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Abstract

Time-lapse (4D) seismic analysis is crucial for the containment and conformance assessment of CCS

projects. However, interpreting CCS data for 4D signals like the Sleipner dataset faces challenges from

noise, velocity effects, and thin-bed tuning. Advances in data processing and quantitative analysis meth-

ods offer promise for more accurate interpretations. Seismic reservoir characterization relies on inverted

elastic subsurface models to predict the distribution of porosity, permeability, and fluid saturation. Prob-

abilistic seismic inversion methods provide high-resolution models with uncertainty assessment. Our

proposed iterative geostatistical time-lapse inversion methodology predicts the difference in acoustic

impedance Acoustic Impedance (Ip) using available seismic data. It considers all available vintages

simultaneously and uses geostatistical simulations for perturbation, driving convergence and better ex-

ploration of the model parameter space. We apply this methodology to monitor the growth of the CO2

plume from 1994 to 2006 using the 2007 processing of the Sleipner’s seismic data.

Keywords

Geostatistical Seismic Inversion; Time Lapse; Sliepner; 4D seismic; Carbon Capture and Storage

Carbon Capture and Storage (CCS); Monitoring; Containment; Conformance; Spatio-temporal mod-

eling
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Resumo

A análise sı́smica de lapso de tempo (4D) é crucial para a avaliação de contenção e conformidade

de projetos de CCS. No entanto, a interpretação de dados CCS para sinais 4D, como o conjunto de

dados de Sleipner, enfrenta desafios de ruı́do, efeitos de velocidade e ajuste de leito fino. Os avanços

no processamento de dados e nos métodos de análise quantitativa prometem interpretações mais pre-

cisas. A caracterização de reservatórios sı́smicos depende de modelos elásticos invertidos de subsu-

perfı́cie para prever a distribuição de porosidade, permeabilidade e saturação de fluidos. Os métodos

probabilı́sticos de inversão sı́smica fornecem modelos de alta resolução com avaliação de incerteza.

Nossa metodologia iterativa de inversão de lapso de tempo geoestatı́stica proposta prevê a diferença

na impedância acústica Acoustic Impedance (Ip) usando dados sı́smicos disponı́veis. Ele considera

todas as safras disponı́veis simultaneamente e utiliza simulações geoestatı́sticas para perturbação,

conduzindo convergência e melhor exploração do espaço de parâmetros do modelo. Aplicamos esta

metodologia para monitorar o crescimento da pluma de CO2 de 1994 a 2006 usando o processamento

de 2007 dos dados sı́smicos do Sleipner.

Palavras Chave

Inversão Sı́smica Geoestatı́stica; Espaço de tempo; Slipper; Sı́smica 4D; Captura e Armazenamento de

Carbono Carbon Capture and Storage (CCS); Monitoramento; Contenção; Conformidade; Modelagem

espaço-temporal
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The United Nations (UN) Intergovernmental Panel on Climate Change (IPCC)’s definition of Greenhouse

Gases (GHG) are gases that absorb infrared radiation trapping the earth’s heat within the atmosphere

causing what is known as the greenhouse effect which is amplified by the anthropogenic emissions of

greenhouse gases into the atmosphere [1, 2]. The increased temperatures after the greenhouse effect

takes place set forth a combination of unfavorable conditions that lead to climate fluctuations, which

in turn affect natural weather cycles which might affect and endanger human life. The global reduc-

tion of greenhouse gases is one of the top global goals and research areas crucial to the sustainable

development of the global community.

The United Nations Sustainable Development Goals (UNSDG) 2030 has defined 17 global sustain-

able development goals with specific objectives and actionable deliverables; of which climate change

plays an important role not only being one of the sustainable development goals; but as well as be-

ing a major contributing factor to several of the remaining sustainable development goals, such as the

ending of global hunger and poverty and the access to clean and affordable energy. Carbon Capture

and Storage is one of the integral energy transition solutions by decarbonizing heavy emitter energy

sources [1, 3]. Carbon Capture and Storage (CCS) is divided into three main parts: Capture, Transport

and Storage; Capture which includes liquid capture materials, solid capture materials, and the cryogenic

capture process; Transport can be done via pipelines ships and tankers: Storage ranging from terres-

trial storage to continental vegetation, subsea sequestration, and geological sequestration in geological

formations.

Carbon geological storage is anchored on three pillars, injectivity, capacity, containment and con-

formance. Injectivity is how easily will the CO2 flow, that is, ’injected’, from the bottom-hole well-bore

completion interval into the target formation, typically measured with the injectivity index, which is the

ratio of the flow rate over the pressure differential (volume / time / pressure). Capacity quantifies the

available structural volumetric space of the target formation, captured by total and effective porosity,

as well as absolute and relative permeability and the storage efficiency factor along with the reservoir

shape factor [4, 5]; Seismic data, mainly 2D and 3D, play a key role in the structural definition of the

storage site key for the definition of the structural storage capacity by mapping key horizons and faults

in the region; seismic inversion guides the distribution of properties in the formation, such as porosity

and permeability, which refine the volume available for storage. Containment is the ability of the target

formation, with the relevant subsurface properties, to enclose the injected CO2 with all available storage

processes; structural trapping, residual trapping, and mineralization of the stored CO2. Conformance of

a carbon geological storage project demonstrates the evaluation of the performance of the storage site

in its ability to contain the injected CO2 in the designated capacities and locations in the subsurface,

outlined in the project design phase.
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In a published study in Nature [5], highlights the importance of global continental margins for provid-

ing high-quality CO2 storage resources and proposes the development of 10-14 thousand CO2 injection

wells globally by 2050 to enable the global deployment of offshore storage for facilitating the two-degree

scenario, based on analysing historical data from prolific basins around the world, namely the Golf of

Mexico and the North Sea basins utilizing the principles of pore-space utilization and subsurface pres-

sure constraints; to provide a global baseline to guide nations in their attempt to employ and deploy CCS

solutions within their energy mix [6,7].

1.1 Motivation

Time-Lapse seismic data plays an integral role in the evaluation, creation, and curating of Mechanical

Earth Models; a key part of any study and analysis of the soil’s or deeper subsurface’s geomechanical

properties, which is detrimental to the containment aspect of the CCS regulatory requirements. Time-

lapse 4D analysis of seismic data is the leading measure of containment and conformance of CCS

projects [?, 4, 8–10]. The interpretation of 4D signals can be done either qualitatively or quantitatively,

after production and/or injection induced elastic changes in the reservoir, for 4D anomalies that can be

attributed to changes in saturation, pressure and temperature. Qualitative interpretation is done through

the visual inspection of the repeated 3D seismic surveys (i.e. monitors) for 4D anomalies, which are

extracted by subtracting the monitors from the base seismic (i.e. prior to injection and/or production). It is

more common to do this comparison between predicted 4D signals, acquired through forward modeling

a history matched reservoir model for base and monitor scenarios and getting the difference between

them, and real observed 4D signals coming from the differences between real seismic data of the base

and monitor [11]. The challenges and main drawbacks for the qualitative interpretation are the inability

to quanitufy the uncertainity in the predictions and the amount of unused information that is contained in

the seismic signal [11,12].

The quantitative interpretation of time lapse seismic, 4D seismic inversion, faces the challenge of

linking the temporal domain between the base and monitor survey(s), where independent inversions

of the base and monitors lack the prediction of elastic anomalies as there is no explicit dependency

between the different seismic volumes.

Current solutions are mainly based on inverting the amplitude anomalies that are calculated by sub-

tracting the base survey from the monitor survey. This contradicts the general guidelines of global

approaches such as GSI-related methods. The proposed workflow aims to connect the different data

in the temporal domain by altering the objective function to take into account the seismic amplitude

discrepancies.
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Time-lapse analysis can be achieved either in the seismic domain, elastic domain eg. Acoustic

Impedance (Ip), or by interpreting the time delays at the base of the reservoir after subtracting the base

and monitor seismic surveys [13]. Most of the state-of-the-art methodologies are based on the calibration

and alignment of the monitor and base before subtraction prior to interpretation [14–16]. The seismic do-

main interpretation is by the subtraction of base and monitor surveys highlighting plume boundaries and

outlines, as well as demonstrating the geophysical changes in the seismic signal, mainly CO2-induced

velocity push-downs and thin shale layer pull-up effects which are the first quantitative measurement

coming from the data which are used in the time delays interpretations. As for interpretation in the Ip

domain, it is based on the inversion of the base and monitor seismic data to acoustic impedance models

with the appropriate inversion scheme and associated assumption.

This thesis is about the monitoring of CO2 as part of the subsurface CCS where we aim to invert time

lapse seismic simultaneously to link the different surveys in the temporal domain. The Sleipner Carbon

Capture and Storage project, which began CO2 injection in 1996, is the world’s first project of its kind as a

greenhouse gas emission remediation measure. It serves as a unique case study for the carbon capture

and storage ecosystem, providing valuable insights and influencing technical and regulatory aspects of

the CCS value chain, as well as responding to policy updates [4]. Modeling and characterizing the spatial

evolution of the CO2 plume distribution in the Sleipner field has proven to be a challenging task. Various

modeling approaches have been employed to capture the multilayer plume distribution observed through

Time-Lapse (4D) seismic analysis; CO2-induced velocity pushdowns and thin shale layer pull-up effects

are one of the main challenges in Sleipner’s CO2 Time-Lapse analysis [14,17–21].

Probabilistic seismic inversion has a distinct advantage over deterministic inversion in detecting and

predicting the spatial distribution of subseismic rock formation, below seismic resolution, making it an

excellent candidate to resolve subseismic shale baffles in the Utsira formation. State-of-the-art method-

ologies based on the calibration and alignment of the monitor and base, these initial transformations do

not agree with the general guidelines of the Geostatistical Seismic Inversion (GSI). [22–24]

1.2 Objectives

The objective of this thesis is the development and implementation of an iterative geostatistical time-

lapse inversion methodology with the ability to predict the difference in acoustic impedance Ip between

different time steps using the available seismic data. The proposed methodology considers all avail-

able vintages simultaneously, compliant with the general guidelines of the Global Stochastic Inversion

and using geostatistical simulation and co-simulation as the preferred method to perturb the parameter

spaces over successive iterations driving the convergence of the proposed iterative procedure.
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Our proposed methodology is applied on a real dataset to monitor the growth of the CO2 plume over

the span of 1994 to 2006, using the 2007 processing of Sleipner’s 1994, 2001, 2004, and 2006 seismic

data.

1.3 Structure Of The Thesis

In Chapter 1 we set the scene by introducing the global drivers for carbon neutrality and energy tran-

sition efforts; the role of CCS in the greenhouse mitigation efforts is highlighted along with relevant key

consideration for CCS projects. Then we describe the motivation for the thesis and followed by stating

the objectives of our study and the structure of the thesis.

In this thesis’s Chapter 2, we will cover the relevant literature reviewing the fundamentals of the

geophysical inverse problem, followed by a comparison between deterministic and probabilistic inversion

methods with a focus on the state of the art of the seismic reservoir characterization and inversion

research domain; finally, we will highlight the relevant Time-Lapse 4D interpretation methods.

