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This paper is concerned with the volatility modeling of a set of South African Rand (ZAR)
exchange rates. We investigate the Quasi-Maximum Likelihood (QML) estimator based on
the Kalman filter and explore how well a choice of stochastic variance (SV) models fit the
data. We note that a data set from a developing country is used. The main results are: (1)
the SV model parameter estimates are in line with those reported from the analysis of high-
frequency data for developed countries; (2) the SV models we considered, along with their
corresponding QML estimators, fit the data well; (3) using the range return instead of the
absolute return as a volatility proxy produces QML estimates that are both less biased and
less variable; (4) although the log range of the ZAR exchange rates has a distribution that is
quite far from normal, the corresponding QML estimator has a superior performance when
compared to the log absolute return.
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1. Introduction

The widely used term volatility is a central concept in finance as it is usually re-
garded as a measurement of risk. It plays an important role in almost all financial
applications, from portfolio construction and derivative pricing to risk manage-
ment and policy decisions. Consequently, it has attracted considerable attention,
not least during the crisis periods of the last three decades. From a modeling per-
spective, it is a particularly difficult problem as there is no reasonably accepted
canonical model available. This is exacerbated by the application of the model. In
risk management applications, a volatility model will often assume a completely
different form to one used in derivative pricing and hedging. Furthermore, most
derivative pricing models have either estimated future volatility or market implied
volatility as an input. Consequently, derivative markets are generally accepted as
volatility trading forums. Explicit trading of volatility may have a significant im-
pact on the stability and trading volumes of financial markets.
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The purpose of this study is three-fold. First, the data set from a country not
previously considered in the literature is used. This, in itself, is not necessarily
interesting, except that the data set is for a developing country (South Africa). In
addition to this, financial time series in South Africa often lack the property of
aggregational Gaussianity [1]. Both of these factors may have a significant impact
on the performance and choice of model. Second, the stochastic volatility models
considered are estimated (calibrated) using a variety of Quasi-Maximum-Likelihood
(QML) methods based on the Kalman filter. Third, the use of the log range-return
as a proxy for the volatility is investigated within the context of the chosen models
and the QML estimator.
Most financial returns series are empirically heteroskedastic, one of the “stylized

facts” of finance [1]. As a consequence, the volatility, or variance, is time-varying.
Initial attempts to model this effect in discrete-time were based on autoregressive
conditional heteroskedasticity (ARCH), introduced by Engle in [2], and later gen-
eralized to GARCH by Bollerslev in [3]. In the class of (G)ARCH models, volatility
is observable at time t−1; see for instance [4]. A powerful alternative to (G)ARCH-
based models is the class of stochastic volatility (SV) models proposed by Taylor
in [5]. These have gained popularity due to their superiority of fit [6] and have be-
come an indispensable tool in mathematical finance. SV models treat volatility as
an unobservable variable and allow for separate error processes for the conditional
mean and variance. The basic univariate stochastic volatility model specifies that
the conditional volatility follows a log-normal auto-regressive model with innova-
tions that are assumed to be independent of the innovations in the conditional
mean equation [7]. An excellent review on SV models can be found in [8–10] and
a comparison study with (G)ARCH in [11].
Despite its remarkable advantages, SV modeling poses serious problems since nei-

ther the density nor, consequently, the likelihood function exists in closed form. So,
while the maximum likelihood estimation is straightforward for (G)ARCH models,
this is not the case for SV models since volatility is modeled as an unobservable
variable and the series are not conditionally Gaussian. Initially, these problems
were enough to deter empirical application. However, practical estimators do ex-
ist that are usually variants of the (generalized) method of moments [12] and the
Quasi-Maximum Likelihood (QML) estimator (proposed independently by Nelson
in [13] and Harvey et al. in [14]). Other likelihood-based estimation methods eval-
uate the likelihood function either through numerical integration [15] or Monte
Carlo integration using either importance sampling [6, 16, 17] or Markov Chain
methods [11, 18]. However, as mentioned in [19], the methods are computationally
intensive and rely on assumptions that are hard to check in practice, such as the
accuracy of numerical integrals and the convergence of simulated Markov chains
to their steady state. The QML estimator based on the Kalman Filter (KF) is
popular because it is easy to implement and has good finite-sample properties.
For the parameter values often found in the empirical analysis of high-frequency
financial time series, the QML estimator usually outperforms estimators based on
the Generalized Method of Moments (GMM) in terms of efficiency [20]. Excellent
surveys of different estimation techniques developed for the class of SV models can
be found in [15, 21–23].
This paper is concerned with the QML estimation of stochastic volatility models

