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Abstract

This thesis focus on various aspects of KAM theory, i.e., the study of invariant

tori of a dynamical system where the motion is quasi-periodic. We show that the

Diophantine condition that appears in such problems, in order to deal with conver-

gence issues related with the appearance of “small divisors”, can be interpreted as

a cohomological condition. We then consider two concrete distinct classes of KAM

problems:

1) We present a KAM theorem for presymplectic dynamical systems. The theorem

has an “a posteriori” format: given a Diophantine frequency ω and a family of

presymplectic mappings, we show that if for some map in this family we can

find an embedded torus which is approximately invariant with rotation ω and

satisfies some non-degeneracy condition, then we can find an invariant embedded

torus for some map in the family close to the original map. Furthermore, we

show that the dimension of the parameter space can be taken smaller if we

assume that the presymplectic mappings in the family are exact.

2) We present a new approach to the KAM problem for a general vector field via

Lie algebroids. We explain how the problem of persistence of invariant tori can

be restated as a problem of stability of leaves of Lie algebroids. Then, we state

a conjecture concerning the stability of compact invariant submanifolds of a Lie

algebroid. We present some examples supporting this conjecture and we discuss

possible approaches to prove this conjecture.

Keywords: KAM Theory, presymplectic map, Lie algebroid, stability of a leaf.
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Resumo

Esta tese centra-se em certos aspectos da teoria KAM, i.e., do estudo de toros

invariantes de um sistema dinâmico onde o movimento é quase periódico. Mostramos

que a condição Diofantina que aparece naturalmente neste tipo de problemas, de

forma a controlar-se as questões de convergência relaccionadas com o aparecimento

de “divisores pequenos”, pode ser interpretada como uma condição cohomológica. De

seguida, consideramos dois tipos concretos de problemas KAM:

1) Enunciamos e mostramos um teorema KAM para sistemas dinâmicos presim-

plécticos. Este resultado tem o seguinte formato “a posteriori”: dada uma fre-

quência Diofantina ω e uma família de aplicações presimplécticas, mostramos

que se uma aplicação nesta família possui um toro embebido que é aproximada-

mente invariante com frequência ω e satisfaz uma condição de não degeneresên-

cia, então podemos encontrar uma aplicação na família, próxima da aplicação

original, que possui um toro invariante. Mostramos ainda que a dimensão do

espaço dos parâmetros diminui se as aplicações presimplécticas na família forem

exactas.

2) Apresentamos uma nova abordagem ao problema KAM para campos vectoriais

arbitrários via teoria dos algebróides de Lie. Explicamos como o problema

da persistência de toros invariantes pode ser reformulado na linguagem dos

algebróides de Lie como um problema de estabilidade de órbitas. De seguida,

enunciamos uma conjectura sobre a estabilidade de subvariedades compactas

invariantes de um algebróide de Lie. Damos alguns exemplos que apoiam esta

conjectura e discutimos duas vias possíveis para a sua demonstração.

Palavras Chave: Teoria KAM, aplicação presimpléctica, algebróide de Lie, es-

tabilidade de folhas.
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Chapter 1

Introduction

1.1 KAM theory

KAM theory has its roots in Celestial Mechanics and in the classical works on

the planetary motion by astronomers and mathematicians such as Kepler, Newton,

Lagrange, Liouville, Delaunary, Weieratrass and others. From a more modern point

of view, due mainly to Poincaré, Birkhoff and Siegel, perturbative methods were

suggested to handle the problem of stability of solutions of the n-body problem.

This method remain problematic, due to the presence of arbitrary small divisors in

the perturbative expansion, until Kolmogorov in 1954, [19], followed by Arnold and

Moser in the early 1960s, made a major breakthrough and succeed in overcoming the

formidable technical problems related to the appearance of the small divisors. The

main bulk of KAM theory is a set of techniques, based on fast convergent methods

of Newton type, which can be used to solve various existence and stability questions

about quasi-periodic solutions of Hamiltonian (or generalizations of Hamiltonian)

dynamical systems. 1.
1We assume that the reader is familiar with basic concepts of symplectic geometry, for an intro-

duction to the subject see, e.g., [7]
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Definition 1.1.1. A Hamiltonian system is a triple (M,Ω, H) where (M,Ω) is a

symplectic manifold and H : M → R is a smooth function. The dynamics of the

systems is governed by the Hamiltonian vector field associated to H:

XH := Ω−1(dH), (1.1.1)

where Ω is viewed as a map Ω : TM → T ∗M and inversion is possible due to the

non-degeneracy of the symplectic form.

We recall that the Darboux theorem shows that for any neighborhood of a point in

a symplectic manifold (M2d,Ω) one can choose local coordinates (x1, . . . , xn, y1, . . . , yn)

where the symplectic form takes the canonical form:

Ω = dx ∧ dy :=
d∑
i=1

dxi ∧ dyi.

In these canonical coordinates the equations for the trajectories of the Hamiltonian

vector field XH take the standard Hamiltonian form: ẋ = ∂H
∂y

ẏ = −∂H
∂x

(1.1.2)

An immediate consequence of the skew-symetry of the symplectic form is that the

Hamiltonian H is a first integral of the system, i.e., it is constant over trajectories of

the vector field XH , and this justifies using the name conservative systems. Moreover,

notice that the knowledge of other first integrals of the system helps in understanding

the behavior of solutions of the system, since any such solution is constrained to the

common level sets of those first integrals.

Actually, the geometry underlying a Hamiltonian dynamical system allows one

to explore even further the presence of first integrals. Recall that associated to the

symplectic form Ω one has the Poisson bracket of two functions:

{f, g} := Ω(Xf , Xg).

13



This is a Lie bracket on the space of smooth functions C∞(M) which, additionally,

satisfies the Leibniz identity:

{f, gh} = {f, g}h+ g{f, h}.

Now one sees immediately that a function f is a first integral of XH if and only

if {H, f} = 0. Moreover, the Jacobi identity also shows that if f1 and f2 are first

integrals then so is their Poisson bracket {f1, f2}.

Given a first integral f1 all solutions of XH will lie entirely on the level sets of f1,

so we are able to “reduce” the dimension by 1. Actually, since {H, f1} = 0, one sees

that the vector fields XH and Xf1 commute. Hence, the action of R on M given by

the flow of Xf1 :

(t, x) 7→ φtXf1
(x),

preserves the level sets of f1 and fixes H, so maps solutions to solutions. Hence, we

can further reduce by this action, and so a first integral allows actually to reduce

the dimension of the phase space by 2. It turns out that the reduced level sets

Mc := f−1
1 (c)/R are again symplectic manifolds and that the reduced dynamics are

Hamiltonian: the function H induces a reduced Hamiltonian Hred : Mc → R. If

we are given another first integral f2, this will induce a first integral of the reduced

system (Mc,Ωc, Hred) provided that {f1, f2} = 0, and we can then proceed by further

reducing using f2. This leads to the following definition:

Definition 1.1.2. A Hamiltonian system (M,Ω, H) on a 2d-dimensional manifold

is called completely integrable if it admits d independent first integrals f1 =

H, f2, .., fd which Poisson commute:

{fi, fj} = 0, i, j = 1, ..., d. (1.1.3)

Given a completely integrable system, the Arnold-Liouville theorem states that

each connected component of the compact level sets of f = (f1, ..., fd) is diffeomorphic
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to a d-dimensional torus Td and gives a normal form for the system in a neighborhood

of the torus. Note that any such torus will be invariant under the flow of XH . More

precisely ([2]), the theorem states that there exists an open neighborhood U of the

connected compact component and a diffeomorphism (x, y) : U → Td×Rd, such that

the symplectic form Ω takes the standard form and H is independent of the angle

variables x:

Ω = dx ∧ dy :=
d∑
i=1

dxi ∧ dyi, H = H(y).

This means that we can replace the original first integrals by y1, .., yn. The coordinates

(x, y) are known as action-angle coordinates and it follows that the equations for the

motion in these coordinates are given by ẋ = ∂H
∂y

(y)

ẏ = 0

If we set ωi(y) = ∂H0

∂yi
(y) then the solutions of the system in each torus {(x, y) ∈

Td × Rd : y = y0} are quasi-periodic with frequency vector ω(y0):

x(t) = x0 + ω(y0)t, y(t) = y0.

The map y 7→ ω(y) is called the frequency map.

Obviously, although many examples of integrable systems are known (see, e.g.,

[2] or [1, Chapt. 5]), this is far from being a generic situation. However, given an

arbitrary Hamiltonian dynamical system (M2d,Ω, H) one may still ask if there exists

some invariant torus where the motion is quasi-periodic. In other words, whether

there exists a smooth embedding K : Td →M such that:

φtX(K(θ)) = K(θ + ωt), ∀θ ∈ Td. (1.1.4)

For invariant tori with rationally independent frequency vectors ω = (ω1, ..., ωd) ∈ Rd,

where rationally independent means:

ω.n :=
d∑
i=1

ωini 6= 0 ∀n ∈ Zd \ {0}
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one has the following important fact (see Lemma 3.2.5):

Proposition 1.1.3. Any invariant torus K : Td → M of a Hamiltonian system

(M2d,Ω, H) on an exact symplectic manifold which has rationally independent fre-

quencies ω = (ω1, . . . , ωd) is Lagrangian: K∗Ω = 0.

The Weinstein Lagrangian Neighborhood Theorem states that a neighborhood U

of any embedded Lagrangian torus is symplectomorphic to T ∗Td ' Td × Rd with

its canonical symplectic form Ω = dx ∧ dy, and so we can choose coordinates in a

neighborhood of the torus where the trajectories ofXH are the solutions of Hamilton’s

equations:  ẋ = ∂H
∂y

ẏ = −∂H
∂x

where ∂H
∂x

(x, 0) = 0 and ∂H
∂y

(x, 0) = ω is constant.

It follows from this discussion that in the search for invariant tori of a Hamiltonian

system (M2d,Ω, H) where the motion is quasi-periodic one can look first at the case

where M = Td × Rd with its canonical symplectic form Ω = dx ∧ dy, and look for

Lagrangian embeddings K : Td → Td × Rd satisfying (1.1.4). Also, it is natural to

look at the particular case of nearly integrable Hamiltonian systems where

H(x, y) = H0(y) + εP (x, y).

This gives rise to two versions of KAM theory:

(i) In the classical version of KAM theory, one starts with a completely integrable

system XH0 , which has plenty of invariant tori, and one looks for invariant tori

of small perturbations XH .

(ii) In modern versions of KAM theory, one starts with a Hamiltonian dynamical

system XH which has an almost invariant torus and one looks for close by

invariant tori.

16



Note that (ii) is a more general version that includes (i) as a special case: an invariant

torus of XH0 will be an almost invariant torus of XH provided H is sufficiently close

to H0.

In KAM theory the arithmetic properties of the frequency ω play a major role:

Definition 1.1.4. Given γ > 0 and σ ≥ d, we will denote by D(γ, σ) the set of

frequency vectors ω ∈ Rd+n satisfying the Diophantine condition:

|k · ω| ≥ γ|k|−σZ ∀ k ∈ Zd+n\{0}, (1.1.5)

where |k|Z = |k1|+ ...+ |kd+n| and k.ω =
∑d+n

i=1 kiωi.

In Chapter 2, we will discuss the nature of this condition.

An invariant torus K(θ) with frequency ω ∈ D(γ, σ) is called a KAM torus.

Now the most classical version of the KAM theorem can be stated as follows:

Theorem 1.1.5. If the frequency map ω = ∂H0

∂y
of a real analytic integrable Hamil-

tonian H0(y) is a local diffeomorphism (Kolmogorov non-degeneracy condition), then

KAM tori persist under small smooth perturbations of H0.

Roughly speaking, the proof of this theorem consists of an infinite iteration pro-

cedure, where at each step one performs a symplectic change of variables such that

the error term decreases quadratically. The change of coordinates is obtained via

a generating function, which guarantees that the symplectic structure is preserved

under this change. The main technical problem is the appearance of small divisors

ω.n in the process of calculating the generating function.

The loss of regularity is typical in problems involving small divisors, which means

that one cannot fix the function space for the iteration. The usual technique to

overcome this problem consists of introducing a scale of Banach spaces {Bξ : ξ > 0}

with the property Bξ′ ⊂ Bξ when ξ′ < ξ and work in Bξj at the step j, for a suitable

decreasing sequence ξj. Furthermore, one needs to control the small divisors at each
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step. In order to do so, one uses Kolmogorov’s idea of keeping the frequency fixed so

that one can systematically use the diophantine estimate (1.1.5): the non-degeneracy

assumption imposed on the frequency map makes it possible to fix the frequency. The

convergence of the procedure is guarantied by the quadratic decrease of the error term,

which beats the "divergence" caused by the small divisors. For a detailed example of

the above procedure for a concrete class of systems see [38, Chapter 3].

Moser, in 1962, proved a KAM type theorem in the framework of area-preserving

twisting maps of the 2-annulus [0, 1] × S1. He considered a Ck perturbation of an

integrable analytic system. Moser’s original set up correspond to the Hamiltonian case

considered above, where d = 2. He required smoothness of degree k = 333. Later,

Rüssmann was able to bring down this number to 5 by using a smoothing technique

(via convolutions) which re-introduces at each step of the iteration a certain number

of derivatives which compensates for the loss caused by the presence of the small

divisors.

KAM type theorems have now been proved for other types of dynamical systems

beyond the classical set up of Hamiltonian systems on symplectic manifolds: Hamilto-

nian systems on certain Poisson manifolds, reversible dynamical systems, dissipative

systems, etc. KAM theory has also been developed in the infinite dimensional setting

to deal with classes of partial differential equation carrying a Hamiltonian structure,

such as water wave equations (see, e.g., [40]).

1.2 Outline of the thesis

The remainder of this thesis begins with Chapter 2, where we discuss various aspects

of the theme “small divisors”. In KAM type problems, small divisors appear when

attempting to solve an equation called the “cohomological equation”. The presence of

small divisors lead to issues about convergence of solutions which can be overcome by
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imposing certain Diophantine conditions. This is recalled in the first two sections of

Chapter 2. However, there is more to say about these conditions: we will eventually

show that, at least in some cases, they can be interpreted geometrically as vanishing

of certain deformation cohomologies attached to the problem. Hence, one can think

of KAM theorems as instances of:

infintesimal stability =⇒ stability.

Chapter 3 is devoted to the study of KAM theory in the context of presymplectic

geometry. We consider the presymplectic manifold

M := T ∗Td × Tn, (1.2.1)

with an exact presymplectic form Ω of rank 2d, whose kernel coincides with the

Tn-direction. We are interested in investigating invariant tori of presymplectic diffeo-

morphisms

f : M →M, f ∗Ω = Ω.

One important class are the time 1 flows f := φ1
X of a presymplectic vector field X.

The approach we follow consists in starting with an approximate invariant torus for

f , i.e., a torus K : Td+n → M for which the right hand side of (1.1.4) is non-zero,

but small enough (in some norm that will be made explicit later), and then look for

a near by invariant torus. Our main theorem can be stated roughly as follows:

Theorem 1.2.1. Let fλ : M →M be an analytic, non-degenerate, (2d+n)-parametric

family of presymplectic diffeomorphisms of M = T ∗Tn × Td, and assume that f0 has

an approximate invariant torus K0, satisfying a non-degeneracy condition, with fre-

quency ω satisfying a Diophantine condition. Then there exists a diffeomorphism fλ∞

in this family, where λ∞ is close to 0, which has an invariant torus K∞ with frequency

ω and which is "close" to the initial torus K0.

