0 there exists a constant C(R) such that

|H(x, p, X, Z) ≠ H(y, q, Y, W )| Æ C(R) (|x ≠ y| + |p ≠ q| + E[X ≠ Y ] + E[Z ≠ W ]) ,

for |x|, |y|, |p|, |q|, ÎXÎq, ÎY Îq, ÎZÎq, ÎWÎq Æ R.

Theorem 11. Let the above conditions on L and Â hold. Suppose X0 has an absolutely
continuous law. Then there exists a solution (V, X) œ Rd ◊ C1,1([0, T ] ◊ Lq(�)) of the
extended mean field game (2.7.1) with initial-terminal condition (2.7.2). Furthermore V is a
semiconcave and Lipschitz continuous function.

Proof. The proof in [103] uses a fixed point argument that we sketch now, and is divided
into the following main steps.
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Expanded dynamics Let u be a Lipschitz function. Using the assumption 6. we consider
the following system of ODEs in Lq(�),

Y
___]

___[

Ẋs(Ê) = G(Ps(Ê), Xs(Ê), Xs)

Ṗs(Ê) = DxH(Ps(Ê), Xs(Ê), Xs, Ẋs)

X0 = X0, P0 = Dxu(X0).

(2.7.3)

By the assumptions on the Lagrangian L, and on the terminal cost �, the value function u is
Lipschitz continuous. Therefore by the Rademacher’s theorem Dxu exists almost everwhere.
Furthermore since L(X0) is supposed to be absolutely continuous P0 is well defined. By
standard arguments the Lipschitz condition on G and DxH implies uniqueness of solutions
(X, P ) for the above system (2.7.3).

Optimal control problem Given a solution to (2.7.3), we consider the following optimal
control problem,

Ṽ (x, t) = infx

⁄
T

t

L(x, ẋ, Xs, Ẋs)ds + Â(x(T ), XT ) (2.7.4)

where the take the infimum over all absolutely continuous trajectories ẋ(s) with ẋ(t) = x.

Lemma 2.7.1. The value function Ṽ (x, t) is Lipschitz continuous and semi-concave. There-
fore the following conditions hold

1. Ṽ Æ (T ≠ t)c1 + ÎÂÎŒ ’x œ Rd, 0 Æ t Æ T .

2. |Ṽ (x + y, t) ≠ Ṽ (x, t)| Æ c6|y| ’x, y, œ Rd, 0 Æ t Æ T .

3. Ṽ (x + y, t) ≠ Ṽ (x ≠ y, t) ≠ 2ũ(x, t) Æ c7|y|2 ’x, y œ Rd, 0 Æ t Æ T .

With constants c6, c7 depending only on L, Â and T .

Fixed point We consider the following map, for a Lipschitz function u we associate a
trajectory X by solving (2.7.3). Then, we compute the solution Ṽ to (2.7.4). Denote by �
the map �(u)(x) = Ṽ (x, 0).

Lemma 2.7.2. Let A be the set of functions u œ C0(Rd) with |u| Æ c8, Lip(u) Æ c6, and
semi-concave with constant c7. Then the mapping � is a continuous and compact mapping
from A into itself.

Once this lemma is established the existence of fixed point of � follows from Browder’s
fixed point theorem. Then the argument ends by proving that this fixed point satisfies the
mean-field equations (2.7.1).
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2.7.3 Uniqueness

We now address the uniqueness of solutions to extended mean-field games (2.7.1). The key
technique to prove uniqueness is based upon the Lions-Lasry monotonicity method. In the
setting of random variables these monotonicity conditions can be formulated either in terms
of the Hamiltonian, as in the original Lions-Lasry argument, or in terms of the Lagrangian
(as considered before in section 2.3.2). We discuss both approaches here following [103].

Lasry-Lions monotonicity argument Recall that to prove uniqueness of the mean field
game (2.1.4) the strategy is the following: suppose (V, ◊) and (V̄ , ◊̄) are solutions satisfying
(2.1.5). Then uniqueness, as explained in section 2.3, follows from considering the quantity

d

dt

⁄
(V ≠ V̄ )(◊ ≠ ◊̄), (2.7.5)

which together with appropriate monotonicity assumptions on H and the terminal condition
yields a contradiction.

The analog idea in the random variable setting is the following: suppose that (V, X), and
(V̄ , X̄) solve the extended mean-field equations (2.7.1) with initial-terminal condition (2.7.2).
Then (2.7.5), in this setting, becomes

d

dt
E

Ë
V (X, t) ≠ V̄ (X, t) + V̄ (X̄, t) ≠ V (X̄, t)

È
.

In order to illustrate this technique we give a simple example which is also presented in [103].
Let the following conditions hold:

1. The Hamiltonian is given by

H(x, p, X, Z) = H0(x, p + —E[Z]) + F (x, X),

where H0 is convex in p, and — Ø 0.

2. The following monotonicity condition holds true

E
Ë
F (X, X) ≠ F (X, X̄) + F (X̄, X̄) ≠ F (X̄, X)

È
< 0,

for X ”= X̄.

3. The terminal condition Â satisfies

E
Ë
Â(X, X) ≠ Â(X, X̄) + Â(X̄, X̄) ≠ Â(X̄, X)

È
Ø 0.

Then we have the following result:
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Theorem 12. Let the Hamiltonian in (2.7.1) be given by 1. above. Assume further that the
conditions 2. and 3. hold. Then uniqueness of (classical) solutions to the extended mean-field
game (2.7.1) with initial-terminal condition (2.7.2) holds.

Proof. Suppose that (V, X) and (V̄ , X̄) are two distinct solutions of (2.7.1) satisfying the
initial-terminal condition (2.7.2). By using the various assumptions we obtain

d

dt
E

Ë
(V ≠ V̄ )(X, t) + (V̄ ≠ V )(X̄, t)

È
< 0. (2.7.6)

However, by routine computations and using the monotonicity hypothesis we obtain the
opposite inequality. Therefore (2.7.6) must be a contradiction, henceforth proving the
uniqueness result.

A Lagrangian approach We present now a uniqueness result in terms of monotonicity
conditions for the Lagrangian, as presented in [103]. Suppose that the Lagrangian function
satisfy the following monotonicity condition

E
Ë
L(X, Z, X, Z) ≠ L(X̃, Z̃, X, Z) + L(X̃, Z̃, X̃, Z̃) ≠ L(X, Z, X̃, Z̃)

È
> 0, (2.7.7)

provided that X ”= X̃ or Z ”= Z̃, where X, X̃, Z, Z̃ œ Lq(�).

Remark 2.7.3. As shown in [103], provided that L is strictly convex the above monotonicity
condition is equivalent to the following di�erential one

E
Ë
ZT D2

vZLZ + XT D2
xXLX + ZT D2

vXLY + Y T D2
xZLZ

È
> 0,

where the the Lagrangian is evaluated at an arbitrary point (X1, Z1, X2, Z2) œ (Lq(�))4.

We suppose further that the terminal cost function satisfies

E
Ë
Â(X, X) ≠ Â(X, X̃) + Â(X̃, X̃) ≠ Â(X̃, X)

È
Ø 0. (2.7.8)

Theorem 13. Assume that (2.7.7) and (2.7.8) hold, then there exists a unique solution to
(2.7.1).

Proof. Suppose that (X, V ) and (X̃, Ṽ ) are two solutions of (2.7.1). Henceforth, for a.e.
Ê œ � we have that X, and X̃ are minimizers of optimal control problems for which the
value functions are, respectively, given by

V (X(0), 0) =
⁄

T

0
L(X(s), Ẋ(s), X(s), Ẋ(s))ds + Â(X(T ), X(T )), (2.7.9)

and
Ṽ (X̃(0), 0) =

⁄
T

0
L(X̃(s), ˙̃X(s), X̃(s), ˙̃X(s))ds + Â(X̃(T ), X̃(T )). (2.7.10)
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Furthermore we have

V (X̃(0), 0) Æ
⁄

T

0
L(X̃(s), ˙̃X(s), X(s), Ẋ(s))ds + Â(X̃(T ), X(T )), (2.7.11)

Ṽ (X(0), 0) Æ
⁄

T

0
L(X(s), Ẋ(s), X̃(s), ˙̃X(s))ds + Â(X(T ), X̃(T )). (2.7.12)

Combining the previous inequalities we easily obtain a contradiction to our assumptions
(2.7.7) and (2.7.8). This implies that X = X̃. The identity V = Ṽ then follows from the
uniqueness of viscosity solutions.





Chapter 3

Mean-field models in master form

In this section we discuss a more general formulation for mean-field games, called the master
equation. These ideas were introduced by Lions in [140]. Here we focus particularly in the
random variables point of view and address both the deterministic and stochastic correlated
cases, where the players are subject to a common Brownian motion.

3.1 Deterministic models

We now consider deterministic mean-field games and we derive the master form setting. To
do so, we will use the notation and hypotheses from section 2.6.

We start by looking at the optimal control problem

V (x, X, t) = infv

C⁄
T

t

L(v(s), x(s), Xs)ds + Â(x(T ), XT )
D

, (3.1.1)

where x is the trajectory of a player which starts at time t at point x(t) = x, and is controlled
by ẋ = f(x, v), and Xs(Ê) is the trajectory of the population of the players which move
along a vector field B : Rd ◊ Lq(�;Rd) ◊ [0, T ] æ Lq(�;Rd),

Ẋs = B(Xs(Ê), Xs, s), X(t) = X,

as previously. The key di�erence here is that we are considering the value function as a
function of both x and X. Then it, at least formally, that the value function V for (3.1.1)
is a viscosity solution of the equation (see for instance [90, 154], where infinite dimensional
optimal control in the space of random variables are considered and the viscosity solution
property is established rigorously for related problems).

≠ Vt(x, X, t) ≠ DXV (x, X, t) · B(X, X, t) + H(x, X, DxV (x, X, t)) = 0, (3.1.2)
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where H is as before, and DXV denotes the Frechét derivative with respect to the random
variable X.

Furthermore, if V is a smooth enough solution to (3.1.2) then any optimal control
‚̄ for (3.1.1) satisfies f(x, ‚̄(x, X, t)) = ≠DpH(x, X, DxV (x, X, t)). Since we assume all
players act rationally they will all follow the optimal flow. This then yields B(x, X, t) =
≠DpH(x, X, DxV (x, X, t)). Thus we arrive to the equation

≠Vt(x, X, t)+DXV (x, X, t)·DpH(X, X, DxV (X, X, t))+H(x, X, DxV (x, X, t)) = 0, (3.1.3)

with terminal condition V (x, X, T ) = Â(x, X). Equation (3.1.3) is called the master equation.
Though a general theory for this class of equations is still lacking, it is possible to establish

some basic a-priori estimates for this equation. Namely, suppose we assume

1. Â is bounded and is Lipschitz in x:

|Â(x1, X) ≠ Â(x2, X)| Æ C|x1 ≠ x2|, ’x1, x2 œ Rd.

2. There exist constants c0, c1 > 0 such that L(v, x, X) Ø ≠c0 and L(0, x, X) Æ c1 for all
x, v œ Rd, X œ L2(�;Rd).

3. L is twice di�erentiable in x, v and we have the following bounds

|DxL(v, x, X)|, |D2
xxL(v, x, X)|, |D2

xvL(v, x, X)|, |D2
vvL(v, x, X)| Æ C.

for all x, v œ Rd, X œ L2(�;Rd).

We have then the following result from [103]:

Theorem 14. Assume that 1-3 hold. Then the function V defined in (3.1.1) for a fixed
vector field B is finite, bounded, Lipschitz and semiconcave in x:

1.
|V (x, Y, t)| Æ C, ’x, h œ Rd, Y œ L2(�;Rd).

2.
|V (x + h, Y, t) ≠ V (x, Y, t)| Æ C|h|, ’x, h œ Rd, Y œ L2(�;Rd).

3.

V (x + h, Y, t) + V (x ≠ h, Y, t) ≠ 2V (x, Y, t) Æ C|h|2, ’x, h œ Rd, Y œ L2(�;Rd).
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3.2 Correlations

One important applications of master form framework concerns the case where agentsare
subject to a common noise such as being driven by a common Brownian Motion. Let
(� ◊ �Õ, F ◊ F Õ,P ◊ PÕ) be a probability space, where � is the events space, �Õ is the set of
all players, F ◊ F Õ the product ‡-algebra on � ◊ �Õ, and P, and PÕ probability measures. As
in Subsection 2.6.2 we consider a Lp(� ◊ �Õ)-integrable, time dependent family of random
variables X : � ◊ �Õ ◊ [0, T ] æ Rd. We interpret Xt(Ê, ÊÕ) as the Ê realization of the position
of player ÊÕ at time t. Let Wt : [0, T ] ◊ � æ Rd be a Brownian motion. In order to simplify
the notation we may write, in the sequel, X, or X(ÊÕ) instead of Xt(Ê, ÊÕ). Given a vector
field B : Rd ◊ Lp(�Õ) æ Rd, and supposing the players follow the random trajectories

dX(ÊÕ) = B(X(ÊÕ), X)dt + ‡(X(ÊÕ), v)dWt, ’ÊÕ œ �Õ, (3.2.1)

where Wt is a Brownian motion, and ‡ is as defined in the Subsection 2.1. As before, we
consider a reference player with dynamics given by

dx = f(x, v)dt + ‡(x, v)dWt. (3.2.2)

We now consider the Lagrangian L : Rd ◊ Rm ◊ Lp(�Õ) æ R, along with a terminal cost
Â : Rd ◊ Lp(�Õ) æ R. Each player aims to minimize

V (x, X, t) = inf
vœU

E

C⁄
T

t

L(x, v, X)ds + Â(xT , XT )
D

,

where the expectation is taken with respect to the probability measure P in �. We define the
Hamiltonian H : Rd ◊ Lp(�Õ) ◊ Rd æ R as

H(x, p, X) = sup
vœU

[≠f(x, v) · p ≠ L(x, v, X)] .

We we now define certain directional derivatives of functions of random variables. These
are the directional derivatives along constant directions on Rd and play an important role in
problems with correlations. Let ei be the i-th standard coordinate unit vector in Rd. We
define the directional first derivative operator as

”iV (x, X, t) = lim
Áæ0

V (x, X + Áei, t) ≠ V (x, X, t)
Á

,

and the second derivative operator as

”2
i V (x, X, t) = d2

dÁ2 V (x, X + Áei, t)
---
Á=0

.
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Assuming the Dynamic Programming Principle, that V œ C2,2,1(Rd ◊ Rd ◊ [0, T ]), and that
‡ is a constant scalar, we find that V satisfies the following PDE,

≠Vt(x, X, t) + H (x, DxV (x, X, t), X) ≠ B(X(ÊÕ), X)DXV (x, X, t) ≠ ‡2

2

dÿ

i

”2
i V (x, X, t)

≠‡2
dÿ

i

”iDxiV (x, X, t) ≠ ‡2

2 �xV (x, X, t) = 0,

with a terminal condition V (xT , XT , T ) = Â(xT , XT ). Now we assume that all players are
rational, which means that when faced with the problem of minimizing their cost functions,
all they will use the same optimal strategy. Therefore the feedback strategy followed by the
players is

B(Xt(ÊÕ), Xt) = ≠DpH
!
Xt(ÊÕ), DXV (Xt(ÊÕ), Xt, t), Xt

"
.

So the dynamics of the players will be given by

dXs(ÊÕ) = ≠DpH
!
Xt(ÊÕ), DXV (Xt(ÊÕ), Xt, t), Xt

"
dt + ‡dWt.

Consequently, the mean-field equations are given by
Y
]

[
≠Vt + H(x, DxV, X) ≠ B(X, X)DXV ≠ ‡

2
2

q
d

i

1
”2

i
V + 2”iDxiV + D2

xixi
V

2
= 0

B(x, X) = ≠DpH (x, DxV (x, X, t), X) ,

(3.2.3)
where the value function V is evaluated at (x, X, t). Furthermore we have the following
terminal condition

V (x, X, T ) = Â(x, X).

The first equation in (3.2.3) is called Master Equation. As before, a solution of (3.2.3) is
understood to be a viscosity solution of the first equation, with B fixed, coupled with the
second equation, which determines B. Again this is a fixed point problem rather than a
single PDE. As in the deterministic case one can prove various partial a-priori regularity
results as in Theorem 14 (see [103]).

3.3 Extended models

In this section we discuss an extended version of the mean-field games with correlations. Here
we look at the case where the Lagrangian depends not only on the state of other players but
also on the actions they take. We then present a price-formation model using this set up.

As before we suppose that the players follow the dynamics given by (3.2.1). And we
consider a reference player which follows (3.2.2) and aims to minimizing a cost function. In this
extended setting we suppose that the Lagrangian function, L : Rd◊Rm◊Lp(�Õ)◊Lp(�Õ) æ R,
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depends also on the actions taken by the other players. Therefore the value function for the
reference player is given by

V (x, X, t) = infv E

C⁄
T

t

L(x, v, X, B)ds + Â(xT , XT )
D

,

where, as before, Â : Rd ◊ Lp(�Õ) æ R is a terminal cost, and the expectation is taken with
respect to the probability measure P in �. The Hamiltonian, H : Rd◊Rm◊Lp(�)◊Lp(�) æ R
is now given by

H(x, p, X, Z) = sup
vœU

[≠f(x, v) · p ≠ L(x, v, X, Z)] .

Note that both the Lagrangian and the Hamiltonian are functions depending only on the
joint law of X, Z œ Lp(�).

By standard arguments, the value function V is a viscosity solution of the following PDE

≠Vt(x, X, t) + H (x, DxV (x, X, t), X, B(X, X, t)) ≠ DXV (x, X, t) · B(X, X, t)

≠‡2

2
ÿ

i

”2
i V (x, X, t) ≠ ‡2 ÿ

i

”iDxiV (x, X, t) ≠ ‡2

2 �xV (x, X, t) = 0.
(3.3.1)

Provided V is smooth enough, and for a fixed B, then the optimal control vú satisfies

f(x, vú) = ≠DpH(x, DxV (x, X, t), X, B).

By our assumptions of indistinguishability and rationality of players, every player ÊÕ œ �Õ

will follow the optimal flow given by

B(X(ÊÕ), X, t) = ≠DpH
!
X(ÊÕ), X, DxV (X(ÊÕ), X, t), X, B(X(ÊÕ), X, t)

"
.

So plugging the previous optimal flow in the equation (3.3.1), we obtain the Master equation

≠Vt(x, X, t) + H (x, DxV (x, X, t), X, B(x, X, t))

≠ DXV (x, X, t) · DpH (x, DxV (x, X, t), X, B(x, X, t))

≠ ‡2

2
ÿ

i

”2
i V (x, X, t) ≠ ‡2 ÿ

i

”iDxiV (x, X, t) ≠ ‡2

2 �xV (x, X, t) = 0,

where V satisfies the terminal condition V (x, X, T ) = Â(x, X), where DXV is the Fréchet
derivative of V and ”iV and ”2

i
V are defined as previously in section 3.2.

3.3.1 A price impact model

As an application of the extended formulation we present a modified Merton’s portfolio
problem where we consider that assets’ transactions influence their prices. We formulate the
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problem for a large number of traders, each one aiming to maximize it’s own reward function,
while taking the point of view of a reference player. This formulation fits in the previously
considered master form of mean-field games. We will continue using the random variables
point of view.

Merton’s portfolio problem We consider a financial market with two assets, a risk-free
asset, bond Bt, and a risky asset, stock St. The dynamics of these variables is given by

Y
]

[
dBt = rBtdt

dSt = µStdt + ‡StdWt,

where Wt is the Brownian motion, r œ (0, Œ) is the interest rate, µ œ R the drift, and ‡ œ R
the volatility of the stock.

The Merton’s problem is to decide what portion of the wealth should be allocated to
bonds or stocks, in order to maximize a given reward function. We now consider the Merton’s
problem for a large number of players. We formulate the problem using the mean-field models
in master form discussed in the previous sections. The various players states and actions are
encoded by random variables X, Y, C, L : � ◊ �Õ ◊ [0, T ] æ R. At time t the players have an
amount of money X(t) invested in bonds, and an amount Y(t) in stocks. The players are
allowed to consume their wealth, which amounts to withdraw a C(t) amount from the money
invested in bonds. They also can re-allocate their investments by selling a money amount
L(t) of stocks in order to buy bonds. As before we also consider a reference player which
allocates an amount x(t) of his wealth in bonds, and y(t) in stocks, at a given moment t.
This player is allowed to consume an amount c(t) Ø 0 and to change the amount investing
in stocks by selling an amount l(t) (either positive or negative) of stocks in order to buying
bonds.

Dynamics of the reference player The reference player has the following dynamics
Y
]

[
dx = rxdt + ldt ≠ –lEÕ[L]dt ≠ cdt

dy = µydt + ‡ydWt ≠ ldt.

where r, µ œ R are, respectively, the interest rate and the drift values as before, and – Ø 0 is
an impact factor of the selling/buying process, and the expectation EÕ is taken with respect
to the probability measure PÕ in �Õ, that is

EÕ(Z) =
⁄

�Õ
Z(Ê, ÊÕ)dPÕ(ÊÕ).

The term ≠–lEÕ[L]dt encodes the price impact cause by a non-equilibrium situation when the
sellers are not matched by buyers. In the case, when l(t) > 0, if the expected value of other
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players’ actions is also positive E[LÕ] > 0 this means that as a whole there are more shares
being sold than bought. Therefore it this will adversely a�ect a player trying to sell. So a
player sells what before was valued as a l(t) amount, and gets instead l(t) ≠ –l(t)EÕ[L].. In
the case where a player ÊÕ œ �Õ acts in an opposite direction as the the population of players’
average, the impact on the wealth is positive. So, for instance if the player buys l(t) < 0
amount worth of stocks and while the players on average are selling the stock EÕ[L] > 0, then
there will be a positive impact price on the wealth, since ≠l(t)EÕ[L(t)] > 0. Note that, one
should have in principle EÕ[L] = 0. In this model this is not imposed as a constraint but it is
natural to expect, as – æ Œ, this constraint to be asymptotically satisfied.

Dynamics of the mean-field We assume all players have the same dynamics. Therefore
the mean-field variables X and Y satisfy

Y
]

[
dX = rXdt + Ldt ≠ –LEÕ[L]dt ≠ Cdt

dY = µYdt + ‡YdWt ≠ Ldt,

where we assume for now that L and C are known and given in feedback form

L = �(X, Y, X, Y ), C = �(X, Y, X, Y ).

Optimization problem for the reference player In order to simplify the expressions
that follow we set up some notation first: we write z = (x, y), Z = (X, Y), m = (l, c), and
M = (L, C). Each player aims to maximize its reward function, which from the point of view
of a reference player amounts to:

V (z, Z) = max
l,c

E
5⁄ Œ

0
e≠—tL(z, m, Z, M)dt

--- (z, Z) (0) = (z0, Z0)
6

, (3.3.2)

where the controls (l, c) are taken in Lp(�,R)◊Lp(�,R+
0 ), and L : Rd◊Rd◊Lp(�Õ)◊Lp(�Õ) æ

R.

Master equation We define define the Hamiltonian function as

H(z, p, q, Z, M) = inf
l,c

#
≠(rx + l ≠ –lEÕ[L] ≠ c) · p ≠ (µy ≠ l(z, Z)) · q ≠ L(z, p, q, Z, M)

$
,

where z = (x, y), and Z = (X, Y ). Now assuming enough regularity, on the value function
(3.3.2), such that we can use the Itô’s formula, and such that the dynamic programming
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principle applies we have that V satisfies the following PDE:

—V (z, Z) + H
1
z, DxV (z, Z), DyV (z, Z), Z, L(Z, Z), C(Z, Z)

2
(3.3.3)

≠
!
rX + L(Z, Z) ≠ –L(Z, Z)EÕ[L(Z, Z)] ≠ C(Z, Z)

"
DXV (z, Z)

≠
!
µY ≠ L(Z, Z)

"
DY V (z, Z)

≠ 1
2‡2!

y2DyyV (z, Z) + Y 2”2
i V (z, Z) + y”iDyV (z, Z)

"
= 0.

So, provided V is a smooth enough solution to the previous equation, then an optimal control
pair (c, l) satisfies

Y
]

[
rx + l(z, Z) ≠ –l(z, Z)EÕ[L(z, Z)] ≠ c(z, Z) = ≠DpH(z, DxV, DyV, Z, L, C)

µy ≠ l(z, Z) = ≠DqH(z, DxV, DyV, Z, L, C).