of ZAR exchange rates. Our foremost concern is that the effectiveness of the QML
estimator depends critically on the distribution properties of the returns. Standard
SV models based on log-returns are known to be non-Gaussian. A significant new
approach based on the log high-low intraday price range was proposed in [19] and
applied to exchange rate data in [24]. Apart from other advantages, the log range
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has a distribution that is very close to normal. This leads to Gaussian state-space
models and the QML estimator reduces to the exact maximum likelihood estimator.
As a result, it is an effective and attractive estimator for the class of SV models.
Previous empirical studies [25, 26] suggests that speculative price changes and rates
of return are well described by a uni-modal symmetric distribution with fatter tails
and a higher kurtosis than that of the normal distribution. A cursory study of daily
log-returns and log range data for ZAR exchange rates shows similar results. The
question then concerns the goodness-of-fit of SV models (with an associated QML
estimator) to empirical data from a developing market.
The paper is organized as follows. In Section 2 we briefly describe the class of SV

models. The corresponding QML estimator is discussed in Section 3 (a practical
algorithm is presented in Appendix A). Section 4 presents and discusses the results
of the empirical study and Section 5 concludes the paper.

2. Discrete-time SV models

A comprehensive introduction to the statistics of the class of SV models can be
found in [19]. We abbreviate their exposition: consider a volatility proxy that is
a statistic f (s(tk, tk+1)) of the continuous sample path s(tk, tk+1) of the log asset
price (s(t) = lnS(t)) between times tk and tk+1. If the statistic is homogeneous in
some power γ of volatility, σ(·), then

f (s(tk, tk+1)) = σγ(tk)f (s∗(tk, tk+1)) , (1)

where s∗(tk, tk+1) denotes the continuous sample path of a standardized diffusion
generated by the same innovations as s(tk, tk+1), but with σ∗(tk) = 1. It follows
from (1) that,

ln |f (s(tk, tk+1)) | = γ lnσ(tk) + ln |f (s∗(tk, tk+1)) |, (2)

from which a linear state-space model can be constructed:

ln |f (·) | = γ lnσt−1 + β + ηt, (3)

lnσt = ϕ lnσt−1 + ξt, |ϕ| < 1, ξt ∼ N (0, σ2
ξ ), (4)

where ln |f (·) | is the log volatility proxy and β = E {ln |f (S∗(tk, tk+1)) |}. The
projection errors, ηt, are zero mean but not necessarily Gaussian, and |ϕ| < 1
ensures stationarity (ϕ = 1 corresponds to a pure random walk).
The standard volatility proxies, the squared or absolute returns, correspond to

γ = 2 or 1 in (2). Since γ merely scales the log volatility proxy in (3), we can,
without loss of generality, choose γ = 1 (f (·) = ln(Si(tk+1)/Si(tk))). An alternative
proxy, the daily log range, was proposed in [19],

ln |f (·) | = ln [shigh(tk)− slow(tk)]

= ln [ln(Shigh(tk)/Slow(tk))] .

The daily log range can be shown to be a superior proxy to absolute or squared
returns. Its distribution is approximately normal (which can be exploited for the
efficient estimation of range-based SV models) and it is robust to microstructure
noise. Furthermore [19],
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“ . . . the variance of the measurement errors associated with daily log range is far
less than the variance of the measurement errors associated with daily log absolute
or squared returns, due to the intraday sample path information contained in the
range.”