The precise version of the theorem will be stated below in chapter 3, where we

formulate precisely the non-degeneracy conditions and we introduce norms to make
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precise the meaning of "close". In contrast with classical KAM theorem, we will not

require the system to be neither nearly integrable, nor to be written in action-angle

variables. Indeed, the fact that the dynamics of the system preserve the presymplectic

structure implies that the KAM tori are automatically approximately reducible. This

leads to an approximate solution of the linearized equations without transformation

theory. Moreover, the reducing transformation is given explicitly in terms of the ap-

proximately translated torus, which form the basis of an efficient numerical algorithm

(an explicit description of this algorithm can be found in [24]).

The proof of our main theorem follows an approach similar to the one developed in

[14] for the symplectic case. The presymplectic case however has a few peculiarities

due to the degeneracy of the 2-form. The quasi-Newton method used here (and

in [14]) is of the type introduced by Moser in [30, 31]. We note however that the

approach is not based on transformation theory, which seems problematic in the

case of presymplectic mappings since generating functions are not as straightforward

as in the symplectic case and the Lie transform method is hampered by the fact

that there are several Hamiltonians that give the same vector field (see [8, 9, 17]

for the theory of canonical transformations). The approach is based on deriving

a parameterization equation and applying corrections additively. The presymplectic

geometry leads to cancellations that reduce a Newton step to the constant coefficients

cohomology equations of the type one usually finds in KAM theory. We also note

that the same cancellations lead to very effective numerical algorithms.

As a byproduct of this approach, we will also prove a flux-type vanishing lemma

for exact presymplectic diffeomorphisms. Roughly speaking, we will show that the

average of the translation is zero in the directions other than the ones tangent to

torus in the basis. Note that in the directions tangent to torus the averaging does

not need to vanish. This also shows the need for considering a parametric family of

diffeomorphisms, rather than just a single diffeomorphism.

Finally, it should be remarked that the results in Chapter 3 are not applicable
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to Hamiltonian dynamics in general Poisson manifolds. For regular Poisson struc-

tures, which have an underlying regular symplectic foliation, there are cohomologi-

cal obstructions to find a compatible presymplectic structure, see [39]. Even when

these obstructions vanish (e.g., locally around invariant tori), so that one can find

a compatible presymplectic structure, Poisson diffeomorphisms do not coincide with

presymplectic diffeomorphisms, and these two kinds of diffeomorphisms have quite

distinct properties. A KAM theory for Poisson manifolds has been proposed in [33].

In section 3.8, we will compare the Poisson and presymplectic cases.

In Chapter 4, we will present a new approach to the problem of persistence of

invariant tori of a vector field. We will consider this problem in the general context of

invariant compact submanifolds of a Lie algebroid. We start by recalling the definition

of a Lie algebroid and then explain, as a very simple example, how one can associate

to a vector field, in a canonical way, a Lie algebroid, so that the leafs of this Lie

algebroid are precisely the orbits of the vector filed. The main theorem in [11] states

that infinitesimal stability of a compact leaf of a Lie algebroid leads to stability of

that leaf. As we will see, when one applies this result to the Lie algebroid of a vector

field, one recovers well known results about persistence of fixed points and periodic

orbits of the vector field under perturbations.

The natural question to ask is then if one can extend the result of [11] to an in-

variant submanifold of a Lie algebroid and we conjecture that this is the case. First,

one remarks that the condition of infinitesimal stability for orbits, which amounts to

the vanishing of a certain cohomology group defined for the restricted Lie algebroid

structure over the leaf, actually makes sense for any invariant submanifold. When

applied to invariant tori of vector fields, this condition yields the Diophantine condi-

tion! We will present two examples giving some evidence for our conjecture, at least

in the case of invariant tori. The main difficulty in extending the proof in [11] to the

case of invariant submanifolds, is that the complex defining the cohomology group

mentioned above, is not, in general, elliptic anymore. This fact makes the analytic
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part of the proof in [11] fail. We close Chapter 4 presenting two different attempts to

circumvent these difficulties.

In the first attempt, we assume that the invariant torus of the unperturbed vector

field X0 ∈ X(M) is a leaf of a certain Lie algebroid structure D0 on a vector bundle

A→M which contains X0 in the image of its anchor map. If the map from the space

of Lie algebroid structures on A→M to the space of vector fields X(M), which sends

D0 to X0, was an open map around D0, then the result for stability of orbits would

imply a result for stability of vector fields. We provide a counter example which shows

that this map is not open, in general.

As a second attempt, we restrict ourself to Hamiltonian vector fields. A La-

grangian torus is invariant under the flow of a Hamiltonian vector field if and only

if the restriction of the Hamiltonian to the torus is constant. On the other hand,

the dynamics of the system restricted to the torus is conjugate to a linear one if and

only if the normal variation of the Hamiltonian restricted to the torus is also con-

stant. These two conditions lead to the construction of a functional, parametrized

by the Hamiltonian, for which the zeros of the functional correspond precisely to the

invariant tori where the dynamics are conjugate to linear ones. For the unperturbed

Hamiltonian, one has that zero is a strong non-degenerate critical point of the func-

tional, provided that the frequency map is a local diffeomorphism, i.e., provided that

the Kolmogorov condition holds. Hence, under this assumption, it follows from an

infinite dimensional implicit function theorem that every nearby functional also has

a critical point as well. In the case of Lie algebroids one could show that this critical

point must be a zero of the functional as well. But here, this does not seem to be the

case.
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Chapter 2

The Diophantine Condition

2.1 Small divisors

A basic feature in KAM theory is the presence of small divisors and the necessity to

impose some kind of Diophantine condition to achieve any meaningful results.

In order to illustrate what are small divisors, consider a harmonic oscillator

ẍ+ ω2
1x = 0,

whose general solution x(t) = Acos(ω1t + θ) is a periodic motion of frequency ω1. If

we add to the system a periodic perturbation of frequency ω2 6= ω1 such as:

ẍ+ ω2
1x+ cos(ω2t) = 0,

the new solution has the form

x(t) = A cos(ω1t+ θ)− cos(ω2t)

ω2
1 − ω2

2

.

This function is only periodic when ω2 is a rational multiple of ω1. But even when

ω1 and ω2 are rationally independent, the solutions are nice, bounded, quasi-regular

oscillations. However, if ω2 is close to ±ω1, the quotient on the right hand side can
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become arbitrarily large. To see what happens as ω2 approaches ω1, let us focus on

the simplest initial conditions x(0) = ẋ(0) = 0. Then

x(t) =
cos(ω1t)− cos(ω2t)

ω2
1 − ω2

2

and L’Hôpital’s rule gives that in the limit, as ω1 → ω2, the solution approaches

x(t) =
−t sin(ω1t)

2ω1

.

This last function is unbounded. The periodic kicks of the perturbation build up,

without canceling, to make the solution grow indefinitely. This kind of resonance

phenomena is of course well-known to engineers. A more sophisticated phenomenon

than simple resonance occurs when two (or more) distinct periodic motions of fre-

quencies ω1 and ω2 interact with each other. The prototype example is given by the

motion of two planets around the sun, which is a nearly integrable systems. This ex-

ample fits in the more general problem studied by Poincaré of the dynamics generated

by the flow of a one-parameter family of Hamiltonians of the form

H0(y) + εP (x, y, ε), 0 < ε� 1,

he called this problem le problème général de la dynamique to which he dedicated a

large part of his monumental Méthodes Nouvelles de la mécanique Céleste, see [10].

In our case, the small divisors appear when one attempts to solve the following

equation, sometimes known as the cohomological equation:

φ(θ + ω)− φ(θ) = η(θ), (2.1.1)

or its continuous version:
n∑
i=1

ωi ∂θiφ(θ) = η(θ), (2.1.2)

where φ and η are functions on the torus Tn and ω is the frequency vector. Equation

(2.1.1) will show up in the KAM theory for persymplectic maps while (2.1.2) will

appear in the KAM theory for general vector fields.
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Before we discuss the appearance of small divisors when one solves this equations,

let us justify the use of the term “cohomological equation”. Recall that if G is a group

with a representation ρ : G → GL(V ) on some vector space V , then one defines the

complex (Ck(G, V ), d) where Ck(G, V ) consist of all maps defined on k-copies of G,

c : G× · · · ×G→ V , and the differential d : Ck(G, V )→ Ck+1(G, V ) is given by:

dc(g0, . . . , gk) = ρ(g0)c(g1, . . . , gk)+

k−1∑
i=0

(−1)ic(g0, . . . , gigi+1, . . . , gk) + (−1)kc(g0, . . . , gk−1). (2.1.3)

When k = 0, C0(G, V ) = V and one defines dv(g) = ρ(g)v − v. The corresponding

cohomology groups:

Hk(G, V ) =
Ker d

Im d
,

define the group cohomology with coefficients in the representation V .

Now consider the vector space V = C∞(M) consisting of smooth real valued

functions on a manifold M . Any diffeomorphism f : M → M defines an action of

G = Z on V by setting:

(n · η)(x) = η(fn(x)).

Then, given any η ∈ V one can define c ∈ C1(Z, V ) by setting c(n) =
∑n−1

i=0 η(f i).

One checks easily that dc = 0, so c is a 1-cocyle and that the equation for this cocyle

to be a coboundary c = dφ reduces to:

φ ◦ f − φ = η.

Therefore, equation (2.1.1) is a cohomological condition when we think of η as defining

a cocycle for the transformation T : θ → θ + ω, and one says that η is a coboundary

if the equation (2.1.1) has a solution. For example, if ω be a Diophantine vector

then this equation can be solved for every η with vanishing average and it yields

a unique solution with zero average, so H1(Z, V ) = 0, where V = {η ∈ C∞(Td) :

avg(η) :=
∫
Td ηdθ = 0}. The vanishing of this cohomology space has consequences on
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the rigidity of the dynamical systems and existence of invariant measurers on them

(see [3] and references therein).

Let us now turn to the appearance of small divisors in solving equation (2.1.2)

(the same considerations apply to (2.1.1) with minor modifications). We use Fourier

expansions, so we write:

η(θ) =
∑
k∈Zn

η̂ke
2πi(k.θ), η̂0 = 0,

where i =
√
−1. Then equation (2.1.1) has the formal solution:

φ̂k2πi(k.ω) = η̂k.

Hence, for a non-resonant frequency vector ω, i.e., if (k.ω) 6= 0, ∀k ∈ Zn\{0}, one

gets:

φ̂k =
η̂k

2πi(k.ω)
(2.1.4)

so one finds the presence of small divisors.

2.2 The Diophantine Condition

If one does not put any quantitive restriction on how fast |(k.ω)|−1 grows, the solutions

given by (2.1.4) may even fail to be distributions. For example, take η̂k = e−|k|Z , then

it is not hard to construct ω ∈ Rn\Qn such that there are infinitely many k for which

|(k.ω)|−1 ≥ ee
|k|Z , see [24]. This means that

∑
k∈Zn φ̂k(1 + |k|2Z)s/2 is not convergent

even for s < 0, i.e. φ̂k, cannot be the Fourier coefficient of neither a function, nor a

distribution.

Definition 2.2.1. Given γ > 0 and σ ≥ n, we will denote by D(γ, σ) the set of

frequency vectors ω ∈ Rn satisfying the Diophantine condition:

|(k.ω)| ≥ γ.|k|−σZ , ∀k ∈ Zn\{0}. (2.2.1)
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Let Uρ denote the complex strip of width ρ > 0:

Uρ = {θ ∈ Cn/Zn : |Im(θ)| ≤ ρ},

and for a function η defined on Uρ set:

‖η‖ρ := sup
θ∈Uρ
|η(θ)|, (2.2.2)

and denote by ‖η‖r its Cr-norm. If η is analytic, then its Fourier coefficients satisfy

the bound

|η̂k| ≤ e−2πρ|k|Z‖η‖ρ,

while for η ∈ Cr we have the bound:

|η̂k| ≤ (2π)−r|k|−rZ ‖η‖r.

Hence, assuming the Diophantine condition (2.2.1), the solution φ of (2.1.4) will

satisfy:

|φ̂k| ≤ (2π)−1γ−1|k|−σZ e−2πρ|k|Z‖η‖ρ

for analytic η, and it will satisfy:

|φ̂k| ≤ (2π)−r−1γ−1|k|−σ−rZ ‖η‖r.

for η ∈ Cr. These estimates does not allow one to conclude that φ belongs to exactly

the same function space as η, but rather to a slightly weaker space: the word “weaker”

in the analytic case means a loss in the domain, while in the differentiable case it

means a loss of degree of differentiability. See [24] for more details.

We have just seen the necessity of the Diophantine condition. What about the

existence of frequency vectors satisfying this condition?

The existence of such frequencies is easy to deduce. Observe that D(γ, σ) is the

complement of the open dense set Rσ
γ =

⋃
06=k∈Zn R

σ
γ,k, where

Rσ
γ,k = {ω ∈ Rn : |(k.ω)| < γ.|k|−σZ }
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Obviously, for any bounded domain Ω ⊂ Rn, its Lebesgue measure satisfies the esti-

mate m(Rσ
γ,k ∩Ω) = O(γ/|k|σ+1

Z ), hence:

m(Rσ
γ ∩Ω) ≤

∑
k

m(Rσ
γ,k ∩Ω) = O(γ)

provided that σ > n − 1. Therefore, Rσ =
⋂
γ>0R

σ
γ is a set of measure zero, and its

complement

D(σ) :=
⋃
γ>0

D(γ, σ)

is a set of full measure in Rn, for any σ > n − 1. In other words, almost every ω in

Rn belongs to D(σ), σ > n − 1, which is the set of all ω in Rn satisfying (3.2.2) for

some γ > 0 while σ is fixed.

Remark 2.2.2. In the classical KAM theorem, the non degeneracy assumption of the

frequency map guarantees that the set of action values that correspond to Diophantine

frequencies has full measure as well. In other word, the set of KAM tori in Theo-

rem (1.1.5), includes almost all tori, so almost all tori of the completely integrable

Hamiltonian system survive small perturbations.

2.3 The Diophantine condition in our work

In Chapters 3 and 4, we will discuss two different kinds of KAM theorems, one

for presymplectic maps and one for general vector fields. Here we explain how the

cohomological equation appears in these two problems and hence how one uses the

Diphantine condition in each of these problems.

2.3.1 The case of presymplectic maps

In this case, as we have explained in the introduction, the main idea is to find an

invariant torus given an approximate invariant one. One starts with some torus
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K0(θ) : Td+n → Td × Rd × Tn which satisfies

f0(K0(θ))−K0(θ + ω) = e0(θ) (2.3.1)

where fλ is a parametric family of presymplectic maps (to be defined precisely later)

and e(θ) is an small enough error term, and the aim is to find (K∞, λ∞) such that

fλ∞(K∞(θ))−K∞(θ + ω) = 0.

In order to do so, we will perform an iteration procedure: starting with (2.3.1), we

look for an approximate solution for the corresponding linearized equation

DG(K0, 0)|(∆0(θ),ε0) :=

∂fλ(K0(θ))

∂λ

∣∣∣∣
λ=0

ε0 +Df0(K0(θ))∆0(θ)−∆0(θ + ω) = −e0(θ).

By an approximate solution we mean one that satisfies the linearized equation up to

a quadratic error, i.e., a solution ∆0(θ) such that:

‖DG(K0, 0)|(∆0(θ),ε0) + e0‖ρ0−δ0 ≤ C‖e0‖2
ρ0

where C is a constant to be determined later. To do this, we remove the terms

bounded by a multiple of the quadratic error and then performes a change of variable

that transforms the equation to a new one which is a cohomology equation of the

form (2.1.1). As we explained, the Diophantine condition is necessary to solve the

equation (2.1.1). The approximate solution of the linearized equation will be used

to produce a new torus which has smaller error term, so one can proceed with the

iteration.