In Chapter 3, we describe the necessary steps to be applied before the implementation of our

proposed methodology. First, we describe Exploratory Data Analysis which deals with data mining,

analyzing, visualizing, and describing the data; then we walk through the procedures for creating the

geocellular model for the inversion and followed with the methodology implemented for the calculation

of the experimental variogram as well as elaborating the spatial continuity revealing nested variogram

models. After which we give a brief description of the Geostatistical Seismic Inversion methodology

implemented as a benchmark for our proposed iterative geostatistical inversion. Finally, we describe the

stages of our proposed algorithm, highlighting the novel objective function that drives the convergence

of our inversion.

Chapter 4 starts with a description of the Sleipner data set utilized to demonstrate our proposed

methodology, followed by an illustration of the results of the GSI algorithm to be implemented as a

benchmark, and the results of our proposed methodology are discussed; then Chapter 5 concludes the

thesis with recommendations for future improvements as well as reflections and self-assessment of the

thesis.
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Seismic data plays an integral role in the characterization of the subsurface, from a mining and en-

ergy resources point of view. Recently, more novel approaches [24–26] for the utilization of seismic data

through seismic inversion, which is simply described as moving from an impedance contrast interface

reflectivity to a layer-based property of interest, such as acoustic and shear impedance, porosity, perme-

ability [27], shale total organic carbon [28], ocean salinity, temperatures, and acidity, or detecting CO2 in

CCS operations [4,19,21].

Seismic data, which is acquired in a shot receiver arrangement processed to Common Midpoint

(CMP), can be 2D with CMP and Two Way Time (TWT), or 3D with inlines, crosslines, and TWT, or Time

Lapse (4D), which are 3D surveys acquired over successive periods of time. Stacking is the summation

of all traces which belong to a CMP into one trace after Normal Move-out (NMO), resulting in reinforced

reflections and an increasing signal-to-noise ratio. Migration re-positions reflections to their true spatial

position, prestack migration is done trace by trace, while post-stack migration is done with stacked CMP

gathers.

Time-Lapse (4D) data have the ability to detect elastic changes due to changes in reservoir condi-

tions, such as pore pressure, temperature, saturation, and induced geomechanical changes, all of which

are connected and will influence the rock’s physical response to the reservoir elastic changes. In recent

decades, 4D seismic technology has been instrumental in characterizing carbon storage sites and track-

ing CO2 throughout the subsurface, demonstrating capacity, injectivity, and containment [4,8,19,29].

2.1 The Geophysical Inverse Problem

Seismic reservoir characterization is a critical part of the Geomodeling workflow to predict the spatial

distribution of properties of interest, such as porosity, permeability, fluid saturation, and fluid content

[30–34]. Predicting the spatial distribution of continuous and categorical subsurface properties, such

as Ip and lithofacies [35], respectively, from observed data is termed seismic inversion when utilizing

recorded seismic amplitudes [36]

dobs = g(m, f) + e (2.1)

where dobs is the recorded seismic data, we wish to invert it back to the spatial distribution of its acoustic,

elastic m and categorical properties f . The operator g is a known forward model that maps the properties

of the model into the data domain [37,38].

The solution to the seismic inverse problem G−1, the inverse function of the forward model, retrieves

the spatial distribution of the properties of interest, m, f given the observed data, i.e., the recorded

seismic data, dobs, is unknown, ill-posed, non-linear and allows multiple equiprobable solutions [37].
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This means that there will be an ensemble of models with the same probability of occurring, i.e., spatial

random variables, that will satisfy the solution to the inverse model G−1. The solution of the inverse

problem is dependent on the assumptions made about the model parameters and the forward model g.

Seismic inversion methodologies can be classified into the deterministic approaches [39, 40], and the

probabilistic approaches (i.e. stochastic), which have the advantage of assessing the uncertainty and

facilitating the detection of subseismic anomalies, and require concept generalization contributions to

ease the understanding and uptake by academic and industry professionals [36,41].

By now we should be familiar with the basic concept of forward modeling g, just as the name implies,

we push the input through the model from an estimation towards a reality observation and going back

from the reality observation, i.e, data measured, back to the model domain in the opposite ”inverse”

direction, G−1. Depending on where we start from and where we are going to, this will dictate whether it

is a forward model or an inversion, and the data type at those starting and destination points will dictate

what kind of forward model or inversion it is. In other words, if we are starting with real observation of

seismic data and we wish to retrieve acoustic or elastic impedance models, this will be termed seismic

or elastic inversion, and the way back is the seismic forward model based on the convolution of a known

wavelet with a reflectivity series derived from elastic properties. When starting with elastic properties

and we wish to go for a model of petrophysical properties, this is termed rock physics or petrophysical

inversion. When starting with seismic data and we wish to retrieve petrophysical properties, this is

termed Joint seismic and rock-physics inversion and the way back is termed seismic and rock-physics

forward model [36].
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2.2 Deterministic versus Stochastic Seismic Inversion

Seismic inversion problems can be formulated in a deterministic or probailistic Deterministic methods

iteratively update the initial model, that is, the low-frequency model, using a deterministic optimization

algorithm to converge predicted seismic towards observed seismic yielding a smooth representation of

the subsurface representing the average properties on a seismic scale, with the most notable drawback

being the limitetd uncertainty assessment of the predicted results [41]. Deterministic inversions such as

recursive and coloured inversion [39, 42] are fast-track Ip approximations that are useful in preliminary

studies in frontier areas.

In a recent review paper [36], a range of publications that cover various aspects of seismic reser-

voir characterization were presented. These included modeling methods, practical application, and the

fundamentals of seismic reservoir characterization. The authors also highlighted the integration of geo-

statistical methods in seismic reservoir studies and the incorporation of rock-physics models in proba-

bilistic seismic inversion workflows. In summary, these publications provided a comprehensive overview

of inversion methods for seismic reservoir characterization. They emphasized the importance of proba-

bilistic approaches, rock-physics modeling, and the integration of geostatistical methods. Furthermore,

they gave insights into the different categories of inversion methods and their applications while also

acknowledging the challenges and assumptions associated with each approach.

The primary focus of the state-of-the-art in seismic reservoir characterization is the probabilistic in-

version methods of seismic data as opposed to seismic imaging which deals with Full Wave Inversion

methods for elastic properties [36,41]. Probabilistic seismic inversion methodologies have matured and

have demonstrated great value for the energy industry [36, 41]. These methods enable the sampling

of multiple inverse models with similar convergence levels and the assessment of uncertainty related

to observed data (such as well-log and seismic reflection data) and the physical process being mod-

eled (such as acoustic wave propagation). Both Bayesian linearized methods [43–45] and geostatistical

methods [31, 46, 47] have been utilized. Probabilistic approaches have the unrivaled advantage of re-

trieving subseismic resolution subsurface rock and elastic properties [31, 36]. Resolving of subseismic

geologic features, below the seismic resolution, is determined by the spatial model introduced by the

sampling algorithm used to generate multiple reservoir models, rather than the seismic data or the opti-

mization algorithm used for inversion [36].

Probabilistic inversion techniques can be divided into four main groups: Bayesian analytical inver-

sion, Monte Carlo methods, stochastic optimization, and probabilistic deep learning. However, these

categories are not absolute, as some techniques may fit into multiple categories. For instance, cer-

tain sampling techniques can be seen as both Monte Carlo methods and stochastic optimization algo-

rithms [36].

11



Bayesian approaches are the most commonly used in probabilistic inversion, where the goal is to es-

timate the posterior probability distribution of the model variables. Bayesian analytical inversion methods

are highlighted for providing an analytical solution to the posterior probability density function conditioned

on the measured data. These methods are generally faster and computationally more efficient than nu-

merical methods-based solutions such as stochastic optimization. However, they require linearization

of the forward model and make restrictive assumptions about the probability distributions of the model

parameter space [36,41].

Monte Carlo methods, such as Monte Carlo acceptance-rejection sampling and Markov chain Monte

Carlo (MCMC), are iterative algorithms used to approximate the posterior distribution. These methods

generate a large set of models to represent the uncertainty in the inversion process [36,41]. Stochastic

optimization algorithms, on the other hand, iteratively generate models and stochastically perturb them

until the mismatch between predicted and measured data falls below a specified threshold. The optimal

solution is the model with the lowest misfit value [41,48].

2.3 Time Lapse(4D) Interpretation

Seismic attributes are implied, measured, or computed measurements that deduce meaningful conclu-

sions from the seismic data [13]. Attributes such as seismic amplitude [49], root mean square ampli-

tude [50], Ip [51, 52], and sweetness are highly critical in the 4D seismic interpretation process. Fre-

quency and phase are sensitive to reservoir changes, such as pressure and fluid saturation, making

them suitable for use in reservoir monitoring purposes.

The primary objective of 4D seismic interpretation is to capture changes in 4D seismic attributes

generated from multiple surveys throughout the operation. In theory, changes in pressure and fluid

saturation should modify the seismic response due to changes in velocity and density [35, 53, 54]. If

these changes are of significant magnitude, they will be evident in the difference between the baseline

and monitor surveys [13].

Seismic attributes are either surface attributes, such as at the top of the reservoir, or volume attributes

for a specified seismic cube. Due to the different sensitivities of these attributes to different reservoir

properties, whether volume or surface, the effective combination of these different seismic attributes will

yield an effective 4D seismic interpretation [13].

Seismic amplitudes are directly related to fluid saturation in the reservoir and its pressure, the lithology

present, and its thickness, as any alteration in these parameters will yield changes in the seismic velocity

and the elastic properties of the rock [13].
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Taking the square root of the sum of the squared amplitudes in the data set divided by the sam-

ple size in a specific time window yields the root mean squared amplitude, which is integral in channel

identification and could be used in hydrocarbon monitoring by capturing amplitude sensitivities. The

sweetness attribute identifies thick clean reservoirs, hydrocarbon accumulations, and channel detection

using strong sand body reflections within successive shales, highlighting sweet pay zones within the

reservoir. Ip is obtained by the multiplication of the density and the velocity logs, which is implemented

in the seismic inversion process of extracting subsurface information from the data, such as the identi-

fications of fluid saturation and lithology identifications from log measurements, borehole fluid invasion

profiles calculated from well logs, and the discrimination between reservoir fluids (oil, gas, and water)

from production logs [51,52,55].

History matching is the step in validating the reservoir model, calibrated with production data, which

presents the challenge of being representative at the well location but with questionable consistency

with fluid flow and distribution in other locations [13, 20, 21, 56]. Several studies suggest the integration

of available data, including geology, geophysics, and engineering, thus improving the reliability of the

model [21]. The quantitative 4-D assisted history matching incorporates seismic data, Ip, Poisson ratio,

or inverted saturation and pressure [57]. 4-D assisted history matching can be done in three domains:

the simulation domain, the elastic domain, and the seismic domain. In the simulation domain, the seis-

mic pressure and saturation are inverted, and then compared to the simulation’s pressure and saturation.