In this investigation, we are interested in comparing numerical results between
absolute returns and this proxy. We may also note that, in contrast to a (G)ARCH
approach, the generalization of SV models to multivariate series is not difficult to
estimate and interpret; see [14].

3. Quasi-maximum likelihood estimation of multivariate SV models

The QML estimator was proposed independently by Nelson [13] and Harvey et al.
in [14] and is based on an application of the Kalman filter (KF).
Let θ denote the vector of unknown system parameters of a basic linear SV

model (3) and (4),

θ = (ϕ, σ2
ξ , σ

2
η, β).

If these parameters are known a priori, then the object is to determine an estimate
of the latent dynamic state, x̂t|t−1 = lnσt, which minimizes the expected squared

estimation error
(
xt − x̂t|t−1

)T (
xt − x̂t|t−1

)
1. The solution to this problem is known

as the Kalman filter – a linear estimator. For Gaussian state-space models, the KF
reduces to a minimum mean-square estimate (MMSE) rather than a linear MMSE
of the unobservable state vector, xt. For this reason, it is convenient to identify a
volatility proxy with a distribution that is approximately normal.
The standard way of solving the problem of uncertain parameters is to use adap-

tive filters where the model parameters, θ, are estimated together with the dynamic
state, xt; see for instance [27]. To construct an adaptive filter we may use differ-
ent estimation criteria. The method of maximum likelihood is a general method
for parameter estimation and is often used in system identification. However, the
QML estimator is most efficient when the considered state-space model is Gaussian
and, hence, the log likelihood function can be written explicitly; see [28, 29]. This
is often not the case. The QML estimator has been extensively used in practice
because it is easy to implement and has good finite-sample properties [20].
With the introduction of the log range as a volatility proxy, the QML estimator

becomes effective for the class of SV models. The use of the log range leads to
(almost) Gaussian state-space models and the QML estimator reduces to the true
(or exact) maximum likelihood (ML) estimator. In the Appendix we propose a
practical adaptive KF algorithm for the QML estimator.

4. Empirical Results

We now fit SV models to ZAR exchange rate data using the QML estima-
tion method. We consider four exchange rates: Euro/Rand (EUR/ZAR), Dol-
lar/Rand (USD/ZAR), Pound/Rand (GBP/ZAR) and Yen/Rand (JPY/ZAR).
The observation period is from July 18, 2005 to August 16, 2010 with a to-
tal of 1326 daily observations. We compare log absolute with log range returns,

1The estimate x̂t|t−1 is called the one-step ahead, predicted estimate of the unobservable dynamic state
xt.
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Table 1. Distributions and dynamics of two volatility proxies for four ZAR exchange rates, measured daily

from July 18, 2005 to August 16, 2010.

Volatility Unconditional Moments Autocorrelations
Proxy Mean St.Dev. Skewness Kurtosis 1st 2nd 5th 10th 20th

(EUR/ZAR)
Log range -4.176 0.465 0.476 3.795 0.511 0.501 0.464 0.384 0.334
Log absolute -5.374 1.178 -1.148 5.519 0.120 0.109 0.080 0.072 0.041

(USD/ZAR)
Log range -4.095 0.452 0.519 3.507 0.509 0..488 0.457 0.364 0.339
Log absolute -5.214 1.143 -1.158 5.366 0.085 0.120 0.110 0.089 0.095

(GBP/ZAR)
Log range -4.125 0.447 0.595 4.020 0.503 0.482 0.458 0.374 0.348
Log absolute -5.326 1.189 -1.107 5.002 0.099 0.089 0.086 0.056 0.055

(JPY/ZAR)
Log range -3.919 0.526 0.848 4.543 0.526 0.474 0.463 0.363 0.324
Log absolute -4.892 0.935 -1.141 5.538 0.193 0.142 0.152 0.137 0.077

which requires daily closing rates and the daily price range of each exchange rate

