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Resumo

A arquitetura do conjunto de instruções RISC-V surgiu como uma alternativa devido à sua natureza

aberta, simplicidade e modularidade. As implementações de sistemas em circuitos incorporados (SoC)

baseados em processadores RISC-V podem utilizar aceleradores de hardware para melhorar o seu

desempenho, transferindo tarefas computacionais pesadas do processador. A utilização de um sis-

tema operativo em tempo real é essencial para satisfazer os requisitos temporais e gerir eficientemente

múltiplas tarefas. Nesta tese, a SoC SweRVolf foi adaptada para se conectar a um acelerador de hard-

ware. Foram propostos três cenários para gerir o acelerador usando mecanismos do RTOS Zephyr

para que o processador RISC-V execute diferentes tarefas enquanto o acelerador está a trabalhar. No

primeiro cenário, uma única thread acede ao acelerador, sendo bloqueada por um semáforo enquanto

este está a funcionar. No segundo cenário várias threads competem pelo acesso ao acelerador e os

semáforos controlam as tentativas de acesso. O terceiro cenário usa uma thread responsável por gerir

o acesso ao acelerador. As threads computacionais enviam pedidos à thread gestora para utilizar o

acelerador. Para avaliar estes cenários, duas aplicações foram desenvolvidas e executadas na placa

Nexys A7, a multiplicação de um conjunto de matrizes e uma rede neural para prever os dı́gitos do con-

junto de dados MNIST. Os tempos de execução dos diferentes cenários mostram que a utilização de

uma thread de gestão é mais rápida do que as múltiplas threads competindo pelo acesso ao acelerador

e permite um maior controlo sobre a thread que utiliza o acelerador.

Palavras Chave

RISC-V, Sistema Operativo de Tempo Real, Acelerador de Hardware, SweRVolf SoC, Zephyr
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Abstract

The RISC-V instruction set architecture has emerged as in the community due to its open and royalty-

free nature, simplicity, and modularity. System-on-Chip (SoC) implementations based on RISC-V pro-

cessors can be extended with hardware accelerators to improve the performance of embedded systems

by offloading heavy computational tasks from the processor. Using a Real-Time Operating System

(RTOS) is essential in meeting the timing requirements and efficiently managing multiple tasks. In this

thesis, the SweRVolf SoC was extended to connect to a hardware accelerator. Three scenarios were pro-

posed for managing the hardware accelerator using Zephyr RTOS mechanisms that enable the RISC-V

processor to execute different tasks, while the accelerator works in parallel. In the first scenario, a sin-

gle thread accesses to the accelerator and a semaphore is used to block the thread while it’s working.

The second scenario has several threads competing to access the accelerator and semaphores control

access attempts. The third scenario uses a thread responsible for managing the accelerator’s access.

Computational threads send requests to the manager thread to use the accelerator. To evaluate these

scenarios, two use case applications were developed and executed on the FPGA board Nexys A7, a

set of matrices multiplications and a neural network to predict the digits of the MNIST dataset. The

execution times of the different scenarios show that using a manager thread is more time-efficient than

the multiple threads competing for access to the accelerator, while providing a larger control over what

thread uses the accelerator.

Keywords

RISC-V, Real-time Operating System, Hardware Accelerator, SweRVolf SoC, Zephyr.
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1.1 Motivation

An Operating System (OS) is a software that is responsible to manage the system hardware resources

and provide common services for programs. The most common known OSs for computers are Windows,

Linux, MacOS. [2]. Other OSs, targeted for embedded systems and called Real-Time Operating System

(RTOS), usually can be customized and configured for the unique demands of the devices. RTOS, with

requirements of embedded systems, include features like real-time and reactive operations, direct use

of interrupts, limitations in power consumption and resource availability. RTOSs manage a system in

which the main core is a processor or a microcontroller.

RISC-V is an open Instruction Set Architecture (ISA) that has been establishing itself as a standard

in both an academic and industry environment [3]. The royalty-free nature of RISC-V enables a broader

community around it that contributes to its development. In particular, in the development of hardware

processors that support the RISC-V ISA, in which an RTOS could be used to manage the available

resources of the system.

Nowadays, it is common the existence of hardware accelerators targeting different tasks. Hardware

accelerators are digital circuits used to speed-up algorithms that usually are the computational bottle-

neck of the system or require computational intensive tasks.

The usage of a system with an RTOS, to manage the different tasks of the system, and, at the same

time, using a hardware accelerator to remove computational bottlenecks, is becoming important is most

systems. Since the hardware accelerator and the processor are separate circuits, they can be used

simultaneously to perform a variety of computations. Several techniques can be used to manage the

accelerator from a RTOS running on a RISC-V processor. However, techniques such as pooling are

unable to take advantage of using simultaneous the two different circuits. Therefore, it is important to

explore the capabilities of the RTOS to ensure that the processor can deal with other tasks while the

accelerator is being used.

1.2 Objectives

This thesis aims to study the impact of using an RTOS for managing the access to a hardware acceler-

ator within a System on Chip (SoC) with a RISC-V based processor. The integration of an RTOS into

the system introduces complexities and opportunities for optimization, particularly in terms of accessing

and controlling the accelerator and its impact in execution time and power overhead.

For this objective it’s necessary to select a suitable implementation of the RISC-V processor inte-

grated into an SoC. Additionally, it’s necessary to select an RTOS compatible with the chosen SoC. The

RTOS must also provide the necessary mechanisms to use several threads to interact with accelerator.

An hardware accelerator needs to be developed and connected to the selected SoC. This involves

2



understanding and configuring communication interfaces, memory access, and the interrupt mecha-

nisms.

Software responsible for managing the hardware accelerator access from an application will be de-

veloped for an extended SoC, with the RISC-V processor and the designed accelerator connected. This

should use the capabilities offered by the selected RTOS, such as task scheduling, resource allocation,

and synchronization mechanisms.

Finally, it is pretended to execute the different use cases applications developed in the Field Pro-

grammable Gate Array (FPGA) board Nexys A7 to compare and evaluate the cost and benefits of using

the mechanisms provided by the RTOS. This comparison will mainly focus on the time efficiency, con-

sidering the overhead introduced by the RTOS, and the power efficiency of the applications.

1.3 Document Outline

The next chapter, Chapter 2, provides an overview of the RISC-V Instruction Set Architecture and some

of the most relevant Real-time Operating System’s (RTOS) mechanisms. This chapter also provides an

analysis of the available RISC-V based SoC and open source RTOSs.

Chapter 3 covers the description of the development of the hardware accelerator for matrix multipli-

cation. It also covers the description of the interrupt management system that is implemented in the

hardware accelerator.

Chapter 4 provides a description of the base implementation of the SweRVolf SoC, and the modifi-

cations done on the SoC implementation to support the developed hardware accelerator.

Chapter 5 presents three different alternative scenarios to manage the hardware accelerator using

the RTOS capabilities, such as interrupts, semaphores, and message queues.

Chapter 6 presents a performance assessment of the scenarios previously introduced, using two

use cases applications: matrix multiplication and character recognition using Neural Networks. In this

assessment, metrics such as time and power efficiency are measured.

Chapter 7 presents the final conclusions of this thesis and also suggest some future work to improve

the analysis done with this work.
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RISC-V ISA and RTOS overview
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This chapter provides an overview of the RISC-V Instruction Set Architecture (ISA) and different

RTOS mechanisms used in systems with multiple threads. The chapter covers the RISC-V architecture

and several SoC implementations with RISC-V based processors. It also highlights some of the features

of the RISC-V ISA, such as its modularity, simplicity and open-source nature.

The chapter also provides a detailed examination of RTOS mechanisms, including task scheduling,

context switching, interrupt handling, and resource sharing. This includes an analysis of several open-

source RTOS such as FreeRTOS, RIOT, and Zephyr, evaluating their compatibility with RISC-V based

SoCs and their community support and documentation.

2.1 RISC-V Architecture and SoC Implementations

2.1.1 RISC-V Instruction Set Architecture

RISC-V [4, 5] is an open-source ISA. The open-source nature of RISC-V encourages development by

allowing developers to use it without any additional financial cost. RISC-V International [6] defines four

base ISA, each providing a minimal set of instructions that ensure compatibility with compilers, assem-

blers, and operating systems. Beyond the base ISA, RISC-V International offers standard extensions

and the ability for developers to create custom extensions. These extensions allow developers to tailor

the processor to suit the specific application requirements.

The four primary base ISA are characterized by the width and number of integer registers. The two

main base ISA are RV32I and RV64I, providing 32-bit and 64-bit address spaces, respectively, both

with 32 integer registers. RV32E, a subset of RV32I, features only 16 registers and targets small mi-

crocontrollers. The fourth base ISA, RV128I, supports a 128-bit address space. Among the standard

extensions the ’M’ and ’C’ are the most notable. The ’M’ extension incorporates integer multiplication

and division for both signed and unsigned integers. The ’C’ extension provides compressed, 16-bit,

instructions for common operations. Typically, around 50% of the instructions can be replaced by the

compressed instructions, resulting in a 25% code reduction. Other notable extensions are the ’A’ exten-

sion for atomic instructions, the ’F’ extension for floating-point operations, and floating-point registers,

and the ’Zicsr’ extension that enables access to the control and status register, which facilitates interrupts

and exception handling.

