SIMULAÇÃO EM COMPUTADOR DO COMPORTAMENTO ÓPTICO DE HOMOGENEIZADORES EM FORNOS SOLARES DE ALTA CONCENTRAÇÃO

Pereira J.C.G.*, Rosa L.G.**

 * DEQ - Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, jose.carlos.pereira@tecnico.ulisboa.pt
** IDMEC - Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, luisguerra@tecnico.ulisboa.pt

RESUMO

Neste trabalho desenvolvemos modelos para simular em computador o comportamento óptico de diversos tipos de homogeneizadores, utilizados frequentemente em fornos solares de elevado fluxo para tornar mais homogénea a distribuição de radiação solar concentrada (e o correspondente perfil de temperatura). Os homogeneizadores foram estudados em função: 1) do número de faces internas espelhadas; 2) da altura do homogeneizador (centrado com o plano focal); 3) da posição do homogeneizador relativamente ao plano focal; e 4) do ângulo de inclinação das faces internas. Utilizou-se um modelo de raios provenientes de um helióstato que são a seguir concentrados num concentrador parabólico antes de atravessarem o homogeneizadore e incidirem num detector. Os resultados obtidos parecem mostrar que: i) a radiação à saída destes homogeneizadores é mais homogénea que à entrada; ii) o homogeneizador de 4 faces (mais fácil de construir) apresenta um dos melhores desempenhos entre os vários modelos estudados; iii) parece haver vantagem em inclinar ligeiramente as faces espelhadas (mais difícil de construir).

PALAVRAS-CHAVE: Optimização de Forno Solar, Homogeneizador de Radiação, Distribuição de Fluxo, Modelação Óptica, Simulações por Rastreamento de Raios

ABSTRACT

In this work, we developed computer models to simulate the optical behaviour of various types of homogenizers, frequently used in high-flux solar furnaces to improve the homogeneity of the concentrated solar radiation (and the corresponding temperature profile). Homogenizers were studied as a function of: 1) the number of internal mirrored faces; 2) the height of the homogenizer (centered along the focal plane); 3) the position of the homogenizer relatively to the focal plane; and 4) the tilt angle of the internal faces. The ray-tracing model assumes that the rays coming from a heliostat are concentrated in a parabolic concentrator and then go through a homogenizer, before being collected in a detector. The obtained results seem to show that: i) the output radiation, after leaving these homogenizers, is effectively more homogeneous than the input radiation; ii) the 4-face homogenizer (easier to build) has one of the best performances among the various models analysed; iii) apparently there is some advantage in tilting slightly the internal mirrored faces (more difficult to build).

KEYWORDS: Solar Furnace Optimization, Radiation Homogenizer, Flux Distribution, Optical Modelling, Ray Tracing Simulations

INTRODUÇÃO

Homogeneizadores como os representados na Fig. 1 são frequentemente utilizados para obter uma distribuição o mais homogénea possível da radiação obtida em fornos solares de alto fluxo, nomeadamente quando se pretende que esta radiação actue sobre um material sólido, em que a temperatura deve ser o mais igual possível em todos os pontos. Exemplos da utilização de homogeneizadores de radiação solar podem ser encontrados em vários trabalhos (Helmers et al. 2013; Shanks et al. 2014, 2017; Burhan et al. 2016; Gomez-Garcia et al. 2016; Luque et al. 2017, 2018; Yang et al. 2019).

Fig. 1. Exemplos de homogeneizadores (com 4 e 8 faces) utilizados em fornos solares de fluxo elevado

Neste trabalho geraram-se raios aleatórios paralelos que se fizeram incidir num concentrador parabólico antes de atravessarem um homogeneizador e serem analisados por detectores que permitem gerar imagens e analisar estatisticamente os resultados (Fig. 2).

Fig. 2. Esquema do modelo de simulação usado neste trabalho

Os modelos matemáticos e computacionais utilizados estão descritos em trabalhos anteriores (Pereira et al. 2019, 2020). Em todo o presente trabalho assumiu-se que a distância focal do forno solar é 7450 mm, que o ângulo máximo ("rim angle") vale 38° e que o diâmetro focal é 250 mm (valores típicos para este tipo de instalação solar). Em cada ensaio foram utilizados 10⁸ raios, que estudos preliminares mostraram garantir a estabilidade (os resultados não variam significativamente quando se aumenta o número de raios) e reprodutibilidade (os resultados não variam significativamente quando se muda a sequência de números pseudo-aleatórios) de cada simulação (detalhes destas simulações, incluindo os principais algoritmos utilizados, podem ser vistos em Pereira et al. 2021).