{Si(tk), S
high
i (tk), S

low
i (tk) : i = 1, . . . , 4}. The log range does not make sense if

Shigh
i (tk) = Slow

i (tk), but this was not detected in our data series.
We present some of the statistics of the data series in Table 1. We reach two

initial conclusions: firstly, each returns series exhibits some skewness, and all four
samples show moderate to high kurtosis (not excess kurtosis) in comparison to the
normal distribution; secondly, we find that the skewness and kurtosis of the log
range are less than the same for the absolute returns in all four cases. Finally, the
second part of Table 1 illustrates the dynamic of the two proxies. It can be seen
that the autocorrelation functions decay slowly. This indicates a relatively slow
change in conditional variance.
Thus, it appears that the log range for ZAR exchange rates is not as close to

normal as we would have hoped. However, it is clear that the log absolute returns
differ substantially from normality for all four samples. This can be confirmed in
Fig. 1, where the QQ plots are presented for comparative purposes. For the log
range series some outliers can be detected in the tails of the QQ-plots for each
exchange rate, with the worst results observed for the Japanese Yen. From Fig. 1 it
is clear that the log range is relatively normal in comparison with the log absolute
returns.
Next, we calibrate three different SV models using the practical algorithm for

the QML estimator presented in the Appendix. All methods were implemented
in MatLab with our own code. A Newton-type method was used for optimization
purposes with two stopping criteria: |L(k+1) − L(k)| < 10−7 and ||θ(k+1) − θ(k)|| <
10−5, where L is the log LF and θ is the vector of unknown system parameters that
needs to be estimated. To avoid converging to a local maximum, we followed the
standard procedure of initiating the algorithm at several starting points to obtain
(as far as possible) a global maximum; see for example [30]. More precisely, for
each calibration we used six trials, each starting from different initial values. All 6
trials led to the same final estimates.
Consider the two calibrations performed in Tables 2 and 3. In the first panel

(a) of each of the Tables, we have the estimates of the extended 4 parameter

AR(1) SV model. We observe that the β̂ for each exchange rate is very close to
the sample mean of the data; compare with the first column of Table 1. This
suggests that we should work with a mean-adjusted series and can be confirmed by
examining the upper part of Table 4, where the results of the (quasi-)likelihood ratio
(LR) test are presented for the log range data. Consider the EUR/ZAR series: the
maximum log LF value under the hypothesis of the extended 4 parameter AR(1)
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Figure 1. The corresponding QQ plots for the log range (left) and log absolute returns (right) of the four
exchange rates.

SV model is 685.3407. This is only fractionally higher than the corresponding
maximum log LF value of the 3 parameter AR(1) model, i.e. 685.3404. The number
of additional system parameters is 1. As a consequence, the (quasi-)LR statistic
−2(685.3404 − 685.3407) = 0.0006 should be compared with the χ2

1,0.99 = 6.63
value, i.e. the 1% critical value for one degree of freedom, from which we conclude
that the 3 parameter AR(1) SV model is no more restrictive than the 4.
Next, we note that in many empirical studies, the estimated values for σ̂2

η are
usually between 0.01 and 2.77; see the results in [8, 14]. This is in line with our
estimates. Also, the parameter ϕ is often very close to or exactly one with very-high-
frequency financial time series data. From Tables 2 and 3 we note that our estimates
of ϕ̂ are all close to one. This should imply that a random walk specification would
fit almost as well, e.g. see [14]. To confirm this, we estimate an SV model with
a random walk specification. The results are summarized in panel (c) of Tables 2
and 3. We then perform a (quasi-)LR test to evaluate whether or not the AR(1)
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Table 2. “QML with log absolute returns” – estimation results for three

univariate SV models: (a) extended 4 parameter AR(1); (b) AR(1); (c)

random walk.