In the elastic properties domain, the seismic is used to calculate changes in elastic properties and then

compared with a forward-modeling impedance-populated simulation model. In the seismic domain, syn-

thetic seismic is generated through rock physics modeling and wavelet convolution, and then compared

with the real seismic data [58,59].

4D technologies for reservoir management has 4 main aspects, Time-Lapse Modeling estimating

elastic responses, Simulation to Seismic validating new reservoir models, 4D Calibrations to account for

different acquisitions and processing parameters between base and monitor seismic and 4D interpreta-

tion is concerned with the quantitative interpretations.

Time-Lapse modeling deals with the estimation of production or injection induced velocity and den-

sity changes in order to generate synthetic seismic with the convolution with a known a wavelet to

predict changes in the reservoirs seismic response. Simulation to seismic starts from a history matched

reservoir model to generate pressure and saturation values which are related to the seismic though

rock-physics models that is used to generate synthetic seismic to be compared with the monitor seismic

survey. This approach can be beneficial in answering operational questions such as when is a good

time to acquire a new monitor seismic to evaluate the reservoir performance and are the 4d signals

detectible.
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4D calibration focuses on the mitigation of non-repeatable noise and different acquisition and pro-

cessing parameters which detrimental to the robustness of the 4D interpretation. A typical calibration

workflow of base and one or more monitors would start with the estimation of cross correlation and shifts.

Afterwords the average phase and time shifts, shaping filter and amplitude normalization are calculated

and executed, then we can apply cross correlation statics to the top of the reservoir. At this point the

seismic is calibrated to the base, this is where we can start witht the first iterpration which deals with

the time delays as well as applying the time variant shifts, such as Taylor series expansion and dynamic

vector wrapping, to align the base and the monitors at the base of the reservoir as the first step towards

the quantitative interpretation of the seismic amplitudes.

2.4 Stochastic Time Lapse(4D) Seismic Inversion

4D interpretation can be done by the analysis of the time delays and seismic amplitude differences as

well as deterministic and probabilistic formulations to the inversion problem. The traditional approach

for 4D inversion is to independently invert the base and monitor surveys and subtract the elastic results

to infer the production effect. However, this approach makes it difficult to interpret the 4D anomalies.

The differences interpreted from independent inversions may not be related to production, but rather

to differences in seismic vintages [60]. These differences could be artifacts related to convergence to

different solutions in the model space, which may not be consistent with the actual subsurface elastic

changes. Inverting all vintages simultaneously, combined in a single objective function, allows for reliable

and consistent models to be inferred for the expected differences in elastic behavior [60].

With advancements in 4D seismic inversion technologies, there is now a focus on quantitative 4D

interpretation workflows, involving 4D inversion in the elastic domain followed by rock physics inversion

to estimate changes in fluid saturation and pressure [60]. However, obtaining reliable estimates of time-

lapse changes in elastic domain using 4D seismic inversion is a challenging task that has received

considerable attention in recent years.

Different approaches have been proposed for 4D inversion, including workflows where base and

monitor surveys are inverted separately and then subtracted, i.e. independent inversion, sequential

inversion schemes where inversion results for a base survey are used to define an initial model for

inverting a monitor survey, direct inversion of amplitude differences for changes in elastic parameters,

and global inversion methods where all vintages are inverted simultaneously. Studies and experiences

have shown that coupling the inversion of base and monitor surveys is important to obtain quantitative

estimates of impedance changes and reduce the non-uniqueness of the inversion process. Among the
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stochastic methods, one of the most recent methods is the Bayesian inversion of time-lapse seismic data

for the estimation of static reservoir properties and dynamic property changes [30]. This methodology

proposes a two-step approach: first, the estimation of conditional probability of elastic properties and

their relative changes, and then the estimation of posterior probability of rock properties and dynamic

property changes. The result is a set of point-wise probability distributions that are used to predict the

most probable reservoir models and evaluate the associated uncertainty.

In recent published paper [61], the authers compared independent inversions and joint 4D inversion

with the baysiean formulation and benchmearked it with standenred determinstic aproach. Their results

showed that the joint 4D inverison has provided more accurate results when compared to the independt

inversions as well as being consistant with determistic methods.

The distinct advantage of our proposed methodology is that the inversion methodology is structured

with the global stochastic inversion guidelines, where it does not have a similar restrictive linearization

assumption of the Bayesian formulation, such that the base seismic and monitor seismic are inverted

directly for 4D signals without any calibration or alignment processing prior to the interpretation. Thus,

making or methodology compliant with the general guidelines of the Global Stochastic Inversion, which

is the key concept for the extension of our proposed methodology into the elastic domain utilizing partial

stacked seismic data to invert for shear impedance, compression, and shear velocities as well as the

density models, which are the building blocks for further geomechanical assessments into the target

formation.
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3.1 Data Analysis and Model Preparation

In this section, we describe the necessary steps to be applied before the implementation of our pro-

posed methodology. Our methodology requires a minimum of one well with density and sonic log mea-

surements in the zone or formation of interest, which must be covered with a minimum of two seismic

surveys, one baseline, and one monitor.

First we describe Exploratory Data Analysis, which deals with analyzing, visualizing, and describing

the data; then we walk through the procedures for creating the geo-cellular model for the inversion

and followed with the methodology implemented for the calculation of the experimental variogram and

fitting model variograms. After which we give a brief description of the Geostatistical Seismic Inversion

methodology implemented as a benchmark for our proposed iterative geostatistical inversion. Finally,

we articulate the stages of our proposed algorithm, highlighting the novel objective function driving the

convergence of our inversion.

3.1.1 Exploratory Data Analysis

A few summary statistics can convey the key elements of most histograms. Summary statistics can

divided into three categories: location measures, spread measures, and shape measures.

The statistical measures of location tell us where different segments of the distribution are located.

The sum of the values divided by the number of samples gives us the arithmetic mean, the sample that

divides the population into two equal parts is the median, and the most frequent value is the mode; all

help us figure out where the center of the distribution is.

Various quantiles indicate the location of additional segments of the distribution, such as P10 and

P90 or the interquartile range’s P25 and P75. Variance, standard deviation, and interquartile range

are all measurements of spread. These are used to describe the range of data. The coefficient of

skewness and the coefficient of variation characterize the shape of the distribution; the coefficient of

skewness provides information on the symmetry, while the coefficient of variation provides information

on the length of the tail for specific types of distributions.

When these statistics are combined, they provide a comprehensive summary of the information

contained in the histogram. In our methodology, we have chosen the variance as a statistical benchmark

for our inverted Ip from both, GSI and GSI 4D, for its sensitivity to extreme values.
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3.1.2 Model Creation

In this thesis, we have utilized SLB’s Petrel for all the Geology and Geophysics workflows implemented,

which implies a particular standard workflow for loading and quality checking the well and seismic data

used and all preliminary steps such as despiking and frequency filtering as well as seismic-to-well tie

which is a crucial step in any seismic reservoir characterization workflow.

The first step was to set up the appropriate coordinate system for the project, such as UTM-31 as

provided in the Sleipner dataset, to guarantee the proper placement of the wellheads in their correct

spatial locations. Then the wellhead data is loaded and must include the well name, the X and Y

coordinates, water depth, Total Measured Depth (MD), True Vertical Depth (TVD), and reference point

which is usually Kelly Bushing (KB) in offshore settings. The well deviation survey is added next, which

gives a precise trajectory of the wells in the subsurface, which serves as a spatial anchoring point for

all well log measurements and well tops, crucial in seismic to well tie, which are loaded afterward.

This highlights one of the most fundamental concepts in spatial inference problems, a location and an

attribute or multiple attributes such as in our case with the density and sonic well logs and seismic data.

The most important quality checks for the density and sonic logs are such that they should cover the

zone of interest plus a top and bottom thickness buffers encapsulating our target, they should be free

of measurement errors such as errors that arise due to bad hole conditions like caving or swelling, and

should be of positive values. The sonic log is measured in units of time divided by units of length most

commonly microsecond per foot, which we need to take the reciprocal and converting it into meters per

seconds with the appropriate conversion factor which will result in the P-wave velocity values; which are

then multiplied with the density log measured in grams per cubic centimeter for the Ip calculation and

the subsequent convolution of the reflection coefficient with a known wavelet estimated from the seismic

data at hand.

After we have set up the wells in our study, we create a seismic folder to load our seismic data,

which can be loaded individually or multiple seismic data at once. The seismic data is then realized and

converted into Petrel’s ZGY seismic data format, which allows for smooth display and data handling by

the software. The first step where well data meets seismic data is the seismic-to-well tie, where they

can both communicate in the two-way time domain vertically and we start to see the well on the seismic

section. The initial step of this process is the calibration of the sonic log with ideally a check-shot well

log or alternatively a two-way time and depth pairs from the well tops in the well, which are usually found

in the literature associated with the wells. After the calibration, we have a new time-depth relationship

informed by a calibrated sonic log and the seismic data which is used from here on after. Next is the

synthetic generation workflow, extracting a representative wavelet to be convolved with the reflection

coefficients calculated at the well location, which is then compared to the real seismic measurements at

the same location.
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At this point, we check for the alignment at the top and base horizons of our zone of interest and

apply the necessary stretch and squeeze for the alignment when needed, as well as the predictability of

the extracted wavelet to reproduce the seismic data [41]. In our methodology, we first extract a deter-

ministic wavelet to scale the subsequent statistical wavelet, which will be used for the inversions. The

key considerations for the wavelet are that it should be less than or equal to at least half the thickness

of the zone of interest encountered by our inversion well, the wavelet should have the same sampling

rate as the seismic data such as Sleipner’s 2 milliseconds and should follow the polarity convention of

the seismic data.

After calibrating the sonic log, extracting the representative wavelets, and generating the synthetic seis-

mic, we are ready to create and populate our Geo-cellular model. The first step is identifying the top of

our reservoir, which can be done by interpreting the seismic data or be given processed surfaces such

as the depth surfaces provided in the Sleipner data set which need to be converted with the appropriate

velocity model for the domain conversion from depth into two-way time. Diffracting the top and base sur-

faces of the reservoir obtaining the thickness which is then padded from the top and base with half the

length of the wavelet encapsulating our zone of interest with the new top and base of the model. These

surfaces are fed into the make simple model process in Petrel which will define the top and bottom limits

of our model, and are combined with the extracted dimensions of the used seismic cube that will inform

the spatial discretization of the grid that will follow the inline and crosslines of the seismic cube. Next is

one of the most crucial steps in the Geostatistical Seismic Inversion , the layering of the grid needs to be

parallel to ensure that the model’s blocks are parallel and of equal volumes, which is quality checked by

running the geometrical modeling dialogue to calculate cell volume. Ideally looking at the statistics, we

should find that the minimum and maximum values of cell volumes are equal or at least with fractional

distances from each other.

When the skeletal and volumetric structures of the model are created, we are ready to populate the grid.

We start with up-scaling in the appropriate units the density logs, if available density corrections log as

well, along with the converted P-wave velocity log. At this point, is one of the most important milestones

where we should always save our project as the next step of resampling the seismic data into the grid,

by means of the geometric modeling dialog, tends to cause some issues leading Petrel to restart.