Um detector virtual é como uma máquina fotográfica: um rectângulo 2D de pixels, caracterizado por um vector centro, um vector unitário descrevendo a direcção para onde aponta e um vector unitário descrevendo a direcção do topo da imagem. Este rectângulo funciona como um histograma 2D, onde se acumula a informação dos raios que atingem o detector. O número de raios que atinge cada pixel do detector pode ser visto como o fluxo da radiação nesse ponto, e a soma para todos os pixéis pode ser vista como a potência total recolhida pelo detector. A informação recolhida pode ser analisada e visualizada em muitas formas diferentes. Neste trabalho optou-se por mostrar as imagens da radiação recolhida numa escala de cores relativa (mínimo = azul, máximo = vermelho), que permite optimizar a análise de cada imagem (embora torne difícil comparar imagens diferentes, porque as mesmas cores representam fluxos diferentes).

RESULTADOS OBTIDOS E DISCUSSÃO

Todos os homogeneizadores estudados neste trabalho, com 3, 4, 6, 8, 4×4 e ∞ faces, estão representados na Fig. 3.

Fig. 3. Fluxo de radiação à entrada e à saída dos diversos homogeneizadores estudados neste trabalho, quando o seu centro coincide com o plano focal da radiação concentrada

Utilizou-se sempre o critério de maximizar a abertura transversal do homogeneizador sem exceder 250×250 mm. Por exemplo, o homogeneizador 4×4 apresenta aberturas de 124 mm × 124 mm, com paredes internas com 2 mm de espessura. Os resultados obtidos mostram um bom desempenho para todos os homogeneizadores, particularmente para os sistemas com 4, 6 e 4×4 faces. Estes resultados são confirmados pelos valores obtidos para o CV (Coeficiente de Variação = desvio padrão / valor médio) de cada imagem. Como o homogeneizador de 4 faces apresentou um excelente resultado e é mais fácil de construir, foi utilizado no resto deste trabalho.

Na Fig. 4 mostram-se os resultados obtidos quando se varia o comprimento deste homogeneizador (250 mm, 300 mm, 350 mm, 400 mm, 450 mm, 500 mm), mantendo o foco no centro do mesmo (homogeneizadores com menos de 250 mm de altura são demasiado pequenos para alterarem os resultados). Como resultado da posição do foco, homogeneizadores maiores tendem a perder uma parte significativa da radiação à entrada, porque a radiação (mais longe do foco) está menos concentrada. Colocar o foco sempre à entrada do homogeneizador, porventura a solução mais interessante, pelo menos para efeitos deste estudo comparativo, ainda não foi experimentado neste trabalho. Os resultados obtidos parecem mostrar uma boa homogeneização para comprimentos maiores ou iguais a 350 mm. Este comprimento parece ser um bom compromisso entre o funcionamento óptico do homogeneizador e a conveniência geométrica da sua relativa compacidade.

Fig. 4. Fluxo de radiação à entrada e à saída do homogeneizador de 4 faces, centrado no plano focal da radiação, em função da altura do homogeneizador

Na Fig. 5 mostram-se os resultados obtidos para o homogeneizador de 4 faces, com altura igual a 350 mm, quando se varia a posição do foco do feixe de luz relativamente à altura do homogeneizador (0/4 = saída, 1/4, 2/4, 3/4, 4/4 = entrada).

Fig. 5. Fluxo de radiação à entrada e à saída do homogeneizador de 4 faces, em função da posição do mesmo relativamente ao plano focal F

É importante referir que a posição do plano focal é sempre a mesma; é o homogeneizador que sobe ou desce. Os resultados obtidos com base nestes estudos preliminares parecem indicar que a melhor posição para o homogeneizador ocorre quando o foco está mesmo à entrada do homogeneizador (posições 4/4 e 3/4). Nesta geometria, a radiação colectada à entrada é máxima e o CV da radiação à saída é mais baixo, estando esta portanto mais distribuída. O CV aumenta rapidamente quando o plano focal desce relativamente ao homogeneizador (posições 1/4 e 0/4), e a potência colectada à entrada também diminui rapidamente.

Na Fig. 6 mostram-se os resultados obtidos para o homogeneizador de 4 faces, com altura igual a 350 mm, quando se varia o ângulo de inclinação das faces internas $(0^\circ, 2^\circ, 4^\circ, 6^\circ, 8^\circ)$.

Fig. 6. Fluxo de radiação à entrada e à saída do homogeneizador de 4 faces, centrado no plano focal da radiação, em função da inclinação das paredes reflectoras do homogeneizador

Os resultados mostram uma flutuação considerável no valor de CV para a radiação à saída, que começa por aumentar de 0.074 para 0.107, antes de diminuir para 0.030 e aumentar de novo para 0.044 e 0.125. Esta flutuação parece ser o resultado de um comportamento óptico complexo dentro destes homogeneizadores inclinados. Mudando as sequências de números pseudo-aleatórios ou aumentando o número de raios para 10⁹ não altera os resultados obtidos. Considerando apenas os resultados obtidos, a eficiência do homogeneizador parece ser máxima quando as faces internas do homogeneizador têm uma inclinação de cerca de 5°.