EUR/ZAR USD/ZAR GBP/ZAR JPY/ZAR

(a) ϕ̂ 0.9759 0.9923 0.9783 0.9792
σ̂2
ξ 0.0049 0.0021 0.0042 0.0052

σ̂2
η 1.2767 1.1731 1.3021 0.7446

β̂ -5.3558 -5.2145 -5.3050 -4.8785
Log L -858.1433 -797.1912 -868.9903 -516.4142

(b) ϕ̂ 0.9751 0.9923 0.9781 0.9791
σ̂2
ξ 0.0051 0.0020 0.0042 0.0052

σ̂2
η 1.2754 1.1732 1.3020 0.7444

Log L -858.1654 -797.1912 -869.0196 -516.4240

(c) σ̂2
ξ 0.0009 0.0013 0.0016 0.0023

σ̂2
η 1.3043 1.1787 1.3179 0.7578

Log L -862.2617 -799.1592 -873.9565 -521.4376

Table 3. “QML with log range returns” – estimation results for three

univariate SV models: (a) extended 4 parameter AR(1); (b) AR(1); (c)

random walk.

EUR/ZAR USD/ZAR GBP/ZAR JPY/ZAR

(a) ϕ̂ 0.9736 0.9728 0.9790 0.9722
σ̂2
ξ 0.0059 0.0057 0.0042 0.0079

σ̂2
η 0.1047 0.0996 0.1000 0.1332

β̂ -4.1782 -4.1035 -4.1323 -3.9183
Log L 685.3407 717.0765 733.0793 521.9541

(b) ϕ̂ 0.9735 0.9728 0.9790 0.9722
σ̂2
ξ 0.0059 0.0057 0.0042 0.0079

σ̂2
η 0.1046 0.0996 0.1000 0.1332

Log L 685.3404 717.0705 733.0758 521.9540

(c) σ̂2
ξ 0.0043 0.0043 0.0033 0.0060

σ̂2
η 0.1073 0.1018 0.1017 0.1362

Log L 677.8918 709.3750 727.0988 513.9062

model should be rejected in favor of a random walk specification; see the lower part
of Table 4. The number of additional system parameters in the AR(1) model is 1.
Consequently, the values taken by the (quasi-)LR statistic should be compared with
the chi-squared 1% critical value for one degree of freedom, 6.63. From Table 4,
it is clear that they are highly significant, and we conclude that the random walk
specification is too restrictive for the log range of the exchange rates in this study
when compared with the AR(1) SV model. Superiority of the SV model over the
random walk (amongst others) is one of the conclusions in [31]. Finally, we note
that Ruiz in [20] suggests that with this range of parameter values, there is little
doubt about the superior performance of the QML estimator when compared to
some GMM estimators.
One of the premier uses for stochastic volatility models is in forecasting. A num-

ber of comparative studies have been written on this topic. In [32], the authors
write, “This paper investigates the forecasting ability of four different GARCH
models and the Kalman filter method (SV models). Measures of forecast errors
overwhelmingly support the Kalman filter approach” and conclude that, “Overall,
the Kalman filter approach is the best model when forecasted returns are compared
with real values. It dominates GARCH models in most cases for different forecast
samples.” A similar conclusion is reached in Brooks et al. [33] and Faff et al. [34].
Next, we would like to compare the performance of the “QML with log range re-

turns” and the “QML with log absolute returns” estimators. In order to judge the
quality of each estimator, we conduct the following set of numerical experiments.
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Table 4. Likelihood Ratio (LR) test statistics. The “QML with log range returns” estimator was used to

calibrate the models.

Log LF, model specification LR test statistics
4 parameter AR(1) 3 parameter AR(1) random walk LR χ2

1,0.99

EUR/ZAR 685.3407 685.3404 − 0.0006 6.63
USD/ZAR 717.0765 717.0705 − 0.0120 6.63
GBP/ZAR 733.0793 733.0758 − 0.0070 6.63
JPY/ZAR 521.9541 521.9540 − 0.0002 6.63

EUR/ZAR − 685.3404 677.8918 14.89 6.63
USD/ZAR − 717.0705 709.3750 15.39 6.63
GBP/ZAR − 733.0758 727.0988 11.95 6.63
JPY/ZAR − 521.9540 513.9062 16.09 6.63

Table 5. Performance profile of the two QML estimators.