21



3.1.3 Spatial Exploratory Data Analysis

In addition to statistical analysis, it is necessary to conduct a study of the spatial continuity of the study

variables, as some of them are not isotropic and depend on their distribution in space. To this end, we

have used experimental variograms and, through a visual process of trial and error, we sought the best

variogram model that fits the experimental variogram in the three directions of study, the major direction

in line with the seismic acquisition, the minor direction orthogonal to the major direction perpendicularly

across the line of the seismic acquisition, and the vertical, which is going to be based on the Ip log with

the following inequality: the spatial continuity in the major direction is larger than the spatial continuity

in the minor direction which is larger than the spatial continuity in the vertical direction. The model is

created, populated, and ready for spatial exploratory data analysis with the calculation and fitting of the

experimental variograms. We started with the vertical direction using the Ip log calculated by multiplying

the density corrected log with the despiked and frequency-filtered P wave velocity. Since our model only

has one monitor well 15/9-13 with velocity and density data, the injection well lacks velocity data, we

used the seismic data to calculate the experimental variogram in the spatial direction. First, we set the

lag distance equal to the smallest distance in the grid, which in our case was 2 milliseconds, 12.501,

and 12.502 in the vertical, major, and minor directions, respectively; the number of lags was chosen

such that the search radius is less than or equal to half the model extent in the vertical, major, and

minor directions, respectively; the bandwidth was set to 4 times the lag distance and a lag tolerance of

50 percent of the lag distance, values lower than 50 percent will omit values from the calculation while

values higher than 50 percent will overlap values in the calculation; finally, the tolerance angle was set

to 90 degrees; the calculated experimental variograms are fitted with two nested exponential structures

with a 0.11 nugget and varying ranges. These models reveal the spatial continuity pattern of the seismic

signal within our grid, which is an integral part of any seismic reservoir characterization workflow.

Table 3.1: Variograms Parameters

Year Strct Type Major (12.502) m Minor (12.501) m Vertical (2) ms Sill Nugget
1994 1 Exponential 350.056 (28) 275.022 (22) 12 (6) 0.74 0.11
1994 2 Exponential 4400.704 (352) 2587.707 (207) 12 (6) 0.15
2001 1 Exponential 312.55 (25) 262.521 (21) 12 (6) 0.75 0.11
2001 2 Exponential 1,862.798 (149) 1,400.112 (112) 12 (6) 0.14
2004 1 Exponential 287.546 (23) 262.521 (21) 12 (6) 0.7 0.11
2004 2 Exponential 1,212.694 (97) 850.068 (68) 12 (6) 0.19
2006 1 Exponential 275.044 (22) 300.024 (24) 12 (6) 0.68 0.11
2006 2 Exponential 1,187.69 (95) 737.559 (59) 12 (6) 0.21
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3.2 Geostatistical Seismic Inversion

The typical GSI methodology, used as a benchmark in our methodology, can be summarized and visu-

alized in the following sequence and 3.1, respectively.

1. In the first iteration, generate an ensemble of Ns Ip with Direct Sequential Simulation (DSS) [22]

and Direct Co-simulation after the first iteration, with a variogram calculated with seismic and well

data.

2. With a representative wavelet ω (t) forward model Ns synthetic seismic s(t) from normal incident

Reflection Coefficients (RC) computed with

RC =
Ip2 − Ip1
Ip1 + Ip2

(3.1)

where subscript 2 and 1 are the Ip values of the layer below and above the interface, respectively.

seismic s(t) results from the convolution of RC(t) and the wavelet ω (t)

s(t) = RC (t) ∗ ω (t) (3.2)

3. Calculate the trace-by-trace similarity (S) between the Real and the Ns Synthetic traces following

equation 3.3

S =
2 ∗

∑N
s=1 (SeisReal ∗ SeisSynth)∑N

s=1 (SeisReal)
2
+
∑N

s=1 (SeisSynth)
2

(3.3)

4. Store the best Ip and the similarity S of all simulated models in an auxiliary volumes.

5. Return to Step 2 and iterate using Direct Sequential Co-simulation (Co-DSS) with best Ip and S as

auxiliary volumes until the global S between the entire real seismic and synthetic volumes is above

a predefined threshold or we have reached the specified number of iterations and simulations.
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Figure 3.1: Geostatistical Seismic Inversion GSI

3.3 Geostatistical Seismic Time Lapse (4D) Inversion

The proposed iterative geostatistical methodology of time-lapse seismic data for high-resolution 4D sig-

nal spatiotemporal models of injected CO2 is based on the GSI framework [62, 63]. Geostatistical ap-

proaches have the ability to integrate different data sources with different resolutions and scale support,

whilst boasting a symbiotic, mutually beneficial, modeling approach that augments the best advantages

of each data source.
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Our proposed methodology is implemented for all available vintages. In the first iteration, using the

available well data and variogram to generate thirty-two acoustic impedance models for all time steps,

base, and all monitors. For every simulation, the generated models are forward modeled with a known

wavelet to generate synthetic seismic.

The predicted residuals are obtained with real base seismic minus the generated synthetic monitor

seismic, i.e, equation (3.6) and then compared with real residuals between real base seismic and real

monitor seismic, i.e, equation (3.7), for all monitor seismic vintages, with the calculation of the similar-

ity coefficient based on the mismatch between predicted and real residual, i.e, equations (3.8). The

similarity between real and predicted residuals calculation procedure is repeated three times for three

monitors, except for the base seismic inversion to Ip where the convergence-driving similarity calculation

is performed between real and predicted seismic of the base.

Our proposed methodology has three key pillars, the forward model, the computation of the local

similarity coefficients utilizing four parameters to calculate the interpolation weights as well as the com-

putation of the local correlation coefficients after selecting the best iterations. The local similarity inter-

polation weights are calculated by equal distributions of 25% each given to the slope, the intercept, the

least square means, and the mean values of the generated ensemble. Next is the calculation of the

local similarity coefficients, which is calculated with equal proportions to weights based on the number

of seismic data available, for our case this 25% as well. In other words, if we had one base seismic

and four monitors, the local similarity interpolation weights will be 25% when using the same slope,

the intercept, the least square mean, and the mean values from the generated ensemble of acoustic

impedance models; while the local similarity interpolation weight will be 20% reflecting the number of

available seismic data. The last step is the selection of the best elastic traces which generates the best

synthetic seismic are retained along with the corresponding similarity coefficient to be used in the next

iteration.
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Our proposed geostatistical time-lapse seismic inversion can be summarized in the following se-

quence and visualized in fig. 3.2.

1. Simulate a set of Ns Ip models given well data and a variogram model

2. Forward model the Ip models with a known wavelet to generate synthetic seismic

RC =
Ip2 − Ip1
Ip1 + Ip2

(3.4)

where subscript 2 and 1 are the Ip values of the layer below and above the interface, respectively

s(t) = RC (t) ∗ ω (t) (3.5)

3. From the synthetic seismic generated in (2), compute the residuals between the synthetic seismic

generated in (2) and the observed Baseline Seismic using equation (3.6)

Synth4D = BaseSeismicReal −MonitorSeismicSynth (3.6)

Real4D = BaseSeismicReal −MonitorSeismicReal (3.7)

4. Compare the predicted residuals from (3.6) with the observed residuals from (3.7) between the

observed Monitor and Baseline Seismic using equation (3.8)

S =
2 ∗

∑N
s=1

(
SeisReal

4D
∗ SeisSynth

4D

)
∑N

s=1

(
SeisReal

4D

)2

+
∑N

s=1

(
SeisSynth

4D

)2 (3.8)

5. Select the best Ip with the similarity coefficients which produces the highest similarity from (3.8)

for all vintages simultaneously

6. From the Ip models and similarity coefficients generated in (5), Co-simulate the next Ip models

using models generated in (5) as auxiliary variables in the next iterations

Following the guidelines of the GSI with self-updating local probability, the iterative geostatistical time-

lapse inversion ensures that all realizations of Ip accurately represent the well data at their respective

locations. Additionally, they replicate the spatial continuity pattern described by the three-dimensional

variogram model and capture the local and global distributions of Ip [23].
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Figure 3.2: Geostatistical Seismic Inversion GSI Time Lapse
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4.1 Results

4.1.1 Data-set Description

The Sleipner field, located approximately 250 kilometers off the coast of Norway in the Norwegian block

15/9, Production License 046, was discovered in 1974 and began production in 1996. In collaboration

with the Sleipner East condensate gas field, which was discovered in 1981 and began production in

1993, Equinor Energy AS (formerly Statoil) and the license partners (LOTOS E&P Norway AS, Exxon-

Mobil E&P Norway, and KUFPEC Norway AS) decided to store the captured CO2 geologically [19]. This

decision was motivated by the desire to reduce air pollution, implement a new technology, and take

advantage of a CO2 tax incentive, as well as meet state requirements.

The CO2 from the Sleipner West gas production is separated and injected into the Utsira Formation,

a mid-to-late Miocene age saline formation located in the Viking Graben of the North Sea. This formation

was chosen due to its large size, excellent reservoir qualities, shallow depth, and cost-effective well and

topside costs [10,29,64]. The Utsira Formation thins out towards the northeast, with an overall increase

in clay content, suggesting sediment deposition from west to east. The primary lithofacies within the

Utsira Formation consist of clear to white, very fine, and fine-grained marine sandstones, which can

also display medium to very coarse grains. These sandstones are interspersed with light greenish,

plastic, and soft marine claystone, as well as minor siltstone. Fossils and glauconite are commonly

found throughout the formation [65–67].

Since 1996, a near-horizontal deviated well (15/9-A-16) located approximately 1012m below sea

level has been used to inject carbon dioxide at a generally consistent annual rate of around 0.9 million

tons (Mt). A total of 18 Mt of CO2 has been injected since then, with an initial prediction of 25 Mt

of CO2 to be injected over the field’s planned 25-year life. In 2014, CO2 from the Gudrun gas field

(approximately 50 kilometers north) was processed through the Sleipner Carbon Capture and Storage

(CCS) plant, resulting in the production of an additional 100,000 to 200,000 tonnes of CO2 each year

[4,5]. To avoid extra costs and risks, it was decided not to build a specific monitoring well and instead to

use distant geophysical monitoring technologies. Extensive geophysical and environmental monitoring

have been put in place, including a 3D seismic survey, eight 4D seismic surveys, four microgravimetric

measurements on the seabed, one electromagnetic survey, and two imaging surveys. The pressure

and flow rate at the wellhead are regularly monitored and have remained the same since the injection

began after the injection well was re-completed to address the injectivity issues that occurred in the early

stages of the project [4,17–19]. No signs of CO2 leakage from the storage unit have been detected [19].