Furthermore we assume that all players are indistinguishable and act rationally henceforth
playing optimal strategies. Then this tells us that

Y
_______]

_______[

rx + �(z, Z)(1 ≠ –EÕ[�(z, Z)]) ≠ �(z, Z)

= ≠DpH(z, DxV (z, Z, t), DyV (z, Z, t), Z, �(z, Z), �(z, Z))

µy ≠ �(z, Z)

= ≠DqH(z, DxV (z, Z, t), DyV (z, Z, t), Z, �(z, Z), �(z, Z)),

(3.3.4)

Plugging this controls into the above PDE gives rise to the master equation

—V (z, Z) + H
1
z, DxV (z, Z), DyV (z, Z), Z, L(z, Z), C(z, Z)

2

+ DpH
!
Z, DXV, DY V, Z, �, �

"
DXV (z, Z) + DqH

!
Z, DXV, DY V, Z, �, �

"
DY V (z, Z)

≠ 1
2‡2!

y2DyyV (z, Z) + Y 2”2
i V (z, Z) + y”iDyV (z, Z)

"
= 0. (3.3.5)

Open questions This price formation model illustrates various of the open questions on
this area of research. First, it is not clear at all the existence or regularity of solutions. The
natural definition of solution is the following: for fixed controls for the mean-field, (in the
price formation model � and �) the function V is a viscosity solution of the Hamilton-Jacobi
equation (in this case (3.3.3)), then the controls for the mean-field are determined by the
optimality conditions (such as (3.3.4)). This is thus a fixed point problem. In order to study
it new techniques to understand the regularity of viscosity solutions of Hamilton-Jacobi
equations in infinite dimensions must be developed. Uniqueness, as far as we know is also
open, though it may be possible to adapt some of monotonicity techniques developed by
Lions in [140] to this setting. From the application point of view it would be extremely
important to develop e�ective numerical methods. It is clear at this stage that any naive
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attempt to address this would su�er from the curse of dimensionality problem and therefore
new ideas are necessary to address this class of problems. Finally, singular perturbation
problems such as the one that arises by sending – æ Œ are important, natural, and should
certainly be investigated in depth.





Part II

Numerical methods for MFG





Chapter 4

Monotone numerics

The mean-field game (MFG) framework [114, 117, 131, 132] models systems with many
rational players (see the surveys [95] and [99]). In finite-state MFGs, players switch between
a finite number of states (see [88] for discrete-time and [25, 80, 89, 110], and [108] for
continuous-time problems). Finite-state MFGs have applications in socio-economic problems,
for example, in paradigm-shift and consumer choice models [37, 101, 102] or in corruption
models [126]. They also arise in the approximation of continuous-state MFGs [1, 6, 12]. The
MFG framework is a major paradigm change in the analysis of N -agent games. MFGs are an
alternative approach to particle or agent-based models, which frequently are intractable from
the analytical and numerical point of view and often provide no insight on the qualitative
properties of the models. Finite-state MFGs are amenable to analytical tools and flexible
enough to address a wide range of applications and to provide quantitative and qualitative
information. However, in many cases of interest, they have no simple closed-form solution.
Hence, the development of numerical methods is critical to applications of MFGs. Finite-state
MFGs comprise systems of ordinary di�erential equations with initial-terminal boundary
conditions. Because of these conditions, the numerical computation of solutions is challenging.
Often, MFGs satisfy a monotonicity condition that was first used in [131] and [132] to
study the uniqueness of solutions. Besides the uniqueness of solutions, monotonicity implies
the long-time convergence of MFGs (see [80] and [89] for finite-state models and [59] and
[60] for continuous-state models). Moreover, monotonicity conditions were used in [81] to
prove the existence of solutions to MFGs and in [12] to construct numerical methods for
stationary MFGs. Here, we consider MFGs that satisfy a monotonicity condition and develop
a numerical method to compute their solutions. For stationary problems, our method is a
modification of the one in [12]. Our main advance here is how we handle initial-terminal
boundary conditions, to which the methods from [12] cannot be applied directly.

We consider MFGs in which each player can be at a state in Id = {1, . . . , d}, d œ N, d > 1,
the players’ state space. Let Sd = {◊ œ (R+

0 )d :
q

d

i=1 ◊i = 1} be the probability simplex in Id.
For a time horizon, T > 0, the macroscopic description of the game is determined by a path
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◊ : [0, T ] æ Sd that gives the probability distribution of the players in Id. All players seek
to minimize an identical cost. Each coordinate, ui(t), of the value function, u : [0, T ] æ Rd,
is the minimum cost for a typical player at state i œ Id at time 0 Æ t Æ T . Finally, at the
initial time, the players are distributed according to the probability vector ◊0 œ Sd and, at
the terminal time, are charged a cost uT œ Rd that depends on their state.

In the framework presented in [88], finite-state MFGs have a Hamiltonian, h : Rd ◊ Sd ◊
Id æ R, and a switching rate, –ú

i
: Rd ◊ Sd ◊ Id æ R+

0 , given by

–ú
j = ˆh(�iz, ◊, i)

ˆzj
, (4.0.1)

where �i : Rd æ Rd is the di�erence operator

(�iu)j = uj ≠ ui.

We suppose that h and –ú satisfy the assumptions discussed in Section 4.1. Given the
Hamiltonian and the switching rate, we assemble the following system of di�erential equations:

Y
]

[
ui

t = ≠h(�iu, ◊, i)

◊i
t =

q
j

◊j–ú
i
(�ju, ◊, j),

(4.0.2)

which, together with initial-terminal data

◊(0) = ◊̄0 and u(T ) = ūT , (4.0.3)

with ◊̄0 œ Sd and ūT œ Rd, determines the MFG.
Solving (4.0.2) under the non-standard boundary condition (4.0.3) is a fundamental

issue in time-dependent MFGs. There are several ways to address this issue, although prior
approaches are not completely satisfactory. First, we can solve (4.0.2) using initial conditions
◊(0) = ◊̄0 and u(0) = u0 and then solve for u0 such that u(T ) = ūT . However, this requires
solving (4.0.2) multiple times, which is computationally expensive. A more fundamental
di�culty arises in the numerical approximation of continuous-state MFGs by finite-state
MFGs. There, the Hamilton-Jacobi equation is a backward parabolic equation whose initial-
value problem is ill-posed. Thus, a possible way to solve (4.0.2) is to use a Newton-like
iteration. This idea was developed in [1, 10] and used to solve a finite-di�erence scheme for a
continuous-state MFG. However, Newton’s method involves inverting large matrices, whereas
it is convenient to have algorithms that do not require matrix inversions. A second approach
is to use a fixed-point iteration as in [62, 61]. Unfortunately, this iteration is not guaranteed
to converge. A third approach (see [101, 102]) is to solve the master equation, which is a
partial di�erential equation whose characteristics are given by (4.0.2). To approximate the
master equation, we can use a finite-di�erence method constructed by solving an N -player
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problem. Unfortunately, even for a modest number of states, this approach is computationally
expensive.

Our approach to the numerical solution of (4.0.2) relies on the monotonicity of the
operator, A : Rd ◊ Rd æ Rd ◊ Rd, given by

A

C
◊

u

D

=
C

h(�iu, ◊, i)
≠

q
j

◊j–ú
i
(�ju, ◊, j)

D

. (4.0.4)

More precisely, we assume that A is monotone (see Assumption 2) in the sense that
A

A

C
◊

u

D

≠ A

C
◊̃

ũ

D

,

C
◊

u

D

≠
C

◊̃

ũ

DB

Ø 0

for all ◊, ◊̃ œ Sd and u, ũ œ Rd. Building upon the ideas in [12] for stationary problems (also
see the approaches for stationary problems in [147, 39, 148, 8]), we introduce the flow

C
◊s

us

D

= ≠A

C
◊

u

D

. (4.0.5)

Up to the normalization of ◊, the foregoing flow is a contraction provided that ◊ œ Sd.
Moreover, its fixed points solve

A

C
◊

u

D

= 0.

In Section 4.2, we construct a discrete version of (4.0.5) that preserves probabilities; that is,
it preserves both the total mass of ◊ and its non-negativity.

The time-dependent case is substantially more delicate. Our method to approximate
its solutions is our main contribution. The operator associated with the time-dependent
problem, A : H1(0, T ;Rd ◊ Rd) æ L2(0, T ; Sd ◊ Rd), is

A

C
◊

u

D

=
C

≠ut + h(�iu, ◊, i)
◊t ≠

q
j

◊j–ú
i
(�ju, ◊, j)

D

. (4.0.6)

Under the initial-terminal condition in (4.0.3), A is a monotone operator. Thus, the flow
C

◊s

us

D

= ≠A

C
◊

u

D

(4.0.7)

for (◊, u) œ L2(0, T ;Rd ◊Rd) is formally a contraction. Unfortunately, even if this flow is well
defined, the preceding system neither preserves probabilities nor such boundary conditions
(4.0.3). Thus, in Section 4.3, we modify (4.0.7) in a way that it becomes a contraction in
H1 and preserves the boundary conditions. Finally, we discretize this modified flow and
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build a numerical algorithm to approximate solutions of (4.0.2)-(4.0.3). Unlike Newton-based
methods, our algorithm does not need the inversion of large matrices and scales linearly
with the number of states. This is particularly relevant for finite-state MFGs that arise from
the discretization of continuous-state MFGs. We illustrate our results in a paradigm-shift
problem introduced in [37] and studied from a numerical perspective in [102].

4.1 Framework and main assumptions

Following [89], we present the standard finite-state MFG framework and describe our main
assumptions. Then, we discuss a paradigm-shift problem from [37] that we use to illustrate
our methods.

4.1.1 Standard setting for finite-state MFGs

Finite-state MFGs model systems with many identical players who act rationally and non-
cooperatively. These players switch between states in Id in seeking to minimize a cost. Here,
the macroscopic state of the game is a probability vector ◊ œ Sd that gives the players’
distribution in Id. A typical player controls the switching rate, –j(i), from its state, i œ Id,
to a new state, j œ Id. Given the players’ distribution, ◊(r), at time r, each player chooses a
non-anticipating control, –, that minimizes the cost

ui(t; –) = E–

it=i

C⁄
T

t

c(ir, ◊(r), –(r))dr + uiT (◊(T ))
D

. (4.1.1)

In the preceding expression, c : Id ◊Sd ◊ (R+
0 )d æ R is a running cost, � œ Rd is the terminal

cost, and is is a Markov process in Id with switching rate –. The Hamiltonian, h, is the
generalized Legendre transform of c(i, ◊, ·):

h(�iz, ◊, i) = min
µœ(R+

0 )d
{c(i, ◊, µ) + µ · �iz}.

The first equation in (4.0.2) determines the value function, u, for (4.1.1). The optimal
switching rate from state i to state j ”= i is given by –ú

j
(�iu, ◊, i), where

–ú
j (z, ◊, i) = argmin

µœ(R+
0 )d{c(i, ◊, µ) + µ · �iz}. (4.1.2)

Moreover, at points of di�erentiability of h, we have (4.0.1). The rationality of the players
implies that each of them chooses the optimal switching rate, –ú. Hence, ◊ evolves according
to the second equation in (4.0.2).
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4.1.2 Main assumptions

Because we work with the Hamiltonian, h, rather than the running cost, c, it is convenient
to state our assumptions in terms of the former. For the relation between assumptions on h

and c, see [89].
We begin by stating a mild assumption that ensures the existence of solutions for (4.0.2).

Assumption 1. The Hamiltonian h(z, ◊, i) is locally Lipschitz in (z, ◊) and di�erentiable in
z. The map z ‘æ h(z, ◊, i) is concave for each (◊, i). The function –ú(z, ◊, i) given by (4.0.1)
is locally Lipschitz.

Under Assumption 1, there exists a solution to (4.0.2)-(4.0.3) (see [89]). This solution
may not be unique as the examples in [101] and [102] show. Monotonicity conditions are
commonly used in MFGs to prove the uniqueness of solutions. For finite-state MFGs, the
appropriate monotonicity condition is stated in the next Assumption. Before proceeding, we
define ÎvÎ˘ = inf⁄œR Îv + ⁄1Î.

Assumption 2. There exists “ > 0 such that the Hamiltonian, h, satisfies the following
monotonicity property:

◊ · (h(z, ◊̃) ≠ h(z, ◊)) + ◊̃ · (h(z̃, ◊) ≠ h(z̃, ◊̃)) Æ ≠“Î◊ ≠ ◊̃Î2.

Moreover, for each M > 0, there exist constants, “i, such that on the set ÎwÎ, ÎzÎ˘ Æ M , h

satisfies the following concavity property:

h(z, ◊, i) ≠ h(w, ◊, i) ≠ –ú(w, ◊, i) · �i(z ≠ w) Æ ≠“iÎ�i(z ≠ w)Î2.

Under the preceding assumptions, (4.0.2)-(4.0.3) has a unique solution (see [89]). Here,
the previous condition is essential to the convergence of our numerical methods, for both
stationary problems in Section 4.2 and for the general time-dependent case in Section 4.3.

Remark 1. As shown in [89], Assumption 2 implies the inequality

dÿ

i=1
(ui ≠ ũi)

Q

a
ÿ

j

◊j–ú(�ju, ◊, j) ≠
ÿ

j

◊̃j–ú(�j ũ, ◊̃, j)

R

b

+
dÿ

i=1
(◊i ≠ ◊̃i)

1
≠h(�iu, ◊, i) + k + h(�iũ, ◊̃, i) ≠ k̃

2

Æ ≠“Î(◊ ≠ ◊̃)Î2 ≠
dÿ

i=1
“i(◊i + ◊̃i)Î(�iu ≠ �iũ)Î2

for any u, ũ œ Rd, ◊, ◊̃ œ Sd, and k, k̃ œ R.
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4.1.3 Solutions and weak solutions

Because the operator, A, in (4.0.6) is monotone, we have a natural concept of weak solutions
for (4.0.2)-(4.0.3). These weak solutions were considered for continuous-state MFGs in
[12] and [81]. We say that (u, ◊) œ L2((0, T ),Rd) ◊ L2((0, T ), Sd) is a weak solution of
(4.0.2)-(4.0.3) if for all (ũ, ◊̃) œ H1((0, T ),Rd) ◊ H1((0, T ), Sd) satisfying (4.0.3), we have

K

A

C
◊̃

ũ

D

,

C
◊̃ ≠ ◊

ũ ≠ u

DL

Ø 0.

Any solution of (4.0.2)-(4.0.3) is a weak solution, and any su�ciently regular weak solution
with ◊ > 0 is a solution.

Now, we turn our attention to the stationary problem. We recall (see [89]) that a
stationary solution of (4.0.2) is a triplet, (◊̄, ū, k̄) œ Sd ◊ Rd ◊ R, satisfying

Y
]

[
h(�iū, ◊̄, i) = k̄
q

j
◊̄j–ú

i
(�j ū, ◊̄, j) = 0

(4.1.3)

for i = 1, . . . , d. As discussed in [89], the existence of solutions to (4.1.3) holds under an
additional contractivity assumption. In general, as for continuous-state MFGs, solutions for
(4.1.3) may not exist. Thus, we need to consider weak solutions. For a finite-state MFG, a
weak solution of (4.1.3) is a triplet, (ū, ◊̄, k̄) œ Rd ◊ Sd ◊ R, that satisfies

Y
]

[
h(�iū, ◊̄, i) Ø k̄
q

j
◊̄j–ú

i
(�j ū, ◊̄, j) = 0

(4.1.4)

for i = 1, . . . , d, with equality in the first equation for all indices, i, such that ◊̄i > 0.

4.1.4 Potential MFGs

In a potential MFG, the Hamiltonian takes the form

h(Òiu, ◊, i) = h̃(Òiu, i) + f(◊, i),

where h̃ : Rd◊Id æ R, f : Rd◊Id æ R and f is the gradient of a convex function, F : Rd æ R;
that is, f(◊, ·) = Ò◊F (◊). We define H : Rd ◊ Rd æ R as

H(u, ◊) =
dÿ

i=1
◊ih̃(Òiu, i) + F (◊). (4.1.5)
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Then, (4.0.2) can be written in Hamiltonian form as
Y
]

[
ut = ≠D◊H(u, ◊)

◊t = DuH(u, ◊).

In particular, H is conserved as follows:

d

dt
H(u, ◊) = 0.

In Section 4.3.7, we use this last property as an additional test for our numerical method.

4.1.5 A case study – the paradigm-shift problem

A paradigm shift is a change in a fundamental assumption within a scientific theory. Scientists
can simultaneous work in the context of multiple competing theories or problems. Their choice
of theoretical grounding is made to maximize recognition (citations, awards, or prizes) and
scientific activity (conferences or collaborations, for example). The paradigm-shift problem
was formulated as a two-state MFG in [37]. Subsequently, it was studied numerically in
[102] and [101] using an N -player approximation and PDE methods. Here, we present the
stationary and time-dependent versions of this problem. Later, we use these versions to
validate our numerical methods.

We consider the running cost, c : Id ◊ Sd ◊ (R+
0 )2 æ R, given by

c(i, ◊, µ) = f(i, ◊) + c0(i, µ), where c0(i, µ) = 1
2

2ÿ

j ”=i

µ2
j .

The functions f = f(i, ◊) are productivity functions with constant elasticity of substitution,
given by

Y
]

[
f(1, ◊) =

!
a1(◊1)r + (1 ≠ a1)(◊2)r

" 1
r

f(2, ◊) =
!
a2(◊1)r + (1 ≠ a2)(◊2)r

" 1
r

for r Ø 0 and 0 Æ a1, a2 Æ 1. The Hamiltonian is
Y
]

[
h(u, ◊, 1) = f(1, ◊) ≠ 1

2
!
(u1 ≠ u2)+"2

,

h(u, ◊, 2) = f(2, ◊) ≠ 1
2

!
(u2 ≠ u1)+"2

,

and the optimal switching rates are

–ú
2(u, ◊, 1) = (u1 ≠ u2)+, –ú

1(u, ◊, 1) = ≠(u1 ≠ u2)+,

–ú
1(u, ◊, 2) = (u2 ≠ u1)+, –ú

2(u, ◊, 2) = ≠(u2 ≠ u1)+.
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For illustration, we examine the case where a1 = 1, a2 = 0, and r = 1 in the productivity
functions above. In this case, f = Ò◊F (◊) with

F (◊) = (◊1)2 + (◊2)2

2 .

Moreover, the game is potential with

H(u, ◊) = ≠1
2

1
(u1 ≠ u2)+

22
◊1 ≠ 1

2
1
(u2 ≠ u1)+

22
◊2 + F (◊).

Furthermore, (◊̄, ū, k) is a stationary solution if it solves
Y
]

[
◊1 ≠ 1

2((u1 ≠ u2)+)2 = k

◊2 ≠ 1
2((u2 ≠ u1)+)2 = k,

(4.1.6)

and Y
]

[
≠◊1(u1 ≠ u2)+ + ◊2(u2 ≠ u1)+ = 0

◊1(u1 ≠ u2)+ ≠ ◊2(u2 ≠ u1)+ = 0.
(4.1.7)

Since ◊1 + ◊2 = 1, and using the symmetry of (4.1.6)-(4.1.7), we conclude that

(◊̄, ū, k) =
331

2 ,
1
2

4
, (p, p), 1

2

4
, p œ R. (4.1.8)

The time-dependent paradigm-shift problem is determined by
Y
]

[
u1

t = ≠◊1 + 1
2((u1 ≠ u2)+)2

u2
t = ≠◊2 + 1

2((u2 ≠ u1)+)2,
(4.1.9)

and Y
]

[
◊1

t = ≠◊1(u1 ≠ u2)+ + ◊2(u2 ≠ u1)+

◊2
t = ◊1(u1 ≠ u2)+ ≠ ◊2(u2 ≠ u1)+,

(4.1.10)

together with initial-terminal conditions

◊i(0) = ◊0, and ui(T ) = ui

T

for i = 1, 2, ◊0 œ S2, and uT œ R2.

4.2 Stationary problems

To approximate the solutions of (4.1.3), we introduce a flow closely related to (4.0.5). This
flow is the analog for finite-state problems of the one considered in [12]. The monotonicity
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in Assumption 2 gives the contraction property. Then, we construct a numerical algorithm
using a Euler step combined with a projection step to ensure that ◊ remains a probability.
Finally, we test our algorithm in the paradigm-shift model.

4.2.1 Monotone approximation

To preserve the mass of ◊, we introduce the following modification of (4.0.5):
Y
]

[
ui

s =
q

j
◊j–ú

i
(�ju, ◊, j)

◊i
s = ≠h(�iu, ◊, i) + k(s),

(4.2.1)

where k : R+
0 æ R is such that

q
d

i=1 ◊i(s) = 1 for every s Ø 0. For this condition to hold, we
need

q
d

i=1 ◊i
s = 0. Therefore,

k(s) = 1
d

dÿ

i=1
h(�iu, ◊, i). (4.2.2)

Proposition 2. Suppose that Assumptions 1-2 hold. Let (u, ◊) and (ũ, ◊̃) solve (4.2.1)-(4.2.2).
Assume that

q
i
◊i(0) =

q
i
◊̃i(0) = 1 and that ◊(s), ◊̃(s) Ø 0. Then,

d

ds

1
Î(u ≠ ũ)Î2 + Î◊ ≠ ◊̃Î2

2

Æ ≠“Î(◊ ≠ ◊̃)(s)Î2 ≠
dÿ

i=1
“i(◊i + ◊̃i)(s)Î(�iu ≠ �iũ)(s)Î2.

Proof. We begin with the identity

1
2

d

ds

dÿ

i=1

Ë
(ui ≠ ũi)2 + (◊i ≠ ◊̃i)2

È

=
dÿ

i=1
(ui ≠ ũi)(ui ≠ ũi)s + (◊i ≠ ◊̃i)(◊i ≠ ◊̃i)s.

Using (4.2.1) in the previous equality, we obtain

1
2

d

ds

dÿ

i=1

Ë
(ui ≠ ũi)2 + (◊i ≠ ◊̃i)2

È

=
dÿ

i=1
(ui ≠ ũi)

Q

a
ÿ

j

◊j–ú(�ju, ◊, j) ≠
ÿ

j

◊̃j–ú(�j ũ, ◊̃, j)

R

b

+
dÿ

i=1
(◊i ≠ ◊̃i)

1
≠h(�iu, ◊, i) + k + h(�iũ, ◊̃, i) ≠ k̃

2

Æ ≠“Î(◊ ≠ ◊̃)(s)Î2 ≠
dÿ

i=1
“i(◊i + ◊̃i)(s)Î(�iu ≠ �iũ)(s)Î2,
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by Remark 1.

4.2.2 Numerical algorithm

Let A be given by (4.0.4). Due to the monotonicity, for small µ, the Euler map,

Eµ

C
◊

u

D

=
C

◊

u

D

≠ µA

C
◊

u

D

,

is a contraction, provided that ◊ is nonnegative; that is, the case when ◊ is a probability
vector. However, Eµ may not keep ◊ non-negative and, in general, Eµ also does not preserve
the mass. Thus, we introduce the following projection operator on Sd ◊ Rd:

P

C
◊

u

D

=
C

È(◊)
u

D

,

where È(◊)i = (◊i + ›)+ and › is such that

ÿ

i

È(◊)i = 1.

Clearly, P is a contraction because it is a projection on a convex set. Finally, to approximate
weak solutions of (4.1.3), that is solutions (4.1.4), we consider the iterative map

C
◊n+1
un+1

D

= PEµ

C
◊n

un

D

. (4.2.3)

We have the following result:

Proposition 3. Let (◊̄, ū, k̄) solve (4.1.4). Then, (◊̄, ū) is a fixed point for (4.2.3). Moreover,
for any fixed point of (4.2.3), there exists k̄ such that (◊̄, ū, k̄) solves (4.1.4).

Finally, if µ is small enough and (4.1.4) has a weak solution, (◊̄, ū, k̄), with ◊̄ > 0, then
the iterates in (4.2.3) are bounded and converge to (◊̄, ū). Moreover, the solution is unique.

Proof. Clearly, a solution of (4.1.4) is a fixed point for (4.2.3). Conversely, let (◊̄, ū) be a
fixed point for (4.2.3). Then,

ūi = ūi + µ
ÿ

j

◊̄j–ú
i (�j ū, ◊̄, j).

Hence, ÿ

j

◊̄j–ú
i (�j ū, ◊̄, j) = 0.

Additionally, we have
◊̄i =

1
◊̄i ≠ µh(�iū, ◊̄, i) + ›

2+
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for some ›. Thus, for k̄ = ›

µ
,

h(�iū, ◊̄, i) Ø k̄,

with equality when ◊̄i > 0.
If µ is small enough, Eµ is a contraction because A is a monotone Lipschitz map. Thus,

if there is a solution of (4.1.4), the iterates in (4.2.3) are bounded. Then, the convergence
follows from the monotonicity of Eµ and the strict contraction given by ◊̄ > 0.

Remark 2. Concerning the convergence rate and the choice of the parameter µ in the
preceding theorem, we observe the following. The operator A is locally Lipschitz. Thus,
given bound on the initial conditions, we can assume the Lipschitz constant to be a number,
L > 0. By selecting

0 < µ <
2
L

,

we get that Eµ is a contraction and we may assume that the initial bound on data is preserved
(for example, by looking at the norm of the di�erence between the iterates and a given
stationary solution). If there is a strictly positive stationary solution, the convergence is
exponential because, for u and ũ with mean 0, we have

“Î(◊ ≠ ◊̃)(s)Î2 +
dÿ

i=1
“i(◊i + ◊̃i)(s)Î(�iu ≠ �iũ)(s)Î2 Ø

C
dÿ

i=1

Ë
(ui ≠ ũi)2 + (◊i ≠ ◊̃i)2

È
.

The constant, however, depends on the lower bounds on the stationary solution and thus, we
do not have a direct estimate on the rate of convergence.