2.3.2 The case of general vector fields

In this case, as we have pointed out in the introduction, our aim is to understand

how one can view KAM as part of the moto:

infintesimal stability =⇒ stability.

29



Here one starts with the manifold M = Tn × Rm with the vector field

X0 =
∑
i

ωi
∂

∂xi
+
∑
j,k

Ωj,ky
k ∂

∂yj
,

which has the invariant torus K0 : Tn → M , θ 7→ (θ, 0) where the motion is quasi-

periodic and asks if a nearby vector field X has a nearby invariant torus K : T→M

where the motion is quasi-periodic. It turns out that to a vector field X one can

associated a Lie algebroid AX and that the geometric meaning of infinitesimal stability

is here formulated in terms of a cohomology group attached to this Lie algebroid: one

needs the vanishing of the cohomology group:

H1(AX0|K0 , ν(K0)) = 0.

This cohomology can be seen as the deformation cohomology attached to changes of

the invariant subset K0 upon small deformations of the Lie algebroid structure.

On the other hand, we will see in Chapter 4 that this group is trivial if and only

if one is able to find at least one solution h ∈ C∞(M,Rm) for the equation:

(
∑
i

ωi
∂

∂xi
· Im − Ω).e(x) = h(x) (2.3.2)

for every h ∈ C∞(M,Rm). Using Fourier analysis, as above, we will see that this is

indeed the case provided Ω is diagonalizable, with non zero eigenvalues Ω1, . . . ,Ωm,

and that the (ωi,Ωj) satisfy a Diophantine condition. In conclusion, we have:

(i) The Diophantine condition amounts to vanishing of a cohomology group, and

(ii) The vanishing of this cohomology group amounts to infinitesimal stability.
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Chapter 3

Tracing KAM tori in presymplectic

Dynamical systems

3.1 Presymplectic dynamical systems

Presymplectic structures (constant rank, closed 2-forms) arise naturally in the study

of degenerate Lagrangian and Hamiltonian mechanical systems with constrains, in

time dependent Hamiltonian systems and in control theory. (see, e.g., [13, 15, 20, 21,

28,29,34]). For other situations where presymplectic dynamics occur see, e.g., [5].

Given a presymplectic form Ω ∈ Ω2(M), a vector field X ∈ X(M) is said to be a

Hamiltonian vector field associated with a function H ∈ C∞(M) if:

iXΩ = dH.

Due to the degeneracy of Ω, there can be different functions H associated with X, not

differing by a constant. The corresponding flow φtX : M →M is a 1-parameter group

of presymplectic diffeomorphisms: (φtX)∗Ω = Ω. Hence, the dynamics of such systems

leave the presymplectic structure invariant. One example to keep in mind could be

the three dimensional torus endowed with a presymplectic form Ω = dΨ1 ∧ dΨ2.
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Clearly, the kernel is given by the level sets of Ψ1,Ψ2.

A more complicated example on T3 is Ω = dΨ1 ∧ γ where γ is a closed but not

exact form. In this case, the kernel can be an irrational foliation.

Another example related to the previous ones is the study of quasi-periodically

perturbed Hamiltonian systems H(x, ωt). These can be made autonomous by adding

an extra variable θ ∈ Td that satisfies d
dt
θ = ω. The phase space is now supplemented

by a factor Td. The symplectic form in the phase space becomes a presymplectic form

in the extended phase space having Td in the kernel. Even this elementary example

was considered as covered by the KAM theory of symplectic systems at the time of

writing [25].

The theory of presymplectic manifolds was developed (e.g. in [23]) to give a

geometric framework to the Dirac theory of constrained systems, [26, 27]. There are

many physically interesting examples of constrained systems to which the present

theory applies. Notably, besides the examples in [26,27], the papers [20,21] contain a

very concrete example of a relativistic system of spinning particles which is close to

integrable.

The paper [13] shows how the Pontryagin maximum principle for optimal trajec-

tories can be formulated using presymplectic systems. If we consider a mechanical

system with KAM tori and subject it to a control indexed by enough parameters, the

results in this chapter give a condition which ensures that the one adjust parameters

to maintain the quasi-periodic motion. It would be interesting to study in detail con-

crete models, specially because the methods we use here, are well suited for numerical

implementations.

Note that, in contrast with symplectic manifolds, presymplectic manifolds may

be odd dimensional. Hence, it is clear that an extension of the symplectic theory

to presymplectic systems will require significant modifications. A general theory

of perturbations of quasi-periodic motions independent of geometric structures was
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undertaken in [32].

Remark 3.1.1. An important well known fact about presymplectic forms Ω is that

the kernel of Ω is an integrable distribution.

We recall that the kernel of a form is

Ker(Ω) = {X|iX(Ω) = 0} = {X|Ω(X,Z) = 0 ∀Z}

Note that, for a general 2-form Ω and any three vector fields X, Y, Z, we have:

dΩ(X, Y, Z) = X(Ω(Y, Z))− Y (Ω(X,Z)) + Z(Ω(X, Y ))

− Ω([X, Y ], Z) + Ω([X,Z], Y )− Ω([Y, Z], X)

If dΩ = 0 and X, Y are in the kernel of Ω, for any Z, we have Ω([X, Y ], Z) = 0.

Hence, if X, Y ∈ Ker(Ω), [X, Y ] ∈ Ker(Ω). This shows that the distribution given

by the kernel can be integrated to a manifold.

Of course, in a torus, it could well happen that the leaves integrating the kernel

are not compact (e.g. they could be an irrational foliation).

3.2 Preliminaries and Motivation

3.2.1 Notations and Preliminaries

In this section we will fix some notations and state a few preliminary results. Along

the way, we will also justify the assumptions that will appear later in our main result.

As stated in the introduction, we consider M = Td × Rd × Tn equipped with a

constant rank exact presymplectic structure, i.e., an exact 2-form Ω ∈ Ω2(M), such

that its kernel is:

N := Ker Ω = {(u, (0, 0, z)) ∈ TM | u ∈M, z ∈ Rn}.
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The exactness assumption places restrictions on the presymplectic form but for

applications to Hamiltonian dynamical systems with constrains or degenerate La-

grangian systems this is not too restrictive. For these systems the phase space is

often obtained by restriction to a submanifold where the 2-form is the pullback of

the canonical symplectic structure on the cotangent bundle (see [23]) or some other

exact symplectic forms (see [28]).

Let V = {(u, (x, y, 0)) ∈ TM |u ∈ M, (x, y) ∈ R2d} so that TM = V ⊕ N , and

denote by π : TM → V the canonical projection on V . For each u ∈M , we have the

linear isomorphism J̃(u) : TuM → TuM defined by:

Ωu(ξ, η) = 〈ξ, J̃(u)η〉, ξ, η ∈ TuM (3.2.1)

where

J̃(u) =

 J(u) 0

0 0


and 〈·, ·〉 denotes the standard Euclidean inner product on R2d+n. The skew-symmetry

of Ω implies that Jᵀ = −J.

We will be using the following norms. If x = (x1, ..., xd+n) ∈ Rd+n we set:

|x| := max
j=1,..,d+n

|xj|.

For an analytic function g on a complex domain B we denote by |g|Cm,B its Cm-norm:

|g|Cm,B := sup
0≤|k|Z≤m

sup
z∈B
|Dkg(z)|,

where |l|Z := |l1|+ ...+ |ld+n|.

We will be looking for real analytic invariant tori which extend holomorphically

to a small strip in the complex space. More precisely, let Uρ denote the complex strip

of width ρ > 0:

Uρ = {θ ∈ Cd+n/Zd+n : |Im(ρ)| ≤ ρ},

and introduce the following family of maps.
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Definition 3.2.1. The space (Pρ, ‖.‖ρ) consists of functions K : Uρ → M which are

one periodic in all their arguments, real analytic on the interior of Uρ and continuous

on the closure of Uρ. We endow this space with the norm

‖K‖ρ := sup
θ∈Uρ
|K(θ)|, (3.2.2)

which makes it into a Banach space.

We will also use the same notations for functions taking values in vector spaces

or in matrices.

Some well known results about the spaces above are the Cauchy bounds below (a

consequence of Cauchy’s integral representation of the derivative). For 0 < δ < ρ, we

have:

‖DjK‖ρ−δ ≤ Cjδ
−j‖K‖ρ (3.2.3)

Like in all other KAM type results we will have to deal with small divisors. For

that we set:

Definition 3.2.2. Given γ > 0 and σ ≥ d + n, we will denote by D(γ, σ) the set of

frequency vectors ω ∈ Rd+n satisfying the Diophantine condition:

|l · ω −m| ≥ γ|l|−σZ ∀l ∈ Zd+n\{0},m ∈ Z (3.2.4)

The aim of this paper is to find invariant tori of a given frequency ω for a m-

parametric family of presymplectic diffeomorphism fλ, defined as follows:

Definition 3.2.3. A m-parametric family of presymplectic diffeomorphisms

fλ is a function

f : M ×B →M, B ⊆ Rm,

such that for each x ∈ M the map f(x, ·) is of class C2 and for each λ ∈ B the map

fλ := f(·, λ) is a real analytic presymplectic diffeomorphism.
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We will introduce an algorithm to solve the equation

fλ(K(θ))−K(θ + ω) = 0, ω ∈ D(γ, σ), (3.2.5)

given that one knows an approximate solution K0(θ) for the diffeomorphism fλ0 ,

where, without loss of generality, we will set λ0 = 0. In other words, we know that

fλ0(K0(θ))−K0(θ + ω) = e0(θ), (3.2.6)

where the error term e0(θ) has small enough norm. Equation (3.2.5) will be solved

by Newton method where at each step we have infinitesimal equations given by

Dfλi(Ki(θ))∆i(θ)−∆i(θ + ω) +
∂fλ(Ki(θ))

∂λ

∣∣∣∣
λ=λi

εi = −ei(θ). (3.2.7)

The approximate invariant tori and the geometry of the problem will lead us to

a change of variables that will reduce (3.2.7) to a simpler equation with constant

coefficients (cohomological equation) that can be solved by the following result of

Rüssmann which will also be useful in some other proofs.

Proposition 3.2.4 ([24, 35]). Let ω ∈ D(σ, γ) and assume that η : Td+n → R2d+n

is analytic on Uρ and has zero average, avg(η) = 0. Then for all 0 < δ < ρ , the

difference equation

φ(θ)− φ(θ + ω) = η(θ) (3.2.8)

has a unique zero average solution φ : Td+n → R2d+n which is analytic in Uρ−δ.

Moreover, this solution satisfies the following estimate:

‖φ‖ρ−δ ≤ c0γ
−1δ−σ‖η‖ρ, (3.2.9)

where c0 is a constant depending on n and σ.

3.2.2 Lagrangian properties of invariant tori

A first, very important, consequence of the Diophantine condition on ω and the

exactness of the presymplectic form is that KAM tori are actually Lagrangian sub-

manifolds:
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Lemma 3.2.5. If K(θ) ∈ Pρ is a solution of (3.2.5) then K∗Ω is identically zero.

Proof. Since K(θ) satisfies (3.2.5) and f is presymplectic we have

K∗Ω = (K ◦ Tω)∗Ω,

where Tω(θ) = θ + ω. Moreover, since ω is rationally independent then rotation on

the torus is ergodic and this implies that K∗Ω is constant. If we write K∗Ω in matrix

form, exactly as we did for Ω in (3.2.1) we have

K∗Ω(ξ, η) = 〈ξ, L(θ)η〉 ξ, η ∈ Tθ(Td+n) (3.2.10)

where L(θ) is actually constant. It remains to show that L(θ) ≡ 0.

The 2-form Ω is exact, so we can write Ω = dα where

α(u) = a(u)du, a(u) = (a1(u), ..., a2d+n(u))ᵀ.

Then we find that

(K∗α) =
d+n∑
j=1

Cj(θ)dθ
j

where the components Cj have the following expression

Cj(θ) = DK(θ)a(K(θ))j.

This implies L(θ) = DC(θ)ᵀ −DC(θ). But now:

avg(DC(θ)) :=

∫
Td+n

DC(θ)dθ = 0, (3.2.11)

which shows that:

avg(L(θ)) = 0.

But L(θ) being constant, we conclude that L(θ) = 0, i.e., K∗Ω = 0. �

Following simple lemma extends the result of the Lemma 3.2.5 to approximate

invariant tori:
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Lemma 3.2.6. Let f0 : M → M be a presymplectic analytic diffeomorphism and let

K ∈ Pρ be an approximate invariant torus with frequency ω ∈ D(γ, σ):

f0(K(θ))−K(θ + ω) = e(θ). (3.2.12)

and assume that f0 extends holomorphically to some complex neighborhood of the

image of Uρ under K:

Br = {z ∈ C2d+n : sup
θ∈Uρ
|z −K(θ)| < r}.

Then there exist a constant C > 0, depending on n, σ, ρ, ‖DK‖ρ, |f0|C1,Br and |J |C1,Br ,

such that for 0 < δ < ρ
2

‖L‖ρ−2σ ≤ Cγ−1δ−(σ+1)‖e‖ρ (3.2.13)

where L is the matrix representing the pullback form K∗Ω (see 3.2.10).

Proof. Let g := L− L ◦ Tω. Then, we note that g is the expression in coordinates of

K∗Ω− T ∗ωK∗Ω = K∗f ∗0 Ω− T ∗ωK∗Ω

Hence, when K is exactly invariant g = 0. One can also easily show that ||g|| ≤ ||De||

See [14] for more details.

Using Proposition 3.2.4, one obtains that:

‖L‖ρ−2δ ≤ c0γ
−1δ−σ‖g‖ρ−δ.

