TECNICO
LISBOA

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TECNICO

Kinetic Instabilities in Extreme Plasma

Physics: Laboratory and Astrophysical
Dynamics

Pablo Jaime Bilbao Santiago

Supervisor: Doctor Luis Miguel de Oliveira e Silva
Thesis approved in public session to obtain the PhD Degree in
Physics
Jury final classification: Pass with Distinction and Honour

2025






TECNICO
LISBOA

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TECNICO

Kinetic Instabilities in Extreme Plasma Physics:
Laboratory and Astrophysical Dynamics

Pablo Jaime Bilbao Santiago

Supervisor: Doctor Luis Miguel de Oliveira e Silva

Thesis approved in public session to obtain the PhD Degree in

Physics

Jury final classification: Pass with Distinction and Honour

Jury

Chairperson: Doctor Frederico Ricardo Pereira Fitza, Instituto Superior Téc-
nico, Universidade de Lisboa

Members of the committe:

Doctor Vladimir Tikhonchuk, Université de Bordeaux, Franca

Doctor Dmitri Uzdensky, Rudolf Peierls Centre for Theoretical Physics, Uni-
versity of Oxford, UK

Doctor Luis Miguel de Oliveira e Silva, Instituto Superior Técnico, Universi-
dade de Lisboa

Doctor Jorge Miguel Ramos Domingues Ferreira Vieira, Instituto Superior Téc-
nico, Universidade de Lisboa

Funding Institution: Fundagdo para a Ciéncia e a Tecnologia (FCT)

2025






iii

Resumo:

A fisica de plasmas extremos explora regimes em que campos eletromagné-
ticos intensos, niveis de radiacdo elevada e efeitos de eletrodinamica quan-
tica (QED) alteram de forma fundamental o comportamento da matéria. Estas
condi¢des ocorrem em alguns dos ambientes astrofisicos mais extremos, como
pulsares, buracos negros e choques relativistas, e estdo cada vez mais aces-
siveis em experiéncias laboratoriais envolvendo lasers de alta intensidade e
feixes de particulas. Esta Tese investiga como a reagdo a radiagdo, através do
arrefecimento por emissdo sincrotrao e betatrdo, reestrutura o espaco de fases
e desencadeia instabilidades cinéticas numa variedade de condi¢des extremas
de plasma. Em primeiro lugar, mostramos que o arrefecimento sincrotrdo em
plasmas fortemente magnetizados conduz genericamente a formacado de dis-
tribui¢des de momento anisotrépicas em forma de anel, instaveis a instabili-
dade ciclotrénica electronica (ECMI). A reagdo a radiagdo mantém a inversao
populacional e permite a emissdo coerente prolongada para além da saturagao
classica. Em segundo lugar, demonstramos que a radia¢do betatrdo em plasma
wakefields induz efeitos semelhante em feixes de alta energia, formando fei-
xes em formato de donut com anisotropias no angulo de inclinac¢do. Estas ca-
racteristicas sdo confirmadas por teoria analitica e simula¢des tridimensionais
de larga escala. Por fim, simula¢des no contexto da experiéncia Fireball no
CERN demonstram como feixes relativistas de eletrdes e positrdes desenvol-
vem instabilidades coletivas em condic¢oes laboratoriais realistas, fornecendo
os primeiros andlogos diretos da dindmica de plasmas de pares em ambientes
astrofisicos. Em conjunto, estes estudos representam dois fios condutores in-
terligados da fisica de plasmas extremos, o arrefecimento radiativo e a cinética
de pares, e estabelecem as bases para uma teoria cinética de plasmas estru-
turados radiactivamente, fundamentada em resultados teéricos, simulacoes e
experiéncias, e abrindo novas vias para a exploragdo de processos astrofisicos

de alta energia em laboratorio.
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Abstract:

Extreme plasma physics explores regimes where strong electromagnetic fields,
intense radiation, and quantum electrodynamics (QED) effects fundamentally
alter the behavior of matter. These conditions are found in some of the most
energetic astrophysical environments, such as pulsars, black holes, and rela-
tivistic shocks, and are increasingly accessible in laboratory experiments using
high-intensity lasers and particle beams. This Thesis investigates how radia-
tion reaction, through synchrotron and betatron cooling, reshapes phase space
and triggers kinetic instabilities across a range of such extreme plasma condi-
tions. First, we show that synchrotron cooling in strongly magnetized plasmas
generically leads to anisotropic, ring-shaped momentum distributions that are
unstable to the electron cyclotron maser instability (ECMI). Radiation reaction
sustains population inversion and enables prolonged coherent emission be-
yond classical saturation. Second, we demonstrate that betatron radiation in
plasma wakefields produces similar structuring in high-energy beams, form-
ing spatially "donut beams" with momentum pitch-angle anisotropies. These
features are confirmed through analytical theory and large-scale three-dimensional
simulations. Finally, simulations in the context of the Fireball experiment at
CERN demonstrate how relativistic electron-positron beams develop collec-
tive instabilities under realistic laboratory conditions, providing the first direct
analogues of astrophysical pair-plasma dynamics. Together, these studies rep-
resent two interconnected threads of extreme plasma physics, radiative cool-
ing and pair-plasma kinetics, and lay the groundwork for a kinetic theory of
radiatively structured plasmas, bridging theory, simulation, and experiment,
and opening new paths toward probing high-energy astrophysical processes

in the laboratory.

Keywords: Extreme plasma physics; Synchrotron cooling; Betatron radiation;
Pair plasmas; Kinetic instabilities
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CHAPTER 1

INTRODUCTION

The problems are solved, not by giving new information,
but by arranging what we have known since long.

Ludwig Wittgenstein — Philosophical Investigations 1953 [2]

1.1 EXTREME PLASMA PHYSICS

Plasma physics is the study of the collective dynamics of charged particle systems and, for
much of its history, has operated within the framework of classical electromagnetism and clas-
sical kinetic theory. Since its formal development in the 20th century [3-5], the field has made
remarkable progress, predicting different many micro-instabilities [6, 7], developing theories
of turbulence and transport [8], and reproducing stellar conditions in the laboratory [9-11].
These insights have been instrumental both in controlled fusion research, through devices
such as tokamaks and stellarators, and in interpreting the behavior of space and astrophysical
plasmas [12, 13].

Yet these achievements have largely been confined to regimes where classical physics suf-
fices. A new frontier is now emerging: that of extreme plasma physics, where radiative pro-
cesses, relativistic energies, strong-field effects, and quantum electrodynamical (QED) phe-
nomena begin to couple to plasma dynamics. Thus, entering the regime of extreme plasma
physics. The term extreme physics has its origins in the 2003 National Academy of Sciences
report Frontiers in High Energy Density Physics: The X-Games of Contemporary Science [14].!
This report defined a broad frontier for exploring matter under extreme conditions of temper-
ature, density, and field strength, conditions that bridge astrophysics and high-energy-density
laboratory physics. Extreme plasmas, in this sense, are those in which one or more fundamen-
tal physical scales (relativistic, radiative, or QED) begin to couple strongly to collective plasma
behavior.

1Gee also the framing in Uzdensky et al. [15], which emphasizes the role of relativistic, radiative, and QED effects
in defining "extreme" plasma regimes.



2 Chapter 1. Introduction

As we will see, extreme plasma conditions span a wide range of laboratory and astrophys-
ical environments, each considered "extreme" with respect to different physical parameters.
Thus, the regime of extreme plasma physics can be defined in multiple ways. For example,
one may consider plasmas with thermal energies approaching the rest mass of the electron,
T, ~ 0.51 MeV (or ~ 6 x 10° K) [14, 15]; or environments where the electromagnetic field
strength approaches the QED critical (Schwinger) field, at which the electric field does work
2 across a Compton wavelength, Es. = m2c3/eh ~ 1.3 x 10'8 V/m, or equivalently

Bs. ~ 4.4 x 10° T [15]; under such strong fields QED enters into the non-linear regime; here

of ~ m,c

effects such as Schwinger pair production, where the fields lead to the spontaneous creation
of electron-positron pairs (this process also occurs at lower field intensities, the rate is expo-
nentionally suppressed) become important [16]. In such regimes, QED effects can arise from
interactions between high-energy photons and particles, leading to processes such as electron-
positron pair production, as discussed in early studies of relativistic plasmas [17]. Or they can
arise via interaction of photons comprising the electromagnetic fields, when moderate electro-
magnetic fields are Lorentz-boosted into the interacting particle’s rest frame. This is captured
by the dimensionless quantum parameter

_(pru)z

1.1
Eg.m,c (1.1)

X =
where e is the electron charge, F,, the electromagnetic field tensor, p” the particle’s four-
momentum and the dependence on 7 is included in the Schwinger field strength Eg. [18, 19].
When x 2 0.1, quantum corrections to radiation become significant; for x ~ 1, nonlinear
QED processes such as stochastic photon emission and multiphoton pair production emerge
[20]. This threshold can be reached by accelerating particles to ultrarelativistic energies even
in fields well below the QED critical strength, making the x parameter central to defining the
onset of strong-field quantum effects.

Recent theoretical and computational work has begun to elucidate how extreme-field ef-
fects couple to collective plasma dynamics [21-25]. A key ingredient in these regimes is the
emission of radiation by charged particles undergoing acceleration in strong electromagnetic
fields. This process, commonly referred to as radiation reaction, can significantly alter particle
trajectories and energy distributions. When the energy loss becomes comparable to or exceeds
the kinetic energy of the particles, the system enters a regime of radiative cooling, in which
large amounts of thermal energy are continuously emitted. More precisely, we will study sce-
narios where the energy radiated by a charged particle over the characteristic timescale, I'~!
(with I being the instability growth rate or characteristic frequency of a given process), be-
comes comparable to the particle’s kinetic energy Ey. For instance, in the case of synchrotron
emission, the cooling time is t; = Ey/Ps, where P; is the synchrotron power (this applies to
any other emission emchanism). As we will see, there are plasma processes with ™! > ¢,
but more importantly, there are processes that are triggered or qualitatively transformed by ra-
diative losses themselves. In this case, a unified treatment of radiation reaction and collective
plasma physics is needed.

Moreover, the plasma composition itself may evolve in extreme plasmas [17], pair plasmas
composed of electrons and positrons, or more exotic species such as muon-antimuon or pion
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pairs, can emerge via high energy interactions or be generated by the fields themselves. These
developments mark a shift in the field, as now plasma physics necessitates to be coupled to
quantum, radiative, and compositionally exotic components. Extreme plasma physics is thus
a broad and evolving research area, expanding the already rich landscape of plasma science.
It concerns itself with the study of matter under the most extreme conditions accessible in
nature or the laboratory. Among its central questions are [14, 15]: How does matter behave
under extreme conditions of temperature, density, and field strength? Can collective plasma
processes be understood in the presence of ultra-strong fields and relativistic motion? Can
macroscopic relativistic, radiation-cooled, or quantum pair plasmas be created and studied in
the laboratory? How do radiative losses and QED effects modify instabilities, shocks, and tur-
bulence in such settings? And can laboratory experiments serve as analogues to astrophysical
phenomena such as magnetar flares, gamma-ray bursts (GRBs), or relativistic jets?

These questions sit at the intersection of plasma physics, astrophysics, and high-field QED.
This thesis addresses a subset of these challenges, focusing on how radiative effects reshape
plasma dynamics at the kinetic level. Our approach combines analytical theory with large-
scale, first-principles simulations capable of capturing the full nonlinear evolution of plasmas
under radiative and quantum effects. We begin by examining astrophysical contexts where
such conditions arise naturally.

1.1.1 EXTREME PLASMAS IN ASTROPHYSICS

Compact objects such as black holes and neutron stars, are among the most extreme physical
systems in the universe. Their intense gravitational and magnetic fields, coupled with rapid
rotation, make them natural laboratories for studying extreme plasma physics. The surface
magnetic fields of these objects can exceed 10'* G [26, 27], as shown in the P-P diagram in
Fig. 1.1. While such extreme values are characteristic of magnetars, even ordinary radio pul-
sars exhibit magnetic fields in the range 10'1-10'® G, well above the threshold where relativis-
tic, radiative, and strong-field plasma effects become significant [15]. These field strengths
imply that the surrounding plasma environments are not only highly magnetized and rela-
tivistic, but also subject to strong radiative and, in some cases, QED effects.

Extreme astrophysical plasmas are dominated by QED and radiative effects; in fact, around
compact objects, these plasmas are generated via efficient pair-creation, due to the sufficiently
strong fields, approaching E < Es., that compact objects possess. This occurs either through
one-photon processes in ultra-magnetized environments (e.g., magnetic pair production in
magnetars [21, 22, 28, 29]).2 These effects inject new particles and alter wave, particle inter-
actions in fundamental ways [30, 31]. In the most extreme settings, general relativistic effects
may also become important [32, 33], completing a picture in which radiation, relativity, and
collective plasma dynamics are coupled.

Such extreme conditions give rise to a wide range of energetic and physically rich astro-
physical phenomena. These include the dynamics of neutron star [30, 34, 35] and black-hole

20r if an ultra-strong electric is present, via vacuum breakdown in the presence of ultra-intense electromagnetic
fields [16]. This would be rare in astrophysical objects.
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FIGURE 1.1: Spin period (P) vs. spin-down rate (P) diagram showing both pulsars, including PSRs (radio
pulsars) and XINSs (X-ray Isolated Neutron Stars), and magnetars, using data from the McGill Magne-
tar Catalog alongside known Galactic pulsars [46]. The surface magnetic field strength is estimated by
equating the spin-down luminosity to the energy loss of a rotating magnetic dipole in vacuum, yielding
Baurt & 32 x 101°V/PP G [47].

[36] magnetospheres, GRBs [37], and relativistic jets from active galactic nuclei (AGN) [38].
More recently, fast radio bursts (FRBs) have emerged as one of the most compelling puzzles in
high-energy astrophysics [39, 40]. FRBs are millisecond-duration radio transients with bright-
ness temperatures exceeding 10% K, implying an underlying emission mechanism that must
be both coherent and extremely efficient [41, 42], and cannot originate from a large spatial
region due to its coherence and frequency, which pinpoints compact objects as their likely
origin [43]. While their extragalactic origin is now well established, the physical processes re-
sponsible for their generation remain actively debated. The short duration, high luminosity,
and polarization properties of FRBs point toward compact object progenitors, with magnetars
emerging as the leading candidates. The observed connection between FRBs and magnetars,
most notably, the detection of bursts coinciding with magnetar glitches, has reinforced this link
[34, 44, 45]. These observations support models in which FRBs originate from the dynamics
of pair plasmas within low-twist magnetospheres, where extreme magnetic fields, relativistic
particle populations, and radiative processes interact to produce coherent emission. Under-
standing these processes is critical to interpreting high-energy signatures across the electro-
magnetic spectrum.
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Numerous theoretical frameworks have been proposed to explain coherent emission in
pulsar and magnetar magnetospheres, including antenna mechanisms [43] , shock-driven syn-
chrotron masers [42, 48], and Free-electron-laser [49]. Recent kinetic simulations have explored
aspects of these mechanisms, typically relying on idealized or externally prescribed particle
distributions. However, the self-consistent generation of maser-prone distributions via ra-
diative processes has received comparatively little attention. This is one of the gaps that the
present work seeks to address.

Beyond pulsars and magnetars, other astrophysical systems also operate in extreme plasma
regimes shaped by strong radiation, relativistic dynamics, and collective effects. GRBs, for in-
stance, involve ultra-relativistic outflows where kinetic energy is rapidly converted into high-
energy radiation, probably through shocks and magnetic reconnection. Similarly, black hole
coronae and AGNs, exhibit signatures of strong-field and radiative plasma physics on large
scales.

Blazars, a subclass of AGN with jets pointing toward Earth, emit gamma rays with hard
spectra extending into the TeV range [50]. As these high-energy photons propagate through
the intergalactic medium, which acts as a tenuous, collisionless plasma, they are expected to in-
teract with the extragalactic background light, producing electron-positron (¢*) pairs through
photon-photon collisions [51].Thus, these systems provide a natural testbed for studying the
propagation and cooling of ultra-relativistic leptonic beams in low-density, weakly magne-
tized environments, and illustrate how extreme plasma processes shape the high-energy uni-
verse on cosmological scales.

Turbulence is another ubiquitous plasma process that is fundamentally reshaped in ex-
treme astrophysical environments. In standard magnetized plasmas, turbulent energy cas-
cades from large to small scales following universal spectral laws, such as the Kolmogorov or
Goldreich-Sridhar scalings [8]. However, in relativistic and strongly radiative regimes, such
as the magnetized coronae of accreting black holes or the jets of blazars, radiative losses can
dominate the energy budget, altering both the dynamics and the dissipation pathways [52-
54]. Recent particle-in-cell simulations have shown that when the radiative cooling time be-
comes shorter than the turbulence turnover time, tjc/fp < 1, most of the turbulence power is
directly transferred to photons via bulk Comptonization [55, 56]. In this fast-cooling regime,
the cascade is effectively damped at large scales, steepening the turbulence spectrum and sup-
pressing energy transfer to kinetic scales. This behavior emerges naturally for conditions ex-
pected in black-hole coronae, with magnetizations o, 2 1, Thomson optical depths 7+ ~ 1,
and large-amplitude Alfvénic fluctuations. Under these conditions, up to 80% of the injected
turbulent power is radiated before reaching small scales, producing a non-universal, radiation-
dominated cascade [56]. This interplay between turbulence, reconnection, and radiative losses
leads to complex, spatially structured emission. In blazar jets, similar radiative turbulence has
been proposed as a source of in situ electron-positron pair production, demonstrating that tur-
bulence can drive not only particle energization but also changes in plasma composition [57].
These findings highlight that turbulence in extreme plasmas is governed not just by classical
fluid parameters, but by a combination of magnetization, compactness, and radiative cooling,
placing it in a distinct regime of kinetic extreme plasma dynamics.
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Astrophysical systems such as magnetar magnetospheres, fast radio bursts, GRBs, blazar
jets, and black-hole coronae exemplify the diversity of extreme plasma environments. In these
settings, relativistic motion, strong fields, and radiative processes combine to produce plasma
behavior that departs sharply from classical expectations, often involving turbulence, nonther-
mal acceleration, and coherent emission modified by radiative and quantum effects. Although
such conditions are most naturally found around compact objects, recent advances in labora-
tory capabilities are beginning to make them accessible in controlled experiments, opening the
door to studying extreme plasma physics in the lab and deepening the connection between as-
trophysical observations, simulations, and high-energy laboratory science.

1.1.2 EXTREME PLASMAS IN THE LABORATORY

A wide range of high-energy plasma phenomena, once considered the exclusive domain of as-
trophysics, are now being investigated in the laboratory. Experimental platforms have made
significant progress in studying radiation reaction, relativistic shocks, pair production, and
magnetized plasma dynamics under extreme conditions. These advances are the result of
rapid developments in high-power laser systems, accelerator technology, and precision diag-
nostics, which have dramatically expanded the reach of laboratory plasma physics.

This shift was already anticipated two decades ago in the National Academies report Fron-
tiers in High Energy Density Physics [14], which outlined a vision for exploring matter under
extreme conditions of temperature, density, and electromagnetic fields. In addition to map-
ping out the density-temperature phase space accessible to high energy density experiments,
the report also highlighted many of the physical processes that now define current research
in extreme plasma physics. These included the nonlinear optics of intense laser-plasma in-
teractions, and the use of beam-laser collisions to probe strong-field QED processes such as
nonlinear Compton scattering and multiphoton pair production. Together, these ideas helped
shape the multidisciplinary research agenda that has since driven the development of extreme
plasma physics [14].

Figure (1.2), adapted from that report, illustrates how the anticipated capabilities of ex-
perimental platforms like OMEGA, Z-pinch, and the National Ignition Facility could begin
to overlap with the conditions found in astrophysical systems, such as stellar interiors, giant
planets, and GRBs. Since then, a series of key experimental advances have begun to fulfill that
vision, demonstrating that the extreme conditions outlined in the report are now within reach.
Platforms such as OMEGA and NIF have not only accessed high energy density regimes but
are beginning to probe fundamental plasma processes under conditions directly relevant to
astrophysics [58].

Collisionless shocks, long thought to power cosmic-ray acceleration in supernova rem-
nants, have become a major target for laboratory astrophysics [59]. Experiments at OMEGA
have shown that counter-streaming plasma flows can reach the collisionless regime and gener-
ate strong, self-organized magnetic fields via Weibel instability. While these setups did not yet
form true shocks, they found key processes such as electron drag heating and electrostatic in-
stabilities [58] More recently, experiments at NIF succeeded in forming fully developed, high-
Mach number collisionless shocks, demonstrating MG-level magnetic fields and relativistic
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FIGURE 1.2: Density-temperature phase space showing the overlap between astrophysical environments
and the high energy density regimes accessible to laboratory experiments. At the time of the report,
the shaded regions outlined the reach of platforms such as OMEGA, Z-pinch, and the (then-upcoming)
National Ignition Facility. Adapted from Ref. [14].

electron acceleration consistent with first-order Fermi processes [11].

Experiments at OMEGA have also confirmed the operation of the turbulent dynamo in
laser-produced plasmas, showing that turbulent flows can amplify initially weak magnetic
fields to strengths approaching the megagauss level on nanosecond timescales [60]. While
turbulence is not unique to astrophysical systems, these experiments access regimes with
properties, such as Reynolds and magnetic Prandtl numbers, comparable to those found in
high-energy astrophysical environments, enabling the study of magnetized turbulence under
realistic conditions [60].

These phenomena, collisionless shocks and turbulent dynamos, demonstrate that labora-
tory plasmas can now reach the energy densities and magnetic field strengths that characterize
many astrophysical environments. While still below the Schwinger field, such fields already
begin to influence radiation processes and collective dynamics. However, a parallel research
direction is possible, not defined by kinetic energy density, but by the energy density of the
electromagnetic fields in the particle rest frame. This opens the domain of strong-field QED.

In this regime, what matters is not the density or temperature of the plasma, but the pa-
rameter x, which quantifies the field strength in the particle’s rest frame. Strong-field QED
effects become relevant when x 2 0.1, and nonlinear processes dominate once x ~ 1 [18, 19].
This threshold can be crossed by either increasing the background field or, in a more accesible
manner, by boosting particles to ultra-relativistic energies, thus effectively amplifying the field
in their rest frame. Consequently, GeV-class electron beams and ultra-intense lasers provide
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complementary access to this regime within recent experimental efforts having provided the
first results in such regime [61].

Previous efforts such as the SLAC’s E-144 experiment demonstrated nonlinear Compton
scattering and multiphoton Breit-Wheeler pair production [62]. More recently, experiments at
Apollon, Gemini, and ELI have explored quantum radiation reaction and high-energy photon
emission from laser-solid interactions at intensities exceeding 102! W/cm? [63, 64]. In these
conditions, relativistic electrons experience rest-frame fields near or beyond the QED critical
field, enabling not only pair production but also dense, transient pair plasmas. While these
systems have not yet produced macroscopic, collective, ideal pair plasmas, they provide im-
portant access to the strong-field, quantum radiative regime.

Moreover, beam-driven platforms are also advancing the frontier of strong-field QED. Ex-
periments at SLAC and FACET-II employ GeV-class electron beams to explore quantum radi-
ation reaction and beam, plasma instabilities [65, 66]. As will be discussed in Chapter 4, plat-
forms, like FACET-II, offer a promising avenue for testing new theoretical ideas developed
in this thesis, particularly those involving the interplay between relativistic beams, strong
betatron cooling, and collective plasma dynamics. Similarly, upcoming laser-electron beam
collision experiments at facilities like the Zettawatt-Equivalent Ultrashort pulse laser System
(ZEUS) aim to reach Lorentz factors and field strengths comparable to those in high-energy
astrophysical sources [67].

This experimental frontier has been guided by theory. Quantum-corrected synchrotron
models and Monte Carlo simulations have established the limits of classical theory and clar-
ified the onset of stochastic photon emission and pair production at x 2 1 [68, 69]. Studies
have also revealed that QED effects can couple back to the plasma: compressing distribution
functions and triggering QED cascades that in theory can evolve into relativistically overdense
pair plasmas with 7,+ > 10%> em 3 [22, 28, 70]. These cascades lead to relativistic critical lay-
ers that reflect laser light and radiate efficiently in the gamma-ray regime [25, 71], marking the
emergence of a genuinely collective QED regime, this is still ot be realised in a laser-plasma
experimental platform.

While QED cascades offer one route to dense pair plasmas, an alternative approach has
been realized through the production of relativistic electron-positron beams using a beam tar-
get configuration. This long-standing goal in laboratory astrophysics was achieved at CERN’s
HiRadMat facility, where the Fireball experiment produced the first quasi-neutral, relativistic
pair plasma beams with transverse sizes and densities exceeding the Debye length and skin
depth [72]. This created the conditions necessary for the development of beam-plasma insta-
bilities and collective properties to emerge in pair plasmas. These experiments were made
possible by foundational theory. Kinetic models and particle-in-cell simulations characterised
the minimum conditions for these modes to arise, i.e., that the radius satisfies r, = ¢/ wp and
the normalized emittance remains below en/(vB) < 0.1A, [73]. Under such conditions, in-
stabilities such as the current filamentation can grow with rate of comparable timescle to the
experimental setup.

These platforms are now probing regimes where collective behavior of beam-plasma insta-
bilities can begin to be studied [66, 72, 74, 75]. While achieving fully QED-coupled, radiatively
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cooled pair plasmas remains an ambitious goal, the direction is clear. With the advent of
petawatt-class lasers and multi-GeV accelerators, the energy and field thresholds necessary to
produce such systems are now within reach.

This convergence marks a turning point. Historically, astrophysics and laboratory plasma
physics have progressed in parallel, shaped by distinct goals and constraints. Today, they
are beginning to merge. The shared physics of relativistic energies, collective dynamics, and
strong radiation now links black-hole coronae and laser-solid interactions, pulsar winds and
positron beams at CERN. This thesis is situated at the intersection of astrophysics, laboratory
experimentation, and theoretical plasma physics. It addresses how radiation and collective
plasma effects interact across both experimental and astrophysical platforms, using theory and
simulation to clarify where these interactions can be relevant, what instabilities and signatures
can be observed, and how they can be probed. By helping to define and understand this
regime, the work contributes to a growing unified framework for extreme plasma physics.

1.2 THIS DISSERTATION

The following chapters develop this perspective in detail, outlining the specific objectives of
this work, the methods used to pursue them, and the results that emerge from this approach.

1.2.1 OBJECTIVES

The goal of this thesis is to advance our understanding of kinetic plasma dynamics in regimes
where extreme plasma effects, such as strong-field radiation, pair production, and QED pro-
cesses, become dynamically important. These regimes are characterized by specific physical
thresholds: when the quantum parameter x 2 0.1, indicating that particles experience rest-
frame fields approaching the QED critical scale; when the radiation mean free path becomes
comparable to or smaller than the system size; and when radiative cooling timescales 7., are
on the order of, or shorter than, characteristic kinetic or instability growth timescales. The
focus is placed on plasmas that remain collective, that is, whose spatial and temporal scales
exceed the Debye length and plasma period, and where coherent dynamics dominate over
collisional or dissipative effects.

Two main threads run through this work: the role of radiative processes in plasma dy-
namics and instabilities of relativistic electron-positron beams. A central focus is placed on
radiative processes, specifically the recoil experienced by particles due to radiation emitted
during acceleration. Though initially appearing as a straightforward effect, radiation reaction
demonstrated surprisingly rich and consequential physics, uncovering a novel mechanism by
which plasmas radiate not only their energy, but also their entropy.

This work, focuses on the radiative regime, where radiation reaction, pair production, and
QED processes begin to shape the collective dynamics. Thus, this thesis presents, to the best of
our knowledge, the first example of a kinetic plasma process in which high-field effects such
as radiation reaction give rise to a collective kinetic instability.> Remarkably, this leads to the

3During the writing of this thesis, it was brought to my attention the existance of a fluid instability driven by
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self-consistent formation of ring-like phase-space structures that trigger the coherent emission
of radiation via the electron cyclotron maser instability (ECMI). While earlier studies began
to explore aspects of this regime, our work is the first (alongside [24]) to show that radiation
reaction can actively drive such an instability, and further, to pose the question of whether this
process, or an analogue thereof, can be realized in laboratory conditions.

In parallel, this thesis contributes to the theoretical and simulation effort behind the Fireball
experiments at CERN’s HiRadMat facility, which recently achieved the production of relativis-
tic electron-positron beams in the laboratory [72, 77]. Long considered a hallmark of extreme
astrophysical environments, such as pulsar magnetospheres and relativistic jets, these beams
are now within reach of controlled experimental investigation. Through large-scale kinetic
simulations, this work examines the microphysical instabilities triggered as these beams inter-
act with ambient plasmas, processes that may underlie key dissipation and emission mecha-
nisms in astrophysical contexts.

The convergence of theory, simulation, and experiment marks a turning point: it enables
the direct study of plasma instabilities and radiative processes in regimes where collective
behavior and strong-field effects are coupled.

1.2.2 OUTLINE

This thesis is structured into five chapters following this introduction.

Chapter 2 focuses on the role of synchrotron radiative losses in collisionless plasmas. Using
both analytical arguments and fully kinetic particle-in-cell (PIC) simulations, we show that
radiative cooling inevitably reshapes the momentum distribution of the plasma, driving it
toward a ring-like structure. This redistribution represents a fundamental shift from classical
kinetic equilibria and sets the stage for new kinds of collective behaviour.

Chapter 3 investigates the dynamics that follow the formation of ring distributions, focus-
ing on their intrinsic instability to the electron cyclotron maser instability. The chapter devel-
ops the corresponding linear theory, extending the kinetic framework to include the effects of
radiative losses. This theoretical model is then complemented by PIC simulations that explore
the instability in the nonlinear regime, highlighting the emergence of coherent radiation and
the interplay between wave growth and particle dynamics.

Chapter 4 broadens the scope by examining a scenario that is directly relevant to labora-
tory experiments. Here, we consider relativistic particle beams undergoing radiative cooling
through betatron motion in plasma channels, a configuration that can be realized with cur-
rent experimental capabilities. We show that this cooling mechanism leads to the formation of
ring-like phase-space distributions, providing an alternative route to maser-prone conditions.
Unlike the primarily astrophysical context of Chapters 2 and 3, this chapter focuses on a setup
that is both theoretically rich and experimentally accessible, offering new opportunities for
controlled studies of kinetic instabilities driven by radiation-induced phase-space structure.

Chapter 5 presents large-scale kinetic simulations carried out in support of the Fireball
experiments at CERN’s HiRadMat facility, which successfully produced relativistic electron-

synchrotron cooling, see Ref. [76].
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positron beams in 2023. These simulations model the interaction of such beams with ambi-
ent plasma and explore the development of beam-plasma instabilities, with a particular focus
on how these instabilities dissipate energy from the beam into electromagnetic fields. The
simulation results were instrumental in interpreting data from the Fireball-I campaign and
have guided the design of subsequent experimental runs. Crucially, the experiment provides
a unique opportunity to observe, in a controlled laboratory setting, the very same physical
processes, such as the dissipation of kinetic energy via collective plasma instabilities, that are
believed to operate in high-energy astrophysical environments. These results help bridge the
gap between theory, simulation, and experiment, and bring us closer to directly testing astro-
physical plasma physics in the laboratory.

Finally Chapter 6, the thesis concludes with a summary of the main findings and a discus-
sion of their broader implications for plasma physics and laboratory astrophysics. Particular
attention is given to the unifying role of radiative processes and kinetic instabilities in shap-
ing plasma dynamics across both astrophysical and experimental contexts. The conclusion
also outlines possible future directions, including experimental follow-up, extensions to QED
regimes, and opportunities for further theoretical exploration.