RISC-V also includes privileged levels with optional extensions and variants. There are currently

three privilege levels: User (U), Supervisor (S), and Machine (M). These privilege modes exist to en-

force protection between different components of the software stack. The Machine mode has the most

privileges and runs implementation-specific firmware. The Supervisor mode is typically used by operat-

ing systems, giving access to most of the hardware. The User mode offers the least privileges and is

where user applications generally run. All implementations must provide the Machine mode since this is

6



the only privileged mode with access to the entire hardware.

2.1.2 RISC-V SoC Implementations

There are several hardware implementations of RISC-V available, however, this study only examines

implementations listed under SoC platforms section within the list [7]. Since the focus of this thesis is to

study the impact of an RTOS on the existing RISC-V based SoC, the selection of SoC implementations

is limited to fully developed SoC. The criteria for selection of the SoC primarily focus on the existence

of an open-source license, a robust documentation, and a responsive and active community support.

These factors ensure that the chosen SoC offers the necessary resources for the adaptation of the

system done in this work.

Three RISC-V based SoC implementations were selected for more in-depth analysis: LiteX [8],

SweRVolf [9] and NEORV32 [10]. Table 2.1 presents a comparison of key factors, including the base

ISA, the supported extensions, the provided Random Access Memory (RAM) size, the system clock

speed, the supported simulation tool, and the current RTOS support.

All of the three SoCs displayed in table 2.1 utilize the RV32I base ISA. LiteX supports a broader

range of extensions, M, A, F, D, and C, but NEORV32 supports the extension Zicsr, which facilitates

the implementation of interrupts. On the other hand, SweRVolf depends on software to implement

interrupts, and the extensions M and C are enough to meet the requirements of this study, since it allows

the installation of a popular RTOS such as Zephyr and FreeRTOS. In terms of RAM size, all three offer

sufficient capacity to run the necessary programs, since the necessary memory for the RTOS studied

in section 2.2 is in the kilobyte range. LiteX supports lower clock speeds, while NEORV32 supports

the highest clock speed. This paired with the Zicsr extension makes NEORV32 a very strong candidate

for the following work. However, the deciding factor is the documentation available and the community

support, in which the SweRVolf has a clear advantage. Amongst the available documentation, the

SweRVolf SoC provides guides on how to install and connect external hardware interrupts, even without

the Zicsr extension.

Feature LiteX SweRVolf NEORV32
Base ISA RV32I RV32I RV32I

RISC-V Extensions [M][A][F][D][C] [M][C] [M][C][Zicsr][Zicntr]
RAM 256MB 128MB configurable

system clock 1MHz 50MHz 150MHz
Simulation tool Verilator Verilator ISIM

Support for RTOS Zephyr Zephyr, TockOS, FreeRTOS Zephyr, FreeRTOS
Documentation + ++ +

Table 2.1: Comparison between RISC-V SoC

7



2.2 Real-Time Operating Systems

A Real-Time System (RTS) is a system where its correctness depends on both the output and the time

taken to produce it. These systems can be classified into three types:hard real-time systems, soft real-

time systems, and firm real-time systems. Hard real-time systems have strict deadlines, and failure to

meet those deadlines results in system failure. Soft real-time systems allow tasks to miss deadlines,

which can lead to a reduction in the overall system performance. Firm real-time systems have strict

deadlines for critical tasks, yet missing the deadline of non-critical tasks does not lead to system failure.

In more complex scenarios, the utilization of an Operating System (OS) becomes necessary for

managing resources and meeting systems demands. An RTOS is specifically designed to meet the time

constraints in RTS. As an OS, an RTOS must have fundamental functionalities within its kernel, includ-

ing, a process scheduler, multitasking, inter-tread communication/synchronization, interrupt handling,

timers/clocks, and memory management.

One essential capability of an OS is multitasking, which is the capacity of the OS to swap between

tasks to optimize system performance. Tasks can be categorized into three states: running, ready,

and blocked. The running task is actively executing on the Central Processing Unit (CPU), while ready

tasks await execution and blocked tasks are temporarily blocked, usually awaiting specific events. To

manage task execution, the kernel uses the scheduler, which is a pre-determined scheduling algorithm

that decides what task should be actively executing in the CPU. To run the tasks, the OS uses threads,

witch represent the smallest unit of processing that can be executed. Each thread has its own stack,

program counter, and register set, which allows it to run independently from other threads. Threads

can communicate with each other using shared memory, or inter-thread communication mechanisms

provided by the OS.

To move from the blocked state to the ready state, threads may need to wait for events to occur.

These events, called interrupts, can be triggered by other tasks or by hardware peripherals in the system.

To handle interrupts, the RTOS utilizes what is called Interrupt Service Routine (ISR).

2.2.1 Task Scheduling and Context Switching

The scheduler is the mechanism that is in charge of choosing the task that is executed at any time.

The scheduler is especially important in RTOS since it has to ensure that all tasks meet their time

constraints. Scheduling algorithms can be divided into two types: preemptive and cooperative. The

preemptive scheduler can switch the running task even if that task does not go into the blocked state.

The cooperative scheduler does not swap the task that is running, but instead, the running task yields

execution periodically. There are a few situations where the scheduler needs to decide what task should

run next: when the running task finishes, when the running task moves to the blocked state, or when
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an interrupt occurs. In RTOS the most commonly used scheduling algorithms are preemptive since they

provide more control over what task is running.

The most commonly used preemptive scheduling algorithm is priority scheduling or highest priority

first. In this scheduling algorithm, every task is assigned a priority. The scheduler then makes sure

that the task with the highest priority is always running. If a low-priority task is running and a new high-

priority task goes to the ready state, then that new task starts running and the old task goes to the ready

state. Another scheduling algorithms are first come first served, where the selected task is the first task

to arrive at the ready state, or the shortest job first, where the task with the least completion time left

executes first. One example of a cooperative scheduling algorithm is round-robin scheduling, where the

tasks are not assigned a priority value, but are swapped after a set period of time. It’s very common

for RTOS to use this type of scheduler to assign running time to tasks of the same priority in priority

scheduling.

Context switching is the mechanism that saves the current state of the task for future use, and

initializes the state of the new running task. While context switching is essential for task management,

it adds overhead that can cause the system to miss the timing requirements. That is why the context

switching in RTOS must be as time-efficient as possible. The frequency of context switches is influenced

by the scheduling policy, with preemptive scheduling usually resulting in more context switches than

non-preemptive schedulers. This means that the scheduler must consider the context-switching delay

when determining which task to execute next.

2.2.2 Interrupt Handling

The ISR is a high-priority task that runs every time an interrupt occurs and manages the cause of that

interrupt. An interrupt is a signal that can be emitted by hardware, such as a mouse or a keyboard, and

by software. After the triggering of an interrupt, the Interrupt Request (IRQ) associated with the interrupt

utilizes the interrupt vector table to determine the correct interrupt handler function. All of this adds a

delay which is called interrupt latency. More precisely, interrupt latency is the time between the interrupt

signal and the conclusion of the ISR.

Before starting the ISR, the CPU must save the context of the thread it was executing. Upon com-

pletion of the interrupt handling routine, the scheduler picks what task to execute next. Occasionally, the

running thread may need to prevent the ISR from executing, typically due to some time-sensitive task or

critical section operation. In those cases, it is possible to disable the ISR, however, this should only be

considered as a last resort when no alternative is available, since it may delay other critical tasks.
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2.2.3 Resource Sharing

In a system with multiple threads it’s necessary to have mechanisms for sharing data between those

threads. It’s generally unsafe for systems capable of multitasking to access the same memory addresses

without protection. Protection may be achieved using RTOS mechanisms such as temporarily masking,

synchronization mechanisms and communication mechanisms.

Temporarily Masking

Temporarily masking is when the user temporarily disables interrupts and the ability for the kernel to

switch tasks. This way the task can process the data knowing that no other tasks will change that data

before its processing finishes. Temporarily masking is the fastest way to make sure that the current task

has exclusive access to the system resources. However, it should only be used when the longest path

through the protected section is smaller than the interrupt latency since this will prevent any other task

from running, even higher priority ones.

Inter-tread Synchronization Mechanisms

A semaphore is an object that controls access to a specific resource. The semaphore stores how many

tasks can access that resource and how many tasks are accessing it at that time. When the number

of tasks reaches the limit, no other tasks are allowed to access that resource. This way whenever a

task needs to access shared resources it increments the semaphore counter. When that thread finishes

its processing it decreases the semaphore counter. When only one task can access that resource the

semaphore is called a binary semaphore.

Similarly to binary semaphores, there is a mechanism called mutex. A mutex ensures mutually

exclusive access to a hardware or software resource. When a task wants to access a mutually exclusive

resource it must start by locking the associated mutex. After the task is finished it unlocks the locked

mutex. While the mutex is locked no other tasks can access the resources protected by the mutex.

These tasks are blocked and only start executing when the mutex is unlocked. One key difference

between mutexes and semaphores is priority inversion. Priority inversion happens when a low-priority

task locks a mutex and a high-priority task is blocked by that mutex. When this happens the priority level

of the original task is elevated so that the higher-priority task does not have to wait for the low-priority

task to be assigned CPU time. One problem that comes with mutexes is deadlocking. This happens

when one task locks some resource needed by another task but cannot access some other resource

that was locked by the second task. In this case, both tasks are waiting for the other task to unlock a

mutex and are unable to continue executing. This can be prevented by carefully designing the program.
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Inter-tread Communication Mechanisms

Inter-tread communication mechanisms such as FIFOs, stacks, message queues, and mailboxes are

used to share data between tasks without utilizing shared memory. With these data-sharing mecha-

nisms, a task only shares the data when its processing is complete. This ensures that the other tasks

only start processing the data after receiving it from the first task. Techniques such as priority inversion

can be used to guarantee that each task only starts executing when the data is available. Deadlock can

also occur when some task is processing data required by another task, yet is waiting for data from a

blocked task.