QML with absolute returns QML with range returns
Mean RMSE %MRE Mean RMSE %MRE

EUR/ZAR ϕ 0.9750 0.0013 0.038 0.9736 0.0008 0.027
σ2
ξ 0.0050 0.0018 27.19 0.0058 0.0010 12.90

σ2
η 1.2769 0.0508 3.634 0.1046 0.0048 3.276

USD/ZAR ϕ 0.9923 0.0004 0.012 0.9727 0.0010 0.030
σ2
ξ 0.0019 0.0008 30.83 0.0056 0.0009 13.01

σ2
η 1.1732 0.0467 3.624 0.0996 0.0045 3.146

GBP/ZAR ϕ 0.9784 0.0008 0.024 0.9790 0.0008 0.023
σ2
ξ 0.0040 0.0015 29.42 0.0042 0.0007 14.68

σ2
η 1.3028 0.0524 3.627 0.1001 0.0046 3.211

JPY/ZAR ϕ 0.9790 0.0011 0.028 0.9722 0.0011 0.027
σ2
ξ 0.0051 0.0015 22.22 0.0078 0.0013 13.00

σ2
η 0.7439 0.0303 3.636 0.1332 0.0061 3.304

Given the “true” value of the system parameters for the AR(1) SV models (taken
from panel (b) of Tables 2 and 3), the system is simulated for 1300 samples. Then
we use the generated data to solve the inverse problem, i.e. to compute the QML es-
timates by the two different approaches. We perform 500 Monte Carlo simulations
for T = 1300 daily observations of the two volatility proxies and report the pos-
terior means for ϕ, σ̂2

ξ and σ̂2
η. Additionally, the root mean squared error (RMSE)

and the percentage relative error (%MRE)1 are computed by averaging over 1300
observations of the 500 samples. All the results are summarized in Table 5.
Having carefully analyzed the results presented in Table 5, we conclude that the

posterior means are all close to the “true” values for both QML estimators and
that the RMSE are all small. Hence, these SV models fit the data well. However,
using the absolute return as the volatility proxy is less accurate than the alternative
range return. For example, for the EUR/ZAR series, the mean square error for the ϕ
estimates are 0.0013 and 0.0008, respectively. Overall, the “QML with log absolute
returns” estimator performs markedly worse for all four exchange rate samples.
Clearly, using the range return as a volatility proxy produces QML estimates that
are both less biased and less variable.

5. Conclusion

Our empirical study suggests that, although daily ZAR exchange rates are highly
volatile, the QML estimators perform effectively and the SV models we considered

1The %MRE is given by 100|θ̂ − θ∗|/|θ∗|, where θ̂ is the calculated estimate for a parameter θ and θ∗ is
the “true” value.
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fit the market data well. There are allied studies of exchange rate volatility for
major currencies in Harvey et al. [14], Ruiz [20] and Tims and Mahieu [24]. We
found that our SV model parameter estimates are in line with those previously
reported, and that are commonly found in the empirical analysis of high-frequency
financial time series data for developed countries [14], [20]. Using the range return
instead of the absolute return as the volatility proxy produces QML estimates that
are both less biased and less variable. Thus, the log range return QML estimator
is superior in performance to the log absolute return QML estimator.
It is tempting to infer that these SV models may now be regarded as appropriate

for data from developing countries, where currency volatility is often much higher
than in developed countries. However, idiosyncrasies of the South African market,
such as its proxy as “African exposure”, may hinder this. It would be appropriate
then to choose a set of data from another developing country, and to test these
results. It is clear, though, that the use of the log range return estimator is crucial.
What we infer from this is that using the log range return as a proxy for volatility
leads to accurate and stable SV models in our context.
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Appendix A. An adaptive Kalman filter for the QML estimation of the
state-space models