These findings are complemented by a series of Appendices that provide technical detail
and theoretical extensions. They include simulation parameters, convergence tests, deriva-
tions of instability growth rates, discussions on entropy and synchrotron emission, and the
initialization procedures used in the Fireball beam simulations. Together, they support and
extend the main results of the thesis, and point toward further questions in theory and simu-
lation.

1.2.3 METHODOLOGY: KINETIC THEORY

The physical phenomena explored in this thesis, radiative cooling, kinetic instabilities, and col-
lective plasma dynamics, require a framework capable of capturing non-equilibrium behavior
at the level of individual particles. Kinetic theory provides such a first-principles foundation
by tracking the evolution of distribution functions in phase space under the influence of self-
consistent electromagnetic fields. This approach traces back to the Vlasov equation [4] (and
Klimontovich formalism [3]), developed in 1938, which governs the collisionless evolution of
a plasma.

In its most general form, the kinetic nonrelativistic equation for a species s (with charge g
and mass ;) reads*

fs s (g4 Y _ (s
SRR <E+ : xB) Vofs = <8t . 1.2)

where fs(t,x, v) is the distribution function in phase space, and the right-hand side represents
a collision operator. In the limit where binary collisions are negligible compared to collective

4Throughout this thesis, we use CGS Gaussian units unless stated otherwise. All derived formulae are expressed
in this system for internal consistency.
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interactions, the collision term vanishes:

(afs) =0, (1.3)
ot coll
reducing Eq. (1.2) to the Vlasov equation:
ié+v~Vfﬁnﬁ(E+XxB)N7f:0. (1.4)
ot x/Js s c v/s

Unlike fluid models, which rely on moments and eventually employ a closure, kinetic the-
ory retains the full velocity-space (momentum-space for relativistic dynamics) structure of the
system. It captures key non-equilibrium processes such as velocity-space instabilities, wave-
particle interactions, and phase-space trapping [78, 79].

The Vlasov-Maxwell system lies at the core of collisionless kinetic theory and is partic-
ularly suited to regimes where long-range collective effects dominate over binary collisions.
It describes the self-consistent evolution of the distribution functions fs; and the electromag-
netic fields (E, B), with particle motion governed by the Vlasov equation (1.4) and the fields
evolving according to Maxwell’s equations:

V-E = 4mp, (1.5)
V-B=0, (1.6)
10B
VxE=—_%, 1.7)
47 10E

where the charge and current densities are obtained self-consistently from the distribution
functions:

pzi%/ﬁﬁm (1.9)
J= Z%/st dv. (1.10)

This coupled system has been central to the understanding of many foundational plasma
phenomena, including Landau damping [5], the formation of Bernstein-Greene-Kruskal (BGK)
modes [80], and the growth of a wide range of micro-instabilities in both unmagnetized and
magnetized plasmas.

This thesis applies kinetic theory to the study of extreme plasma environments, where the
plasma is far from equilibrium and radiative processes become dynamically important. In
these regimes, the classical Vlasov-Maxwell description must be extended to account for addi-
tional physics. Formally, this means departing from the collisionless assumption (of /0t)_,; =
0, and introducing effective operators that model radiative energy loss and, more generally,
QED processes. A fully general treatment would involve coupling the Vlasov equation to a
set of such operators, each responsible for capturing a distinct physical process. Develop-

ing a unified kinetic framework that self-consistently incorporates all of these effects remains



1.2. This dissertation 13

an open and long-term goal. This thesis takes a small (but significant) step in that direction
by including radiative losses within the kinetic description and examining how they reshape
phase-space structure and influence the growth and saturation of kinetic instabilities. In the
classical regime, radiative losses can be modeled by introducing a deterministic force term into
the Vlasov equation. The most widely used formulation is the Landau-Lifshitz (LL) radiation
reaction force, which approximates the full Lorentz—Abraham-Dirac expression and is valid
when the electromagnetic fields vary smoothly over the particle trajectory. In CGS Gaussian
units, the LL force expressed in terms of particle momentum p = m,v reads’

e () () egmen)

3 Bg. | mec YmeC Ym,C Ym,C
(1.11)
where ¢ is the elementary charge (in statcoulombs), 11, the electron mass (in grams), ¢ the speed
of light (in cm/s), & = €?/fic the fine-structure constant, and Bs. = m2c®/(eh) ~ 4.4 x 103G
the Schwinger critical magnetic field in Gauss. All quantities are expressed in CGS Gaussian
units. Some of the key consequences of this term are explored in Chapters 2 and 3.

Analytical methods grounded in kinetic theory offer valuable insights into the early, linear
stages of plasma evolution, where perturbative techniques can be applied. However, as insta-
bilities grow and nonlinear effects dominate, analytic approaches quickly become intractable.
To fully capture the complexity of these systems, numerical simulations are essential.

1.2.4 METHODOLOGY: PARTICLE-IN-CELL SIMULATIONS

This work employs large-scale, first-principles, self-consistent simulations using the Particle-
in-Cell (PIC) method, implemented via the state-of-the-art code OSIRIS [81]. These simula-
tions are complemented by analytical models that inform the design of simulation setups and
help interpret the complex plasma dynamics observed within them.

The standard PIC algorithm, first envisioned by Dawson and Buneman [82-85], models
the self-consistent interaction between a collection of computational charged particles and the
electromagnetic fields they generate. The PIC method are frequently viewed as numerical ap-
proximations of the Vlasov equation, representing an ideal, collisionless plasma. However,
PIC simulations may not fully correspond to a purely collisionless description, and subtle dif-
ferences exist between the PIC approach and a Vlasov system.® Moreover, it should be noted
that all plasmas, whether computational or experimental, are never truly collisionless[88, 89].

The basic PIC cycle (schematically summarised in Fig. 1.3) consists of four main steps. Each
simulation timestep begins with (i) interpolation of the electromagnetic fields (E, B); from the

5The appearance of c? in the denominator ensures consistency with the classical radiation reaction prefactor, when
e = St

6PIC simulations more closely resemble a Klimontovich representation of the plasma, where the phase-space dis-
tribution is explicitly constructed from individual particle trajectories, with finite-size shape functions replacing Dirac
delta functions; see, e.g., Refs.[86, 87]. Although this distinction is often overlooked, it implies that PIC can inher-
ently capture certain discrete-particle effects and non-ideal plasma dynamics. Nevertheless, this nuance does not

significantly affect the core findings presented in this work.

expressed in terms of « and the Schwinger field, as 2
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FIGURE 1.3: Simulation loop implemented in OSIRIS, including QED effects and particle merging. Grid
quantities are indexed by i, and particles by subscript p. The standard particle-in-cell (PIC) cycle, com-
prising field interpolation i), force integration ii), current deposition iii), and field updateiv), is extended
to include probabilistic QED processes (photon emission and pair production), leading to the injection
of new particles v0, as well as a particle merging step vi). Figure adapted from Ref. [91].

grid to the particle positions, allowing computation of the Lorentz force F,. Then, in step (ii),
particle positions x, and momenta u,, are updated using the equations of motion. Following
the particle push, (iii) the updated particle velocities and positions are used to deposit charge
and current densities p; and J; onto the grid. Finally, (iv) Maxwell’s equations are solved to
update the electromagnetic fields, completing the self-consistent cycle.

However, the standard PIC algorithm alone is not sufficient to capture the full range of
physical processes relevant to the regimes explored in this thesis. In particular, it does not
explicitly account for radiative energy losses or QED effects, which play a central role in the
dynamics of extreme, relativistic plasmas.” To study such environments, where radiation re-
action alters particle trajectories and QED processes lead to photon emission and pair creation,
the PIC loop must be extended. In OSIRIS, this is achieved through dedicated modules that
implement both classical [90, 91] and quantum [28, 92] radiative processes.

Radjiative losses are incorporated during the particle push (step ii), either through deter-
ministic classical radiation reaction forces, modeled via the Landau-Lifshitz prescription, or
via stochastic photon emission routines in the quantum regime, implemented using Monte

"Due to the finite-size shape functions of computational particles in standard PIC codes, one can argue that par-
ticles may experience a subtle form of self-interaction, potentially introducing signatures reminiscent of radiative
damping. While this interpretation remains speculative, targeted numerical simulations could be designed to test this
hypothesis systematically.
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Carlo methods. When the QED module is active, an additional step (v) tracks the photons
emitted by the particles as discrete computational particles. These photons can then undergo
further interactions, such as nonlinear Compton scattering or Breit-Wheeler pair production,
leading to the creation of new particles [28]. In high-density scenarios, step (vi) involves
a particle merging algorithm to reduce computational load, while conserving key physical
quantities like total charge, momentum, and energy. While reatining the correct shape of the
phase-space distribution function of the plasma [92].

This extended simulation loop allows OSIRIS to evolve plasmas in regimes where non-
linear, collective, and quantum effects are coupled together. With these capabilities in place,
OSIRIS provides a unique tool for first-principles studies of radiatively cooled plasmas, en-
abling predictive modeling for laboratory experiments and offering insight into analogous
astrophysical systems.

1.2.5 ORIGINAL CONTRIBUTIONS

This PhD centers on two main lines of original contribution. The first focuses on the kinetic
dynamics of plasmas in the synchrotron-dominated regime, showing that strong radiative
cooling leads to ring-shaped momentum distributions, inverted populations, and the onset
of kinetic instabilities. This work led to the identification of radiation-reaction-driven maser
emission and established synchrotron cooling as a mechanism for triggering coherent plasma
modes. The second major effort explores how similar radiative kinetic regimes can be accessed
in the laboratory. In particular, it demonstrates that ion-channel (betatron) cooling can gener-
ate phase-space structured beams with the same signatures found in astrophysical contexts,
opening a path to experimentally probe radiation-driven instabilities.

A third core contribution involves the Fireball collaboration at CERN, which successfully
produced relativistic electron-positron beams in the laboratory. My work supported this ef-
fort through theory and simulations that guided the experimental design, helped model the
generation and evolution of pair-plasma beams, and enabled the investigation of associated
beam-plasma instabilities. These contributions were also central to interpreting the experi-
mental results and connecting them to astrophysical scenarios.

In addition to these main work explictily outlined in this thesis, during this PhD I also
explored the use of machine learning for efficient physics modeling in PIC simulations and
contributed to collaborative work on the relaxation of collisionless plasmas with nonthermal
equilibria. Alongside, work on tailoring the distribution functions of plasmas via laser ioniza-
tion to study several kinetic instabilities. And I was able to contribute to the informal supervi-
sion of F. Assuncao Master’s Thesis on: Particle Drifts and Radiation Reaction in Astrophysics.
The cumulative impact of this PhD includes multiple publications in high-impact journals, in-
vited talks at international conferences, and the successful acquisition of over 88 million CPU
hours for large-scale simulations.
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PUBLICATIONS

This PhD led to several publications spanning theory, simulation, and collaboration with ex-
periment, including first-author papers on radiation-reaction-driven instabilities:

— C. Badiali, PJ. Bilbao, F. Cruz & L.O. Silva, Machine Learning-based models in particle-in-cell
codes for advanced physics extensions, Journal of Plasma Physics 88.6: 895880602 (2022)

— PJ. Bilbao & L.O. Silva, Radiation reaction cooling as a source of anisotropic momentum distribu-
tions with inverted populations, Physical Review Letters 130:16, 165101 (2023)

— C.D. Arrowsmith, P. Simon, PJ. Bilbao, A.FA. Bott et al. Laboratory realization of relativistic
pair-plasma beams, Nature Communications 15:5029 (2023)

— PJ. Bilbao, R.J. Ewart, F. Assungao, T. Silva & L.O. Silva, Ring momentum distributions as a
general feature of Vlasov dynamics in the synchrotron dominated regime, Physics of Plasmas 31:5,
052112 (2024)

— R/J. Ewart, M.L. Nastac, PJ. Bilbao, T. Silva, L.O. Silva, A.A. Schekochihin, Relaxation to uni-
versal non-Maxwellian equilibria in a collisionless plasma, Proceedings of the National Academy
of Sciences 122.17 e2417813122 (2025)

— PJ. Bilbao, T. Silva & L.O. Silva, Radiative cooling induced coherent maser emission in relativistic
plasmas, Science Advances 11.15, eadt8912 (2025)

— PJ. Bilbao, T. Silva & L.O. Silva, Phase-Space Shaping in Wakefield Accelerators due to betatron
cooling, (to be submitted 2025)

— T. Silva, PJ. Bilbao & L.O. Silva, The electron cyclotron maser instability in laser-ionized plasmas,
arXiv:2412.06783 (to be submitted 2025)

— C.D. Arrowsmith, F. Miniati, P.J. Bilbao, P. Simon et al. Suppression of pair beam instabilities in a
laboratory analogue of blazar pair cascades, submitted to Proceedings of the National Academy
of Science (2025)

—J. W. D. Halliday, C. D. Arrowsmith,1, A. M. Goillot, P. J. Bilbao, et al. First measurement of
collective behavior in a relativistic pair-plasma (in prep. 2025)

— F. Assungao, PJ. Bilbao & L.O. Silva, Particle Drifts and Radiation Reaction in Astrophysics, (in
prep. 2025)
INVITED TALKS

The results of this work were presented in invited talks at several major international confer-
ences:

— European Physics Society Plasma Physics conference, July 2024 (Salamanca, Spain), “Co-
herent electron cyclotron maser emission triggered by radiation reaction”
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— High Energy Density Laboratory Astrophysics (HEDLA), May 2024 (Tallahassee, FL), “Lab-
oratory analogues of astrophysical coherent maser processes".

— Fifth Purdue Workshop on Relativistic Plasma Astrophysics, May 2024 (Purdue, IN), “Ra-
dio Masers in the Synchrotron Dominated Regime".

— 65th Annual Meeting of the American Physics Society Division of Plasma Physics, Novem-
ber 2023 (Denver, CO), “Kinetically unstable distributions as a result of radiative damping
in strong electromagnetic fields".

— LPHYS22, June 2022 (Online), “The Impact of Radiation Reaction on the Topology of the
Momentum Space".

COMPUTATIONAL ALLOCATIONS

This PhD could not have been completed without the large computational allocations that
were secured. During this PhD I helped secure ~ 88 million CPU hours as PI and co-PI of
different projects which benefited the whole group.

— co-PI of CREPE: Coherent Radiation mechanisms in Extreme Plasma Environment LUMI
(FI) via EuroHPC

— PI of MAPs: Masers in Astrophysical Plasmas 20 million CPU hours in the supercomputer
DEUCALION (PT) via FCT/RNCA

— PI of MAPs 2: Masers in Astrophysical Plasmas (part 2) 30 million CPU hours in the super-
computer MareNostrum 5 (SP) via FCT/RNCA
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CHAPTER 2

SYNCHROTRON COOLING AS SOURCE OF
RING-SHAPED MOMENTUM DISTRIBUTIONS

This chapter is adapted from: P. J. Bilbao & L. O. Silva Phys. Rev. Lett. 130.16:165101 (2023)
and P. J. Bilbao, et al. Phys. Plasmas 31.5 (2024).

2.1 INTRODUCTION

The interplay between quantum electrodynamics (QED) and collective plasma dynamics has
recently garnered significant attention, driven by the increasing feasibility of accessing such
regimes in both astrophysical and laboratory settings [20, 21, 23-25, 70, 71, 93-99].

In the presence of strong electromagnetic fields, relativistic charged particles can radiate

photons with energies comparable to the rest mass of the electron m,c?

or even comparable
to the kinetic energy of the particle (y — 1)m,c?, where 7 is the Lorentz factor and m, is the
electron mass. In these regimes, radiation reaction, i.e., the momentum recoil associated with
photon emission, must be accounted for, as it fundamentally alters particle dynamics [20, 70,
100].!

Conditions for radiation reaction to play a central role are naturally realized in astrophys-
ical environments such as the magnetospheres of compact objects [15, 27, 101-103], and are
increasingly within reach in laboratory experiments. This progress is driven by advances in
high-intensity laser systems [19, 28, 90, 104-106], magnetic-field amplification platforms [107-
109], and high-energy-density or fusion plasmas [110, 111].

One of the simplest yet most consequential features of this regime is that the radiation
reaction force, sometimes referred to as the radiation friction force [70], does not conserve
phase-space volume. This sets it apart from the classical collsionless plasma dynamics medi-
ated by the Lorentz force. This was hinted in recent works on runaway electrons in fusion
plasmas that have shown that radiation reaction and collisional effect induce “bumps” along

1To be exact, radiation reaction needs to be self-consistently taken into account when the radiative cooling
timescales become comparable to the plasma collective timescales.
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the runaway electron tail [110, 111]. In this chapter, we show that this behavior is more general
and that bunched and anisotropic momentum distributions can be produced in other regions
of the momentum distribution due to the properties of the radiation reaction force, i.e., its
tendency to induce directional, energy-dependent cooling.

Previous works have shown that radiation reaction can produce phase-space attractors in
laser-beam interactions [112], enhance anisotropic acceleration in radiatively cooled turbulent
plasmas [96], and efficiently drive kinetic instabilities such as the firehose instability [24]. As
we will see in Chapter 3, it also plays a key role in triggering the electron cyclotron maser
instability (ECMI) [23, 113, 114]. These findings underscore the need for a first-principles
kinetic approach to understand radiatively cooled plasmas, where phase-space dynamics and
radiation losses are coupled.

Radjiation reaction is an interesting phenomenon because it plays a fundamentally differ-
ent role in plasma phase-space dynamics compared to collisional processes. While collisions
tend to diffuse particles and expand the phase-space volume, radiation reaction acts to con-
strain it. This difference arises because radiation reaction is a non-conservative force that does
not preserve phase-space volume, it violates Liouville’s theorem. Conventional collisionless
plasma dynamics describe an incompressible fluid in phase space, but the inclusion of radia-
tion effectively allows the compression of the phase-space fluid.

This becomes apparent when considering the synchrotron radiative power, which scales
as P « 74(p X a)z, where 7, p, and a are the particle’s Lorentz factor, momentum, and ac-
celeration, respectively [17, 115]. Particles experiencing stronger acceleration radiate more
intensely and, as a result, cool more rapidly, leading to converging trajectories in momentum
space. Moreover, this energy loss is directionally dependent, leading to anisotropic evolution
of the momentum distribution [23, 24]. A clear example is synchrotron cooling in a uniform
magnetic field: as particles gyrate, they emit radiation predominantly due to their perpendic-
ular motion, gradually losing energy. In ultra-strong magnetic fields, the radiated synchrotron
energy can represent a substantial fraction of the particle’s initial kinetic energy.

As we will see, this process reduces the entropy of the plasma particles, as radiation reac-
tion constricts the accessible phase-space volume. The lost entropy is carried away by the
emitted synchrotron photons, driving the system away from thermodynamic equilibrium.
This fundamental behavior, and its consequences for the emergence of structured, unstable
distribution functions, is a central focus of this work.

In this chapter, we show how differential cooling in momentum space leads to anisotropic
regions in phase space, including the formation of inverted populations, i.e., regions where
higher-energy states are more populated than adjacent lower-energy ones, in violation of ther-
mal equilibrium. This effect is a general feature of radiation reaction cooling and its impor-
tance depends on the specific details of the field configuration. We focus on the simplest field
configuration: a plasma immersed in a constant strong magnetic field, where synchrotron
losses act preferentially on the perpendicular momentum and lead to a classical Landau-level
population inversion.? This effect is demonstrated analytically by incorporating radiation re-

2Strictly speaking, Landau levels refer to discrete quantum energy levels in the perpendicular motion of a charged
particle in a magnetic field. In this work, we use the term heuristically to describe classical momentum-space struc-
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action into the Vlasov equation [110, 111, 116-118], yielding exact results for the evolution of
the distribution function, and the relevant timescales for the resulting ring momentum distri-
bution.

The phase-space cooling, resulting from the fact that the plasma radiates away its entropy,
changes the plasma dynamics drastically, compared to the classical Lorentz force, resulting
in kinetically unstable distributions in the shape of ring distributions that can be a source
of magnetic-field amplification or coherent radiation. We will demonstrate that this effect is
relevant for isotropic Maxwellian (or Maxwell-Jiittner) plasmas with a minimum temperature
of T > mec?//3.

The resulting momentum distributions with inverted Landau populations are known to
be kinetically unstable and responsible for providing the free energy for kinetic plasma in-
stabilities and coherent radiation mechanisms such as the electron cyclotron maser instability
[119-123]. Thus, radiation reaction naturally leads to the conditions required for the seeding
of instabilities and coherent radiation driven by inverted Landau populations and we explore
how these results are relevant for astrophysical and laboratory plasmas [49, 124-127].

Particle-in-cell (PIC) simulations confirm the theoretical results for a broad range of initial
conditions spanning both the classical ¥ < 1 and quantum x > 1 regimes, where yx is the
Lorentz- and gauge-invariant parameter x = |/ —(F,p")?/ (Escec) [18, 19]; e is the electron
charge, F,,; the electromagnetic tensor and p" the 4-momentum of the particle. For a constant
background magnetic field, x reduces to x = p, |Bo| /(m.cBs.), where Bs, = m2c®/(eh) ~
4.41 x 1013 G is the Schwinger critical field..

2.2 SINGLE PARTICLE DYNAMICS

We will first consider the classical description of radiation reaction [100, 128-131], QED ra-
diation reaction will be discussed later. The classical description of radiation reaction can be
shown to be valid for x < 1, where the effects of quantum corrections are shown to be small
compared to the classical prescription acting on a collection of synchrotron radiating parti-
cles (See Sec. B). The radiation reaction force for an electron with arbitrary momentum in
a constant electromagnetic field is described by the Landau-Lifshitz expression for radiation
reaction [100, 131]

o= 22 {22 (24 £28) (BEY] g BxBxptER D

YMeC YMeC YMeC
2.1)

where «a is the fine-structure constant, v = /1 + p2/m2c2, and E and B are the electric and
magnetic fields, expressed in CGS Gaussian units. The first term in Eq. (2.1), which dominates

for relativistic particles (v > 1), already shows a non-linear dependence of the radiation reac-
tion force on the momentum of the particle p. To study synchrotron cooling, we consider the
case in which E = 0 and constant magnetic field B = B¢, where ¢ is the unit vector along

turing that resembles a population inversion in perpendicular energy. There is no quantization in our treatment; the
spectrum remains continuous.
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the magnetic-field direction. Thus Eq. (2.1) simplifies to

2 en p(pr)z_Bx(Bxp)
3 vBs m%cz meC

Frr =

. 2.2)

We now focus on the single-particle momentum evolution due to synchrotron cooling. Due
to the symmetry perpendicular to the magnetic-field direction, it is convenient to decompose
the momentum vector p into the parallel p| and the perpendicular p ;| momentum components
with respect to B. Thus, the cross products in Eq. (2.2) simplify to (p x B)2 = p? B? and
B x (B X p) = —B2 p1é.. From now on, momentum p and time ¢, are given in units of m.c,
and the inverse of the cyclotron frequency wz! = m,c/eB, respectively. And we define By =
B/ Bs., unless stated otherwise we will continue to use this conventio.

The equations of motion due to synchrotron cooling are [132, 133]

d 2 +p3

% — —gt’éBoM, (2.3)
dp 2 pypa

L= —Zab ”7% (2.4)

Equation (2.3) already demonstrates the nonlinear nature of synchrotron cooling, in the limit
pL > 1thendp)/dt o< dp, /dt —p?%, which implies nonlinear transport in momentum
space, due to the square factor, and allows to compress momentum space trajectories. These
equations can be solved exactly, yielding an analytical expression for the momentum trajectory
as a function of time. The full derivation is provided in App. C.1. The result is:

pit) = PLO 2.5)

cosh (/) [1 +4/1+ p3 ,tanh (T’)} ,
1+tanh (7')/ /14 p%,
pi(t) = pjo , (2.6)
1+ tanh (7/){/1+p?,

where T = 20Bot/3 and T = T, /1+ p? /70, with 7o = /1 + p%, + pf, These expressions

describe the nonlinear cooling of the perpendicular and parallel components of momentum.

As t — oo, all trajectories converge toward p; — 0 and p| — p)o/4/1+ p3 , reflecting the

covariant nature of the radiation reaction force and is associated with a constant of motion

given by

A
2

V31+p1

C; characterises the streamlines shown in Fig. 2.1. Stating that C; is a conserved quantity, is

C = 2.7)

equivalent to stating that the parallel velocity B is conserved during cooling, as f = p| /v =

C1/4/1+ C2. Another quantity that is conserved® can be obtained from Eq. (2.5) and Eq. (2.6)

_ 1 0%
C, = tanh ™! - T, (2.8)
Jyitrt) 1+t

3C,isnot exactly a constant of motion as it is time-dependent, yet it is a quantity that is conserved for any trajectory.
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FIGURE 2.1: Streamlines of the momentum-space trajectories of particles undergoing synchrotron cool-
ing [Egs. (2.5) and (2.6)] demonstrating that particles in a strong magnetic field cool down anisotropically
and in a non-linear fashion. This is seen by the increase in the gradient of the magnitude of the radiation
force as a function of p, indicated by the color of the streamlines, stronger (red) at larger p | than at
lower p; .

which is time-dependent, since radiation reaction is a dissipative process.

We now employ the single-particle trajectories to understand the collective effect of syn-
chrotron cooling, particularly the conditions for an initial MDF f; = f(t = 0) to develop
a population inversion df/dp, > 0 in a finite time. As cooling is strongest in regions of
pL > p|, we expect that any bunching due to dp /dt o« — p3 will occur in that region of
momentum space where p | ||. Thus, we focus our study on the evolution of the MDF there,
where the momentum-distribution evolution is dominated by the cooling in p | .

2.2.1 NECESSARY CONDITION FOR THE DEVELOPMENT OF RING-SHAPED
DISTRIBUTIONS

We consider the evolution of a small volume of momentum space V), (t). As radiation reaction
deforms this volume, it retains the same number of particles, implying

dpd t) = dp d . 2.9
//v,,(t) prapLpL f(pLp).t) //v,,(o) pidpLpL fo(pL p)) (29)

Changing variables {p,,p|} — {pLo,p|o} on the left-hand side (method of characteristics)
yields

apL py)
I(pLo, Plo)
At p| = 0, the region where the bunching will be strongest, differentiating with respect to p | o
and using Eq. (2.5) gives the condition for eventual f /dp, > 0:*

1 dfo(p.1) B 2tanhr(2*yi+3r“_ tanhr+1)
pifo(pr) dp. 7% (7L +tanh7) (7, tanh T+ 1)’

4This compares the evolution of two neighboring phase-space elements under synchrotron cooling. A positive gra-
dientdf/dp, > 0formswhen the higher-p,; element is compressed more than its lower-p, neighbor, after accounting
for the Jacobian (phase-space contraction) and the initial particle content fj.

1
floLppt) = %fo(lﬂorm\o)- (2.10)

(2.11)
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withy, = 4/1+ pi and where all quantities are evaluated from the initial condition (so we
drop the 0 subscripts below). In the late-time limit T — oo, tanhT — 1, one obtains the
necessary condition for developing inverted Landau populations

1 9dfo(pr) > _ 2r. (1+2M) , (2.12)
folp) op. (1+p%) (1 - m>

Integrating Eq. (2.12) gives

ffoi(o)[ (2.13)
71 (1471
Thus, initial distributions that do not decay faster than the right-hand side of Eq. (2.13) at a
given p, will develop local bunching there (0f/dp, > 0), where Eq. (2.13) is fulfilled. In
practice this requires a sufficiently broad initial spread in p , and a shallower power-law dis-
tribution than f oy .

For a Maxwellian MDF, 9fy/0p, = —p, fo/p3,, where py, = /6, and 6, = kgT/(m.c?) is
the dimensionless electron temperature. Inserting this derivative into Eq. (2.12)° and solving

fo(pr) >

in the limit p; < 1 yields a condition for the minimal py, at which a region satisfies the
population inversion criterion.® Ring-shaped MDFs will form only when py, > 1/+/3 ~ 0.577,
corresponding to kgT > m,c?/3 ~ 170 keV = 2 x 10° K. Similarly, for a Maxwell-Jiittner
distribution, dfy/9p, = —p. /(v p3,) fo, and inserting this into the same equation gives the
threshold pg, > 1/3 ~ 0.333, i.e. kT > m,c?/9 ~ 57 keV ~ 7 x 10° K.

These examples show that MDFs with inverted Landau populations naturally arise from
Vlasov—-Maxwell dynamics in the presence of radiation reaction for relativistic thermal plas-
mas. The inequality in Eq. (2.13) is satisfied by many broad distribution functions with suf-
ficient thermal energy, such as Maxwell-Boltzmann, Maxwell-Jiittner, and power laws. We
have shown that the inversion is established within a finite timescale for any initial condition
satisfying Eq. (2.13). The timing and evolution of the inversion will be discussed later in this
chapter. Further arguments supporting the generality of ring distributions from synchrotron
cooling are given in Appendix C.4, and additional numerical tests using relativistic particle
pushers and full Particle-in-Cell simulations with the OSIRIS code [28, 81, 91] corroborate
these findings (see Sec. C.6).

2.3 FULL KINETIC TREATMENT

2.3.1 MODIFIED VLASOV EQUATION & O0TH ORDER SOLUTION

Generalized kinetic equations for non-conservative forces, particularly for radiation reaction,
have been known for many decades [116, 134, 135]. Recent results have employed generalized
kinetic equations with radiation reaction to model conditions for experimental fusion [110, 111,

5One can also check which values satisfy Eq. (2.13) for an arbitrary distribution function, but this often leads to a
transcendental equation. For this reason, Eq. (2.12) is generally more useful.
®In the small p; limit Eq. (2.12) becomes d (log(fo(p.))) /9p. = 3p..
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117, 136], laser-plasma interactions [118, 137], and to derive fluid descriptions that include
radiation reaction effects [138]. Here, we employ the non-manifestly covariant form of the
Vlasov equation with radiation reaction force term [110, 111, 116-118, 136, 139]

%{+z'vrf+vp'[(FRR+FL)f]:0' (2.14)
where f(p, 1, t) is the distribution function, F; is the Lorentz force, and V, and V, are nabla
operators acting on the position and momentum coordinates, respectively. Including the ra-
diation reaction force as the operator V, - (Frgrf) guarantees the conservation of the number
of particles [136]. Since F; conserves the phase-space volume, but Frr is dissipative, then
Vyp Fra # Vp-FL = 0. Since we consider a spatially homogeneous plasma, we can ne-
glect the term proportional to V, f. Equation (2.14) corresponds to Vlasov equation with the

inclusion of a classical radiation reaction force.”

Moreover, as we are assuming gyrotropy, i.e. cylindrical symmetry f = f(p.,p|), and
uniform magnetic field, the effect of the Lorentz force due to a strong magnetic field on the
distribution is V, - (F. f) = 0, even when Fy # 0. Thus, Eq. (2.14) simplifies to

d
aijt: + FRrr - V,,f+pr -Frr = 0. (2.15)

In cylindrical momentum coordinates, the operators are V,, f = df /dp &+ df/dp, &, and

1 9(piFrry) +aFRRH

Vy, -Frp = —
: pL  9pL ap|

2 244p?
Vy Frr = —gszo%, (2.16)

where Frr,| =dp, /dt & Frr| = de /dt given by Egs. (2.3)—(2.4). One notes that, as expected,
the divergence of the radiation reaction force is negative. This demonstrates one of the key
features of radiation reaction, i.e., radiation reaction compresses the momentum phase—space
volume as V, - Frr < 0. In doing so, it acts against collisions that have the property V, - F,) >
0, where F,; is an effective collisional force. Therefore, radiation reaction reduces the phase-
space volume and thus, the entropy of the plasma, decreases.