2.2.4 RTOS Comparison

An analysis of several open-source RTOS, listed in [11], was conducted. Immediately, several RTOS

were excluded from consideration due to either lack of recent updates or inadequate documentation.

Following this initial filtering, the RTOS that stood out were FreeRTOS [12], RIOT [13], and Zephyr [14].

FreeRTOS

FreeRTOS is an RTOS that targets small embedded systems. The RTOS has a minimal footprint and

prioritizes its small memory size, low overhead, and fast execution. The RTOS Kernel can be tailored

to the specific use case of the system with a configuration file called FreeRTOSConfig.h. In addition, its

small and simple kernel makes it a candidate for systems with limited resources.

FreeRTOS has a very small footprint needing only 4.4 KB of storage and 500 Bytes of RAM. FreeR-

TOS has a very fast context switch delay, needing only 84 cycles to swap between tasks. The RTOS

uses a highest priority scheduling algorithm, with Round Robin time slicing. Both of these algorithms can

be disabled in the configuration file. FreeRTOS also provides documentation and community support.

RIOT

RIOT is an RTOS designed to cater to the requirements of Internet of Things devices. The main goal

of RIOT is to provide a lightweight but versatile RTOS that runs on a low-power microcontrollers but

can also use the full power of larger devices with more resources available. RIOT uses a modular

architecture that allows developers to include only the components needed for the specific system. The

programming model is based on event-driven programming, allowing a highly responsive and efficient

system that still supports multitasking. RIOT has small footprint that requires only 3.2 KB of storage and

2.8 KB of RAM. It also has a small interrupt latency that takes only 50 clock cycles. RIOT uses a highest

priority first scheduling algorithm and a first come first served algorithm for tasks of the same priority.
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Zephyr

Zephyr is an RTOS developed by the Linux Foundation, and adopted by companies such as Google and

Facebook in 2020, [15]. It offers a scalable and secure platform for IoT devices. Similarly to RIOT, it

offers a modular architecture that allows developers to only select the necessary features of the RTOS.

Zephyr provides developers a feature-rich software that can run in a footprint as small as 8kB and as

large as to reach megabytes and supports both 32bit and 64bit architectures.

Zephyr uses a highest priority first scheduler and utilizes the algorithm longest waiting first for tasks

of equal priority. It also allows the developer to choose the scheduling algorithm for tasks with different

and equal priority. It is also possible to define the task queuing strategies used in the scheduler.

Feature Comparison

Three RTOS were compared in terms of compatibility, interrupt processing speed, and documentation

First, the RTOS must be compatible with the selected SoC. Additionally, the speed at which the RTOS

can process interrupts and switch task context is vital to meet eventual time constraints. Finally, complete

documentation and community support are imperative for software development. Table 2.2 summarizes

these characteristics. It’s worth noting that some of the more precise metrics, such as interrupt latency

and context switch delay, do not have any strict value since they depend on the specific use case of the

RTOS.

Table 2.2 shows that FreeRTOS has a smaller footprint, making it ideal for systems with less memory.

It is also a better RTOS when dealing with small tasks since the context switch delay has a higher

impact. At the same time, due to the variety of capabilities available, Zephyr is expected to perform

better for larger systems. The support for the chosen SoC is also an important feature to consider.

None of the RTOS analyzed have direct support in their documentation page. However, both FreeRTOS

and Zephyr have guides on how to use them with the chosen SoC, SweRVolfX. Since FreeRTOS and

Zephyr are acceptable for the analysis done in the following chapters, the ample community support and

documentation available make Zephyr the best candidate.

Feature FreeRTOS RIOT Zephyr
Minimum storage size 4.4 KB 3.2 KB 8 KB
Minimum RAM size 500 Bytes 2.8 KB 5 KB
Interrupt Latency — 50 cycles —

Context Switch Delay 84 cycles — 264 cycles
Scheduling Policy Highest Priority Highest Priority Highest Priority
Time Slicing Policy Round Robin none configurable

Documentation ++ + ++

Table 2.2: Comparison between FreeRTOS, RIOT and Zephyr
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This chapter describes the design of an hardware accelerator for matrix multiplication. The chapter

begins with the description of the necessary pragmas to implement the AXI protocol used to communi-

cate with the CPU and the RAM. It also describes the algorithm used as a base for the circuit design.

The chapter also discusses the interrupt management system implemented in the hardware accel-

erator, which is crucial in the scenarios developed in Chapter 5. In this chapter provides a description

of the registers used in the accelerator to program the interrupt system connected to the Programmable

Interrupt Controller (PIC) in the CPU.

3.1 Hardware Accelerator Design

Hardware accelerators are circuits designed to increase the efficiency of a specific task and are used

in several different contexts such as neural networks, cryptography and image processing. In these

examples, part of the computation done in the CPU is transferred to the accelerator. The hardware

accelerator used in this thesis is designed to perform matrix multiplication and replace the CPU whenever

that operation is executed.

The communication between the hardware accelerator and the other components is done using

the Advanced eXtensible Interface (AXI) protocol [16]. The reason for this choice will be discussed in

Chapter 4. The accelerator has an AXI4 Lite interface with the CPU for the control signals and an AXI4

interface with the RAM for data transfers. Listing 3.1 shows the pragmas used in Vitis HLS to define the

two communication interfaces. The AXI Lite interface has four ports, one for the control signals, and the

last three for the sizes of the two matrices. The AXI interface has three ports for the two input matrices

and the result matrix. Since the accelerator circuit requires the memory addresses of the three matrices

to access them in the RAM, three ports are automatically added to the AXI Lite bundle. Table 3.1 shows

the addresses of the AXI Lite ports.

Listing 3.1: AXI4 Lite and AXI4 interfaces defenition for the hardware accelerator

1 #pragma HLS INTERFACE s axilite port=return bundle=BUS1

2 #pragma HLS INTERFACE s axilite port=N1 bundle=BUS1

3 #pragma HLS INTERFACE s axilite port=N2 bundle=BUS1

4 #pragma HLS INTERFACE s axilite port=N3 bundle=BUS1

5

6 #pragma HLS INTERFACE m axi port = m1 depth=MAX DEPTH SIZE

7 #pragma HLS INTERFACE m axi port = m2 depth=MAX DEPTH SIZE

8 #pragma HLS INTERFACE m axi port = m3 depth=MAX DEPTH SIZE

The hardware accelerator is designed using Xilinx’s Vitis HLS [17], which allows users to design
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Register Offset
CTRL 0x00

m1 0x10
m2 0x18
m3 0x20
N1 0x28
N2 0x30
N3 0x38

Table 3.1: Offset of the AXI4 Lite registers.

FPGA circuits using a high-level language such as C. The code used to design the accelerators circuit

with Vitis HLS is present in Listing 3.2 and consists of three nested for loops. The input matrices

are copied from the memory to the accelerator in the first two lines. The function memcpy takes as

arguments the destination of the data, the source of the data, and the number of bytes to be copied.

Vitis HLS automatically uses the AXI interface to read and write in the addresses of the RAM. The

nested for loop, where the matrices are multiplied, is in lines four to thirteen. In line fifteen the output

matrix is copied to memory using the function memcpy.

Listing 3.2: Hardware accelerator C specification

1 memcpy(m1 buffer, (const float*)m1, N1*N2 * sizeof(float));

2 memcpy(m2 buffer, (const float*)m2, N2*N3 * sizeof(float));

3

4 for (int i =0; i <N1; i ++) {

5 for (int j=0; j<N3; j++) {

6 for (int k=0; k<N2; k++) {

7 float mul = m1 buffer[i*N2+k] * m2 buffer[k*N3+j];

8 if (k==0) regc = mul;

9 else regc += mul;

10 }

11 m3 buffer[i *N3+j] = regc;

12 }

13 }

14

15 memcpy((float*)m3, m3 buffer, N1*N3 * sizeof(float));

Vitis HLS automatically creates the hardware implementation of the accelerator and provides the

resource estimations shown in Table 3.2.

The hardware implementation of the accelerator was tested using Vitis HLS’s simulation tool. The

simulation consists of writing the sizes and addresses of the matrices in the accelerators ports and
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BRAM DSP FF LUT URAM
6 18 2731 3662 0

Table 3.2: Matrix multiplication accelerator’s resource estimation in Vitis HLS

initializing the accelerator using the control signal. In this simulation two four by four matrices are used

as an input to the accelerator.

Figure 3.1 shows how the AXI protocol is used to write in the accelerators registers the necessary

values to perform the matrix multiplication. The signal AWADDR shows the addresses of the accelera-

tors registers and the signal WDATA shows the values of the data written in those addresses. Comparing

the values of the signal AWADDR to the ones on Table 3.1 it’s possible to confirm that the registers used

are the matrix addresses and their sizes. Looking at the signal WDATA its possible to verify that the

values being written are correct, since the value being written in the addresses of the matrix sizes is 4.

The last value being written with the signal WDATA is the control signal at address 0x00, and it starts

the execution of the accelerator.