Para inclinações superiores a 8°, regista-se uma perda cada vez mais significativa de radiação à saída (que já se nota nos valores da Fig. 6 para 8°: 0.702 > 0.700). Uma investigação detalhada desta perda permitiu concluir-se que se deve a raios que entram no homogeneizador com inclinações muito acentuadas e que por essa razão sofrem múltiplas reflexões dentro do homogeneizador, em cada uma delas perdendo parte da sua componente longitudinal, que acaba por inverter o sinal, saindo os raios pela abertura da entrada, após mais algumas reflexões. Por exemplo, para uma inclinação das faces espelhadas de 8.1°, detectámos um raio que entrou com uma inclinação de 31° (um valor elevado mas abaixo do "rim angle" de 38°, o ângulo máximo permitido pela geometria do concentrador parabólico), que ao fim de 5 reflexões dentro do homogeneizador inverteu a sua direcção e após mais 4 reflexões acabou por sair do homogeneizador pela entrada.

CONCLUSÕES

As principais conclusões obtidas (derivadas da análise estatística dos padrões de luz recolhidos nos detectores virtuais colocados à saída dos homogeneizadores) são as seguintes: 1) em todos os casos estudados, a homogeneidade do feixe aumentou significativamente após atravessar o homogeneizador, o que parece confirmar a utilidade óptica destes dispositivos; 2) aumentar o número de faces internas do homogeneizador não parece aumentar a sua eficiência. O homogeneizador com 4 faces apresentou um dos melhores comportamentos ópticos e por essa razão foi escolhido para os outros estudos. O homogeneizador cilíndrico parece distribuir radialmente os raios de forma menos homogénea; 3) aumentar a altura do homogeneizador reduz a radiação colectada, se o foco estiver no centro; 4) a melhor posição para o foco parece ser à entrada do homogeneizador, que permite maximizar a recolha de radiação e a sua distribuição dentro do homogeneizador; 5) inclinar as faces internas do homogeneizador parece aumentar a sua eficiência (embora dificulte muito a sua construção), conduzindo no entanto a perdas significativas, para ângulos superiores a 8°.

AGRADECIMENTOS

Este trabalho foi parcialmente financiado pela Fundação para a Ciência e a Tecnologia (FCT) de Portugal, através do IDMEC - Instituto de Engenharia Mecânica (Pólo IST) e LAETA (projecto UIDB/50022/2020).

REFERÊNCIAS

Burhan M., Chua K.J.E. and Ng K.C. (2016). Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis. *Energy Convers. Manag.* 116, 58–71.

Gomez-Garcia F., Santiago S., Luque S., Romero M. and Gonzalez-Aguilar J. (2016). A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers. *AIP Conf. Proc.* 1734, 30018.

Helmers H., Thor W.Y., Schmidt T., van Rooyen D. and Bett A.W. (2013). Optical analysis of deviations in a concentrating photovoltaics central receiver system with a flux homogenizer. *Appl. Optics* 52, 2974–2984.

Luque S., Bai F., González-Aguilar J., Wang Z. and Romero M. (2017). A parametric experimental study of aerothermal performance and efficiency in monolithic volumetric absorbers. *AIP Conf. Proc.* 1850, 030034.

Luque S., Santiago S., Gomez-Garcia F., Romero M. and Gonzalez-Aguilar J. (2018). A new calorimetric facility to investigate radiative-convective heat exchangers for concentrated solar power applications. *Int. J. Energy Res.* 42, 966–976.

Pereira J.C.G., Fernandes J. and Rosa L.G. (2019). Mathematical models for simulation and optimization of high-flux solar furnaces. *Math. Comput. Appl.* 24, 65.

Pereira J.C.G., Rodríguez J., Fernandes J. and Rosa L.G. (2020). Homogeneous flux distribution in high-flux solar furnaces. *Energies* 13, 433.

Pereira J.C.G., Rahmani K. and Rosa L.G. (2021). Computer modelling of the optical behavior of homogenizers in high-flux solar furnaces. *Energies* 14, 1828.

Shanks K., Sarmah N., Reddy K.S. and Mallick T. (2014). The design of a parabolic reflector system with high tracking tolerance for high solar concentration. *AIP Conf. Proc.* 1616, 211–214.

Shanks K., Baig H., Singh N.P., Senthilarasu S., Reddy K.S. and Mallick T.K. (2017). Prototype fabrication and experimental investigation of a conjugate refractive reflective homogeniser in a Cassegrain concentrator. *Sol. Energy* 142, 97–108.

Yang Z.P., Li L., Wang J.T., Wang W.M. and Song J.F. (2019). Realization of high flux daylighting via optical fibers using large Fresnel lens. *Sol. Energy* 183, 204–211.