The Vlasov equation for a distribution function f undergoing synchrotron cooling becomes

of pitpidf PiMJf 2441,
0T v dpL Y 9p| Y

(2.17)

Equation (2.17) can be numerically integrated for any given initial distribution fy. This differ-
ential equation describes the non-linear transport in momentum space where the momentum-
space flow is compressible, which can exhibit momentum-space shocks analogous to hydro-
dynamic shocks [23, 24], resulting from V- Frg < 0 and V, - Frg not being constant along

~Pl1-

7We note that a quantum synchrotron equation can be recovered by coupling the QED operator for synchrotron
emission with the Vlasov equation. From which one can recover Eq. (2.14) in the classical regime x < 1, this is done
in Appendix B.
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Our key findings apply beyond synchrotron-cooled plasmas. Other systems or electro-
magnetic field configurations where the dissipative power depends non-linearly on the energy
level occupied will develop population inversions. In our current case of synchrotron-cooled
plasmas, the radiative power P o pi /7y depends non-linearly on the Landau energy level oc-
cupied (i.e., p ). Other radiation cooling mechanisms that exhibit analogous behavior, such as
is the case of electrons undergoing betatron motion in an ion-channel, whose radiative power
P r%, depends non-linearly on the betatron energy level occupied, i.e., the betatron oscilla-
tion amplitude 75, and will be the subject of Chapter 4.

We note that analytical solutions to Eq. (2.17) exist. For example, one can consider a distri-
bution function with a large spread in p | centered around p| = 0 and an infinitesimal width

in p|. In this configuration, one can approximate T = 7 (since p; > p)) and employ the
method of characteristics to solve Eq. (2.17) for f(p,p =0) = f1(p1), finding®
csch (a
fi(pu,t) = — 10 (csch (a)) (2.18)

(7. pysinh(a)tanh(a))*’

where a = log (p./(y.+1))+Tand v, = 4/1+ pzl. Equation (2.18) has a singularity at
p. = 1/sinh(t). This singularity lies outside the range of valid physical values for p|. As
noted before, the whole momentum space is bounded within p;, < 1/sinh(7); therefore,
Eq. (2.18) is well behaved for the range 0 < p; < 1/ sinh(7), for all values of 7.

The results from plotting Eq. (2.18) for different initial distributions (Maxwellian and Maxwell-
Jiittner) are shown in Fig. 2.2. Regions where the curves are red in Fig. 2.2 have dof /dp, > 0.
These results validate our earlier predictions, where we examine the late-stage evolution of the
distributions due to synchrotrn cooling, for Maxwellian and Maxwell-Jiittner distributions in
Eq. (2.12) and Eq. (2.13). As can be seen inf Fig. 2.2, the plasma requires that py, > 0.57 m.c
and py, > 0.33 m,c, for Maxwellian and Maxwell-Jiittner distributions, to develop ring-shaped
MDFs. As we have shown that plasmas need a minimum thermal energy to develop a popu-
lation inversion, we will henceforth study Eq. (2.17) in the relativistic regime, which is also the
regime relevant for astrophysical plasmas.

2.3.2 RELATIVISTIC REGIME

When v > 1 and p; > 1, the trajectories in momentum space [Egs. (2.5) and (2.6)] and the
Vlasov equation [Eq. (2.17)] become

Pio
H=——+r=2 2.19
pJ_() 1+piOT/’)/O ( )

Plo
H=_——-"= 2.20
A 1+ p3oT/70 220

2

%_ﬁi_ME_ﬁf:o, (2.21)

8For furhter details on this solution see Appendix C.2.
9This includes T = 0, when p| < oo can be arbitrarily large.
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FIGURE 2.2: The time evolution of Eq. (2.18) for an initial mildly relativistic py, < 1m,.c, Maxwellian (left)

and Maxwell-Jiittner plasma (right), demonstrating the minimum thermal energy needed to develop a
region with df /dp, > 0, indicated in red. Different panels show initial thermal spreads py, = 0.25 m,c

(top), pm = 0.50 mc (middle), and py, = 0.75m.c (bottom), at normalized times T = 0, 1, 2, and 3, cor-
responding to unnormalized times ¢ = 2m,Bs T/ (3aeB?). This illustrates the minimum energy required

to develop regions with df /dp; > 0 in the semi-relativistic regime.
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These expressions accurately describe synchrotron cooling in the ultra-relativistic region of
momentum space, where p; > 1and p; > p), so that v >~ p,. At late times, as cooling
proceeds and p,; decreases to order unity, the neglected terms in order of «y are no longer
small and the full equations [Egs. (2.5) and (2.6)] should be used instead.

Equation (2.21) can be solved if one examines regions of momentum space where p; ~
(i.e., pL > p)), corresponding to the high-p, limit where y >~ p, . In this regime, Eq. (2.21)
differs from Eq. (2.17) in that o has been approximated by p | , simplifying the advection terms.
A solution for Eq. (2.21) can then be obtained using the method of characteristics!0 [23]:

fo( 55 T
flpLpp) = <21_‘7Tp1)f ) (2.22)

Equation (2.22) describes the evolution of an initial momentum distribution fy due to syn-
chrotron cooling in the relativistic limit. It is valid as long as the distribution retains signifi-
cant weight in the high-p | region, which typically corresponds to T < 1 before perpendicular
momentum has contracted to p; ~ 1. Similarly to Eq. (2.18), Eq. (2.22) appears to have a sin-
gularity at p; = 1/7, but this point always lies outside the range of validity. From Eq. (2.19),
a particle with initial p | j — oo evolves following p, () = 1/7; thus all particles are bounded
between 0 < p; < 1/7. This means f is well behaved for all physically relevant values of p | ,
ie, p; < 1/7. This bunching inevitably leads to a Landau population inversion, i.e., a ring
distribution in momentum space (see Appendix C.4). Moreover, the resulting phase-space
contraction requires a decrease in plasma entropy over time, as shown in Appendix D.1.

We note that the same consistent results can be obtained if one employs the relativistic
limit, i.e., the dominant contribution is the leading order in <y for the Landau-Lifshiftz formula
for radiation reaction as [100, 131]

2 eayp p 2 p z
F —_= E B) — ‘E 2.2
rad 3 Bgcmec [< - ymec % ) YMeC ’ 2.23)

where for a constant B field simplifies to F,,; = —%ocBowcgpip /(ym2c?) and results in the
same single particle equations of motion and modified Vlasov equation in the relativistic limit.

2.3.3 TEMPORAL EVOLUTION OF THE RING DISTRIBUTION

As we have demonstrated (see Sec. 2.2.1 & Appedix C.4), relativistic plasmas undergoing syn-
chrotron cooling will develop a population inversion df /dp; > 0. To determine the relevant
timescales for forming these ring-shaped MDFs one can employ a representative initial distri-
bution function with a large spread in p | . We consider an isotropic Maxwellian distribution

P: +ri
25, .

function

1
fO,MB(PJ_/PH) = W exp <— (2.24)

10See Appendix C.3.
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FIGURE 2.3: Evolution of an isotropic initial Maxwellian distribution, with py, = 100m.c calculated
analytically from Eq. (2.22) (The distribution is normalised to its maximum value at each time). The
white and gray dashed lines indicate the ring radius predicted by Eq. (2.25) and the curve that bounds

1

the momentum space p; = 77, respectively.

The resulting ring radius pg(t) in momentum space, defined as ]ap fi(pot) ’m:pR( H = 0,
where f| (p1,t) = [* f(pL, p|, t)dp| is the integrated distribution along p . Using Eq. (2.22)

to determine the temporal evolution of fo\p, pr evolves as

1+6p3 72 — /1 +12p3 72 025

6p3, T3

pr(t) =

Several conclusions about the formation and evolution of ring momentum distributions can
be drawn from Eq. (2.25). Figure (2.3) shows the evolution of f, (p_,t) for an initial isotropic
Maxwellian plasma with py, = 100m,.c and the ring radius evolution (white dashed line)
according to Eq. (2.25). At early times T = 2aByt/3 < 1, the ring radius grows linearly with
time as pg(t) ~ prhocBot; this is due to a build-up of particles in momentum space at lower p |
first. The ring MDF results from bunching as particles with higher energies radiate strongly
and slow down faster, catching up with the lower energy particles. The bunching begins at
low p,; and propagates towards higher p; values, eventually, it asymptotically approaches
the boundary of momentum space p; < p% = v !and pg(t) ~ 1/7 = 3/(2aByt), for large T
(in Fig. 2.3 at T ~ 0.05).

Whenever the bunching direction reverses [maximum value of pr(t)], the gradient of the
MDF starts growing much faster, and the distribution will produce a higher contrast ring-
shaped MDEF. Thus, we define that time as the ring formation time normalized to cyclotron

periods estimated to be
3 3

 4aBopm 4’

tr (2.26)

where xg = P Bo, in cgs units tg = 3m2c?Bs. / (4aeB%py, ).
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A second longer timescale can be estimated, related to the ring MDF evolution to achieve
efficient conditions for the growth of kinetic instabilities, specifically the electron cyclotron
maser instability. There are two relevant factors here: i) the generation of population inversion
df /dp, with high gradients and ii) relativistic inertial effects that slow down the instability
growth. We can estimate the evolution of 9f /dp | by noting there is a small region between the
momentum-space boundary, given by p; = 1/7 [gray dashed curve in Fig. 2.3], and the ring
radius [white dashed curve in Fig. 2.3] of size p = 1/7 — pr(t), which can be approximated,
from Eq. (2.25), for initially large py, as 6p = 1/(6pm,T). Within that region, the distribution
function has the property df /dp | < 0; conversely, there is a region just below the ring radius
of comparable width Jp, where the distribution function has the property of /dp, > 0. Thus,
the positive gradient can be approximated as df /dp, ~ f(pr)/épand f(pr) ~ 1/4mpr(t)dp,
leading to

of 9 ph _9 2.5
op. "~ mpr(tp  wlmY

(2.27)

which shows how the gradient, at early times T < 1, increases slowly as a function of T and,
as T < 1, the gradient grows faster. For a fixed gradient ring MDF, the maser growth rate is
maximum when pr ~ 1; for pr >> 1, relativistic inertial effects decrease the growth rate [140].
Thus, a natural choice for the maximum maser onset timescale in cyclotron periods is f; the
time it takes to reach pr ~ 1, which for py, > 1 occurs at T = 1, resulting in

3

b= o (2.28)

in unnormalized units t; = 3m.cBs./ (2aeB?). Within the timescale t;, the growth rate associ-
ated with the maser instability has grown, due to the high gradient df /dp; >> 1, and the ring
has cooled down enough that relativistic inertial effects have been reduced. Thus, the onset of
the maser instability should occur within a shorter timescale than ¢;.

Scaling engineering formulas can be obtained for both timescales ¢z and #;,

tr [5.2ns] =~ B2 [50MG] T, ! [10MeV], (2.29)
t; [205ns] ~ B2 [50MG]. (2.30)

These scalings are compatible with magnetospheric conditions around compact objects such
as pulsars and magnetars, where B >> 100 MG. The underlying process is fundamental: any
sufficiently magnetized plasma in which perpendicular cooling dominates over isotropizing
processes will inevitably develop narrow momentum-space rings, regardless of how the hot
population was initially generated. This applies to heating by reconnection, shocks, turbu-
lence, or other impulsive events. As a concrete example, Sec. 3.5 considers a plasma clump
propagating outward through a neutron star magnetosphere, where this cooling-driven ring
formation can take place. Other scenarios such as those occuring in pair-cascades may also be
capable of producing such rings. Furhter work is still needed.

Interestingly, the distribution function of the plasma is evolving away from a thermal dis-

trbution, this means that the emitted synchrotron spectrum changes as a function of time,
with an initial power that decreases as a function of time. We study the resulting spectrum in



2.3. Full kinetic treatment 31

Appendix D.2, where the resulting spectrum demonstrates features significantly different to
thermal plasmas, including power-law distributions.

2.3.4 PARALLEL DISTRIBUTION FUNCTION f(pj)

So far, we have focused on the perpendicular dynamics of the distribution function, particu-
larly the bunching and formation of ring-shaped momentum distributions. However, another
important feature of synchrotron cooling is its anisotropic nature, as shown in Fig.2.1 and
Egs.(2.5)+2.6). The cooling rate for a single particle depends on its location in momentum
space, with higher total momentum cooling faster. In particular, the perpendicular momen-
tum p cools more rapidly than the parallel momentum p. This is not simply because the
particle loses momentum in all directions, as is sometimes approximated in simplified mod-
els, but because the full radiation-reaction force contains an additional term that preserves the
component of velocity parallel to the magnetic field. As a result, particles radiate away all per-
pendicular momentum while retaining a finite p | set by the constant of motion from Eq. (2.7).1
This anisotropy leads to unequal pressure components and can give rise to kinetic instabilities,
such as the firehose instability, even without requiring a population inversion [24].

In what follows we assume that the initial distribution function is separable in perpen-
dicular and parallel momentum, i.e., fo(p.,p|) = fro(pL)fjo(p|), so that the evolution in
each component can be tracked independently. In the regime v > 1and p, > p, the time
evolution of f can be described by Eq.(2.22), which remains valid at early times before perpen-
dicular cooling becomes dominant. To estimate the final spread in parallel momentum, we use
the constant of motion C; from Eq.(2.7), which yields the final parallel momentum

f Plo
p =C = ———. (2.31)
H V1+7Pi
This allows us to express the final parallel distribution function as
fooy Plo
fH(PH) = dPOfO(pJ_O/pHO)‘S P\ —F7——|~ (2.32)
Vi,
where the Dirac delta function J(x) enables us to perform the integral over p o, giving
filpy) = /o 27tp 1 0dp 1o fo (Pm/ P| \/1 + Pio> \/1 + 10 (2.33)

Equation (2.33) defines the asymptotic shape of the parallel distribution function, which emerges
as the system cools such that f, — é(p ). Several key features follow from this expression.

10ne way to ilustrate this is to consider two particles moving together with the same | along a magnetic field, one
with p; = 0 and the other with some perpendicular gyration. In the rest frame of the first particle, both have P = 0,
so the question becomes: what does this particle see? It observes the other electron radiating away its perpendicular
momentum until p; = 0and p| = 0, leaving them both at rest relative to each other in this frame. Transforming back
to the lab frame means both particles keep the same ‘BH they started with, which is the physical content of the constant
of motion in Eq. (2.7).
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First, it always converges for physical distribution functions, i.e., those that vanish at high en-
ergies. The Jacobian factor imposes that fy must decay faster than pﬁ, which is satisfied by
any distribution with finite particle number or an eventual cutoff.

As an example, consider a thermal Gaussian distribution,

2 2
1 PLtr
folprp) = —F==maoP|——F5 | (2.34)
I 2ﬁ7r3/2pf’h 2p%
which leads to the final parallel distribution
2
*2% il / pﬁjl P2
X a- A
fﬁ(PH) = - 373 Vo | e¥h — e Brf | L L | | 4o, [ >— |, (2.35)
e i V2 Pin
2V 2mpy, .

where Erf(x) is the error function. While this expression is cumbersome, we can simplify it by
considering the limit py, — oo, yielding
(2.36)

1
filp)) = 21+ PP

This yields a power-law decay at large P with f ﬁ o pf’.

The thermal width of this distribution can be estimated via its full width at half maximum
(FWHM), defined by f‘f‘(pFWHM) = fﬁ(O)/z. Solving for prwrM gives prwrm =~ 0.76642 in
dimensionless units (normalized to m,c), which sets the characteristic scale for the parallel
momentum spread once perpendicular cooling is complete.

Surprisingly, performing the same calculation for a Maxwell-Jiittner distribution yields the
same asymptotic result as Eq. (2.36). This suggests that both the fﬁ x p[rj decay and the charac-
teristic width are robust, possibly universal features of synchrotron cooling. In Appendix C.5,
we demonstrate that this power-law behavior arises from phase-space compression under the
cooling transformation. We show that all sufficiently broad and smooth initial distributions,
those with py, > 1, or an equivalent measure of width, converge to the same asymptotic form,
regardless of the microscopic details of fy. Moreover, we demonstrate (see Appendix C.5.1)
that beam-like disitributions, these are distributions with a small momentum spread in both
the parallel and perpendicular directions py,, centered at high p > py,, also produce final
distributions with the property fﬁ [ pﬁg.

2.3.5 DIFFUSIVE EFFECTS

During the cooling process, other diffusive mechanisms may compete with the formation of
the ring distribution. These include collisional diffusion, non-resonant wave heating, or other
stochastic processes. In this section, we study the kinetic equilibrium reached when such
diffusion balances synchrotron cooling. A comparison of the relevant timescales is presented
in Sec. 2.5; here, we focus on the steady-state distribution emerging from their interplay. We
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consider a simplified diffusive operator in perpendicular momentum space of the form
) 1 9 )
o 1 9 (mpf > , (237)
O |heat  PLOPL aIpL

where D is the diffusion coefficient, which has dimensions of momentum squared per time,

and may arise from collisions, stochastic heating, or turbulent fluctuations. We include both
diffusion and synchrotron cooling in a Fokker-Planck-type kinetic equation:

of 1 9 af dp.(t)
ot pLopy {p Dam ST fl- (2.38)

where p | (t) is the momentum loss rate due to synchrotron cooling, as given in Eq. (2.3). As-
suming a steady state df /dt = 0, and applying boundary conditions f(p; — o) = 0 and

df/9p.1|p, e = 0, integration yields:

3/2
) (2.39)

22
Fulpy) = Aem 0SB (ko /mec)?)

where A is a normalization constant.This expression resembles a super-Gaussian of order 3

when D is independent of p | . If instead D « p, the solution becomes f; o exp(—PT”).

This result illustrates key features of the time evolution and steady-state behavior of the
distribution function. For initially cold distributions, such as f o d(p_ ), cooling is negligible
at first, and stochastic diffusion dominates, broadening the distribution. As the plasma heats
up, cooling becomes increasingly effective and gradually slows the diffusive broadening. The
system eventually approaches the steady state f;, where perpendicular cooling balances the
diffusive heating. On the opposite end, if the initial distribution is significantly hotter than f;,
diffusion is negligible compared to cooling. The strong radiative losses rapidly compress the
distribution into a narrow ring in p . As the ring cools further, the cooling rate weakens at
lower p, and diffusive effects become comparable again, gradually smoothing out the ring
and driving the system toward f;.

This steady-state solution therefore describes the asymptotic fate of the system under the
combined influence of diffusion and cooling. Importantly, this outcome is largely independent
of the specific origin of the diffusion, the key parameter is the ratio D/Bjy. When collisions or
non-resonant heating are weak, with D < By, the equilibrium distribution is sharply peaked,
and cooling proceeds efficiently to low transverse momentum. In contrast, when D ~ By or
larger, diffusion sustains a broader distribution at higher p, , limiting further cooling. In this
case, the plasma remains hot and anisotropic until the diffusive processes cease, at which point
radiative cooling can take over. This interplay governs not only the equilibrium structure but
also the timing and extent of kinetic instabilities, which will be discussed in Chapter 3.

2.4 PARTICLE-IN-CELL SIMULATIONS

2.4.1 RELATIVISTIC REGIME RING FORMATION

In order to determine the relevant timescales for the ring formation and population inversion
process, an isotropic Maxwellian distribution function is considered; more general distribution
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FIGURE 2.4: Particle-in-cell simulation results demonstrating the evolution of an initial isotropic
Maxwellian distribution (column a), a Maxwell-Jiittner distribution (b), and a beam with bulk ;, = 500
and isotropic Maxwellian spread (c), at t = 3tg. For reference, the distribution function f(py, py = 0) is
shown at t = 0 and t = 3ty on the top row (1). The second row (row 2) shows the perpendicular plane
of the momentum distribution (f, (px, py), where p% = p2 + pﬁ) and the bottom row (3) the f(p, p|)
momentum distribution, at ¢ = 3¢g.

functions, such as a Maxwell-Jiittner distribution function or Maxwellian beam distribution,
is studied numerically.

These results can be generalized to particle beams since our calculations have considered
the proper reference frame of the plasma/beam, where the fluid momentum of the beam
P = 0. For a beam propagating parallel to the magnetic field with Lorentz factor v; all the
previous results can be rescaled by the appropriate Lorentz transformations, tg = 37,/4 & X,
in these conditions, an inverse Landau population is generated and evolves into a ring-beam
distribution, i.e. a beam with a pitch angle anisotropy.

We have performed Particle-in-Cell (PIC) simulations with the PIC code OSIRIS [81], in-
cluding classical [91] and QED [91, 92] radiation reaction to confirm and to explore the theo-
retical findings. The full details of the simulation parameters are included in Appendix A.1.
Simulations with different initial distributions show the formation of the ring at t = 3tg, con-
firming the theoretical predictions for an initially isotropic Maxwellian distribution function
fom with py, = 50mec (Fig. 2.4.a). Equivalent behavior is also evident for an initially isotropic
Maxwell-Jiittner distribution fy o exp(—/kgT) with kgT = 50 m,c? (Fig. 2.4.b). A beam with
7B = 500 and a Maxwellian thermal spread py, = 50 mc in the lab frame also evolved into a
ring in the boosted timescale t = 3y,tg = 37, /4y (Fig.2.4.c).
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FIGURE 2.5: Temporal evolution of the ring radius pg for different initial conditions, showing the agree-
ment between the theoretical predictions (line Eq. (2.25)) and simulations (o classical and x QED) for
different initial Gaussian distributions with momentum spreads 200, 100, & 50 m.c (black, red, and
green)

2.4.2 RING EVOLUTION TIMESCALES

This evolution is further explored in Fig. 2.5, focusing on initially Maxwellian distribution
functions. The evolution of the ring radius, Eq. (2.25), shows excellent agreement with nu-
merical simulations. Results with classical and QED radiation reaction are also shown. The
average yx of the distribution function, ¥, defined as ¥(t) =[5 f1 (p.,t)p3 Bodp, is a useful
quantity to assess the importance of QED radiation reaction. y decreases as the distribution
function cools down (since By is constant). Thus, the maximum x for this configuration is
always x(t = 0) = /71/2xy. In the simulations in Fig. 2.5, g(t = 0) ~ 107® < 1 and, as ex-
pected, in this regime the QED and classical results agree [28]. The discrepancy at early times
in Fig. 2.5 between theory and simulations is due to the range of validity of the theoretical
model (p| < p_) - outside this range the evolution of the distribution function f deviates
from the prediction of Eq. (2.22); at later times, due to the differential cooling, most of f is
within the range of validity of the theoretical model, and a closer match between theory and
simulations is observed.

2.4.3 RING FORMATION & EVOLUTION IN THE QED REGIME Y ~ 1

We have explored the full quantum regime through simulations with xy, = 0.25, 0.5 & 1 by
increasing the magnetic field strength (shown in the supplemental material). We explored this
regime with both classical and QED radiation reaction simulations. Both simulations show
that the rings are formed within similar timescales, the main difference is that the simulations
with quantum synchrotron emission show rings with a larger width than the rings in the clas-
sical simulations (see Fig. 2.6). Another fact to consider is that all distributions that are initially
in the high ¥(t = 0) regime eventually enter the classical regime ¥ < 1. This is expected, as
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FIGURE 2.6: Evolution of an initial isotropic Maxwellian distribution with p;, = 50m,c at t = 3tg. The
simulations employ a magnetic field strength By = 0.005 (normalized to the Schwinger field). Thus,
Xt = 0.25. The momentum distribution is shown integrated over the magnetic field direction, demon-
strating the formation of the ring for both the classical and QED solver in the same timescale.

X =~ prBo, and pr decreases at late times as pg o« t~!. The ring formation in the high xy,
regime and the transition to the classical regime will be studied in future work.

Simulations with By = 0.005 (Normalised with respect to the Schwinger field Bg,), for dif-
ferent values of py,, such that f(t = 0) = 0.25, 0.5 & 1 are presented here. The simulations
employ the QED and classical radiation reaction solvers and develop into ring momentum
distributions within similar timescales. The key difference is that the ring momentum distri-
butions including QED synchrotron emission have a larger ring width. This numerical results
align with the physical picture described in Sec. B, where the inclusion of QED effects results
in a diffusive term into the vlasov equation. This is because QED radiation reaction is the re-
sult of the stochastic emission of photons, this stochasticity results in diffusion in momentum
space similarly to an anomalous collisional operator.

Interestingly, the initial x o p; decreases with time, meaning that the diffusive effects
should become smaller over time. But if the distribution is singificantly bunched up even if
the diffusive effects are small, the extreme gradients in p, mean that the small stochasticity
of QED cannot be fully neglected. In turn, in extreme cases this shall lead to a balance of
bunching and diffusion, providing a minimum ring width, where both effects are balanced.
This is not too different from the concept of almost collisionless plasmas where even if col-
lisional timescales are much longer than the dynamical timescales, one cannot fully neglect
their effects if there are very sharp momentum space gradients [141].

2.5 COMPETING EFFECTS

So far, our study has focused on the onset and evolution of ring-shaped MDFs within ideal
magnetic-field configurations. To understand the regimes in which these ring distributions



2.5. Competing effects 37

150 L L B S B A
Classical
125F o QED 1
—xm=1
100 in = 0.5

3 Xin = 0.25
=75 b
24
IsH
50
0055
2 ot
o o
% 200 100 600 800

t[w!

ce

FIGURE 2.7: Particle-in-Cell simulations in the x ~ 1 regime compared with the analytical results for the
ring radius evolution as predicted for the classical regime, demonstrates that the QED-dominated regime
still produces the ring momentum distribution within a comparable timescale as the classical radiation
reaction. The ring evolution is altered, the rings are wider and they do not grow in radius as much as in
the classical case.

can emerge from synchrotron cooling, we will assess the validity of the presented model and
determine the resilience of the cooling mechanism against other processes that may diffuse
or alter the evolution of the radiative cooling process. We will discuss the effects of curved
magnetic-field configurations; the impact of inhomogeneous magnetic fields, such as mirror
fields or compressional Alfvén waves; and the diffusive effects of collisions.

2.5.1 MAGNETIC FIELD CURVATURE

Curvature effects can be relevant in a macro-scale, such as the case of a beam propagating
along a curved magnetic field. As a result, beam particles will experience curvature and other
drifts. A first estimate for the validity of our prediction for generating kinetically unstable
MDFs [Eq. (2.30)] holds as long as that timescale is much shorter than the light crossing time
of the curvature radius (.), leading to

3¢ _ 3m,c? &
2aBowe ~ 2oe B2

re > (2.40)
This scaling can be written as . [km] > 1.5/(B[10MG])?, which is compatible with astro-
physical compact objects whose scale exceeds kilometers and whose magnetic fields greatly
exceed 10 MG, such as neutron stars (pulsars and magnetars), bright dwarves and black holes,
which are in the order of 10 km and B > 10MG. In the regime where Eq. (2.40) is not ful-
filled, synchrotron cooling will still efficiently occur, and curvature may modify the distribu-
tion function. Our preliminary results of beams undergoing synchrotron cooling in curved
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magnetic-field lines show that including curvature drifts leads to a spiral within a constant
pitch-angle in momentum space [142], which is also an unstable distribution.

The scaling provided by Eq. (2.40) hints that synchrotron cooling might not be easily tested
under current laboratory setups. Nonetheless, configurations such as betatron cooling may
provide easier access to probing the properties of radiatively cooled plasmas with current
technology.

2.5.2 INHOMOGENOUS MAGNETIC FIELDS: MIRRORING FIELDS

At scales smaller than the curvature radius, inhomogeneities of the guiding magnetic field can
arise from magnetic turbulence or the propagation of compressional Alfvén waves, providing
mirror fields that can scatter the ring-shaped MDF and diffuse it. If the mirror interaction
occurs within a timescale shorter than the ring evolution ¢;, we can assume that the magnetic
moment y = p, /B and the Lorentz factor v are constant during the interaction. The particles
comprising ring MDF will be trapped by the mirror and scattered when its pitch angle is
greater than the critical angle of the mirror given by sin 6, = v/By/B 4, where By is the guiding
field and B, is the peak magnetic-field strength in the mirror field [78].

From the insights obtained from studying radiatively cooled thermal plasmas analytically
and numerically [23], we know that particles in beams with a given perpendicular momentum
spread Ap, and average Lorentz factor 1y}, cool down towards p; = p| ~ 0 and cool down
faster in p, as seen by the trajectories in Fig. 2.1. Therefore, the resulting MDF has a ring
radius smaller than Ap, and an average y lower than ;. This results in a beam pitch angle
0 <Api/vp.

For such a beam propagating along a guiding field of strength By to be scattered by a
magnetic mirror of strength B4, the beam pitch angle must be greater than the critical mirror
angle. Thus,

By .o <APL)
— <sin“ [ —— . 2.41
Ba b @4

For small divergences we approximate sin(f) ~ 0, leading to B4 > By/6? for the ring to
be scattered. For astrophysical beams such as those inferred in pulsar magnetospheres and
magnetar outflows, the beam angular spread is expected to be in the milliradian range, 8 ~
1073 [143]. This yields a required mirror field strength of B4 > 10°B for effective pitch-angle
scattering.

Such a large enhancement of the field strength is difficult to achieve via compressional
Alfvén waves or magnetohydrodynamic turbulence, especially in regions where the guiding
field is already strong, e.g., By ~ 10'> — 10'3 G near neutron star surfaces. Even further out
in the magnetosphere, where By may drop to 10° — 10° G, generating mirror structures with
B4 2 10'2 — 10'® G remains implausible. We therefore conclude that in such astrophysical
settings, synchrotron-cooled ring beams are robust against scattering by small-scale magnetic
inhomogeneities and are expected to preserve their features.
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2.5.3 COULOMB COLLISIONS

We have assumed a regime where the synchrotron cooling timescales and the resulting plasma
physics occur on a timescale where collisional relaxation cannot return the plasma to kinetic
equilibrium, i.e., in the collisionless regime. These results are valid for strong magnetic fields;
however, if one considers the weak magnetic-field limit B — 0, then tg, {; — oo, according
to Egs. (2.26) and 2.28. In this regime, collisional effects could inhibit the ring formation
and evolution. We now compare the ring evolution timescale t; to the relaxation timescales
given by collisional processes. We consider three collisional processes capable of diffusing
the ring momentum distribution: lepton-lepton e* + ¢* — e* + ¢*, lepton-ion e* +i —
e* + i, and Compton e* + 7y — e* + 7 collisions. We note that pair production/annihilation
e +et =9+ processes can also be relevant. However, unlike collisional processes, these
will produce/evaporate the pair plasma from/to a photon gas and not necessarily destroy the
ring. This will be investigated elsewhere.

For the case of lepton-lepton and lepton-ion collisions, one can employ the standard kinetic
theory and obtain the relaxation timescales for lepton-lepton and lepton-ion collisions [144—
146]

o — 12732 m2c® 1 , (2.42)
V2 et n.dnA
12732 m2c® 1

_ , 243
el V2 et mZ2InA (2.43)

where 7, is the lepton density, #; is the ion density, In A is the Coulomb logarithm, and, as
we are dealing with relativistic plasmas, we have approximated v, ~ c¢. Comparing both
relaxation times, assuming the fastest case of Z = 1 against the kinetic instabilities timescale t;,
we obtain t; /T, = 107°B~2 [1G] n, [cm 3] In A. Here we are emplying the classical collision
rates, relativistic collisions will have an even smaller rate.

If we consider magnetic fields on the order of a gigagauss, collisional effects only become
comparable to the ring evolution time for electron densities 7, > 10%* cm~3. Such densities
are extremely high and not typical of dilute magnetospheric plasmas. They might occur tran-
siently in the deepest layers of neutron star crusts, but are well above typical densities in the
outer magnetosphere where ECMI is expected to operate.