4.2.3 Numerical examples

To illustrate our algorithm, we consider the paradigm-shift problem. The monotone flow in
(4.2.1) is Y

]

[
u1

s = ≠◊1(u1 ≠ u2)+ + ◊2(u2 ≠ u1)+

u2
s = ◊1(u1 ≠ u2)+ ≠ ◊2(u2 ≠ u1)+,

(4.2.4)

and Y
]

[
◊1

s = ≠◊1 + 1
2((u1 ≠ u2)+)2 + k(s)

◊2
s = ≠◊2 + 1

2((u2 ≠ u1)+)2 + k(s).
(4.2.5)

According to (4.2.2),

k(s) = 1
2

3
◊1 ≠ 1

2((u1 ≠ u2)+)2 + ◊2 ≠ 1
2((u2 ≠ u1)+)2

4
.
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(a) Convergence of ◊i.
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(b) Convergence of ui.

Fig. 4.1 Evolution of ◊ and u with the monotone flow, for s œ [0, 8]. The quantities
corresponding to the state 1 and 2 are depicted in blue and orange, respectively.
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(a) Evolution of k.
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(b) Contraction of the norm.

Fig. 4.2 Evolution of k and contraction of the norm, Î(◊, u) ≠ (◊̄, ū)Î.

Now, we present the numerical results for this model using the iterative method in (4.2.3).
We set s œ [0, 8] and discretize this interval into N = 300 subintervals. First, we consider the
following initial conditions:

u1
0 = 4, u2

0 = 2 and ◊1
0 = 0.8, ◊2

0 = 0.2.

The convergence towards the stationary solution is illustrated in Figures 4.1a and 4.1b for ◊

and u. The behavior of k is shown in Figure 4.2a. In Figure 4.2b, we illustrate the contraction
of the norm .....

C
◊(s)
u(s)

D

≠
C

◊̄

ū

D..... ,

where (◊̄, ū) is the stationary solution in (4.1.8). Next, we consider the case in which the
iterates of Eµ do not preserve positivity. In Figure 4.3, we compare the evolution of ◊ by
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(a) Non positivity of the distribution using Eµ.
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(b) Convergence using (4.2.3) while preserving the
positivity of ◊.

Fig. 4.3 Comparison between the iterates of Eµ and PEµ for ◊1
0 = 0.8, ◊2

0 = 0.2, u1
0 = 5, and

u2
0 = 2. The quantities corresponding to the state 1 and 2 are depicted in blue and orange,

respectively.
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(a) Contraction of the norm.

Fig. 4.4 Evolution of the norm, Î(◊, u) ≠ (◊̄, ū)Î, using the projection method.

iterating Eµ, without the projection and using (4.2.3). In the first case, ◊ may not remain
positive, although, in this example, convergence holds. In Figure 4.3, we plot the evolution
through (4.2.3) of ◊ towards the analytical solution ◊1 = ◊2 = 0.5. As expected from its
construction, ◊ is always non-negative and a probability. The contraction of the norm is
similar to the previous case, see Figure 4.4.

4.3 Initial-terminal value problems

The initial-terminal conditions in (4.0.3) are the key di�culty in the design of numerical
methods for the time-dependent MFG, (4.0.2). Here, we extend the strategy from the previous
section to handle initial-terminal conditions. We start with an arbitrary pair of functions,
(u(t, 0), ◊(t, 0)), that satisfies (4.0.3) and build a family (u(t, s), ◊(t, s)), s Ø 0, that converges
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to a solution of (4.0.2)-(4.0.3) as s æ Œ, while preserving the boundary conditions for all
s Ø 0.

4.3.1 Representation of functionals in H
1

We begin by discussing the representation of linear functionals in H1. Consider the Hilbert
space, H1

T
= {„ œ H1([0, T ],Rd) : „(T ) = 0}. For ◊, u œ H1([0, T ],Rd), we consider the

variational problem

min
„œH

1
T

⁄
T

0

S

U1
2(|„|2 + |„̇|2) + „ ·

Q

a◊t ≠
ÿ

j

◊j–ú(�ju, ◊, j)

R

b

T

V dt. (4.3.1)

A minimizer, „ œ H1
T

, of the preceding functional represents the linear functional

÷ ‘æ ≠
⁄

T

0
÷ ·

Q

a◊t ≠
ÿ

j

◊j–ú(�ju, ◊, j)

R

b dt

for ÷ œ H1
T

, as an inner product in H1
T

; that is,

⁄
T

0

1
÷ · „ + ÷̇ · „̇

2
dt = ≠

⁄
T

0
÷ ·

Q

a◊t ≠
ÿ

j

◊j–ú(�ju, ◊, j)

R

b dt

for „, ÷ œ H1
T

. The last identity is simply the weak form of the Euler-Lagrange equation for
(4.3.1),

≠ „̈ + „ = ≠◊t +
ÿ

j

◊j–ú(�ju, ◊, j), (4.3.2)

whose boundary conditions are „(T ) = 0 and „̇(0) = 0. For ◊, u œ H1([0, T ],Rd), we define

�(◊, u, t) = „(t). (4.3.3)

Next, let H1
I

= {Â œ H1([0, T ],Rd) : Â(0) = 0}. For ◊, u œ H1([0, T ],Rd), we consider the
variational problem

min
ÂœH

1
I

⁄
T

0

51
2(|Â|2 + |Â̇|2) + Â · (ut + h(�iu, ◊, i))

6
dt. (4.3.4)

The Euler-Lagrange equation for the preceding problem is

≠ Â̈ + Â = ≠ut ≠ h(�iu, ◊, i), (4.3.5)
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with the boundary conditions Â(0) = 0 and Â̇(T ) = 0. Moreover, if Â œ H1
I

minimizes the
functional in (4.3.4), we have

⁄
T

0

1
÷ · Â + ÷̇ · Â̇

2
dt =

⁄
T

0
÷ · (≠ut ≠ h(�iu, ◊, i)) dt

for ÷, Â œ H1
I
. For ◊, u œ H1([0, T ],Rd), we define

�(◊, u, t) = Â(t). (4.3.6)

4.3.2 Solutions of the Euler-Lagrange equations

To find „ and Â, we need to solve Euler-Lagrange equations, (4.3.2) and (4.3.5).
The homogeneous solutions for (4.3.2) are given by

„h1 = et, „h2 = e≠t.

In order to compute the general solution

„(t) = y1(t)et + y2(t)e≠t.

using the variation of parameters formula, we need to calculate the Wronskian that is given
by

W =
-----
et e≠t

et ≠e≠t

----- = ≠2.

Since it is non-zero we have

y1(t) = C1 + 1
2

⁄
t

0
e≠r

Q

a◊t(r) ≠
ÿ

j

◊j(r)–ú(�ju(r), ◊(r), j)

R

b dr,

and

y2(t) = C2 ≠ 1
2

⁄
t

0
er

Q

a◊t(r) ≠
ÿ

j

◊j(r)–ú(�ju(r), ◊(r), j)

R

b dr.

Hence the solution is

„(t) = et

2

⁄
t

0
e≠rf(r)dr ≠ e≠t

2

⁄
t

0
erf(r)dr + C1et + C2e≠t,

where the function f is given by

f(r) = ◊t(r) ≠
ÿ

j

◊j(r)–ú(�ju(r), ◊(r), j).
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We now compute the constants C1 and C2, using the boundary conditions „̇(0) = 0, and
„(T ) = 0. From the first condition we get

0 = „̇(t)
---
t=0

=
Ë1
2et

⁄
t

0
e≠rf(r)dr + 1

2f(t) + 1
2e≠t

⁄
t

0
erf(r)dr ≠ 1

2f(t)

+ C1et ≠ C2e≠t

---
t=0

= C1 ≠ C2,

which gives
C1 = C2. (4.3.7)

From the second boundary condition we have

0 = „(T ) = y1(T )eT + y2(T )e≠T

= eT

A

C1 + 1
2

⁄
T

0
e≠rf(r)dr

B

+ e≠T

A

C2 ≠ 1
2

⁄
T

0
erf(r)dr

B

.

We obtain using the above and (4.3.7),

C1 = 1
2(eT + e≠T )

⁄
T

0
(er≠T ≠ eT ≠r)f(r)dr.

Therefore, the solution of (4.3.2) is given by

„(t) = 1
2

A⁄
t

0
(et≠r ≠ er≠t)f(r)dr + et + e≠t

eT + e≠T

⁄
T

0
(er≠T ≠ eT ≠r)f(r)dr

B

. (4.3.8)

Similarly the general solution of (4.3.5) is given by

Â(t) = z1(t)et + z2(t)e≠t,

where
z1(t) = D1 +

⁄
t

0

1
2e≠rg(r)dr,

and
z2(t) = D2 ≠

⁄
t

0

1
2erg(r)dr,

where the function g is given by

g(r) = ut(r) + h(�iu(r), ◊(r), i).

From Â(0) = 0 we have
D1 + D2 = 0 … D1 = ≠D2.
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Taking the derivative of Â(t) we get

Â̇(t) = ż1(t)et + z1(t)et + ż2(t)e≠t ≠ z2(t)e≠t

= 1
2e≠tg(t)et + z1(t)et ≠ 1

2etg(t)e≠t ≠ z2(t)e≠t

= D1et ≠ D2e≠t + 1
2

⁄
t

0
(et≠r + er≠t)g(r)dr.

From the terminal condition Â̇(T ) = 0 we obtain

D1eT ≠ D2e≠T + 1
2

⁄
T

0
(eT ≠r + er≠T )g(r)dr = 0,

using D1 = ≠D2 we get

D1 = ≠ 1
2(eT + e≠T )

⁄
T

0
(eT ≠r + er≠T )g(r)dr

Therefore the solution to the Euler-Lagrange equation (4.3.5) is given by

Â(t) = e≠t ≠ et

2(eT + e≠T )

⁄
T

0
(eT ≠r + er≠T )g(r)dr + 1

2

⁄
t

0
(et≠r ≠ er≠t)g(r)dr. (4.3.9)

4.3.3 Monotone deformation flow

Next, we introduce the monotone deformation flow,
Y
]

[
ui

s(t, s) = �i(◊(·, s), u(·, s), t)

◊i
s(t, s) = �i(◊(·, s), u(·, s), t),

(4.3.10)

where � and � are given in (4.3.3) and (4.3.6). As we show in the next proposition, for
smooth enough solutions, the previous flow is a contraction in H1. Moreover, if (◊, u) solve
(4.0.2)-(4.0.3), we have

�(◊, u, t) = �(◊, u, t) = 0.

Hence, solutions of (4.0.2)-(4.0.3) are fixed points for (4.3.10).
Before stating the contraction property, we recall that the H1-norm of a pair of functions

is given by

Î(v, ÷)Î2
H1 =

⁄
T

0

1
|v|2 + |v̇|2 + |÷|2 + |÷̇|2

2
dt

for v, ÷ : [0, T ] æ Rd.

Proposition 4. Let (u, ◊) and (ũ, ◊̃) be C2 solutions of (4.3.10). Suppose that ◊, ◊̃ Ø 0.
Then,

d

ds
Î(u, ◊) ≠ (ũ, ◊̃)Î2

H1 Æ 0,
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with strict inequality if (u, ◊) ”= (ũ, ◊̃).

Proof. We have

1
2

d

ds

⁄
T

0

Ë
(u ≠ ũ)2 + (u ≠ ũ)2

t + (◊ ≠ ◊̃)2 + (◊ ≠ ◊̃)2
t

È
dt

=
⁄

T

0
[(u ≠ ũ)(u ≠ ũ)s + (u ≠ ũ)t(u ≠ ũ)ts] dt

+
⁄

T

0

Ë
(◊ ≠ ◊̃)(◊ ≠ ◊̃)s + (◊ ≠ ◊̃)t(◊ ≠ ◊̃)ts

È
dt.

Using (4.3.10), the term in the right-hand side of the previous equality becomes

⁄
T

0

Ë
(u ≠ ũ)(„ ≠ „̃) + (u ≠ ũ)t(„ ≠ „̃)t

È
dt

+
⁄

T

0

Ë
(◊ ≠ ◊̃)(Â ≠ Ẫ) + (◊ ≠ ◊̃)t(Â ≠ Ẫ)t

È
dt

=
⁄

T

0
(u ≠ ũ)(„ ≠ „̃)dt +

Ë
(u ≠ ũ)(„ ≠ „̃)t

È---
T

0

≠
⁄

T

0
(u ≠ ũ)(„ ≠ „̃)ttdt

+
⁄

T

0
(◊ ≠ ◊̃)(Â ≠ Ẫ)dt +

Ë
(◊ ≠ ◊̃)(Â ≠ Ẫ)t

È---
T

0

≠
⁄

T

0
(◊ ≠ ◊̃)(Â ≠ Ẫ)ttdt,

where we used integration by parts in the last equality. Because u(T ) = ũ(T ), ◊(0) = ◊̃(0),
„t(0) = „̃t(0), Ât(T ) = Ẫt(T ), and using (4.3.2) and (4.3.5), we obtain

1
2

d

ds

⁄
T

0
(u ≠ ũ)2 + (u ≠ ũ)2

t + (◊ ≠ ◊̃)2 + (◊ ≠ ◊̃)2
t

=
⁄

T

0
(u ≠ ũ)

1ÿ
◊j–ú(�ju, ◊, j) ≠

ÿ
◊̃–ú(�j ũ, ◊̃, j)

2

≠
⁄

T

0
(◊ ≠ ◊̃)

1
h(�iu, ◊, i) ≠ h(�iũ, ◊̃, i)

2
(4.3.11)

Æ
⁄

T

0
≠“Î(◊ ≠ ◊̃)(t)Î2 ≠

dÿ

i=1
“i(◊i + ◊̃i)(t)Î(�iu ≠ �iũ)(t)Î2dt,

due to Remark 1.
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4.3.4 Monotone discretization

To build our numerical method, we begin by discretizing (4.3.10). We look for a time-
discretization of

A

C
◊

u

D

=
C

≠◊t + f(u, ◊)
≠ut ≠ h(u, ◊)

D

that preserves monotonicity, where f(u, ◊) =
q

j
◊̃j–ú(�j ũ, ◊̃, j).

With Hamilton-Jacobi equations, implicit schemes have good stability properties. Because
the Hamilton-Jacobi equation in (4.3.10) is a terminal value problem, we discretize it using
an explicit forward-in-time scheme (hence, implicit backward-in-time scheme). Then, to keep
the adjoint structure of A at the discrete level, we are then required to choose an implicit
discretization forward in time for the first component of A. Usually, implicit schemes have
the disadvantage of requiring the numerical solution of non-linear equations at each time step.
Here, we discretize the operator, A, globally, and we never need to solve implicit equations.

More concretely, we split [0, T ] into N intervals of length ”t = T

N
. The vectors ◊n œ Sd

and un œ Rd, 0 Æ n Æ N approximate ◊ and u at time nT

N
. We set MN = (Sd ◊ Rd)N+1 and

define

AN

C
◊

u

D

n

=

S

U ≠ ◊
i
n+1≠◊

i
n

”t
+ f(ui

n+1, ◊i
n+1) + kn

≠u
i
n+1≠u

i
n

”t
≠ h(ui

n, ◊i
n)

T

V , (4.3.12)

where

kn(s) = ≠1
d

dÿ

i=1

A

≠”◊i
n

”t
+ f(ui

n+1, ◊i

n+1)
B

and ”◊i
n = ◊i

n+1 ≠ ◊i
n. Next, we show that AN is a monotone operator in the convex subset of

vectors in M that satisfy the initial-terminal conditions in (4.0.3). We denote by È·, ·Í, the
duality pairing in (Sd ◊ Rd)N+1. More precisely, for (◊, u), (◊̃, ũ) œ (Sd ◊ Rd)N+1

KC
◊

u

D

,

C
◊̃

ũ

DL

=
Nÿ

k=0
◊k · ◊̃k + uk · ũk.

Proposition 5. AN is monotone in the convex subset MN of all (◊, u) œ (Sd ◊Rd)N+1 such
that ◊0 = ◊̄0 and uN = ūT . Moreover, we have the inequality

K

AN

C
◊

u

D

≠ AN

C
◊̃

ũ

D

,

C
◊

u

D

≠
C

◊̃

ũ

DL

Æ
N≠1ÿ

n=1

A

≠“Î(◊ ≠ ◊̃)(t)Î2 ≠
dÿ

i=1
“i(◊i + ◊̃i)(t)Î(�iu ≠ �iũ)(t)Î2

B

.
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Proof. We begin by computing
K

AN

C
◊

u

D

≠ AN

C
◊̃

ũ

D

,

C
◊

u

D

≠
C

◊̃

ũ

DL

=
N≠1ÿ

n=0

C

(◊n ≠ ◊̃n)
3

≠un+1 ≠ un

”t
≠ h(un, ◊n) + ũn+1 ≠ ũn

”t
+ h(ũn, ◊̃n)

4

+ (un+1 ≠ ũn+1)
1

≠ ◊n+1 ≠ ◊n

”t
+ f(un+1, ◊n+1) + kn

+ ◊̃n+1 ≠ ◊̃n

”t
≠ f(ũn+1, ◊̃n+1) ≠ k̃n

2D

.

With the sums developed and the indices relabeled, the preceding expression becomes

N≠1ÿ

n=1

C

(◊n ≠ ◊̃n)
3

≠un+1 ≠ un

”t
≠ h(un, ◊n) + ũn+1 ≠ ũn

”t
+ h(ũn, ◊̃n)

4

+ (◊0 ≠ ◊̃0)
3

≠u1 ≠ u0
”t

≠ h(u0, ◊0) + ũ1 ≠ ũ0
”t

+ h(ũ0, ◊0)
4 D

+
N≠1ÿ

n=1

C

(un ≠ ũn)
A

≠◊n ≠ ◊n≠1
”t

+ f(un, ◊n) + ◊̃n ≠ ◊̃n≠1
”t

≠ f(ũn, ◊̃n)
B

+ (uN ≠ ũN )
A

≠◊N ≠ ◊N≠1
”t

+ f(uN , ◊N ) + ◊̃N ≠ ◊̃N≠1
”t

≠ f(ũN , ◊̃N )
B D

.

The second and last lines above are zero since ◊0 = ◊̃0 = ◊̄0 and uN = ũN = ūT . Using
Remark 1, we obtain

K

A

C
◊

u

D

≠ A

C
◊̃

ũ

D

,

C
◊

u

D

≠
C

◊̃

ũ

DL

Æ
N≠1ÿ

n=1

A

≠“Î(◊ ≠ ◊̃)(t)Î2 ≠
dÿ

i=1
“i(◊i + ◊̃i)(t)Î(�iu ≠ �iũ)(t)Î2

B

≠
N≠1ÿ

n=1
(◊n ≠ ◊̃n)

3
un+1 ≠ ũn+1

”t
≠ un ≠ ũn

”t

4

≠
N≠1ÿ

n=1
(un ≠ ũn)

A
◊n ≠ ◊̃n

”t
≠ ◊n≠1 ≠ ◊̃n≠1

”t

B

.
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We now show that the last two lines add to zero. Let an = ◊n ≠ ◊̃n and bn = un ≠ ũn.
Accordingly, we have

≠ 1
”t

N≠1ÿ

n=1
an(bn+1 ≠ bn) ≠ 1

”t

N≠1ÿ

n=1
bn(an ≠ an≠1)

= ≠ 1
”t

(bN aN ≠ b1a1) + 1
”t

N≠1ÿ

n=1
bn+1(an+1 ≠ an) ≠ 1

”t

N≠2ÿ

n=0
bn+1(an+1 ≠ an)

= 1
”t

(b1a0 ≠ bN aN≠1) = 0,

where we summed the first term by parts and relabeled the index, n, in the last term of the
first line. The last equality follows from the assumption in the statements, a0 = ◊0 ≠ ◊̃0 = 0
and bN = uN ≠ ũN = 0.

Using the techniques in [12], we prove the convergence of the solutions of the discretized
problem as ”t æ 0. As usual, we discretize the time interval, [0, T ], into N + 1 equispaced
points.

Proposition 6. Let (◊N , uN ) œ MN be a solution of

AN

C
◊N

uN

D

n

=
C

0
0

D

satisfying the initial-terminal conditions in (4.0.3). Suppose that uN is uniformly bounded.
Consider the step functions ūN and ◊̄N taking the values ūNi

n œ R and ◊̄Ni
n œ S in [ (n≠1)T

N
, nT

N
],

with 0 Æ n Æ N , for i œ Id, respectively. Then, extracting a subsequence if necessary,
ūNi Ô ūi and ◊̄Ni Ô ◊i weakly-* in LŒ for i œ Id. Furthermore, (ū, ◊̄) is a weak solution of
(4.0.2).

Proof. Because uN is bounded by hypothesis and ◊N is bounded since it is a probability
measure, the weak-* convergence in LŒ is immediate. Hence, there exist ūi œ LŒ([0, T ]) and
◊i œ LŒ([0, T ]) as claimed.

Let ũi, ◊̃i œ CŒ([0, T ]), with ◊̃i Ø 0 for all i œ Id, and
q

iœId
◊̃i = 1. Suppose further that

ũi, ◊̃i satisfy the boundary conditions in (4.0.3). Let ũN
n = ũ

!
n

N
T

"
, ◊̃N

n = ◊̃
!

n

N
T

"
be the

vectors whose components are ũNi
n and ◊̃Ni

n , respectively. By the monotonicity of AN , we
have

0 Æ
K

AN

C
◊̃N

ũN

D

,

C
◊̃N

ũN

D

≠
C

◊N

uN

DL

= O
3 1

N

4
+

K

A

C
◊̃

ũ

D

,

C
◊̃

ũ

D

≠
C

◊̄N

ūN

DL

,

and taking the limit N æ Œ gives the result.
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4.3.5 Monotone discretization for the H
1

projections

Next, we discuss the representation of linear functionals for the discrete problem. For that,
proceeding as in Section 4.3.1, we compute the optimality conditions of the discretized
versions of (4.3.1) and (4.3.4).

Fix (u, ◊) œ MN and consider the following discrete analog to (4.3.1):

min
„œH̃

1
T

”t
Nÿ

n=1

1
2

A

„2
n +

3
”„n≠1

”t

42B

+ „n

3
”◊n≠1

”t
≠ f(un, ◊n)

4
,

where ”gn = gn+1 ≠ gn, and H̃1
T

= {„ = („0, . . . , „N ) œ (Rd)(N+1) : „N = 0}. The
corresponding optimality conditions (the discrete Euler-Lagrange equation) is

≠ ”(”„n≠1)
(”t)2 + „n = ≠”◊n≠1

”t
+ f(un, ◊n), (4.3.13)

for n = 1, . . . , N ≠ 1, coupled with the boundary conditions „N = 0 and „1 = „0.
A minimizer of the problem above represents the following discrete linear functional

÷ ‘æ ≠
Nÿ

n=1
÷n ·

3
”„n≠1

”t
≠ f(un, ◊n)

4
”t

as an inner product in H̃1
T

Nÿ

n=1

3
÷n · „n”t + 1

”t
”÷n≠1 · ”„n≠1

4
= ≠

Nÿ

n=1
÷n ·

3
”„n≠1

”t
≠ f(un, ◊n)

4
”t.

For (◊n, un) œ MN , we define
�(◊n, un) = „n. (4.3.14)

We now examine a second discrete variational problem corresponding to (4.3.4). For
(u, ◊) œ MN , we consider

min
ÂœH̃

1
I

”t
N≠1ÿ

n=0

1
2

A

Â2
n +

3
”Ân

”t

42B

+ Ân

3
”un

”t
+ h(un, ◊n)

4
,

where H̃1
I

= {Â = (Â0, . . . , ÂN ) œ (Rd)(N+1) : Â0 = 0}.
The discrete Euler-Lagrange equation is

≠ ”(”Ân≠1)
(”t)2 + Ân = ≠”un

”t
≠ h(un, ◊n) (4.3.15)

for n = 1, . . . , N ≠ 1, together with the conditions Â0 = 0 and ÂN = ÂN≠1.
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From the Euler-Lagrange equation, we obtain the following representation formula in the
Hilbert space {Â œ H1

n({0, . . . , N}) : Â0 = 0}:

N≠1ÿ

n=0
(÷ · Â + ”÷ · ”Â) ”t =

Nÿ

0
÷ ·

3
≠”un

”t
≠ h(un, ◊n)

4
”t.

Finally, we define
�(◊n, un) = Ân, (4.3.16)

for (u, ◊) œ MN .