In December 2019, Equinor released 4D seismic data with an area of 4 km x 7 km and a 2-second

recording acquired in 1994, 1999, 2001, 2004, 2006, 2008, and 2010. Initially, the data was processed

in 2001, using the 1994, 1999, and 2001 acquisitions for time-lapse analysis [68].
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Subsequently, in 2007 PGS reprocessed the seismic data from 1994, 2001, 2004, and 2006, which im-

proved the quality of the data [41]. For time-lapse analysis, the 1994, 2008 and 2010 acquisitions were

processed in 2008 and 2010, and the 1994 data was separately reprocessed in both years. Moreover,

the 2010 data was processed for both time-lapse and imaging [19, 69, 70]. To enhance seismic reso-

lution, a 2D seismic survey was conducted in 2006 with source and receiver tow depths of 3 meters,

instead of the more common depths of 6 meters and 8 meters in 3D surveys. This approach improved

resolution by pushing the frequency notches beyond the spectrum of the reflected pulses from the CO2

target. The 2006 2D data could not be converted into a 3D dataset, but it demonstrated the potential for

better-resolving CO2 layering in the reservoir. The data had a peak frequency of approximately 50 Hz,

similar to the 2D data set. Additionally, the temporal tuning thickness was estimated to be around 7 me-

ters, indicating enhanced resolution [17]. In the 2007 processing sequence, Tau-P deconvolution and 3D

Pre-stack time-migration were used. To address the reduction in seismic velocities caused by the expan-

sion of the CO2 plume, push-down observations were used to calculate the time-lapse stacking velocity

reduction. Post-stack global matching of phase, time, amplitude, and frequency was also performed. In

2010, dual streamer data was studied using image processing and time-lapse processing, allowing for

prestack wavefield separation and removal of receiver ghosts. This technique retrieved higher frequen-

cies and achieved a peak frequency of 50 Hz, similar to the 2D dataset [17,19]. Spectral decomposition

analysis has also been employed to improve the lower resolution limit of seismic data. By utilizing a

broader frequency spectrum, it allows for more detailed and precise analysis. In summary, these ap-

proaches in seismic data acquisition and analysis have been essential in increasing seismic resolution.

The use of 2D surveys with specific source and receiver tow depths, image processing and time-lapse

processing techniques, and advances in spectral decomposition analysis have collectively improved the

resolution of seismic data and improved the ability to resolve CO2 layering in reservoirs [17–19].

The Sleipner field has inspired a multitude of research across all levels of geological heterogeneity;

from simplified fluid flow numerical models [29, 71], to alternatives and more robust modeling schemes

such as gravity drainage Invasion Percolation methods and advanced non-darcy fluid flow modeling

pricilples [72]; to core-based studies [8, 73, 74] as well as some novel rock-physics based approaches

[9,10] leading up to an intensive seismic characterization efforts [15,18,70,75,76], all of which give way

for researchers to expand their scope and seek state-of-the-art, novel and innovative solutions such as

Full Waveform Inversion (FWI) [77, 78], as well as most recently machine-learning-based approaches

such as [79–82].

Although the Sleipner dataset is unrivaled in the quality of the 4D study conducted, the significant

challenge in interpreting the Sleipner dataset is the presence of non-repeatable noise between surveys

and tuning effects in the data [81]. This noise introduces complexity and makes it difficult to distinguish

the signal from the noise.
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To address this, sophisticated data processing techniques and analysis methods are necessary to en-

hance the signal-to-noise ratio. Tuning effects further complicate the interpretation process, making it

challenging to differentiate between seismic events accurately. Advanced processing algorithms and

interpretation workflows are required to mitigate these effects.

Ongoing research and development efforts focus on refining data processing techniques and inte-

grating advanced machine learning and artificial intelligence algorithms. These advancements aim to

reduce the impact of nonrepeatable noise and improve the resolution and accuracy of interpretations.

With advances in modern computing and seismic reservoir characterization, more integration work has

been published recently such as the work done by [82], where the authors have tested a Joint Inver-

sion of seismic data from Sleipner and synthetic resistivity data within a tensor flow machine learning

scheme utilizing a simplified version of the rock physics models proposed by [8–10]. The work of [79]

approaches the same Sleipner dataset with a convolutional neural network to extract 4D signals, while

the work of [81] proposed a joint inversion-segmentation approach inverting for Ip models of the monitor

and the base of the Sleipner data set based on a segmentation approach using the PyLops Python

package.

Our proposed methodology was implemented on the Sleipner dataset by applying the necessary

steps described in chapter 3. The Sleipner data set is retrieved from the CO2 data share [83], where

there is a variety of data included in the data set. In addition to different processing of the seismic data,

included within the data surfaces for the base of the Utsira formation, the top Utsira, thick shale, and

finally the most famous sand-wedge L9, the final resting place of the Co2; along with the aforementioned

surfaces, less confident surfaces of the intraformational subseismic resolution shale baffles, which is one

of the main driving forces for the multilayer distributions arrangement of the CO2 plume.

Also provided in the data set are interval velocity data and interval velocity models prior to and post-

injection, it is worth mentioning that the monitor velocity cubes are from 2013. Using the high confidence

interperation of Top Sandwdge L9 and base Utsira formation surfaces to calculate reservoir thickness

and translate the Top sand wedge up with half of the wavelet, 85 ms half of a 170 ms wavelet, after

which the new translated L9 is copied and then translated downwards 510 ms seconds to form the base

of our inversion grid. After the grinding, layering, well log upscaling, and seismic resampling our inver-

sion model has the following dimensions 249 x 468 x 255 in the i, j, and k directions, respectively. It is

important to note that we are using the same grid to model both inversion algorithms to be implemented

in the thesis using the 2007 processed Sleipner data, as it is the one with the most seismic vintages

in one processing, 1994, 2001, 2004 and 2006 data. Both methods implemented in this thesis have

been executed with 6 iterations of 32 simulations each which provide the necessary input for further

uncertainty assessment of the performance of algorithms.
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It can be seen in fig. 4.1, the histograms of inverted Ip compared to well Ip from the both inversion

methods and the detailed statistics can be found in the appendix in table A.2. The histogram form both

methods shows that the inverted Ip models are honoring the experimental data from the well as they

have the same minimum and maximum values, the reproduction of the mean Ip as inferred form the well

log, and as well as the reduction of the variance in the model. The Ip variance in the GSI 4D compared

to that of the GSI shows a reduction in the model variance, while the variance in Ip difference is higher

in the GSI 4D than that of the GSI

(a) Histogram GSI 4D (b) Histogram GSI

Figure 4.1: Histogram Acoustic Impedance
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The distribution shown in fig. 4.2 and table A.6 depict the histogram and statistics for Acoustic

Impedance Similarity (bestccAI6) of both methods. The key takeaways are the concentration of high

similarity values higher than 50 percent highlighting the ability of both methods to retrieve Ip traces

that generate high similarity with the measured seismic response. While fig. 4.3 shows the histogram

of synthetic seismic from both methods and table 4.1 compares the statistics to that of the respective

real seismic data, where we can notice the differences in the minimum and maximum values from the

synthetic of both methods and the real seismic, these differences also contribute to some visualization

drawbacks as the color scales need to incorporate the global minimum and maximum to be valid for

comparison of different properties. fig. 4.4 and table A.7 shows the Mean-CC histogram and descriptive

statistics results respectively, which are the similarity between the generated synthetic seismic from the

mean Ip model of the sixth iteration and the observed seismic. Similar to bestccAI6 results, it can be

seen that the values are high and the majority is above 50 percent, highlighting the performance of both

algorithms.

(a) GSI 4D (b) GSI

Figure 4.2: Histogram similarity Ip
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(a) GSI 4D (b) GSI

Figure 4.3: Histogram Seismic

Figure fig. 4.5 show the spatial continuity revealing variograms in the major and minor directions, as

described in chapter 3, for 1994, 2001, 2004, and 2006 seismic data respectively, which are crucial for

any geostatistical study.
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Table 4.1: Seismic

Name Type Min Max Delta N Mean Std Var Sum
GSI SeisMean 6 (T0) Cont. -0.59 0.63 1.22 29696535 0 0.13 0.02 -240.94
GSI 4D SeisMean 6 (T1) Cont. -1.22 1.24 2.46 29696535 0 0.15 0.02 1556.03
GSI SeisMean 6 (T1) Cont. -1.23 1.24 2.47 29696535 0 0.17 0.03 2112.4
GSI 4D SeisMean 6 (T2) Cont. -1.33 1.33 2.66 29696535 0 0.17 0.03 -3197.93
GSI SeisMean 6 (T2) Cont. -1.35 1.31 2.67 29696535 0 0.18 0.03 -1936.96
GSI 4D SeisMean 6 (T3) Cont. -1.28 1.35 2.62 29696535 0 0.16 0.03 -5908.04
GSI SeisMean 6 (T3) Cont. -1.32 1.34 2.66 29696535 0 0.18 0.03 -4237.69
RealSeismic (T0) Cont. -3.44 2.63 6.08 29696535 0 0.16 0.03 1423.29
RealSeismic (T1) Cont. -3.41 2.74 6.15 29696535 0 0.18 0.03 6455.36
RealSeismic (T2) Cont. -3.35 2.75 6.09 29696535 0 0.2 0.04 16771.07
RealSeismic (T3) Cont. -3.65 2.94 6.58 29696535 0 0.21 0.04 18530.6

(a) Histogram MeanCC GSI 4D (b) Histogram MeanCC GSI

Figure 4.4: Histogram MeanCC
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(a) Variogram Major 1994 (b) Variogram Minor 1994

(c) Variogram Major 2001 (d) Variogram Minor 2001

(e) Variogram Major 2004 (f) Variogram Minor 2004

(g) Variogram Major 2006 (h) Variogram Minor 2006

Figure 4.5: Variogram 1994
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Next section we will go through the results from GSI 4D, from all years in the study, examining the

Ip and the corresponding best similarity coefficients along with the generated synthetic seismic and the

corresponding Mean similarity coefficient between real and synthetic seismic. Then we will process and

examine the results; first, we compare the real seismic with the synthetic seismic generated, then we

compare the observed, that is, the real 4D difference subtracting the real base minus the real monitor,

and the predicted 4D difference, the real base minus synthetic monitor, which is the essence of our

proposed methodology objective function driving the convergence of the iterative procedure; lastly, we

show the Ip base subtracted from the Ip monitor along with the point-wise variance.

4.2 Geostatistical Seismic Time Lapse (4D) Inversion

In this section, we will use the point of views in fig. 4.6 to present all the results from this thesis in a

cross-section, plan view from layer 9 and layer 5 respectively. In the cross section, it shows well 15-9-

13, the top bold line represents layer 9, the middle line represents layer 5 and bottom bold line represents

the base of the utsira formation, converted using the 2013 velocity model provided, which is critical for

analyzing the performance of both methods, giving a reference to velocity pushdown effects. In the plan

veiw, it shows the location if the well relative to the plume outline from the 2010 monitor survey as well

as highlights the location of the corss section utilized.

In this thesis we have used the following naming convention for our properties, first is the inversion

method implemented GSI and GSI 4D then followed with the property name then followed with the time

steps. The Ip is meanIp (Tn), Synthetic Seismic is SeisMean6, difference in Ip diff Ip (Tn), difference in

seismic real is Real4D (Tn) and syntheic Synth 4D , Ip and seismic similiarities are best CC A6 (Tn)and

meanCC (Tn) , respectively. The CO2 injection into the formation causes the reduction in the Ip values.