Conversely, for present-day laboratory conditions with magnetic fields B ~ 10’ G and

plasma densities 7, ~ 1020 cm 3

,one finds t; / Tee ~ In A, implying that collisional effects may
suppress or strongly modify ring formation. This suggests that efficient production of ring
MDFs in the lab requires either lower densities, shorter formation timescales, or mitigation

strategies to reduce collisional scattering.

2.5.4 EXTERNAL COMPTON COLLISIONS

The collision rate for Compton scattering is estimated as v, = 20cn, [147, 148], where ¢ is
the Klein-Nishina cross-section and 7, is the photon density. In the high-energy limit, and
in the electron frame, the Klein—Nishina cross-section peaks for forward collisions, so it can
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be approximated as ¢ ~ m’g/ e’7 [149], where 7, is the classical electron radius and eiY is the
photon energy in the electron frame in units of meCZ. For frontal collisions in the beam frame,
the cross-section transforms to o = 712/ (y.€,), where 7, is the beam Lorentz factor and e, is
now the photon energy in the lab frame, again in units of ,c?. The corresponding relaxation
time is then approximated as

Tey = an M, (2.44)

3cor oy

where o7 is the Thomson cross-section, (7y.) is the average Lorentz factor of the leptons, and
we have taken €, = h(w,), with (w,) the average photon frequency and 7 the reduced
Planck constant. This is taken in the frame of the beam. If we assume blackbody spec-
trum for the photons, we obtain % (w,) /n, = 71>/ (60@2(3)1%7"%) [17], and therefore
% ~ 4.6 B~2[G] T3 [eV] (7.) ~1.We find that t; < T, for gigagauss field strengths and photon
temperatures in the X-ray range (T, ~ keV), which are compatible with astrophysical plasmas

[150].12

In the limit of weak magnetic fields B — 0 according to Eq. (2.26) tg — oo. In this sce-
nario, effects that can inhibit the ring formation must be included in our analysis. That is the
case of collisional processes (e-e, e-i collisions, pair annihilation, and Compton scattering [17,
146]). The competition with these processes (when tg becomes comparable to their typical
time scales) might inhibit the ring formation and the Landau population inversion. How-
ever, for the range of conditions in the magnetospheres of compact objects, such as magnetars
and pulsars, the ring formation time (from Eq.(2.26)) tr ~ O(ps), considering GigaGauss
field strengths and relativistic plasmas with py, ~ 100m,c, is much shorter than all of the
other timescales. For laboratory experiments with 10’s of MG B field strengths and relativistic
pi ~ 10mec, the ring formation occurs in the nanosecond time-scale, which hints that other
configurations might be more favorable to explore this process in the laboratory.

2.6 CONCLUSION

2.6.1 ON THE PERVASIVENESS OF RING DISTRIBUTIONS

We have considered a simplified field configuration, demonstrating the role of differential
cooling of radiation reaction to generate population inversion. This is a general property that
should be observed for other field configurations. Other scenarios and field configurations
where differential cooling can be relevant are associated with betatron oscillations in an ion
channel [126, 151-153] or direct laser acceleration configurations [154]; a population inversion
is also expected in those conditions and this will be explored in future publications.

In this work, we have presented the process under which an initially kinetically stable
plasma undergoing synchrotron cooling will develop into a momentum ring distribution. We

12Here we consider the effect of external photons, i.e., those originating from the stellar surface or already present
in the surrounding plasma. The photons emitted by the plasma itself can also undergo Compton scattering (self-
scattering), which is analyzed separately in Sec. 3.4.1.
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have demonstrated that the cooling process is anisotropic, and one must consider that plas-
mas undergoing synchrotron cooling will be characterized by transverse momentum distribu-
tions with inverted Landau populations, i.e., a ring momentum distribution or non-monotonic
pitch-angle beam distribution.

The model presented in this work employed the classical formulation of radiation reaction
from the Landau-Lifshiftz model. Future studies shall address the development of rings in
the strong QED regime and how this description introduces a diffusive effect. Particle-in-cell
simulations have shown that the LL model accurately predicts the ring radius evolution in
the x ~ 1 regime [23]. Moreover, as the plasma cools down x — 0, it transitions from QED
synchrotron cooling to classical synchrotron cooling. A QED model will allow the study of
the interaction between the synchrotron photons and the plasma via Compton scattering and
the production of cascades or avalanches [155], where a single photon or lepton could self-
generate the whole plasma and produce a ring distribution.

We have studied the timescales for the onset of ring distributions, from which we have con-
cluded that the ring momentum distributions under the astrophysical conditions provided by
compact objects must be pervasive, resulting from the short timescale under which rings are
generated, in the order of picoseconds, for gigagauss magnetic-field strengths. Such short
timescales make ring momentum structures highly resilient to diffusive processes such as
magnetic-field curvature, guiding field inhomogeneities, and collisional effects. Conversely,
for the case of laboratory conditions, the ring formation timescales and evolution are in the
nanosecond timescale, and curvature or inhomogeneities in the magnetic field and the nec-
essary plasma temperatures of py, > mec are a challenge with state-of-the-art technology.
Nonetheless, we conjecture that other radiatively cooled plasmas will also develop a popula-
tion inversion, namely in laboratory conditions, e.g., high-energy particle beams undergoing
betatron cooling are an ideal candidate to study analogous processes [126, 151, 152]. This will
be presented in Chapter 4.

2.6.2 SUBSEQUENT KINETIC INSTABILITIES

In the next chapter we examine the late time evolution of this system, where the ring momen-
tum distribution evolved for longer times, to assess the onset of the electron cyclotron maser
instability (ECMI) by the inverted Landau population, as the ring momentum distributions
are well-known to be kinetically unstable [119-123].

The ring will be formed and evolve until the onset of the instability. An important fact to
consider is that independently of w), /w¢ (and even for w,/we < 1), the ring will continue
to constrict (and df/dp, to increase), to the point for the onset of the maser process and the
emission of coherent radiation.

So far two distinct kinetically unstable regimes have been identified: when § >> 1, where
B = 87tkpT/B? is the plasma pressure to magnetic-field pressure ratio, the pressure anisotropy
due to the anisotropic synchrotron cooling will lead to the firehose instability [24], and, in
contrast, when < 1 due to wp, < we, the inverted Landau population will dominate and
lead to electron cyclotron maser emission[23]. Nevertheless, preliminary results, which will
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be the subject of future work, have shown that for large p and wpe < w, (relevant for low-
density plasmas with initially relativistic thermal energies) the plasma transitions from > 1
to B < 1, where the synchrotron firehose will be triggered, first followed by the electron
cyclotron maser.

It is generally accepted that coherent emission processes must be at play around compact
objects [124, 127]. Among these processes, the electron cyclotron maser instability requires a
Landau population inversion [119-123]. Moreover, some of the other proposed coherent emis-
sion mechanisms assume strongly radiation cooled down beams where p; < m,c [49]. We
have demonstrated that in scenarios with strong radiation reaction cooling, transverse mo-
mentum distributions with inverted Landau populations are pervasive. These distributions
are unstable and can drive coherent emission via kinetic plasma instabilities. Our analytical
model shows excellent agreement with numerical simulations, demonstrating the relevance of
this process in the classical and in the QED regimes of radiation reaction.

We will build upon this insight in Chapter 3, where we outline a concrete astrophysical
model based on this mechanism. In particular, we propose a scenario in which pair plasma
is injected into the magnetosphere of a neutron star, undergoes stochastic heating via per-
turbations in the magnetic field, and then cools radiatively to form a ring distribution. The
resulting population inversion triggers the electron cyclotron maser instability and leads to
coherent emission. This scenario is presented in detail in Section 3.5.

We conjecture that our findings are also valid for other field configurations, namely in
laboratory conditions, e.g. the focusing field of ion-channels in laboratory conditions with
betatron oscillations [126, 151, 153], also opening the way to the laboratory exploration of
Landau population inversion via radiation reaction cooling. This is explored in Chap. 4.

In conclusion, the full impact of radiation reaction cooling in the collective plasma dynam-
ics has begun to be comprehended. The current results have applications for astrophysical
processes, especially coherent maser radiation and firehose magnetic-field amplification. We
conjecture that these are the first examples and that further work on different electromagnetic-
field configurations will find new collective plasma physics triggered under extreme plasma
physics conditions in laboratory or astrophysical settings.



CHAPTER 3

SYNCHROTRON INDUCED COHERENT MASER
EMISSION

This Chapter is adapted from: P. . Bilbao, ef al., Sci. Adv. 11.15: eadt8912 (2025)

3.1 INTRODUCTION

Relativistic plasmas are expected to arise around neutron stars, black holes, white dwarfs and
other astrophysical compact objects through various mechanisms, e.g., pair cascades [30, 32,
34, 156, 157], and in laboratory experiments, e.g. with intense lasers or relativistic particle
beams [21, 61, 66, 72, 158-160]. These highly energetic plasmas, with electron energies compa-
rable to or higher than the electron rest mass, form in environments with intense electromag-
netic fields, which can sometimes approach the magnetic Schwinger limit (Bs. ~ 4.4 x 10°T)
[27, 90, 101, 104, 105]. Under these conditions, quantum electrodynamical (QED) processes,
such as non-linear Breit-Wheeler, quantum Compton scattering, and quantum radiation reac-
tion, are dominant or comparable to classical plasma processes. Therefore, phenomena such
as turbulence [53, 96, 161], shock formation [48, 162], laser-plasma interactions [99, 104, 105,
160] beam-plasma interactions [95], and, as shown here, kinetic instabilities, will exhibit sub-
stantial quantitative differences from their classical plasma counterparts and also manifest
qualitatively distinct behaviours and features [15].

The complex nature of plasmas in extreme electromagnetic environments has driven sub-
stantial interest in investigating their kinetic properties. Even simplified electromagnetic field
configurations show rich phenomena and can yield surprising results. For instance, plas-
mas undergoing strong synchrotron cooling have been shown to develop an anisotropic ring-
shaped momentum distribution, characterised by a population inversion over the Landau lev-
els,df /0p, > 0, where f represents the plasma momentum distribution and p; the momen-
tum perpendicular to the magnetic field B, as was first demonstrated in this thesis (See Chapter
2) [23].

However, despite these advances, the collective properties of such strongly magnetised
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plasmas remain underexplored, particularly regarding the self-consistent electrodynamical ef-
fects. Theoretical and experimental investigations are needed to fully understand plasmas in
this extreme regime.

One major challenge is that first-principle simulations are constrained by the vast separa-
tion of relevant spatial and temporal scales, which differ by several orders of magnitude. This
requires using high resolutions over large simulation domains to capture all relevant physics,
both spatially and temporally. The computational resources necessary to perform such numer-
ical simulations, including all the relevant physics, has only recently become available. Repli-
cating these extreme conditions in laboratory experiments is also highly challenging, and only
recent advancements in experimental techniques have made it possible to generate plasmas
under such extreme environments [61, 66, 72].

In this study, we address this gap by conducting the first and largest scale, first-principles
numerical simulations that demonstrate how relativistic plasmas embedded in strong mag-
netic fields can spontaneously produce linearly polarized coherent radiation via the electron
cyclotron maser instability (ECMI) [120, 163-165]. We demonstrate how the instability is qual-
itatively modified by the inclusion of synchrotron losses. This phenomenon occurs in collision-
less plasmas with relativistic temperatures, where radiation reaction plays a crucial role. Our
simulations reveal that synchrotron cooling first establishes the Landau population inversion,
in the shape of a ring momentum distribution, and then maintains it for longer timescales than
previously thought possible [166], leading to continuous coherent amplification of radiation
and a modified saturation state of the maser instability.

3.2 ELECTRON CYCLOTRON MASER INSTABILITY IN THE SYN-
CHROTRON COOLED REGIME

First we present an intuitive explanation of the electron cyclotron maser instability (ECMI),
as it highlights key features that will later be observed in the simulations. A full analytical
description will follow in the next section.

The ECMI arises from a form of Cherenkov resonance, which amplifies or damps electro-
magnetic waves depending on the distribution of particles near the resonance. In a magne-
tized plasma, this mechanism differs from the standard Cherenkov resonance found in Lan-
dau damping, which involves particle velocities parallel to the wavevector. In contrast, the
ECMI operates through the particle’s gyration frequency, making it inherently coupled to the
magnetized, perpendicular dynamics of the plasma.

The X-mode ECMI arises from a plasma characterized by a population inversion, i.e. df /dp | >
0, and a narrow spread in p||. An illustration of the electron cyclotron maser instbility bunching
process is shown in Fig. 3.1, where electrons gyrate in the plane perpendicular to the magnetic
field, and interact with X-modes, which are linearly polarized electromagnetic waves whose
wavevector and electric field are perpendicular to the guiding magnetic field, ie., k L B,
E 1L B, and k L E. Depending on whether the electrons rotate slightly faster or slower than
the wave phase, they are accelerated or decelerated; consequently, their gyrofrequency (we./y,
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FIGURE 3.1: Qualitative illustration of the bunching process in momentum space. The circle represents
the gyration of the perpendicular momentum p ; in phase space. Particles on the left (right) side satisfy
p. -E; <0 (> 0)and accordingly gain (lose) energy from the wave. This energy exchange modifies the
relativistic gyrofrequency we. /7, shifting the particle’s phase relative to the wave. As a result, particles
bunch along the direction of wave propagation k, where the net energy exchange is minimized. As
the wave propagates and the electric field reverses, the direction of bunching also reverses, leading to
an oscillatory bunching pattern. When the relativistic gyrofrequency matches the wave frequency, this
interaction becomes resonant: bunching reinforces the wave, and the amplified wave further enhances
the bunching (Diagram inspired by Ref. [167]).

where 7 is the Lorentz factor of the particle) decreases or increases, respectively. For the wave
to gain energy from the particles, more electrons must have gyrofrequencies (or its harmonics)
slightly below the wave frequency (w 2 nwe. /7). This requires of /dp, > 0, ensuring that
more particles transfer energy to the wave than they extract from it. The energy transfer ampli-
fies the interacting X-mode waves at the fundamental and harmonics of the electron gyration
frequency within the population inversion through phase trapping. As the wave is amplified,
more electrons are phase-trapped, generating an unstable feedback [163, 167]. The ring-shaped
momentum distribution is an ideal candidate to drive the X-mode ECMI, but until now there
was no natural mechanism to generate a plasma with a ring momentum distribution.

3.2.1 ANALYTICAL EXTIMATES FROM KINETIC THEORY

The evolution of the synchrotron-cooled plasma, the subsequent growth rate of the X-mode,
and the dynamical timescales of the instability, as will be seen in the simulations, can be di-
rectly computed from kinetic theory with the inclusion of radiative losses [23, 24, 100, 113, 116].
For a tenuous pair-plasma in a strong magnetic field, the momentum distribution of a plasma

I=tp, 7 1=7p,
a normalised time such that T = (2a/3)Bywe.t, where By = B/ Bs. and « is the fine-structure

evolves as f(pL,p|, T) = f ( L dl ) / (1—1p,)* where p, is normalised to m,c, T is
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constant [23]. An important feature is that f is bounded between 0 < p; < 3/(2aBywe.t) and
that the resulting ring radius asymptotically approaches the boundary at pg = 3/ (2aBowe,t)
[113]. Thus, a relativistic plasma, independently of the initial shape of f, will develop into
an anisotropic ring momentum distribution [23, 24, 113, 168]. This results from the nonlinear
nature of synchrotron radiation, which bunches the momentum distribution in the radial mo-
mentum direction p,. The radiation reaction force violates the conservation of phase-space
volume, in contrast with the classical collisionless plasma dynamics mediated by the Lorentz
force [88, 141]. Therefore, synchrotron radiation drives the plasma away from kinetic equilib-
rium and eventually fulfils the conditions for efficient maser emission.

We consider a relativistic pair plasma embedded in a strong background magnetic field By,
where synchrotron cooling leads to the formation of anisotropic ring momentum distributions.
These non-equilibrium distributions naturally excite electromagnetic waves via the electron
cyclotron maser instability. Among the possible wave modes, we focus on the X-mode, which
exhibits the fastest linear growth. The X-mode corresponds to a transverse electromagnetic
wave propagating nearly perpendicular to By, with its wave vector k L By. Its electric field
E lies perpendicular to both k and B, that is, E || By x k. The group velocity points outward
from the emission region, allowing for efficient energy extraction from the ring distribution
through resonant interaction with the wave field.

The growth rate of X-modes,! T' (obtained from first-principles kinetic theory with the in-
clusion of radiative losses in Appendix E), as a function of t and the wave angular frequency w
can be approximated by employing the WKB approximation, which for w¢e > wpe simplifies

to dT'/dt < w? [169], and yields
wyp' 2
{]’/1 (mfﬂ } ' G
pL=pL ce

where p'| = \/n?w?,/w? —1 is the resonant momentum with the given frequency w, J;,(b)
is the first derivative of the nth order Bessel function evaluated at b, f, (p,,t) is the per-

T(w,t) = 2712“6’5’3 i {p/z df 1 (t)

n=1 * aPL

pendicular momentum distribution, i.e., integrated over the parallel direction f, (p,,t) =
I fp,py tdpy.

Initially, I' changes rapidly as the cooling process is fast due to the initial thermal spread.
As the plasma cools, f changes slower, and dI'/dt o d (df /dp, ) /dt decreases accordingly.
This gradual slowing of the cooling process at lower values of p | ultimately ensures the va-
lidity of the WKB approximation.? This is true after the ring formation time as the gradient
becomes larger and the cooling rate slows down. Therefore, the WKB approximation is valid
and Eq. (3.1) provides a good approximation for the growth rate of the electronic cyclotron
maser instability due to synchrotron-cooled rings. Equation (3.1) shows some of the key uni-
versal emission features characteristic of the synchrotron-induced electron cyclotron maser:

1We also compute the growth rate of the O-modes and electrostatic modes, which we find grow significantly slower
than the X-mode (See App. E.2.3 & App. E.2.4).

2The WKB condition requires that the frequency of the wave varies slowly in time, i.e., [w?| > |@|. Since w ~ we,
and the variation arises from the slow evolution of the background distribution fo(t), this translates into |[T?| > |T|
once the ring forms and the gradient becomes steep, i.e., valid at late times.
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FIGURE 3.2: The key emission features of the cyclotron maser instability are demonstrated by temporal
evolution of the X-mode growth rate, I'(w, t), as described by Eq. (3.1), for a typical initial distribution
function, f, (p,,t = 0) = e*”i/(zF’rzh)/pfh (27r)1/2, where py, = 100 m,c. Since the ring distribution
is a general characteristic of hot plasmas (i.e., those with p;;, > m.c) undergoing synchrotron cooling,
this initial distribution function effectively represents the qualitative behaviour of maser emission under
various initial conditions [23, 113]. The figure demonstrates that the emission is evenly spaced in w-
space, as evident from the line-out of I'(w, t = 0.1657) shown in the inset, which highlights the emission
and absorption regions, where I' > 0 and I' < 0, respectively. The emission predominantly occurs near
the harmonics of the resonant frequency, which gradually converge towards the harmonics of wc, as the
ring distribution cools down and asymptotically approaches p, = 0.

i) the amplification rate is proportional to the plasma density w,z,e & 1, ii) it occurs near the
different cyclotron harmonic resonances we. /%, and iii) is proportional to df, /9dp | .

To illustrate the properties of the growth rate given by Eq. (3.1) we determine I for a typical
distribution function f, (p,,t = 0) = efpi/(zl’%h)/(pfh (271)1/2), with py, = 100 mec. Since the
ring distribution is a general feature of hot plasmas (i.e. those with py, > m.c) undergoing
synchrotron cooling, this initial distribution function is a good representative of the qualitative
properties of the maser emission for other initial conditions [23, 113]. The dashed line in
Fig. (3.2), follows p; = 771, ie., the boundary of the momentum distribution due to the
cooling. Just below that boundary and above the ring radius pr, the momentum distribution
has a small region where df, /dp; < 0, with a width of that can be found analytically to
be Ap ~ p%/(\3pm) = 1/(V/3py,12). For values below the ring radius, there is a region of
comparable width to Ap wheredf | /dp; > 0. Therefore, the momentum distribution resulting
from synchrotron cooling fulfills the stringent conditions to obtain efficient maser emission,
i.e. having a step gradient in p, and a small spread Ap. These conditions lead to a small

emission region above the frequency wc./ /1 + p%, and a small absorption region between
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wee/ (/14 p% and wee/\/1+ (pr + Ap)z.

The maximum growth rate at the fundamental frequency can be estimated by approximat-
ing dof, /opy ~ f1 (pr, T)/Ap, f(pr,t) = 1/(4tprAp) and w ~ we. /7y in Eq. (3.1),

2 2
37T Wpe PRYR 1711112 . 3T %pe 2 o
Ty ~— 1 ~ _— 3.2
70 we Ap2 e) 16 wee T (32)

This expression approximates the value for the fastest-growing mode and frequency (the fre-
quency in resonance with the ring radius), and demonstrates that an initial plasma with a
higher py;, leads to a higher growth rate as it leads to a distribution function with regions of
large 0f /dp,, moreover later times also increse the value of df /dp |, hence why I increases
as T2. We show the estimate for 'y in the inset axis of Fig. (3.2).

3.2.2 ESTIMATE FOR THE ONSET TIME

Due to the dynamical evolution of f, I' > 0 is not a sufficient condition for the efficient am-
plification of radiation. It is also necessary that the ring can provide several e-foldings to the
interacting wave before dephasing. In other words, Fil, has to be shorter than 7, i.e. the time
the ring is in resonance with a given frequency w. Given an w there is a resonant momentum
p1 = \/n?w?/w? — 1, when waves are in resonance with particles closer than Ap to the ring
radius pg so that they lie in a region with I > 0 and are amplified. This continues for a time 7
until the ring has cooled down to the point where the resonance is now at the ring radius and
I'x = 0 for that w. Thus, the in-resonance time 7; is the time it takes the ring momentum dis-
tribution to cool from a ring radius py to a ring radius pgr — Ap. From the equation of motion
one can show that & ~ Ap/p% ~ 7/(v/3py), where T is the time since the beginning of the
cooling process. The in-resonance time T, is inversely proportional to the cooling rate. Thus,
the in-resonance time becomes longer as the ring cools down.

Then we can compare t, > N l";(l where t, = 31, /2aBy, and N is the number of e-foldings
that can occur within the in-resonance time (when comparing with numerical values we take
N = 10). This is fulfilled at a time

N B B 1
fo = e |20 , (33)
\/57'[06 Ne Pth WeeWpe

or t, [12 us] =~ (B [MG] n [10° cm~3] pyy, [100 m,c]) ~1/2 (for N = 10); t, determines the time at
which coherent emission begins, from the beginning of the cooling process. We note, that t,

may not be exact for any initial distribution f, or for wp, < we,, still we argue that the scalings
captured by Eq. (3.3) will hold. We note that the time until the onset of the electron cyclotron
maser instability decreases as the radiation reaction effects become more relevant (at higher
By or py,) and when the effects of the plasma become more relevant, i.e. higher wy.. These
scalings have been confirmed with PIC simulations (See Sec. 3.3.2).
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FIGURE 3.3: Self-consistent particle-in-cell simulations demonstrate the onset of electron cyclotron maser
instability (ECMI) and coherent amplification of radiation. The temporal evolution (from left to right)
of the plasma distribution function f(r, p,t), shown as a 3D projection, ps-p3-xi, of the 6D phase-space,
where p; and p3 are the momentum directions perpendicular to the B-field, with B/Bs. = 0.002, and
X is the spatial direction along the propagation of the X mode (also perpendicular to B). Two isosur-
faces of the distribution function are represented: the light blue and blue surfaces are at 0.5 and 0.8 of
the peak value of the distribution function, respectively. The projection in the bottom plane (red-blue
colours) represents the normalized amplitude of electric field associated with the amplified electromag-
netic wave (X-mode). A sample of the plasma particles is also shown, with the colour representing their
azimuthal phase (between 0 and 27, from red to blue) with respect to the amplified electromagnetic
wave. Left: Initially, the plasma consists of a Maxwellian thermal population with initial momentum
distribution f « e_|P‘2/ <2P$h), where py, = 1000 m,c, and no X-mode is observed, the particles have ran-
dom phases. Middle: a ring momentum distribution function has developed due to synchrotron cooling
and amplification of the X-mode begins, but particles are still arranged in random phases. Right: the
amplified X-mode is evident and the ring is azimuthally bunched along the direction of propagation of
the X-mode, as seen by the spiral structure in phase space, and the clear phase alignment, as seen by
the colour of the particles and matching of the wave phase with the phase-space structure, following the
corresponding colour scale.
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3.3 PARTICLE-IN-CELL SIMULATIONS

3.3.1 MASER EMISSION FEATURES

We have investigated, through large-scale, high-resolution particle-in-cell (PIC) simulations
(see Appendix A.2), tenuous pair plasmas embedded in strong magnetic fields, where the cy-
clotron frequency wc, = eB/m, is much higher than the plasma frequency wpe = /1.2 / (eome)
where e and m, are the electron charge and electron mass, respectively; 7, is the pair plasma
density, ¢¢ is the permittivity of free space. To the best of our knowledge, these simulations
represent the most extensive study in terms of both spatial and temporal scales for this system
to date. PIC simulation results, shown in Fig. 3.3, illustrate that an initial thermal population,
in its proper rest frame, evolves into a ring momentum distribution characterised by steep
gradients in the perpendicular momentum component p; with respect to the B field, and a
narrow energy spread Ap . This evolution triggers the efficient onset of the ECMI, which co-
herently amplifies electromagnetic thermal fluctuations in the magnetised plasma, generating
X-mode electromagnetic waves. This process leads to phase trapping by the amplified wave, a
characteristic signature of the instability, as confirmed by the phase-space projection after the
onset of the instability, shown in Fig. 3.3.

The electromagnetic spectrum of the amplified X-mode is shown in Figure 3.4.a, and demon-
strates that the X-mode spectrum peaks near the regions with the highest I, with the first three
harmonics being amplified, whereas the 4th is much weaker, as analytically predicted (see Fig.
3.2). The degree of polarisation, in Fig. 3.4.b, demonstrates that the self-consistent radiation
resulting from emission is highly linearly polarised. This is a result of the X-mode being the
fastest-growing mode in highly magnetized plasmas [170].

The degree of linear polarization, which can be synthetically computed, is defined as [115,

171,172]
I1=+/Q2+U2/I (3.4)

Here, I = (E?) + (E?), Q = (E?) — (E%), and U = (E%) — (E2), where E, = (E; + E3)/V2
and E, = (E; — E3)/+/2 correspond to projections of the electric field onto a Cartesian basis
rotated by 45°. These quantities form the Jones basis for characterizing linear polarization.
The circular polarization basis is defined analogously with 1 = (¥ +ix3)/v/2 and # = (%1 —
iX3)/ V2.

Since we use grid diagnostics, the electric field components are sampled directly from
the simulation plane. For each fixed transverse position xi, the squared field components
Eiz(xl,xz, t) are integrated along the line-of-sight direction x; (denoted y) to yield the pro-
jected quantities as functions of x; and t. That is, (E?) (x,t) = Liy fOLy E?(x1, X2, t) dxp, where
Ly is the perpendicular size of the simulation domain. This defines the spatial average along x
at each instant of time. The resulting Stokes parameters I(x1,t), Q(x1,t), U(x1,t) can then be
used to compute the time-resolved degree of linear polarization across the simulation domain.

In the simulation, we consider an array of synthetic observers located along the transverse
direction xq, each with a line of sight along %X, perpendicular to the background magnetic
field %X;. For each fixed x1, the field components E; and Ej are recorded along x;, and the
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FIGURE 3.4: PIC simulations illustrate the temporal evolution of the X-mode electromagnetic spectrum
and energy, which agree with the theoretical estimates, both qualitative and quantitatively. Panel a)
shows the Fourier transform of the electric field component E3 which is perpendicular to both the ambi-
ent magnetic field (of amplitude B) and the wave vector k. This spectrum shows the ongoing evolution
of the electromagnetic fields during both the linear and non-linear phases of the instability. Theoretical
predictions for the maximum growth rates (i.e., the resonant frequencies) are overlaid as grey dashed
lines. Panel b) shows the time evolution of the normalised electric field amplitude (black line) and the
degree of polarization, derived from the Stokes parameters (blue line). The estimate for the linear growth
rate I', obtained by numerically solving the full dispersion relation, is compared with the simulation re-
sults after the onset of the maser instability but still at early times (f, < t < 12000 wg'), shown as a red
dashed line, which follows the relation Ej o !,
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FIGURE 3.5: Particle-in-cell simulation results demonstrate the correlation between the onset of electron
cyclotron maser instability and the relevant parameters. The top row depicts the field energy for different
simulations, each varying a single parameter per column. In the bottom row, the onset time for each
simulation is presented in a log-log scale, showcasing its dependence on the varying parameter. The first
column shows the results from varying the magnetic field By = B/Bg.. The second column shows the
results from a varying initial thermal spread py,. The last column shows the results from varying the
plasma frequency wy,. The simulation outcomes are compared against the expected dependencies from
Eq. (8) in the main text. Dashed lines represent the expected dependencies on By, py,, and wp,, which

1/2[ —-1/2 -1

are to « By for a fixed (wpe/ wee ratio)], and t, « p;, Wpe s respectively.

polarization quantities I(x1), Q(x7), U(x1) are computed by averaging the appropriate Jones
projections along the line of sight. These are then further averaged over x; to yield the to-
tal Stokes parameters, providing a synthetic diagnostic analogous to an unresolved far-field
detector.

The result from this synthetic diagnostic for the percentile degree of polarization, in the
PIC simulations, is shown in Fig. 3.4.B. Initially, the electromagnetic radiation is mostly un-
polarized, later once the onset of the electron cyclotron maser instability (t ~ 6000 wz') the
radiation becomes highly linearly polarized reaching a maximum IT = 99.8%. This is ex-
pected due to the fact that the fastest growing linear mode is the X-mode, as demonstrated in
Appedix E.

3.3.2 PARAMETER SCAN OF THE ONSET OF THE ECMI

In order to demonstrate the validity of the scaling of the onset time (i.e. Eq. (3.3)) a set of PIC
simulations were performed while varying the key parameters. The results of this simulation
campaign (displayed in Fig. 3.5) confirm our understanding of the tiemscales and onset of the
instability.

The simulations performed are 1D3V, with the background magnetic field aligned perpen-
dicular to the x;-direction. This configuration allows the propagation of X-mode waves with
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k L Bp. A parameter scan confirms that the onset time for the instability, expressed in cy-
clotron periods, scales as ¢, pt;\l/ zw;el.
magnetic field strength while keeping the ratio w¢,/wpe constant. In this case, increasing By

also increases wpe, and since t, « Bé/ 2/ wpe, the resulting scaling becomes t, « B, 172,

An additional scan was performed by varying the

To extract the onset time numerically, we track the energy stored in the E3 component of
the electric field, which is the polarization direction of the X-mode. The onset of the instability
is identified as the time at which the growth rate of the electromagnetic energy becomes ap-
preciable. Specifically, we define the onset time as the earliest moment when the slope of the
energy curve satisfies the condition AE?/At > 0.001 E2 ., where AE?/At is the finite differ-
ence between successive diagnostic outputs, and E2,, is the maximum electromagnetic energy
recorded during the simulation. All quantities are evaluated in the normalized (simulation)
units. While somewhat arbitrary, this threshold reliably captures the change in slope associ-
ated with the transition to exponential growth, and provides a consistent and robust estimate
of the onset time across different parameter scans (see Fig. 3.5).