One can bound the norm of g in exactly the same way as in the symplectic case,

which can be found in [14], to obtain the result. �

3.2.3 Automatic reducibility near invariant tori

In this subsection we will assume that K(θ) is an invariant torus of f , i.e., a solution

of (3.2.5). When one starts instead with an approximate invariant torus K0(θ) of f ,
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i.e., a solution of (3.2.6), the results of this subsection do not hold anymore. However,

we will see in the next sections that we have versions of these results which hold in

the approximate case and which will allow us to perform the Newton method and

conclude the existence of an invariant torus. For K(θ) ∈ Pρ let us decompose its

Jacobian in the form

DK(θ) = (X(θ), Z(θ)) (3.2.14)

whereX(θ), Z(θ) are the first d and last n columns ofDK(θ). Also, for every vector in

TM = V ⊕N , we will use the subscripts V and N for the first and second projections

in each factor. Assume that K(θ) solves (3.2.5) and that there exists a d× d-matrix

valued function N(θ) such that

N(θ)(XᵀV (θ) ·XV (θ)) = Id, (3.2.15)

where X(θ) is as in (3.2.14). This non-degeneracy assumption will turn out to be one

of the ingredients to solve (3.2.5) approximately. Also, set1:

YV (θ) := XV (θ)N(θ) and Y (θ) :=

 YV (θ)

0

 . (3.2.16)

Then the following matrix will provide us the change of variable needed to reduce the

linearized equations (3.2.7) to a simple form:

M(θ) :=

 XV (θ) J−1(K(θ))Y (θ) ZV (θ)

XN(θ) 0 ZN(θ)

 , (3.2.17)

whereX,Z and Y are defined in (3.2.14) and (3.2.16) respectively. The non-degeneracy

assumption (3.2.15), together with the fact that K(θ) is Lagrangian (Lemma 3.2.5),

show that:

ΩK(θ)(X(θ), J−1(K(θ))Y (θ)) = Id (3.2.18)

ΩK(θ)(X(θ), X(θ)) = 0 (3.2.19)

1We will often abuse notation and will use Y (θ) to denote both YV (θ) and Y (θ).
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ΩK(θ)(X(θ), Z(θ)) = 0 (3.2.20)

Therefore, X(θ), J−1(K(θ))Y (θ) and Z(θ) do not form a presymplectic basis along

the torus K(θ), the reason is that neither ΩK(θ)(J
−1(K(θ))Y (θ), J−1(K(θ))Y (θ)) nor

ΩK(θ)(J
−1(K(θ))Y (θ), Z(θ)) have to be zero, but they do provide a basis where Ω

takes a rather simple form. Moreover, as the following lemma shows, they transform

the linearized equations (3.2.7) into a simpler form:

Lemma 3.2.7. The set {X(θ), J−1(K(θ))Y (θ), Z(θ)} is a basis provided the matrix

V (θ) =


0 Id 0

−Id −Y ᵀ(θ)J−1(K(θ))Y (θ) (J−1(K(θ))Y (θ))ᵀJ(K(θ))ZV (θ)

XN(θ) 0 ZN(θ)


(3.2.21)

is invertible. In this case, we have:

Df(K(θ)).(X(θ), Z(θ)) =(X(θ + ω), Z(θ + ω)), (3.2.22)

Df(K(θ))J−1(K(θ))Y (θ) =X(θ + ω)S1(θ) + J−1(K(θ + ω))Y (θ + ω) Id +

+ Z(θ + ω)A(θ), (3.2.23)

where A(θ) and S1(θ) are matrices satisfying: 2

Df(K(θ)) ·M(θ)) = M(θ + ω) ·


Id S1(θ) 0

0 Id 0

0 A(θ) In

 . (3.2.24)

Proof. Let

Q(θ) :=


XᵀV (θ)J(K(θ)) 0

(J−1(K(θ))Y (θ))ᵀJ(K(θ)) 0

0 In

 . (3.2.25)

2We emphasize that identity (3.2.24) holds only when we have an invariant torus. In Corol-

lary 3.4.2, we will prove that for approximately invariant tori (3.2.24) holds up to an error which

can be bounded by the error in the invariance equation.
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The expression (3.2.17) for M and relations (3.2.18), (3.2.19) and (3.2.20), give:

Q(θ)·M(θ) =


0 Id 0

−Id −Y ᵀ(θ)J−1(K(θ))Y (θ) (J−1(K(θ))Y (θ))ᵀJ(K(θ))ZV (θ)

XN(θ) 0 ZN(θ)

 ,
(3.2.26)

which shows that {XV (θ), J−1(K(θ))Y (θ)} is a basis for V := π(TM) and Q(θ) is

invertible. Using this fact one can write

ZV (θ) = akl (θ)X
l
V (θ) + bkl (θ)J

−1(K(θ))Y l, (l = 1, . . . , d, k = 1, . . . , n).

Pairing both sides with X l0
V (θ) via the presymplectic form Ω, it follows from (3.2.18),

(3.2.19) and (3.2.20) that:

bkl0(θ) = Ω(X l0
V (θ), Zk

V (θ))− akl (θ)Ω(X l0
V (θ), X l

V (θ)) = 0. (3.2.27)

In general, we have no control on Ω(J−1(K(θ))Y (θ), ZV (θ)), it means we have no

control on the akl (θ), but the assumption that V (θ) := Q(θ) ·M(θ) is non-degenerate

guarantees that {X(θ), J−1(K(θ))Y (θ), Z(θ)} is a basis.

Assume from now on that V (θ), and hence M(θ), is invertible. Since f is presym-

plectic and f(K(θ)) = K(θ + ω), it follows from (3.2.18), (3.2.19) and (3.2.20) that:

Df(K(θ)).(X(θ), Z(θ)) =(X(θ + ω), Z(θ + ω)),

Df(K(θ))J−1(K(θ))Y (θ) =X(θ + ω)S1(θ) + J−1(K(θ + ω))Y (θ + ω) Id +

+ Z(θ + ω)A(θ),

for some matrices S1(θ) and A(θ). This shows that relations (3.2.23) hold. Moving

the term J−1(K(θ + ω))Y (θ+ ω) Id to the left side of the second equation we obtain

that:

A(θ) = T3(θ + ω)
[
Df(K(θ))J−1(K(θ))Y (θ)− J−1(K(θ + ω))Y (θ + ω)

]
, (3.2.28)
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where T3(θ) is the last row in the matrix:

M−1(θ) =


T1(θ)

T2(θ)

T3(θ)

 . (3.2.29)

Finally, moving the term Z(θ + ω)A(θ) to the left hand side and pairing both sides

with J−1(K(θ + ω))Y (θ + ω), via the presymplectic form Ω, together with (3.2.18),

gives:

S1(θ) = [YV (θ + ω))ᵀ 0]
[
Df(K(θ))J−1(K(θ))Y (θ)− (3.2.30)

J−1(K(θ + ω))Y (θ + ω)− Z(θ + ω)A(θ)
]
.

�

Remark 3.2.8. A straightforward calculation shows that V −1(θ) takes the following

form: 
V −11 V −12 V −13

Id 0 0

V −31 V −32 V −33

 . (3.2.31)

We will need this fact later.

3.3 Main results

3.3.1 A KAM theorem for presymplectic dynamical systems

In this section we will give precise statements of our results. The discussion in the

previous section motivates introducing the following definitions:

Definition 3.3.1. We will say that K(θ) ∈ Pρ is a non-degenerate torus if

(i) There exists a d× d-matrix valued function N(θ) such that

N(θ)(XV (θ))ᵀ.(XV (θ)) = Id . (3.3.1)
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(ii) The matrix V (θ), which is defined in (3.2.21), is invertible,

where XV (θ) and V (θ) are defined in (3.2.14) and (3.2.21) respectively.

Remark 3.3.2. In the symplectic case, the matrix V (θ) is always non-degenerate when

Ω is exact. When Ω is not exact, then one also needs to assume that V (θ) is invertible

in order to perform the Newton iteration successfully. In the presymplectic case, even

when Ω is exact, we need to assume that V (θ) is invertible. Also, we do not know

how to proceed with the algorithm presented here if one gives up on exactness of

Ω. However, one may still be able to proceed with this algorithm in some special

problems where the form is non-exact. Dealing with KAM theory for non exact

symplectic forms is a deep problem largely unexplored, see [36] for remarks on the

problem of non-exact forms.

Definition 3.3.3. A pair (fλ, K(θ)) is non-degenerate at λ = λ0 if fλ is a

(2d + n)−parameter family of presymplectic diffeomorphisms, K(θ) ∈ Pρ is a non-

degenerate torus, and the average of the (2d+ n)× (2d+ n) matrix

Λ(θ) := V −1(θ)Q(θ)

(
∂fλ
∂λ

∣∣∣∣
λ=λ0

(K(θ))

)
(3.3.2)

has rank 2d+ n, where V (θ) is defined by (3.2.21).

Remark 3.3.4. Note that the condition is an open condition, so that, if the initial error

is small enough, the iterative process does not leave the region where Definition 3.3.3

holds.

We can now state the main theorem of this chapter:

Theorem 3.3.5. Let ω ∈ D(γ, σ), let fλ be a 2d + n-parametric family of analytic

presymplectic diffeomorphisms and let K0 ∈ Pρ0. Assume that:

(H1) The pair (fλ, K0) is non-degenerate at λ = λ0.
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(H2) The family fλ can be holomorphically extended to some complex neighborhood

of the image of Uρ under K:

Br = {z ∈ C : sup |z −K(θ)| < r}

such that |fλ|C2,Br <∞.

If

e0(θ) := fλ0(K0(θ))−K0(θ + ω),

then there exists constant c > 0, depending on σ, n, d, ρ0, r, |fλ0|C2,Br , ‖DK0‖ρ0,

‖N0‖ρ0, ‖∂fλ∂λ |λ=λ0 (K0)‖ρ0 and | avg(Λ0)−1| such that if 0 < δ0 < max(1, ρ0
12

) and

‖e0‖ρ0 < min
{
γ4δ4σ

0 , rcγ2δ2σ
0 ‖e0‖ρ0

}
(3.3.3)

then there exists a mapping K∞ ∈ Pρ0−6σ0 and a vector λ∞ ∈ R2d+n satisfying

fλ∞ ◦K∞ = K∞ ◦ Tω (3.3.4)

Moreover, the following inequalities hold:

‖K∞ −K0‖ρ0−6δ0 <
1

c
γ2δ−2σ

0 ‖e0‖ρ0 (3.3.5)

|λ∞| <
1

c
γ2δ−2σ

0 ‖e0‖ρ0 (3.3.6)

Sketch of the proof. More details of the proof will be given later, in Sections 3.4, 3.5,

3.6, but it will be useful to start with a brief overview that can serve as a road map.

We will use a modified Newton method of the type introduced by Moser in [30,

31,41]. The procedure goes as follows. Starting with

G(K0, 0) := f0(K0(θ))−K0(θ + ω) = e0(θ), (3.3.7)

we look for an approximate solution for the corresponding linearized equation

DG(K0, 0)|(∆0(θ),ε0) := (3.3.8)

∂fλ(K0(θ))

∂λ

∣∣∣∣
λ=0

ε0 +Df0(K0(θ))∆0(θ)−∆0(θ + ω) = −e0(θ).
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By an approximate solution we mean up to a quadratic error, i.e., a solution ∆0(θ)

such that:

‖DG(K0, 0)|(∆0(θ),ε0) + e0‖ρ0−δ0 ≤ c0γ
−3δ

−(3σ+1)
0 ‖e0‖2

ρ0

where δ0, c0 are constants to be determined later.

Having the solution (∆0(θ), ε0) a better approximating torus for the map fλ1 ,

where λ1 = λ0 + ε0, is defined as

K1(θ) = K0(θ) + ∆0(θ)

and it will be shown that (K1(θ), fλ1) is a non-degenerate pair. Furthermore, setting

e1(θ) := fλ1(K1(θ))−K1(θ)

we find that

‖e1‖ρ0−δ0 ≤ c0γ
−4δ−4σ

0 ‖e0‖2
ρ0
.

In other words, for the new torus the error has decreased quadratically.

Iterating this procedure, we will see that the sequence

(K0, λ0), (K1, λ1), . . . , (Kn, λn), . . .

of approximate solutions of (3.2.5), obtained by applying the iterative procedure,

converges to a solution (K∞, λ∞). One has to be careful with the domain Uρ which

decreases in each iteration (the reason is because we can bound the correction applied

at one step only in a domain slightly smaller than the domain of the original function).

This loss of domain can be arranged in a way that, in the limit, one does not end

up with an empty domain. This choice of decreasing domains so that there is some

domain that remains is very standard in KAM theory since the first papers [22,30,31].

See [24, 41] for a pedagogical exposition. �

Remark 3.3.6. There are two possible ways to extend Theorem 3.3.5 from presym-

plectic maps to presymplectic flows. One is to use the local uniqueness statement in
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Theorem 3.3.7 below. The other one is to proceed with automatic reducibility for

flows as in the symplectic case (see [14]). Both of them require some technical work

which is still in progress and will not be discussed in this thesis.

3.3.2 Local uniqueness

Notice that ifK∞ is a solution of (3.3.4) then for every ϕ ∈ Td×Tn the mapK∞(θ+ϕ)

is also a solution. For this reason, we will consider K(θ) and K̂(θ) := K(θ+ϕ) to be

equivalent. By uniqueness of solutions, we will mean uniqueness up to this equivalence

relation. The following result gives uniqueness of solutions of (3.3.4):

Theorem 3.3.7. Let ω ∈ D(γ, σ) and assume that K1 and K2 are two non-degenerate

tori in Pρ solving

fλ(K(θ))−K(θ + ω) = 0, (3.3.9)

such that K1(Uρ) ⊂ Br and K2(Uρ) ⊂ Br. Furthermore, assume that the matrix

Θ := avg

 S1(θ)

A(θ)

 ,

where S1(θ), A(θ) are defined by (3.2.30) and (3.2.28) has rank d. Then there exists

a constant c̃ > 0 depending on σ, n, d, ρ, r, |fλ|C2,Br , ‖DK1‖ρ, ‖N1‖ρ and |Θ| such

that if

‖K1 −K2‖ρ < c̃γ2δ2σ, (3.3.10)

where δ = ρ
8
, then there exists an initial phase τ ∈ Td×Tn such that in Uρ/2 one has:

K1 ◦ Tτ = K2

The proof of this result is given in Section 3.7
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3.3.3 A vanishing lemma

We end this section with one geometric result. Recall that a diffeomorphism f : M →

M is called exact presymplectic if at the level of de Rham cohomology one has:

[f ∗α− α] = 0 (3.3.11)

where α is a primitive of the presymplectic form: Ω = dα. When M is not compact,

one must use compactly supported de Rham cohomology. Clearly, the time-1 map

of a Hamiltonian vector field is exact. Moreover, using the flux homomorphism (see

[4]), one can show that an exact presymplectic diffeomorphism which is close enough

to the identity is the time-1 map of a (time-dependent) Hamiltonian vector field.

We now generalize to exact presymplectic diffeomorphisms the Vanishing Lemma

of [16], valid for exact symplectic diffeomorphisms, and which allows one to have

some control on the size of the parameter λ. Due to the the presence of kernel, our

Vanishing Lemma has a slightly different nature (and statement) than [16, Lemma

4.9].

We will assume that we are in the situation described in the statement of Theorem

3.3.5, where f0 is exact. In order to simplify the notation we write K(θ) instead of

K∞(θ) and λ instead of λ∞. Let f̃λ := fλ − f0 and define the average3

µ̄ :=

∫
Td+n

f̃λ(K(θ)) dθ ∈ R2d+n (3.3.12)

If we express the vector µ̄ in the basis {X(θ), J−1(K(θ))Y (θ), Z(θ)}, we obtain the

θ-dependent components (µ1(θ), ..., µ2d+n(θ)), in other word

µ̄ = [µ1(θ), ..., µ2d+n(θ)]
[
X(θ) J−1(K(θ))Y (θ) Z(θ)

]
.

We have
3In the sequel, we will not distinguish between a map with values in Td+n × Rd and a lift with

values in R2d+n.
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Lemma 3.3.8 (Vanishing Lemma). If f0 : M →M is an exact presymplectic diffeo-

morphism, then ∫
Td+n

µk(θ) dθ = 0, (k = d+ 1, . . . , 2d). (3.3.13)

Proof. We fix the following notations

θ̂i = (θ1, ..., θi−1, θi+1, ..., θd+n) ∈ Td+n−1

ω̂i = (ω1, ..., ωi−1, ωi+1, ..., ωd+n) ∈ Rd+n−1

and we let σi,θi : T→ Td+n be the path given by;

σi,θi(η) = (θ1, ..., θi−1, η, θi+1, ..., θd+n).

Also, we consider the two-cell Bi,θ̂i
: [0, 1]× S1 → R2d+n defined by:

Bi,θ̂i
(ξ, η) := K ◦ σi,θ̂i+ω̂i(η)− (µ̄) ◦ σi,θ̂i+ω̂i(η)ξ. (3.3.14)

We will compute the integral ∫
Bi,θ̂i

Ω

in two distinct ways:

(1) The boundary of Bi,θ̂i
is the difference between the two paths K ◦ σi.θ̂i+ω̂i and

(K ◦ Tω − µ̄) ◦ σi,θ̂i , so by Stokes’s theorem we conclude∫
Bi,θ̂i

Ω =

∫
(K◦Tω−µ̄)◦σi,θ̂i

α−
∫
K◦σi,θ̂i+ω̂i

α (3.3.15)

Since (f̃λ(K(θ)) − µ̄) has average zero and satisfies all hypothesizes of Proposition

3.2.4, there exists an analytic function v : Td+n → R2d+n such that

v(θ)− v(θ + ω) = f̃λ ◦K − µ̄.
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This, together with the exactness of f0 implies that:∫
(K◦Tω−µ̄)◦σi,θ̂i

α =

∫
(fλ◦K−µ̄)◦σi,θ̂i

α =

∫
(f0◦K+f̃λ◦K−µ̄)◦σi,θ̂i

α

=

∫
K◦σi,θ̂i

f ?0α +

∫
v◦σi,θ̂i−v◦σi,θ̂i+ω̂i

α

=

∫
K◦σi,θ̂i

α +

∫
v◦σi,θ̂i−v◦σi,θ̂i+ω̂i

α.