Thus, the subtraction of the monitor from the base will be represented as a hard event signature in the

4D seismic signal.
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(a) Cross Section

(b) Plan View L9 (c) Plan View L5

Figure 4.6: Results Display Positions.
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4.2.1 Inversion

In figure 4.7 we can see the inversion results of the base seismic inversion for Ip from 1994 prior to

injection, along with synthetic seismic and as well as the best CC Ip from the sixth iteration, and figure

4.8 shows real and synthetic for the baseline survey from the south, then the top view of Top Sand wedge

L9 and the base of the shale layer L5 and overlain with the plume boundaries from 2010 provided in the

data set.

(a) Ip 1994 GSI 4D (b) Similarity Ip 1994 GSI 4D

(c) Synthetic Seismic 1994 GSI 4D (d) Mean CC 1994 GSI 4D

Figure 4.7: Inversion Results 1994 GSI 4D
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(a) Real Seismic 1994 (b) Synthetic Seismic 1994 GSI4D

(c) Real Seismic 1994 L9 (d) Synthetic Seismic 1994 L9 GSI 4D

(e) Real Seismic 1994 L5 (f) Synthetic Seismic 1994 L5 GSI 4D

Figure 4.8: GSI 4D 1994 Results L9 L5
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4.9, 4.10, and 4.11, show the inversion results of 2001, 2004, and 2006 monitors from the south,

respectively. All these figures have 3 distinct features; first is the inversion of high resolution Ip models

highlighting the internal architecture of the formation’s interbedded interformational shales, second are

the high values of both best cc Ip and mean CC and the corresponding synthetic seismic which is of

great quality, especially with the increase of the CO2 saturation. While 4.12, 4.13, and 4.14, show the

inversion results of 2001, 2004, and 2006 monitors from a top view of layers 9 and 5, respectively.

(a) Ip 2001 GSI 4D (b) Similarity Ip 2001 GSI 4D

(c) Synthetic Seismic 2001 GSI 4D (d) Mean CC 2001 GSI 4D

Figure 4.9: Inversion Results 2001 GSI 4D
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(a) Ip 2004 GSI 4D (b) Similarity Ip 2004 GSI 4D

(c) Synthetic Seismic 2004 GSI 4D (d) Mean CC 2004 GSI 4D

Figure 4.10: Inversion Results 2004 GSI 4D
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(a) Ip 2006 GSI 4D (b) Similarity Ip 2006 GSI 4D

(c) Synthetic Seismic 2006 GSI 4D (d) Mean CC 2006 GSI 4D

Figure 4.11: Inversion Results 2006 GSI 4D
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(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI 4D

(c) Real Seismic 2001 L9 (d) Synthetic Seismic 2001 L9 GSI 4D

(e) Real Seismic 2001 L5 (f) Synthetic Seismic 2001 L5 4D

Figure 4.12: GSI 4D 2001 Results L9 L5
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(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI 4D

(c) Real Seismic 2004 L9 (d) Synthetic Seismic 2004 L9 GSI 4D

(e) Real Seismic 2004 L5 (f) Synthetic Seismic 2004 L5 4D

Figure 4.13: GSI 4D 2004 Results L9 L5
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(a) Real Seismic 2006 (b) Synthetic Seismic 2006 GSI 4D

(c) Real Seismic 2006 L9 (d) Synthetic Seismic 2006 L9 GSI 4D

(e) Real Seismic 2006 L5 (f) Synthetic Seismic 2006 L5 4D

Figure 4.14: GSI 4D 2006 Results L9 L5
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It can be seen in figures 4.15 and 4.16; the results from 2001 showing the real seismic compared

with GSI synthetic seismic, the observed, ie. real 4D difference subtracting real base minus real monitor,

and the predicted 4D difference, real base minus synthetic monitor, and show the Ip base subtracted

from the Ip monitor along with the point-wise variance, with a view from the south and top view of base

shale layer L5 respectively.

It can be seen in figures 4.17 and 4.18; the results from 2004 showing the real seismic compared

with GSI synthetic seismic, the observed, ie. real 4D difference subtracting real base minus real monitor,

and the predicted 4D difference, real base minus synthetic monitor, and show the Ip base subtracted

from the Ip monitor along with the point-wise variance, with a view from the south and top view of base

shale layer L5 respectively.

It can be seen in figures 4.19 and 4.20; the results from 2006 showing the real seismic compared

with GSI synthetic seismic, the observed, ie. real 4D difference subtracting real base minus real monitor,

and the predicted 4D difference, real base minus synthetic monitor, and show the Ip base subtracted

from the Ip monitor along with the point-wise variance, with a view from the south and top view of base

shale layer L5 respectively.
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(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2001 GSI 4D

(e) Ip Base minus Ip Monitor 2001 GSI 4D (f) Point-wise Variance

Figure 4.15: Processing GSI 4D 2001 Results
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(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2001 GSI 4D

(e) Ip Base minus Ip Monitor 2001 GSI 4D (f) Point-wise Variance

Figure 4.16: Processing GSI 4D 2001 Results L5
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(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2004 GSI 4D

(e) Ip Base minus Ip Monitor 2004 GSI 4D (f) Point-wise Variance

Figure 4.17: Processing GSI 4D 2004 Results
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(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2004 GSI 4D

(e) Ip Base minus Ip Monitor 2004 GSI 4D (f) Point-wise Variance

Figure 4.18: Processing GSI 4D 2004 Results L5
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(a) Real Seismic 2006 (b) Synthetic Seismic 2006 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2006 GSI 4D

(e) Ip Base minus Ip Monitor 2006 GSI 4D (f) Point-wise Variance

Figure 4.19: Processing GSI 4D 2006 Results
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(a) Real Seismic 2006 (b) Synthetic Seismic 2006 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2006 GSI 4D

(e) Ip Base minus Ip Monitor 2006 GSI 4D (f) Point-wise Variance

Figure 4.20: Processing GSI 4D 2006 Results L5
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4.3 GSI versus GSI 4D

In this section, we compare the results from GSI and GSI 4D, we look at the Ip results, base Ip minus

monitor Ip as well as the point-wise variance of both methods to critically assess the results and present

observations.

In order to have a consistent evaluation and assessment of the results, we processed the GSI results

similar to the processing of the GSI 4D results. It can be seen in figures 4.21 and 4.22; the results from

2001 showing the real seismic compared with GSI synthetic seismic, the observed, ie. real 4D difference

subtracting real base minus real monitor, and the predicted 4D difference, real base minus synthetic

monitor, and show the Ip base subtracted from the Ip monitor along with the point-wise variance, with a

view from the south and top view of base shale layer L5 respectively.

It can be seen in figures 4.23 and 4.24; the results from 2004 showing the real seismic compared

with GSI synthetic seismic, the observed, ie. real 4D difference subtracting real base minus real monitor,

and the predicted 4D difference, real base minus synthetic monitor, and show the Ip base subtracted

from the Ip monitor along with the point-wise variance, with a view from the south and top view of base

shale layer L5 respectively.
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(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI

(c) Real Seismic Base minus Real Seismic Monitor
2001

(d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2001 GSI

(e) Ip Base minus Ip Monitor 2001 GSI (f) Point-wise Variance

Figure 4.21: Processing GSI 2001 Results
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(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2001 GSI

(e) Ip Base minus Ip Monitor 2001 GSI (f) Point-wise Variance

Figure 4.22: Processing GSI 2001 L5 Results
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(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI

(c) Real Seismic Base minus Real Seismic Monitor
2004 GSI

(d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2004 GSI

(e) Ip Base minus Ip Monitor 2004 GSI (f) Point-wise Variance 2004 GSI

Figure 4.23: Processing GSI 2004 Results
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(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI

(c) Real Seismic Base minus Real Seismic Monitor
2004 GSI

(d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2004 GSI

(e) Ip Base minus Ip Monitor 2004 GSI (f) Point-wise Variance 2004 GSI

Figure 4.24: Processing GSI 2004 Results L5
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It can be seen in figures 4.25 and 4.26; the results from 2006 showing the real seismic compared

with GSI synthetic seismic, the observed, ie. real 4D difference subtracting real base minus real monitor,

and the predicted 4D difference, real base minus synthetic monitor, and show the Ip base subtracted

from the Ip monitor along with the point-wise variance, with a view from the south and top view of base

shale layer L5 respectively.
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(a) Real Seismic 2006 (b) Synthetic Seismic 2006 GSI

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2006 GSI

(e) Ip Base minus Ip Monitor 2006 GSI (f) Point-wise Variance 2006 GSI

Figure 4.25: Processing GSI 2006 Results
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(a) Real Seismic 2006 (b) Synthetic Seismic 2006 GSI

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2006 GSI

(e) Ip Base minus Ip Monitor 2006 GSI (f) Point-wise Variance 2006 GSI

Figure 4.26: Processing GSI 2006 Results L5
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4.3.1 Discussion

Figures 4.27 and 4.28 show the results from GSI and GSI 4D, we look at the Ip results, base Ip minus

monitor Ip as well as the point-wise variance from the 2001 dataset; while figures 4.29 and 4.30 show

the results from GSI and GSI 4D, we look at the Ip results, base Ip minus monitor Ip as well as the

point-wise variance from the 2004 dataset; and figures 4.31 and 4.32 show the results from GSI and

GSI 4D, we look at the Ip results, base Ip minus monitor Ip as well as the point-wise variance from the

2006 dataset

It can be seen from figure 4.27 we see that the Ip results and base Ip minus monitor Ip as well, are

almost identical except for some fuzziness at the base and flanks of the plume Ip due to the convergence

being driven by 4D signals rather than the classic seismic driven convergence, we can also notice the

distinctions in the variance results. Figure 4.28 shows top view of the results, where we found the dif-

ference of Ip is almost identical spatially but with slightly different amplitude intensity, which is probably

due to the fact that we based our variograms on the seismic data to mitigate the lack of wells in the area;

the Ip and variance results depicting the essence of our methodology and are the corner point of this

thesis, depicting distinct differences GSI Ip 4D has a better characterization of the plume’s boundary

as well as internal architecture. It is worth noting that the GSI 4D captures the area outside the plume

fairly good, not as well as the classic GSI, this is due to the fact that our methodology is driven by the

4D signal convergence and that implies a high noise content outside of the plume increases the local

variance; this is where the algorithm will give less influence on higher variance regions and populating

them with the mean values, which in our case is the base seismic data. Figures 4.29 to 4.32, show the

same results from 2004 through 2006, which cement these observations even further. In the appendix

A attached are the remaining visuals from the thesis for further analysis and review by the reader.

In all the results we can see stability of the base of the utsira formation from the diffrences results,

Ip and seismic, which indicate that the performance of our methods was able to correctly position the

4D signals in the correct location which can be seen with the comparison of the signal at the base

of formation. It is worth mentioning the the inverion reults from individaul time steps clearly show the

pushdown effects before the subtraction with base. Our results have achived the objective of the thesis

to link the different seismic survies in the temporal domain.

The key takeaway is that the differences in variance show the core strength of both algorithms.