3.3.3 NON-LINEAR DYNAMICS OF THE ECMI IN THE SYNCHROTRON DOM-
INATED REGIME

The classical ECMI, a collisionless plasma process, reaches saturation due to the azimuthal
phase trapping of the particles by the wave. As phase-space volume is conserved, when parti-
cles are azimuthally trapped, their momentum distribution must expand radially, broadening
the ring distribution and reducing its gradient df /dp . This eventually stabilizes the classical
ECMILI. Before saturation, and for the electrons to provide energy to the wave, it is necessary
that 6w = w — we/7 = 0[163]. At saturation (t ~ 1.2 x 10 wc’el in Fig. 3.4), particles
overshoot the phase trapping condition and now dw < 0: particles extract energy from the
previously amplified wave. This is a well-known phenomenon [163], that explains the dip in
electric field amplitude at t ~ 1.5 x 10* w,! in Fig. 3.4.b and the saturated state, as shown in
devices such as Gyrotrons, FELs, and ICLs [163, 164]. PIC simulations capture the ECMI well
beyond the linear regime and demonstrate that synchrotron-cooled plasmas evolve differently
in the non-linear stage of the instability, as seen in Fig. 3.4.A: surprisingly, the spectrum con-
tinues to evolve with the X-mode spectrum shifting to higher frequencies and widening the
spectrum. The emitted radiation is trapped in our simulation domain, mimicking an infinite
plasma volume. For a finite volume plasma the X-modes escape and convert to light waves,
our numerical simulations with finite plasmas confirm this picture.

The synchrotron-cooled ECMI introduces additional dynamics due to the effects of radia-
tive losses, which do not conserve phase-space volume. As particles radiate synchrotron emis-
sion, they continue to bunch in the radial momentum direction. This creates a competition
between azimuthal phase trapping, driven by the ECMI, which diffuses the gradient in p,,
and radiative losses, which continually attempt to bunch the distribution radially and sustain
the gradient in p . The radiative losses are thus responsible for both establishing the initial
ring distribution and maintaining it throughout the emission process.

PIC simulations confirm this interplay, as demonstrated by the evolution of the perpendic-
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FIGURE 3.6: PIC simulations illustrate that ring distributions are sustained beyond the linear regime of
the ECM instability. This is seen in the evolution of a radiatively cooled electron-positron plasma under-
going the ECMI, starting from an initial Maxwellian distribution with py, = 1000 m,c. Column 1 displays
the electron momentum distribution integrated along the magnetic field direction x1, f| (p2, p3), while
Column 2 shows the spectrum of the associated X-mode wave, with vertical dashed lines indicating the
expected harmonics, as predicted by our theoretical model. Each row (a-d) corresponds to a different
time in the simulation: a) shows the developed ring distribution from an initial Maxwellian plasma; b)
shows the onset of the ECMI, characterised by phase trapping (the positrons, not shown here, bunch up
on the opposite phase of the ring), and narrow emission observed in the spectrum; c) shows the widen-
ing of the ring distribution as the system reaches the standard ECMI saturation point; d) demonstrates
further evolution of the distribution as the instability transitions to the non-linear regime, where the ring
widens and the emission becomes broader.
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ular momentum distribution of the plasma as it transitions from the linear to the nonlinear
regime of the instability. After the establishment of the ring distribution with a narrow mo-
mentum spread (Fig. 3.6.A), the onset of the instability produces azimuthal phase trapping
characteristic of ECMI (Fig. 3.6.B) and efficiently amplifies the harmonics (Fig. 3.6.F). At the
point of classical saturation, the ring continues to contract and is sustained, as evidenced by
the smaller radius (Fig. 3.6.C), and the frequency of each harmonic undergoes a slight upshift
(evident in Fig. 3.4.A and Fig. 3.6.G).

The phase trapping caused by the amplification process radially widens the ring, but this
is counterbalanced by the bunching effect of radiative cooling, leading to a broader yet still
well-defined ring (Fig. 3.6.D). Consequently, the electromagnetic spectrum broadens at late
times (Fig. 3.4.A and Fig. 3.6.H), indicating that the nonlinear stage does not entirely inhibit
population inversion. The ring structure in momentum space remains intact, and the ECMI
continues to be active well beyond the timescales presented in this work (Fig. 3.4.D).

Eventually, the ring will cool down to T ~ mec?/+/3, and the instability overcomes the
bunching process (as the synchrotron losses which sustain the ring become less important
[113]) and the ring is diffused, stopping the ECMI and emission process. This occurs when
the ring cools down to a ring radius pr ~ mec/ /3, which determines for how long the ring
structure and emission can be sustained. In the plasma proper frame that is comparable to
tem =~ 2west /\/3&By, OF tem [400 us] ~ (B [MG]) 2, which is independent of the plasma pa-
rameters, as it is a timescale determined solely by the cooling process when t.,; > t,.

Therefore, after the onset of the maser at t, (Eq. (3.3)) the ring and the ECMI, will be sus-
tained until ¢,,,, producing a long pulse of radiation. This finding addresses a major criticism
of the ECMI as a source of “long-lived" coherent radiation [173]. In relativistic plasmas, the
onset of the maser instability does not disrupt the population inversion, allowing continued
emission. Radiative effects sustain the population inversion, enabling the maser to operate
over prolonged periods. Interestingly, depending on the plasma parameters, the ring can form
and cool below pgr ~ mec/ /3, before the onset of the ECMI, and in that case t, > fem. In this
scenario, the onset of the ECMI can still happen, and the ring will begin to diffuse right after
saturation. Radiative losses will not be able to reform or sustain the ring, resulting in a single
pulse of electromagnetic waves that escapes the plasma, resembling the classical ECMI.

3.4 DISCUSSION

3.4.1 COMPETING PROCESSES

The necessary plasma parameters for relativistic plasmas to emit coherent radiation via ECMI
can be determined by guaranteeing that a hierarchy of timescales is fulfilled. Firstly, the on-
set of the instability ¢, (Eq. (3.3)) must be earlier than any diffusive process, e.g. Coulomb
collisions, Compton collisions and pair annihilation.

For the efficient onset of the maser the ring must not collapse to the lowest Landau level

before the onset of the instability. The first quantum Landau energy level is given by E;j =
heB/mec, and in momentum that is p; o = heB/m.c?. This scales as p; g [mec] ~ B [Bsc]. There-
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fore, the time needed for the momentum space to fully collapse into the quantum levels is
Handau == %BO_ ch—el' Thus, the onset time (t,) must be shorter than t},,4.u-

We consider three relevant collisional processes that could diffuse the ring distribution
before the onset of the ECMI. These processes are: (i) Coulomb collisions, (ii) pair annihilation,
and (iii) Compton scattering from synchrotron self-emission. The relaxation timescale for each
process is defined as the inverse of its corresponding collision frequency.?

The relaxation timescale due to Coulomb collisions is given by [113, 144, 146]
1273/2 dmac® 1

“T /2 & nlnA’ (35)

where 7 is the plasma density, In A is the Coulomb logarithm (we take it to be of order unity),
and, as we are dealing with relativistic plasmas, we have approximated v, ~ c.* Alternatively,
tee =~ 5/(207cn) and te, [s] ~ 1.25 x 10'*/(n [cm~3]), where o7 is the Thomson cross-section.

For pair annihilation, the relaxation timescale is estimated using the cross-section for electron-
positron annihilation, which can be approximated by the Thomson cross-section o7 [17, 174].
In this case, the plasma is not simply diffused but rather "evaporates” as electron-positron
pairs annihilate and are converted into high-energy photons. This process removes particles
from the plasma, leading to its gradual depletion. The timescale for this "evaporation" process
is teva = 1/(207cn). We note that this timescale is comparable to fe.

The relaxation timescale due to Compton scattering, induced by synchrotron self emission,
can also be estimated. For the purpose of this discussion, an overestimate of the collisional
effects suffices. The collisional frequency is defined as v., = 2corn,, where n,, is the photon
density. The photon density can be estimated as the energy budget divided by the average
energy per photon, i.e. n, = AE/h(w), where AE is the change in energy of the electron
population as it cools, (w) is the average synchrotron photon angular frequency, and 7 is the
reduced Planck constant. The change in energy in the electron populationis AE = p?,n,7/(1+
pT), obtained from the equations of motion [23, 113], where T = %szgth_el with ¢ being
the time elapsed since the beginning of the cooling, and py, is the initial thermal spread. We
assume the average frequency (w) to be the critical frequency for a given ring radius at time ¢,,
which may underestimate the actual average frequency since electrons have higher energies
earlier in the process. This overestimates the photon density at time t. This can be used to
estimate the photon density and subsequently the relaxation time due to synchrotron self-
emission at the onset time t,, te, = 1/(20Tp2}{330n3/3n3/3), where 1, ~ 5 x 10° cm 3, and
tey [3.5 x 108s] = By (ne [em ™3] pyy, [mec])~1/3. This estimate demonstrates that before the
onset of the ECMI, the timescale of relaxation due to synchrotron-self-compton is much larger
than Coulomb collisions.

In this estimate, we have neglected the non-linear Breit-Wheeler mechanism, where pho-
tons convert into pairs. This reduces the photon density, which would lengthen the relaxation
timescale. Moreover, while the plasma is large, high-energy photons can have mean free paths

3Collisional processes were previously discussed in Sec. 2.5, where their timescales were compared to the ring for-
mation time. Here, we revisit those same processes to assess whether they can inhibit the subsequent development of
the ECMI, whose onset time may be significantly longer depending on plasma conditions and magnetic field strength.
“This strictly over estimates the collision rate, but it suffices for the purpose of this discussion.
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FIGURE 3.7: The comparison of relevant timescales for the onset of the synchrotron ECMI demonstrates
that maser emission occurs for a wide range of plasma and magnetic field parameters. As presented
across three panels, each corresponding to different initial thermal energies and defined by plasma den-
sity, magnetic field strength, and initial thermal energy. Regions in dark blue indicate where the maser
instability triggers and sustains continued emission, occurring before competing processes like colli-
sional relaxation or cooling to quantum Landau levels can interfere. The top left white region highlights
conditions where collisional relaxation dominates, diffusing the ring structure and preventing efficient
maser emission, while the right-hand white region shows where cooling to quantum Landau levels oc-
curs before the maser instability can develop, rendering the plasma degenerate and preventing maser
onset. A light blue region represents conditions where the maser instability triggers with a single burst
produced, as the onset occurs after the ring has cooled below the threshold thermal momentum needed
for sustained bunching. A white dashed line marks the boundary where the plasma beta parameter j3,
i.e. the ratio of plasma pressure to magnetic field pressure, is = 1. Above this line, other instabilities,
such as the synchrotron firehose instability can also trigger.
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longer than the plasma’s spatial scale, allowing some photons to escape without contributing
to plasma relaxation. For further details on the balance between self-absorption and emission,
refer to Ochs (2024) [168].

By comparing these timescales with the ECMI onset time, we obtain the parameter space
in which the maser can operate.

There is a wide range of parameters for which the synchrotron-induced ECMI operates
efficiently before (Coulomb or Compton) collisional relaxation and cooling to the quantum
levels can take place, see Fig. 3.7. The parameter space increases as the plasma becomes
more energetic. The ECMI will spontaneously trigger in a wide range of plasma parameters of
relevance to astrophysical systems [165]. Other instabilities can also trigger due to synchrotron
losses; the firehose instability can operate when B > 1, where § is the ratio of the plasma
pressure to the magnetic field pressure [24]. In that regime, the firehose instability will modify
the momentum distribution, but as the plasma cools down, it can transition to a f < 1 regime
enabling a modified version of the “ring” ECMI to operate. Preliminary PIC simulations have
confirmed this picture, see Appendix F, and will be furhter explored elsewhere.

3.4.2 ENERGY PARTITION BETWEEN COHERENT AND INCOHERENT EMIS-
SION

A key question is how much kinetic energy remains available for the ECMI after synchrotron
cooling, i.e., what fraction has already been radiated incoherently before the instability turns
on. This matters for observations because FRB radio bursts are sometimes nearly simultaneous
with hard X-ray activity [44, 45, 175], which can be naturally associated with the initial cooling
phase.

We define the mean kinetic energy per particle at time T as

E(7) = /000 2rpydpy /_OZO dp (1+p1+r]—1) flprp) ), (3.6)

with f normalized to unity. For general f, the integral is not elementary. After ring formation
at t,, cooling bunches the distribution into a narrow annulus at p, =~ pr(7) with pg ~ 1/7,
plus a depleted interior. A convenient approximation is

f(pipyt) = [ad(prL — pr) +O(pr — p1) folpL)] fii(p)), 3.7)

where fj is the initial perpendicular profile® and fi(p|)) is the cooled parallel distribution from
Sec. 2.3.4. For an initially hot, isotropic relativistic Gaussian with width py,, normalization
fixes

a

—p%/(2p%) _
! l e T 1] (3.8)

= — + —
27TpR V27T pin

5We are therefore assuming that the region within the ring has slowly cooled down and the region outside the ring
has collapsed into the ring structure.
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Carrying out the integrals gives a closed form for the post-cooling energy (per particle, in units

ofmecz),
2/ 7T
E(t)= —2—¢eV/@) 42, /14 p2 - YL 142
(7) PR PR
/ 3.9)
1 2 1/22 (
+el/(2p€h)erf( +pR)+2e (pth)r<3 : >,

V2 pin VT 7 prh

where pr ~ 1/7. Here erf(x) is the Gauss error function, and and I'(s, x) is the upper incom-
plete gamma function.

For comparison, the initial mean kinetic energy for the same relativistic Gaussian is

8
Ey = \/;pth' (3.10)

For hot beams, py, > 1, Eq. (3.9) simplifies to

E(r):z(./1+p§—1)+o<p1th>, (3.11)

E(7) T PR [t 1
~y = =~ = . 3.12
Eo 2 pw 2 Tpwm (12

This scaling is very convenient, it shows that by the time a sharp ring forms, only a fraction

so for pr > 1,

~ pr/ pw of the initial kinetic energy is left to feed the maser. For example, taking pr = 40 and
pm = 103, Eq. (3.9) gives E/Ey ~ 4.9 x 1072, consistent with the asymptotic estimate (3.12).

Using the scaling for the maser onset time (See Eq. (3.3)),

(3.13)

(B [MG]>3 ~|1/2
] ’

~ 0.02
K [ne [106 cm—3] py, [100 m,c

we have pr(1) ~ 1/1, hence combining with (3.12) gives an estimate for the available frac-

3 1/2
~ L [ B } . (3.14)
T 21 Pth Ne Pth

Stronger B and lower 7, both shorten 7,, which increases pr and raises the energy fraction

tional energy at onset,
E
Eo

available to the ECMI. This connects the prompt high-energy cooling signature to the delayed
growth of coherent radio power in a way that can be compared with FRB plus X-ray coinci-
dences.

The ring-plus-interior approximation is accurate once t 2 t, from Eq.(2.26). Before that
time, pr is not yet sharp and the available energy is slightly larger than Eq.(3.9) predicts. Cor-
rections from a finite ring width and from deviations of f| from the Gaussian asymptote are
subleading for pr > 1 and py, > 1. The interplay between maser growth and synchrotron
cooling makes it challenging to determine exactly how the remaining energy is partitioned
between coherent maser emission and incoherent losses. A full answer would require simu-
lations that extend over timescales orders of magnitude longer than those presented in this
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chapter, and that model the escape of radiation from a finite plasma volume. The present
calculation therefore provides an upper bound on the energy available to the maser when
cooling becomes comparable to its growth rate, and we conjecture that it offers a reasonable
order-of-magnitude estimate.

3.4.3 PROPERTIES OF THE EMITTED COHERENT RADIATION

The transmission efficiency at a sharp plasma—vacuum boundary can be estimated by compar-
ing the refractive index n = \/N?(w) on both sides of the interface [169]. For the extraordinary
(X) mode propagating perpendicular to the magnetic field, the refractive index follows from

the dispersion relation [176]
2
N? =gy, — iﬂ (3.15)
vy
where the dielectric tensor elements ¢;; are given in Eq. (E.11). The corresponding polarization
properties are discussed in App. E.2.2, which shows that the X-mode is elliptically polarized
but becomes nearly linearly polarized along E, when wee/y ~ w > wpe. In this strongly

magnetized regime, the dielectric tensor yields

w? w?
=1 pe — pe 1
Eyy + (’)( 2| Exy i0O e K (3.16)
so that
2 o “pe
N =1+ w2 | (3.17)

Hence, the X-mode refractive index approaches unity and the impedance mismatch at the
plasma-vacuum boundary becomes small, though never vanishing entirely. The degree of
matching improves with increasing magnetization, but for more moderate parameters, den-
sity gradients or inhomogeneities can reduce the escaping fraction. Preliminary numerical
evaluation of the full dielectric tensor (including off-diagonal terms of the dielectric tensor)
< 1073, while for larger values the

~

confirms this trend: transmission is high for wpe/we,
impedance mismatch becomes increasingly important.

In summary, the analysis of the dielectric tensor (App. E.2.2) shows that the X-mode ra-
diation produced in the plasma can couple to vacuum with relatively high efficiency in the
strongly magnetized limit wee > wp,. The refractive index approaches unity in this regime, so
the impedance mismatch is reduced but never eliminated. The precise transmission depends
on the degree of magnetization as well as plasma inhomogeneities and gradients, which may
further limit the escaping fraction. Nevertheless, in sufficiently magnetized plasmas the con-
ditions are favorable for X-mode emission to leave the plasma and contribute to observable
radiation in the radio band.

In the proper frame of the plasma, the emitted frequencies occur at harmonics of nwe. /v,
where 7, = (1 + p2/m2c?)V/? is the Lorentz factor associated with the ring radius at the
onset of the maser instability. Radio emission occurs in the proper frame at w [17 THz] ~
B [MG]/ 7 [1]. Additionally, the emission maintains a constant ratio of Aw/w, where Aw is the
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frequency separation between different harmonics. This constant ratio is observed in sources
such as the Crab pulsar [177].

Due to time dilation and the relativistic Doppler effect, the received radiation is upshifted
by a factor of ,, where v, is the Lorentz factor of the beam’s proper frame. Furthermore, the
emission timescale becomes shorter by a factor of 1/, and the intensity increases by a factor
of 7% due to relativistic beaming [178].

3.4.4 COHERENCE OF THE EMITTED RADIATION

Although the ECMI does not operate within a resonant cavity, it exhibits the essential features
of Amplified Spontaneous Emission (ASE) and functions analogously to a mirrorless laser am-
plifier [172]. In such systems, coherence arises not through optical feedback, but through the
exponential amplification of spontaneous fluctuations as they propagate through a medium
with population inversion. This behavior is well established in theoretical models of high-
gain, saturating amplifiers, which show that even in the absence of mirrors, these systems can
exhibit intensity buildup, spectral narrowing, and threshold-like behavior similar to conven-
tional lasers [179]. In the case of the ECMI, the synchrotron-cooled ring distribution supplies
the population inversion, while the exponentially unstable X-mode acts as the dominant mode
undergoing amplification. The result is coherent, directional emission, even though the system
lacks an optical cavity. The maser thus behaves as a single-pass, cavity-free, mirrorless maser,
driven by a collective instability in a non-equilibrium plasma.

Quantifying coherence is a subtle and often context-dependent task, as “no general agree-
ment exists on the precise meaning of the term...”%. In its most general sense, coherence re-
flects correlations in the fluctuations of a field, both in space and time [171, 172]. Formally,
one would assess this through detailed phase relationships or autocorrelation functions of the
emitted radiation. However, in astrophysics, a more pragmatic and indirect measure is often
employed: the brightness temperature.

Brightness temperature is defined as the temperature a blackbody would require to pro-
duce the same specific intensity at a given frequency. It is given by:

2

Tp = ——1,
B 21/2kB vy

(3.18)
where v is the observed frequency, kp is Boltzmann’s constant, and I, is the specific intensity.

The latter can be estimated as: P

~AaQal
with P the emitted power, Av the bandwidth, () the solid angle of emission, and A the emitting

Ly (3.19)

area.

While this metric is not a rigorous definition of coherence in the optical or laser physics
sense, it offers a valuable diagnostic: when the inferred Tp far exceeds the physical limits for
incoherent emission (e.g., the inverse Compton limit of ~ 1012 K), it is widely interpreted

6Quote from L. Mandel & E. Wolf 1996 [171]



62 Chapter 3. Synchrotron induced coherent maser emission

L L L L

15000 20000

05000 10000
t [w_l]

ce

FIGURE 3.8: Bandwidth of the maser emission computed from the spectrum shown in Fig. 3.4. As
the instability develops, the spectrum becomes increasingly narrow, with a marked drop in bandwidth
around t ~ 6000 wz!. During the period of coherent emission, the bandwidth remains approximately
Av ~ 0.01 wee.

as evidence for coherent amplification processes [115]. Despite its limitations, this criterion
serves as an effective and widely adopted proxy in astrophysical settings.

In this spirit, we now estimate the brightness temperature associated with ECMI emission
driven by synchrotron cooling. Equation (3.19) can be recast using the relation P/A = c¢&,
where £ is the energy density of the emitted radiation. This can be interpreted as the saturation
level of the maser. Empirically, we find that the amplitude of the wave at saturation is between
1 and 10~2 times the amplitude of the background magnetic field, as shown in Fig. 3.4(B) and
Fig. 3.5. That is, the wave energy is a small fraction of the local field energy.

This estimate refers to the plasma rest frame. In the observer’s frame, Lorentz contrac-
tion reduces the emission volume by a factor of -y, while the energy density increases by 7,
resulting in a net boost of I, & ;.

The definition of bandwidth for complex spectral density functions, such as those arising
from laboratory masers, is given by [171]

o -1
Av = % {/0 gzw(w’)dw’] , (3.20)
where g, (w) is the normalized spectral density of the emitted radiation. Although the emis-
sion spectrum spans a broad frequency range, the radiation is sharply peaked near harmonics
of the cyclotron frequency, as shown in Fig. 3.4.7 To quantify this, we numerically compute the
bandwidth Av as a function of time using the full multidimensional PIC simulation presented
in this work. The resulting time evolution is shown in Fig. 3.8.

The computed bandwidth remains of order Av ~ 0.01 w,, throughout the emission win-
dow. This estimate includes all active harmonics of the ECMI and therefore slightly overes-
timates the spectral width of each individual harmonic. An analytical estimate can also be

7Figure 3.4 spans the range 0 < w < we,, but the sharp peaks evident in logarithmic scale indicate that most of the
energy is narrowly concentrated around specific frequencies.
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obtained by linking the spectral spread to the momentum spread of the ring distribution. Us-
ing the relation Ap ~ p%/(v/3 py,), the associated frequency spread is

L Ap We

A .
v Mmec 27T

(3.21)
For a typical ring radius pg ~ 10m,.c and thermal spread pg, ~ 10%m,c, this yields Av ~
0.01 wee, in agreement with both the spectral features in Fig. 3.4(B) and the time-resolved nu-
merical evaluation shown in Fig. 3.8. In the observer frame, this bandwidth is further Doppler-
broadened to Av — v}, Av, where v, is the bulk Lorentz factor of the emitting plasma.

Relativistic beaming also concentrates the radiation into a narrow solid angle (3 ~ 1/ 'ylzj [178].
Collecting all these scalings, we arrive at a simplified expression for the observed specific in-
tensity:

2.2

1857
I, ~ ——2, 3.22
=1 (322)

where 17 < 1 is the fractional wave energy relative to the background field energy.

Substituting into Eq. (3.18) yields:

6 2
T [5 x 10%0 K] ~ 1 (n[10°]) (3.23)

~ Ap[0.01m.c] B[103G]’

Therefore, this model predicts a direct connection between the brightness temperature and
the local magnetic field strength at the emission site, which also sets the characteristic emis-
sion frequency via w o« w¢ o B. Higher magnetic fields, corresponding to higher emission
frequencies, lead to proportionally lower brightness temperatures for fixed beam parameters,
since Tp o 1/B. The brightness temperature thus depends sensitively on the interplay be-
tween magnetic field strength, beam Lorentz factor, and the ring width Ap, which determine
the efficiency of synchrotron cooling and the initial thermal spread of the plasma.

At B ~ 103G, the electron cyclotron frequency falls in the tens of gigahertz range, con-
sistent with the observed GHz frequencies of FRBs. The ECMI driven by synchrotron-cooled
ring distributions can therefore plausibly account for both the high brightness temperatures
and the narrow spectral features associated with these fast radio transients, which often ex-
hibit Tp ~ 10%° K or higher. Similarly, pulsar radio emission is also known to reach brightness
temperatures in excess of 102°-10% K, reinforcing the idea that coherent mechanisms are at
play across a range of magnetized astrophysical environments.

These considerations establish that synchrotron-induced ECMI can generate brightness
temperatures and spectral features consistent with those observed in FRBs®. The key ingre-
dients, strong magnetic fields, relativistic pair beams, and radiative cooling, are all expected
in magnetar magnetospheres. This motivates a closer look at how such conditions can arise
and evolve in a realistic astrophysical setting. In what follows, we outline a concrete scenario
in which this mechanism operates within a neutron star magnetosphere, identifying the dis-
tinct spatial regions and physical processes that lead to coherent maser emission.

8To the best of our knowledge, this is the only known mechanism capable of generating such extreme brightness
temperatures without fine tuned conditions [43].
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An important condition for efficient amplification is that the background magnetic field
remains approximately constant over the spatial scale of the amplification process. Amplifi-
cation occurs on the timescale set by the growth rate of the instability, 1“;(1, which depends
on local plasma parameters, magnetic field strength, cooling rate, and thermal spread. we
know that the maser becomes active once the ring distribution stays sufficiently long in reso-
nance, this occurs when T < 1, as confirmed in simulations. This leads to a timescale of order

2.2
Iyl ~ @e™E (See Sec. 3.2.2).
Wpe Pth

For large thermal spreads py, ~ 10?3 m,c, and typical ratios wee/wpe ~ 10>73, the growth

rate is I'x ~ wp,. In compact objects, this corresponds to the Goldreich-Julian density, which
varies across sources. For example, a pulsar with surface field Bs ~ 10° G and spin period of 1
second yields ngy ~ 107 cm~3, while for a magnetar with Bs ~ 1013 G, the value increases to ~
10! ecm~3 [156]. Taking 1, ~ 107 cm~3, we find l"il ~ 5.6 ns, corresponding to a propagation
length L, ~ cl";(1 ~ meters. Over this length, the magnetic field must remain sufficiently

1 dB(r)

uniform, i.e., ‘ B dr < 1/Lp. Assuming a dipolar field B (r) <1/ r3, where r is the distance

from the star. The condition implies L, < r, which is trivially satisfied at radial distances

r 2 10km, i.e. the size of the neutron star. Therefore, the assumption of a constant background
field over the amplification length is justified in this context.

3.5 COHERENT ASTROPHYSICAL EMISSION VIA SYNCHROTRON-
INDUCED ECMI

The mechanism described above, synchrotron cooling leading to the formation of ring mo-
mentum distributions and the triggering of the electron cyclotron maser instability (ECMI),
offers a compelling mechanism for the generation of coherent radio bursts in the magneto-
spheres of neutron stars. Given its ability to naturally reach brightness temperatures on the
order of 10%° K, it provides a viable explanation for the observed properties of fast radio bursts
(FRBs), including their GHz frequencies, and strong polarization signatures. Crucially, the
conditions required for this mechanism are not confined to isolated or finely tuned regions of
the magnetosphere. Rather, the ECMI can arise generically during the outward propagation
of a radiatively cooled relativistic beam through a magnetized, perturbed environment.

Figure 3.9 illustrates a concrete astrophysical scenario. We emphasize that this figure is a
schematic cartoon and not drawn to scale. In reality, the distances separating regions A, B, and
C are very large. For emission to occur in the GHz band, the beam must propagate to radii
where the magnetic field has decreased to kilogauss values (r ~ 10° cm), far from the stellar
surface. This propagation distance is many orders of magnitude larger than the microscopic
timescales of synchrotron cooling or ECMI growth, ensuring that there is sufficient time for
the processes described below to develop. The process begins near the neutron star surface, in
a region labeled A, where a high-energy electron-positron beam is injected along a magnetic
field line. This injection may be triggered by a violent event such as a starquake, magnetic
reconnection, or a pair cascade in a polar gap [34]. In this inner region, the magnetic field is so
intense that synchrotron cooling dominates all other timescales. The beam cools quickly, and
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FIGURE 3.9: Illustration of the proposed mechanism for triggering the ECMI in neutron star magneto-
spheres. The sequence involves three key stages, labeled A, B, and C in the main diagram. In stage A,
energetic plasma is injected along magnetic field lines, potentially triggered by violent events such as
starquakes or magnetic reconnection near the neutron star surface (inset A). In this region, the magnetic
field is so strong that synchrotron cooling dominates over other timescales. Although ring distributions
and instabilities may begin to form at this stage, we do not focus on their early development here. The
cooled plasma beam then propagates outward along the field line. In stage B, the beam enters a region
strongly perturbed by Alfvén waves (¢ ~ 107%), leading to a balance between stochastic heating and
radiative cooling. Finally, in stage C, the beam reaches a region where perturbations weaken (¢ < 107%),
and synchrotron cooling once again dominates. This cooling drives the formation of ring momentum
distributions that trigger the ECMI, resulting in coherent radiation beamed along the field-aligned direc-
tion.
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its distribution becomes sharply peaked along the field direction, with negligible transverse
momentum, approximated by f = (p1)d(p| — po)-

As the beam propagates outward into region B (within the inner region of the magneto-
sphere), it encounters magnetic perturbations transverse to the guiding field. These may arise
from ambient Alfvén waves or be generated self-consistently via beam instabilities such as the
firehose [49]. In the frame of the beam, the perturbations resemble transverse electromagnetic
waves, with electric fields E/, = Bvo0B,, where [6B || = €B, with B the guiding field and
€ < 1 the relative perturbation strength. These fields induce stochastic heating, modeled as
perpendicular momentum diffusion with diffusion coefficient

d

D=2 <pi> — 0229 0B? 1, (3.24)

where 7. is the correlation time of the perturbations, defined through the autocorrelation of
the fluctuating magnetic field.

The value of 7 is not exactly known, but it can be estimated from the local Alfvén wave-
length, which sets the minimal scale over which perturbations remain coherent. The Alfvén
speed in a teneous pair plasma, i.e., Wee > wpe is v4 ~ ¢ [176]. The corresponding Alfvén
frequency and wavelength are

v, c [ m,
=4 Ag ~v— =4 —=, 3.25
wa Aa A Whe V\ 2rne (325

where wy, is the plasma frequency. This identifies the minimal wavelength of Alfvénic pertur-
bations with the plasma skin depth, and the associated correlation time as
Aa

~ =, 3.26
T oA ( )

Near the stellar surface, at r ~ 10° cm, typical Goldreich-Julian densities are n ~ 1011 —
10'* cm~2 and magnetic fields reach B ~ 10'* G. Substituting into the above expressions
gives Alfvén wavelengths of order a few centimeters and correlation times in the range 7. ~
0.3 — 3 ns. Further out in the magnetosphere, at r ~ 10® cm, both 1 and B decrease as r 3.
The corresponding Alfvén wavelength then increases to tens of centimeters, with correlation
lengths of tens of meters, giving correlation times 7, ~ 3 — 30 ns. These estimates are only
order-of-magnitude, but they illustrate how the characteristic coherence scale of Alfvénic per-

turbations grows with distance from the star.