Proposition 7. Let � and � be given by (4.3.14) and (4.3.16). Consider the following
operator:

QA

C
◊

u

D

=
C

�
�

D

. (4.3.17)

Let M◊̄0,ūT
N

be the set of all (◊, u) œ MN that satisfy the initial condition ◊0 = ◊̄0 and the
terminal condition uN = ūT . Then, QA is monotone with respect to the discrete H1

N
inner

product corresponding to the norm

Î(÷, ‹)Î2
H

1
N

=
N≠1ÿ

n=0
|÷n|2 + |”÷n|2 + |‹n|2 + |”‹n|2. (4.3.18)

Proof. Let (u, ◊) œ M◊̄0,ūT
N

and (ũ, ◊̃) œ M◊̄0,ūT
N

. Let „, „̃ and Â, Ẫ be given by (4.3.14) and
(4.3.16). We begin by computing

K

QA

C
◊

u

D

≠ QA

C
◊̃

ũ

D

,

C
◊

u

D

≠
C

◊̃

ũ

DL

H
1
N

=
N≠1ÿ

n=0

C

(◊n ≠ ◊̃n)(Ân ≠ Ẫn) + ”(◊n ≠ ◊̃n)
”t

”(Ân ≠ Ẫn)
”t

+ (un ≠ ũn)(„n ≠ „̃n) + ”(un ≠ ũn)
”t

”(„n ≠ „̃n)
”t

D

=
N≠1ÿ

n=0
(◊n ≠ ◊̃n)(Ân ≠ Ẫn) + (un ≠ ũn)(„n ≠ „̃n)

+ 1
”t

N≠1ÿ

n=0

A
◊n+1 ≠ ◊n

”t
≠ ◊̃n+1 ≠ ◊̃n

”t

B

(”Ân ≠ ”Ẫn)

+ 1
”t

N≠1ÿ

n=0

3
un+1 ≠ un

”t
≠ ũn+1 ≠ ũn

”t

4
(”„n ≠ ”„̃n). (4.3.19)
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Reorganizing, we see that the previous two lines are equal to

1
(”t)2

N≠1ÿ

n=0

C Ë
(◊n+1 ≠ ◊̃n+1) ≠ (◊n ≠ ◊̃n)

È
(”Ân ≠ ”Ẫn)

+ [(un+1 ≠ ũn+1) ≠ (un ≠ ũn)] (”„n ≠ ”„̃n)
D

. (4.3.20)

Using the notation

an = ◊n ≠ ◊̃n, bn = ”Ân ≠ ”Ẫn, cn = un ≠ ũn, and dn = ”„n ≠ ”„̃n,

we write (4.3.20) multiplied by (”t)2 as

N≠1ÿ

n=0
bn”an + dn”cn = bN≠1”aN≠1 + dN≠1”cN≠1 +

N≠2ÿ

n=0
bn”an + dn”cn

= bN≠1”aN≠1 + dN≠1”cN≠1

+ aN≠1bN≠1 ≠ a0b0 ≠
N≠2ÿ

n=0
an+1”bn

+ cN≠1dN≠1 ≠ c0d0 ≠
N≠2ÿ

n=0
cn+1”dn, (4.3.21)

where we used summation by parts in the last equality. Because ÂN = ÂN≠1, we have
bN≠1 = 0. Moreover, since ◊0 = ◊̃0, we have a0 = 0, and „1 = „0 implies that d0 = 0. Thus,
we further have

dN≠1”cN≠1 = dN≠1 (uN ≠ ũN ≠ (uN≠1 ≠ ũN≠1))

= ≠dN≠1(uN≠1 ≠ ũN≠1)

= ≠cN≠1dN≠1,

where we used the terminal condition uN = ũN . According to these identities, (4.3.21)
becomes

N≠1ÿ

n=0
bn”an + dn”cn = ≠

N≠2ÿ

n=0
an+1”bn + cn+1”dn.

Therefore, (4.3.20) can be written as

≠
N≠2ÿ

n=0

◊n+1 ≠ ◊̃n+1
(”t)2

1
”2Ân ≠ ”2Ẫn

2
≠

N≠2ÿ

n=0

un+1 ≠ ũn+1
(”t)2

1
”2„n ≠ ”2„̃n

2
. (4.3.22)
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Shifting the index n + 1 into n in (4.3.22), we obtain

≠
N≠1ÿ

n=1

◊n ≠ ◊̃n

(”t)2

1
”2Ân≠1 ≠ ”2Ẫn≠1

2
≠

N≠1ÿ

n=1

un ≠ ũn

(”t)2

1
”2„n≠1 ≠ ”2„̃n≠1

2
.

Using the Euler-Lagrange equations (4.3.13) and (4.3.15) in the preceding expression yields

≠
N≠1ÿ

n=1
(◊n ≠ ◊̃n)

3
Ân + un+1 ≠ un

”t
+ h(un, ◊n) ≠ Ẫn ≠ ũn+1 ≠ ũn

”t
≠ h(ũn, ◊̃n)

4

≠
N≠1ÿ

n=1
(un ≠ ũn)

A

„n + ◊n ≠ ◊n≠1
”t

≠ f(un, ◊n) ≠ „̃n ≠ ◊̃n ≠ ◊̃n≠1
”t

+ f(ũn, ◊̃n)
B

.

Finally, plugging the previous result into (4.3.19), we obtain

≠
N≠1ÿ

=1
(◊n ≠ ◊̃n)

3
un+1 ≠ ũn+1

”t
≠ un ≠ ũn

”t
+ h(un, ◊n) ≠ h(ũn, ◊̃n)

4

≠
N≠1ÿ

n=1
(un ≠ ũn)

A
◊n ≠ ◊̃n

”t
≠ ◊n≠1 ≠ ◊̃n≠1

”t
≠ f(un, ◊n) + f(ũn, ◊̃n)

B

Æ
N≠1ÿ

n=1
≠“Î(◊n ≠ ◊̃n)Î2 ≠

dÿ

i=1
“i(◊i

n + ◊̃i

n)Î(�iun ≠ �iũn)Î2

by using Remark 1 and arguing as at the end of Subsection 4.3.4.

4.3.6 Projection algorithm

As shown in Section 4.2, the monotone flow may not keep ◊ positive. Thus, to preserve
probabilities and prevent ◊ from taking negative values, we define a projection operator
through the following optimization problem. Given (÷, w) œ MN , we solve

Y
]

[
min⁄i

n

q
d

i=1(÷i
n ≠ ⁄i

n)2

q
d

i=1 ⁄i
n = 1, ⁄i

n Ø 0
(4.3.23)

for n œ {0, . . . , N}. Then, we set

P

C
÷

w

D

n

=
C

⁄n

wn

D

for 0 Æ n Æ N . We note that if ÷n is a probability, then ⁄n = ÷n. Moreover, P is a
contraction.
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Now, we introduce the following iterative scheme:

wk+1 = P [wk ≠ ‚QA[wk]] , (4.3.24)

where wk = (◊k, uk), QA is defined in (4.3.17), and ‚ > 0 is the step size.

Proposition 8. For small enough ‚, the map (4.3.24) is a contraction. Moreover, if there
exists a solution (◊̃, ũ) of

Y
]

[
≠ ◊̃

i
n+1≠◊̃

i
n

”t
+ f(ũi

n+1, ◊̃i
n+1) = 0

≠ ũ
i
n+1≠ũ

i
n

”t
≠ h(ũi

n, ◊̃i
n) = 0

(4.3.25)

satisfying the initial-terminal conditions ◊̃0 = ◊̄0 and ũN = ūT , the iterates of (4.3.24) satisfy

N≠1ÿ

n=1
“Î(◊n,k ≠ ◊̃n,k)Î2 +

dÿ

i=1
“i(◊i

n,k + ◊̃i

n,k)Î(�iun,k ≠ �iũn,k)Î2 æ 0,

as k æ Œ.

Proof. The operator E‚ is a contraction because QA is a monotone Lipschitz map (see
Proposition 7). The convergence in the statement follows from the series

Œÿ

k=1

N≠1ÿ

n=1
“Î(◊n,k ≠ ◊̃n,k)Î2 +

dÿ

i=1
“i(◊i

n,k + ◊̃i

n,k)Î(�iun,k ≠ �iũn,k)Î2,

being convergent.

Proposition 9. Let (◊̄, ū) œ MN solve

AN

C
◊

u

D

=
C

0
0

D

,

with uN = ūT and ◊0 = ◊̄0. Then, (◊̄, ū) is a fixed point of (4.3.24).
Conversely, let (◊̃, ũ) œ MN be a fixed point of (4.3.24) with ◊̃ > 0. Then, there exists a

solution to (4.3.25), (◊̄, ū), with ◊̄ = ◊̃ and ū given by

”ūi
n

”t
= ≠h(�iũ, ◊, i) (4.3.26)

with ūN = ūT .

Proof. The first claim of the proposition follows immediately from the definition of QA. To
prove the second part, let (◊̃, ũ) œ MN be a fixed point of (4.3.24). For all n œ {0, . . . , N}
and i œ Id, we have

ũi

n = ũi

n + ‚„n(ũn, ◊̃n).
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Therefore, „n(ũn, ◊̃n) = 0. Hence, from (4.3.13), we conclude that

≠”◊̃n≠1
”t

+ f(ũn, ◊̃n) = 0.

Furthermore, for ◊̃i
n = ⁄i

n, where ⁄i
n solves (4.3.23), we have

◊̃i

n = P
Ë
◊̃i

n ≠ ‚Ân(ũn, ◊̃n)
È

=
1
◊̃i

n ≠ ‚Ân(ũn, ◊̃n) + ‚Ÿn

2+

for some Ÿn Ø 0. If ◊̃i
n > 0, Ân(ũn, ◊̃n) = Ÿn. Otherwise, Ân(ũn, ◊̃n) Ø Ÿn.

If ◊̃i
n > 0, using the fact that Â solves (4.3.15), we gather

”ũi
n

”t
≠ 1

d ≠ 1
ÿ

j ”=i

”ũj
n

”t
= 1

d ≠ 1
ÿ

j ”=i

h(�j ũn, ◊, j) ≠ h(�iũn, ◊, i).

Now, we define ū as in the statement of the proposition. A simple computation gives

”ūi
n

”t
≠ ”ūj

n

”t
= ”ũi

n

”t
≠ ”ũj

n

”t
.

Hence, �j ūn = �j ũn. Consequently,

”ūi
n

”t
= ≠h(�iū, ◊, i).

Thus, (◊̄, ū) solves (4.0.2).

Remark 3. The convergence of solutions of (4.3.25) to weak solutions of (4.0.2) follows
from the Minty’s method and the monotonicity of the operator A as shown in Proposition 6.

4.3.7 Numerical examples

Finally, we present numerical simulations for the time-dependent paradigm-shift problem. As
explained before, we discretize the time variable, t œ [0, T ], into N intervals of length ”t = T

N
.

We then have N equations for each state. Because d = 2, this system consists of 4N evolving
equations according to (4.3.24).

To compute approximate solutions to (4.1.9)-(4.1.10), we use the projection algorithm,
(4.3.24), with N = 400. We first consider a case in which the analytical solution can be
computed explicitly. We choose ◊1 = ◊2 = 1

2 . Thus, from (4.1.9), it follows that u1 = u2 are
a�ne functions of t with u1

t = u2
t ≠ 1

2 . Our results are depicted in Figures 4.5, 4.6, and 4.7.
In Figure 4.5, for t œ [0, T ], T = 8, we plot the initial guess (s = 0) for ◊ and u, and the
analytical solution. In Figure 4.6, we see the evolution of the density of players and the value
functions for s œ [0, 20]. The final results, s = 20, are shown in Figure 4.7. Finally, in Figure
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(a) Initial condition ◊(·, 0) versus exact solution.
0 2 4 6 8

t

2

4

6

8
u

(b) Initial condition u(·, 0) versus exact solution.

Fig. 4.5 The blue lines correspond to the initial values (s = 0) for state 1, (◊1, u1): the orange
lines correspond to the initial values for state 2, (◊2, u2); the green lines correspond to the
analytical solution ◊1 = ◊2 and u1 = u2 for t œ [0, 8].

4.8, we show the evolution of the H1 norm of the di�erence between the analytical, (ũ, ◊̃),
and computed, (u, ◊), solutions. The norm Î(ũ, ◊̃) ≠ (u, ◊)Î2

H1([0,T ])(s) is computed as

N≠1ÿ

j=0

2ÿ

i=1
”t

1
|ũi

j ≠ ui

j |2 + | ˙̃ui

j ≠ u̇i

j |2 + |◊̃i

j ≠ ◊i

j |2 + | ˙̃◊i

j ≠ ◊̇i

j |2
2

(s)

for s Ø 0, where vi

j
= vi(tj , s) and ”t is the size of the time-discretization step.

The paradigm-shift problem is a potential MFG with the Hamiltonian corresponding to

h̃(�iu, i) = ≠1
2((ui ≠ uj)+)2, and F (◊) = ◊2

1 + ◊2
2

2

in (4.1.5). Thus, as a final test to our numerical method, we investigate the evolution of the
Hamiltonian. In this case, as expected, the Hamiltonian converges to a constant (see Figure
4.9).

In the preceding example, while iterating (4.3.24), ◊ remains away from 0. In the next
example, we consider a problem in which, without the projection P in (4.3.24), positivity is
not preserved. We set N = 400 and choose initial conditions as in Figure 4.10. In Figure
4.11, we show the evolution by (4.3.24) for s œ [0, 20]. In Figure 4.12, we see the final result
for s = 20. Finally, in Figure 4.13, we show the evolution of the H1 norm of the di�erence
Î(ũ, ◊̃) ≠ (u, ◊)Î2

H1([0,T ])(s) for s œ [0, 20].
In Figure 4.14, we plot the evolution of the Hamiltonian determined using the projection

method. Again, we obtain the numerical conservation of the Hamiltonian.
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(a) Distribution of players ◊1(t, s). (b) Di�erence (u1 ≠ u2)(t, s).

Fig. 4.6 Evolution, along parameter s œ [0, 20], of the density of distribution of players, ◊(·, s),
and the di�erence of the value functions for both sates, (u1 ≠ u2)(·, s).
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(a) Final distribution ◊(·, 20).
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(b) Final value function u(·, 20).

Fig. 4.7 Final value of u(·, s) and ◊(·, s) for s = 20. Note that the quantities for both states
superpose.
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Fig. 4.8 Evolution, with the parameter s, of the H1-norm of the di�erence between the
computed solution (u, ◊)(·, s) and the analytical solution for the unconstrained probability
case.

Fig. 4.9 Evolution of the Hamiltonian for s œ [0, 20].
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(a) Initial condition ◊(·, s = 0).
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(b) Initial condition u(·, s = 0).

Fig. 4.10 The blue lines correspond to the initial values (s = 0) for state 1, (◊1, u1); the
orange lines correspond to the initial values for state 2, (◊2, u2).
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(a) Distribution of players ◊1. (b) Value functions u1 and u2.

Fig. 4.11 Evolution of u(·, s) and ◊(·, s), for s œ [0, 20]. The quantities for state 1 and 2 are
depicted in blue and orange, respectively.
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(a) Distribution of players ◊(·, 20).
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(b) Value functions u(·, 20).

Fig. 4.12 Final value of u(·, s) and distribution ◊(·, s), at s = 20. The quantities for state 1
are depicted in blue and for state 2 in orange.
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Fig. 4.13 Evolution, with respect to the parameter s, of the H1-norm of the di�erence of the
solution (u, ◊)(·, s) and the solution obtained at s = 20: Î(u, ◊)(·, s) ≠ (u, ◊)(·, 20)ÎH1 .



86 Monotone numerics

Fig. 4.14 Evolution of the Hamiltonian with the s-dynamics that preserves the probability
and the positivity of the distribution of players.

4.4 Conclusions

As the examples in the preceding sections illustrate, we have developed an e�ective method
for the numerical approximation of monotonic finite-state MFGs. As observed previously,
[10, 1, 6, 3], monotonicity properties are essential for the construction of e�ective numerical
methods to solve MFGs and were used explicitly in [12]. Here, in contrast with earlier
approaches, we do not use a Newton-type iteration as in [1, 6] nor do we require the solution
of the master equation as in [101, 102]. While for d = 2, the master equation can be handled
numerically as in the preceding references, this approach becomes numerically prohibitive
when there is a large number of states. The master equation determines the value function
U(◊, i, t), where ◊ œ Sd. A direct approach to the master equation requires a grid in Sd, or
equivalently in a subset of Rd≠1. However, when d is moderately large, a direct approach
requires the storage of an extremely large number of points. With our approach, we only need
2d values for each time step. The key contribution of this chapter is the projection method
that makes addressing the initial-terminal value problem possible. This was an open problem
since the introduction of monotonicity-based methods in [12]. Our methods can be applied
to discretizing continuous-state MFGs, and we foresee additional extensions. The first one
concerns the planning problem considered in [3]. A second extension regards boundary value
problems, which are natural in many applications of MFGs. Finally, our methods may be
improved by using higher-order integrators in time, provided that monotonicity is preserved.
These matters will be the subject of future research.



Chapter 5

Nonlocal mean-field games

Here, we discuss numerical methods for mean-field games systems with nonlocal dependence
on the measure (distribution of the players).

5.1 Introduction

We start by introducing the Fourier approximation techniques for first-order nonlocal MFG
models. More precisely, we consider the system

Y
___]

___[

≠ˆtu + H(x, Òu) = F [x, m],

ˆtm ≠ div (mÒpH(x, Òu)) = 0, (x, t) œ Td ◊ [0, 1],

u(x, 1) = U(x), m(x, 0) = M(x), x œ Td.

(5.1.1)

Here, u : Td ◊ [0, 1] æ R and m : Td ◊ [0, 1] æ R+ are the unknown functions. Furthermore,
H œ C2(Td ◊ Rd) is the Hamiltonian, and F : Td ◊ P(Td) æ R is a nonlocal coupling
term between the Hamilton-Jacobi and Fokker-Planck equations. Next, U œ C2(Td) and
M œ LŒ(Td) fl P(Td) (with a slight abuse of notation we identify the absolutely continuous
measures with their densities) are terminal-initial conditions for u and m, respectively.

In (5.1.1), u is the value function of a generic agent from a continuum population of
players, whereas m represents the density of this population. Each agent aims at solving the
optimization problem

u(x, t) = inf
“œH1([t,1]),“(t)=x

⁄ 1

t

L(“(s), “̇(s)) + F (“(s), m(·, s))ds + U(“(1)), (5.1.2)

where U is a terminal cost function and L is the Legendre transform of H; that is,

L(x, v) = sup
p

≠v · p ≠ H(x, p), (x, v) œ Td ◊ Rd.
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Since the contribution of a generic agent is small, its actions on the population distribution
can be neglected. We assume that m is fixed, but unknown, in (5.1.2). Consequently, u must
solve a Hamilton-Jacobi equation; that is, the first PDE in (5.1.1) with terminal data U .

Furthermore, given u, the optimal trajectories of agents are determined by

“̇(s) = ≠ÒpH(“(s), Òu(“(s), s)).

Therefore, m, being the population density, must satisfy the Fokker-Planck equation; that is,
the second PDE in (5.1.1) with initial data M , the population density at time t = 0.

The existence, uniqueness and stability theories for (5.1.1) are well understood [135, 57, 56].
Here, we are specifically interested in approximation methods for the solutions of (5.1.1) that
can be useful for numerical solution and modeling purposes.

Currently, there are number of e�cient approximation methods for solutions of MFG
systems. We refer to [2, 5, 11, 7] for finite-di�erence schemes, [29, 16, 31, 30, 40] for
convex optimization techniques and [13, 106] for monotone flows. Although general, the
aforementioned methods are particularly advantageous when F in (5.1.1) depends locally
on m. The reason is that the local coupling F yield analytic pointwise formulas for infinite-
dimensional operators involved in the algorithms. On the other hand, the nonlocal coupling
case, F , do not yield such formulas. Hence, we are interested in developing approximation
methods that specifically suit nonlocal coupling case, F .

Our approach is based on a Fourier approximation of F and is inspired by the methods
in [153]. Here, we use the classical trigonometric polynomials as an approximation basis.
Nevertheless, our method is flexible and allows more general bases. For instance, one may
consider (5.1.1) on di�erent domains and boundary conditions and choose a basis accordingly.

Additionally, our approach yields a mesh-free numerical approximation of u and m. More
precisely, we directly recover the optimal trajectories of the agents rather than the values
of u and m on a given mesh. In particular, our methods may blend well with recently
developed ideas for fast and curse-of-the-dimensionality-resistant solution approach for first-
order Hamilton-Jacobi equations [70, 139]. Hence, our techniques may lead to numerical
schemes for nonlocal MFG that are e�cient in high dimensions.

To avoid technicalities, we consider a linear nonlocal coupling, F . More precisely, we
assume that

F (x, m) =
⁄

Td
K(x, y)m(y, t)dy, x œ Td, m œ P(Td),
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where the kernel is twice di�erentiable K œ C2(Td ◊ Td). Thus, for this particular coupling,
we deal with the following system

Y
___]

___[

≠ˆtu + H(x, Òu) =
s
Td K(x, y)m(y, t)dy,

ˆtm ≠ div(mÒpH(x, Òu)) = 0, (x, t) œ Td ◊ [0, 1],

m(x, 0) = M(x), u(x, 1) = U(x), x œ Td.

(5.1.3)

Our basic idea is to show that when K is a generalized polynomial in a given basis, then
(5.1.3) is equivalent to a fixed point problem, in a space of continuous curves, that has good
structural properties. In particular, when K is symmetric and positive semi-definite, (5.1.3)
is equivalent to a convex optimization problem in the space of continuous curves.

Furthermore, we discuss how to construct generalized polynomial kernels that approximate
a given K. Additionally, we observe that for translation invariant K the approximating
kernels have a particularly simple structure. Consequently, for such K the aforementioned
optimization problem is much simpler to solve.

This chapter is organized as follows. In Section 5.2, we present standing assumptions
and some preliminary results. In Section 5.3, we prove the equivalence of (5.1.3) to a fixed
point problem over the space of continuous curves when K is a generalized polynomial. Next,
in Section 5.4, we discuss approximation methods for a general kernel. In Section 5.5, we
construct a discretization for the optimization problem from Section 5.3 and devise a variant
of a primal dual hybrid gradient algorithm for the discrete problem. Finally, in Section 5.6,
we study several numerical examples.

5.2 Assumptions and preliminary results

We denote by Td the d-dimensional flat torus. Furthermore, throughout the chapter, we
assume that H œ C2(Td ◊ Rd), and

1
C

Id ÆÒ2
ppH(x, p) Æ CId, ’(x, p) œ Td ◊ Rd,

≠C(1 + |p|2) ÆÒxH(x, p) · p, ’(x, p) œ Td ◊ Rd,
(5.2.1)

for some constant C > 0. We denote by P(Td) the space of Borel probability measures on
the d-dimensional torus, Td. Next, we assume that M œ LŒ(Td) fl P(Td) is an essentially
bounded probability measure, U œ C2(Td) a twice continuously di�erentiable function,
K œ C2(Td ◊ Td) a twice di�erentiable kernel, and

ÎMÎLŒ(Td), ÎUÎC2(Td), ÎKÎC2(Td◊Td) Æ C, (5.2.2)
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bounded by some constant C > 0. Additionally, we suppose that the kernel K is positive
semi-definite; that is,

⁄

Td◊Td
K(x, y)f(x)f(y)dxdy Ø 0, ’f œ LŒ(Td). (5.2.3)

The kernel K is symmetric if

K(x, y) = K(y, x), ’x, y œ Td. (5.2.4)

We equip P(Td) with the Monge-Kantorovich distance that is given by

Îm2 ≠ m1ÎMK = sup
;⁄

Td
„(x)(m2(x) ≠ m1(x))dx s.t. Î„ÎLip Æ 1

<
. (5.2.5)

Now, we introduce the definition of the generalized di�erential from non-smooth analysis.
Let v be a real-valued function defined on an open set � œ Rd. For any x œ Rd, the Frèchet
super-di�erential and sub-di�erential of v at x are given by the sets

Ò≠v(x) =
;

p œ Rd : lim inf
yæx

u(y) ≠ u(x) ≠ Èp, y ≠ xÍ
|y ≠ x| Ø 0

<
,

Ò+v(x) =
I

p œ Rd : lim sup
yæx

u(y) ≠ u(x) ≠ Èp, y ≠ xÍ
|y ≠ x| Æ 0

J

,

respectively. If a function v is di�erentiable at a point x œ Rd then the above sets are
singletons and coincide

Òv(x) = Ò≠v(x) = Ò+v(x).

In the rest of this section, we present some preliminary results and formulas. For the
optimal control and related Hamilton-Jacobi equations theory we refer to [82, 21]. We begin
by the defining a solution for (5.1.3).

Definition 5.2.1. A pair (u, m) is a solution of (5.1.3) if u œ W 1,Œ(Td ◊ [0, 1]) is a viscosity
solution of

Y
]

[
≠ˆtu + H(x, Òu) =

s
Td K(x, y)m(y, t)dy, (x, t) œ Td ◊ [0, 1]),

u(x, 1) = U(x), x œ Td,
(5.2.6)

and m œ LŒ(Td ◊ [0, 1]) fl C
1
[0, 1]; P(Td)

2
is a distributional solution of

Y
]

[
ˆtm ≠ div(mÒpH(x, Òu)) = 0, (x, t) œ Td ◊ [0, 1],

m(x, 0) = M(x), x œ Td.
(5.2.7)

The following theorem asserts that (5.1.3) is well-posed.
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Theorem 5.2.2. i) Under assumptions (5.2.1) and (5.2.2), system (5.1.3) admits a so-
lution (u, m). Moreover, there exists a constant C1(C) > 0 such that

Ò2
xxu, ÎuÎW 1,Œ , ÎmÎLŒ Æ C1, (5.2.8)

for any solution (u, m). Additionally, if K is positive semi-definite, i.e. (5.2.3) holds,
then (u, m) is unique.

ii) Solutions of (5.1.3) are stable with respect to variations of U, M and K in respective
norms. Particularly, suppose that {Kr}Œ

r=1 µ C2(Td ◊ Td) is such that

lim
ræŒ

ÎK ≠ KrÎC2(Td◊Td) = 0, (5.2.9)

and {(ur, mr)}Œ
r=1 are solutions of (5.1.3) corresponding to kernel Kr. Then, the

sequence {(ur, mr)}Œ
r=1 is precompact in C(Td ◊ [0, 1]) ◊ C

1
[0, 1]; P(Td)

2
with all

accumulation points being solutions of (5.1.3). Consequently, if (5.2.3) holds then

lim
ræŒ

ur(x, t) = u(x, t), uniformly in (x, t) œ Td ◊ [0, 1],

lim
ræŒ

Îmr(·, t) ≠ m(·, t)ÎMK = 0, uniformly in t œ [0, 1],
(5.2.10)

where (u, m) is the unique solution of (5.1.3).