The classic GSI is able to capture distinct point breaks in the seismic amplitude, which can be a good

indicator for the migration pathway of the CO2 in the subsurface while the GSI 4D is capturing the CO2

plume and the illuminated subseismic resolution shales excellently, which is demonstrated with almost

zero variance inside the plume when compared to the classic GSI.
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Our method shows great promise, as it is based on the fundamentals of the Global Stochastic In-

version [62], to be extended to Global Elastic Inversion and 4D Geo-mechanical Earth Modeling both of

which are crucial to the next steps in the Energy Transition and Carbon Neutrality global efforts.

The stregnth of our propsed method is the ability to use the seismic directly, the probabilistic frame-

work aids in the uncertainty assessment due to the difference in the resolution between well seismic

data, and that it can be extended for elastic inversion.
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(a) Ip 2001 GSI (b) Ip 2001 GSI 4D

(c) Ip Base Minus Ip Monitors 2001 GSI (d) Ip Base Minus Ip Monitors 2001 GSI 4D

(e) Point-wise Variance 2001 GSI (f) Point-wise Variance 2001 GSI 4D

Figure 4.27: Model Domain 2001
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(a) Ip 2001 GSI (b) Ip 2001 GSI 4D

(c) Ip Base Minus Ip Monitors 2001 GSI (d) Ip Base Minus Ip Monitors 2001 GSI 4D

(e) Point-wise Variance 2001 GSI (f) Point-wise Variance 2001 GSI 4D

Figure 4.28: Model Domain 2001 L5
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(a) Ip 2004 GSI (b) Ip 2004 GSI 4D

(c) Ip Base Minus Ip Monitors 2004 GSI (d) Ip Base Minus Ip Monitors 2004 GSI 4D

(e) Point-wise Variance 2004 GSI (f) Point-wise Variance 2004 GSI 4D

Figure 4.29: Model Domain 2004
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(a) Ip 2004 GSI (b) Ip 2004 GSI 4D

(c) Ip Base Minus Ip Monitors 2004 GSI (d) Ip Base Minus Ip Monitors 2004 GSI 4D

(e) Point-wise Variance 2004 GSI (f) Point-wise Variance 2004 GSI 4D

Figure 4.30: Model Domain 2004 L5
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(a) Ip 2006 GSI (b) Ip 2006 GSI 4D

(c) Ip Base Minus Ip Monitors 2006 GSI (d) Ip Base Minus Ip Monitors 2006 GSI 4D

(e) Point-wise Variance 2006 GSI (f) Point-wise Variance 2006 GSI 4D

Figure 4.31: Model Domain 2006
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(a) Ip 2006 GSI (b) Ip 2006 GSI 4D

(c) Ip Base Minus Ip Monitors 2006 GSI (d) Ip Base Minus Ip Monitors 2006 GSI 4D

(e) Point-wise Variance 2006 GSI (f) Point-wise Variance 2006 GSI 4D

Figure 4.32: Model Domain 2006 L5
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Figures 4.33 and A.19 show real seismic compared to synthetic seismic from both methods and

real seismic base minus real seismic monitor compared with the real seismic base minus synthetic motor

of each method from the 2001 dataset; while figures 4.34 and A.20 show real seismic compared to

synthetic seismic from both methods and real seismic base minus real seismic monitor compared with

real seismic base minus synthetic motor of each method from the 2004 dataset; and figures 4.35 and

A.21 show real seismic compared to synthetic seismic from both methods and real seismic base minus

real seismic monitor compared with the real seismic base minus synthetic motor of each method from

the 2006 dataset.
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(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI (c) Synthetic Seismic 2001 GSI 4D

(d) Real Seismic Base Minus Real
Seismic Monitors 2001

(e) Real Seismic Base Minus Synthetic
Seismic Monitors 2001 GSI

(f) Real Seismic Base Minus Synthetic
Seismic Monitors 2001 GSI 4D

Figure 4.33: Seismic Domain 2001
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(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI (c) Synthetic Seismic 2004 GSI 4D

(d) Real Seismic Base Minus Real
Seismic Monitors 2004

(e) Real Seismic Base Minus Synthetic
Seismic Monitors 2004 GSI

(f) Real Seismic Base Minus Synthetic
Seismic Monitors 2004 GSI 4D

Figure 4.34: Seismic Domain 2004
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(a) Real Seismic 2006 (b) Synthetic Seismic 2006 GSI (c) Synthetic Seismic 2006 GSI 4D

(d) Real Seismic Base Minus Real
Seismic Monitors 2006

(e) Real Seismic Base Minus Synthetic
Seismic Monitors 2006 GSI

(f) Real Seismic Base Minus Synthetic
Seismic Monitors 2006 GSI 4D

Figure 4.35: Seismic Domain 2006
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(a) Point-wise Variance 2001 acGSI 4D L5 (b) MeanCC 2001 GSI 4D L5

(c) Point-wise Variance 2006 GSI 4D L5 (d) MeanCC 2006 GSI 4D L5

Figure 4.36: MeanCC and Point-wise Variance GSI 4D L5

Finally, figuers fig. 4.36 and fig. 4.37 shows the point-wise variance and meanCC from the top view

of layer 5 in year 2001 and 2006 utilizing GSI 4D and GSI, repectivly. The key takeaway is that the

differences in variance show the core strength of both algorithms. The classic GSI is able to capture

distinct point breaks in the seismic amplitude, which can be a good indicator for the migration pathway of

the CO2 in the subsurface while the GSI 4D is capturing the CO2 plume and the illuminated subseismic

resolution shales excellently, which is demonstrated with almost zero variance inside the plume when

compared to the classic GSI.
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Our method shows great promise, as it is based on the fundamentals of the Global Stochastic In-

version [62], to be extended to Global Elastic Inversion and 4D Geo-mechanical Earth Modeling both of

which are crucial to the next steps in the Energy Transition and Carbon Neutrality global efforts.

(a) Point-wise Variance 2001 GSI (b) MeanCC 2001 GSI

(c) Point-wise Variance 2006 GSI (d) MeanCC 2006 GSI

Figure 4.37: MeanCC and Point-wise Variance GSI
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5
Conclusions
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In this thesis we have covered the relevant literature reviewing the fundamentals of the geophysical

inverse problem, followed by a comparison between deterministic and probabilistic inversion methods

with a focus on the state of the art and the direction of the seismic reservoir characterization and inver-

sion research domain; finally, we highlighted the relevant Time-Lapse 4D interpretation methods.

In Chapter Three, we described the necessary steps to be applied before the implementation of our

proposed methodology. First, we described Exploratory Data Analysis which deals with mining the data,

analyzing, visualizing, and describing the data; then we walked through the procedures for creating the

Geocellular model for the inversion and followed with the methodology implemented for the calculation

of the experimental variogram as well as elaborating the spatial continuity revealing nested variogram

models. After which we gave a brief description of the Geostatistical Seismic Inversion methodology

implemented as a benchmark for our proposed iterative geostatistical inversion. Finally, we described

the stages of our proposed algorithm, highlighted the novelty of our approach, and the objective function

that drives the convergence of our inversion. Chapter four started with a description of the Sleipner data

set utilized to demonstrate our proposed methodology, followed by an illustration of the results of the

GSI algorithm to be implemented as a benchmark, and the results of our proposed methodology are

discussed.

Future recommendations, other than the possible extension of the algorithm, should include the addi-

tion of more well controls in the area. Another area for possible improvements is the wavelet extraction,

petrophysical analysis as well and detailed rock physics models. The Sleipner data set has never been

used with our GSI methodologies, this presents an opportunity to use the benchmark GSI inversions to

evaluate the changes in the reservoir properties such permeability enhancement or impairment due the

injection of supercritical CO2 which is an excellent collaboration point with our colleges form geochem-

istry.

Another avenue for development woulb be to mix our methodology with the Bayesian framework [84]

inverting for the ratio of Ip rather than inverting for 4D differences.
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A.1 Inversion Results L9 and L5

(a) Ip 2001 GSI (b) best cc AI6 2001 GSI

(c) Synthetic Seismic 2001 GSI (d) Mean CC 2001 GSI

Figure A.1: Inversion Results 2001 L9 GSI
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(a) Ip 2001 GSI (b) best cc AI6 2001 GSI

(c) Synthetic Seismic 2001 GSI (d) Mean CC 2001 GSI

Figure A.2: Inversion Results 2001 L5 GSI

95



(a) Ip 2004 GSI (b) best cc AI6 2004 GSI

(c) Synthetic Seismic 2004 GSI (d) Mean CC 2004 GSI

Figure A.3: Inversion Results 2004 L9 GSI
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(a) Ip 2004 GSI (b) best cc AI6 2004 GSI

(c) Synthetic Seismic 2004 GSI (d) Mean CC 2004 GSI

Figure A.4: Inversion Results 2004 L5 GSI
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(a) Ip 2006 GSI (b) best cc AI6 2006 GSI

(c) Synthetic Seismic 2006 GSI (d) Mean CC 2006 GSI

Figure A.5: Inversion Results 2006 L9 GSI
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(a) Ip 2006 GSI (b) best cc AI6 2006 GSI

(c) Synthetic Seismic 2006 GSI (d) Mean CC 2006 GSI

Figure A.6: Inversion Results 2006 L5 GSI
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A.2 GSI Processing L9

(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2001 GSI

(e) Ip Base minus Ip Monitor 2001 GSI (f) Point-wise Variance

Figure A.7: Processing GSI 2001 L9 Results

100



(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI

(c) Real Seismic Base minus Real Seismic Monitor
2004 GSI

(d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2004 GSI

(e) Ip Base minus Ip Monitor 2004 GSI (f) Point-wise Variance 2004 GSI

Figure A.8: Processing GSI 2004 Results L9
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(a) Real Seismic 2006 (b) Synthetic Seismic 2006 GSI

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2006 GSI

(e) Ip Base minus Ip Monitor 2006 GSI (f) Point-wise Variance 2006 GSI

Figure A.9: Processing GSI 2006 Results L9
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A.3 4D Inversion Results L9 and L5

(a) Ip 2001 GSI 4D (b) best cc AI6 2001 GSI 4D

(c) Synthetic Seismic 2001 GSI 4D (d) Mean CC 2001 GSI 4D

Figure A.10: Inversion Results 2001 L9 GSI 4D
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(a) Ip 2001 GSI 4D (b) best cc AI6 2001 GSI 4D

(c) Synthetic Seismic 2001 GSI 4D (d) Mean CC 2001 GSI 4D

Figure A.11: Inversion Results 2001 L5 GSI 4D
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(a) Ip 2004 GSI 4D (b) best cc AI6 2004 GSI 4D

(c) Synthetic Seismic 2004 GSI 4D (d) Mean CC 2004 GSI 4D

Figure A.12: Inversion Results 2004 L9 GSI 4D
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(a) Ip 2004 GSI 4D (b) best cc AI6 2004 GSI 4D

(c) Synthetic Seismic 2004 GSI 4D (d) Mean CC 2004 GSI 4D

Figure A.13: Inversion Results 2004 L5 GSI 4D
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(a) Ip 2006 GSI 4D (b) best cc AI6 2006 GSI 4D