Using the results from Sec. 2.3.5, where the competition between synchrotron cooling and
stochastic heating was analyzed, we now include an explicit expression for the diffusion coef-
ficient D. This yields an estimate for the equilibrium transverse momentum spread:

01 = 3efm.c\/werTeYo, (3.27)

where wc; = eBs./(amec) =~ 1.06 x 10% s~! is the classical synchrotron critical frequency.
Remarkably, this expression shows that the equilibrium spread depends only on the relative
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perturbation strength € and the correlation time 7., and not on the absolute value of the mag-
netic field. These expression scales as

o) [mec] ~3x10%€[1074] /70 T [ns], (3.28)

highlighting how even weak perturbations with nanosecond-scale coherence are sufficient to
generate substantial transverse momentum spreads.

Eventually, the beam reaches the outer region of the magnetosphere, region C, where the
perturbations weaken significantly (¢ < 10~#) and synchrotron cooling once again dominates.
The transverse momentum distribution compresses, and a narrow ring forms in momentum
space. As the beam continues to propagate outward, both cooling and diffusive heating be-
come less effective due to the decreasing magnetic field and perturbation amplitude. This
leads to a progressive freezing of the distribution function: the ring no longer evolves signif-
icantly and remains imprinted in phase space. The beam continues outward until it reaches
a region where the local plasma frequency becomes comparable to the cyclotron frequency,
Wpe S Wee, rather than deep in the underdense regime. This condition marks the point where
the electron cyclotron maser becomes efficient, and the ring distribution becomes unstable.
The resulting radiation is emitted in the X-mode, propagating perpendicular to the magnetic
field in the beam frame. In the lab frame, the emission is relativistically beamed along the
magnetic field direction and appears as GHz-frequency, circularly polarized radiation.

To illustrate the full process, we now consider a concrete example. Suppose a magnetar has
radius R, = 10° cm, surface magnetic field B = 10'3 G, and spin period P = 1, corresponding
to a light-cylinder radius Ry c ~ 4.8 x 10° cm. A relativistic electron-positron beam is injected

from the surface with Lorentz factor 4 = 100 and density n ~ 10° cm™3

, comparable to the
local Goldreich-Julian density. Near the star, synchrotron cooling dominates and the beam

rapidly loses its transverse momentum, suppressing any early instabilities.

As the beam moves outward into region B, it encounters perturbations with relative strength
€ ~ 10~* and correlation time 7, ~ 1 ns. The resulting stochastic heating leads to a transverse
temperature of py, ~ 10° m,c, sustained over the heating region. Later, in region C, the pertur-
bations weaken to € ~ 107, and synchrotron cooling once again dominates. The beam cools
and compresses into a ring with width o; ~ 10m,c, after which the distribution becomes
effectively frozen due to the drop in both /B and B.

The beam continues to propagate outward until it reaches a region where the local plasma
frequency becomes comparable to the cyclotron frequency, wpe < wee. For typical parame-
ters, this condition is met when the magnetic field has decreased to B ~ 10> G, correspond-
ing to a radial distance of r ~ 2700 R, ~ 0.5Rpc. At this location, the cyclotron frequency
wee = eB/m.c matches the GHz band, and the ECMI can efficiently trigger coherent radio
emission. This emission is strongly beamed along the magnetic field and appears in the ob-
server frame as a highly polarized, GHz-frequency burst. The radiation is expected to be circu-
larly polarized due to the Lorentz-boosted X-mode structure, consistent with the polarimetry
of several observed FRBs. Finally, we can estimate that the emission will have a brightness

temperature O(Tg) ~ 5 x 10 K,? based on the scaling provided by Eq. (3.23). Moreover, we

For beam and B-field parameters: 7, = 100, Ap = pr/+v/3pw (pr ~ 10m.c, pg ~ 3000 m,c) & B = 1000 G.
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can estimate the ratio of energy emitted in the coherent component to the available energy
for maser emission based on Eq. (3.12) we obtain that the maser will consist of ~ 1% of the
emitted radiation, accompanied by an incoherent burst of high frequency radiation due to the
cooling. Altogether, this mechanism provides a self-consistent, first-principles explanation of
FRB-like emission from neutron star magnetospheres based on kinetic processes alone.

3.6 CONCLUSION

Using the largest PIC simulations to date for tenuous, synchrotron-cooled plasmas, we have
demonstrated that these plasmas can spontaneously produce coherent radiation when self-
consistent electrodynamical radiative effects are considered. This radiation is driven by the
onset of the ring-driven electron cyclotron maser instability. Importantly, our results reveal
that this emission process can persist for substantially longer periods than previously thought,
due to the interplay between the instability and synchrotron losses. This finding challenges
the classical understanding of ECMI, which has traditionally been seen as resulting in only
short bursts of radiation due to rapid saturation, and demonstrates the relevance of ECMI in
synchrotron cooled relativistic plasmas.

Our findings suggests the synchrotron driven ECMI is relevant beyond the specific plasma
conditions explored in our simulations, having also a broader applicability across various
plasma and magnetic field parameters. The timescales and properties of this fundamental
plasma process were estimated using an idealized electromagnetic field configuration, appli-
cable to a plasma at rest in a constant magnetic field, or in the proper frame of an arbitrary
beam. Previous work has explored the limiting conditions for ring formation in curved and
inhomogeneous magnetic fields [113] and found them to remain compatible with astrophys-
ical conditions, including the curved or inhomogeneous fields expected near astrophysical
objects, such as neutron stars and black holes, as well as modest thermal spreads. Future work
will incorporate these more realistic electromagnetic field configurations into self-consistent
simulations, which may modify emission properties and, in extreme cases, partially or fully
suppress emission. Nonetheless, preliminary estimates suggest that ring formation remains
robust under such conditions [113].

This implies that this mechanism can operate in a wide range of astrophysical environ-
ments. Notably, this mechanism appears to align with several key features observed in pulsar
and magnetar emissions [180], offering a potential explanation for certain characteristics of
Fast Radio Bursts (FRBs) and pulsar emission [181, 182]. The observed connection between
FRBs and magnetars, particularly the detection of FRBs coinciding with magnetar glitches,
suggests a model where pair plasmas in a low-twist magnetar magnetosphere generate these
bursts [34, 44, 45]. Our findings demonstrate that synchrotron losses combined with the ECMI
can sustain coherent emission over longer durations, which may explain the observed coher-
ence, radio emission range, linear polarisation, repetition, and similarities across diverse as-
tronomical objects. This mechanism is a result of the unique qualitative properties of extreme
plasmas. The resulting synchrotron-induced ECMI mechanism has implications that extend
beyond the specific case of FRBs to a broader spectrum of astrophysical phenomena and future
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astro-laboratory experiments.
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CHAPTER 4

RADIATIVE COOLING AND PHASE-SPACE
SHAPING IN WAKEFIELD ACCELERATION

This Chapter is adapted from: P. J. Bilbao, et al. to be submitted (2025).

4.1 INTRODUCTION

Plasma wakefield accelerators have demonstrated accelerating gradients on the order of 10-
100 GV /m [183-186]. These gradients arise from the high densities of the background plasma
and have enabled energy gains in the multi-GeV range [185, 186]. As higher-intensity lasers,
tighter and higher-charge driver beams, and denser background plasmas are explored, even
greater accelerating gradients are being achieved [187]. However, these gradients are not lim-
ited to the accelerating direction, they also generate strong focusing fields. Electrons displaced
from the axis experience transverse betatron oscillations as they are accelerated [188]. These
oscillations have been extensively studied as a source of intense radiation in both laser-driven
and beam-driven schemes [164, 189, 190], and are also central to direct laser acceleration [188,
191-194].

The combination of intense electromagnetic fields and high-energy beams allows relativis-
tic electrons undergoing betatron oscillations to radiate a significant fraction of their energy,
at a rate comparable to the acceleration rate [188, 195], and radiative losses must be self-
consistently incorporated into the kinetic description of the beam dynamics. Previous studies
have addressed effects such as emittance damping and energy loss [196, 197].

It is well known that betatron radiation leads to energy loss and emittance damping, reduc-
ing both the beam energy and its transverse spread [196, 197]. The amplitude of each electron’s
oscillation depends on its initial position and transverse momentum, and the radiated power
scales with the square of the oscillation amplitude. This suggests that different regions of
phase space cool at different rates, as the cooling process is nonlinear with respect to betatron
amplitude. In a manner similar to what has been demonstrated for synchrotron radiation in
magnetized plasmas [23, 114, 198], this nonlinear cooling modifies the kinetic properties of the

71
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beam, leading to distinct phase-space structures. However, whereas synchrotron cooling leads
to momentum-space bunching in Landau levels, betatron cooling in ion-channel or blowout
regimes leads to phase-space bunching, forming structured "donut” beams with both spatial
and angular anisotropies. This process fundamentally alters beam dynamics and may enable
coherent betatron emission from population-inverted beams.

In this chapter, we demonstrate that high-energy beams undergoing betatron emission in
high-density wakefield accelerators naturally develop such bunching. We derive the timescales
for this process analytically and confirm the results through fully 3D particle-in-cell simula-
tions. The resulting "donut" beams display pitch-angle anisotropies and ring-shaped struc-
tures that are robust features of betatron-cooled dynamics in plasma accelerators.

4.1.1 BETATRON COOLING AS AN ANALOGUE OF SYNCHROTRON COOL-
ING

These structured beams not only exhibit properties relevant to advanced accelerator applica-
tions, such as positron wakefield drivers [199] or ion-channel laser concepts, but also offer a
platform for laboratory astrophysics. In particular, they serve as analogues of synchrotron-
cooled, magnetized astrophysical plasmas, where radiation reaction drives the formation of
ring momentum distributions and triggers kinetic instabilities such as the electron cyclotron
maser instability (ECMI) [114]. Whereas synchrotron cooling shapes plasmas near pulsars and
black holes through strong magnetic fields, betatron cooling in laboratory setups provides a
complementary mechanism driven by strong electric focusing fields.

This analogy is not coincidental, ion-channel and magnetized plasma dynamics are deeply
related, as shown in the unified framework developed in [164], where both ion-channel laser
and magnetized maser instabilities were described within the same theoretical structure. Re-
markably, the phase-space bunching we describe, resulting from nonlinear radiative cooling,
has not been observed in any plasma system to date. This makes high-density wakefield accel-
erators the first experimental platform capable of realizing and studying radiatively induced
phase-space structuring, opening the door to controlled studies of radiation-driven dynamics
in extreme plasma environments.

4.2 ANALYTICAL THEORY

4.2.1 SINGLE PARTICLE DYNAMICS

We consider the dynamics of an electron beam with Lorentz factor v, propagating within a
plasma of background density 1, corresponding to a plasma frequency w, = (47tnge?/ me)'/?,
where ¢ is the elementary charge and i, is the electron mass. The beam propagates in a
blowout (or bubble) structure that is excited by either a beam or a laser driver [200]. The
dynamics presented in this work are independent of the specific driver, making the results

equally applicable to both PWFA, LWFA, and ion-channel scenarios [201, 202]. Inside the
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bubble, the fields are given by [203]

2
1 mew
Er=g— Py, (4.1)
2
1 mewp
By = —— : 4.2
¢ i 4.2)
2
1 mewy,
E, == 4.
z 2 e ‘:/ ( 3)

where r is the radial distance from the bubble axis and § = z — zg is the longitudinal displace-
ment from the bubble center. The resulting Lorentz force on an electron with v, ~ c is [203]

1
FL = —e¢ (E +§ X B) = —SmecBAr, (4.4)

where Ar = r — rp is the displacement from the bubble center ry. As a result, electrons
within the bubble experience both longitudinal acceleration and transverse betatron oscilla-
tions driven by this linear restoring force.

Furthermore, particles also experience radiative losses due to the strong acceleration. To
estimate radiative losses, we employ the classical description of radiation reaction. The radia-
tive force acting on an electron with relativistic momentum is described, to first order in v, by
the Landau-Lifshitz formulation [100, 131]

_ 2ex qp pxB) (p-E\’
Frr = 3 Eg. m,c l(E * Y1eC > YmeC ¢ (4.5)

where a is the fine-structure constant, c is the speed of light, Es. ~ 1.32 x 10'8 V/m is the

Schwinger field, and E and B are the electric and magnetic field, respectively.

This chapter formulates the theory of phase-space evolution of betatron cooled beams in
the classical regime, radiative quantum effects will introduce a diffusive effect in phase-space
(See Sec. 2.4.3 & App. B). Thus, the conclusions of this work are valid for both the classical
regime ¥ < 1 and quantum radiative regime x ~ 1, where x is the Lorentz- and Gauge-
invariant parameter y = e/ —(Fup¥)?/ Escm3 [18, 19]; Fy,y the electromagnetic tensor and p”
the 4-momentum of the particle.

We consider relativistic beams such that v > 1 and p| > p,, where parallel () and
perpendicular (L) with respect to the direction of the beam propagation. For these beams,
the radiation reaction force does not depend on the parallel electric field, and solely on the
perpendicular displacement from the center of the bubble Ar | . The radiation reaction force in
the laboratory frame simplifies to Frr = — (2ae/3m,)x*Esc.v/c, where x = mewf,Ar 1 7/2eEs,
scales as x ~ 0.1ng [10°°cm™3] Ar, [10 ym] E [10GeV].

The betatron cooling rate depends in a non-linear manner on the amplitude of the betatron
oscillation o« Ar?, akin to the energy level of the oscillating electron. This draws the parallel
with synchrotron cooled plasmas, where the nonlinear cooling with respect to the Landau
levels results in bunching over these levels [23, 114]. Here for betatron cooling, it will lead to
bunching of the amplitude of oscillation in phase-space.
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By taking into account the radiation reaction force into the equations of motion, the dy-
namics of a betatron damped electron are determined by

dr
pri p/me7y, (4.6)
dp = me , 1 am, 4 2

Thus, the electron undergoes damped harmonic oscillations and radiates its perpendicular
momentum, i.e. emittance damping, as well as a significant portion of its parallel momentum.
Notably, there exists a position within the blowout structure where particles do not lose par-
allel momentum averaged for a betatron oscillation. Thatis at Ar| = — J—E&wgoyu 4l (Ar3) 5
This means that particles lagging behind the center of the bubble by more than —Ar will on
average throughout a betatron period gain parallel momentum, i.e. be accelerated, whereas
particles ahead of that point will radiate more than they are accelerated. Making them os-
cillate around that equilibrium point. Moreover, future high density and high energy wake-
field accelerators will necessitate a large enough bubble structure, such that the bubble radius
rp > Ar, for efficient acceleration. Regarding the perpendicular betatron cooling which we
will concern ourselves with, we will assume for the sake of analytical work that the beams are
positioned around that equilibrium point such that p; ~ 0.

Therefore, the dynamics of an electron undergoing betatron cooling will be described by
the following non-linear differential equation

d2Ar | ) 1 amewyyy) () dAr,

iz —wphr = 6  ecEs. dt

A%, (4.8)

where wg = wyo/ /27| is the betatron frequency. While 7| evolves over time, this primarily

leads to a gradual rescaling of the dynamics in time. In fact, continued acceleration enhances
betatron cooling by increasing the radiation rate, and thus promotes faster bunching. The gen-
eral (and still exact) solution to the transverse displacement equation with radiation reaction
is

Ar (t) = A(t)sin (wpt + ¢o(t)), 4.9)

where A(t) and ¢o(t) vary with time. While obtaining the exact forms of A(t) and ¢o(f) is
generally not feasible, the Krylov-Bogoliubov (KB) averaging method can be employed when
the radiative cooling rate is smaller than the betatron frequency [204].

This condition holds for oscillation amplitudes satisfying A < 1/3\5% ')/[3/ 4w;03/ 2 a
regime relevant to laboratory beam-plasma experiments. For example, in a plasma with den-
sity 10! cm~3, a 10 GeV beam must have a transverse size exceeding 50 ym for the approxima-
tion to break down. Within the approximation, however, the KB averaging method provides
an effective approach to determine phase-space trajectories averaged over a betatron period
[204].
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The solution to Eq. (4.8) assuming a small amplitude of oscillation!

amew y(t
A 1 ecggc A3 0 9d9 1 “mewpo’Y(t) A3
(t) =— / sin® § cos =TI ks (4.10)
1 zxmgwpofy( )
P(t) = —%/ AZ%sin® 0 cosdd = 0. (4.11)
A(t) = A0 4.12)

\/1+ A3t
1

and @o(t) = 0, where Ay is the initial amplitude of oscillation and T = g5 7% wpo fo v (t)dt
is a normalized time.? As noticed before, the change in 7| leads to a rescaling of the dynamics.
For the analytical treatment that follows, we focus on the limit where the beam is near the
equilibrium point —Ar| and the longitudinal momentum is approximately constant, pj ~ 0.
This allows us to simplify T = Foie wpo')’Ht and obtain analytical solutions that still capture
the essential features of the bunching dynamics. Interestingly, a particle with initial Ag — oo

will follow A, = T~1/2. This trajectory corresponds to the upper bound of phase-space,

thus, all physically relevant trajectories remain below it. This demonstrates that the whole

phase-space volume is constricted into a region between -+ r2 < AZ, a key feature
[[e Wpo
that will modify the dynamics of beams in blowout structures In fact, the boundary at A =

A is a limit-cycle orbit that all physically relevant trajectories are attracted towards [205].
This boundary is the betatron equivalent of the momentum-space boundary p., discussed for
synchrotron-cooled plasmas in Sec. (2).

Interstingly, there exist a second regime for betatron cooling, one where initially the ra-
diative force is much larger than the Lorentz force, i.e., the betatron oscillation amplitude is

larger than A > |/3v/2 e;f;lic 7[3/ fw ;03/ 2. This results in an initial overdamping of the betatron

oscillations.

This overdamping rapidly stops as the amplitude is suddenly reduced within less than
a betatron oscillation and then it eneters the slow damping regime. This is seen in Fig. 4.1,
where both regimes are shown. Top demonstrates the trajectories of slow cooling particles.
The bottom panel of Fig. 4.1 shows how particles with large amplitudes all converge and
collapse to regions of lower amplitude betatron oscillations.

This regime rapidly establishes phase-space bunches. In contrast, the slow cooling regime,
more relevant for current laboratory platforms, requires several betatron oscillations for bunch-
ing to develop. Accessing the fast cooling regime would, for example, require that in a plasma
with density 1 x 10! cm~3, a 10 GeV beam have a transverse size exceeding 50 m, so that the
radiation reaction force exceeds the perpendicular Lorentz force and bunching occurs in less
than a single betatron period. Since such high-density bubbles are not yet achievable experi-
mentally, we focus here on the slow cooling regime, which is accessible to current accelerators.

1Full derivation and explanation of this result is shown in App. G.1.
2We note that Ag has units of length and T has units of inverse squared length.
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FIGURE 4.1: Phase-space stream plots, obtained from numerically integrating Eqgs. (4.6 & 4.7) (for con-
stant ) demonstrate the bunching in phase-space as a result of betatron cooling and showcase the
different regions of phase-space where the particles undergo either underdamped osicllations or over-
damped oscillations. The darker regions of the streamlines, show regions where no radiation occurs,
i.e., the center of the oscillation where there is no focusing E field and the highest point in r | as at that
point the perpendicular velocity is 0. The top plot shows the slow cooling regime, where radiative losses
are small compared with the cooling. The bottom plot shows streamlines where the radiative losses are
strong and rapidly collapse the phase-space if the amplitude of oscillation is too large. This occurs when
particles are falling back into the center of oscillation, under strong fields the particles radiate more than
they gain as they fall in the potential and collapse the phase-space.
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However, future higher-energy and higher-density wakefield accelerators will enter the fast
cooling regime, where sudden betatron cooling becomes important, this will be explored in
future work.

4.2.2 DYNAMICS OF THE DISTRIBUTION FUNCTION OF WAKEFIELD AC-
CELERATED BEAMS

Therefore, from the characteristic equation (Vlasov df /dt = 0) we obtain the advection equa-
tion in phase space

df _ of p _

U9y, (Wf £V, [(Fy + Frg) ] = 0. (@13)
To effectively describe the kinetic properties of these beams, we introduce the distribution
function f(A,¢) in the phase-space coordinates A and ¢, akin to action-angle coordinates
[205]. As explained before, we assumed that 7| ~ 0 Doing this, allows us to recast the kinetic
equation

of 1 0 dA(t) wgaof

o T AaA {A T R (4.14)
where A & ¢ corresponds to the amplitude and angle coordinate, whereas A(t) corresponds
to the single particle trajectory (dA(t)/dt = —A%/2), and recall T = § £ w7yt Equa-

tion (4.14) is a result of combining the Lorentz force, that provides advection in ¢ coordinate
and the radiation reaction which changes the amplitude of oscillation. A general solution
exists for Eq. (4.14) via the method of characteristics®

fo (o — 5
F(A 1) = ( (11‘f o *) . (4.15)

The close similarity of the form of Eq. (4.15) with the equation of a synchrotron cooled plasma
(See [23, 113]) demonstrates the key insight that betatron cooled beams will also develop an
energy population inversion in a similar manner to synchrotron cooled plasmas. Where syn-
chrotron cooled plasmas develop a Landau population inversion i.e. df/dp; > 0, betatron
cooled beams develop a population inversion in the amplitude of betatron oscillations, i.e. a
region that satisfies df /d0A > 0. This is demonstrated for both an emittance matched beam
and non-emittance matched beam in Fig. 4.2, where both develop bunching in phase-space, ra-
dially, i.e. in amplitude. The non-emittance matched shows how the bunching is less efficient
but clear signatures are observed both spatially and in momentum.

The close similarity of the form of Eq. (4.15) with the equation of a synchrotron cooled
plasma (See [23, 113]) demonstrates the key insight that betatron cooled beams will also de-
velop an energy population inversion in a similar manner to synchrotron cooled plasmas.
Where synchrotron cooled plasmas develop a Landau population inversion, betatron cooled
beams develop a population inversion in the amplitude of betatron oscillations, i.e. a region
that satisfies 9f /0A > 0.

3Details of this calculation are shown in App. G.2.
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FIGURE 4.2: Analytical results at ¢ = 3f, show how an initially smooth distribution evolves into a
bunched structure in amplitude space due to radiative cooling. Column (a) shows an emittance-matched
initial distribution, which preserves symmetry and develops a sharp ring in phase space. Column (b)
shows a non-emittance-matched case, where asymmetries emerge. Top row (1): full transverse phase-
space distribution f (7, p, ); white lines correspond to the perpendicular momentum (vertical) and ra-
dial (horizontal) distributions. Dashed lines show the initial state at t = 0. Bottom row (2): distribution
of the oscillation amplitude f(A) (where A is proportional to the maximum r, a particle undergoes,
ie, A2 = 2(p./ m,_,wp)2 /Yo + ri), highlighting the emergence of a narrow peak (solid) compared to the
initial distribution (dashed)

Equation (4.15) describes the general evolution of any given beam in the blowout structure.
We focus our study on the population inversion process for Gaussian beam profiles, such
—A? /202 . . . .
that f « ¢ 1, where o is the transverse waist of the electron beam. A ring-beam is
characterized by a spatial ring radius r,(t) at which the distribution satisfies d4f|,_,, @ =0
This occurs when the amplitude evolution matches

\J4to? —1
vy (4.16)

r(T) = 27t0 )

From Eq. (4.16), it is evident that the square root becomes real only after a finite time. This
defines the onset of the bunching process: bunching becomes physically observable only when
T > (402 )" 1. Below this threshold, the distribution remains monotonic and no population
inversion can occur. After this point, the ring radius increases with time until it reaches a
maximum. This maximum occurs when the derivative of r,(7) with respect to T vanishes:

dr.(T)

= =0. (4.17)

=7

Solving this condition gives 7. = (202 )1, the time at which the ring reaches its largest spatial
extent. Evaluating Eq. (4.16) at this point yields

r(n) =0, (4.18)
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indicating that the ring structure becomes comparable to the beam waist. Therefore, we define
T, as the characteristic timescale at which the ring-beam is clearly formed and most distin-
guishable from the background.

Eg.ce 1
ty =

) 419
KTTM,e ')/Hg'iwgo ( )

that is a propagation length L, [15 mm] ~ naz [10¥ em ™3] E~1 [10GeV] 012 [5 ym], which is
realizable in current and future laboratory facilities such as LCLS. We note that the bunching
begins from t = 0, and that signatures of the bunching process are present throught the prop-
agation timescale. ¢, provides a scaling to understand the timescale of this process and when
the rings will be clearly observable.

4.3 PARTICLE-IN-CELL SIMULATIONS

We use two complementary simulation approaches: (i) an idealised parameter-scan configura-
tion designed to isolate the essential physics of ring formation and test theoretical scalings
Sec.4.3.1, and (ii) a realistic beam-plasma configuration based on FACET-II parameters Sec. 4.3.2,
demonstrating the effect in an experimentally relevant regime. Both are modeled with the
OSIRIS particle-in-cell code [81] including classical and quantum radiative losses [28, 91], with
simulation parameters given in Appendix A.3.

4.3.1 IDEALISED SETUPS: PARAMETER SCANS

In the idealised case, a high-density plasma is driven by a tailored driver beam that produces
a clean blowout structure, allowing direct comparison with our theoretical model. This setup
isolates the essential physics behind ring formation and enables parameter scans to test the
model predictions. A witness beam propagates through the blowout cavity, which is large
enough to sustain acceleration and capture radiation-induced dynamics. We vary the beam
energy, waist, and background plasma density.

The simulation results, shown in Fig. 4.3, exhibit excellent agreement with the theoretical
prediction for the evolution of the distribution function [Eq. (4.15)] and the ring-formation
radius [Eq. (4.16)]. In particular, the characteristic formation time ¢, extracted from the sim-
ulations follows the scaling derived in Eq. (4.19), decreasing with increasing plasma density
and beam waist, and with beam energy. These parameter scans therefore confirm the central
theoretical conclusion: betatron-cooled beams undergo a population inversion in oscillation
amplitude that leads to ring-beam formation on a timescale t, o 12 (712 E~!, in quantitative
agreement with the analytical model.

Having established these scalings in an idealised blowout configuration, we now turn to
more realistic laboratory conditions. In such setups, the driver beam itself depletes as it excites
the plasma cavity, and the bubble size can become comparable to the beam dimensions, mod-
ifying the ideal assumptions of the theory. Nonetheless, the confirmed scaling laws predict
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FIGURE 4.3: Parameter scan showing the formation and evolution of ring structures in PIC simulations
of ion-channel beams undergoing betatron cooling. Each row corresponds to a scan over a single pa-
rameter: initial beam energy (top), background plasma density (middle), and initial transverse width
(bottom). The left column shows the temporal evolution of the ring radius for each case. The right col-
umn displays the ring formation time as a function of the scanned parameter in log-log scale, allowing
direct comparison with theoretical scalings. The observed trends confirm the model predictions: ¢, o 12

(top), tr (TIZ (middle), and t, « E~! (bottom), as indicated by the overlaid reference slopes.
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FIGURE 4.4: PIC simulations demonstrate that FACET-II, like electron beams propagating through high-
density plasma develop a ring-shaped, phase-bunched profile when radiation reaction is included. A
dense driver generates a blowout cavity, while a trailing witness beam undergoes acceleration. Row
a includes radiation reaction; row b does not. Columns correspond to different stages of propagation:
upramp (1), inside the plasma (2), and downramp (3). With radiation reaction (a), the witness beam
exhibits transverse bunching due to betatron cooling. Without it (b), the beam remains featureless.

that ring formation should remain observable within experimental parameters, motivating
simulations with realistic driver, witness beam configurations.

4.3.2 REALISTIC LABORATORY SETUP: DRIVER AND WITNESS BEAM CON-
FIGURATION

We further study this process with the help of Quasi-3D PIC simulations based on realistic
configurations based on beam parameters compatible with FACET-II [65, 187]. The driver
beam had a charge of 0.3nC, a waist size of 5 ym, and a length of 2 yum. The witness beam
had a total charge of approximately 0.1nC, a longitudinal FWHM of ~ 1 um, and the same
radial width as the driver. They both have a a normalized emittance of 300 mm mrad. They
propagate through a plasma with a peak density of 5 x 10!? cm 3, configured with a 1 mm
up-ramp, a 5mm flat-top region, and a 1 mm down-ramp. Further details of the simulation

parameters are shown in the App. A.3.

Figure 4.4 shows two simulation results with identical initial conditions: the top row in-
cludes radiation reaction, while the bottom does not. Initially, the driver beam produces a
blowout in the upramp region [Fig. 4.4.a.1], undergoing self-focusing and forming a stable ion
cavity that persists through the flat-top region. The trailing witness beam, injected near the
back of the cavity, experiences strong transverse oscillations due to the ion channel field. In
the presence of radiation reaction [Fig. 4.4.a.2], these betatron oscillations induce rapid syn-
chrotron cooling, which acts nonlinearly on the transverse momentum. As predicted by the
theoretical analysis in Sec. 4.2, this cooling compresses phase-space volume and leads to the
formation of a narrow ring in p |, resulting in a sharply defined annular structure in the trans-
verse spatial density. The radius of this ring is consistent with the amplitude derived from
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FIGURE 4.5: Synthetic diagnostics of the simulated screen (100 cm downstream from the plasma) and
spectrometer analysis demonstrate that phase-space bunching features are observable under experimen-
tal conditions. (i) Screen image with radiation reaction enabled shows visible ring structures. (ii) Screen
image without radiation reaction shows no ring formation. (iii) Divergence versus energy with radiation
reaction demonstrates clear correlation with ring features. (iv) Divergence versus energy without radia-
tion reaction shows no such structure.

Eq. (4.16), and its formation occurs over a propagation distance ct, >~ 0.6 mm, in good agree-
ment with the estimate from Eq. (4.19). Indeed, ring features begin to appear in the simulations
at this distance into the flat-top region. In contrast, when radiation reaction is not included
[Fig. 4.4.b.2], the same witness beam exhibits no sign of transverse structuring and retains a
broad, featureless profile throughout propagation, confirming that the observed ring is a direct
consequence of betatron cooling.

To determine whether these ring features, resulting from phase-space bunching, can be
detected experimentally, we simulate the beam as it exits the down-ramp region. As the beam
exits the plasma, several bunches are observed in the witness beam Fig. 4.4.a.3 as modulations
of the radial beam profile, as predicted by Eq. (4.15) for a non-emittance matched beam and as
shown in Fig. 4.2 where the radial profile also shows multiple radial bunches. For comparison,
we performed identical simulations with radiation reaction disabled Fig. 4.4.b. In this case, no
bunching or ring formation is observed throughout the beam’s propagation, confirming that
the witness profile results from betatron radiation losses.

The radial bunches are a result of the phase-space bunched structured due to betatron
cooling, therefore, this structures also have a momentum component as seen in Fig. 4.2, which
should exhibit signatures as a pitch-angle anisotropies, which could be easily observable with
diagnostic studying the propagation of such beams. We thus, simulate a downstream lumi-
nescent screen placed 100 cm from the plasma exit. As shown in Fig. 4.5.i, the ring structures
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FIGURE 4.6: PIC simulations showing the formation of ring-shaped, phase-bunched profiles in a single
FACET-I], like electron beam propagating through high-density plasma. The front of the beam drives
the blowout cavity, while the rear undergoes betatron cooling. Row (a) includes radiation reaction; row
(b) does not. Columns correspond to different propagation stages: upramp (1), uniform plasma (2), and
downramp (3). Ring formation occurs only when radiation reaction is included.

(now due to bunching in propagation angle) are clearly visible on the screen.* Furthermore,
because of their different positions in the accelerating structure and their energy loss due to
betatron losses, the rings also differ in energy. This implies that spectrometers could also de-
tect these features. By estimating the divergence as a function of energy Fig. 4.5.iii, we observe
that each ring has a distinct emittance. Notably, the highest-emittance ring corresponds to the
lowest-energy structure, which has undergone the most cooling. In contrast, lower-emittance
structures, which radiated less, are able to accelerate beyond the initial 10 GeV beam energy.