Hence, we see that: ∫
Bi,θ̂i

Ω =

∫
(K+v)◦σi,θ̂i

α−
∫

(K+v)◦σi,θ̂i+ω̂i

α.

By a simple change of variable, we see that if we integrate over the torus Td+n−1 the

right-hand side of the previous equation vanishes, so we can conclude that∫
Td+n−1

dθ̂i

∫
Bi,θ̂i

Ω = 0. (3.3.16)

(2) Next we compute the integral of Ω over Bi,θ̂i
explicitly as follows:∫

Bi,θ̂i

Ω =

∫ 1

0

∫ 1

0

ΩBi,θ̂i
(ξ,η)(∂ξBi,θ̂i

(ξ, η), ∂ηBi,θ̂i
(ξ, η)) dξdη

Since µ̄ is a constant vector, by (3.3.14) and (3.2.14) we have for i = 1, . . . , d:

∂ηBi,θ̂i
= ∂θiK ◦ σi,θ̂i+ω̂i = Xi ◦ σi,θ̂i+ω̂i

∂ξBi,θ̂i
, = −(µ̄) ◦ σi,θ̂i+ω̂i .

So from the partial presymplectic basis relations (3.2.18), (3.2.19) and (3.2.20) we

conclude that:∫
Bi,θ̂(ξ,η)

Ω =

∫ 1

0

µd+i ◦ σi,θ̂i+ω̂i(η) dη, (i = 1 . . . , d). (3.3.17)

Now, (3.3.16) and (3.3.17) together show that:∫
Td+n−1

dθ̂i

∫ 1

0

µd+i ◦ σi,θ̂i+ω̂i(η) dη = 0 (i = 1 . . . , d),

and this yields the result. �
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Remarks 3.3.9. The following remarks illustrate the relevance of the Vanishing Lemma:

• The Vanishing Lemma concerns invariant tori. It can be extended to the ap-

proximate case, as it is done in [16] for the symplectic case, and assuming that

the whole family fλ is exact presymplectic, it leads to a bound on the parame-

ter, which shows that in every step the value of the parameter decreases with

the error term. This can be useful in numerical schemes for finding invariant

tori.

• In dimension 2, a volume preserving diffeomorphism of S1 × R is the same as

(pre)symplectic diffeomorphism. In this case, as shown by the proof above, the

integral (3.3.13) is the oriented area between a circle and its image by the map,

as shown in Figure 3.1. This clearly shows that the vanishing of (3.3.13) is an

obstruction for the existence of invariant tori (see also [24]).

Figure 3.1: Vanishing Lemma

• Recall that we can think of our presymplectic manifold M as T ∗Td × Tn. In

our Vanishing Lemma we only control the averages in the directions normal to

Td. It is easy to give simple examples of maps satisfying all the assumptions

and such that the averages in other directions are non-zero.
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3.4 Estimates for the linearized equation

The sketch of the proof of Theorem 3.3.5, given in the previous section, relied on

finding an approximate solution of the linearized equation (3.3.8), assuming that one

has an approximate solution K0 of (3.3.7). In this section, we explained how this can

be done.

The first claim is that the set {X(θ), J−1(K(θ))Y (θ), Z(θ)} is still a basis for

TK0(θ)M if the error term is small enough. Note that now, due to the error term,

equation (3.2.26) becomes

Q(θ) ·M(θ) = V (θ) +R(θ), (3.4.1)

where

R(θ) :=


XᵀV (θ)J(θ)XV (θ) 0 XᵀV (θ)J(θ)ZV (θ)

0 0 0

0 0 0

 .
If we now use that K0(θ) is approximately Lagrangian, i.e., if we apply Lemma 3.2.6,

we see that we can control the reminder R(θ):

Lemma 3.4.1. Assume the hypotheses of Lemma 3.2.6 hold. Then there exits a

constant c3 depending on d, n, ρ, |fλ|C1,B, |J |C1,B, ‖N‖ρ, and ‖DK0‖ρ such that for

every 0 < δ < ρ
2
we have

‖V −1 ·R‖ρ−2δ ≤ c3γ
−1δ−(σ+1)‖e0‖ρ.

We conclude that:

Corollary 3.4.2. Assume the hypotheses of Lemma 3.2.6 hold. If e0(θ) satisfies

c3γ
−1δ−(σ+1)‖e0‖ρ ≤

1

2
, (3.4.2)

then M is invertible and

M−1(θ) = V −1(θ)Q(θ) +Me(θ),
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where

Me(θ) = −[I2d+n + V −1(θ)R(θ)]−1V −1(θ)R(θ)V (θ)R(θ). (3.4.3)

Moreover

‖Me‖ρ−2δ ≤ c4γ
−1δ−(σ+1)‖e0‖ρ, (3.4.4)

where c4 is a constant which depends on the same parameters as c3.

Proof. A simple application of the Neumman series. See [14]. �

We are ready to apply our change of variables. Before that we remark that, since

fλ0 is presymplectic, we have

Dfλ0(K(θ)) =

 F1(θ) 0

F2(θ) F4(θ)

 , (3.4.5)

where F1(θ) is a symplectic linear map from V = π(TK(θ)M) into itself.

Lemma 3.4.3. Let K0(θ) ∈ Pρ solves

fλ0(K0(θ))−K0(θ + ω) = e0(θ)

and that (fλ, K(θ)) is non-degenerate at λ = λ0 in the sense of definition 3.3.3.

If e0(θ) satisfies (3.4.2), then the change of variable ∆0(θ) = M(θ)ξ(θ) transforms

equation (3.3.8) to

Id S(θ) 0

0 Id 0

0 A(θ) In

+B(θ)

 ξ(θ)− ξ(θ + ω) = (3.4.6)

− V −1(θ)Q(θ)e0(θ)− Λ(θ)ε0 −Me(θ)e0(θ)−Me(θ)(
∂fλ
∂λ

∣∣∣∣
λ=λ0

)ε0,
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where

B(θ) := M−1(θ + ω)E(θ)−


0 S2(θ) 0

0 0 0

0 0 0


E(θ) := (D1e0(θ), E1(θ), D2e0(θ))

E1(θ) := Dfλ0(K0(θ))J−1(K0(θ))Y (θ)−X(θ + ω)S1(θ)+

− J−1(K0(θ))Y (θ + ω)− Z(θ + ω)A(θ)

S2(θ) := V −13 ·
(
F2(θ)J−1(K0(θ))Y (θ)−XN(θ + ω)S1(θ)− ZN(θ + ω)A(θ)

)
S(θ) := S1(θ) + S2(θ),

and Λ(θ), Me(θ) and S1(θ) are defined by (3.3.2), (3.4.3) and (3.2.30) respectively.

Moreover, we have the estimates:

‖Mee0‖ρ−2δ ≤ c4γ
−1δ−(σ+1)‖e0‖2

ρ (3.4.7)∥∥∥∥Me
∂(fλ ◦K0)

∂λ

∣∣∣∣
λ=0

ε0

∥∥∥∥
ρ−2δ

≤ c4γ
−1δ−(σ+1)

∥∥∥∥ ∂(fλ ◦K0)

∂λ

∣∣∣∣
λ=0

∥∥∥∥
ρ

|ε0|‖e0‖ρ

‖B‖ρ−2δ ≤ c5γ
−1δ−(σ+1)‖e0‖ρ (3.4.8)

where c4 is the same as in (3.4.4) and c5 is another constant which depends on the

same parameters .

Proof. The form of the transformed equations follows from substituting the change

of variable and elementary computations.

To prove the estimates (3.4.7) and (3.4.8), we note that (3.4.7) follows immediately

from (3.4.4), so it only remains to prove (3.4.8). First note that for the first term

in the definition of B(θ) i.e. M−1(θ + ω)E(θ), the Cauchy integral formula provides

bounds for D1e0(θ) and D2e0(θ) in terms of the error. This enables us to bound

M−1(θ + ω) (D1e0(θ), D2e0(θ)) by the error term. Calculating bounds for M−1(θ +

ω)E1(θ) is more subtle. By the definition of A(θ) and the fact that

T3(θ + ω)X(θ + ω) = 0
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it follows that

T3(θ + ω)E1(θ) = 0.

Therefore:

M−1(θ + ω)E1(θ) =


 T1(θ + ω)

T2(θ + ω)

E1(θ)

0

 .
By the corollary 3.4.2 and the remark 3.2.8 we get: T1(θ)

T2(θ)

 =

 V −11 V −12 V −13

Id 0 0

Q(θ) + M̃e(θ),

Where4

Q(θ) :=


XᵀV (θ)J(K(θ)) 0

(J−1(K(θ))Y (θ))ᵀJ(K(θ)) 0

0 0 In

 ,
and M̃e(θ) is obtained from Me(θ), defined at (3.4.3), by removing the last n rows.

So, we have

 T1(θ + ω)

T2(θ + ω)

E1(θ) =

(1)︷ ︸︸ ︷ Ṽ −1(θ + ω)Q̃(θ + ω)
0

0

E1(θ) + (3.4.9)

+

 0 0 V −13

0 0 0

E1(θ)

︸ ︷︷ ︸
(2)

+ M̃e(θ)E1(θ)︸ ︷︷ ︸
(3)

,

where we used notations:

Ṽ −1(θ) :=

 V −11 V −12

Id 0

 ,
Q̃(θ) =

 XᵀV (θ)J(K(θ))

(J−1(K(θ))Y (θ))ᵀJ(K(θ))

 .
4Q(θ) is defined at (3.2.25), just to make it easier to follow the calculations we restate it again
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Note that, by (3.4.4) the term (3) in the right hand side of (3.4.9) is bounded by the

error i.e.,

‖M̃e(θ)E1(θ)‖ρ−2δ ≤ c6γ
−1δ−(σ+1)‖e0‖ρ,

where c6 depends on c4 from (3.4.4) and ‖E1(θ)‖ρ5. Considering (3.4.5) and an

elementary computation shows that

E1(θ) =

 F1(θ)J−1(K(θ))Y (θ)−XV (θ + ω)S1(θ)− J−1(K(θ + ω))Y (θ + ω)− ZV (θ + ω)A(θ)

F2(θ)J−1(K(θ))Y (θ)−XN(θ + ω)S1(θ)− ZN(θ + ω)A(θ)

 ,
(3.4.10)

substituting (3.4.10) in the term (1) of left hand side of (3.4.9), we get that term (1)

is equal to

Ṽ −1(θ + ω) ·

 XᵀV (θ + ω)J(θ + ω)E
up
1

(J−1(K(θ + ω))Y (θ + ω))ᵀJ(θ + ω)E
up
1

 , (3.4.11)

where Eup
1 is the upper block of E1 at (3.4.10). The definition of S1(θ), see (3.2.30),

and assumption (3.2.15) easily show that the lower block in the equation (3.4.11) is

identically zero. The upper block of the equation (3.4.11) is equal to the following

term

φ(θ)− ψ(θ)−XᵀV (θ + ω)J(θ + ω)XV (θ + ω)+ (3.4.12)

−XᵀV (θ + ω)J(θ + ω)ZV (θ + ω)A(θ),

where

φ(θ) = (F1(θ)XV (θ))ᵀϕ(θ)F1(θ)J−1(K(θ))Y (θ),

with ϕ(θ) = J(K(θ + ω))− J(f(K(θ)) and

ψ(θ) = [F1(θ)XV (θ)−XV (θ)]ᵀJ(θ + ω)(F1(θ)J−1(K(θ))Y (θ)).

Both ϕ(θ) and F1(θ)XV (θ) − XV (θ) are controlled by the error term. This fact

and Lemma 3.2.6 show that (3.4.12) is controlled by ‖e0(θ)‖ρ. Finally the term (2)

5As we will see ‖E1(θ)‖ρ contains terms that are not bounded by the error, so we do not get

quadratic bound by the error as in the symplectic case and the constant depends on ‖E1(θ)‖ρ also.
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in the left hand side of (3.4.9) is equal to

 S2(θ)

0

 by definition. Since this term is

not controlled by the error, we subtract it from M−1(θ+ω)E(θ) to define B(θ), then

we get the bound (3.4.8). We move S2(θ) to the coefficients matrix add it to S1(θ).

�

Remark 3.4.4. The details to reach expression (3.4.12) are as follows:

XᵀV (θ + ω)J(θ + ω)J(θ + ω)[F1(θ)J−1(K(θ))Y (θ)− J−1(K(θ + ω))Y (θ + ω)] =

= − [F(θ)XV (θ)−XV (θ + ω)]ᵀJ(θ + ω)F1(θ)J−1(K(θ))Y (θ)︸ ︷︷ ︸
ψ

+

+ (F1(θ)XV (θ))ᵀ
ϕ︷ ︸︸ ︷

(J(K(θ + ω)− J(f(K(θ))F1(θ)J−1(K(θ))Y (θ)︸ ︷︷ ︸
φ

+

+ (F1(θ)XV (θ))ᵀJ(f(K(θ))F1(θ)J−1(K(θ))Y (θ)︸ ︷︷ ︸
(1)

+

−XV (θ + ω)J(θ + ω)J−1(K(θ + ω))Y (θ + ω)︸ ︷︷ ︸
(2)

.

But we have:

(1) = Ω(F1(θ)J−1(K(θ))Y (θ), F1(θ)XV (θ)) = Ω(J−1(K(θ))Y (θ), XV (θ)) = −I,

(2) = Ω(J−1(K(θ + ω))Y (θ + ω), XV (θ + ω)) = −I,

so (3.4.12) follows.

We will see that the terms B(θ)ξ(θ), Me(θ)e0(θ) and Me(θ)(
∂fλ
∂λ
|λ=λ0)ε0 have a

quadratic dependence on the error ‖e0(θ)‖ρ, and since we are looking for approximate

solution we may omit them. After we omit these terms from (3.4.6) we obtain the

linear system: 
Id S(θ) 0

0 Id 0

0 A(θ) In

 ξ(θ)− ξ(θ + ω) = R0(θ), (3.4.13)
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where

R0(θ) = −V −1(θ)Q(θ)e0(θ)− Λ(θ)ε0.