Figure 3.2 shows the waveform of the end of the accelerators execution. The signal gmem AWADDR

expresses the address of RAM where the result is written, and has the values 0x0100, which matches

the value written in the accelerator in Figure 3.1. The signal gmem WDATA has the sixteen values of

the matrix that are written in the address 0x0100. Once the results of the matrix are written in the RAM

the control signal of the accelerator changes its value from 0x01 to 0x0e. The signal RDATA is used to

read the value on address 0x00, expressed by the signal ARADDR, and shows the change in values of

the control signal that represents the accelerators state change from working to idle.
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Figure 3.1: Waveform of the initial signals necessary to start the accelerator

Figure 3.2: Waveform of the signals that represent the conclusion of the accelerator operation
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3.2 Interrupt Management System

Vitis HLS includes an interruption system in the hardware accelerators circuit. There are four signals in

the accelerator used to activate and receive the interrupts. Three of those signals are registers of the

accelerator used to enable the interrupts and to define what triggers the interrupt. The fourth signal is

connected to the CPUs PIC to trigger the interrupt itself.

Table 3.3 shows the registers used to enable and disable the interrupts and to define the conditions

that trigger the interrupt. The register Global Interrupt Enable Register (GIER) is used to enable all the

interrupts generated by the accelerator. GIER is a 1 bit register and can be set to enable the interrupts

and reset to disable the interrupts. The register IP Interrupt Enable Register (IP IER) is used to enable

interrupts triggered either by the done signal or the idle signal. IP IER is a 2 bit register, where the first

bit is set to enable interrupts triggered by the done signal from the accelerator, and the second bit is

set to enable interrupts triggered by the idle signal from the accelerator. The register IP Interrupt Status

Register (IP ISR) is used to check the status of the interrupt. Similarly to IP IER, the register IP ISR

is a 2 bits register, where the first bit indicates the status of the interrupt triggered by the done signal,

and the second bit indicates the status of the interrupt triggered by the idle signal. When an interrupt is

triggered, the registers bit associated with that interrupt source will be toggled to ’1’ indicating the state

of the interrupt. When IP ISR is toggled to ’0’, the interrupt has been handled and the accelerator stops

sending the interrupt signal to the PIC.

Register Description Offset
GIER Global Interrupt Enable Register 0x04
IP IER IP Interrupt Enable Register 0x08
IP ISR IP Interrupt Status Register 0x0c

Table 3.3: Offset of the interrupt enable and status registers
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This chapter focuses on the RVfpga SoC, adapted to support the hardware accelerator designed in

Chapter 3 and targated to the Nexys A7 FPGA board. The chapter provides a description of the baseline

SweRVolf SoC, detailing the RISC-V processor SweRV EH1 and the additional components of the SoC.

The chapter provides some insight on the development of an AXI interconnect to accommodate for

the hardware accelerators ports. It also includes the description of the final SoC implementation with

the hardware accelerator connected to the AXI interconnect, called RVfpgaNexys-MMA.

The final sections of this chapter provide details of the simulations used to validate the functionality

of RVfpgaNexys-MMA, and the description of how the accelerator is used in the software applications

developed in Chapter 5.

4.1 Baseline SweRVolfX

4.1.1 SweRVolfX Description

The SweRVolf SoC is developed around the SweRV EH1 Core Complex (RV Core) [18]. The SweRVolf

SoC also includes a Boot-ROM, a System Controller, a Serial Peripheral Interface (SPI) controller, and

a Universal Asynchronous Receiver-Transmitter (UART). The SweRVolf SoC was extended [1] to add

extra functionalities, such as another SPI controller, a PWM Timer Counter (PTC) module, a General

Purpose Input/Output (GPIO) controller, and a controller for the 8-digit display included in the System

Controller. The extended version, called SweRVolfX, is then targeted to the board Nexys A7 [19]. Figure

4.1 shows SweRVolfX and how the SoC interacts with some of the hardware present in the board.

The SweRV Core is an RV32I based implementation with the extensions C, for compressed instruc-

tions, and M, for multiplication and division that only uses machine mode. The RV Core uses a dual

issue 9 stage pipeline with four Arithmetic Logic Unit (ALU) in two separate pipelines. The first pipeline

supports loads and stores, and the other has a 3 cycle multiplayer. The processor also has a 34 cycle

divider outside of the pipeline. Finally, it has four stall points, one in the fetch stage, the second in the

align stage, the third in the decode stage, and the fourth in the commit stage.

Besides the CPU, the SweRVolf SoC includes the Boot-ROM, that contains the bootloader, the Sys-

tem Controller, that contains common system functionality such as keeping the SoC version information,

the RAM initialization status, and the RISC-V machine timer. The additional functionalities of the con-

troller provided by the extended version are a controller for the 8-digit display and 2 registers for handling

interrupts from the PTC module and the GPIO. The 2 SPI controllers [20], the PTC module [21], the

GPIO module [22] and the UART [23] are open-source IPs obtained from OpenCores [24].

AXI is a common bus protocol used in many processors. Both the RV Core and the RAM utilize

AXI [16] to send and receive data. To connect the RV Core Complex to the RAM and the peripherals the

SoC uses an AXI Interconnect crossbar. However, the peripherals use the Wishbone Architecture [25].
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Figure 4.1: RVfpgaNexys block diagram (figure from [1])

System Adress
RAM 0x00000000 - 0x07FFFFFF

Wishbone Interconnect 0x80000000 - 0x80003FFF

Table 4.1: AXI Interconnect Adress Map

The AXI Crossbar has 3 AXI-slave ports and 2 AXI-master ports. The slave ports are for the SweRV’s

data, instruction, and debug transfers. The master ports are for the RAM and to access the peripherals

Wishbone interconnect. Table 4.1 shows the memory-mapped addresses of the master ports in the AXI

interconnect.

An AXI to Wishbone bridge is used to connect the AXI interconnect to the Wishbone interconnect.

The Wishbone interconnect is used to connect the RV Core to the peripherals. Table 4.2 shows the

memory-mapped addresses of the peripherals connected to the RV Core by the Wishbone interconnect.

System Adress
Boot ROM 0x80000000 - 0x80000FFF

System Controller 0x80001000 - 0x8000103F
SPI1 0x80001040 - 0x8000107F
SPI2 0x80001100 - 0x8000113F
PTC 0x80001200 - 0x8000123F
GPIO 0x80001400 - 0x8000143F
UART 0x80002000 - 0x80002FFF

Table 4.2: Wishbone Interconnect Adress Map
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4.1.2 SweRVolfX Targeted to Nexys A7 FPGA

RVfpgaNexys is the SweRVolfX targeted to the Nexys A7 FPGA. Figure 4.1 illustrates how the SoC con-

nects to other hardware components programmed onto the board, and the peripherals already present

in the board. The hardware programmed includes the Clock Generator, the Boundary Scan logic for

the JTAG interface, the Clock Domain Crossing (CDC) module and the Lite DRAM controller. The pe-

ripherals included in the board are the DDR2 memory, the USB connection, the 8-digit display, the SPI

accelerometer, the SPI flash memory, the 16 LEDs and switches, and the USB connection. Figure 4.2

shows the resources used by the implementation of RVfpgaNexys synthesized with Vivado targeting the

Nexys A7 board.

In Figure 4.2 is possible to see the total resources utilized by RVfpgaNexys as well as the resources

of some of the components of the implementation, such as the SoC and the AXI interconnect.

Figure 4.2: Baseline RVfpgaNexys Resource Utilization

4.2 RVfpgaNexys with Support for an AXI Hardware Accelerator

The extension of SweRVolfX to contain a hardware accelerator started with the implementation of the

necessary ports for the communication between the CPU and the accelerator, and between the acceler-

ator and the RAM. There are two possible scenarios, using the AXI interconnect or using the Wishbone

interconnect.

AXI is an industry-standard protocol with support for advanced features such as burst transfers, that

allows for a high data throughput and a low latency. Wishbone is an open-source bus architecture that

is flexible and lightweight, with low complexity, which is easy to use. As presented in section 3.1 the
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Figure 4.3: SweRVolfX with a Hardware Accelerator

developed matrix multiplication hardware accelerator requires communication with both the CPU and

the RAM. So using the Wishbone bus requires the data to pass through the AXI interconnect and the

AXI-Wishbone bridge for each transfer, adding overhead. To reduce the overhead of the communication

between the CPU and the accelerator, and the accelerator and the RAM, the hardware accelerator was

connected to the board using the AXI interconnect.

Figure 4.3 shows the SweRVolfX SoC with the added connections and protocols used for the accel-

erator. The AXI4-Lite connection allows the CPU to send the control signals to the accelerator and read

the status of the accelerator. The AXI4 connection is for the accelerator to read and write into memory.

Autogenerated AXI Interconnect

The AXI interconnect used in the SweRVolfX design was autogenerated by a tool that wasn’t available

in the SoC description. Since the AXI interconnect files were autogenerated, simply adding the extra

ports to the source files is not an option. After inquiring in the official forums of RVfpgaNexys [26], the

tool used to generate the interconnect could not be found.

The next option was to find a different autogenerator to generate the AXI interconnect description

with the added ports. The autogenerator found in [24] should be able to meet the design requirements.

However, it uses a tool that is no longer maintained and could not be installed. There were no other

open-source and easy-to-use AXI interconnect generators available. As a result, the alternative was to
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stop using automatic generators and use an interconnect developed for another project and adapt it to

the current use case.

Axi Interconnect Adapted From Open Source IOb-SoC

IObundle [27] is developing an open-source RISC-V based SoC, IOb-SoC [28]. The IOb-SoC also uses

AXI to pass data between the CPU and the peripherals, using an AXI interconnect for this purpose.