Proof. See [135, 57, 56].

Next, consider an arbitrary basis of smooth functions

� = {„1, „2, · · · , „r} µ C2(Td). (5.2.11)

For a = (a1, a2, · · · , ar) œ C ([0, 1];Rr) we denote by ua the viscosity solution of
Y
_]

_[

≠ˆtu(x, t) + H(x, Òu(x, t)) =
rq

i=1
ai(t)„i(x), (x, t) œ Td ◊ [0, 1]

u(x, 1) = U(x), x œ Td.
(5.2.12)

From the optimal control theory, we have that

ua(x, t) = inf
“œH1([t,1]),“(t)=x

⁄ 1

t

A

L (“(s), “̇(s)) +
rÿ

i=1
ai(s)„i(“(s))

B

ds + U(“(1)), (5.2.13)

for all (x, t) œ Td ◊ [0, 1], where “ is an di�erentiable trajectory in (t, 1] starting at “(t) = x,
and

L(x, v) = sup
pœRd

≠v · p ≠ H(x, p). (5.2.14)
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Moreover, for all (x, t) œ Td ◊ [0, 1] there exists “x,t,a œ C2([t, 1];Td) such that

ua(x, t) =
⁄ 1

t

A

L (“x,t,a(s), “̇x,t,a(s)) +
rÿ

i=1
ai(s)„i(“x,t,a(s))

B

ds + U(“x,t,a(1)), (5.2.15)

and satisfies the Euler-Lagrange equation:

d

ds
ÒvL (“x,t,a(s), “̇x,t,a(s))

=ÒxL (“x,t,a(s), “̇x,t,a(s)) +
rÿ

i=1
ai(t)Ò„i(“x,t,a(s)), s œ [t, 1].

(5.2.16)

Additionally, we have

≠ÒvL (x, “̇x,t,a(t)) œÒ+
x ua(x, t),

≠ÒvL (“x,t,a(s), “̇x,t,a(s)) =Òxua(“x,t,a(s), s), s œ (t, 1],

“̇x,t,a(s) =ÒpH(“x,t,a(s), Òxua(“x,t,a(s), s)), s œ (t, 1].

(5.2.17)

In fact, this previous equation is also su�cient for (5.2.15) to hold. For lighter notation, we
denote “x,0,a by “x,a.

In general, ua is not everywhere di�erentiable. Nevertheless, ua is semiconcave and hence
Ò+ua(x, t) ”= ÿ for all (x, t), and Ò+ua(x, t) = {Òua(x, t)} for a.e. (x, t). In fact, points
(x, t) where ua is not di�erentiable are precisely those for which (5.2.13) admits multiple
minimizers. Thus, at points x œ Td where ua(x, 0) is not di�erentiable we choose “x,a in such
a way that the map (x, t) ‘æ “x,a(t) is Borel measurable.

Furthermore, we denote by ma the distributional solution of
Y
]

[
ˆtm ≠ div (mÒpH(x, Òua)) = 0, (x, t) œ Td ◊ [0, 1],

m(x, 0) = M(x), x œ Td.
(5.2.18)

One can show that ma is given by the push-forward of the measure M by the map “·,a(t)

ma(·, t) = “·,a(t)˘M, (5.2.19)

where the above push-forward is a measure defined by “·,a(t)˘M(A) = M(“≠1
·,a (t)(A)), for any

Borel set A µ Rd.
We equip C([0, 1];Rr) with the LŒ norm

ÎaÎŒ = max
i

sup
tœ[0,1]

|ai(t)|.
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Then, one has that

lim
næŒ

Îman(·, t) ≠ ma(·, t)ÎMK = 0, uniformly in t œ [0, 1], (5.2.20)

if lim
næŒ

Îan ≠ aÎŒ = 0. For a detailed discussion on ma see Chapter 4 in [57].
Finally, we denote by

G(a) =
⁄

Td
ua(x, 0)M(x)dx, a œ C ([0, 1];Rr) , (5.2.21)

the averaged value function at initial time t = 0.
Our first theorem addresses the properties of G.

Theorem 5.2.3. The functional a ‘æ G(a) is concave and everywhere Fréchet di�erentiable.
Moreover,

ˆaiG =
⁄

Td
„i(x)ma(x, ·)dx, 1 Æ i Æ r. (5.2.22)

Proof. We denote by

p(a) =
3⁄

Td
„i(x)ma(x, ·)dx

4
r

i=1
, a œ C([0, 1];Rr).

We prove that for every a œ C([0, 1];Rr)

0 Ø G(b) ≠ G(a) ≠ (b ≠ a) · p(a) Ø o (Îb ≠ aÎŒ) .

We have that

G(b) ≠ G(a) ≠ (b ≠ a) · p(a)

=
⁄

Td

C⁄ 1

0

A

L (“x,b(t), “̇x,b(t)) +
rÿ

i=1
bi(t)„i(“x,b(t))

B

dt + U(“x,b(1))
D

M(x)dx

≠
⁄

Td

C⁄ 1

0

A

L (“x,a(t), “̇x,a(t)) +
rÿ

i=1
ai(t)„i(“x,a(t))

B

dt + U(“x,a(1))
D

M(x)dx

≠
rÿ

i=1

⁄ 1

0
(bi(t) ≠ ai(t))dt

⁄

Td
„i(x)ma(x, t)dx.

From (5.2.19) we have that
⁄

Td
„i(x)ma(x, t)dx =

⁄

Td
„i(“x,a(t))M(x)dx, t œ [0, 1], 1 Æ i Æ r.
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Using the previous identify in the above equation we get

G(b) ≠ G(a) ≠ (b ≠ a) · p(a) =
⁄

Td
M(x)dx

⁄ 1

0
L (“x,b(t), “̇x,b(t)) ≠ L (“x,a(t), “̇x,a(t)) dt

+
⁄

Td
M(x)dx

⁄ 1

0

rÿ

i=1
bi(t)(„i(“x,b(t)) ≠ „i(“x,a(t)))dt

+
⁄

Td
M(x) (U(“x,b(1)) ≠ U(“x,a(1))) dx.

By definition, we have that

⁄ 1

0
L (“x,b(t), “̇x,b(t)) +

rÿ

i=1
bi(t)„i(“x,b(t))dt + U(“x,b(1))

Æ
⁄ 1

0
L (“x,a(t), “̇x,a(t)) +

rÿ

i=1
bi(t)„i(“x,a(t))dt + U(“x,a(1)), ’x œ Td.

Hence,
G(b) ≠ G(a) ≠ (b ≠ a) · p(a) Æ 0, ’a, b œ C([0, 1];Td).

This previous inequality yields the concavity of G. On the other hand, we have that

G(b) ≠ G(a) ≠ (b ≠ a) · p(a) =
⁄

Td
M(x)dx

⁄ 1

0
L (“x,b(t), “̇x,b(t)) ≠ L (“x,a(t), “̇x,a(t)) dt

+
⁄

Td
M(x)dx

⁄ 1

0

rÿ

i=1
ai(t)(„i(“x,b(t)) ≠ „i(“x,a(t)))dt

+
⁄

Td
M(x) (U(“x,b(1)) ≠ U(“x,a(1))) dx

+
⁄

Td
M(x)dx

⁄ 1

0

rÿ

i=1
(bi(t) ≠ ai(t))(„i(“x,b(t)) ≠ „i(“x,a(t)))dt.

Therefore, again by the definition of “x,a and “x,b, we have that

G(b) ≠ G(a) ≠ (b ≠ a) · p(a)

Ø
⁄

Td
M(x)dx

⁄ 1

0

rÿ

i=1
(bi(t) ≠ ai(t))(„i(“x,b(t)) ≠ „i(“x,a(t)))dt

Ø ≠ Îb ≠ aÎŒ

rÿ

i=1

⁄ 1

0

----
⁄

Td
„i(“x,b(t))M(x)dx ≠

⁄

Td
„i(“x,a(t))M(x)dx

---- dt

= ≠ Îb ≠ aÎŒ

rÿ

i=1

⁄ 1

0

----
⁄

Td
„i(x)mb(x, t)dx ≠

⁄

Td
„i(x)ma(x, t)dx

---- dt

Ø ≠ Îb ≠ aÎŒ

rÿ

i=1
Lip(„i)

⁄ 1

0
Îmb(·, t) ≠ ma(·, t)ÎMKdt.

Hence, by (5.2.20) the proof is complete.
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5.3 The optimization problem

In this section, we assume that K is a generalized polynomial in the basis �; that is,

K(x, y) =
rÿ

i,j=1
kij„i(x)„j(y), x, y œ Td, (5.3.1)

where K = (kij)r

i,j=1 œ Mr,r(R) is a matrix of coe�cients. For such K, (5.1.3) takes form
Y
_____]

_____[

≠ˆtu + H(x, Òu) =
rq

i=1
„i(x)

rq
j=1

kij

s
Td „j(y)m(y, t)dy,

ˆtm ≠ div(mÒpH(x, Òu)) = 0, (x, t) œ Td ◊ [0, 1],

m(x, 0) = M(x), u(x, 1) = U(x), x œ Td.

(5.3.2)

Our main result is the following theorem.

Theorem 5.3.1. i) A pair (u, m) is a solution of (5.3.2) if and only if (u, m) = (uaú , maú)
for some aú œ C ([0, 1];Rr) such that

aú = KˆaG(aú). (5.3.3)

ii) If K is positive-definite then (5.3.3) is equivalent to finding a 0 of a monotone operator
a ‘æ K≠1a ≠ ˆaG(a), a œ C ([0, 1];Rr).

iii) Additionally, if K is symmetric, (5.3.3) is equivalent to the convex optimization problem

inf
aœC([0,1];Rr)

1
2ÈK≠1a, aÍ ≠ G(a)

= inf
aœC([0,1];Rr)

1
2ÈK≠1a, aÍ ≠

⁄

Td
ua(x, 0)M(x)dx.

(5.3.4)

Proof. Items ii) and iii) follow immediately from i) by the concavity of G. Thus, we just
prove i).

By Theorem 5.2.2 the system (5.3.2) admits a solution (u, m). We define aú as

aú
i (t) =

rÿ

j=1
kij

⁄

Td
„j(y)m(y, t)dy, t œ [0, 1]. (5.3.5)

Then aú œ C ([0, 1];Rr), and by the definition of ua and ma we have that (u, m) = (uaú , maú).
Hence, by Theorem 5.2.3, we have that

ˆaiG(aú) =
⁄

Td
„i(x)m(x, ·)dx, 1 Æ i Æ r.
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Consequently, from (5.3.5) we obtain

aú
i =

rÿ

j=1
kijˆaj G(aú).

Remark 5.3.2. The optimization problem (5.3.4) is equivalent to the optimal control of
Hamilton-Jacobi PDE pointed out in [135] (equation (59) in Section 2.6). One can think of
(5.3.4) as the aforementioned problem written in Fourier coordinates.

5.4 Approximating the kernel

In this section, we show that we can construct suitable approximations for an arbitrary K.
We begin by a the following lemma.

Lemma 5.4.1. Suppose that K is given by (5.3.1). Then K is positive semi-definite if and
only if K = (kij)r

ij,=1 is positive semi-definite.

Proof. Fix an arbitrary vector (›i)r

i=1 œ Rr. Then there exists a unique vector (⁄i)r

i=1 œ Rr

such that
›i =

rÿ

j=1
⁄j

⁄

Td
„i(x)„j(x)dx, 1 Æ i Æ r,

because {„i} are linearly independent. Therefore, for

f =
rÿ

j=1
⁄j„j

we have that
›i =

⁄

Td
f(x)„i(x)dx, 1 Æ i Æ r.

Hence, ⁄

Td◊Td
K(x, y)f(x)f(y)dxdy =

rÿ

i,j=1
kij›i›j ,

that yields the proof.

Now, we now choose a trigonometric basis:

„–(x) = e2ifi–·x, x œ Td, – œ Zd. (5.4.1)

For – = (–1, –2, · · · , –d) œ Zd, we denote by

|–| = (|–1|, |–2|, · · · , |–d|),
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and for –, r œ Zd

– Æ r ≈∆ –j Æ rj , 1 Æ j Æ d.

For r1, r2 œ Nd
0 we denote by

Kr1r2(x, y) =
ÿ

|–|Ær1,|—|Ær2

K̂–—e2ifi(–·x+—·y), x, y œ Td,

the rectangular partial Fourier sum of K, where

K̂–— =
⁄

Td
K(x, y)e≠2ifi(–·x+—·y)dxdy, –, — œ Zd.

Furthermore, for r1, r2 œ Nd
0 we denote by

�r1r2(x, y) = 1
r

d

j=1(1 + r1j)(1 + r2j)
ÿ

|–|Ær1,|—|Ær2

Kr1r2(x, y), x, y œ Td,

the rectangular Fejér average of K.

Remark 5.4.2. If K is real valued then Kr1r2 and �r1r2 are real valued for any r1, r2 œ Nd
0.

Proposition 5.4.3. If K is positive semi-definite (symmetric) then, Krr and �rr are also
positive semi-definite (symmetric) for all r œ Nd

0. Moreover,

lim
minj rjæŒ

Î�rr ≠ KÎC2(Td◊Td) = 0, (5.4.2)

Additionally, if K œ C3(Td ◊ Td) then

lim
minj rjæŒ

ÎKrr ≠ KÎC2(Td◊Td) = 0. (5.4.3)

Proof. The convergence properties (5.4.2), (5.4.3) are classical results in Fourier analysis.
Thus, we will just prove that Krr and �rr are positive semi-definite (symmetric). For that,
we use the representation formulas

Krr(x, y) =
⁄

Td◊Td
K(z, w)Drr(x ≠ z, y ≠ w)dzdw,

�rr(x, y) =
⁄

Td◊Td
K(z, w)Frr(x ≠ z, y ≠ w)dzdw, x, y œ Td,

where Drr and Frr are, respectively, the 2d-dimensional rectangular Dirichlet and Fejér
kernels. A crucial feature of Drr and Frr is that they are symmetric and decompose into
lower dimensional kernels:

Drr(z, w) = Dr(z)Dr(w), Frr(z, w) = Fr(z)Fr(w), z, w œ Td,
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where Dr and Fr are the corresponding d-dimensional kernels. In particular, Krr, �rr are
symmetric if K is such. Furthermore, for an arbitrary f œ LŒ(Td) we have that

⁄

Td◊Td
Krr(x, y)f(x)f(y)dxdy

=
⁄

Td◊Td
K(z, w)dzdw

⁄

Td◊Td
f(x)f(y)Drr(x ≠ z, y ≠ w)dxdy

=
⁄

Td◊Td
K(z, w)dzdw

⁄

Td◊Td
f(x)f(y)Dr(x ≠ z)Dr(y ≠ w)dxdy

=
⁄

Td◊Td
K(z, w)fr(z)fr(w)dzdw Ø 0.

Thus, Krr is positive semi-definite if K is such. The proof for �rr is identical.

Remark 5.4.4. By Proposition 5.4.3, kernels Krr, �rr are positive semi-definite. Therefore,
their coe�cients matrices with respect to basis {cos(2fi– · x), sin(2fi– · x)} are also positive
semi-definite by Lemma 5.4.1. Nevertheless, to take full advantage of Theorem 5.3.1 one
would need these matrices to be positive definite (invertible). To solve this problem one can
add a regularization term, ÁI, where I is the identity matrix of the suitable dimension and
Á > 0 is a small constant. However, as discussed below, this regularization is not necessary
for translation invariant kernels.

Suppose that
K(x, y) = ÷(x ≠ y), x, y œ Td,

where ÷ is a periodic function. Then, we have
⁄

Td
K(x, y) cos(2fi– · y)dy =

⁄

Td
÷(x ≠ y) cos(2fi– · y)dy

=
⁄

Td
÷(y) cos(2fi– · (x ≠ y))dy

= cos(2fi– · x)
⁄

Td
÷(y) cos(2fi– · y)dy

+ sin(2fi– · x)
⁄

Td
÷(y) sin(2fi– · y)dy.

(5.4.4)

Similarly, we obtain that
⁄

Td
K(x, y) sin(2fi– · y)dy =

⁄

Td
÷(x ≠ y) sin(2fi– · y)dy

=
⁄

Td
÷(y) sin(2fi– · (x ≠ y))dy

= sin(2fi– · x)
⁄

Td
÷(y) cos(2fi– · y)dy

≠ cos(2fi– · x)
⁄

Td
÷(y) sin(2fi– · y)dy.

(5.4.5)
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Therefore, we have that
⁄

Td
K(x, y) cos(2fi– · x) cos(2fi– · y)dxdy =

⁄

Td
÷(y) cos(2fi– · y)dy,

⁄

Td
K(x, y) sin(2fi– · x) cos(2fi– · y)dxdy =

⁄

Td
÷(y) sin(2fi– · y)dy,

⁄

Td
K(x, y) cos(2fi– · x) sin(2fi– · y)dxdy = ≠

⁄

Td
÷(y) sin(2fi– · y)dy,

⁄

Td
K(x, y) sin(2fi– · x) sin(2fi– · y)dxdy =

⁄

Td
÷(y) cos(2fi– · y)dy.

Hence, the coe�cients matrices of partial Fourier sums (and their linear combinations) of K

consist of 2 ◊ 2 blocks that correspond to expansion terms with a frequency – œ Zd; that is,

�– =
A s

Td ÷(y) cos(2fi– · y)dy
s
Td ÷(y) sin(2fi– · y)dy

≠
s
Td ÷(y) sin(2fi– · y)dy

s
Td ÷(y) cos(2fi– · y)dy

B

. (5.4.6)

Thus, the coe�cient matrix will be degenerate if det(�–) = 0 for some –. But we have that

det(�–) =
3⁄

Td
÷(y) cos(2fi– · y)dy

42
+

3⁄

Td
÷(y) sin(2fi– · y)dy

42
.

Hence, det(�–) = 0 if and only if �– = 0 or, equivalently, there are no expansion terms
with frequency –. But then, we can simply remove these terms in our basis and obtain a
non-degenerate matrix.

Moreover, to invert the coe�cients matrix one just has to invert the 2 ◊ 2 blocks.
Additionally, if K is symmetric; that is, ÷(y) = ÷(≠y), we have that

⁄

Td
÷(y) sin(2fi– · y)dy = 0, ’– œ Zd.

Hence, the coe�cient matrices are simply diagonal. Therefore, we have proved the following
proposition.

Proposition 5.4.5. If K is translation invariant then all partial Fourier sums of K and
their linear combinations, such as Krr and �rr, contain only cos(2fi– ·x) cos(2fi– ·y), cos(2fi– ·
x) sin(2fi– · y), sin(2fi– · x) cos(2fi– · y), sin(2fi– · x) sin(2fi– · y) expansion terms. Therefore,
coe�cient matrices of such approximations with respect to trigonometric basis consist of 2 ◊ 2
blocks that are multiples of �– in (5.4.6). If, additionally, K is symmetric these coe�cient
matrices are diagonal.

Remark 5.4.6. In general, if {„1, „2, · · · , „r, · · · } is an orthonormal basis consisting of
eigenfunctions of Hilbert-Schmidt integral operator f(·) ‘æ

s
Td K(·, y)f(y)dy; that is,

⁄

Td
K(x, y)„–(y)dx = ⁄–„–(x), x œ Td, – œ N,
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for some {⁄–} µ R. Then, one has that

k–— =
⁄

Td
K(x, y)„–(x)„—(y)dxdy = ⁄—”–—.

Consequently, for arbitrary I µ N ◊ N we have that

KI(x, y) =
ÿ

(–,—)œI

k–—„–(x)„—(y) =
ÿ

(–,–)œI

⁄–„–(x)„–(y).

Therefore, all partial Fourier sums of K in basis {„–(x)„—(y)} contain only terms „–(x)„–(y)
and yield diagonal coe�cient matrices consisting of corresponding eigenvalues of the Hilbert-
Schmidt integral operator.

In general, it is not easy to calculate the eigenfunctions of a given Hilbert-Schmidt integral
operator. Nevertheless, as we saw above, for translation invariant symmetric periodic K

these eigenfunctions are precisely the trigonometric functions.

5.5 A numerical method

In this section we propose a numerical method to solve (5.1.3) for a symmetric and positive
semi-definite K. We assume that an approximation Kr of the form (5.3.1) is already
constructed with a symmetric and positive definite kernel K. Thus, we devise an algorithm
for the solution of (5.3.2).

By Theorem 5.3.1 we have that (5.3.2) is equivalent to (5.3.4). We rewrite latter as

inf
aœC([0,1];Rr)

S(a), (5.5.1)

where
S(a) = 1

2ÈJa, aÍ ≠ G(a),

and J = K≠1. Therefore, in what follows, we present a suitable discretization of (5.3.4).

5.5.1 Discretization of ua

We start with the discretization of ua. For that, we discretize the representation formula
(5.2.13), that we can rewrite as

ua(x, 0) = infu

⁄ 1

0
La(x(s), u(s), s)ds + U(x(1)), (5.5.2)
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where x satisfies the following controlled ODE
Y
]

[
ẋ(s) = u(s), s œ [0, 1]

x(0) = x.
(5.5.3)

We choose a uniform discretization of the time interval:

0 = s0 < s1 < s2 < . . . < sN = 1,

with a step size ht = 1
N

, hence si = iht = i

N
, with i = 0, . . . , N . We denote the values of x

and u at time si by x(si) = xi, u(si) = ui. Using a backward Euler discretization of (5.5.3)
we have

ui = xi ≠ xi≠1
ht

, i œ {1, . . . , N}.

Discretizing the integral (5.5.2) with a right point quadrature rule and using the above
discretization we get

Y
]

[
[ua](x, 0) = inf{xi}N

0
ht

q
N

i=1 La

1
xi,

xi≠xi≠1
ht

, si

2
+ U(xN ),

subject to: x0 = x,
(5.5.4)

where
La(x, u, s) = L(x, u) +

rÿ

k=1
ak(s)„k(x), (x, u, s) œ Td ◊ Rd ◊ [0, 1].

5.5.2 Discretization of G

We start by discretizing the initial measure M using a convex combination of Dirac ”

distributions. Denoting the discretized measure by [M ], we have

[M ] =
Qÿ

–=1
c–”y–

or, in the distributional sense,

⁄

Td

Â(y)d[M ](y) =
Qÿ

–=1
c–Â(y–), Â œ C(Td), (5.5.5)

for some {y–}Q

–=1 µ Td and {c– Ø 0}Q

–=1 such that
qQ

–=1 c– = 1, where Â is a test function.
Then, G is discretized as follows

[G](a) =
Qÿ

–=1
c– [ua](y–, 0). (5.5.6)
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5.5.3 Discretization of S

Now, we discretize the operator S in (5.5.1). We first discretize ak-s by taking their values
at times si, that we denote by:

[a]k = (ak(s0), · · · , ak(sN )) = (ak0, · · · , akN ), k = 1, 2, · · · , r.

Recall that

ÈJa, aÍ =
rÿ

k,l=1
Jkl

1⁄

0

ak(s)al(s)ds.

We discretize this previous quadratic form by a simple right point quadrature rule.

[ÈJa, aÍ] = ht

rÿ

k,l=1
Jkl

Nÿ

i=1
akiali.

So the discretization of S is

[S](a) = ht

2

rÿ

k,l=1
Jkl

Nÿ

i=1
akiali ≠ [G](a)

= ht

2

rÿ

k,l=1
Jkl

Nÿ

i=1
akiali ≠

Qÿ

–=1
c– [ua](y–, 0),

(5.5.7)

where we used (5.5.6). Therefore, the discretization of (5.5.1) is

inf
{aki}

[S](a) = inf
{aki}

sup
{x–i: x–0=y–}

ht

2

rÿ

k,l=1
Jkl

Nÿ

i=1
akiali ≠ ht

Qÿ

–=1

Nÿ

i=1
c–L

3
x–i,

x–i ≠ x–(i≠1)
ht

4

≠ ht

Qÿ

–=1

Nÿ

i=1

rÿ

k=1
c–aki„k(x–i) ≠

Qÿ

–=1
c–U(x–N ).