This linear system can be solved using Proposition 3.2.4, as we show next:

Proposition 3.4.5. Assume that all hypothesis of Lemma 3.4.3 hold. Then there

exists a mapping ξ(θ), analytic on Uρ−2δ and a vector ε0 ∈ R2n such that (3.4.13)

holds for ξ(θ) and ε0. Moreover, there exits c8 and c9 depending on n, d, ρ, r,

|fλ0|C2,B, ‖DK0‖ρ, ‖N‖ρ ,
∥∥∥ ∂fλ∂λ ∣∣λ=λ0

∥∥∥
ρ
such that

‖ξ‖ρ−2δ ≤ c8γ
−2δ−2σ‖e0‖ρ (3.4.14)

|ε0| ≤ c9| avg(Λ0)−1|‖e0‖ρ (3.4.15)

Proof. Since the proof goes through as in the symplectic case, to avoid unnecessary

details, we give a short sketch of the proof and refer to [14] for more details. Let

R0(θ) =


Rx(θ)

Ry(θ)

Rz(θ)

 , ξ(θ) =


ξx(θ)

ξy(θ)

ξz(θ)

 ,

so (3.4.13) becomes 

ξx(θ)− ξx(θ + ω) = Rx(θ)− S(θ)ξy(θ)

ξy(θ)− ξy(θ + ω) = Ry(θ)

ξz(θ)− ξz(θ + ω) = Rz(θ)− A(θ)ξy(θ)

(3.4.16)

Using the non-degeneracy of the pair (fλ, Kλ) at λ = 0, we can determine (εd+1
0 , ..., ε2d

0 )

in such way that avg(Ry) = 0. Then we can apply Proposition 3.2.4 to solve the second

equation in (3.4.16) finding a unique zero average solution ξy(θ). After determining

ξy(θ) one can choose the remaining components of ε0 so that

avg(Rx − Sξy) = avg(Rz − Aξy) = 0.
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Applying again Proposition 3.2.4, we solve the first and last equation of (3.4.16)

obtaining unique zero average solutions ξx(θ) and ξz(θ). Proposition 3.2.4 shows that

these solutions satisfy the following estimates:

‖ξy‖ρ−δ ≤ c′γ−1δ−σ‖Ry‖ρ

‖ξx‖ρ−2δ ≤ c′′γ−1δ−σ‖Rx − Sξy‖ρ−δ

‖ξz‖ρ−2δ ≤ c′′′γ−1δ−σ‖Rz − Aξy‖ρ−δ

The proof of the estimates (3.4.15) and (3.4.14) follow just like in the symplectic case

(see [14]). �

Corollary 3.4.6. Assume all the hypotheses of the proposition (3.4.5) hold. then

‖∆0‖ρ−2δ ≤ cγ−2δ−2σ‖e0‖ρ (3.4.17)

‖D∆o‖ρ−3δ ≤ cγ−2δ−(2σ+1)‖e0‖ρ.

‖DG(K0, λ0)|(∆0(θ),ε0) + e0‖ρ−2δ ≤ c12γ
−3δ−(3σ+1)‖e0‖2

ρ, (3.4.18)

where ∆0(θ) = M−1(θ)ξ(θ).

Proof. The estimates (3.4.17) are immediate consequences of the proposition (3.4.5)

and the Cauchy integral formula. Replacing the solution given by Proposition 3.4.5

into the linearized equation (3.3.8) we find that:

DG(K0,λ0)|(∆0(θ),ε0) + e0(θ) =

M(θ + ω)

(
B(θ)ξ(θ) +Me(θ)e0(θ) +Me(θ)

∂fλ
∂λ

∣∣∣∣
λ=λ0

ε0

)
,

Now (3.4.18) follows from (3.4.7) (3.4.8) (3.4.14) and (3.4.15). This establishes that

indeed, we have obtained an approximate solution of the linearized equation (3.3.8).

�

Remark 3.4.7. One of the concerns in the KAM results of the type we are presenting

here is how many modifying parameter are needed. A very lucid discussion regarding
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this matter can be found in [32]. A discussion of the dimension of the space of

parameters in the degenerate cases, can be found in [18]. We note that comparing

[14, Proposition 8] and Proposition 3.4.5, one sees, that if the family fλ consists

of exact presymplectic diffeomorphisms, then the dimension of parameter space can

be reduced by d. Furthermore, if the initial torus satisfies the Kolmogorov 6 non-

degeneracy condition [22] i.e. if avg(S(θ)) is non-singular where S(θ) is defined in

the Lemma 3.4.3, then the dimension of parameter space can be reduced by d again.

The reason is that we can choose the averages of the tori as parameters.

In particular, having both families of exact presymplectic mappings and Kol-

mogorov non-degeneracy condition, it will be enough to consider the parameter space

to be n dimensional, see the Vanishing Lemma also.

3.5 Estimates for the improved step

In the previous section, we have shown that the linearized equation (3.3.8) admits

approximate solution in a smaller analyticity domains. The estimates blow up if the

analyticity loss vanishes. The good point is that they blow up not worse than a power.

The goal of this section is to show that if ‖∆0‖ρ−δ is sufficiently small, the new

torus K1(θ) = K0(θ)+∆0(θ) has an error in the invariance equation which is quadrat-

ically small with respect to the original one (in the smaller domain).

Lemma 3.5.1. Assume

(K0 + ∆0)(Uρ−δ, λ0 + ε0) ⊂ Domain(f),

where f is defined in (3.2.3),then

‖fλ0+ε0 ◦ (K0 + ∆0)− (K0 + ∆0) ◦ Tω‖ρ−δ ≤ cγ−2δ−4σ‖e0‖ρ, (3.5.1)
6It is also known as twist condition
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where c now involves ‖f‖C2,B as well as previous quantities. Furthermore, the pair

(fλ, K1) is non-degenerate at λ = λ0 + ε0, in the sense of definition 3.3.3.

Note that the linear equation admits estimates for ∆ in any domain Uρ−δ for any

δ > 0. If the δ is very small compared with ‖e0‖ρ, the estimates blow up. So that the

estimates on the step require some restrictions on the loss of domain δ allowed.

Given the estimates on ∆, ε0 obtained in Corollary 3.4.2, we see that the require-

ment on the composition is implied by

cγ−2δ−(2σ+1)‖e0‖ρ ≤ η (3.5.2)

where η is smaller than the distance of K(Uρ) to the complement of the domain of f .

Proof. This is just a simple consequence of the obvious identity obtained by adding

and subtracting some terms:

fλ0+ε0(K0 + ∆0)− (K0 + ∆0) ◦ Tω =

fλ0+ε0(K0 + ∆0)− fλ0(K0)− ∂fλ
∂λ

∣∣∣∣
λ=λ0

(K0)ε0 −Dfλ0(K0)∆0︸ ︷︷ ︸
(1)

+ fλ0(K0)−K0 ◦ Tω +Dfλ0(K0)∆0 −∆0 ◦ Tω +
∂fλ
∂λ

∣∣∣∣
λ=λ0

(K0)ε0︸ ︷︷ ︸
(2)

The term (1) can be estimated by Taylor theorem, so we have:

‖fλ0+ε0(K0 + ∆0)− fλ0(K0)− ∂fλ
∂λ

∣∣∣∣
λ=λ0

(K0)ε0 −Dfλ0(K0)∆0‖ρ−δ

≤ 1

2
‖f‖C2,B(‖∆o‖2

ρ−δ + |ε0|2) ≤ c
1

2
‖f‖C2,Bγ

−2δ−4σ‖e0‖ρ

The term (2) is exactly the left hand side of (3.4.18), so by rearranging the constant we

get estimate (3.4.18). Non-degeneracy of the pair (fλ, K1) comes from the estimates

(3.4.17), (3.4.15) and the fact that non-degeneracy is an open condition. �
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3.6 Iteration of the Newton method and convergence

We shall now perform our modified Newton method, starting with fλ0 , K0, ω and

ρ0 satisfying the hypotheses of Theorem 3.3.5, and applying at each step the results

of Section 3.4. We will see that if we choose ‖e0‖ρ0 small enough we will be able to

proceed with the iteration so that the equation

fλ(K(θ)) = K(θ + ω) (3.6.1)

has a convergent sequence of approximate solutions

(K0, λ0), (K1, λ1), (K2, λ2), . . .

defined on domains

Uρ0 ⊃ Uρ1 ⊃ Uρ2 ⊃ · · ·

with limit an exact solution (K∞, λ∞), defined on a domain Uρ∞ .

Starting with the approximate solution (K0, λ0), assume that we have already

found the term (Km, λm) in this sequence. The next term will take the form:

Km = Km−1 + ∆m−1(θ), λm = λm−1 + εm−1 (m ≥ 1),

with (∆m−1(θ), εm−1) an approximate solution of the linear equation

DG(Km−1, λm−1)|(∆m−1(θ),εm−1) = −em−1, (3.6.2)

where em−1 := G(Km−1, λm−1)

The following lemmas are simply restating the lemma 3.5.1 for a general step.

Lemma 3.6.1. Assume that (Km−1, λm−1) is a non-degenerate (Definition 3.3.3)

approximate solution of (3.6.1) such that

rm−1 := ‖Km−1 −K0‖ρm−1 < r. (3.6.3)
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If ‖em−1‖ρm−1 is small enough so that Proposition 3.4.5 applies, then for any 0 <

δm−1 < ρm−1/3 there exist a function ∆m−1(θ) ∈ Pρm−1−3δm−1 and εm−1 ∈ R2d+n,

such that

‖∆m−1(θ)‖ρm−1−2δm−1 < cm−1γ
−2δ−2σ

m−1‖em−1‖ρm−1

‖D∆m−1(θ)‖ρm−1−2δm−1 < cm−1γ
−2δ

−2(σ+1)
m−1 ‖em−1‖ρm−1 (3.6.4)

|εm−1| ≤ cm−1|(avg(Λm−1)−1|‖em−1‖ρm−1

where cm−1 is a constant depending on n, d, ρ, r, |fλm−1|C2,Br , ‖DKm−1‖ρ, ‖Nk−1‖ρ
and

∥∥∥ ∂fλ∂λ ∣∣λ=λm−1

∥∥∥
ρ
.

Moreover if

rm−1 < cm−1γ
−2δ−2σ−1

m−1 ‖em−1‖ρm−1 (3.6.5)

setting Km = Km−1 + ∆m−1, λm = λm−1 + εm−1. then, em(θ) = G(Km, λm)(θ) the

error function of the improved solutions satisfies

‖em‖ρm ≤ cm−1γ
−4δ−4σ

m ‖em−1‖2
ρm−1

(3.6.6)

Lemma 3.6.2. Under the same assumptions as in Lemma 3.6.1, one can improve

the constant cm−1 such that (3.6.5) holds and if

cm−1γ
−2δ

−(σ+1)
m−1 ‖em−1‖ρm−1 ≤

1

2
(3.6.7)

then

(i) If (πD1Km−1)ᵀπD1Km−1 is invertible with inverse Nm−1, then the matrix (πD1Km)ᵀπD1Km

is also invertible with inverse Nm satisfying

‖Nm‖ρm ≤ ‖Nm−1‖ρm−1 + cm−1γ
−2δ

−(σ+1)
m−1 ‖em−1‖ρm−1 ; (3.6.8)

(ii) If Vm−1 is invertible then Vm is invertible and the inverse satisfies equation

(3.6.8) with N replaced by V −1.
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(iii) If avg(Λm−1) is invertible then avg(Λm) is invertible and the inverse satisfies

equation (3.6.8) with N replaced by avg(Λ)−1.

(iv) The assumption (3.5.2) ensurs that the range of (Km−1 + ∆m−1, λm−1 + εm−1)

is inside of the domain of f .

The most important point is that the constants cm depend only on n, d, ρ, r,

|fλm−1|C2,Br , ‖DKm−1‖ρ, ‖Nk−1‖ρ and
∥∥∥ ∂fλ∂λ ∣∣λ=λm−1

∥∥∥
ρ
. Hence, when we show that the

K does not leave a neighborhood, then, the constants are uniform.

The convergence of the modified Newton method described above is very standard

in KAM theory. Indeed, it has sometimes been formulated as an implicit function

theorem. Among the many versions of implicit function theorems, the one of [41] is

the closest to the problem here. For the sake of completeness, we indicate the main

points of the iteration following closely [14, 24] and refer to those papers for more

details. One of the main issues to watch out is that the non-degeneracy conditions

do not deteriorate much along the iteration and that the assumption (3.5.2), which

ensures that we can define the composition, remains valid.

We start by making the choice of the analyticity loss:

ρm = ρm−1 − 2−(m−1)δ0.

The most subtle point is to show that the conditions (3.6.3) and (3.6.7) are always

satisfied. The first one is to guarantee that the new torus always stays in the domain

of the f and the second one is to insure the non-degeneracy condition during the

iteration.

The constant cm depends on the quantities σ, n, d, r, which do not change during

the iteration. It also depends on the ρm ≤ ρ0 and the following quantities

|fλm |C2,Br , ‖DKm‖ρm , ‖Nm‖ρm , ‖
∂fλ
∂λ
|λ=λm (Km)‖ρm , | avg(Λm)−1|.

This dependence is polynomial. By similar calculation as follows, can be shown

that there exist constant c such that cm ≤ c for m ≥ 0, see [14, Lemma 13]. The
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main point is that we do not get far away from initial torus. Denote εm = ‖em‖ρm
with the choice of the domain loss, we obtain :

εm ≤ cγ−4(2−(m−1)δ0)−4σε2m−1 ≤ (cγ−4)(1+2)(2−(m−1)−2(m−2)δ
(1+2)
0 )−4σε4m−2 (3.6.9)

≤ · · · ≤ (cγ−4δ−4σ
0 )1+2+···+2m−1

(24σ)20(m−1)+2(m−2)+···+2m−2

ε2
m

0

≤ (cγ−4δ−4σ
0 )2m−124σ(2m−m)ε2

m

0 ≤ (cγ−4δ−4σ
0 24σε0)2m−12−4σ(m−1)ε0,

where we have used that

20(m− 1) + 2(m− 2) + · · ·+ 2m−2 = 2m−1

m−1∑
s=1

s2−s ≤ 2m −m.

One sees that if ‖e0‖ρ0 satisfies the assumption (3.3.3), the condition (3.6.7) is al-

ways satisfied. It remains to show that (3.6.3) is also satisfied. We denote κ =

cγ−4δ−4σ
0 24σε0. Now, the first estimate in (3.6.4), estimate (3.6.9) and the definition

of rm gives us:

rm ≤ rm−1 + cmγ
−2δ−2σ

m−1‖em−1‖ρm−1 ≤ · · · ≤ cγ−2σ−2σ
0 ε0 + cγ−2

m−1∑
j=1

δ−2σ
j εj (3.6.10)

≤ cγ−2σ−2σ
0 ε0 + cγ−2σ−2σ

0 κε0

m−1∑
j=1

22jσ2−4σ(j−1)

cγ−2σ−2σ
0 ε0

(
1 + κ24σ

∞∑
j=1

2−2jσ

)
= cγ−2σ−2σ

0 ε0

(
1 + κ

24σ

22σ − 1

)
.

Again having the assumption (3.3.3) and calculations (3.6.10) show that the (3.6.3)

is always satisfied.

3.7 Local Uniqueness

The proof of Theorem 3.3.7 follows exactly the same pattern as the proof of unique-

ness for the symplectic case given in [14], so we will not reproduce here the same

computations. We limit ourselves to some comments and a sketch of the proof, which

takes advantage of the fact that in Proposition 3.2.4 two different solutions of (3.2.8)
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differ by their average. In our situation, one can transfer this difference of averages

of two solutions to a difference of the phase between them.

Let K1 and K2 be two solutions as in the statement of Theorem 3.3.7. From

Taylor’s theorem we have:

Dfλ(K(θ))(K2 −K1) +R(K1, K2) = 0 (3.7.1)

where

‖R(K1, K2)‖ρ ≤ c‖K2 −K1‖2
ρ (3.7.2)

Applying the change of variable Mξ = (K1 −K2), where M is given by (3.2.17) and

replacing K by K1, the linear equation (3.7.1) is transformed to

ξx(θ)− ξx(θ + ω) = (R̃(K1, K2))x − S1(θ)ξy(θ) (3.7.3)

ξy(θ)− ξy(θ + ω) = (R̃(K1, K2))y (3.7.4)

ξz(θ)− ξz(θ + ω) = (R̃(K1, K2))z − A(θ)ξy(θ) (3.7.5)

where

R̃(K1, K2) = −M−1(θ + ω)R(K1, K2).