Using IOb-SoCs interconnect was a promising option, however, the adaptation of the interconnect is a

more complicated task than anticipated. Some complications arose, such as not being able to input the

address map of the peripherals, not having some signals used by the CPU, and being unable to cus-

tomize the data signal size to match the CPU and peripherals. This attempt revealed that the adaptation

of source files from other projects would use more time than is available and, therefore, is not a viable

option.

Xilinx’s AXI Interconnect

The final option is the use Xilinx’s AXI interconnect [29] that is bundled with Vivado Design Suite. This

option prevents the simulation of the system with tools outside of Xilinx’s design suit. While Vivado’s

simulation tool is used to verify the functionality of the SoC, the analysis in this work can still be done

without the use of simulation.

Xilinx’s AXI Interconnect IP connects up to 16 AXI memory-mapped master devices to up to 16

memory-mapped slave devices. The AXI interfaces conform to the AXI4, AXI4-Lite or AXI3 standards,

allowing different standards for each port, depending on the master or slave the port connects to. The

IP allows two different architectures, crossbar mode and shared access mode. Crossbar mode uses

a crossbar architecture with parallel pathways for read and write channels. This architecture allows for

all the slaves to connect to all the masters and vice-versa. The parallel pathways allow for simulta-

neous access to different connections, for example, the CPU data channel can read the values of the

switches and the CPU instruction fetch channel can read the next instruction from memory simultane-

ously. Shared access mode, uses a shared address pathway. Shared access mode is lighter and uses

fewer FPGA resources. Since the board still has plenty of available resources (see Figure 4.2), the

performance-optimized mode is the better option. Therefore, the crossbar mode will be selected for the

implementation.

Figure 4.4 shows the AXI interconnect IP with the ports to replace the AXI interconnect of the SweR-

VolfX SoC. The master ports are ifu, an instruction fetch for the CPU, lsu, a data transfer connection for

the CPU, and sb, a debug channel for the CPU. The slave ports are io, the connection to the wishbone

interconnect that interacts with all the IO peripherals, and ram, a connection to the Lite DRAM controller

24



Figure 4.4: AXI Interconnect Block Design

Figure 4.5: RVfpgaNexys with Xilinx’s AXI Interconnect Resource Utilization

that reads and writes to memory. Finally, the clk and rst wires are the clock and reset signals necessary

for the correct operation of the IP.

The AXI interconnect depicted in Figure 4.4 is generated inside a block design wrapper. The wrapper

is an interface that connects the SoC wires to the wrapper’s external wires, ifu, lsu, sb, clk, rst, io

and ram. Inside the block design wrapper, it’s also necessary to define the addresses of the master

interfaces. In this case, the addresses are defined as shown in Figure 4.1.

In Figure 4.5 is possible to see the total resources utilized by RVfpgaNexys with Xilinx’s AXI Inter-

connect. It is also possible to see that the resources used in this implementation are very similar to the

resources used in the baseline RVfpgaNexys.

The verification of the correct functionality of the design was done using three programs. The first
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Figure 4.6: Extended AXI Interconnect Block Design

System Address
RAM 0x00000000 - 0x07FFFFFF

Accelerator 0x90000000 - 0x90003FFF
Wishbone Interconnect 0x80000000 - 0x80003FFF

Table 4.3: Extended AXI Interconnect Address Map

one is a basic Hello World program to validate the comunication using the instruction fetch channel

and the io channel. The second program reads the values of the board’s switches and turns on the

corresponding LEDs, validating the communication through the Wishbone channel. The final program

used was the CoreMark benchmark [30] that tests the connections to memory. Since all three programs

ran as expected the development continued using Xilinx’s AXI interconnect IP.

To connect the accelerator it’s necessary to add the connections shown in Figure 4.3. Figure 4.6

shows the AXI interconnect with the two extra ports necessary to communicate to and from the accel-

erator. The port accle ctrl is an AXI connection to read and write control signals in the accelerators

registers, and the port accel mem is an AXI connection for memory access by the accelerator to read

and write data.

To access the accelerator is necessary to change the address map of the interconnect. Table 4.3

shows the used memory-mapped addresses of the master ports in the new AXI interconnect.

After synthesising this version of RVfpgaNexys, the total resources used are showed in Figure 4.7.

The extended AXI interconnect increased significantly the total resources utilized, since each new port

of the interconnect needs to connect to all the others.

The same three programs were used to test this implementation. All programs produced the expected
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Figure 4.7: RVfpgaNexys with Extended AXI Interconnect Resource Utilization

Figure 4.8: Hardware Accelerator Block Design

output, so the development continued into the design and implementation of the hardware accelerator.

4.3 RVfpgaNexys with Matrix Multiplication Accelerator - RVfpgaNexys-

MMA

4.3.1 Final RVfpgaNexys Implementation

The hardware accelerator designed in Chapter 3 is integrated into the SoC with a separate Vivado block

design that connects the ports added to the AXI interconnect. Figure 4.8 shows the block diagram of the

accelerators block design generated by Vivado.

In Figure 4.8 there are five external interfaces connected to the accelerator. The clk and rst ports

are the clock and reset signals. The accel ctrl port connects to the port of the same name in the

interconnect, and is the AXI4 Lite connection that writes and reads the control signals that manage the

accelerator. The port accel mem connects to the port of the same name in the interconnect, and is the

AXI4 connection for the accelerator to read and write data in the RAM. The port accel irq connects to

the PIC, and sends the interrupt request from the accelerator once the operation is completed.
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Figure 4.9: RVfpgaNexys-MMA Resource Utilization.

The complete design of RVfpgaNexys-MMA was synthesized and the bitstream for this implementa-

tion was generated. Figure 4.9 shows the resource utilization of the final RVfpgaNexys-MMA implemen-

tation. In the Figure it is possible to see that the resources utilized by the accelerator are similar to the

estimation in Table 3.2.

4.3.2 Verification of the Final SoC Design

Three steps were taken to verify the correct implementation of the accelerator. The first one was to run

the same three programs as in the previous SoC implementations. These simple programs confirmed

that the introduction of the accelerator did not compromise the baseline SoC functionality. The two

other verification steps were done using Vivado’s simulation tool, and a software testbench to verify the

functionality of the hardware accelerator.

Verification with Vivado Simulation

Using Vivado simulation, the accelerator was tested independently and in the context of the RVfpgaNexys-

MMA SoC. In both of these situations, the AXI verification IP (VIP) core [31] was used as a way to give

commands to the accelerator. The VIP can be used to verify the functionality of AXI masters and slaves.

The first simulation was used to verify the connections of the hardware accelerator IP imported to

Vivado from Vitis HLS. Therefore, the connection between the accelerator and the CPU was replaced by

Vivados Verification IP (VIP), and the connection between the accelerator and the RAM was replaced by

an AXI BRAM controller [32] with a block memory generator [33]. The testbench used writes the matrix

sizes and addresses in the accelerators assigned registers and then sets the control port to start the
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operation in the accelerator. The control port is read after 10 milliseconds to verify the completion of the

operation.

Figure 4.10 shows the waveform of the initial write transactions, done in the simulation from the VIP to

the accelerator. The transactions tagged with the numbers 2, 3 and 4 show that the memory addresses

of the matrices are being written, and transaction 5 shows that the number of rows of the first matrix

is being written. The transactions continue to be done as expected, and, when the accelerator has

completed the multiplication, the control signal changes from 0x01 to 0x0e. Since the control register of

the accelerator confirms the completion of the operation, the communication with the BRAM controller

are correct, otherwise the accelerator would have stopped.
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Figure 4.10: Waveform of the first transactions to the accelerator
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The purpose of the second simulation was to simulate the interaction between the CPU and the

accelerator through the AXI interconnect. This ensures that the crossbar is sending the signals to the

correct addresses and that the accelerator is correctly reading the offsets from the full address used in

the CPU.

In a real scenario the CPU reads and writes in the accelerator, however, for simplicity, a VIP is

connected to the interconnect in place of the CPU. The VIP is programmed in a similar way as the VIP

used in the previous simulation. All the transactions performed as expected, and its possible to verify the

correct values being written in the accelerator. In this simulation, the accelerator does not change the

values of the control signal to 0x0e, since the memory is not initialized and the accelerator is unable to

read the necessary data to continue the execution. However, it is possible to verify that the accelerator

sends the read request to the RAM.

Verification with a Software Application

The final verification to the RVfpgaNexys-MMA implementation is a software application that generates

two matrices and uses the accelerator to multiply them. This application correctly initializes the memory

addresses in the RAM and writes the matrix addresses and sizes according to the offsets in Table 3.1.

Listing 4.1 shows the code used to the write the necessary inputs in the accelerator and to start

its execution. The first 7 lines in the listing show how pointers are created to write in the accelerators

registers, according to the values in Tables 3.1 and Table 4.3. Lines 9 to 14 are the instructions that

write the matrix addresses and sizes in the accelerators registers. Line 16 changes the accelerators

control signal to 0x01 to start performing the operation. Line 18 is a read instruction inside a while loop

to constantly check the value of the control signal until the multiplication operation is completed and its

value changes to done. Once the results are written in the memory its possible to verify that they are

correct.