(c) Synthetic Seismic 2006 GSI 4D (d) Mean CC 2006 GSI 4D

Figure A.14: Inversion Results 2006 L9 GSI 4D
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(a) Ip 2006 GSI 4D (b) best cc AI6 2006 GSI 4D

(c) Synthetic Seismic 2006 GSI 4D (d) Mean CC 2006 GSI 4D

Figure A.15: Inversion Results 2006 L5 GSI 4D
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A.4 Processing 4D GSI L9

(a) Real Seismic 2004 (b) Synthetic Seismic 2004 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2001 GSI 4D

(e) Ip Base minus Ip Monitor 2001 GSI 4D (f) Point-wise Variance

Figure A.16: Processeing GSI 4D 2004 Results L9
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(a) Real Seismic 2006 (b) Synthetic Seismic 2001 GSI 4D

(c) Real Seismic Base minus Real Seismic Monitor (d) Real Seismic Base minus Synthetic Seismic Moni-
tor 2001 GSI 4D

(e) Ip Base minus Ip Monitor 2001 GSI 4D (f) Point-wise Variance

Figure A.17: Processing GSI 4D 2006 Results L9

A.5 Model Domain GSI L9
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(a) Ip 2001 GSI (b) Ip 2001 GSI 4D

(c) Ip Base Minus Ip Monitors 2001 GSI (d) Ip Base Minus Ip Monitors 2001 GSI 4D

(e) Point-wise Variance 2001 GSI (f) Point-wise Variance 2001 GSI 4D

Figure A.18: Model Domain 2001 L9
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A.6 Seismic Domain L5

(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI (c) Synthetic Seismic 2001 GSI 4D

(d) Real Seismic Base Minus Real
Seismic Monitors 2001

(e) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2001
GSI

(f) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2001
GSI 4D

Figure A.19: Seismic Domain 2001 L5
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(a) Real Seismic 2004 L5 (b) Synthetic Seismic 2004 GSI L5 (c) Synthetic Seismic 2004 GSI 4D
L5

(d) Real Seismic Base Minus Real
Seismic Monitors 2004 L5

(e) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2004
GSI L5

(f) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2004
GSI 4D L5

Figure A.20: Seismic Domain 2004 L5
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(a) Real Seismic 2006 L5 (b) Synthetic Seismic 2006 GSI L5 (c) Synthetic Seismic 2006 GSI 4D
L5

(d) Real Seismic Base Minus Real
Seismic Monitors 2006 L5

(e) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2006
GSI L5

(f) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2006
GSI 4D L5

Figure A.21: Seismic Domain 2006 L5
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A.7 Seismic Domain L9

(a) Real Seismic 2001 (b) Synthetic Seismic 2001 GSI (c) Synthetic Seismic 2001 GSI 4D

(d) Real Seismic Base Minus Real
Seismic Monitors 2001

(e) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2001
GSI

(f) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2001
GSI 4D

Figure A.22: Seismic Domain 2001 L9
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(a) Real Seismic 2004 L9 (b) Synthetic Seismic 2004 GSI L9 (c) Synthetic Seismic 2004 GSI 4D
L9

(d) Real Seismic Base Minus Real
Seismic Monitors 2004 L9

(e) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2004
GSI L9

(f) Real Seismic Base Minus Syn-
thetic Seismic Monitors 2004
GSI 4D L9

Figure A.23: Seismic Domain 2004 L9
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(a) Ip 2006 GSI (b) Ip 2006 GSI 4D

(c) Ip Base Minus Ip Monitors 2006 GSI (d) Ip Base Minus Ip Monitors 2006 GSI 4D

(e) Point-wise Variance 2006 GSI (f) Point-wise Variance 2006 GSI 4D

Figure A.24: Model Domain 2006 L9
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Table A.1: Model Dimensions

Axis Min Max Delta
X 436910.32 440103.47 3193.14
Y 6469154.60 6475043.73 5889.13
Time -1332.74 -750.22 582.53
Lat 58°21’26.6323”N 58°24’38.6217”N 0°03’11.9894”
Long 1°55’13.1024”E 1°58’35.3111”E 0°03’22.2086”

Description Value
Original SRD: SRD Z=0.0 RV=1480.0
Target SRD: SRD Z=0.0 RV=1480.0
Absolute shift: 0.00
In this folder: 65
Includes sub folders: 65
Grid cells (nI x nJ x nK) 249 x 468 x 255
Total number of grid cells: 29715660
Total number of cells in filtered area: 29696535

Table A.2: Acoustic Impedance

Name Type Min Max Delta N Mean Std Var Sum
P impedanc Well 15-9/13 Cont. 3235.64 4912.88 1677.24 255 3815.44 363.49 132121.73 972938.08
GSI mean Ip (T0) Cont. 3235.64 4912.88 1677.24 29696535 3821.95 287.85 82856.34 1.13E+11
GSI 4D mean Ip (T1) Cont. 3235.64 4912.88 1677.24 29696535 3813.73 204.87 41972.36 1.13E+11
GSI mean Ip (T1) Cont. 3235.64 4912.88 1677.24 29696535 3814.54 235.57 55492.14 1.13E+11
GSI 4D mean Ip (T2) Cont. 3235.64 4912.88 1677.24 29696535 3814.11 222.6 49548.92 1.13E+11
GSI mean Ip (T2) Cont. 3235.64 4912.88 1677.24 29696535 3814.72 235.91 55653.36 1.13E+11
GSI 4D mean Ip (T3) Cont. 3235.64 4912.88 1677.24 29696535 3814.3 209.05 43703.21 1.13E+11
GSI mean Ip (T3) Cont. 3235.64 4912.88 1677.24 29696535 3815.2 235.85 55627.12 1.13E+11

Table A.3: Point-wise Variance

Name Type Min Max Delta N Mean Std Var Sum
GSI Pointwise Variance (T0) Cont. 0 216059.16 216059.16 29696535 27919.84 22571.9 509490860.5 8.29E+11
GSI 4D Pointwise Variance (T1) Cont. 0 289506.78 289506.78 29696535 54035.42 33702.64 1135867643 1.60E+12
GSI Pointwise Variance (T1) Cont. 0 270375.94 270375.94 29696535 39667.18 28129.64 791276477.7 1.18E+12
GSI 4D Pointwise Variance (T2) Cont. 0 276328.25 276328.25 29696535 44623.96 30538.35 932590862.9 1.33E+12
GSI Pointwise Variance (T2) Cont. 0 278387.91 278387.91 29696535 39682.3 28169.78 793536639.5 1.18E+12
GSI 4D Pointwise Variance (T3) Cont. 0 292465.03 292465.03 29696535 52438.65 33256.08 1105966938 1.56E+12
GSI Pointwise Variance (T3) Cont. 0 259808.73 259808.73 29696535 37805.19 27645.73 764286488.8 1.12E+12

Table A.4: Seismic base minus monitor

Name Type Min Max Delta N Mean Std Var Sum
Real 4D (T1) Cont. -2.72 2.76 5.48 29696535 0 0.13 0.02 -5032.08
GSI 4D Synth 4D T1 Cont. -1.33 1.26 2.6 29696535 0 0.11 0.01 -1796.97
GSI Synth 4D T1 Cont. -1.37 1.29 2.65 29696535 0 0.11 0.01 -2353.33
Real 4D (T2) Cont. -2.84 3.13 5.96 29696535 0 0.18 0.03 -15347.78
GSI 4D Synth 4D T2 Cont. -1.38 1.41 2.79 29696535 0 0.14 0.02 2957
GSI Synth 4D T2 Cont. -1.4 1.38 2.78 29696535 0 0.14 0.02 1696.03
Real 4D (T3) Cont. -2.93 3.4 6.33 29696535 0 0.17 0.03 -17107.31
GSI 4D Synth 4D T3 Cont. -1.36 1.45 2.81 29696535 0 0.13 0.02 5667.1
GSI Synth 4D T3 Cont. -1.32 1.44 2.76 29696535 0 0.13 0.02 3996.75
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Table A.5: Acoustic Impdedance Difference

Name Type Min Max Delta N Mean Std Var Sum
GSI 4D diff Ip T1 Cont. -1453.06 1398.34 2851.4 29696535 8.22 251.13 63068.69 244127789.3
GSI diff Ip T1 Cont. -1468.26 1418.09 2886.35 29696535 7.42 244.19 59629.84 220290819.5
GSI 4D diff Ip T2 Cont. -1472.73 1412.82 2885.55 29696535 7.84 281.68 79345.55 232846706
GSI diff Ip T2 Cont. -1486.72 1402.72 2889.44 29696535 7.23 270.06 72931.08 214669689.1
GSI 4D diff Ip T3 Cont. -1467.47 1426.12 2893.59 29696535 7.65 261.17 68211.3 227130303.9
GSI diff Ip T3 Cont. -1536.71 1371.49 2908.2 29696535 6.75 252.82 63918.57 200594440.5

Table A.6: Similarity Ip

Name Type Min Max Delta N Mean Std Var Sum
GSI Similarity Ip (T0) Cont. 0 0.95 0.95 29696535 0.8947 0.0944 0.0089 26570195.92
GSI 4D Similarity Ip (T1) Cont. 0 0.95 0.95 29696535 0.7984 0.1596 0.0255 23710125.86
GSI Similarity Ip (T1) Cont. 0 0.95 0.95 29696535 0.8837 0.1057 0.0112 26241452.83
GSI 4D Similarity Ip (T2) Cont. 0 0.95 0.95 29696535 0.8634 0.1201 0.0144 25639325.37
GSI Similarity Ip (T2) Cont. 0 0.95 0.95 29696535 0.8829 0.1073 0.0115 26218814.54
GSI 4D Similarity Ip (T3) Cont. 0 0.95 0.95 29696535 0.8035 0.1589 0.0252 23862154.76
GSI Similarity Ip (T3) Cont. 0 0.95 0.95 29696535 0.8826 0.106 0.0112 26209534.59

Table A.7: Similarity Seismic

Name Type Min Max Delta N Mean Std Var Sum
GSI Similarity Seismic (T0) Cont. 0.3684 0.9666 0.5982 29696535 0.8877 0.0442 0.002 26361524.13
GSI 4D Similarity Seismic (T1) Cont. 0.3103 0.9702 0.6599 29696535 0.8796 0.0528 0.0028 26121438.8
GSI Similarity Seismic (T1) Cont. 0.3461 0.9699 0.6238 29696535 0.9033 0.031 0.001 26823854.89
GSI 4D Similarity Seismic (T2) Cont. 0.2725 0.9697 0.6972 29696535 0.8871 0.0433 0.0019 26345270.43
GSI Similarity Seismic (T2) Cont. 0.3932 0.969 0.5758 29696535 0.8971 0.0335 0.0011 26639405.94
GSI 4D Similarity Seismic (T3) Cont. 0.2367 0.9697 0.733 29696535 0.8699 0.0543 0.0029 25834321.14
GSI Similarity Seismic (T3) Cont. 0.3335 0.9672 0.6337 29696535 0.8936 0.0334 0.0011 26535429.28
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