Using Proposition 3.2.4 and (3.7.2), it follows from (3.7.4) that:

‖ξ⊥y ‖ρ−2δ ≤ cγ−2δ−2σ‖R̃(K1, K2)‖ρ, (3.7.6)

where

ξ⊥y (θ) = ξy(θ)− avg(ξy)

On the other hand, the average of the right hand sides of (3.7.3) and (3.7.5) are zero,

so the assumption that Θ (see Theorem 3.3.7) has rank d together with the estimates

(3.7.2) and (3.7.6) give us

‖(ξx, ξy, ξz)− (avg(ξx), 0, avg(ξz))‖ρ−2δ ≤ cγ−2δ−2σ‖K2 −K1‖2
ρ

Similarly to [14], this leads to the following lemma.
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Lemma 3.7.1. There exists a constant c̃ depending on d, n, ρ, |J |Br , ‖K1‖C2,ρ such

that if

c̃‖K2 −K1‖ρ ≤ 1,

then one can find τ ∈ Rd+n with |τ | ≤ ‖K2 −K1‖ρ such that

avg

 T1

T3

 [K2 ◦ Tτ1 −K1]

 = 0,

where T1 and T3 are defined by (3.2.29) after replacing K by K1. Therefore, for any

0 < δ < ρ/2, we have

‖K1 ◦ Tτ1 −K2‖ρ−2δ < ĉγ−2δ−2σ‖K1 −K2‖ρ,

for a constant ĉ depending on the same parameters as c̃ and also on Θ−1.

We then replace K2 by K2 ◦ Tτ1 and repeat the iteration, which is possible since

K2 ◦Tτ1 is also an invariant torus and the constants c̃ and ĉ do not depend on K2. In

this way we produce a convergent sequence of phases τ1, τ2, . . . , τm, . . . such that the

limit τ∞ satisfies:

‖K2 ◦ Tτ∞ −K1‖ρ/2 = 0,

therefore completing the proof of Theorem 3.3.7.

A different proof which does not require iteration (but requires setting a normal-

ization condition) appears in [6].

3.8 Comparison between the Poisson and the Presym-

plectic cases

As we mentioned in the Introduction, our results are not applicable to Hamiltonian

dynamical systems on Poisson manifolds. We now justify this statement by present-

ing a simple example illustrating the difference between Poisson and presymplectic

diffeomorphisms.
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Consider the presymplectic structure Ω = dx∧dy onM := T ∗T×T with standard

coordinates (x, y, z). This presymplectic structure admits the compatible Poisson

structure

Π =
∂

∂x
∧ ∂

∂y
.

Now a diffeomorphism f : M →M perserves the Poisson bivector Π if and only if it

satisfies the condition:

(Df)


0 −1 0

1 0 0

0 0 0

 (Df)ᵀ =


0 −1 0

1 0 0

0 0 0

 , (3.8.1)

which means that f will have the form

f(x, y, z) = (f1(x, y, z), f2(x, y, z), f3(z)),

with ∂f1
∂x

∂f2
∂y
− ∂f1

∂y
∂f2
∂x

= 1. We remark that (3.8.1) clearly shows that the symplectic

leafs of M are invariant under f , a well known fact from Poisson geometry.

On the other hand, a diffeomorphism f : M → M perserves the presymplectic

form Ω if and only if it satisfies the condition:

(Df)ᵀ


0 −1 0

1 0 0

0 0 0

 (Df) =


0 −1 0

1 0 0

0 0 0

 ,
which means that f must have the form

f(x, y, z) = (f1(x, y), f2(x, y), f3(x, y, z)), (3.8.2)

with ∂f1
∂x

∂f2
∂y
− ∂f1

∂y
∂f2
∂x

= 1. In general, there is no canonical way to get a symplectic

foliation for a presymplectic manifold. Moreover, even if we consider the symplectic

foliation arising from the associated Poisson structure, one can see from (3.8.2) that

presymplectic diffeomorphisms, in general, do not preserve symplectic leafs.
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Chapter 4

KAM and Lie Algebroids

In this chapter we will point out a different approach to stability problem of the KAM

tori in the case of vector fields.

4.1 Lie algebroids and vector fields

Let us start by recalling the definition of a Lie algebroid:

Definition 4.1.1. A Lie algebroid over a manifold M consists of a vector bundle

A over M together with a Lie algebra bracket [., .] on the space of Γ(A) sections of A

and a bundle map ρ : A→ TM (called the anchor) satisfying the Leibniz identity

[α, fβ] = f [α, β] + Lρ(α)(f)β, (α, β ∈ Γ(A), f ∈ C∞(M)),

where we denote by LX the Lie derivative along the vector field X ∈ X(X).

Here we are interested in Lie algebroids associated with vector fields, as in the

following very simple example:

Example 4.1.2. The Lie algebroid associated to vector field X ∈ X(M) is the line

bundle A := M × R equipped with the bracket

[α, β] = αX(β)− βX(α) α, β ∈ C∞(M,R) = Γ(A),

68



and anchor map
ρ : A→ TM

(m,λ) 7→ λX(m)

The anchor map is a Lie algebra homomorphism (Γ(A), [ , ]A) → (X(M), [ , ])

and its image is an integrable (singular) distribution. Clearly, the leaves of the Lie

algebroid associated to a vector field X ∈ X(M) are the orbits of the vector field X.

Furthermore, note that for a general Lie algebroid A, given a leaf L ⊂ M of A, one

can restrict the Lie algebroid structure on A to L to obtain a new Lie algebroid A|L,

with the bracket determined by:

[αL, βL] = [α, β]L.

This Lie algebroid is transitive, i.e., its anchor map is surjective.

A representation of the Lie algebroid A, is a vector bundle E over M endowed

with A-derivative operator:

Γ(A)⊗ Γ(E)→ Γ(E), (α, e) 7→ ∇α(e)

which satisfy the connection-like identities

∇fα(e) = f∇α(e), ∇α(fe) = f∇α(e) + Lρ(α)(f)e, (f ∈ C∞(M))

as well as the flatness condition

∇[α,β] = ∇α∇β −∇β∇α.

Given a representation E one defines the complex:

Ω•(A;E) = Γ(∧•A∗ ⊗ E), (4.1.1)

with the differential dA given by the classical Koszul-like formula:

dAω(α1, ..., αq+1) =
∑
i

(−1)i+1∇αi(ω(α1, ..., α̂i, ..., αq+1)) (4.1.2)

+
∑
i<j

(−1)i+jω([αi, αj], ..., α̂i, ..., α̂j, ..., αq+1).
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The resulting cohomology H•(A;E) is called the A-de Rham cohomology with

coefficients in E. We will be interested on the following example:

Example 4.1.3. If we fix a leaf L ⊂ M of A, the restricted algebroid A|L has a

canonical representation on the normal bundle νL = TM/TL:

∇α(X|mod TL) = [ρ(α), X] mod TL. (4.1.3)

This representation is known as the Bott representation of A|L and the resulting

cohomology H•(AL; νL) is the one relevant to the stability of leaves of Lie algebroids.

Remark 4.1.4. Actually, the previous example can be extended to any invariant sub-

manifold S ⊂M , i.e., any submanifold which is a union of leaves of A→M . Exactly

the same formulas define the cohomologyH•(AS, νS). There is however a fundamental

difference between the case of a single leaf L and an arbitrary invariant submanifold

S: for a leaf L the Lie algebroid AL is transitive, so the complex computing the co-

homology H•(AL; νL) is elliptic and this cohomology is finite dimensional, while this

is no long true for an arbitrary submanifold S, where usually H•(AS, νS) is infinite

dimensional.

4.2 Stability of leaves of Lie algebroids

Let us now turn to the question of stability of leaves of Lie algebroids. In order to

state a stability theorem for Lie algebroids, we need to explain first what does it

mean to perturb a Lie algebroid, in other words, what is the meaning of "nearby"

in the space of Lie algebroids structure on a fixed vector bundle. Fixing coordinates

(U, x1, ..., xn) on M and a basis of sections {e1, .., em} of A|U , we can describe a Lie

algebroid A→M by certain structure functions aαi , ckij ∈ C∞(U) defined by:

ρ(ei) =
∑
α

aαi
∂

∂xα
, [ei, ej] =

∑
k

ckijek
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This makes it possible to compare any two Lie algebroid structure over U by compar-

ing the corresponding structure functions in some Ck-topology. In order to compare

them globally, one fixes some connection ∇ on the vector bundle and then define

sections a ∈ Γ(A∗ ⊗ TM) and c ∈ Γ(∧2A∗ ⊗ A) by setting:

< a, (α, ω) >=< ρ(α), ω >, < c, (α, β, ξ) >=< [α, β]−∇ρ(α)β +∇ρ(β)α, ξ > .

The Ck-topology on the sections of a vector bundle now induce a Ck-topology on

the space of Lie algebroid structures on A. We can now state the stability

theorem for Lie algebroids:

Theorem 4.2.1 ([11]). Let L be a compact n-dimensional leaf of a Lie algebroid A

which satisfies H1(AL; νL) = 0 and let κ > n
2
be an integer. For any neighborhood

V of L there exist a neighborhood V of the Lie algebroid A in the Cκ-topology such

that any Lie algebroid structure in V has a family of leaves in V , diffeomorphic to

L, smoothly parametrized by H0(A|L; νL) and depending continuously on the algebroid

structure.

This theorem is a very powerful result which, for example, includes as special cases

stability theorems for foliations and for group actions. For more details in this regard

and some examples see [11]. Here we will explore only the case of vector fields.

The compact orbits of a vector field are fixed points and periodic orbits. Let us

see what Theorem 4.2.1 gives in each of these cases.

Example 4.2.2. Let X ∈ X(M) be some vector field on M and x0 ∈ M a fixed

point: X(x0) = 0. Then if A is the Lie algebroid associated with X and L = {x0},

we have ν(L) = Tx0M and one checks that:1

Ω0(AL, ν(L)) = Tx0M, Ω1(AL, ν(L)) ' Tx0M, Ω2(AL, ν(L)) = {0}.
1Note that A∗

L is a trivial line bundle.
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There is only one non-trivial differential d : Ω0(AL, ν(L) → Ω1(AL, ν(L), and it

follows from Example 4.1.3 that it is given by:

d : Tx0M → Tx0M, dv = Dx0X · v,

where Dx0X : Tx0M → Tx0M denotes the linearization of the vector field X at x0.

Hence, we conclude thatH1(AL, ν(L)) = 0 if and only if this linearization is invertible,

in which case we have also that H0(AL, ν(L)) = 0. Therefore, in this case, Theorem

4.2.1 states that if a vector field has a non-degenerate fixed point at x0, then any

nearby vector field will also have a nearby zero.

Example 4.2.3. Let X ∈ X(M) be some vector field on M and let L ⊂ M be a

periodic orbit of X. In order to simplify the analysis let us assume that the normal

bundle ν(L) is orientable. Then we parameterize a neighborhood U of L ' S1 so that

U = S1 × Rn−1 with coordinates (θ, x1, . . . , xn−1) and the vector field is given by:

X = Xθ(θ, x)
∂

∂θ
+

n−1∑
i=1

Xi(θ, x)
∂

∂xi
,

withXθ(θ, 0) = 1 andXi(θ, 0) = 0. In these coordinates, the normal bundle ν(L)→ L

can be identified with the trivial bundle S1 × Rn−1 → S1, and sections of the normal

bundle can be identified with vector fields along L of the form Y (θ) =
∑

i Yi(θ)
∂
∂xi

.

Then one checks that:

Ω0(AL, ν(L)) =Γ(ν(L)), Ω1(AL, ν(L)) ' Γ(ν(L)),

Ω2(AL, ν(L)) = {0},

and the only non-zero differential d : Ω0(AL, ν(L)→ Ω1(AL, ν(L), is given by:

d : Γ(ν(L))→ Γ(ν(L)), d

(∑
i

Yi(θ)
∂

∂xi

)
=
∑
i

(
∂Yi
∂θ

(θ) +
∑
j

∂Xi

∂xj
(θ, 0)Yj(θ)

)
∂

∂xi

Hence, we conclude that H1(AL, ν(L)) = 0 if and only if the Floquet exponents are

all non-zero, in which case we have also that H0(AL, ν(L)) = 0. Therefore, in this

case, Theorem 4.2.1 states that if a vector field has a non-degenerate periodic orbit

then any nearby vector field will also have a nearby periodic orbit.
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4.3 Stability of invariant submanifolds of Lie alge-

broids

A leaf of a Lie algebroid A is an example of an invariant submanifold, i.e., a manifold

which is invariant for all the vector fields in the image of the the anchor map. It is

natural to ask wether one has a stability result for invariant submanifolds analogous

to Theorem 4.2.1. In fact, we make the following conjecture:

Conjecture 4.3.1. Let S be a compact n-dimensional invariant submanifold of a

Lie algebroid A which satisfies H1(AS; νS) = 0. Then S is stable: every nearby Lie

algebroid structure has a nearby leaf diffeomorphic to S.

The proof of Theorem 4.2.1 given in [11] does not extend immediately to invari-

ant submanifolds. As we pointed out in Remark 4.1.4, the complex computing the

cohomology H•(AS; νS) will not be elliptic in general. Hence, in spite of the fact that

the formal proof of the theorem still holds for invariant submanifolds, the analysis

part of the proof cannot be carried out in the same way, and at this point we do not

know if this can be fixed. One possibility would be to use an iteration method of

KAM type to prove such a result, but this has not been tried so far, to the best of

our knowledge.

Evidence for this conjecture:

1) Families of zeros of a vector field:

Let M = T × R, where T = S1, and let X ∈ X(M) be a vector field which has a

family of fixed points along S = T×{0}. Note that S is an invariant submanifold for

the Lie algebroid A associated with our vector field. Let us see what our conjecture

predicts in this case.

We choose coordinates (θ, x) in T× R so our vector field is given by:

X = Xθ(θ, x)
∂

∂θ
+Xx(θ, x)

∂

∂x
,
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with Xθ(θ, 0) = Xx(θ, 0) = 0. In these coordinates, the normal bundle ν(S)→ S can

be identified with the trivial bundle S1 ×R→ S1, and sections of the normal bundle

can be identified with vector fields along L of the form Y (θ) = Y (θ) ∂
∂θ
. Then one

checks that:

Ω0(AL, ν(L)) =Γ(ν(L)), Ω1(AL, ν(L)) ' Γ(ν(L)),

Ω2(AL, ν(L)) = {0},

and the only non-zero differential d : Ω0(AL, ν(L)→ Ω1(AL, ν(L), is given by:

d : Γ(ν(L))→ Γ(ν(L)), d

(
Y (θ)

∂

∂x

)
=
∂Xx

∂x
(θ, 0)Y (θ)

∂

∂x

Hence, we conclude that H1(AL, ν(L)) = 0 if and only if ∂Xx
∂x

(θ, 0) 6= 0, in which case

we have also that H0(AL, ν(L)) = 0. Therefore, in this case, our conjecture predicts

that if a vector field has a non-degenerate circle and the normal derivative of X along

the circle is non-zero, then any nearby vector field will also have a nearby invariant

circle. This circle can be a family of fixed points, a periodic orbit or some other

collection of orbits (e.g., two fixed points and heteroclinic orbits connecting them).

In this case one can check the conjecture directly:

Proposition 4.3.2. Let X = Xθ(θ, x) ∂
∂θ

+Xx(θ, x) ∂
∂x

be a vector field on M = T×R,

such that Xθ(θ, 0) = Xx(θ, 0) = 0, so S0 = T × {0} is a family of fixed points. If
∂Xx
∂x

(θ, 0) 6= 0, then any nearby vector field Y has a nearby invariant submanifold S

diffeomorphic to S0.

We shall not give a proof of this result here. One possible way to proceed is to

set up a functional, in a fashion similar to Section 4.4.2, which depends on a vector

field Y = (Yθ, Yx), by setting for each s : T→ R:

ΦY (s) =

∫ 2π

0

(Yx(θ, s(θ))− Yt(θ, s(θ))s′(θ))2
dθ.