(5.5.8)

5.5.4 Primal-dual hybrid-gradient method

Now, we specify the Lagrangian to be quadratic and devise a primal-dual hybrid-gradient
algorithm [68] to solve (5.5.1). More precisely, we assume that

L(x, u) = |u|2

2 , (x, u) œ Td ◊ Rd,
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and therefore (5.5.8) becomes

inf
{aki}

[S](a) = inf
{aki}

sup
{x–i : x–0=y–}

ht

2

rÿ

k,l=1
Jkl

Nÿ

i=1
akiali ≠

Qÿ

–=1

Nÿ

i=1
c–

|x–i ≠ x–(i≠1)|2

2ht

≠ ht

Qÿ

–=1

Nÿ

i=1

rÿ

k=1
c–aki„k(x–i) ≠

Qÿ

–=1
c–U(x–N ).

(5.5.9)

Now, we describe the algorithm. For each iteration time ‹ Ø 0 we have three groups of
variables: a‹ = {a‹

ki
}r,N

k,i=1,1, x‹ = {x‹

–i
}Q,N

–,i=1,0, and z‹ = {z‹

–i
}Q,N

–,i=1,0. Furthermore, we the
proximal step parameters, ⁄, Ê > 0, for variables a and x, respectively. Additionally, we take
0 Æ ◊ Æ 1.

Step 1. Given a‹ , x‹ , z‹ the first step of the algorithm is to solve the proximal problem

inf
{aki}

ht

2

rÿ

k,l=1
Jkl

Nÿ

i=1
akiali ≠

Qÿ

–=1

Nÿ

i=1
c–

|z‹

–i
≠ z‹

–(i≠1)|
2

2ht

≠ ht

Qÿ

–=1

Nÿ

i=1

rÿ

k=1
c–aki„k(z‹

–i) ≠
Qÿ

–=1
c–U(z‹

–N ) + 1
2⁄

rÿ

k=1

Nÿ

i=1
(aki ≠ a‹

ki)2,

that is equivalent to

inf
{aki}

ht

2

rÿ

k,l=1
Jkl

Nÿ

i=1
akiali ≠ ht

Qÿ

–=1

Nÿ

i=1

rÿ

k=1
c–aki„k(z‹

–i) + 1
2⁄

rÿ

k=1

Nÿ

i=1
(aki ≠ a‹

ki)2.

Thus, we obtain the following update of the a-variable.
Q

ccccca

a‹+1
1i

a‹+1
2i

...
a‹+1

ri

R

dddddb
= (⁄htJ + Idr)≠1

Q

ccccca

a‹

1i
+ ⁄ht

qQ

–=1 c–„1(z‹

–i
)

a‹

2i
+ ⁄ht

qQ

–=1 c–„2(z‹

–i
)

...
a‹

ri
+ ⁄ht

qQ

–=1 c–„r(z‹

–i
)

R

dddddb
, 1 Æ i Æ N. (5.5.10)

Remark 5.5.1. Note that although the number of variables {aki}r,N

k,i=1,1 is r ◊ N , the
calculations of {aki} for di�erent i-s are mutually independent. Therefore, the only complexity
is in the inversion of an r ◊ r matrix ⁄‡J + Idr that can be computed beforehand and used
throughout the scheme. Moreover, as seen in Section 5.4, translation invariant symmetric
kernels yield diagonal matrices that extremely simplify the calculations.
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Step 2. Given a‹+1, x‹ , z‹ we update x-variable by solving the proximal problem

inf
{x–i: x–0=y–}

Qÿ

–=1

Nÿ

i=1
c–

|x–i ≠ x–(i≠1)|2

2ht

+ ht

Qÿ

–=1

Nÿ

i=1

rÿ

k=1
c–a‹+1

ki
„k(x–i)

+
Qÿ

–=1
c–U(x–N ) + 1

2Ê

Qÿ

–=1

Nÿ

i=1
|x–i ≠ x‹

–i|2.

Solving this previous problem may be a costly operation. Hence, we just perform a one step
gradient descent. Therefore, we obtain

x‹+1
–1 = x‹

–1 ≠ Êc–

ht

(x–1 ≠ y–) ≠ Êc–

ht

(x–1 ≠ x–2) ≠ Êc–ht

rÿ

k=1
a‹+1

k1 Ò„k(x–1),

x‹+1
–i

= x‹

–i ≠ Êc–

ht

(x–i ≠ x–(i≠1)) ≠ Êc–

ht

(x–i ≠ x–(i+1)),

≠ Êc–ht

rÿ

k=1
a‹+1

ki
Ò„k(x–i), 1 Æ i Æ N ≠ 1,

x‹+1
–N

= x‹

–N ≠ Êc–

ht

(x–N ≠ x–(N≠1)) ≠ Êc–ÒU(x–N ) ≠ Êc–ht

rÿ

k=1
a‹+1

kN
Ò„k(x–N ).

(5.5.11)

Step 3. In the final step we update the z-variable by

z‹+1
–i

= x‹+1
–i

+ ◊(x‹+1
–i

≠ x‹

–i), 1 Æ – Æ Q, 1 Æ i Æ N. (5.5.12)

Remark 5.5.2. Note that the updates for {x–i}, {z–i} variables are mutually independent
for di�erent –-s. Therefore, our a-updates are parallel in time, and x, z-updates are parallel
in space.

Remark 5.5.3. Strictly speaking, one cannot simply apply the primal-dual hybrid gradient
method to (5.5.9) because the coupling between a and x is not bilinear, and there is no
concavity in x. Nevertheless, our calculations always yield solid results. Therefore, there is a
natural problem of rigorously understanding the convergence properties of the aforementioned
algorithm. We plan to address this problem in our future work.

5.6 Numerical examples

In this section, we present several numerical experiments. We first look into one-dimensional
case, in Section 5.6.1, and after we consider the two-dimensional case, in Section 5.6.2.

For our calculations, we choose the periodic Gaussian kernel that is given by

Kd

‡,µ(x, y) =
dŸ

i=1
K1

‡,µ(xi, yi), x, y œ Td, (5.6.1)
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where

K1
‡,µ(x, y) = µ

Ò
2fi(‡

2 )2

Œÿ

k=≠Œ
e

≠ (x≠y≠k)2
2( ‡

2 )2
, x, y œ T, (5.6.2)

and ‡, µ > 0 are given parameters. Here, ‡ models how spread is the kernel. The smaller ‡ the
more weight agents assign to their immediate neighbors – this translates into crowd-aversion
in the close neighborhood only. Furthermore, µ is the total weight of the agents. Therefore, µ

measures how sensitive is a generic agent to the total population, the bigger the more averse
is the agent to others. As we observe in the numerical experiments, for smaller ‡ and larger
µ the more separated are the agents. This phenomenon was also observed in [17].

Throughout the section we denote by

„k(x) =

Y
___]

___[

1, if k = 1,
Ô

2 cos fi(k ≠ 1)x, if k is odd, and k > 0,
Ô

2 sin fikx, if k is even, x œ T.

(5.6.3)

Therefore, we have

{„1, „2, „3, · · · } = {1,
Ô

2 sin 2fix,
Ô

2 cos 2fix, · · · }.

5.6.1 One-dimensional examples

For all simulations we use the same initial-terminal conditions

M(x) = 1
6 + 5

3 sin2 fix, U(x) = 1 + sin
3

4fix + fi

2

4
, x œ T,

that are depicted in Figure 5.1. We also use the same time and space discretization for all one

0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.5

1.0

1.5

2.0
M(x)

(a) Initial distribution of agents, M(x).
0.2 0.4 0.6 0.8 1.0

x

0.5

1.0

1.5

2.0

U(x)

(b) Terminal cost function, U(x).

Fig. 5.1 Initial-terminal conditions.

dimensional experiments, and the same parameters for the numerical scheme. We discretize
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the time interval using a step size �t = 1
N

. For the discretization of M we use

y– = –

Q + 1 , c– = M(y–)
qQ

—=1 M(y—)
1 Æ – Æ Q.

We choose N = 20, Q = 50 and use eight basis functions, r = 8. Additionally, we set the
numerical scheme parameters to ⁄ = 3, Ê = 1

12 and ◊ = 1.

Remark 5.6.1. For the standard primal-dual hybrid gradient method, we must have Ê⁄ < 1
A2 ,

where A is the norm of the bilinear-form matrix. As we mentioned in Remark 5.5.3, here we
do not have a bilinear coupling between a and x. Thus, we estimate A by an upper bound
on the (l2, l2) Lipschitz norm of the mapping

Fki(x) = ht

Qÿ

–=1
c–„k(x–i), 1 Æ l Æ r, 1 Æ i Æ N.

More precisely, we have that

Lip(F )2 = sup
{x—j}

sup
Îw—jÎ2Æ1

ÿ

k,i

Q

a
ÿ

—,j

ˆFki

ˆx—j

w—j

R

b
2

= sup
{x—j}

sup
Îw—jÎ2Æ1

ÿ

k,i

Q

a
ÿ

—

htc—Ò„k(x—i)w—i

R

b
2

Æh2
t sup

{x—j}
sup

Îw—jÎ2Æ1

ÿ

k,i

Q

a
ÿ

—

c2
—ÎÒ„k(x—i)Î2

2 ·
ÿ

—

w2
—i

R

b

Æh2
t sup

Îw—jÎ2Æ1

ÿ

k,i

Lip(„k)2

Q

a
ÿ

—

c2
— ·

ÿ

—

w2
—i

R

b

=h2
t sup

Îw—jÎ2Æ1

ÿ

k

Lip(„k)2 ÿ

—

c2
—

ÿ

—,i

w2
—i

=h2
t

ÿ

k

Lip(„k)2 ÿ

—

c2
—.

Thus, we take

A2 = h2
t

rÿ

k=1
Lip(„k)2

Qÿ

—=1
c2

—.

The trigonometric expansion of K1
‡,µ is given by

K1
‡,µ(x, y) = µ

A

1 + 2
Œÿ

n=1
e≠ (fin‡)2

2 cos 2fin(x ≠ y)
B

, x, y œ T, (5.6.4)
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or
K1

‡,µ(x, y) =
Œÿ

k=1
µe≠ 1

2 (fi‡[ k
2 ])2

„k(x)„k(y), x, y œ T, (5.6.5)

in our notation. Therefore, for a given r, the matrices K, J are given by

K =diag
3

µe≠ 1
2 (fi‡[ k

2 ])2
4

r

k=1
,

J =diag
3

µ≠1e
1
2 (fi‡[ k

2 ])2
4

r

k=1
.

(5.6.6)

(a) Gaussian kernel, K1
0.2,0.5(x, y). (b) Gaussian kernel, K1

0.2,1.5(x, y).

(c) Gaussian kernel, K1
0.8,0.5(x, y).

σ=0.2, μ=0.5

σ=0.8, μ=0.5

σ=0.2, μ=1.5

-0.4 -0.2 0.2 0.4
x

1

2

3

4

5

6

K1σ,μ(x, 0)

(d) Comparison of kernels on K1
‡,µ(x, 0).

Fig. 5.2 Plots of the three Gaussian kernels in (a)-(c), and a comparison of their sections in
(d).
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In Figure 5.2 we plot the Gaussian kernels we used, for r = 8 and di�erent values of µ

and ‡. We see the influence of these values in Figure 5.3. In the first column of Figure 5.3
we compare the results regarding di�erent values of µ and ‡.

Comparing the first and the second columns of Figure 5.3, we see that the trajectories of
the agents in the first column are closer than in the second one. This is due to the fact that
µ = 0.5 in the first kernel and µ = 1.5 in the second one, hence the second kernel (higher
value of µ) penalizes higher density of agents more than the former. Therefore, the agents
spread out more before the final time when they converge to the points of low-cost near
minima of the terminal cost function, U , see Figure 5.1 (b).

In the last column the value of ‡ = 0.8 is higher, this means that agents are indi�erent to
the distances between them – they take into account the total mass. Hence, they minimize
the travel distances from initial positions to low-cost locations of U ignoring the population
density. In fact, in this case K1

‡,µ ¥ µ, and therefore
s
T K1

µ,‡(x, y)m(y, t)dy ¥ µ. Thus, in
this case (5.1.3) approximates a decoupled system of Hamilton-Jacobi and Fokker-Planck
equations. The optimal trajectories of the decoupled system are straight lines by Hopf-Lax
formula. As we can see in Figure 5.3 (d), this fact is consistent with the straight-line
trajectories that we obtain.
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(b) K1
0.2,1.5(x, 0).
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(c) K1
0.8,0.5(x, 0).
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(e) Density, m(x, t).

M(x)

U(x)

m(x,1)

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

M(x)

U(x)

m(x,1)

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

(f) M(x) – blue, m(x, 1) –
green, U(x) – orange.

M(x)

U(x)

m(x,1)

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Fig. 5.3 Simulations using Gaussian kernels with di�erent parameters, for each column,
(‡, µ) œ {(0.2, 0.5), (0.2, 1.5), (0.8, 0.5)}. In the first row, we show a section of each kernel. In
the second row, we plot the trajectories of the agents, {x(t, y–)}Q

–=1, at time t œ [0, 1] and
initial positions {y–}Q

–=1 µ T. In the third row, we plot the time evolution of the distribution
of players, m(t, x). Each plot of the last row displays the initial-terminal conditions, M(x)
and U(x), and the final distribution, m(x, 1).
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5.6.2 Two-dimensional examples

Here, we consider the case of two-dimensional state space. The initial distribution of players
and the terminal cost function are given by

M(x1, x2) =1 + 1
2 cos (fi + 2fi (x1 ≠ x2)) + 1

2 sin
3

fi

2 + 2fi (x1 + x2)
4

,

U(x1, x2) =3
2 + 1

2 (cos (6fix1) + cos (2fix2)) , (x1, x2) œ T2,

that are depicted in Figure 5.4.

(a) Initial distribution of agents, M(x1, x2). (b) Terminal cost function, U(x1, x2).

Fig. 5.4 Initial-terminal conditions.

The corresponding expansion of the kernel is given by

K2
‡,µ(x1, x2; y1, y2)

=
Œÿ

k,kÕ=1
µ2e

≠ fi2‡2
2

3
[ k

2 ]2+
Ë

kÕ
2

È2
4

„k(x1)„k(y1)„kÕ(x2)„kÕ(y2)

=
Œÿ

k,kÕ=1
µ2e

≠ fi2‡2
2

3
[ k

2 ]2+
Ë

kÕ
2

È2
4

„k,kÕ(x1, x2)„k,kÕ(y1, y2),

(5.6.7)

where
„k,kÕ(x1, x2) = „k(x1)„kÕ(x2), x1, x2 œ T, k, kÕ œ N. (5.6.8)

Thus, for a fixed r we take as a basis functions the set:

{„1,1, „1,2, · · · , „1,r≠1, „2,1, · · · , „2,r≠2, · · · , „r≠1,1} = {Â1, Â2, · · · , Â r(r≠1)
2

}.
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Therefore, we take all functions „k,kÕ such that k + kÕ Æ r and order them in the lexicographic
order. The corresponding matrices will be of size r(r≠1)

2 ◊ r(r≠1)
2 :

K =diag

Q

caµ2e
≠ fi2‡2

2

3
[ k

2 ]2+
Ë

kÕ
2

È2
4R

db

k+kÕÆr

,

J =diag

Q

caµ≠2e
fi2‡2

2

3
[ k

2 ]2+
Ë

kÕ
2

È2
4R

db

k+kÕÆr

,

(5.6.9)

where the order is again lexicographic.
To compare the results, we use the same time and space discretization in our 2≠dimensional

experiments, as well as the same parameters for the numerical scheme. We discretize the
time using a step size �t = 1

N
. For the discretization of M we use

y––Õ =
3

–

Q + 1 ,
–Õ

Q + 1

4
, c––Õ = M(y––Õ)

qQ

—,—Õ=1 M(y——Õ)
, 1 Æ –, –Õ Æ Q.

We choose N = 20, Q = 20 and use eight basis functions, r = 8. Furthermore, we set the
numerical scheme parameters to ⁄ = 1, Ê = 1

12 and ◊ = 1.
In Figure 5.5, we plot the Gaussian kernels used in the simulations, with di�erent values

of µ and ‡. We see that the bigger µ is the higher the peak of the kernel, see (a) and (b)
in Figure 5.5. This means that each agent in (a) is more adverse of being in crowded areas
than agents is (b), µ = 0.75 and µ = 0.5 respectively. For higher values of ‡ we see that the
kernel becomes flat, compare (b) with (c) in Figure 5.5, for ‡ = 0.1 and ‡ = 1 respectively.
As before, this means that the agents penalize others independent of mutual distances.

(a) K2
0.1,0.75(x1, x2; 0, 0). (b) K2

0.1,0.5(x1, x2; 0, 0). (c) K2
1,0.5(x1, x2; 0, 0).

Fig. 5.5 Plots of the Gaussian kernels for (‡, µ) œ {(0.1, 0.75), (0.1, 0.5), (1, 0.5)}.

In Figure 5.6, we compare the simulation results using the same initial-terminal conditions,
see Figure 5.4, but di�erent kernel functions (plotted in the first row of Figure 5.6). In the
last row of Figure 5.6 we have the final distribution of agents.
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We see that for larger values of µ, left column compared with the middle one, the agents’
concentration near low-cost regions of terminal cost, U , is less dense. We also see that when ‡

is bigger the the agents become more indi�erent to the density of the crowd, and concentrate
more densely near low-cost values of U – see the right column in Figure 6 (f).

As in the 1-dimensional case, looking to the projected trajectories in the 2-dimensional
plane we observe that for flat kernel agents follow straight lines from the initial positions to
closest low-cost regions of the terminal cost function.
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(a) K2
0.1,0.75(x1, x2; 0, 0). (b) K2

0.1,0.5(x1, x2; 0, 0). (c) K2
1,0.5(x1, x2; 0, 0).

(d) Trajectories, x(t, y–).

0.2 0.4 0.6 0.8 1.0
x1

0.2

0.4

0.6

0.8

1.0

x2

0.2 0.4 0.6 0.8 1.0
x1

0.2

0.4

0.6

0.8

1.0

x2

(e) Projected trajectories.
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(f) Final density, m(x, 1).

Fig. 5.6 Simulations using Gaussian kernels with di�erent parameters for each column,
(‡, µ) œ {(0.1, 0.75), (0.1, 0.5), (1, 0.5)}. In the first row we show a section of each kernel. In
the second row we show the trajectories of the agents, {x(t, y––Õ)}Q

–,–Õ=1, t œ [0, 1], with initial
positions {y––Õ}Q

–,–Õ=1 œ T2. In the third row, we plot the 2D projection of the trajectories.
And in the last row, we plot the final distribution of the agents, m(x, 1).
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Mean-field dynamic price model





Chapter 6

Dynamic price formation model

6.1 Introduction

The mean-field game (MFG) framework [114, 117, 131, 132] models systems with many
rational players (see, e.g., the surveys [95] and [99]). Here, we are interested in the price
formation in electricity markets. In our model, a large number of agents owns storage devices
that can be charged and later supply the grid with electricity. Agents seek to maximize
profit by trading electricity at a price È(t), which is set by a supply versus demand balance
condition.

With the advent of electric cars, a large number of network-connected batteries are already
available, and their number is only likely to increase. Moreover, energy can be stored as
heat or cold, using space or water heaters and air-conditioning units [119, 120, 118]. With
new small network-capable devices, appliances can be connected to the grid and use smart
algorithms to control their energy usage. These algorithms can balance supply and demand
and, thus, are particularly relevant when combined with solar and wind energy production,
where power demand seldom matches production.

Price formation models were some of the first MFG models [133]. This line of research
was pursued by several authors, see [48, 47, 145, 42, 41, 87] and the monograph [104]. Some
of these models are formulated as free boundary problems [48, 47]; others as a load control
problem [144, 143]. For example, using mean-field control and MFG, the load-control problem
through switching on and o� space heaters was studied in [119, 120, 118]. Previous authors
addressed the price issue by assuming that the demand is a given function of the price [137]
or that the price is a given function of the demand, see [72], [71], and [73]. In particular, in
these references, the authors use a price function to study mean-field equilibrium in electricity
markets in a setting that is similar to ours.

Here, we pursue a di�erent approach: often, in economic models, prices of goods and
services are determined by the balance between supply and demand rather than by a given
function of the supply. Therefore, the price as a function of the supply or demand is not
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known a priori and a key unknown in the problem. This observation motivated the approach
in [87], where price arises from supply versus demand constraints. However, that model is
more complex than the one discussed here and was only studied from a numerical perspective.
Thus, mathematical issues such as the existence and uniqueness of a price, the well-posedness
of the model, and the convergence of numerical methods were left unanswered and are settled
here.

Our model comprises three quantities of interest: a price È œ C([0, T ]), a value function
u œ C(R ◊ [0, T ]), and a path describing the statistical distribution of the agents, m œ
C([0, T ], P), where P is the set of probability measures in R with bounded first moment,
endowed with the 1-Wasserstein distance. These quantities are determined by the following
problem.

Problem 1 (Price-formation model). Given ‘ Ø 0, a Hamiltonian, H : R◊R æ R, H œ CŒ,
an energy production rate Q : [0, T ] æ R, Q œ CŒ([0, T ]), a terminal cost ū : R æ R,
ū œ CŒ(R) and an initial probability distribution m̄ œ P fl CŒ

c (R), find u : R ◊ [0, T ] æ R,
m œ C([0, T ], P), and È : [0, T ] æ R solving

Y
___]

___[

≠ut + H(x, È(t) + ux) = ‘uxx

mt ≠ (DpH(x, È(t) + ux)m)x = ‘mxx

s
� DpH(x, È(t) + ux)dm = ≠Q(t),

(6.1.1)

and satisfying the initial-terminal conditions
Y
]

[
u(x, T ) = ū(x),

m(x, 0) = m̄(x).
(6.1.2)

In the previous problem, x œ R represents the state of a typical agent; that is, the energy
stored by the agent. The function u(x, t) is the value function for an agent whose charge is
x at time t. The Hamiltonian, H : R ◊ R æ R is determined by the optimization problem
that each agent seeks to solve, as described in Section 6.2. We require u to be a viscosity of
the first equation in (6.1.1). However, if ‘ > 0, parabolic regularity theory gives additional
regularity for u. For each t œ [0, T ], m determines the distribution of the energy storage of
the agents. Here, we assume that m is a weak solution of the second equation in (6.1.1); that
is, for every Â œ C2

c (R ◊ [0, T ]), we have

⁄
T

0

⁄

R
(Ât + ÂxDpH(x, È + ux) ≠ ‘Âxx) mdxdt

=
⁄

R
Â(x, T )m(x, T )dx ≠

⁄

R
Â(x, 0)m̄(x)dx.
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The parameter ‘ corresponds to random fluctuation in the storage of the agents. Finally,
the spot price, È(t), is selected so that the total energy used balances the supply, Q(t), the
condition imposed by the last equation in (6.1.1).

In the current model, agents have a time horizon T > 0, and, at time T , they incur in
the terminal cost ū(x) that depends on their state at the terminal time. For example, agents
may prefer to have the batteries fully charged at the end of the day. Moreover, the initial
distribution of agents, m̄, is known. These two facts are encoded in the initial-terminal
boundary conditions, (6.1.2). This model can easily be modified to address periodic in time
boundary conditions and the infinite horizon discounted problem.

First, in Section 6.2, we present a derivation of our model and examine some of its
mathematical properties. Then, after a brief discussion of the main assumptions, in Section
6.3, we prove our main result given by the following theorem.

Theorem 15. Suppose that Assumptions 3–7 (see Section 6.3) hold. Then, there exists
a solution (u, m, È) of Problem 1 where u is a viscosity solution of the first equation,
Lipschitz and semiconcave in x, and di�erentiable almost everywhere with respect to m,
m œ C([0, T ], P), and È is Lipschitz continuous. Moreover, if ‘ > 0 this solution is unique.

If ‘ = 0 and Assumption 8 holds, then there is a unique solution (u, m, È). Moreover, u

is di�erentiable in x for every x, and uxx and m are bounded.

Remark 4. In the case ‘ > 0, the regularity of the solutions can be improved using parabolic
regularity.

There are two main contributions on this chapter. First, is the existence part of the
preceding theorem which is proved in Section 6.4 using a fixed-point argument. The key
step is establishing an ordinary di�erential equation satisfied by the price, È. Using this
equation, we obtain Lipschitz bounds and then apply Schauder’s fixed-point theorem. To
prove the uniqueness part of the theorem, we use the monotonicity method. This is achieved
in Section 6.5 where we identify a new monotonicity structure for mean-field games with
constraints. Finally, we discuss linear-quadratic models, that can be solved explicitly and
compare our model with the ones in [73]. Our results suggest that a price determined by a
supply versus demand condition may help stabilize the oscillations of the price in particular
in peak-demand situations.

6.2 A mean-field model for price formation

Here, we present the derivation of our price model. To simplify the discussion, we examine the
deterministic case, ‘ = 0. We consider an electricity grid connecting consumers to producers
of energy. In our model, each consumer has a storage device connected to the network, for
example, an electric car battery. We assume that all devices are similar. Consumers trade
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electricity, charging the batteries when the price is low and selling electricity to the market
when the price is high. A typical consumer has a battery whose charge at time t œ [0, T ]
is x(t). This charge changes according to an energy flow rate, the control variable selected
by each consumer, which is a bounded measurable function of – : [0, T ] æ A, where A µ R.
Positive values of – correspond to buying energy from the grid, and negative values to selling
to the grid. Accordingly, each consumer charge, x, changes according to the dynamics:

ẋ(t) = –(t).