Comparing the same analysis without radiation reaction Fig.( 4.5.ii & 4.5.iv), we find no
observable ring structures on the screen and a no signature of bunching in the synthetic spec-
trometer. This absence further confirms that the observed phase-space structures are a result
of betatron cooling.

4.3.3 REALISTIC LABORATORY SETUP: SINGLE DRIVER BEAM CONFIGU-
RATION

Interestingly, the rear of the driver beam also exhibits similar ring-shaped beams when ra-
diation reaction is included. A comparison of the density profiles in Fig. 4.4.a shows clear
signatures of bunching in both the witness and the tail of the driver. This suggests that a sim-
pler experimental configuration is possible: a single electron beam could drive the blowout
with its rear experiencing betatron cooling and forming rings. Motivated by this, we explored
a simpler configuration where a single beam simultaneously drives the blowout structure and
experiences betatron cooling.

We conducted a Quasi-3D PIC simulation using a single electron beam with parameters
consistent with FACET-II: total charge of 3nC, energy of 10 GeV, normalized emittance of

“4Details on how the screen was synthetically reconstructed from PIC simulation data are outlined in App. A.3.1.
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FIGURE 4.7: Synthetic diagnostics for the single-beam configuration. (i) Downstream screen (100 cm
from plasma exit) with radiation reaction shows visible ring structures. (ii) Without radiation reac-
tion, the screen shows no ring formation. (iii) Divergence versus energy plot with radiation reaction

demonstrates distinct ring-associated features. (iv) Without radiation reaction, the divergence spectrum
is smooth and unstructured.

300 mm mrad, waist of 5 ym, and a length of 10 um. The beam propagates through a plasma
with peak density 5 x 10! cm 3. These parameters match those used in the two-beam scenario

to allow direct comparison.

The simulation results, shown in Fig. 4.6, confirm that the beam drives a blowout cavity in
the upramp region (a.1), while the rear of the beam develops a clear ring-shaped structure as it
propagates through the uniform-density plasma (a.2). These features persist as the beam exits
into the downramp region (a.3), confirming the robustness of the phase-space bunching. In
contrast, when radiation reaction is disabled (row b), the beam remains smooth and featureless
throughout propagation.

To assess the experimental observability of these structures, we simulated downstream
diagnostics analogous to those presented in the main text. A synthetic screen placed 100 cm
downstream from the plasma exit (Fig.4.7.i) clearly shows ring-shaped intensity patterns in the
presence of radiation reaction. The corresponding energy-resolved divergence plot (Fig.4.7 iii)
shows that each ring possesses distinct energy and emittance characteristics, again confirming
the presence of phase-space bunching. In contrast, simulations without radiation reaction
produce neither ring structures nor energy-dependent features, see Figs. (4.7.ii & 4.7.iv).

These results demonstrate that ring-shaped, phase-structured beams can emerge naturally
in single-beam setups and are robust against diagnostic and propagation effects. This provides
a more accessible experimental configuration, requiring only a single high-energy beam to
observe the effects of betatron cooling.
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4.4 COHERENT BETATRON EMISSION VIA ION-CHANNEL LASER
AMPLIFICATION

Since ring-like beams can drive the Ion Channel Laser (ICL) [126, 189], we explore the pos-
sibility that betatron-cooled, phase-space, bunched beams may emit coherent betatron radi-
ation, offering an additional pathway for their detection. For the ICL to operate, two key
criteria must be satisfied: (i) the relative energy spread must remain below the threshold
Ay/vy < 2p/3, where p is the Pierce parameter, estimated as p = (I/2I A'y)l/ 3, with I the
beam current and I4 = 17 kA the Alfvén current [126]; and (ii) the spread in the dimensionless
wiggler parameter K must satisfy AK/K < p' = 272/3p. The Pierce parameter p quantifies
the beam, wave coupling strength, determining both the gain length and the tolerable energy
and amplitude spreads for coherent radiation; it depends on the beam current, energy, and
focusing strength of the channel.

Condition (i) is naturally satisfied over time: betatron cooling causes the oscillation am-
plitudes of different electrons to converge, reducing the energy spread and promoting syn-
chronous emission. To assess condition (ii), K characterizes the average transverse oscillation
amplitude in units of the betatron wavelength, i.e., K = (A)\/v/2w,/c. As the beam cools,
the amplitude distribution sharpens around a ring radius r,(7), given by Eq. (4.16).> We ap-
proximate

K _ 7+(7)

1
oL ) 42
AK 277 V2 —y (1) (2.20)

which slightly overestimates AK/K, yielding a condition for when the beam satisfies the wig-
gler coherence threshold:
2
(2;'75))_ (4.21)
40" (4+0')

For representative parameters (such as those possible at FACET-II [65, 187]): plasma den-
sity g = 5 x 10" cm~3, beam charge g, ~ 1nC, bunch length ¢; ~ 5um, transverse size
0, = 5um, and energy E ~ 10GeV, we estimate p ~ 0.05. This gives a critical propaga-
tion length c7; ~ 0.7 mm, beyond which AK/K continues to decrease. The gain length in this
regime is [126]

~ 20— ~ 3mm. (4.22)

These results suggest that betatron-cooled beams can satisfy the conditions for coherent am-
plification of betatron radiation within experimentally accessible lengths. Continued cooling
of the beam also reduces K. If the beam initially satisfies K > 1, it will eventually transition
from the wiggler regime (K > 1) to the undulator regime (K < 1). In the undulator limit, radi-
ation becomes concentrated on-axis and dominated by the fundamental frequency, in contrast
to the broad angular and harmonic spread of the wiggler regime. The transition occurs when

SFurhter details on the approximations for the fulfillment of these condtions and exact equations for their evolution
are shown in App. G.3.
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rr(Tu) = \/2/7 ¢/ wp, yielding the (beam-independent) time:

EESC

ty = ———. 4.2
u mxmgcw% (4.23)
The corresponding propagation length is
21 AT
cty [320 cm] ~ (ne [10°" cm™ ]) , (4.24)

indicating that access to the undulator regime may require a staged setup: initial ring forma-
tion at high density, followed by propagation in a lower-density plasma to allow K < 1 to be
reached.

These findings highlight the potential of betatron-cooled beams not only for studying non-
linear radiation reaction dynamics but also for generating coherent betatron emission through
self-structured phase-space distributions. The fact that such coherence conditions are natu-
rally met by the beams shaped via radiation losses suggests a new path for producing high-
brightness, narrow-band radiation sources and for exploring analogues of astrophysical maser
processes in the laboratory.

4.5 CONLUSION

Here we have shown that in the presence of strong radiative losses, betatron cooling induces a
population inversion in the amplitude of betatron oscillations, leading to phase-space bunch-
ing and the formation of ring-shaped, or “donut" structures in both position and momen-
tum space. This effect arises from the nonlinear nature of radiation reaction in focusing fields
and, to the best of our knowledge, represents a fundamentally new kinetic phenomenon in
beam, plasma systems. Our analytical model, validated by Q3D particle-in-cell simulations,
demonstrates that this structuring occurs on experimentally accessible timescales using cur-
rently available high-energy beams and plasma densities.

We also conjecture that experiments operating in high-density (= 102 cm~3) and high-
energy beams (2 10 GeV) will access the fast cooling regime, where strong radiative losses
collapse momentum space within a single betatron oscillation, further enhancing bunching.
This will be further studied in future work.

While this Chapter has focused on PWFA, the underlying mechanism is not limited to this
configuration. In fact, LWFA platforms offer a high degree of control over the injection pro-
cess, which could be harnessed to tailor the initial phase-space properties of injected beams
in high-density plasmas [206, 207]. This tunability makes LWFA an attractive pathway for
experimentally realizing and controlling betatron-cooled phase-space structures. Moreover,
the emergence of petawatt-class laser systems [208, 209] opens the door to driving wakefields
in near-solid-density plasmas, such as ion channels, where radiative losses become extreme.
These next-generation facilities will make it straightforward to access regimes of strong be-
tatron cooling, enabling precise studies of phase-space dynamics and coherent radiation pro-
cesses under extreme conditions.
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Finally, the betatron-cooled process described in this chapter serves as analogous process
to synchrotron-cooled plasmas in astrophysical environments, which can drive maser instabil-
ities via Landau population inversion [23, 113, 114], these findings establish betatron cooling
as a laboratory pathway to tailoring beam phase space and potentially enabling coherent be-
tatron emission via ion-channel, driven instabilities [126, 164, 189] and may allow to study
analogous systems to coherent radiation emission in astrophysical plasmas.
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CHAPTER 5

FIREBALL BEAMS: PAIR PLASMA INSTABIL-
ITIES

Portions of this Chapter are adapted from: C. D. Arrowsmith, P. Simon, P. ]. Bilbao et al.,
"Laboratory realization of relativistic pair-plasma beams." Nat. Comms. 15.1 (2024): 5029.;
C. D. Arrowsmith, F. Miniati, P. J. Bilbao et al., Under consideration in Proceedings of the
National Academy of Science (2025) & future publications from the Fireball collaboration.

5.1 INTRODUCTION

Electron—positron plasmas are ubiquitous in high-energy astrophysical phenomena. From the
magnetospheres of neutron stars and black holes to the collimated jets launched from active
galactic nuclei [32, 156, 157], these plasmas are not only relativistic and collisionless, but often
dominated by radiation and quantum electrodynamic (QED) effects. In particular, astrophys-
ical jets, such as those from blazars, may propagate over cosmological distances through the
intergalactic medium, where inverse-Compton and pair-production cascades shape their ob-
servable spectra [210, 211]. These phenomena offer a platform for investigating the collective
dynamics of relativistic pair plasmas.

One of the most generic configurations arising in these environments is that of a relativis-
tic pair beam streaming through an ambient plasma [212]. Such beams can form as part of
electromagnetic cascades triggered by high-energy gamma rays [157] or as structured compo-
nents within larger-scale jets [212]. In all these cases, the interaction between the fast-moving
beam and the background plasma can give rise to a range of kinetic instabilities, seeded by
anisotropies in the momentum distribution or by relative streaming between populations [213,
214]. These instabilities act on microscopic length- and timescales, and their dynamics are gov-
erned by the kinetic properties of the system: energy spread, beam divergence, density ratio,
and dimensionality.

Laboratory Fireball beams are designed to replicate this astrophysical scenario under con-
trolled conditions. Ideally, they consist of quasi-neutral, ultra-relativistic electron—positron
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beams propagating through an ambient electron—ion plasma, reproducing the essential ingre-
dients of pair-beam interactions in pulsar winds, gamma-ray burst afterglows, and relativistic
jets [66]. In the CERN experiment used in this work, a 440 GeV /c SPS proton bunch strikes a
composite graphite—tantalum target, producing a hadronic cascade whose secondary photons
undergo pair production in the converter, yielding a high-flux e* beam with near-equal charge
densities [72]. This beam, with Lorentz factors v > 1 and transverse dimensions much larger
than the plasma skin depth, is injected into a background plasma to study beam-plasma in-
stabilities on kinetic scales. A complementary approach proposed at SLAC’s FACET-II facility
uses magnetic chicanes to overlap separate ultra-relativistic e~ and e™ bunches in space and
time [215]. Both platforms bridge laboratory and astrophysical regimes, enabling direct study
of kinetic instabilities relevant to extreme environments.

However, the importance of beam-plasma instabilities extends further than any one as-
trophysical scenario. The fundamental mechanism, free energy stored in anisotropic distri-
bution functions being converted into electromagnetic fields, is expected to operate wherever
relativistic particle beams propagate through an ambient plasma. In this sense, the presence
(or absence) of kinetic instabilities such as the current filamentation or oblique mode is not
just a technical detail, but a diagnostic of the underlying plasma state. If such instabilities
are observed, they can rapidly mediate energy transfer, generate magnetic fields, and shape
the radiation emitted by the system [216]. If they are suppressed, it implies that the plasma
possesses structure, such as finite transverse temperature, beam divergence, or spatial inho-
mogeneity, that fundamentally alters its kinetic response [217]. Understanding the conditions
under which these instabilities are active or quenched is essential to building a predictive the-
ory of extreme plasma dynamics.

Despite their fundamental importance, kinetic beam—plasma instabilities in relativistic pair
plasmas are still not fully understood in realistic conditions. While linear theory captures the
essential features of instability growth in idealized scenarios, such as cold, monoenergetic,
and collimated beams, these assumptions rarely hold in practice. Finite temperature, energy
spread, beam divergence, and partial pair purity all impact the evolution of instabilities, yet
their combined effect remains difficult to treat analytically [213, 214, 218]. As a result, there is
a clear need to study how these instabilities behave under experimentally relevant conditions,
where deviations from ideality play a critical role in determining their growth and nonlinear
saturation.

5.1.1 CURRENT FILAMENTATION INSTABILITY IN PAIR-PLASMAS

In this chapter, we focus on the study of beam-plasma instabilities where the beam is com-
posed of electron-positron pairs and the background plasma consists of electron-ion compo-
nents. This configuration is analogous to the interaction of a relativistic jet, such as those
emitted by blazars, propagating through the intergalactic medium.

In astrophysical contexts, the exact form of the particle distribution functions is often un-
known due to the impossibility of in-situ measurements. For example, it is possible to send
probes and directly characterize the properties of the solar wind or magnetospheric plasmas
around solar system bodies [12]. Such luxuries are not possible in the case of high-energy as-
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trophysical phenomena. Consequently, significant assumptions must be made regarding the
distribution functions of such plasmas, and hence the role and nature of plasma instabilities
in these environments remain somewhat uncertain.

A key instability in this context is the so-called current filamentation instability (CFI). This
arises when a beam propagates through a plasma and self-consistently generates transverse
magnetic fields which leads to the filamentation of currents within the plasma [217], in the
nonlinear stage this will lead to separation of the species for electron-positron plasmas [73].

The outcomes of plasma instabilities can differ dramatically depending on the assumed
properties of the plasma. For instance, we highlight the role of the divergence of the beam,
as the dynamics of a collimated beam differs significantly from that of a divergent or warm
beam [217]. A useful estimate involves the typical filament scale ¢ ~ k.., where the cutoff
of the growth rate occurs, i.e., the minimum scale of the filaments formed. Each filament
carries a current of magnitude I = en,o2cf, where n, is the density of the beam and cf is the
spatial velocity, producing a pinching force Fyx =~ 2¢?n;,0. In the presence of a perpendicular
temperature, there is a counteracting thermal pressure force given by F, ~ kT, /c. For the
instability to grow, the pinching force must overcome the thermal pressure, i.e., Fmax > Fp. This

12 « pl}h. This simple estimate helps illustrate how transverse

leads to the scaling kyx < T
temperature can suppress CFL. As increasing the divergence of the beam p 4, increases the
minimum size of the filaments and their growth rate [217]. The implications are far-reaching:
one can support or rule out certain astrophysical mechanisms based on the plasma parameters

chosen, which in turn determines which instabilities are excited.

A more formal treatment starts from the Vlasov equation, Eq. (1.4), which can be linearized
along with Maxwell’s equations to derive the dielectric tensor for an arbitrary distribution
function [169, 219]. Still, the linear regime poses significant challenges, especially for realistic,
non-trivial forms of f;, for which the exact solution of the dispersion relation might not have
an analytical expression

In the following, we consider the transverse electromagnetic mode associated with the cur-
rent filamentation instability. The coordinate system is chosen such that the beam propagates
along the z-axis and the wavevector k is along the x-axis (transverse to the beam). In this con-
figuration, the dominant magnetic perturbation 6B, points out of the x-z plane. By Faradays
law, this implies an inductive electric field /E, aligned with the beam propagation direction,
as well as a smaller transverse electric component JE, arising from charge-separation effects.
The 6B, component is responsible for the transverse deflection of beam particles according to
their longitudinal velocity, driving the formation of current filaments. This is the same field
geometry as in the classical Weibel mode: a purely transverse wave (k L v;) with magnetic
perturbations perpendicular to both k and v;, and an inductive electric field parallel to the
beam.

With this configuration in mind, the dispersion relation for waves propagating along x-
perpendicular to the bulk momentum along z, can be written, normalized to the background
plasma frequency wy,, as [169, 219]

0= Ay = —c?k* + w?e,s, (5.1)
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by normalizing the plasma frquency w,, = 1, speed of light ¢ = 1, and the electron mass
m = 1, the permittiviy tensor is given by

s yAme dp  pfos k-p/y kip
8”_5”+; w Jomkpiaan ' w0 )T el 62

which expanded out, including contributions from the plasma electrons and beam electron
positrons,! is

fo(p)

0=w?—K2— <70‘1> + <p§0/78> ta <'y—1> ta <p§/73> + a/ d3nga%, (5.3)

where the brackets (Q) denote averages over the corresponding distribution function,

Q= [#psp)Q, 64)

and all frequencies are normalized to the background plasma frequency wp.. Here w is the
wave frequency, k is the wave wavenumber, ¥ (7o) is the Lorentz factor of the beam (back-
ground plasma) particles, « = ny,/ng pair-beam to background plasma density, p; is the mo-
mentum in the i-th direction, and the brackets represent the averaged quantity. We consider
a background electron-ion plasma whose temperature is negligible, i.e., p, = 0 and py = 0,
and focus on beam distribution functions relevant to electron-positron beams, the full distri-
bution function is outline in Appendix H.1, notably the beam distribution function can be
decomposed into f(px, pz) = fz(pz)fx(px, pz), along the propagation direction f,(p-) and a
thermal spread in the perpendicular direction (fy o e P/ (ZVtzh(”Z))), where the thermal spread
pm = A6 p,. Approximating oy =~ p, then one can write the dispersion relation in the following
form

- ﬁ + k\/;AGC*"Z (k\;z)maﬂ (1) +a(pn). 69

where Z(x) is the plasma dispersion function [220].

0=w’-kK—-1-—all

Analytical expressions for the plasma dispersion function Z exist in asymptotic regimes:
as a Maclaurin series for small arguments and as a Laurent series for large arguments. These
expansions are fundamental in deriving solutions such as Landau damping [5]. In the limit of

small transverse thermal spread A6, one can approximate the Z function as Z (w / (k\ﬁAB)) o~

ivmexp (—w?/(2k?A6%)), which holds when w/(v/2k) > A6 [220]. Even with this approxi-
mation, however, the dispersion relation Eq. (5.5) remains transcendental, and must therefore
be solved numerically.

Numerical solutions confirm that increasing the transverse thermal spread suppresses the
growth of the instability, as shown in Fig. 5.1. These results validate the intuitive scaling de-
rived earlier: as the transverse temperature increases, the associated thermal pressure counter-
acts the magnetic pinching force, reducing the instability’s growth rate. Specifically, the cutoff

1We note the system is charge and current neutral, the beam electron positron components neutralize each other
and for the background plasma we have considered mobile electron on a neutralising background of high mass to
charge ratio ions, such that their dynamical contribution can be neglected in ¢;;
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FIGURE 5.1: Theoretical growth rate for an electron-positron Fireball beam, with realistic momentum
distribution function (see Appendix H.1) propagating in an electron-ion plasma, obtained from the linear
dispersion relation Eq. (5.5), demonstrates how the divergence of the beam Af affects the growth rate of
the different modes. The beam has density ratio « = 1 and varying divergence A6, while maintining the
longitudinal momentum distrbution constant.

wavenumber shifts to lower values of k, corresponding to wider filaments, consistent with the

estimate kmax Tll/ 2,

This agreement between a simple force-balance argument and the full kinetic solution high-
lights the underlying physical mechanism. It demonstrates that the beam’s kinetic properties,
particularly perpendicular thermal pressure, play a critical role in shaping both the growth
rate and dominant scale of the instability. Cold-beam models, while useful as a first approxi-
mation, can significantly mischaracterize energy transfer efficiency, magnetic field generation,
and particle isotropization in realistic astrophysical conditions [221]. This underscores the
importance of employing a more careful and quantitative kinetic treatment when modeling
beam-plasma instabilities in such environments.

In this context, the possibility of generating relativistic electron-positron beams in the labo-
ratory opens an exciting opportunity: for the first time, it becomes feasible to directly measure
the onset and growth of these instabilities under controlled conditions, and to test how sensi-
tive they are to beam properties such as divergence, temperature, and density. In an electron-
positron beam, the underlying driver, a momentum-space anisotropy between the beam and
the background, is the same as in the pure electron case. However, a pure electron beam is
not current neutral, so the background plasma responds by establishing a return current. This
return current alters the subsequent dynamics substantially,? and in addition, charged beams
can drive wakefields and modify the instability through the electrostatic potential they gener-
ate.

In contrast, the absence of a large net current in a quasi-neutral e* beam means that no
strong return current is established in the background plasma. This suppresses large-scale

2In astrophysical environments, this distinction can be critical: pair plasmas in pulsar winds or AGN jets may
be close to current neutral, whereas cosmic-ray electron beams streaming through the interstellar medium are not,
leading to different instability hierarchies.
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FIGURE 5.2: Comparison of laboratory-produced high-density pair beams (adapted from Ref. [72,
75]): Peak pair number and density from the Fireball-I experiment at CERN’s HiRadMat facility
(red square) are shown alongside results from previous high-power laser experiments (black squares):
Orion/OMEGA-EP, Texas-PW, Astra-Gemini, and OMEGA-EP (2014 and 2021). Each marker is labelled
by facility, with the fill fraction indicating the positron-to-electron ratio. The blue-shaded region corre-
sponds to the boundary demarking more than one pair per Debye sphere.

electrostatic fields and makes the instability more purely magnetic in character, while also
changing the seeding: in perfectly neutral beams, the Weibel /CFI grows from noise-level fluc-
tuations, whereas in non-neutral beams, the return current can provide a finite initial B-field
that accelerates onset.?

5.1.2 FIREBALL EXPERIMENT: STUDYING BEAM-PLASMA INSTABILITIES
AT CERN

This breakthrough would not have been possible without recent experimental advances. Ex-
periments at the HiRadMat facility at CERN have successfully produced the first laboratory-
generated electron-positron pair-plasma beam, characterized by transverse and longitudinal
sizes exceeding the relevant plasma length scales, namely the skin depth and the Debye length
[72]. A summary of the experimental parameters and how they compare with previous laser-
based efforts is shown in Fig. 5.2.

3Because a neutral e* beam is itself a plasma, it can in principle sustain collective instabilities even without a
background plasma, provided it has sufficient internal anisotropy. This self-interaction channel is absent in single-
species beams. Preliminary simulations of Fireball beams indicate that such self-driven instabilities can indeed occur
even in vacuum, although these results are still at an early stage.
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FIGURE 5.3: Experimental setup (adapted from Ref. [75, 77]): (a) An electron-positron pair beam, pro-
duced by irradiating a graphite-tantalum target with 440 GeV /¢ protons (temporal profile shown in the
inset), propagates through a meter-long argon plasma generated by an RF discharge. (b) The transverse
beam profile is measured upstream of the plasma using luminescence screens and digital cameras. (c)
The plasma density is diagnosed using probes and optical spectroscopy.® Filamentation due to the beam-
plasma instability is measured with a downstream luminescence screen, and magnetic-field growth is
inferred from Faraday rotation. (d) Electron and positron energy spectra are measured using a magnetic
spectrometer, corrected for the collection geometry.

The key feature of this new regime is that the beams are sufficiently dense and extended
to support collective plasma behavior. In particular, the beam occupies a volume that spans
multiple skin depths and Debye lengths, and contains more than one pair per Debye sphere,
ensuring it behaves close to a collisionless plasma. Under these conditions, the onset of collec-
tive modes, including beam-plasma instabilities analogous to those expected in astrophysical
environments, becomes possible.*

For the parameters measured in Fireball-I [72], the beam full-width-half-maximum dimen-
sions are £H ~ 177 cm and ¢; ~ 0.40 cm, with a peak pair density n+ ~ 1.6 x 1012 em—3
and a bulk Lorentz factor I',,;x >~ 8. In the co-moving frame, the transverse and longitudinal
temperature parameters are © | =~ 3.5 and © =~ 6.5, giving an effective © ~ 5.0 + 1.5. This
yields a collisionless skin depth AS¥ ~ 0.10 cm and a Debye screening length A% ~ 0.20 cm.
The beam thus spans ~ 40 skin depths in length and ~ 20 Debye lengths transversely in the

0'2, and per skin-

co-moving frame [72]. The number of pairs per Debye sphere, Nlcjf' ~7x1
depth volume, Nt ~ 10'2, are both orders of magnitude above unity, confirming that the

beam is deep in the collective regime. Based on this analysis Fig. 5.2 demonstrates the num-

4The closeness to an idealized plasma is key to scale provide a lenght and time independance scale to the Vlasov
system, if a collisional term is present it fixes the scales of the system.
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ber, yield, and beam neutrality of the e* pairs. These are compared against results from pre-
vious experiments at high-power laser facilities. It is clear that the presented scheme achieves
pair yields and densities in a quasi-neutral beam that will not be attainable at laser facilities
without increases in laser energy by several orders of magnitude. Given that (N+/Np) 2 1,
(N+/Ns) 2 1, and Np, Ns > 1 in the co-moving frame, it becomes possible for the first time
to perform laboratory studies of the collective plasma behavior of relativistic electron-positron
pair plasmas.

This breakthrough was achieved using the 440 GeV proton beam from the Super Proton
Synchrotron, which delivered approximately 3 x 10! protons® onto a high-Z particle con-
verter composed of carbon and tantalum as seen on the left of Fig. 5.3. Through electromag-
netic cascade and pair-production processes, the resulting particle shower yielded a total of
1.5 x 1013 electron-positron pairs, representing the highest positron yield achieved in a labora-
tory to date [72, 75]. The resulting beam exhibits relativistic energies and pair quasi-symmetry,
and enters a parameter regime where laboratory-scaled analogues of astrophysical, collision-
less plasma processes become experimentally accessible.

For this reason, one of the objectives of the Fireball-I experiment was to produce an electron-
positron pair plasma and to propagate it through a background plasma of comparable density
in order to see the onset of the beam-plasma instabilities often invoked in astrophysical mod-
els. In order to design an experimental platform and to interpret the outcome of experimental
results of pair-plasma beames, it is necessary to employ kinetic theory and to employ models
and simulations that correspond one-to-one to the experimental parameters.

5.2 PARTICLE-IN-CELL SIMULATIONS

The Fireball-I experiment is part of a large, international collaboration involving several insti-
tutions across Europe, including our team at IST. Our contribution focused on the theoretical
and numerical modeling of beam-plasma instabilities, helping to design and interpret the ex-
periments. In particular, we performed large-scale particle-in-cell simulations aimed at repro-
ducing the key features of the experiments and testing the expected instability growth rates
under realistic beam and plasma conditions.

We performed full 3D simulations with as close as possible to initial conditions to the exper-
imental conditions. The initial conditions were estimated via FLUKA simulations, performed
by the team in Oxford, these provided the initial conditions of the Fireball beam that would
be initialized in our simulation setup. The initialisation of these beams necessitates a careful
injtialisation in momentum space, this is described in Appendix H.2 alongside the momentum
properties of the beams in Appendix H.

5.2.1 ONE-TO-ONE EXPERIMENTAL SIMULATIONS

Our first set of 3D simulations (see parameters in Appendix A.4.1) was carried out after a
thorough convergence study in 2D3V (see Appendix A.4.2). These simulations showcase the

The beam delivered an approximate energy of 7 K], or around 2 grams of TNT.
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FIGURE 5.4: 3D PIC simulations demonstrate the importance of beam divergence in determining the
onset of beam-plasma instabilities. The plots show volume renderings of positron density (orange) and
electron density (blue). Left: a divergent beam produces diffuse, overlapping electron and positron dis-
tributions, with no clear filamentation, electron density is cut open to show the interior positron struc-
ture. Right: a collimated beam develops a distinct positron filament surrounded by a thin electron fila-
ment, a clear signature of an instability.

critical role of beam emittance in enabling or suppressing instability growth. As shown in
Fig. 5.4, the realistic beam configuration, represented by the left panel, displays no clear signs
of filamentation, whereas the collimated beam on the right develops a pronounced filamentary
structure, consistent with the onset of the current filamentation instability (CFI). This high-
lights how transverse momentum spread, or beam divergence, acts to stabilize the system and
inhibit the growth of instabilities, as discussed in Sec. 5.1.1.

We initially expected that beam-plasma instabilities would efficiently transfer energy from
the beam into electromagnetic fields. For the experimental case, however, the instability is
significantly suppressed. Only weak magnetic amplification is observed, with a growth rate
of T ~ 0.2 ns~!. In contrast, the idealized collimated case exhibits a much stronger initial
growth rate of I' ~ 2.1 ns~! (Fig. 5.5).

While the linear growth rates of the current filamentation instability can, in principle, be es-
timated from analytic theory, existing models rely on idealized assumptions, such as monoen-
ergetic or waterbag energy distributions [217], perfectly neutral and current-neutral beams,
and spatially homogeneous conditions, that do not reflect the measured Fireball beam pa-
rameters. In our case, the full experimental energy distribution is neither monoenergetic nor
waterbag-like, and the beam is close but not fully quasi-neutral, with a residual proton com-
ponent whose influence is difficult to capture analytically, and as we will see has an important
effect on the seeding of the instability in Sec. 5.2.2. Moreover, theory alone cannot determine
whether growth in the experimental regime proceeds into the nonlinear stage within the avail-
able plasma length, especially when divergence, density gradients, and finite beam size are
important. The 3D simulations presented here incorporate all measured beam properties, the
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FIGURE 5.5: Peak magnetic field as a function of propagation distance, obtained from PIC simulations.
The degree of field amplification depends strongly on the divergence of the beam. Shading corresponds
to the local background plasma density.
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FIGURE 5.6: PIC simulations reproduce the experimental measurements from the Fireball-I lumines-
cence screen. Shown are synthetic transverse beam profiles at the screen location for two cases: (i) the
‘experimental’ divergent beam (left), and (ii) the idealized’ collimated beam (right), as defined in Fig. 5.4.
The grey dashed circle marks the edge of the plasma column. Red lineouts (simulations) are compared
with the experimental data (blue), showing good agreement in the divergent case and highlighting the
absence of filamentation under realistic beam conditions.

realistic plasma profile, and the proton fraction, allowing us to assess the actual onset and
saturation behavior under experimental conditions. Beyond their predictive role, these simu-
lations also serve as a diagnostic complement: the limited set of experimental measurements
(perpendicular imaging before and after the plasma plates and a single Faraday probe) can-
not resolve the full spatiotemporal evolution of the beam-plasma system. The simulations
therefore fill in the gaps, enabling both interpretation of existing diagnostics and guidance for
future measurements.

A direct comparison with the Fireball-I experimental data was carried out by Charles Ar-
rowsmith, who also led the design and execution of the experiment. For further details, see
Ref. [75]. The PIC simulations performed in this thesis closely match the experimental config-
uration and reproduce its key diagnostic results: no evidence of filamentation was observed
in the downstream luminescence screen, and no significant magnetic field amplification was
measured. Additionally, no signal above noise level was observed in the Faraday rotation di-
agnostic. This implies that the magnetic fields remained below the probe’s sensitivity, which
was estimated to be (B) < 5 mT. The magnetic field calculated in the simulation, correspond-
ing to a virtual probe placed at the same location, yields an average of (B) ~ 1.7 mT, consistent
with the experimental non-detection [75].

5.2.2 QUASI-CHARGE-NEUTRAL BEAM DYNAMICS

The simulation results of the idealized case, shown in the right panel of Fig. 5.4, demonstrated
some unexpected but physically interesting dynamics. Our simulations did not produce mul-
tiple filaments, often observed in PIC simulations studying CFI in symmetric pair plasmas
[73], instead we observed the formation of a single positron filament, surrounded by a cylin-
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drically symmetric distribution of electrons. This stark difference suggests that other effects
are at play during the experiment.