The tool used to verify the values written in the accelerator and in the RAM is GDB, or the GNU

Debugger, which is an open-source debugger used for programming and debugging software. It allows

developers to inspect and manipulate the execution of programs, helping to identify and fix errors in the

code. GDB allows developers to read the values stored in specific addresses. This feature was used to

verify that the matrix addresses and their sizes were being written in the correct accelerator registers,

and that the output matrix was being written in the correct RAM address.
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Listing 4.1: Software instructions used to validate the hardware accelerator

1 volatile int *do matp mem = (int *)0x90000000;
2 volatile int *a = (int *)0x90000010;
3 volatile int *b = (int *)0x90000018;
4 volatile int *c = (int *)0x90000020;
5 volatile int *rowsA = (int *)0x90000028;
6 volatile int *colsA = (int *)0x90000030;
7 volatile int *colsB = (int *)0x90000038;
8

9 *a = MATA START ADDRESS;
10 *b = MATB START ADDRESS;
11 *c = MATC START ADDRESS;
12 *rowsA = N1;
13 *colsA = N2;
14 *colsB = N3;
15

16 *do matp mem = 1;
17

18 while ((*do matp mem & 4) == 0);
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This chapter describes the three proposed scenarios to use the hardware accelerator. The first

scenario is to use the processor’s and Zephyr’s interrupt management mechanisms to free the processor

while the accelerator is being used. The second scenario is to use multiple threads to interact with the

accelerator. With this scenario the processor and the accelerator are being used simultaneously. The

third scenario is to have a single thread responsible for using the accelerator. The other threads send

messages to the first thread with the necessary values.

Two use cases are used to evaluate these three different scenarios. The first use case performs a

simple multiplication of sets of matrices. The sets of matrices pairs are pre-generated in the processor

to reduce the instructions that are not related to the communication with the accelerator. This makes the

overhead added by the RTOS mechanisms more evident. The second use case implements a neural

network to perform the prediction of several digits from the MNIST dataset [34]. This is a more realistic

scenario, and the additional instructions between matrix multiplication can help hide the overhead added

by the RTOS mechanisms used.

The three scenarios pictured below expand upon the preceding one. Therefore, each section focuses

only on the changes introduced by each scenario.

5.1 Single Thread With Interrupt Signals

The initial scenario is to use a single thread to perform the designated use case. During a multiplication

operation with the accelerator, the CPU is not constantly accessing the accelerator’s control signal.

Instead, the application enters a semaphore that is locked until the ISR is triggered by the accelerator

and unlocks that semaphore.

To use the interrupt generated by the accelerator, it is necessary to link a routine to it. Zephyr defines

that an hardware interrupt must be associated to the IRQ 11 or above. In the SoCs interrupt controller,

the accelerators interrupt is connected to bit 5. Taking into consideration the other interrupt sources, the

accelerators IRQ number is 15.

Figure 5.1 shows how the ISR is programmed into the interrupt request table of Zephyr. The first

two instructions enable the interrupt signal on the accelerator, using pointers to the addresses specified

in table 3.3. The third instruction connects the accelerator IRQ to the ISR, in this case, called the

my isr function, and associates a priority to the interrupt. The last instruction enables the interrupt to be

generated by Zpehyr after being triggered by the accelerator.

Figure 5.2 depicts the ISR triggered by an interrupt generated from the hardware accelerator. The

first line in the ISR toggles the accelerator’s interrupt status, informing it that the interrupt is being pro-

cessed and signaling it to stop sending the interrupt request to the processor. The second instruction of

the ISR is to signal the thread that called the accelerator. That thread was locked with the semaphore
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Listing 5.1: ISR installer code

1 void my isr installer(void) {
2 *acceleratorGIER = 0x1;
3 *acceleratorIP IER = 0x1;
4 ARCH IRQ CONNECT(ACCEL IRQ, ACCEL PRIO, my isr, NULL, 0);
5 arch irq enable(ACCEL IRQ);
6 }

accel sem waiting for the accelerator’s completion. When the semaphore unlocks the thread can pro-

ceed.

Listing 5.2: ISR code

1 void my isr(const void *arg) {

2 *acceleratorIP ISR = 0x1;

3 k sem give(&accel sem);

4 }

Figure 5.1 shows the flow chart of the thread that is using the accelerator. The thread starts by

preparing the matrix multiplication operation in the processor. In the matrix pair multiplication use case

it is necessary to get the correct memory addresses for the new matrix pair. In the neural network use

case there are more complex operations such as the ReLU or the Softmax operation. In the neural

network example some of the matrices have more elements then the accelerator allows. In these cases,

the preparation step also involves dividing the matrix to fit the accelerator maximum size.

After the inputs are prepared, the thread sends them to the accelerator. Since the Accelerator

Semaphore is initialized in the not available state, the thread is unable to take it and goes to the blocked

state. The ISR unlocks the semaphore when the processor receives the interrupt request, changing the

threads state from blocked to ready.

When the scheduler awakes the thread the first instruction is to take the Accelerator Semaphore so

that no proceeding accelerator calls can proceed without their results. Finally, the thread processes the

result in the processor.

5.2 Multiple Threads Competing for Accelerator Access

In this scenario, multiple threads compete for access to the accelerator at the same time. The main

concern introduced with this scenario is that a thread may try to use the accelerator while it is already

in use. One way to solve this is issue to introduce a second semaphore. This semaphore is used by
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Figure 5.1: Single thread accessing the accelerator flow chart

the different threads to check if another thread is using the accelerator. Before using the accelerator,

the new semaphore is locked. Consequently, the other threads have to wait for the semaphore to be

unlocked. The semaphore is unlocked by the ISR, and when the next thread starts executing, it locks

the semaphore, ensuring that no other thread can use the accelerator before the current one finished

the operation.

Figure 5.2 illustrates the flow chart of each thread. After the inputs are prepared, the thread tries

to take the Thread Semaphore. If the semaphore is not available, the thread suspends and enters the

blocked state. If the semaphore is available, no other threads are using the accelerator, and the thread

may take the Thread Semaphore and proceed. Finally the input matrices are sent to the accelerator and

the Accelerator Semaphore is used in the same way as in the previous section.

When the ISR is triggered by the accelerators interrupt the thread changes to the ready state and

the scheduler wakes the thread to process the results. The ISR also unlocks the Thread Semaphore,

allowing one thread that was previously blocked to go to the ready state.

In this scenario there may be multiple threads waiting in the blocked state for the semaphores to

be unlocked. The scheduler may wake a thread that is trying to use the accelerator before waking the

thread that has already used the accelerator. Because of this, in the matrix multiplication use case, all

matrix pairs and results have different predefined addresses. In the neural network use case, all threads

have different address ranges to put the inputs and results of each operation.
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Figure 5.2: Multiple threads competing for accelerator access flow chart
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5.3 Centralized Control of Accelerator Access

The final scenario is to have one thread responsible for managing the accelerator. This Manager Thread

receives requests from other threads when they need to use the accelerator. The Manager Thread has

a higher priority then the threads that make the requests to minimize the requests in the queue at a time.

In this scenario the Manager Thread receives communicates with the other threads using two mes-

sage queues. The first message queue receives the requests, and the second message queue sends

the replies. When a thread has a multiplication operation and needs the accelerator, it puts a message

in the queue. That thread then waits for a reply in the reply queue. Each message consists of the ad-

dresses used by the accelerator, the matrices size, and the ID of the thread that sent the request. The

ID is used to ensure that the threads only take their replies from the queue.

Figure 5.3 shows the flow chart of the Manager Thread. The thread is in a loop that checks if there are

any messages in the queue. If there aren’t it is suspended until a new messages is added to the queue

and the scheduler wakes the thread. When the new message arrives the thread uses the accelerator

in the same way as in Section 5.1. When the thread starts executing after using the accelerator, a new

message is sent to the reply queue.

Figure 5.3: Manager thread flow chart

Figure 5.4 illustrates how the other threads use the Manager Thread to perform multiplication using

the accelerator. The thread creates the message to be sent to the Manager Thread and they put it in

the requests queue. After sending the request they check the reply queue for new messages. In the

reply queue there may be replies to other threads, so the have to check if the ID of the message is the

same as their own ID. If the IDs match, the message is removed from the queue and the results are

processed. If the IDs don’t match or the queue is empty, the thread goes to the blocked state allowing

for other threads to run.
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Figure 5.4: Thread sending requests to Manager Thread flow chart
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This chapter provides the performance assessment of the different scenarios defined in Chapter 5.

This study was done in the environment described in Appendix A. The Vivado tool was used to generate

the bitstream, targeting the Nexyz A7 board, of the hardware implementation defined in Chapter 4. And

application code was generated using the Zephyr toolchain.

The evaluation done in this chapter focuses on the execution time and current consumption of the

board on each scenario. To do so, four applications were developed for each use case. The first

application performs the operations without the RTOS capabilities, both using the accelerator and without

using it. The second application performs the multiplication operations with the use of interrupts as

described in Section 5.1. The third application performs the operations using the approach described

in Section 5.2, with 1, 2, 4, 16, 32 and 64 threads competing for the use of the accelerator. The fourth

application, described in Section 5.3, uses 1, 2, 4, 16, 32 and 64 threads that communicate with a single

accelerator manager thread.

The current consumption of the applications was measured using RUI DENG’s USB Color Display

Tester model UM24C [35]. The device was connected to the source device and to the Nexys A7 board to

measure the current used by the board, and has a current measurement resolution of 1 mA. When the

SoC implementation is programmed into the FPGA the USB tester measures a constant base current

consumption of 409 mA. The execution time of each scenario was measured using the the Zephyr

function k uptime get, which returns the systems uptime in milliseconds. While this routine returns time

in milliseconds, the precision is only 10 milliseconds.