Each consumer seeks to select – to minimize its cost, thus maximizing profit. This cost is
determined by a terminal cost and by the integral of the running cost, ¸(–, x, t), where –(t)
is the energy traded with the electricity grid at time t, and ¸ depends in time through È(t),
the spot electricity price and is of the form

¸(–, x, t) = ¸0(–, x) + È(t)–(t). (6.2.1)

In the preceding expression, the term È(t)–(t) is the instantaneous cost corresponding to a
charging current –(t). The current (or more precisely power), – is measured in Watt, W,
and the price, È, in $W≠1s≠1. The function ¸0 accounts for non-linear e�ects of the current
usage, for example, battery wear and tear, and for state preferences. For example, we often
take

¸0(–, x, t) = c

2–2(t) + V (x), (6.2.2)

where c is a constant that accounts for the battery’s wear o�, typically given in $W≠2s≠1,
and V (x) is a potential that takes into account battery constraints and charge preferences.
The singular case where

V (x) =

Y
]

[
0 if 0 Æ x Æ 1

+Œ otherwise,

corresponds to the case where the battery charges satisfies 0 Æ x Æ 1. To avoid singularities,
we work with smooth potentials growing as x æ ±Œ; this behaviour correspond to a penalty
on the battery charge rather than a hard constraint. The nonlinear term, c

2–2(t), models
battery wear and tear, which is large in high-current regimes. The particular quadratic form
in (6.2.2) simplifies the mathematical treatment. However, it can be replaced by a convex
function of – without any major change in the discussion.

Each consumer minimizes the functional

J(x, t, –) =
⁄

T

t

¸(–(s), x(t), t)ds + ū(x(T )), (6.2.3)

where ū is the terminal cost and – œ At, where At is the set of bounded measurable functions
– : [t, T ] æ A.
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The value function, u, is the infimum of J over all controls in At; that is,

u(x, t) = inf
–œAt

J(x, t, –).

The Hamiltonian, H, for the preceding control problem is

H(x, p) = sup
aœA

(≠pa ≠ ¸0(x, a)) .

For example, for ¸0 as in (6.2.2), we have

H(x, p) = p2

2c
+ V (x).

From standard optimal control theory, u is a viscosity solution (see [20]) of the Hamilton-
Jacobi equation Y

]

[
≠ut + H(x, È(t) + ux) = 0

u(x, T ) = ū(x).
(6.2.4)

For ¸0 as in (6.2.2), the prior equation becomes

≠ut + 1
2c

(ux + È(t))2 ≠ V (x) = 0.

Finally, at points of di�erentiability of u, the optimal control is given by

–ú(t) = ≠DpH(x, È(t) + ux(x(t), t)).

The associated transport equation is the adjoint of the linearized Hamilton-Jacobi equation:
Y
]

[
mt ≠ (DpH(x, ux + È(t))m)

x
= 0,

m(x, 0) = m̄(x),
(6.2.5)

where m̄ is the initial distribution of the agents.
Taking ¸0 as in (6.2.2), the transport equation above becomes

mt ≠ 1
c

(m(È + ux))x = 0.

Finally, we fix an energy production function Q(t) and require that the production
balances demand. Mathematically, this constraint corresponds to the identity

⁄

R
–ú(t)m(x, t)dx = Q(t);
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that is, ⁄

R
DpH(x, ux + È(t))m(x, t)dx = ≠Q(t). (6.2.6)

This foregoing equality is the balance equation that forces the consumed energy to match the
production; this constraint determines the price, È(t).

Combining (6.2.4), (6.2.5) and (6.2.6), we obtain (6.1.1) with ‘ = 0 and the initial-terminal
conditions (6.1.2).

Now, we consider the case where the agents are subject to independent random consump-
tion. In this case ‘ > 0. Let (�, F , P ) be a probability space, where � is a sample space,
F a ‡-algebra on � and P a probability measure. Let Wt be a Brownian motion on � and
{Ft}tØ0 the associated filtration. In this case, we model the agent’s motion by the stochastic
di�erential equation

dx(t) = –(t)dt +
Ô

2‘dWt,

where the control, –, is a bounded progressively measurable real-valued process. Following
the previous steps and using standard arguments in stochastic optimal control, we arrive
again at (6.1.1).

6.3 Main Assumptions

We begin by discussing our main assumptions. First, we suppose that H is the Legendre
transform of a Lagrangian that is the sum of an “energy flow cost", ¸0(–), and a “charge
preference cost", V (x), as follows:

Assumption 3. The Hamiltonian H is the Legendre transform of a convex Lagrangian:

H(x, p) = sup
–œR

≠p– ≠ ¸0(–) ≠ V (x), (6.3.1)

where ¸0 œ C2(R) is a uniformly convex function and V œ C2(R) is bounded from below.

Remark 5. The preceding hypothesis implies that the map p ‘æ H(x, p) is (strictly) convex.
Moreover, the Hamiltonian in (6.3.1) can be written as

H(x, p) = H0(p) ≠ V (x). (6.3.2)

Thus,
D2

xpH(x, p) = 0

for all x, p œ R.

To obtain a fixed point, we need several a priori estimates. These depend on convexity
and regularity properties of the data. The following two assumptions lay out our requirements
on the potential, V .
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Assumption 4. The potential V in (6.3.1) and the terminal data ū are globally Lipschitz.

Assumption 5. The potential V in (6.3.1) and the terminal data ū satisfy

|D2
xxV | Æ C, |D2

xxū| Æ C

for some positive constant C.

Next, we state an additional regularity for the initial-terminal data that is used to prove
second-order estimates.

Assumption 6. There exists a constant, C > 0, such that

|m̄xx|, |ūxx| Æ C.

The next two assumptions are used to ensure the solvability of the demand-supply relation;
that is, given Q that we can determine a suitable price.

Assumption 7. There exists ◊ > 0 such that

D2
ppH(x, p) > ◊

for all x, p œ R. In addition, there exists C > 0 such that

|D3
pppH| Æ C.

Remark 6. Using (6.3.2) in Remark 5, the preceding assumption combined with Assumption
3 implies that the function p ‘æ DpH(p, x) is strictly increasing and

lim
pæ≠Œ

DpH(p, x) = ≠Œ lim
pæ+Œ

DpH(p, x) = +Œ,

uniformly in x.

Remark 7. The uniform convexity of ¸0 in Assumption 3 gives an upper bound for D2
ppH.

Thus, Assumption 3 and 7 imply

|D2
ppH(x, p)| Æ C

for all x, p œ R.

The following hypothesis gives regularity and uniqueness of solutions in the first-order
case.

Assumption 8. The potential, V , and the terminal cost, ū, are convex.
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6.4 Existence of a solution

Here, we establish the existence of a solution for the price model, (6.1.1), using a fixed-point
argument on È. In the following two propositions, we examine the Hamilton-Jacobi equation

Y
]

[
≠ut + H(x, È + ux) = ‘uxx

u(x, T ) = ū(x).
(6.4.1)

First, using Assumption 4, we prove the Lipschitz continuity of u. Next, using Assumption
5, we obtain the semiconcavity of u. The proofs follow standard arguments in optimal
control theory. However, we present them here to make it evident that the Lipschitz and
semiconcavity constants are uniform in È and ‘, both essential points in our argument.

Proposition 10. Consider the setting of Problem 1 and suppose that Assumptions 3 and
4 hold. Let u solve (6.4.1). Then, u(x, t) is locally bounded and the map x ‘æ u(x, t) is
Lipschitz for 0 Æ t Æ T . Moreover, the Lipschitz bound on u does not depend on È nor on ‘.

Proof. The proof follows from the representation of u as a solution to a stochastic control
problem (or deterministic if ‘ = 0). We fix a filtered probability space (�, Ft, P ) that supports
a one-dimensional Brownian motion Wt. Then,

u(x, t) = inf E

C⁄
T

t

¸0(–) + È– + V (x)ds + ū(x(T ))
D

,

where the infimum is taken over bounded progressively measurable controls – : [t, T ] æ R
and x solves the stochastic di�erential equation

dx = –dt +
Ô

2‘dWt.

To prove local boundedness, we use the sub-optimal control – © 0 to get an upper bound,
and the fact that V is bounded by below to obtain the lower bound. We observe, however,
that the lower bound depends on bounds on È.

Then, we fix an optimal control, –ú, for (x, t); that is,

u(x, t) = E

C⁄
T

t

¸0(–ú) + È–ú + V (xú)ds + ū(x(T )ú)
D

.

Then, for any h œ R, we have

u(x + h, t) Æ E

C⁄
T

t

¸0(–ú) + È–ú + V (xú + h)ds + ū(x(T )ú + h)
D

,

from which the Lipschitz bound follows. Note that this Lipschitz bound does not depend on
È, only on T and on the Lipschitz estimates for V and ū.
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Proposition 11. Consider the setting of Problem 1 and suppose that Assumptions 3 and 5
hold. Then, x ‘æ u(x, t) is semiconcave with a semiconcavity constant that does not depend
on ‘ nor on È.

Proof. As before, we fix an optimal control –ú for (x, t); that is,

u(x, t) = E

C⁄
T

t

¸0(–ú) + È–ú + V (xú)ds + ū(x(T )ú)
D

.

Then, for any h œ R, we have

u(x ± h, t) Æ E

C⁄
T

t

¸0(–ú) + È–ú + V (xú ± h)ds + ū(x(T )ú ± h)
D

.

Therefore,
u(x + h, t) ≠ 2u(x, t) + u(x ≠ h, t) Æ Ch2.

Note that C does not depend on È, only on T and on the semiconcavity estimates for V and
ū.

We have the following stability properties for the solutions of (6.4.1).

Proposition 12. Consider the setting of Problem 1 and suppose that Assumptions 3–5 hold.
Suppose that Èn æ È uniformly on [0, T ], then un æ u locally uniformly and un

x æ ux

almost everywhere.

Proof. The local uniform convergence of un follows from the stability of viscosity solutions.
Because un is semiconcave and converges uniformly to u, un

x æ ux almost everywhere.

Now, we examine the Fokker-Planck equation.
Y
]

[
mt ≠ div(mDpH(x, È + ux)) = ‘�m,

m(x, 0) = m̄(x).
(6.4.2)

Let P denote the set of probability measures on R with finite second-moment and endowed
with the 1-Wasserstein distance.

Proposition 13. Consider the setting of Problem 1 with ‘ > 0 and suppose that Assumptions
3–4 hold. Then, (6.4.2) has a solution m œ C([0, T ], P). Moreover,

d1(m(t), m(t + h)) Æ Ch1/2. (6.4.3)

In addition, if Assumptions 5 and 6 hold, for any sequence Èn æ È uniformly on [0, T ]
and corresponding solutions un of (6.4.1) and mn of (6.4.2), we have mn æ m in C([0, T ], P1).
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Proof. The existence of a solution in C([0, T ], P1) and the estimate in (6.4.3) were proven
in [54]. We note that, for ‘ Æ ‘0, the constant C can be chosen to depend only on ‘0,
on the problem data, and on ÎÈÎLŒ . Thus, by the Ascoli-Arzela theorem, we have that
mn æ m in C([0, T ], P1) for some m œ C([0, T ], P1). Because ‘ > 0, mn æ m in, for example,
L2(R ◊ [0, T ]). Moreover, (6.4.2) has a unique solution. Thus, it su�ces to check that m

solves (6.4.2). Because un
x æ ux, almost everywhere, by semiconcavity, we have for any

Â œ CŒ
c (R ◊ [0, T ])

⁄
T

0

⁄

R
ÂxDpH(x, Èn + un

x)mndxdt æ
⁄

T

0

⁄

R
ÂxDpH(x, È + ux)mdxdt,

which gives that m is a weak solution of (6.4.2).

Next, we prove an estimate for solutions of the system comprising (6.4.1) and (6.4.2).

Proposition 14. Consider the setting of Problem 1 with ‘ > 0 and suppose that Assumptions
3 and 6 hold. Let (u, m) solve 6.4.1 and 6.4.2. Then

⁄
T

0

⁄

R
D2

ppHu2
xxmdxdt Æ C (6.4.4)

Proof. We begin by di�erentiating (6.4.1) twice with respect to x, multiply by m, and
integrate by parts using (6.4.2).

Remark 8. Formally, the previous estimates hold for ‘ = 0. However, the above proof
requires that u is three times di�erentiable, which is not usually the case. Nevertheless, the
estimate in (6.4.4) is uniform in ‘.

Finally, we consider the price-supply relation. Due to Remark 6 and to the Lipschitz
continuity of u given by Proposition 10, there exists a unique Ë0 such that

⁄

R
DpH(x, Ë0 + ux(x, 0))m̄dx = ≠Q(0). (6.4.5)

Moreover, Ë0 is bounded by a constant that depends only on the problem data.
Next, we di�erentiate

⁄

R
DpH(x, È + ux)mdx = ≠Q(t)

in time to get the identity

È̇
⁄

R
D2

ppHmdx +
⁄

R

Ë
D2

ppHuxtm + DpHmt

È
dx = ≠Q̇. (6.4.6)
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Di�erentiating (6.4.1) in x and substituting (6.4.2) both quantities on the second term of
the left hand side of (6.4.6), we get the following identity

⁄

R
D2

ppHuxtm + DpHmt =
⁄

R
D2

ppH (≠‘�ux + DpHuxx + DxH) m

+
⁄

R
DpH (‘�m + (mDpH)x) .

If Assumption 3 holds, we have by Remark 5 that D2
xpH = 0. Hence,

⁄

R
D2

ppHuxtm + DpHmt =
⁄

R
D2

ppHDxHm + ‘D3
pppHu2

xxm. (6.4.7)

Accordingly, we have the identity

È̇
⁄

R
D2

ppHm = ≠Q̇ ≠
⁄

R

1
D2

ppHDxH + ‘D3
pppHu2

xx

2
m. (6.4.8)

Thus, given È, we solve (6.4.1) and (6.4.2) and define the following ordinary di�erential
equation Y

_]

_[

Ë̇ = ≠Q̇≠
s
R D

2
ppH(x,È+ux)DxH(x,È+ux)m+‘D

3
pppH(x,È+ux)u2

xxms
R D2

ppH(x,È+ux)m

Ë(0) = Ë0,
(6.4.9)

where Ë0 is determined by (6.4.5). Then, (u, m, È) solves (6.1.1) if È solves (6.4.9).

Proposition 15. Consider the setting of Problem 1 with ‘ > 0 and suppose that Assumptions
3–7 hold. Suppose that Èn æ È uniformly in C([0, T ]). Let un, mn, and Ën be the solutions
to (6.4.1), (6.4.2), and 6.4.9 with È replaced by Èn. Then, Ën converges to Ë, uniformly in
C([0, T ]), where Ë solves (6.4.9). Moreover, there exists a constant C that depends only on
the problem data but not on È such that ÎËÎW 1,Œ([0,T ]) Æ C.

Proof. The bound in W 1,Œ([0, T ]) for Ë is a consequence of Remark 6 and of the bounds in
Assumption 7, in Remark 7, and in Proposition 14.

According to Proposition 12, the uniform convergence of Èn æ È gives the convergence of
un

x æ ux, almost everywhere. In addition, Proposition 13 gives the convergence mn æ m in
C([0, T ], P). Because D2

ppH is bounded from below by Assumption 7, we have the convergence
of the right-hand side of (6.4.9) as follows, for any Â œ C([0, T ]),

⁄
T

0
ÂË̇nds æ

⁄
T

0
ÂË̇ds.

Also, because the family Ën is equicontinuous, any subsequence has a further convergent
subsequence that must converge to Ë. Thus, Ën æ Ë, uniformly.

With the preceding estimates, we can now prove a fixed-point result and show the existence
of a solution for ‘ > 0.
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Proof of Theorem 15 - part 1, existence for ‘ Ø 0. We begin by addressing the case ‘ > 0.
According to Proposition 15, the map È æ Ë determined by (6.4.1), (6.4.2), and (6.4.9) is
continuous in C([0, T ]), bounded, and compact due to the W 1,Œ bound for È. Thus, by
Schauder’s fixed-point theorem, it has a fixed point.

Now, we examine the case ‘ = 0. The key di�culty is the continuity of the map È æ m

in the case ‘ = 0. To overcome this di�culty, we use the vanishing viscosity method and the
techniques in [79].

Let (u‘, m‘, È‘) solve (6.1.1) with ‘ > 0. By the above, we have that È‘ is uniformly
bounded. Moreover, by Proposition 10, u‘ is uniformly locally bounded and Lipschitz.
Therefore, as ‘ æ 0, extracting a subsequence if necessary, È‘ æ È and u‘ æ u where u is a
viscosity solution of (6.4.1).

Now, we introduce a phase-space measure µ‘ as follows
⁄

T

0

⁄

R2
Â(x, p, t)dµ‘(x, p, t) =

⁄
T

0

⁄

R
Â(x, È‘ + u‘

x, t)m‘dxdt

for all Â œ Cb(R ◊ R ◊ [0, T ]). Because m‘ œ C([0, T ],R) with a modulus of continuity that
is uniform in ‘, as ‘ æ 0, we have µ‘ Ô µ; that is

⁄
T

0

⁄

R2
Âdµ‘ æ

⁄
T

0

⁄

R2
Âdµ.

Moreover, due to the strict convexity of the Hamiltonian, arguing as in [79], we have

⁄
T

0

⁄

R2
Ât ≠ DpH(x, p)DxÂdµ

=
⁄

R
Â(x, T )m(x, T )dx ≠

⁄

R
Â(x, 0)m̄(x)dx.

Next, we fix ” > 0 and consider a standard mollifier ÷”. We define

v” = ÷” ú u,

as the convolution.
We note that |D2v”| Æ C

”2 . Then, using the uniform convexity of the Hamiltonian, we get

≠v”

t + ÷” ú |ux ≠ v”

x|2 + H(x, È + v”

x) Æ O(”).

Therefore, w = v” ≠ u‘ satisfies

≠ wt + DpH(x, È‘ + u‘

x)wx ≠ ‘wxx

+ ÷” ú |ux ≠ v”

x|2 + “|È + v”

x ≠ È‘ ≠ u‘

x|2 Æ O(”) + O( ‘

”2 ).
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Integrating with respect to m‘, we conclude that
⁄

T

0

⁄

R2
÷” ú |ux ≠ v”

x|2 + “|È + v”

x ≠ p|2dµ‘ Æ O(”) + O( ‘

”2 ) + Îv” ≠ u‘ÎLŒ .

Next, we let ‘ æ 0, to get
⁄

T

0

⁄

R2
÷” ú |ux ≠ v”

x|2 + “|È + v”

x ≠ p|2dµ Æ O(”).

Finally, by letting ” æ 0, we conclude that m-almost every point is a point of approximate
continuity of ux. Therefore, v”

x æ ux almost everywhere. Hence, p = È + ux µ-almost
everywhere. Therefore, we obtain

⁄
T

0

⁄

R2
(Ât ≠ DpH(x, È + ux)DxÂ) dµ

=
⁄

T

0

⁄

R
(Ât ≠ DpH(x, È + ux)DxÂ) mdxdt

=
⁄

R
Â(x, T )m(x, T )dx ≠

⁄

R
Â(x, 0)m̄(x)dx,

which gives that m solves (6.4.2) with ‘ = 0.
Note also, that the preceding reasoning implies that u is di�erentiable almost everywhere

with respect to m.

Finally, we record two additional results for (6.1.1). The first is an energy estimate that
is similar to other results in MFG.

Proposition 16. Let (u, m, È) be the solution of Problem 1 constructed in Theorem 15.
Suppose that there exists C > 0 such that

pDpH(x, p) ≠ H(x, p) Ø 1
C

H(x, p) ≠ C.

Then, ⁄
T

0

⁄

R
H(x, È + ux)(m0 + m)dxdt Æ C.

Proof. We take the first equation in (6.1.1) and multiply it by m̄≠m, and the second equation
by u ≠ ū. Adding the resulting expressions and integrating by parts results in the desired
estimate.

The last result in this section concerns the regularity of the solutions (6.4.1) in the case
where both the potential and terminal data are convex.

Proposition 17. Suppose that ‘ = 0, that Assumptions 3, 5, and 8 hold and let È be
a Lipschitz function. Then, the solution to (6.4.1) is di�erentiable in x for every x œ R.
Moreover, uxx is bounded.
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Proof. Due to Assumption 8, we see that u(x, t) is convex in x by direct inspection of the
variational problem (6.2.3). By Proposition 11, u is semiconcave in x. This gives the bound
for uxx and the di�erentiability of u in x.

The preceding proposition implies the regularity of the solutions of Problem 1, as stated
in the next Corollary.

Corollary 1. Suppose that Assumptions 3–8 hold and that ‘ = 0. Then, there exists a
solution (u, m, È) of Problem 1 with u di�erentiable in x for every x and uxx bounded.
Moreover, m is also bounded.

Proof. The result follows by combining Proposition 17 with the fact that the transport
equation with locally Lipschitz coe�cients has a unique weak solution in LŒ.

Proof of Theorem 15 - part 2, additional regularity for ‘ = 0. Additional regularity for the
case where Assumption 8 holds and ‘ = 0 follows from Corollary 1.

6.5 Uniqueness

Now, we examine the uniqueness of solutions. We begin by observing that (6.1.1) can be
written as a monotone operator. As a consequence, we obtain a uniqueness result.

We set
�T = R ◊ [0, T ],

and

D =(CŒ(�T ) fl C([0, T ], P)) ◊ (CŒ(�T ) fl W 1,Œ(�T )) ◊ CŒ([0, T ]),

D+ ={(m, u, È) œ D s.t. m > 0},

Db ={(m, u, È) œ D s.t. m(x, 0) = m̄(x), u(x, T ) = ū(x)},

Db

+ =Db fl D+,

Then, we define A : Db
+ æ D as

A

S

WWU

m

u

È

T

XXV =A1

S

WWU

m

u

È

T

XXV + A2

S

WWU

m

u

È

T

XXV

=

S

WWU

ut + ‘uxx

mt ≠ ‘mxx

0

T

XXV +

S

WWWU

≠H(x, Du + È)
≠div(mDpH(x, È + ux))

s

�
mDpH(x, È + ux)dx + Q(t)

T

XXXV .

(6.5.1)
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Furthermore, for w = (m, u, È), w̃ = (m̃, ũ, È̃) œ D, we set

Èw, w̃Í =
⁄

�T

(mm̃ + uũ) dxdt +
T⁄

0

ÈÈ̃dt.

Then, A is a monotone operator if

ÈA[w] ≠ A[w̃], w ≠ w̃Í Ø 0 for all w, w̃ œ Db

+.

Under the convexity of the map p ‘æ H(x, p), A is a monotone operator.

Proposition 18. Suppose the map p ‘æ H(x, p) is convex. Then A is a monotone operator.

Proof. Let w = (m, u, È), w̃ = (m̃, ũ, È̃) œ Db
+. Then, integrating by parts, we obtain

ÈA1[w] ≠ A1[w̃], w ≠ w̃Í

=
⁄

�T

((u ≠ ũ)t + ‘�(u ≠ ũ))(m ≠ m̃) +
⁄

�T

((m ≠ m̃)t ≠ ‘�(m ≠ m̃))(u ≠ ũ)

=0,
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because u ≠ ũ and m ≠ m̃ vanish at t = 0 and t = T . Furthermore, we have that

ÈA2[w] ≠ A2[w̃], w ≠ w̃Í

= ≠
⁄

�T

(H(x, ux + È) ≠ H(x, ũx + È̃))(m ≠ m̃)dxdt

≠
⁄

�T

div(mDpH(x, ux + È) ≠ m̃DpH(x, ũx + È̃))(u ≠ ũ)dxdt

+
T⁄

0

(È ≠ È̃)
⁄

R
(mDpH(x, ux + È) ≠ m̃DpH(x, ũx + È̃))dxdt

= ≠
⁄

�T

(H(x, ux + È) ≠ H(x, ũx + È̃))(m ≠ m̃)dxdt

+
⁄

�T

(mDpH(x, ux + È) ≠ m̃DpH(x, ũx + È̃))(ux ≠ ũx)dxdt

+
⁄

�T

(mDpH(x, ux + È) ≠ m̃DpH(x, ũx + È̃))(È ≠ È̃)dxdt

=
⁄

�T

m
3

H(x, ũx + È̃) ≠ H(x, ux + È) ≠ (ũx + È̃ ≠ ux ≠ È)DpH(x, ux + È)
4

dxdt

+
⁄

�T

m̃
3

H(x, ux + È) ≠ H(x, ũx + È̃) ≠ (ux + È ≠ ũx ≠ È̃)DpH(x, ũx + È̃)
4

dxdt

Ø0,

by the convexity of p ‘æ H(x, p). Combining the previous inequalities, we conclude that

ÈA[w] ≠ A[w̃], w ≠ w̃Í

=ÈA1[w] ≠ A1[w̃], w ≠ w̃Í + ÈA2[w] ≠ A2[w̃], w ≠ w̃Í Ø 0.

Now, we discuss the last part of the proof of Theorem 15.