The QML estimation requires the maximization of the log LF. It leads to imple-
mentation of the KF (and its derivatives with respect to unknown system param-
eters), which is known to be numerically unstable. More recently, array square-
root KF algorithms have been found to be particularly efficient because they are
more numerically stable than the conventional KF. They improve the robustness
of computations with respect to round off errors and are better suited to parallel
implementations [35]. We present an efficient and practical adaptive KF algorithm
for the QML estimator.
The generalization of SV models to multivariate series is neither difficult to esti-

mate nor interpret. Thus, we consider a multivariate discrete-time linear stochastic
system,

xt = F (θ)xt−1 +G(θ)ξt, t = 1, . . . , T, (A1)

zt = H(θ)xt + ηt, (A2)

where xt ∈ Rn and zt ∈ Rm are, respectively, the unknown state and the available
measurement vectors. For SV models of the form (3) and (4), the vector xt =
lnσt is the unobserved log-volatility series and the vector zt = ln |f (·) | is the
log volatility proxy. The process noise, {ξt}, and the measurement noise, {ηt}, are
independent Gaussian white-noise processes, with covariance matrices Q(θ) ≥ 0
and R(θ) > 0, respectively. All random variables have known mean values, which we
can take, without loss of generality, to be zero. The initial state x0 ∼ N (0,Π0(θ)).
Additionally, system (A1), (A2) is parameterized by a vector of unknown system
parameters θ ∈ Rp, which needs to be estimated. This means that the entries of
F ∈ Rn×n, G ∈ Rn×q, H ∈ Rm×n, Q ∈ Rq×q, R ∈ Rm×m and Π0 ∈ Rn×n are
functions of θ ∈ Rp.
Solving the problem of parameter estimation by the method of maximum likeli-

hood requires the maximization of a log LF that is often done by using a gradient
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approach or Newton-type methods [36]. For instance, the scoring equation could
be used [37],

θ̂(k+1) = θ̂(k) −
(
F|θ̂(k)

)−1
(
∂Lθ

∂θ

∣∣∣∣
θ̂(k)

)
(A3)

where F is the Fisher information matrix (FIM), Lθ is the log LF, ∂Lθ/∂θ is

the gradient vector (score) and θ̂(k) denotes the value of θ after k iterations of
algorithm (A3).

Below we explain how the next cycle for computing θ̂(k+1) can be obtained by
using the scoring equation (A3) and the current approximation, θ̂(k):

Step 1. Given the current value θ̂(k), compute F̂ = F
(
θ̂(k)

)
, Ĝ = G

(
θ̂(k)

)
,

Ĥ = H
(
θ̂(k)

)
, Q̂ = Q

(
θ̂(k)

)
, R̂ = R

(
θ̂(k)

)
and Π̂0 = Π0

(
θ̂(k)

)
.

Step 2. Use Cholesky decomposition to find Π̂
1/2
0 , Q̂1/2, R̂1/2, which are upper

triangular matrices with positive diagonal entries.

Step 3. Set P
1/2
0|−1 = Π

1/2
0 and P

−T/2
0|−1 x̂0|−1 = 0.

Step 4. For t = 1, . . . , T do

(1) Given P̂
1/2
t|t−1 and P̂

−T/2
t|t−1 x̂t|t−1, recursively update P̂

1/2
t+1|t and P̂

−T/2
t+1|t x̂t+1|t as

follows,

Qt

 R̂
1/2
t 0 −R̂

−T/2
t zt

P̂
1/2
t|t−1Ĥ

T
t P̂

1/2
t|t−1F̂

T
t P̂

−T/2
t|t−1 x̂t|t−1

0 Q̂
1/2
t ĜT

t 0

 =

R
1/2
e,t K̄T

p,t −ēt

0 P̂
1/2
t+1|t P̂

−T/2
t+1|t x̂t+1|t

0 0 γt

 (A4)

where Qt is any orthogonal rotation that upper-triangularizes the first
two (block) columns of the matrix on the left-hand side of (A4) and

ēt = R
−T/2
e,t et are the normalized innovations of the KF.

(2) Compute the one-step predicted estimate, x̂t+1|t, as follows,

x̂t+1|t =
(
P̂

1/2
t+1|t

)T (
P̂

−T/2
t+1|t x̂t+1|t

)
. (A5)

We note that no matrices need to be inverted in calculating the state vector.
The parentheses are used to indicate the quantities that can be directly read
off from (A4).