6.1 Matrix Multiplication Acceleration Without RTOS Mechanisms

To obtain basic reference metric values the selected the application performs specific use cases without

the RTOS. The first metric values are determined when the application executes on RISC-V using only

software instructions (without the hardware accelerator). The second metric values, the baseline metrics,

the application uses the hardware accelerator to aid the processor employing a technique called pooling.

In this situation the processor is actively waiting for the result from the accelerator by constantly checking

the control register of the accelerator.

Multiplication of Set of Matrices

In the matrix multiplication use case, 100 sets of matrices were multiplied. Each matrix has 32 rows and

32 columns, creating a result matrix of the same size. The multiplication of the 100 sets of matrices took

158.770 seconds using only the processor and 200 milliseconds when introducing the accelerator. In

terms of current consumption, both the software only execution and the execution with the accelerator

used 413 mA.
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These results show how an hardware accelerator can accelerate this task, achieving a speedup of

over 700, without increasing the current consumption of the SoC. To reach more meaningful conclusions

in the following sections when comparing the different scenarios the performance of 512 multiplication

was also tested and took 1.140 seconds, with the same consumption of 413 mA.

Neural Network

In the feed forward pass of the neural network, 50 digits were initially predicted. The neural network

has 3 hidden layers with 128, 64 and 10 neurons and each digit has 784 pixels. This translates to

three different matrices multiplications per digit. However, since the first two weight matrices are larger

then the maximum allowed size of the accelerator, which is 1024, the multiplication was separated per

column. In the end, 193 matrix multiplications per digit were performed when using the accelerator. In

these conditions, the prediction of the 50 digits took 232.030 seconds and used 415 mA, using only the

processor, and took 8.810 seconds and used 415 mA with the accelerator.

Since the neural network use case has a significant amount of software instructions in relation to

multiplication operations, the speedup achieved was 18.33, a lower value as expected by the Amdahl’s

law. At the same time, the software only execution does not have any restraints on the size of the

matrices, and, therefore, has fewer instructions before performing the multiplication. Similarly to the first

use case, to reach more meaningful conclusions in the following sections, the number of digits tested

with the accelerator using pooling was increased to 256, taking 45.140 seconds and using 415 mA.

6.2 Single Thread With Interrupt Signals

This scenario introduces the RTOS and its multitasking mechanisms, such as interrupts and semaphores.

The introduction of interrupts allows the processor to perform other tasks while the accelerator is being

used. In this scenario, the processor stays in a waiting state, which is similar to the baseline application,

however, the processor is not being used to check if the accelerator has completed execution. When the

hardware accelerator completes the operation, it signals the processor through an interrupt.

Multiplication of Set of Matrices

The multiplication of 512 sets of matrices took 1.200 seconds. There is an increase of 60 milliseconds,

when comparing this time to the baseline application with the same number of matrix sets. This increase

corresponds to a 0.12 milliseconds increment per multiplication. This increment is expected because

switching contexts with every interrupt adds some overhead.
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Threads 1 2 4 8 16 32 64
Time (s) 1.21 1.23 1.23 1.23 1.23 1.23 1.24

Table 6.1: Time measurements of the multiplication of 512 matrices using the second scenario

Neural Network

The execution of the neural network in this scenario for the prediction of 256 digits took 52.640 seconds.

When comparing the execution time of this scenario to the baseline there is a 7.620 seconds increase,

which corresponds to a 0.15 millisecond increment per multiplication.

The introduction of the RTOS and the interrupt mechanism added some overhead in both use cases,

however it allows the processor to be used in other tasks. In terms of current consumption, the USB

tester displayed a similar value (413 mA in the first use case and 415 mA in the second use case) in all

the following scenarios, having a variation of ± 1 mA while performing the tests. This variation corre-

sponds to 0.25% of the base current of the SoC, meaning that the different scenarios do not significantly

change the power consumption of the system.

6.3 Multiple Threads Competing for Accelerator Access

The second scenario introduces several threads that use the accelerator. A semaphore is used to

manage the access to accelerator, ensuring that only one thread is performing a multiplication at a time.

Multiplication of Set of Matrices

Table 6.1 shows the times of the multiplication of 512 sets of matrices when using 1, 2, 4, 8, 16, 32, and

64 threads trying to access the accelerator. The 512 sets where divided uniformly among the different

threads. Comparing the time performance to the previous scenario, there is an overhead of 20 upto 40

millisecond. Figure 6.1 shows that the time performance is not significantly affected by the number of

threads.

Neural Network

Table 6.2 shows the times of the prediction of 256 digits using a neural network when using 1, 2, 4, 8,

16, 32, and 64 threads trying to access the accelerator. When using only one thread the application

works similarly to the previous scenario, and the difference in the time measurements comes from the

addition of the new semaphore.

Figure 6.2 shows how the time performance is affected by the number of threads used. It’s possible

to see that for 1, 2, 4 and 8 threads the time is consistent, however for 16 and 32 threads the time
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Figure 6.1: Time measurements of the multiplication of 512 matrices using the second scenario

Threads 1 2 4 8 16 32 64
Time (s) 54.32 54.30 54.11 54.12 55.37 56.88 56.99

Table 6.2: Time measurements of the prediction of 256 digits using the second scenario

increases reaching a plateau at 32 threads. One possible explanation for this behavior is that the cache

is filled with the stacks of the threads, and having cache misses increases the duration of the context

switch, however the CPU does not have a data cache, so this explanation is invalid. Due to the time

limitations of this work it was not possible to further investigate the causes of this behavior.

The additional semaphore allows for different tasks to use the accelerator concurrently. This adds

overhead seen by the time increase from the previous scenario to this scenario while using only one

thread. In the first use case there is an increase of 10 millisecond and in the neural network there is an

increase of 1.680 seconds. The current consumption measured with the USB tester remained similar to

the previous scenario, being 413 mA on average in the multiplication of sets of matrices and 415 mA on

average in the prediction of the MNIST digits.

6.4 Centralized Control of Accelerator Access

The third scenario introduces a thread responsible for managing the use of the accelerator. This addition

removes the necessity of the extra semaphore added in the previous scenario, but introduces message

queues to communicate between threads. The message queues allow for a precise control of witch

thread is accessing the accelerator, since the manager thread has access to the requesting thread’s id.

The utilization of the message queues also allow to queue requests for the accelerator as a substitute
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Figure 6.2: Time measurements of the prediction of 256 digits using the second scenario

Threads 1 2 4 8 16 32 64
Time (s) 1.43 1.28 1.28 1.28 1.28 1.28 1.31

Table 6.3: Time measurements of the multiplication of 512 matrices using the third scenario

to immediately trying to access the accelerator. This reduces the number of times a thread is suspended

when a request is made. In the previous scenario each thread is suspended before unsuccessfully trying

to start the accelerator and after starting the accelerator when its waiting for the results. In this scenario,

the threads only suspend after sending the request to the manager thread, and they start executing

when the manager thread sends the reply.

Multiplication of Set of Matrices

Table 6.3 presents the execution times of the multiplication of 512 sets of matrices when using differing

number of threads. When a single thread is used, processor execution time is not effectively utilized,

resulting in longer execution times compared to when multiple threads are used. With two or more

threads, while one thread is waiting for the result of the accelerator, the other threads are used, hiding

some of the overhead added by the communication between the threads. THe Figure 6.3 shows that

the time performance is not significantly affected by the number of threads, when using more then one

thread.
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Figure 6.3: Time measurements of the multiplication of 512 matrices using the third scenario

Threads 1 2 4 8 16 32 64
Time (s) 53.16 52.92 53.39 53.52 53.18 53.30 53.12

Table 6.4: Time measurements of the prediction of 256 digits using the third scenario

Neural Network

In this scenario, the main goal is to have the hardware accelerator as independent from the other threads

as possible, since it allows for a larger abstraction when developing the application. Because of this, the

threads send the full matrices that need to be multiplied, and it’s the manager threads job to make sure

that the accelerators inputs fit the accelerator. One benefit of this approach is that it vastly reduces the

number of requests done to the manager threads, reducing, in turn, the overhead added by the message

queues.

Table 6.4 shows the execution times of the prediction of 256 using the neural network with the differing

number of threads. In opposition to the previous use case, there is no significant difference between

using a single thread and using multiple threads. At the same time, the weight matrices sent to the

manager thread are the full matrices to reduce the number of messages between the threads. This

adds more work to the manager thread, but reduces the number of context switches. Because of this,

the time measured for this scenario using one thread is closer to the first scenario then the second

scenario with one thread. Similarly to the multiplication of a set of matrices, Figure 6.4 shows that the

execution time of the application does not increase with the number of threads.

This scenario uses a manager thread to control the use of the accelerator. Similarly to the previous

scenario, this allows for multiple tasks to use the accelerator concurrently, and to use the processor while

the accelerator is occupied. However, the use of a manager thread performed better then the second
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Figure 6.4: Time measurements of the prediction of 256 digits using the third scenario

scenario, even if it was a more complex implementation.
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7
Conclusions and Future Work

49



The main objective of this thesis was to measure how an RTOS performs in a RISC-V based SoC,

when managing an hardware accelerator. To do this, the SoC SweRVolf was modified to support a

hardware accelerator for matrix multiplication, and three different methods were developed to manage

the accelerator using the RTOSs mechanisms.

In systems where different tasks need to be managed by an RTOS, the managements of peripherals

such as hardware accelerators can aided by the RTOS. In these systems it’s necessary to comply to

the time restrictions of the different tasks and the processors execution time can not be spent constantly

checking for the results of the accelerator, or it may need to process the output of the accelerator as soon

as it is available. Interrupts solve both of these obstacles, allowing the processor to switch between the

tasks according to their assigned priority.