Proof of Theorem 15 - part 3, uniqueness. Let (m, u, È) and (m̃, ũ, È̃) solve Problem 1. If
‘ > 0 or if ‘ = 0 and Assumption 8 holds, we have m and m̃ are absolutely continuous with
respect to the Lebesgue measure. Thus, the computations in the proof of Proposition 18,
combined with the uniform convexity of H in Assumption 7, give

⁄
T

0

⁄

R
|È + ux ≠ È̃ ≠ ũx|2(m̃ + m) = 0.
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Therefore, È + ux = È̃ + ũx almost everywhere. In both cases, this implies

ut = ũt,

almost everywhere and, thus, u = ũ. Finally, the uniqueness of the Fokker-Planck equation,
for ‘ > 0 or for the transport equation, when ‘ = 0 and Assumption 8 holds, give m = m̃.

6.6 Linear-quadratic models

Here, we consider linear-quadratic price models. First, we examine the case without a
potential and determine an explicit solution. Then, we introduce a quadratic potential that
accounts for charge level preferences. In this last case, we describe a procedure to solve
the problem, up to the inversion of Laplace transforms and solution of ordinary di�erential
equations.

6.6.1 State-independent quadratic cost

First, we consider the quadratic state-independent cost

¸(t, –) = c

2–2 + –È(t), (6.6.1)

where c is a constant that accounts for the usage-depreciation of the battery. The correspond-
ing MFG is

Y
___]

___[

≠ut + (È(t)+ux)2

2c
= 0

mt ≠ 1
c
(m(È(t) + ux))x = 0

1
c

s
R(È(t) + ux)mdx = ≠Q(t).

(6.6.2)

The stored energy by each agent follows optimal trajectories that solve the Euler Lagrange
equation:

cẍ + ṗ = 0.

Integrating the previous equation in time, we get

ẋ(t) = 1
c

(◊ ≠ È(t)) , (6.6.3)

where ◊ is time independent. Next, by di�erentiating the Hamilton-Jacobi equation, we get

≠(ux)t + (ux + È)uxx

c
= 0.
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Using the previous equation, taking into account the transport equation, and integrating by
parts, we have

d

dt

⁄

R
uxmdx =

⁄

R
uxtm + uxmt =

⁄

R
uxtm + 1

c
ux (m(È + ux))

x

= 1
c

⁄

R
(È + ux)uxxm ≠ uxxm(È + ux)dx = 0,

assuming that m has fast enough decay at infinity.
Thus, the supply vs demand balance condition becomes

Q(t) = ≠1
c

⁄

R
(ux + È)mdx = 1

c
(� ≠ È) ,

where
� = ≠

⁄

R
uxmdx (6.6.4)

is constant. From the above, we obtain the following linear price-supply relation

È = � ≠ cQ(t). (6.6.5)

Integrating (6.6.3) in time and taking into account the linear price-supply relation (6.6.5),
we gather

x(T ) = x(t) + 1
c

⁄
T

t

(◊ ≠ È(s))ds = x + T ≠ t

c
(◊ ≠ �) +

⁄
T

t

Q(s)ds. (6.6.6)

Accordingly, u is given by the optimization problem

u(x, t) = inf
◊

⁄
T

t

C
(◊ ≠ � + cQ(s))2

2c
+ 1

c
(◊ ≠ � + cQ(s))(� ≠ cQ(s))

D

ds

+ ū
3

x + (◊ ≠ �)
c

(T ≠ t) + K(t)
4

,

where
K(t) =

⁄
T

t

Q(s)ds.

By setting µ = ◊ ≠ �, we get

u(x, t) = inf
µ

⁄
T

t

C
(µ + cQ(s))2

2c
+ 1

c
(µ + cQ(s))(� ≠ cQ(s))

D

ds

+ ū
3

x + µ

c
(T ≠ t) + K(t)

4
.
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Thus, given �, we determine a function, u�, solving the preceding minimization problem.
For that, we expand the integral to get

u�(x, t) = inf
µ

C
T ≠ t

2c
µ2 + 1

c
(T ≠ t)�µ +

⁄
T

t

3
� ≠ c

Q(s)
2

4
Q(s)ds

+ū
3

x + µ

c
(T ≠ t) + K(t)

4 D

.

Next, we take the derivative of the right-hand side of the prior identity with respect to µ and
obtain the relation

µ + ūx (x(T )) = ≠�. (6.6.7)

If ū is a convex function, the preceding equation has a unique solution, µ(�) for each given
�. Thus, given �, we obtain a solution, u� for the Hamilton-Jacobi equation. Finally, we
use the resulting expression for u� in (6.6.4) at t = 0 to obtain the following condition for �:

� = ≠
⁄

R
u�

x (x, 0)m0(x)dx. (6.6.8)

Solving the preceding equation, we obtain � and hence È using the price-supply relation,
(6.6.5).

As an example, we consider the terminal cost

ū(y) = “

2 (y ≠ ’)2 .

Solving(6.6.7), we obtain

µ = ≠“(K(t) + x ≠ ’) + �
1 + “ T ≠t

c

. (6.6.9)

Accordingly, we have

u�(x, t) =
“(K(t) + x ≠ ’)2 + (t≠T )

c
�(2“(K(t) + x ≠ ’) + �)

2
1
1 + “ T ≠t

c

2 + �K(t) ≠ c
⁄

T

t

Q2(s)
2 ds.

Therefore,

ux(x, t) = “
K(t) + x ≠ ’ ≠ (T ≠t)

c
�

1 + “ T ≠t

c

Using the previous expression for t = 0 in (6.6.8), we obtain the following equation for �

� = ≠“
K(0) + x̄ ≠ ’ ≠ T

c
�

1 + “ T

c
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where
x̄ =

⁄

R
xm0dx.

Thus,
� = ≠“(K(0) + x̄ ≠ ’). (6.6.10)

Therefore, using (6.6.5), we obtain

È = ≠“(K(0) + x̄ ≠ ’) ≠ cQ.

Finally, we use the above results and conclude that each agent dynamics is
Y
_]

_[

ẋ = (x̄≠x)“
1+ T

c “
+ Q

x(0) = x.

In alternative, using
ẋ(t) = ≠È + ux(x(t), t)

c

we have Y
_]

_[

ẋ(t) = (x̄(t)≠x(t))“
1+ T ≠t

c “
+ Q

x(0) = x,
(6.6.11)

where
x̄(t) =

⁄

R
xm(x, t)dx.

Averaging (6.6.11) with respect to m, we obtain

˙̄x(t) = Q(t), (6.6.12)

which is simply the conservation of energy. Thus, the trajectory of an individual agent can
be computed by combining (6.6.11) with (6.6.12) into the system

Y
_]

_[

ẋ(t) = (x̄(t)≠x(t))“
1+ T ≠t

c “
+ Q(t)

˙̄x(t) = Q.

The previous system is a closed system of ordinary di�erential equations that only involves
Q and the parameters of the problem. Surprisingly, it also does not depend on ’. This is
due to the fact that the average of the position of the agents is determined by Q. Hence, the
only way agents can improve their value function is by getting close to each other. This is
seen in the mean-reverting structure in (6.6.11).
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6.6.2 Quadratic cost with potential

Now, we consider a running cost with a quadratic potential. This potential penalizes the
agents when the charge or stored energy deviates too much from a set point, Ÿ. This penalty
has the form of ÷

2 (x ≠ Ÿ)2, where ÷ measures the strength of the penalty. Thus, we have

¸(t, x, –) = c
–2

2 + –È(t) + ÷

2(x ≠ Ÿ)2.

The corresponding MFG is
Y
___]

___[

≠ut + (È(t)+ux)2

2c
≠ ÷

2 (x ≠ Ÿ)2 = 0

mt ≠ 1
c
(m(È(t) + ux))x = 0

1
c

s
(È(t) + ux)m = ≠Q(t).

(6.6.13)

Di�erentiating the Hamilton-Jacobi equation, we conclude that

≠(ux)t + (ux + È)uxx ≠ ÷(x ≠ Ÿ) = 0.

We define the following quantities

� =
⁄

R
uxm and � =

⁄

R
xm.

Taking the time derivative on the first quantity and using the transport equation, we get

�̇ =
⁄

R
uxtm + uxmt

=
⁄

R
(È + ux)uxxm ≠ ÷

⁄

R
(x ≠ Ÿ)m +

⁄

R
ux(m(È + ux))x

=
⁄

R
(È + ux)uxxm ≠

⁄

R
uxxm(È + ux) ≠ ÷

⁄

R
(x ≠ Ÿ)m.

Simplifying the preceding expression, we obtain

�̇ = ≠÷(� ≠ Ÿ).

Next, we take the transport equation, multiply it by x, and integrate by parts, to get

�̇ = d

dt

⁄

R
xm =

⁄

R
xmt =

⁄

R
x (m(È + ux))

x

= ≠
⁄

R
m(È + ux) + [x(m(È + ux)|�

= ≠È ≠
⁄

R
uxm.
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Thus, we conclude that
�̇ = ≠È ≠ �.

Therefore, we obtain the following averaged dynamics
Y
]

[
�̇ = ≠È ≠ �

�̇ = ≠÷(� ≠ Ÿ).

Taking the time derivative of the second equation and using the first equation, we get

�̈ ≠ ÷� = ÷(È + Ÿ).

The preceding equation has the following solution

� = ≠Ÿ + e
Ô

÷tC1 + e≠Ô
÷tC2 +

Ô
÷

2

⁄
t

0

1
e

Ô
÷(t≠s) ≠ e≠Ô

÷(t≠s)
2

È(s)ds.

Moreover, at t = 0, we have

�̇(0) = ≠÷(�(0) ≠ Ÿ) = ≠÷(x̄ ≠ Ÿ),

where
x̄ =

⁄

R
xm̄.

Thus, we need an additional constant to determine �(0). Given this constant, from the
constraint equation in (6.6.13), we get

È�(0)(t) = ≠� ≠ Q(t)

= f�(0)(t) ≠
Ô

÷

2

⁄
t

0

1
e

Ô
÷(t≠s) ≠ e≠Ô

÷(t≠s)
2

È�(0)(s)ds,

where f�(0)(t) = Ÿ ≠ e
Ô

÷tC1 ≠ e≠Ô
÷tC2 ≠ Q(t), and C1 and C2 are determined by the value

of �̇(0) and by the unknown value �(0).
The preceding equation is a Volterra integral equation of the second kind with a separable

kernel. In principle, we can solve this equation using Laplace’s transform. The previous
equation is of the form

È�(0)(t) = f�(0)(t) ≠ ⁄(k ú È�(0))(t), (6.6.14)

where
k(t) = ≠

Ô
÷

2
1
e

Ô
÷t ≠ e≠Ô

÷t
2

and (k ú È) =
s

t

0 k(t ≠ s)È(s)ds denotes the convolution product of the kernel k with È.



6.7 Real Data 139

Let L denote the Laplace transform. Because L{(k ú È)(t)} = L{k(t)}L{È(t)}, applying
the Laplace transform to (6.6.14) yields

L{È(t)} = L{f�(0)(t)} + ⁄L{k(t)}L{È(t)}.

Simplifying the above equation, we obtain

È�(0)(t) = L≠1
I

L{f�(0)(t)}
1 ≠ ⁄L{k(t)}

J

,

where L≠1 is the inverse Laplace transform.
Finally, we take the resulting expression for È�(0) into the Hamilton-Jacobi equation,

solve it and obtain a function u�(0)(x, t). Then, the value �0 is determined implicitly by the
equation

�(0) =
⁄

R
(u�(0))x(x, 0)m0dx. (6.6.15)

In the case of quadratic terminal data,

u(x, T ) = “

2 (x ≠ ’)2,

we can reduce the solution of the Hamilton-Jacobi equation into solving ordinary di�erential
equations. For that, we look for a solution

u(x, t) = ◊0(t) + ◊1(t)x + ◊2(t)x2

satisfying
u(x, T ) = “

2 (x ≠ ’)2 = ◊0(T ) + ◊1(T )x + ◊2(T )x2.

Then, the first equation in (6.6.13) becomes

≠(◊̇0 + ◊̇1(t)x + ◊̇2(t)x2) + (È(t) + ◊1(t) + 2◊2(t)x)2

2c
≠ ÷

2(x ≠ Ÿ)2 = 0.

Thus, by matching powers of x, we obtain di�erential equations for ◊i, 0 Æ i Æ 2. The
resulting expression can be used in (6.6.15) to obtain the solution.

6.7 Real Data

In this section, we use real data of daily energy consumption in the UK, during a twenty-four
hour period. The data is available online at https://www.nationalgrid.com/uk/. In Figure
6.1, we plot the power supply oscillation Q (which is simply the negative of the demand)
normalized to have mean zero over 24 hours.

https://www.nationalgrid.com/uk/
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Fig. 6.1 Normalized electricity production Q.

We compare our price-formation model with the MFG model presented in [73]. In that
model, the energy price is a function of the aggregate consumption. In that case, the price
is not determined by a supply vs demand condition and, thus, there may be an energy
imbalance. Here, we consider the state-independent quadratic cost model from Section 6.6.1.
In our model, the price depends only on the constant that accounts for battery’s wear and
tear. This constant can be empirically estimated, but, here, we calibrate our model against
the model in [73] using a least squares approach. Let Ë be the priced computed in [73].
According to (6.6.5), the price given is Èc,� = � ≠ cQ. Thus, we estimate the value of c, by
solving the minimization problem

min
c,�œR

ÎÈc,� ≠ ËÎ2
2 = min

c,�œR
Î� ≠ cQ ≠ ËÎ2

2, (6.7.1)

and, using N = 106 agents, we obtained c = 0.00172$(kW)≠2h≠1.
The price given by our model is plotted in Figure 6.2. We predict smaller peak oscillations

and thus, our methods may help stabilize the market.

6.8 Conclusions and extensions

Here, we described a model for price formation in electricity markets, proved the well-
posedness of the problem, and developed methods to compute the solutions. Our model
has a minimal number of features and fits well real data. In addition, our model may have
stabilizing properties of the price at peak consumption.

Several extensions of our model are of interest. First, we can consider the case where the
supply Q(È, t) depends on price. Provided the supply increases with the price, which is a
natural assumption from the economic point of view, the solvability conditions are similar.
In particular, (6.4.8) becomes

È̇
5

ˆQ
ˆÈ

+
⁄

R
D2

ppHmdx
6

= ≠ˆQ
ˆt

≠
⁄

R

Ë
D2

ppHDxHm + ‘D3
pppHu2

xxm
È

dx.
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Fig. 6.2 Evolution of electricity price during a twenty-four hour period. In green, we plot the
energy’s price when no batteries are connected to the grid. In blue, we plot the price with
batteries connected to the grid and the price is given by the model in [73]. In yellow, we plot
the price corresponding to our model.

Thus, we obtain similar bounds for È̇ if ˆQ
ˆÈ

Ø 0. Therefore, the existence theory follows a
similar argument. Moreover, if ˆQ

ˆÈ
Ø 0, the operator A in section (6.5) is monotone and,

therefore, uniqueness of solution holds.
In real applications, Q may depend on delayed prices. While this does not fit directly

into our framework, we can consider a Taylor expansion:

Q(È(t ≠ ·), t) ƒQ(È(t), t) ≠ ·
ˆQ(È(t), t)

ˆÈ
È̇(t)

+ ·2

2

C
ˆQ(È(t), t)

ˆÈ
È̈ + ˆ2Q(È(t), t)

ˆÈ2 È̇2(t)
D

+ . . .

Thus, it is natural to look at the case where Q depends on the price and its derivatives.
Finally, a natural extension is the case where Q has random fluctuations. This is

particularly relevant if the energy production is subject to unpredictable changes - this is the
case of wind energy. For the case where Q is random, we need to use the master equation as
in [140].
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Appendix A

Viscosity solutions

In this appendix we present a brief introduction to viscosity solutions. We recall its definition
and present some main results in the viscosity solutions’ theory.

A.1 Definition

In this section we present the definition of viscosity solution for a particular equation, namely
the Initial Value Problem for the Hamilton-Jacobi Equation,

I
ˆu

ˆt
(x, t) + H(x, Du(x, t)) = 0 (x, t) œ Rn◊]0, T [

u(x, 0) = u0(x) œ Rn
(A.1.1)

where u0 is any initial condition.

Definition A.1.1. Let u be a bounded, uniformly continuous function on Rn◊]0, T [.
We call u a viscosity sub-solution of the initial value problem (A.1.1) if and only if:

• for each „ œ CŒ(Rn ◊ (0, Œ)), if (x0, t0) œ Rn ◊ (0, Œ) is a local maximizing point of
u ≠ „ then:

ˆ„

ˆt
(x0, t0) + H(x0, D„(x0, t0)) Æ 0, (A.1.2)

and viscosity super-solution if and only if:

• for each „ œ CŒ(Rn ◊ (0, Œ)), if (x0, t0) œ Rn ◊ (0, Œ) is a local minimizing point of
u ≠ „ then we have:

ˆ„

ˆt
(x0, t0) + H(x0, D„(x0, t0)) Ø 0. (A.1.3)

In the case u verifies (A.1.2) and (A.1.3) we say that u is a viscosity solution, provided that
the equality u(x, 0) = u0(x) is satisfied, in both cases.
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A.2 Comparison Principle

Here we present a very useful result, for uniqueness and convergence results of homogenized
equations, and its proof. For this result we need to assume the following properties:

H(x, u(x, t), p) ≠ H(x, v(x, t), p) Ø “R(u ≠ v), “R > 0 (A.2.1)

for all (x, t) œ (� ◊ (0, T ]), ≠R Æ u Æ v Æ R and p œ Rn(’0<R<+Œ).

|H(x, u(x, t), p) ≠ H(y, u(x, t), p)| Æ mR (|x ≠ y|(1 + |p|)) (A.2.2)

where mR(s) æ 0 as s æ 0, for all x, y œ �, ≠R Æ u Æ R and p œ RN (’0<R<+Œ).
Before we state the Comparison Principle, there are some remarks to be done. Since we have
defined the notion of viscosity solutions only for open intervals, we need the following result.

Lemma A.2.1. If u œ C(�̄ ◊ [0, T ]) is a sub-solution (respective super-solution) of (A.1.1)
on � ◊ (0, T ), then u is a sub-solution (respective super-solution) of

ˆu

ˆt
+ H(x, Du(x, t)) = 0 (x, t) œ (� ◊ (0, T ]). (A.2.3)

Here note that we are now allowing that the maximum point may occur at t = T .

Proof. This lemma states that the boundary points (x, t) œ (� ◊ {T}) can be treated as
interior points. Let us suppose that u(x, t) is a sub-solution of the problem, then we must
have:
’„ œ C2(� ◊ (0, T ]) if (x0, T ) is a local maximisation point of u ≠ „, then we have:

ˆ„

ˆt
(x0, T ) + H(x0, Du(x0, T )) Æ 0.

Considering the function

„̄(x, t) := „(x, t) + ‘

T ≠ t
x œ �, 0 < t < T,

then for a su�ciently small ‘ > 0, u ≠ „̄ has a local maximum at the point (x‘, t‘) where
0 < t‘ < T and (x‘, t‘) æ (x0, T ). Hence

ˆ„̄(x‘, t‘)
ˆt

+ H(x‘, D„̄(x‘, t‘)) Æ 0,

and so
ˆ„(x‘, t‘)

ˆt
+ ‘

(T ≠ t‘)2 + H(x‘, D„̄(x‘, t‘)) Æ 0.
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Taking ‘ æ 0 we get
ˆ„(x0, T )

ˆt
+ H(x0, D„(x0, T )) Æ 0.

Which proves (A.2.3) to be a sub-solution, provided u ≠ „ has a maximum at (x0, T ). By
doing the correct changes in the inequalities occurring in this proof, we conclude the same
for super-solutions of (A.2.3) when u ≠ „ as a minimum at (x0, T ).

We can now state the main result in this section.

Theorem 16 (Comparison Principle). Let � be a bounded open subset of Rn. Assume that
u(x, t), v(x, t) œ (� ◊ (0, T ]) are sub and super-solutions of (A.1.1). Furthermore if u Æ v on
(ˆ� ◊ (0, T ]) and the last properties hold, then u Æ v in �̄ ◊ (0, T ].

Proof. We want to prove that if u, v are, respectively, sub and super-solutions, on (� ◊ (0, T ])
then M := max�̄◊(0,T ](u(x, t) ≠ v(x, t)) Æ 0. We suppose, by contradiction, that M > 0,
since u Æ v in ˆ� ◊ (0, T ] the maximum is not attained at the boundary, since u Æ v in
(ˆ� ◊ (0, T ]). Since u and v are viscosity solutions, their first derivative may not exist at
some point, and so, we must rely on a technique called doubling of variables, in order to
prove the result. This technique is performed by introducing the following test function

Â‘,÷(x, y, t, s) = u(x, t) ≠ v(y, s) ≠ |x ≠ y|2

‘2 ≠ |t ≠ s|2

÷2 .

This function resembles u ≠ v when the penalization terms |x≠y|2
‘2 and |x≠y|2

‘2 are close to zero.
This terms also impose that the maximization point (x, t, y, s) of Â‘,÷ must be attained when
(x, t) æ (y, s) for su�ciently small ‘ and ÷. Let us denote this maximum point of Â‘,÷ as M‘,÷.
Taking into account the results of Lemma A.2.2, stated after the end of this proof, we may
proceed. For su�ciently small ‘, ÷ then (x‘, t÷), (y‘, s÷) œ (� ◊ (0, T ]). Since (x‘, y‘, t÷, s÷) is
a maximization point of Â‘,÷, then (x‘, t‘) is a maximization point of

(x, t) ‘æ u(x, t) ≠ „1
‘,÷(x, t)

where
„1

‘,÷(x, t) = v(y‘, s÷) + |x ≠ y‘|2

‘2 + |t ≠ s÷|2

÷2

since u is a viscosity sub-solution of (A.1.1) and (x‘, t÷) œ � ◊ (0, T ] we get:

ˆ„1
‘,÷

ˆt
(x‘, t÷) + H(x‘, u(x‘, t÷), D„1

‘,÷(x‘, t÷))

= 2(t÷ ≠ s÷)
÷2 + H

1
x‘, u(x‘, t), 2x‘ ≠ y‘

‘2

2
Æ 0 (A.2.4)
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and in the same way (y‘, s÷) is a maximization point of

(y, s) ‘æ ≠v(y, s) + „2
‘,÷(y)

where
„2(y, s)‘,÷ = u(x‘, t÷) ≠ |x‘ ≠ y|2

‘2 ≠ |t÷ ≠ s|2

÷2

hence (y‘, s÷) is a point of minimum of v ≠ „2
‘,÷, since v is a viscosity super-solution of (A.1.1)

and (y‘, s÷) œ (� ◊ (0, T ]) and so:

ˆ„2
‘,÷

ˆt
(y‘, s÷) + H(y‘, v(y‘, s÷), D„1

‘,÷(y‘, s÷))

= ≠2(t÷ ≠ s÷)
÷2 (≠1) + H

1
y‘, v(y‘, t), 2(x‘ ≠ y‘)

‘2

2
Ø 0. (A.2.5)

By subtracting (A.2.5) from (A.2.4) we get

H
1
x‘, u(x‘, t÷), 2(x‘ ≠ y‘)

‘2

2
≠ H

1
y‘, v(y‘, s÷), 2 |x‘ ≠ y‘|

‘2

2
Æ 0 (A.2.6)

We note that p := 2 |x‘≠y‘|
‘2 , the gradients of the sub and super-viscosity solutions are equal,

and also ˆ„
1

ˆt
(x‘, t÷) = ˆ„

2

ˆt
(y‘, s÷), this last equality let us reduce the problem to the one

where we have only H(x, w, Dw) = 0.
By adding and subtracting H(x‘, v(y‘, s÷), p‘) in (A.2.6) we get

H(x‘, u(x‘, t÷), p‘) ≠ H(x‘, v(y‘, s÷), p‘) (A.2.7)

Æ H(y‘, v(x‘, s÷), p‘) ≠ H(x‘, v(y‘, s÷), p‘) (A.2.8)

Applying now, (A.2.1) to the term in the left and (A.2.2) to the one in the right side, we are
lead to

“R(u(x‘, t÷) ≠ v(y‘, s÷)) Æ m(|x‘ ≠ y‘|(1 + |p|))

and from this

“RM‘,÷ Æ m

A

|x‘ ≠ y‘| + 2 |x‘ ≠ y‘|2

‘2

B

≠ “R

A
|x‘ ≠ y‘|2

‘2 + |t÷ ≠ s÷|2

÷2

B

by taking ‘ and ÷ to 0 and using the lemma we get

“RM Æ 0

which is a contradiction to our hypotheses, since “R > 0, so we may conclude that M < 0
which is what we want to prove.
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In the proof above, we have used a result that we state, and refer to its proof now.

Lemma A.2.2. The following properties hold.

1. M‘,÷ æ M as (‘, ÷) æ (0, 0)

2. If (x‘, y‘, t÷, s÷) is a point of maximum of Â‘,÷, then we have:

|x‘ ≠ y‘|2

‘2 æ 0 as ‘ æ 0

|t÷ ≠ s÷|2

÷2 æ 0 as ÷ æ 0

u(x‘, t÷) ≠ v(y‘, s÷) æ M as (‘, ÷) æ (0, 0)

3. (x‘, y‘, t÷, s÷) œ (� ◊ (0, T ]) if ‘ and ÷ are su�ciently small.

Proof. See [20].
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