(3) For each θi : i = 1, . . . , p, apply the orthogonal rotation Qt from (A4) to
the following matrices

Qt



∂R̂
1/2
t

∂θi
0

∂
(
−R̂

−T/2
t zt

)
∂θi

∂
(
P̂

1/2
t|t−1Ĥ

T
t

)
∂θi

∂
(
P̂

1/2
t|t−1F̂

T
t

)
∂θi

∂
(
P̂

−T/2
t|t−1 x̂t|t−1

)
∂θi

0
∂
(
Q̂

1/2
t ĜT

t

)
∂θi

0


=

Xi Yi Mi

Ni Vi Wi

Bi Ki Ti

 .

During this step, generate and save values as the right-hand side matrix in
the equation above.
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(4) Calculate for each θi : i = 1, . . . , p,
∂R

1/2
e,t

∂θi

∂K̄T
p,t

∂θi

0
∂P̂

1/2
t+1|t

∂θi

 =
[
L̄T
i +Di + Ūi

][R1/2
e,t K̄T

p,t

0 P̂
1/2
t+1|t

]
, (A6)


−∂ēt
∂θi

∂
(
P̂

−T/2
t+1|t x̂t+1|t

)
∂θi

 =
[
L̄T
i − L̄i

][ −ēt

P̂
−T/2
t+1|t x̂t+1|t

]
+

[
R

1/2
e,t K̄T

p,t

0 P̂
1/2
t+1|t

]−T [
Bi

Ki

]
γt +

[
Mi

Wi

]
(A7)

where L̄i, Di and Ūi are strictly lower triangular, diagonal and strictly
upper triangular parts of the following matrix product,

[
Xi Yi
Ni Vi

] [
R

1/2
e,t K̄T

p,t

0 P̂
1/2
t+1|t

]−1

= L̄i +Di + Ūi. (A8)

Step 5. Having determined ēt and R
1/2
e,t for each t = 1, . . . , T , compute the

negative log LF as follows [38],

Lθ

(
ZT
1

)
=

1

2

T∑
t=1

{
m ln(2π) + 2 ln

(
detR

1/2
e,t

)
+ ēTt ēt

}
, (A9)

where ZT
1 = {z1, . . . , zT } is the T -step measurement history.

Step 6. Having computed ∂ēt/∂θi, ∂R
1/2
e,t /∂θi : t = 1, . . . , T , find the Log LF

gradient [38],

∂Lθ

(
ZT
1

)
∂θi

=

T∑
t=1

{
tr

[
R

−1/2
e,t ·

∂R
1/2
e,t

∂θi

]
+ēTt

∂ēt
∂θi

}
, i = 1, . . . , p. (A10)

Step 7. The entries of the FIM obey the following equation [37],

Fi,j =
T∑
t=1

{
tr

[
E

{
ēt
∂ēTt
∂θi

}
E

{
ēt
∂ēTt
∂θj

}]
+ trE

{
∂ēt
∂θi

∂ēTt
∂θj

}}
, (A11)

where i, j = 1, . . . , p and Fi,j denotes the (i, j)-th element of the matrix. The
expectation, E {·}, is taken over the whole sample space ZT

1 . As mentioned in [37],
equation (A11) could also be used by replacing the expected values with sample
values, as it is usually done in practice.
Step 8. Having determined the log LF (A9), its gradient (A10) and the elements

of the FIM (A11), find the next approximation θ(k+1) by using the method of
scoring (A3).
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Remark A1 The detailed derivation of the method presented above, the discussion
of its numerical properties and the comparison with the conventional KF approach
can be found in [38]. The two-stage method that allows the computation of both
one-step ahead predicted estimate x̂t|t−1 and the filtered estimate x̂t|t for each t =
1, . . . , T was proposed in [39]. It could also be effectively used for QML estimation
of the state-space models.