In Chapter 2 there is an analysis of the open-source SoCs with RISC-V based CPUs, and of the

open-source RTOS. Chapter 3 describes the development process of an hardware accelerator for ma-

trix multiplication with an AXI interface and an interrupt system. Chapter 4 provides an overview of

the adaption of the SweRVolf SoC to support the hardware accelerator in the AXI Interconnect and to

manage the interrupts generated in the accelerator using the PIC in the CPU. The implementation of

Zephyr applications were done to manage the hardware accelerator and use the interrupts generated in

the accelerator to allow the processor to perform other tasks while the accelerator is working. Finally,

these applications where compared by measuring the time and power efficiency of the developed use

cases in the FPGA board Nexys A7.

The three scenarios described in Chapter 5 attempt to use the interrupt and multitasking mechanisms

of the RTOS to provide adaptability where techniques such as pooling can not. The scenarios provided

range from situations where only one task can access the hardware accelerator to complex systems

where multiple tasks can use the accelerator without the developer having to worry about the conditions

of the accelerator. These scenarios enable the use of the processor at the same time as the accelerator

with a small current consumption cost. In the end, using a manager thread enabled a more precise

control over the use of the accelerator and performed better then the scenario where the multiple threads

attempt to use the accelerator independently from each other.

While the main objective was achieved, there is room for further analysis on this topic. The analysis

of the performance of individual operations and mechanisms would help better understand the execution

time differences between the different scenarios, specially in the second scenario, allowing for further

optimizations. Even though the Neural Network use case was developed with the intention to near the

gap between this study and real world applications, those applications are not solely focused on a single

operation. In the use cases studied all tasks perform the same operations, however there are scenarios

where the different tasks operate independently and the RTOS still needs to manage the access to the

hardware accelerator. There are other scenarios where multiple accelerators are connected to the SoC.
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In these scenarios the RTOS must keep track of, not only the thread that is using an accelerator, but also

what accelerator is being used. Finally, more complex operations can be accelerated using hardware

accelerators, leading to larger time periods where the threads are suspended, allowing for other tasks

to execute for longer while the accelerator is performing the assigned operation.

The environment used to design the accelerator and implement it into the SoC, as well as to develop

the Zephyr application is detailed in Appendix A and the source code of all the hardware designs and

software applications are available in the Github repository [36].
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A
Environment Description

The instructions bellow are for the development of the hardware implementation, the development of

the software application and the programming of the bitstream and the application binary files into the

fpga board. While the full development environment can be used in most linux distributions, this guide

describes how to use a combination of Windows for the Vivado Design Suite, Windows Subsystem for

Linux (WSL) for the application development, and Raspberry Pi OS to program the files into the board.

The Raspberry Pi is only used to facilitate remote work, thus the board is connected to it.

A.1 Installation of Software Tools

A.1.1 Vivado Design Suite

1. Navigate to https://reference.digilentinc.com/vivado/installing-vivado/start

2. You will be guided to Xilinx’s download page to download Vivado Design Suit
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3. It is recommended to download the ”Self Extracting Web Installer”

4. The vivado installer will guide through the installation process

5. After Vivado and Vitis HLS are installed, it’s necessary to install the cable drivers (follow the digilent

guide above)

A.1.2 Zephyr Development Environment

1. Install VScode by following the link https://code.visualstudio.com/Download

2. Install pip: sudo apt install python3-pip

3. Install pyelftools: sudo apt-get install -y python3-pyelftools python-pyelftools

4. Install FuseSoC: sudo pip3 install –upgrade fusesoc

5. Install OpenOCD:

5.1 Install the required dependencies:

1 sudo apt-get install libusb-1.*

2 sudo apt-get install pkg-config

3 sudo apt-get install libtool

5.2 Clone the riscv-openocd github repository and install OpenOCD:

1 git clone https://github.com/riscv/riscv-openocd.git

2 cd riscv-openocd

3 ./bootstrap

4 ./configure --prefix=/opt/riscv --program-prefix=riscv- --enable-ftdi --enable-jtag vpi

5 make

6 sudo make install

6 Install the required dependencies:

1 sudo apt install --no-install-recommends git cmake ninja-build gperf \

2 ccache dfu-util device-tree-compiler wget \
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3 python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \

4 make gcc gcc-multilib g++-multilib libsdl2-dev libmagic1 \

Note: Make sure that the dependencies intalled are the correct versions according to this forum post.

7 Install cmake:

1 wget -O - https://apt.kitware.com/keys/kitware-archive-latest.a sc 2>/dev/null |

2 sudo apt-key add -

3 sudo apt-add-repository 'deb https://apt.kitware.com/ubuntu/ bionic main'

4 sudo apt update

5 sudo apt install cmake

8 Install west:

1 pip3 install --user -U west

2 echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc

3 source ~/.bashrc

9 Install Zephyr SDK:

9.1 Download the 0.12.4 SDK installer

9.2 Run the installer:

1 chmod +x zephyr-sdk-0.12.4-x86 64-linux-setup.run

2 ./zephyr-sdk-0.12.4-x86 64-linux-setup.run -- -d ~/zephyr-sdk-0.12.4

A.1.3 FPGA Programming Environment

A Raspberry Pi board connected to the FPGA was used to facilitate remote work. This Raspberry Pi

board was running the Raspberry Pi OS. On it, the RISC-V Toolchain and OpenOCD were installed so

that the Raspberry Pi can program the SoC bitstream and the application’s binary files. If the Raspberry

Pi board is not bwing used some of the following steps may not be necessary.

1. Install the RISC-V Toolchain:

1 sudo apt-get install git autoconf automake autotools-dev curl \

2 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex \

3 texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev
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4 git clone --recursive https://github.com/riscv/riscv-gnu-toolchain

5 cd riscv-gnu-toolchain/

6 ./configure --prefix=/opt/riscv --with-arch=rv32imc

7 sudo make

8 export PATH=$PATH:/opt/riscv/bin

2. Install OpenOCD:

1 sudo apt-get install libusb-1.*

2 sudo apt-get install pkg-config

3 git clone https://github.com/riscv/riscv-openocd.git

4 cd riscv-openocd

5 ./bootstrap

6 ./configure --prefix=/opt/riscv --program-prefix=riscv- --enable-ftdi --enable-jtag vpi

7 make

8 sudo make install

A.2 Developing the Bitstream and Binary Files

A.2.1 Generation of the Bitstream

1. Open the rvfpga Vivado project in the Thesis github repository

2. Include two folder for the Pulp Platform. In the FLow Navigator pane click on Settings. In the

opened window click on General and then next to the Verilog Option click on the three dots to select the

directories. Navigate to the following directories and select the include foulder.

1 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/AxiInterconnect/

2 pulp-platform.org axi 0.25.0/include

3

4 [RVfpgaPath]/RVfpga/src/OtherSources/pulp-platform.org common cells 1.20.0/include

3. Generate the bitstream by clicking on Generate Bitstream under the Flow dropdown menu. The

bitstream will be created in the following path:

1 [RVfpgaPath]/RVfpga/rvfpga.runs/impl 1
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A.2.2 Generation of the Zephyr Application Binary

1. Create a new directory that will be the workspace to develop the Zephyr application. In this guide the

workspace folder is called SweRVolf.

2. Navigate to the workspace directory and create an environment variable with the path to the workspace:

1 export WORKSPACE=\$(pwd)

3. Add the FuseSoC base library to the workspace:

1 fusesoc library add fusesoc-cores https://github.com/fusesoc/fusesoc-cores

4. Add the swrvolf library:

1 fusesoc library add swervolf https://github.com/chipsalliance/Cores-SweRVolf

Note: If fusesoc can’t find the swervolf library swap the URL to https://github.com/chipsalliance/

VeeRwolf.

5. Set the swervolf directory as a new environment variable:

1 export SWERVOLF ROOT=$WORKSPACE/fusesoc libraries/swervolf

6. Create a west workspace in the same directory as the fusesoc workspace:

1 west init

2 west config manifest.path fusesoc libraries/swervolf

3 west update

7. Compile the Zephyr application: 7.1 Navigate to the the application samples directory:

1 $WORKSPACE/zephyr/samples

7.2 Copy the zephyr application folder from the Thesys repository to the samples folder.

7.3 Select what application to compile by uncommenting the target sources in the file CMakeLists.txt.

7.4 Compile the Zephyr application using west:
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1 west build -b swervolf nexys

Note: If you had to download the veervolf library above use the command:

1 west build -b veerwolf nexys

A.2.3 Executing a program on RVfpgaNexys using the Nexys A7 board with

OpenOCD

1. Copy the bitstream and the binary files into the Raspberry Pi board.

2. Copy the directory ConfigFiles located in the Thesis repository: rvfpga/OtherSources/ConfigFiles

3. Download the bitstream into the fpga using OpenOCD:

1 riscv-openocd -c "set BITFILE rvfpganexys.bit" -f \

2 ConfigFiles/swervolf nexys program.cfg

4. Connect OpenOCD to the SoC:

1 riscv-openocd -f /rvfpga/ConfigFiles/swervolf nexys debug.cfg

5. Connect gdb and execute the application:

5.1 Open a new terminal window.

5.2 Start GDB:

1 riscv32-unknown-elf-gdb zephyr.elf

5.3 Execute the application:

1 target remote localhost:3333

2 load

3 continue
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