Notice that a zero s(θ) of this functional defines an invariant submanifold of the vector

field Y :

S = {(θ, s(θ) : θ ∈ [0, 2π]}.
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When Y = X, the condition ∂Xx
∂x

(θ, 0) 6= 0 guarantees that this functional has s = 0

as a non-degenerate critical point (a minimum, since the hessian d0ΦX is positive

definite). It follows that for Y close to X, this functional will have a minimum s close

to 0. One then shows that this minimum is actually a zero of the functional, so it

gives the desired invariant submanifold S of Y close to S0.

2) Moser’s Theorem:

Let M = Tn × Rm with coordinates (x, y) and consider the system of differential

equations  ẋ = ω + εf(x, y, ε)

ẏ = Ωy + εg(x, y, ε)
(4.3.1)

where ω ∈ Rn and Ω is a m×m diagonalizable real matrix with eigenvalues µ1, ..., µn,

we will refer to ω1, ..ωn, µ1, ..., µm as characteristic numbers. In the unperturbed

case (ε = 0) the S := Td × 0 is an invariant torus. We have the following stability

result by Moser [32].

Theorem 4.3.3. Consider the system (4.3.1) which possesses S = Td × 0 as an in-

variant torus with characteristic numbers ω1, ..ωn, µ1, ..., µm. If these numbers satisfy

the following diophantine condition with constants γ, σ > 0,

|(k, ω) + Σrlµl| ≥ (|k|σZ + 1)−1γ, (4.3.2)

for all integer vectors k and all rl with

|Σri| ≤ 1, Σ|rl| ≤ 2

except the finitely many (k, r) = (0, r) for which the left hand side of (4.3.2) vanishes.

Then there exist unique analytic functions λ1(ε), λ2(ε),M(ε) satisfying:

Ωλ2 = 0, ΩM = MΩ

such that the modified system ẋ = ω + εf(x, y, ε) + λ1

ẏ = Ωy + εg(x, y, ε) + λ2 +M
(4.3.3)
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possesses an invariant torus with the same characteristic numbers as the unperturbed

system.

Remark 4.3.4. In the case of nearly integrable systems, the non degeneracy condition

imposed on the frequency map makes it possible to find an invariant torus in the

perturbed system with a fixed frequency. This is not the case for general vector field.

In order to fix this problem one needs to consider modifying parameters. Note that if

all the eigenvalues of Ω are non zero then the modifying term λ2 in Theorem (4.3.3)

is zero.

Let us now turn to the Lie algebroid interpretation of this result. The torus

S = Tn × 0 is an invariant submanifold for the Lie algebroid associated to the vector

field X =
∑

i ωi
∂
∂xi

+ Σj,kΩj,ky
k ∂
∂yj

, introduced in Example 4.1.2. A straight forward

calculation shows that the Bott representation for the restricted algebroid A|S, defined

by (4.1.3), is:

∇ : Γ(A|S)⊗ Γ(ν(S))→ Γ(ν(S))

(α(x), e(x)) 7→ α(x)((
∑
i

ωi
∂

∂xi
)Im − Ω)e(x).

Using this representation, we obtain the complex Ω•(A|S, ν(S)):

0
0−→ Ω0(A|S, ; ν(S))

d−→ Ω1(A|S, ; ν(S))
0−→ 0, (4.3.4)

(since A|S is a line bundle, there are only terms in degree 0 and 1). Furthermore

Ω0(A|S; ν(S)) ' Ω1(A|S; ν(S)) ' C∞(Tn,Rm),

and

d(e(x)) = (
∑
i

ωi
∂

∂xi
· Im − Ω)e(x).

One can characterize the smooth functions on the torus by their Fourier expansions

(see, e.g., [37, chapter 3]): we set

s(Z) =

{
u : Zn → R : sup

k∈Zn
(1 + |k|2Z)N |u(k)|2 <∞, ∀N ∈ N ∪ {0}

}
,
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so that the map:

F : C∞(Tn,R)→ s(Z),

g(k) 7−→ ĝ(k) =
1

(2π)n

∫
Tn
g(x)e−i<k,x>dx,

is both injective and surjective. Theorem (4.3.3) together with following result sup-

port our conjecture.

Proposition 4.3.5. If Ω is diagonalizable with eigenvalues Ω1, ...,Ωm satisfying the

diophantine condition

|i < k, ω > −Ωµ| ≥ γ(1 + |k|2Z)−τ , ∀k ∈ Zn , µ = 1, · · · ,m, (4.3.5)

then the cohomology groups H i(A|S; ν(S)) i = 0, 1 vanish.

Proof. Clearly:

• H0(A|S; ν(S)) = 0 if and only if d(e(x)) = 0 gives us that e(x) = 0

• H1(A|S; ν(S)) = 0 if and only if for every h(x) ∈ C∞(Tn,Rm) there exists

e(x) ∈ C∞(Tn,Rm) such that

d(e(x)) = h(x). (4.3.6)

By complexifying, we can consider complex valued maps on torus instead of real

valued ones. Since Ω is diagonalizable, after a change of coordinates, we can rewrite

equation (4.3.6) in the form:∑
i

ωi
∂

∂xi
eµ(x)− Ωµeµ(x) = hµ(x) µ = 1, · · · ,m, (4.3.7)

where Ω1, . . . ,Ωm denote the (possible complex) eigenvalues of Ω. Passing to Fourier

expansions, we obtain that the Fourier coefficients of the solutions are given by:

êµ(k) =
ĥµ(k)

i < k, ω > −Ωµ

(4.3.8)
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Now the Diophantine condition (4.3.5) implies that i < k, ω > −Ωµ 6= 0 for every

k. Hence, the coefficients êµ(k) are well-defined and (4.3.8) implies immediately that

if d(e(x)) = 0 then e(x) = 0, i.e., that H0(A|L, ν(L)) = 0.

On the other hand, the Diophantine condition (4.3.5) implies also that:

sup
k∈Zn

(1 + |k|2Z)N |êµ(k)|2 = sup
k∈Zn

(1 + |k|2Z)N

∣∣∣∣∣ ĥµ(k)

i < k, ω > −Ωµ

∣∣∣∣∣
2

< sup
k

(1 + |k|2Z)N+2τ |ĥµ(k)|2γ2 <∞,

which shows that eµ is smooth. We conclude that (4.3.6) has a smooth solution e(x),

for every smooth h(x), i.e., that H1(A|S; ν(S)) = 0 as well. �

Remark 4.3.6. Since we are working over the torus, Proposition 4.3.5 holds also if we

replace the space of smooth functions C∞(Tn) by some Sobolev space Hr(Tn). In fact

(see [37]), we have that Hr(Tn) is isomorphic to the Hilbert space of Fourier series:

`2,r = {{ck}, k ∈ Zn|
∑
k

|ck|2.(1 + |k|2Z)r <∞},

with the weighted version of the usual hermitian inner product:

< {ck}, {dk} >r=
∑
k

ckd̄k.(1 + |k|2Z)r.

4.4 Lie algebroid stability versus stability for vector

fields

One can hope to use the general stability theorem for orbits of Lie algebroids to

prove stability of invariant submanifolds of vector fields. We describe two possible

approaches and explain why they fail.
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4.4.1 Stability via the image of the anchor map

Given a vector field X0 with an invariant submanifold S0, assume that one can find

a Lie algebroid A0 such that X0 is in the image of the anchor map and S0 is a stable

orbit of A0. Then, if any vector field X close to X0 is also in the image of the

anchor of some Lie algebroid A close to A0, it would follow that S0 is also stable as

an invariant submanifold of X0: there would exist close by invariant submanifolds S

of X, diffeormorphic to S0. We give here an example that shows that this method

in general will fail, since one cannot guarantee that close by vector fields are in the

image of a close by Lie algebroid.

Let A := R3 × so(3) be the trivial vector bundle over M := R3 with the action

Lie algebroid structure D0 defined as follows. Sections of A can be considered as

functions α : R3 → so(3), the Lie bracket between two sections α, β is:

[α, β](p) = [α(p), β(p)]so(3) + (vβ(p).α)(p)− (vα(p).β)(p)

where vξ(x) = d
dt
|t=0(exp(tξ)x) ∈ TxR3 is the infinitesimal vector field associated with

ξ ∈ so(3) and dot stands for the action of the vector fields on the sections considered

as functions of R3. The anchor map of D0 is the vector bundle morphism

ρD0 : A→ TR3, (ξ, p) 7→ vξ(p).

The lie algebra so(3) has the basis

Jx =


0 0 0

0 0 −1

0 1 0

 , Jy =


0 0 1

0 0 0

−1 0 0

 , Jz =


0 −1 0

1 0 0

0 0 0


and we have the bracket relations:

[Jx, Jy] = Jz , [Jy, Jz] = Jx , [Jz, Jx] = Jy,

while for the anchor we obtain:

vJx = (y∂z − z∂y) , vJy = (z∂x − x∂z) , vJz = (x∂y − y∂x).
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Proposition 4.4.1. For A = R3 × so(3) with D0 the action Lie algebroid structure

described above, the origin of R3 is a stable leaf of A. Moreover, one can find a vector

field vε arbitrary close to vJx and a neighborhood V of D0 such that vJx is not in the

image of the anchor of any D ∈ V.

Proof. For the leaf L := {(0, 0, 0)}, we have νL = TLR3/TL = TLR3 and

Ωi(A|L; νL) = Γ(∧iA∗|L ⊗ νL) = {(g, r)|g ∈ ∧iso∗(3), r ∈ R3}.

The Bott representation defined by (4.1.3) is:

∇ : Γ(A|L)⊗ Γ(νL)→ Γ(νL), (α(0), X(0)) 7→ [vα(0), X](0)

where α : R3 → so(3) and X ∈ X(R3). Using the basis J∗x , J∗y , J∗z for so∗(3) and

{∂x, ∂y, ∂z} for TR3, we have

Ω0(A|L; νL) = R3 , Ω1(A|L; νL) = M(3,R) , Ω2(A|L; νL) = M(3,R)

where

(a1∂x + a2∂y + a3∂z)→


a1

a2

a3

 ,

(a11J
∗
x⊗∂x+a12J

∗
y⊗∂x+a13J

∗
y⊗∂x+a21J

∗
x⊗∂y+· · ·+a33J

∗
z⊗∂z)→


a11 a12 a13

a21 a22 a23

a31 a32 a33


(b11J

∗
x ∧ J∗y ⊗ ∂x + · · ·+ b33J

∗
y ∧ J∗z ⊗ ∂z)→ (bij) .

By some straight forward calculations one concludes that:

dA : Ω0(A|L; νL)→ Ω1(A|L; νL)
a1

a2

a3

 7→


0 −a3 a2

a3 0 −a1

−a2 a1 0
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and

dA : Ω1(A|L; νL)→ Ω2(A|L; νL)
a11 a12 a13

a21 a22 a23

a31 a32 a33

 7→


a31 + a13 −a21 − a12 a11 − a22 − a33

a32 + a23 a11 − a22 + a33 a12 + a21

−a11 − a22 + a33 −a23 − a32 a13 + a31

 .

The above formulas show that H1(A|L; νL) = 0 so, by Theorem 4.2.1, the leaf L is

stable.

Now consider the vector field Xε = (y∂z − z∂y + ε∂x). For arbitrary ε 6= 0 the

vector field Xε has no fixed point, so there is no Lie algebroid structure D in the

neighborhood V given by Theorem 4.2.1 in which Xε ∈ Im(ρD). �

4.4.2 Stability of tori of Hamiltonian vector fields via Lie al-

gebroids

Let us consider now the more restrictive class of vector fields which define nearly inte-

grable systems. We letM = Tn×Rn, with coordinates (x, y), equipped with canonical

symplectic form Ω =
∑n

i=1 dx ∧ dy and we consider nearly integrable Hamiltonian

system over this manifold defined by Hamiltonian vector fields associated with

H(x, y) = H0(y) + εH1(x, y).

For any y0 ∈ Rn, the torus Tn × {y0} is an invariant torus for XH0 with frequency

ω(y0) = ∂H0

∂y
(y0). We fix one such invariant torus, say the one at y0 = 0, and look for

nearby invariant tori of XH , for H close to H0. These are necessarily of the form:

Ts := {(θ, s(θ))|s : Tn → Rn}.

Furthermore, we will ask that the flow of XH restricted to Ts is conjugate to a linear

one.
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Proposition 4.4.2. A Lagrangian section s : Td → Rn defines an invariant torus of

XH if and only if

dH(θ, s(θ)) = 0.

Proof. The torus Ts is invariant under the flow of XH =
∑n

i=1
∂H
∂yi

∂
∂xi
− ∂H

∂xi
∂
∂yi

if and

only if

XH(θ, s(θ)) ∈ T(θ,s(θ))Ts =

〈
∂

∂xi
+

n∑
j=1

∂sj

∂θi
∂

∂yj
, i = 1, ..., n

〉
,

a simple substitution yields:

∂H

∂xj
(θ, s(θ)) +

n∑
i=1

∂H

∂yi
(θ, s(θ))

∂si

∂θj
(θ) = 0, (j = 1, .., n),

therefore finishing the proof. �

Since we are interested in invariant tori where the motion is linear, we will also

ask that the frequency vector ωs(θ) = ( ∂H
∂y1

(θ, s(θ)), ..., ∂H
∂yn

(θ, s(θ))) is independent of

θ, i.e., that dωs(θ) = 0. In local coordinates, this condition reads:

∂2H

∂yj∂xi
+

n∑
k=1

∂2H

∂yj∂yk
∂sk

∂θi
= 0 i, j = 1, ..., n

We conclude that our problem consists in showing that if H is close to H0 there are

“small” sections s : Td → Rn satisfying:

dH(θ, s(θ)) = 0, dωs(θ) = 0.

One can now try to follow the same method used in Lie algebroid case in the proof

of Theorem 4.2.1. One defines the functional:

ΦH : Hr(Tn,Rn)→ R s 7→ ‖dH(θ, s(θ))‖2
r + ‖dωs(θ)‖2

r,

where Hr(Tn,Rn) is the rth-Sobolev space of functions s : Tn → Rn which satisfy the

closeness condition:
∂si

∂θj
(θ) =

∂sj

∂θi
(θ), (i 6= j).
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One looks for zeros of the functional ΦH . The proof of Theorem 4.2.1 suggest breaking

the proof into two steps:

(i) ΦH0 has a strongly non-degenerate critical point at s = 0, so every functional

ΦH for H close enough to H0, has a critical point, close to zero.

(ii) Critical points of ΦH close to zero, where H is close enough to H0, are also zeros

of ΦH .

For the first step, one has:

Proposition 4.4.3. Assume that the Hessian matrix ∂2H0

∂yi∂yj
(0) is non-degenerate.

Then s = 0 is a strongly non-degenerate critical point of ΦH0 for most values of the

frequency ω0.

Proof. One checks that d2
0ΦH0 : Hr(Tn,Rn) × Hr(Tn,Rn) → R is the sum of two

quadratic forms:

(f, g) 7−→

〈∑
j

ωj0
∂f

∂xj
(x),

∑
j

ωj0
∂g

∂xj
(x)

〉
r

+

+

〈∑
j

∂2H0

∂yi∂yj
(0)

∂f

∂xj
(x),

∑
j

∂2H0

∂yi∂yj
(0)

∂g

∂xj
(x)

〉
r

.

The second quadratic form is non-degenerate if ∂2H0

∂yi∂yj
(0) is non-degenerate. Hence, for

most values of the frequency ω0 we will have that d2
0ΦH0 is also non-degenerate. �

Unfortunately, the method used in the Lie algebroid case to prove step (ii) does

not seem to work in this case.
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