This behavior can be traced back to the composition of the beam. Our setup begins with a
beam that is not exactly charge neutral. First, the positron content is slightly reduced due to
reabsorption in the converter target, meaning the peak electron density n_ is approximately
1.21 the positron density n,. Second, a fraction of the initial 440 GeV proton beam remains
and propagates downstream with the pair beam, with density n, = 0.5n_. As a result, the
simulations include a small but non-negligible component of the original proton beam and still
a small imbalance in the electron-positron density. While pure electron-beam filamentation
has been extensively studied [73, 74, 215, 221, 222], the dynamics in the intermediate regime,
neither fully charge neutral nor purely electron, remains relatively unexplored [215, 223].7 In
particular, it is unclear how instabilities behave in a plasma that includes multiple species and
lacks full current neutrality. The interplay between beam-driven instabilities and large-scale
background fields generated by charge imbalance is still an open question.

We suggest that the residual electromagnetic field of the proton beam can provide a seed
magnetic structure that the filamentation instability grows from. These seed fields arise from
the initial current imbalance and may influence which modes are preferentially amplified by
the current filamentation instability.

An estimate of the initial azimuthal magnetic field and its spectral content, based on Gaus-
sian fits to the beam profiles obtained from FLUKA simulations, is presented in Appendix H.3.
This calculation shows that the seed field peaks at wavelengths of ~2-3 mm, consistent with
the observed filament spacing in the collimated simulation. Comparison with the theoretical
growth rate confirms that modes seeded at this scale are within the range of maximum in-
stability, supporting the idea that beam charge imbalance can help determine the dominant
filament structure, see full details in Appendix H.3.

QUASI-CHARGE-NEUTRAL BEAM DYNAMICS: ROLE OF THE PROTON COMPONENT

We performed a series of 2D PIC simulations to investigate how quasi-neutrality and the pres-
ence of a residual proton beam influence the development of beam-plasma instabilities in the
Fireball-I configuration.

Figure 5.7 summarizes the results. The top row shows fully QN cases with equal numbers
of electrons and positrons and no proton beam. The bottom row includes the proton compo-
nent and an electron excess, matching experimental conditions. In the QN case, the collimated
beam exhibits clear current filaments typical of the CFI, while no instability signatures are seen
for the divergent beam or for the case without plasma. When protons are included, the results
reproduce the trends of the 3D simulations in the main text: collimated beams develop strong
structure, while divergent beams show reduced growth. The no-plasma case confirms that
structure formation is a beam-plasma effect rather than a self-modulation in vacuum.

7Even a small departure from perfect charge or current neutrality can substantially influence the instability’s onset
and evolution, as will become clear in the discussion below. Understanding what instability is being probed is key to
be able to correctly scale the findings to astrophysical objects.
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FIGURE 5.7: 2D PIC simulations comparing quasi-neutral (QN, top row) and imbalanced beams with a
residual proton component (bottom row) in the Fireball-I configuration. Columns show: (1) collimated
beam, (2) divergent beam with FLUKA-estimated divergence, and (3) beam in vacuum without back-
ground plasma. Snapshots are taken near the Faraday probe location. In the QN case, clear CFI filaments
appear only for the collimated beam. With protons included, collimated beams reproduce the 3D simu-
lation trends, while the no-plasma case confirms that structure formation is a beam-plasma effect.
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FIGURE 5.8: Peak transverse magnetic field B3 versus propagation distance L (with L = 0 at the plasma
entrance). Solid lines: simulations with proton beam. Dashed lines: quasi-neutral beams. Collimated
beams show the fastest growth, while divergent beams grow weakly or not at all. The no-plasma cases
remain at constant Bs, representing the seed field from the initial current imbalance. The darker blue
regions indicate where the plasma density is highest.

To quantify these trends, we track the peak transverse magnetic field B3 as a function of
propagation distance, with L = 0 defined at the plasma entrance (Fig. 5.8). Simulations with
protons (solid lines) display the same hierarchy as in the 3D runs: the collimated case grows
fastest, while the no-plasma case remains at a constant B-field amplitude, representing the
seed field from the proton beam. In QN cases, the divergent beam shows little or no growth,
likely masked by noise from its high temperature, while the cold collimated beam eventually
grows from noise at a rate comparable to the proton-beam case, but from a much lower initial
amplitude. This indicates that the proton component primarily sets the initial B-field level
while leaving the intrinsic growth rate similar to the QN case.

The electromagnetic character of the instability is illustrated in Fig. 5.9, which shows the
total E- and B-field energy normalized to the initial beam energy. In QN simulations, the
divergent case exhibits only noise-level growth, with occasional E-field spikes caused by in-
complete plasma screening. The collimated case begins with E > B; when the instability
develops, B surpasses E, indicating a magnetically dominated (Weibel) regime where a frame
exists with E = 0 [224]. In the divergent case, the initial normalized field energy is smaller
due to the higher kinetic energy of the hotter beam. In both proton cases, the E-field is quickly
screened upon entering the plasma, followed by a dip in B as the background return current is
established. Growth of B due to the instability then follows, accompanied by a later increase
in E in the lower-density central region of the plasma cell, where screening is less effective. At
the plasma exit, both cases end with B > E, indicating net beam magnetization seeded by the
proton beam.

These results show that the residual proton component in the experimental beam does not
qualitatively alter the instability under study, but it does provide an initial magnetic seed that
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FIGURE 5.9: Evolution of total electric- and magnetic-field energy, normalized to the initial beam energy,
for quasi-neutral (top) and proton-beam (bottom) simulations. In QN collimated beams, B overtakes
E once the instability develops, indicating a magnetically dominated (Weibel) regime. In proton-beam
cases, E is rapidly screened on entering the plasma; B dips as the return current is established, then grows
due to the instability. Both collimated cases exit the plasma with B > E, showing net beam magnetization
seeded by the proton component. The darker blue regions indicate where the plasma density is highest.
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sets the starting amplitude of the growing mode. This offers a useful avenue for interpreting
experimental data from beams that are not perfectly quasi-neutral, as complete neutrality of
electron-positron beams is extremely difficult to achieve. In practice, positrons tend to interact
with the converter and annihilate, so the electron yield is consistently higher in experimental
results [72], and the original beam composition is never fully suppressed. Establishing the
role of non-neutral beams, and determining how they can be meaningfully compared to astro-
physical beams, is therefore key for connecting laboratory and astrophysical regimes. More-
over, this result points to a broader role of heavy species: beyond their kinetic involvement in
processes such as the ion-Weibel instability (where the growth rate is modified), their spatial
profiles, which has not been considered in theoretical analyses thus far, can imprint preferred
spectral modes onto lighter species, thereby controlling the structure and scale of the resulting
instability.

QUASI-CHARGE-NEUTRAL BEAM DYNAMICS: SEEDING THE INSTABILITY

To investigate how heavier species can seed instabilities in lighter ones, we performed a series
of PIC simulations in a periodic plasma box containing a homogeneous electron-positron beam
(n,- = n,+ = ng/2) and a proton component of equal total density (1, = ny/2). The proton
beam was modulated with a weak transverse density perturbation of the form én, /n, = 107%,
with varying wavelength. All species were initialized with a realistic Fireball-like momentum
distribution, including an angular spread of A@ = 0.025, as in Sec. 5.2.1. Since the beams are
relativistic, space-charge effects are reduced by a factor 4! [225], and the proton modulation
provides a small but well-defined initial current seed. The goal of this setup is to test whether
the filamentation observed in the full simulations (Sec. 5.2.1) can be efficiently seeded when
the perturbation wavelength matches the natural scale of the instability.

A theoretical estimate of the CFI growth rate for this beam configuration is shown in
Fig. 5.1. For A = 0.025, the fastest growing mode occurs at kmax =~ 3, Wpo /¢, corresponding to
awavelength Amax =~ 2, ¢/ wpo. The unstable spectrum extends up to a cutoff at keut >~ 9, wpo/c
(Acut == 0.69, ¢/ wyp), beyond which small-scale perturbations are suppressed. Toward longer
wavelengths, the growth rate decays rapidly and becomes negligible for k < 0.5,wp/c (i.e.,
A 2, 12.5,¢/wpp). This defines a well-bounded spectral window for effective seeding.

The simulation results, shown in Fig. 5.10, reflect this behavior in detail. Row (a) shows the
electron density for four simulations with increasing proton modulation wavelength. Row (b)
presents the corresponding transverse Fourier spectra, with vertical lines marking the seeded
wavenumber kg.oq and its first harmonic. In column (1), the imposed wavelength Ageeq =
0.1, ¢/ wpp corresponds to kseeq = 10, wpo /¢, well beyond the cutoff. As expected, no dominant
spectral response is observed, and the instability evolves as in the unseeded case. In column
(2), Aseed = 2.5,¢/wyp lies near kmax, leading to efficient seeding with rapid amplification of
both the fundamental and its harmonic. Column (3), with Ageeq = 10,¢/wy0, corresponds
to a slower-growing mode that still seeds the instability, albeit less efficiently. In column (4),
Aseed = 25,¢/wyp lies in the regime of very weak growth, and the modulation fails to imprint
a dominant spectral signature.

These results confirm that efficient seeding requires alignment between the imposed mod-
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FIGURE 5.10: PIC simulations showing the seeding of the current filamentation instability (CFI) by weak
transverse density modulations in the proton beam. Each column (1-4) corresponds to a different modu-
lation wavelength: (1) Ap = 0.1¢/wpe, (2) 2.5¢/wpe, (3) 10 ¢/ wpe, and (4) 25 ¢/ wpe. (a) Electron density
profiles at the time of strongest filamentation, showing how the imposed proton modulation affects the
resulting structure. (b) Corresponding transverse Fourier spectra of the electron density. The seeded
wavenumber kgeq and its first harmonic are marked, allowing direct comparison between the input
modulation and the spectral response. Efficient seeding occurs when the imposed wavelength lies near
the peak of the theoretical growth rate spectrum (columns 2-3), while wavelengths that are too short or
too long (columns 1 and 4) fail to imprint a dominant mode.

ulation and the natural scale of the instability. Importantly, the CFI is fundamentally a current-
driven process: it grows from transverse modulations in the net beam current, which generate
azimuthal magnetic fields that reinforce the current perturbations. The familiar density fil-
aments observed in PIC simulations emerge only later, as beam particles are deflected and
pinched by these evolving fields. In this context, the proton modulation acts by seeding a
transverse current structure through quasi-static electromagnetic fields. This seeding imprints
its modulation and triggers the instability in the more responsive light species. This cross-
species coupling is especially striking given that the characteristic scale of the instability is
much smaller than the proton skin depth, highlighting that seeding is mediated through field
structures, not direct dynamical interaction. This is analogous to the failure of electrons to
respond to proton-scale perturbations in the long-wavelength case of Fig. 5.10.

While seeding via transverse velocity modulations is also a promising route, our focus here
is on isolating the effect of density-driven seeding, which is directly relevant to experimental
configurations. Exploring the role of velocity-space seeding remains an interesting direction
for future work. Finally, these results raise an important question that echoes our earlier dis-
cussion of exotic beams: as the filaments formed by the light species grow and merge in the
nonlinear regime, could they eventually reach a scale where their self-generated fields begin
to influence heavier species that initially acted only as passive backgrounds?®

8This will be outlined in Sec. 5.3.3.
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FIGURE 5.11: Three-dimensional PIC simulation results for a Fireball-I beam propagating through a 3m
plasma. Left: Isosurfaces of electron (blue/cyan) and positron (red/magenta) densities. Light shades
(cyan, magenta) correspond to 20% of the species” peak density, while darker shades (blue, red) cor-
respond to 60%. The distribution shows mild structuring and limited magnetic pinching, due to high
angular divergence and residual proton content. Right: The resulting fluence map reveals a lower peak
intensity and a more diffuse profile, consistent with suppressed instability growth under these initial
conditions.

5.3 FOLLOW-UP EXPERIMENTS: FURTHER WORK

5.3.1 FIREBALL-III

The upcoming Fireball-III experiment, scheduled for June 2025, will introduce two major ex-
perimental upgrades: a redesigned particle converter and a longer plasma cell. The new con-
verter features an extended iron section, which is expected to absorb most of the residual pro-
ton content from the initial particle shower [226]. As a result, the generated electron-positron
beam will closer to charge-neutral, minimizing background contributions from heavy positive
particles. This improvement is essential for isolating the intrinsic dynamics of beam-plasma
instabilities in symmetric pair plasmas, without the asymmetries and seeding effects intro-
duced by proton contamination.

In addition to the improved converter, Fireball-III will employ a significantly longer plasma
cell, extending up to 3 meters [226]. While the plasma density remains comparable to Fireball-
I, ie, n = 2 x 102 cm~3. The longer propagation distance brings the system closer to the
regime where collective plasma effects, such as filamentation, magnetic field generation, and
energy redistribution, can fully develop over several e-foldings, as we will see for original
beam converter will provide 2 e-foldings and ~ 12 e-foldings with a new converter.

To understand the role of propagation length in the development of instabilities, we first
simulate the same beam as in Section 5.2.1, i.e., the realistic, divergent beam (A6 = 0.025) from
Fireball-I generated using the original converter. Only the background plasma is modified,
replacing the original cell with the new 3-meter-long configuration.
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FIGURE 5.12: Three-dimensional PIC simulation results for a Fireball-IIl beam propagating through a
3m plasma. Left: Isosurfaces of electron (blue/cyan) and positron (orange/yellow) densities. Light
shades (cyan, yellow) correspond to 20% of the species’ peak density, while darker shades (blue, orange)
correspond to 60%. The reduced beam emittance results in stronger magnetic pinching, with electrons
focused toward the axis and positrons expelled outward, driven by reversed seed magnetic fields. Right:
Synthetic fluence map at the downstream screen shows enhanced peak intensity and tighter beam con-
finement, consistent with increased magnetic self-focusing compared to the Fireball-I case.

Figure 5.11 shows isosurfaces of electron and positron densities after propagation through
the extended plasma. Despite the beam’s significant divergence, positrons are again pinched
toward the center of the beam, indicating that a longer plasma cell allows instability-driven
dynamics to develop even for realistic, high-emittance beams (like Fireball-I with A6 = 0.025).
This behavior is reminiscent of the idealized collimated case, albeit more diffuse.

However, the observed structuring does not correspond to clean transverse current fila-
mentation as in canonical current filamentation instability (CFI) scenarios [73, 215]. Instead,
the beam appears to undergo a more complex streaming-type instability, potentially seeded
by residual charge imbalance and modified by the presence of the proton component. The
resulting modulation resembles a self-modulation instability (See Ref. [227]) rather than pure
filamentation (as seen by the longitudinal bunching of the positrons along the beam propaga-
tion direction in Fig. 5.11), which demonstrates the interplay between the CFI and other beam
plasma instabilities.

To isolate the effect of beam composition, we next simulate the setup expected for Fireball-
III using the new converter and updated beam parameters. While the overall number density
of electrons and positrons is reduced, from n,- = 0.339ng, n,+ = 0.264ny to n,- = 0.30ny,
n,+ = 0.25np in normalized units, the proton component is strongly suppressed, dropping
from n, = 0.15n9 to n, = 0.03n9. The electron-positron divergence is also reduced, with the
angular spread decreasing from A8 = 0.025 to Af ~ 0.008, corresponding to nearly a threefold
reduction in transverse emittance. The simulation reflects this cleaner and more collimated
beam composition while retaining the same 3-meter plasma length. For further details on this
simulation paramters, see Appendix A.4.3.

Figure 5.12 shows the resulting dynamics. In contrast to the previous case, we now observe
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a reversed structure: positrons are pushed outward, while electrons are pinched inward. This
inversion reflects a change in the initial current distribution that seeds the instability. In the
previous setup, the central beam region carried a net positive current density, with n,+ +n, =
0.414 > n,- = 0.339, meaning the majority of the current was carried by positively charged
species. This configuration seeded magnetic fields that acted to focus positrons toward the axis
and deflect electrons outward. In the new configuration, the proton contribution is strongly
reduced and the balance reverses: n,+ +n, = 0.28 < n,- = 0.30, leading to a net negative
current density in the beam core. As a result, the seed magnetic fields now focus electrons and
expel positrons, inverting the instability structure.

Moreover, the new converter leads to reduced beam emittance, corresponding to a lower
transverse temperature and narrower angular spread Af [226]. This allows the beam to pinch
more effectively, resulting in stronger magnetic field amplification and increased local fluence.
The right-hand panel of Fig. 5.12 shows a sharper and more intense filamentary structure
compared to the previous case, consistent with a lower-temperature beam entering a more
nonlinear regime. These trends are in agreement with the theoretical predictions shown in
Fig. 5.1, where a decrease in Af leads to both an increase in the peak growth rate and an
upshift in the most unstable wavenumber kmax, enhancing both the strength and signatures of
the instability, as seen in the stark difference between the flux measured in Fig. 5.11 compared
against Fig. 5.12.

This highlights how the new Fireball-III configuration enables seeding and more efficient
amplification of magnetic fields. It may thus offer the first experimental opportunity to ob-
serve kinetic beam-plasma instabilities in relativistic pair plasmas,” within a regime where the
onset of the instability can be systematically controlled.

In the previous case, we observed the onset of the self-modulation instability. Now with
the new beam parameters one observes the onset of the hosing instability [227], as seen by the
perpendicular offset of the centroid of the electron beam component in Fig. 5.12. This high-
liths the interplay of streaming instabilities, i.e., CFI oblique and two-stream, with whole beam
instabilities. The dynamics are a result of the non fully charge neutral beams; we hypothesise
that similar interplay will be observed in fully charge-neutral beams. Therefore, we can con-
jecture (and shall be further explored in the future) that charge neutral beams are proned to
self-modulation and hosing instabilities; mediated by the non-linear stage of streaming insta-
bilities, which drive modulations that in turn drive the background plasma wakes responsible
for self-modulation and hosing.

5.3.2 FIREBALL ELECTRON CYCLOTRON MASER INSTABILITY

The next stage in the Fireball experimental program will take place at the Beam Test Facility
(BTF) in Frascati. This experiment is motivated by the goal of exploring electron cyclotron
maser (ECM) emission as a viable mechanism for producing the coherent, highly polarized
radiation observed in extreme astrophysical transients, such as Fast Radio Bursts (FRBs) [42].

9 Analysis of the Fireball-I experiment is still underway. An improved Faraday rotation diagnostic was fielded to
enhance magnetic field sensitivity. Preliminary results indicate a signal consistent with the amplified magnetic fields
observed in simulations [228].



5.3. Follow-up experiments: Further work 109

1.0
08
5
0.6 =
o
=
04 &
>
=
D
0.2

2

p| [mec] | [med] 0.0

FIGURE 5.13: Numerical evolution of the beam distribution as it enters a 4 T magnetic mirror, shows
how a horseshoe-shaped distribution is obtained. Left: Initial distribution at the mirror entrance (z = 0
cm). Right: Distribution after propagation to z = 100 cm, showing a clear population inversionin p |, a
key condition for ECM emission.

As discussed in Chapter 3, ECM emission is a leading candidate for coherent radiation in
astrophysical environments. Unlike conventional synchrotron emission, which is fundamen-
tally incoherent and thus limited in brightness temperature, ECM emission arises from pop-
ulation inversion in the perpendicular momentum distribution of relativistic leptons. Such
inversions naturally develop when charged particles enter regions with increasing magnetic
field strength, such as those found in magnetospheres or near relativistic shocks [48, 78].

As the beam moves into the region of increasing magnetic field strength, conservation of
the magnetic moment enforces a transfer of longitudinal to transverse momentum. This leads
to adiabatic compression in momentum space, producing ring- or horseshoe-shaped distribu-
tions, precursors of ECM emission [121, 229, 230]. By horseshoe-shaped distribution, we refer
to a momentum-space configuration in p | —p|| space where particles form an incomplete ring,
concentrated at large p; and with a gap opposite to the beam propagation direction. This
geometry naturally produces a positive perpendicular gradient (df /dp, > 0) over part of the
distribution, providing the population inversion that drives ECM emission.

This experiment will allow for a direct comparison between pure electron beams and quasi-
neutral electron-positron beams within the same magnetic mirror configuration. In the electron-
only case, the resulting distribution is expected to form a distinct horseshoe shape, known to
trigger ECM in non-relativistic systems like Earth’s auroral kilometric radiation [120, 231]. In
contrast, the dynamics of quasi-neutral beams are more symmetric and relativistic, and have
never been studied experimentally. This side-by-side comparison represents an opportunity
to test the onset of ECM emission in both charge-asymmetric and charge-symmetric systems.

Preliminary theoretical results, based on the parameters of the beams and magnetic mir-
ror strenghts available at BTF in Frascati, confirm that magnetic mirrors can indeed produce
the required population inversions in both cases. In particular, the evolution of the beam dis-
tribution can be derived from conservation laws. Assuming constant energy and magnetic
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moment, ¥ = 0 and ji = 0, the pitch angle 6 (where sinf = p / pH) evolves according to!0
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Equation (5.6) can be numerically integrated to track the evolution of the distribution function
as the beam enters the mirror. Figure 5.13 shows an example for a beam entering a magnetic
mirror with Bmax = 4 T, following the profile B(z) = %, where g =90 m~! is the taper
parameter and d = 100 cm is the location of the field maximum,!! these parameters are based
on the “Flux Concentrator" available at BTF [232, 233]. The initial distrbution is modelled after
preliminary results of Fireball beams that can be produced in INFN’s BTF, this were obtained
via FLUKA simulations performed by the Oxford team [233]. After evolving the propagation
of the beam, the resulting distribution at the center of the mirror clearly shows a region with
df/dp, > 0,in the shape of a horseshoe distribution, indicating local instability to the oblique
(mixed) and purely perpendicular (X-mode) maser [167].

Using the evolved distribution function fo(p |, pz), we compute the growth rate I' of the
EM modes propagating oblique and purely perpendicular to the magnetic field by numerically
evaluating the growthrate of the ECMI [163, 169, 234]
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In this context, “purely perpendicular” emission refers to electromagnetic waves with wave
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vector k exactly perpendicular to the background magnetic field B, corresponding to the
canonical X-mode. “Oblique” emission denotes wave propagation at an angle 0 < 8, < 90°
with respect to B, in which case the mode has mixed polarization (both transverse electromag-
netic and electrostatic components) and can interpolate continuously between the X- and O-
mode branches [169]. In the present calculation we have neglected the effects of magnetic field
curvature, which would couple to the particle drifts and alter the resonance condition. This
approximation is justified by the fact that including curvature in a full kinetic ECMI treatment
is technically challenging and beyond the scope of this work. The beam consists of an electron—
positron pair plasma, so both species contribute equally to the instability. In the notation of
Eq. (5.7), the plasma frequency is thus written as w?, = 47e®(ne +np)/m = 4me*(2nc)/m,
giving wy, = \@,wpg for equal densities n, = n,. While the presence of multiple species in
this case does not modify the growth rate I' (since both species resonate in the same way), it
does affect the polarization properties of the emitted radiation.

The numerically computed growth rate is shown in Fig. 5.14. Emission peaks just below
the first harmonic (wee ~ 0.8 THz), with maximum growth at an angle of approximately 45°
off-axis (with respect to the beam propagation direction). Higher harmonics are also observed,
as well as a backward-propagating wave mode, consistent with long-standing theoretical pre-
dictions but never before confirmed experimentally [235]. While the growth rate depends sen-

19The derivation of this equation is detailed in App. H.4.
This corresponds to a mirror ratio of Bmax/B(0) =1+ (90m~! x 100cm) = 91.
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FIGURE 5.14: Numerically integrated growth rate of the ECMI (Eq. 5.7) for the beam electron-positron
beam distrbutions in the a magnetic mirror (Fig. 5.13), demonstrate the angular distribution of the maser
radiation, showing a peak near 45° and frequency close to the first cyclotron harmonic (w¢ = 0.8 THz).
Backward wave modes are also visible. We note that the growth rate for the single-species plasma and
pair-plasma will differ by a factor of 2 in the density component, but the shape of the emission will
remain the same

sitively on the achievable beam and plasma densities near the flux concentrator center, these
preliminary results already show that the magnetic mirror configuration can generate suffi-
cient pitch-angle evolution and reflection to form unstable distributions, for both pure and
quasi-neutral beams. This establishes that the planned geometry is capable of producing the
basic conditions required for ECM generation, even though detailed predictions will require
further studies of the densities and initial beam parameters attainable in the experiment. These
findings support the feasibility of observing ECM emission in the laboratory and underscore
the critical role of beam composition in shaping the momentum-space dynamics that lead to
coherent emission.

One of the key questions this experimental platform can address is the polarization of the
resulting maser radiation. Previous studies have shown that electron-only beams produce cir-
cularly polarized emission along the direction of propagation and magnetic field [121, 163,
167, 236, 237], while positron beams yield opposite-handed circular polarization. In contrast,
electron-positron pair plasmas are expected to emit unpolarized radiation in this configura-
tion, due to the cancellation of contributions from oppositely charged species. However, in
strongly magnetized regimes where wc, > wp,, the most unstable modes are predominantly
perpendicular to the magnetic field. In this case, the linearly polarized X-mode dominates
[114, 163], and the electron and positron contributions to wave amplification add in phase,
enhancing rather than cancelling the emission. By enabling a direct comparison between
charge-asymmetric and pair-symmetric beams under controlled conditions, this platform of-
fers a novel opportunity to investigate how plasma composition and field geometry shape the
polarization properties of coherent emission.
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5.3.3 EXOTIC FIREBALL BEAMS

The results of the previous section, Sec. 5.2.2, showed how small-scale modulations in a heav-
ier species (protons) can seed instabilities in a lighter, more responsive plasma component
(electrons and positrons). This raises an intriguing complementary question: can the reverse
occur? That is, as nonlinear filamentation progresses and larger spatial structures emerge, can
light species begin to drive instabilities in heavier, initially passive species?

In the context of hadronic cascades generated by the SPS proton beam, the particle spec-
trum is not limited to electrons and positrons. Secondary species such as muons, pions, and
photons are also produced in significant numbers [74]. While these heavier particles are often
neglected in modeling, their presence opens the possibility of multi-species coupling within
relativistic plasmas. Due to their large inertia, muons and pions are less responsive on short
timescales, but may become increasingly relevant as instabilities evolve and the dominant spa-
tial scales grow.

Previous studies have explored related dynamics in background or streaming ion popu-
lations. For instance, Ref.[222] examined how background ions respond to electron-driven
space-charge fields by slowly forming filaments that screen the charge separation, albeit too
sluggishly to maintain full neutrality. Similarly, Ref. [238] showed that streaming ions mod-
ify the initial CFI growth rate and eventually amplify a secondary, ion-driven Weibel insta-
bility after electron-scale filamentation saturates. In both cases, heavier species evolve on
longer timescales and larger spatial scales, aligning with and amplifying pre-existing struc-
tures seeded by lighter, faster particles. These behaviors exemplify a key physical idea: that
lighter species can seed the instability of heavier ones bridging the scales between both species.

To investigate the possibility of cross-species seeding in the Fireball context, we performed
PIC simulations including multiple beam species, as detailed in Appendix A.4.5. The com-
posite beam consisted of electrons, positrons, and a third, heavier species with charge-to-mass
ratio e/264, m,, representative of pions. All species were initialized with realistic Fireball-like
momentum distributions, including an angular divergence of A = 0.025, and propagated
through a background electron-ion plasma.

At early times, the electron-positron component dominates the dynamics, driving the cur-
rent filamentation instability at scales comparable to ke ~ 3, wpe/¢c, as predicted in Fig. 5.1.
As the instability enters the nonlinear regime, filaments begin to merge and grow in scale
[213]. Once this transverse scale approaches the skin depth of the heavier species, the elec-
tromagnetic fields generated by the light species begin to modulate the heavier component,
triggering secondary filamentation, an effect also observed in electron-proton systems [238].
Based on the mass ratio, the dominant wavenumber for the heavier species is expected to scale
comparable to k) ~ k(©) /\/264 ~ 0.2, wpe /¢, which is what we observe in the simulations in
Fig. 5.15.

Figure 5.15 captures this process in detail. The electron density (row a) shows the emer-
gence and subsequent merging of current filaments. In the multi-species case (row b), the pion
density remains smooth at early times but later develops clear structure at the same transverse
wavenumber as the electrons. The corresponding Fourier spectra (row d) confirm that both
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FIGURE 5.15: PIC simulations of a multi-species beam demonstrating the sequential onset of filamenta-
tion across species. Each column corresponds to a different time: (1) after the electrons develop density
modulations (t = 59.8 a);el), (2) when pions begin to debelop density modulations (f = 149.4 w;el), and
(3) late time (t = 485.5 w,jel). Rows show: (a) electron density, (b) pion density from a simulation includ-
ing electrons and positrons, (c) pion density from a control simulation without electrons (pion-only case),
and (d) the corresponding transverse spatial Fourier spectra. In the full multi-species case (b), the pion
distribution remains initially unstructured but develops filaments at later times that mirror the electron
structure in (a), consistent with a scale-dependent seeding process. In contrast, the control case (c) shows
no significant modulation, confirming that the observed pion filamentation in (b) arises from coupling to
the electron-driven dynamics. The Fourier spectra (d) further highlight the emergence of shared spectral
features between electrons and pions at late times.
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species share a dominant spectral peak at k =~ 0.5, wpe/c, comparable to k7). In contrast, the
control simulation (row c), which includes only pions, shows no such structure, and its only
beginning to develop its own weak modulations, confirming that the observed filamentation
arises from coupling to the lighter species.

What is new here relative to linear growth-rate arguments is the causal, nonlinear seeding
mechanism we observe. In the full multi-species run, heavy-species (pion) filamentation does
not develop until after electron filaments nonlinearly merge and the dominant transverse scale
grows tok ~ k(©) / /17 /1. Atthat point, the pion spectrum acquires a peak at the same k and
with phase alignment to the electron pattern, whereas a pion-only control remains unstruc-
tured over the same interval. This demonstrates that heavy-species filamentation is seeded
by the finite-amplitude electromagnetic fields and pre-formed current channels produced by
the light species, rather than arising from its own linear growth, thus accelerating the onset of
the pion filamentation. The result is a scale-bridging instability cascade, from electron to pion
scales, with a measurable delay Atg..q and wavenumber inheritance k() ~ k€ /\/m [ m, that
go beyond what can be inferred from side-by-side growth-rate estimates.

In short, the novelty is not that heavier species are more unstable in when including elctropns,
linear theory already predicts that like the ion-electrn-weibel instability [238], but that light-
species nonlinear structure onset the heavy-species instability, with phase-locked, scale-inherited
filaments that a linear growth-rate comparison cannot predict.

While the role of muons and pions may be negligible under current experimental con-
ditions, these results highlight a potentially important mechanism in future high-density or
long-propagation scenarios. They point to the possibility of multi-scale instability cascades in
relativistic plasmas, where light species initiate processes that are subsequently taken over by
heavier ones. A full theoretical treatment of such nonlinear, cross-species coupling remains an
open challenge, but our results suggest that relativistic exotic beams offer a promising plat-
form to explore this new regime of plasma dynamics. e

5.4 CONCLUSIONS

In this chapter, we have presented a comprehensive theoretical and numerical investigation of
kinetic instabilities in relativistic electron-positron beams, with a focus on the current filamen-
tation instability (CFI) and its relevance to both astrophysical scenarios and recent laboratory
experiments.

We began by outlining the importance of beam-plasma instabilities in high-energy environ-
ments, such as blazar jets and gamma-ray bursts, where relativistic pair plasmas are thought
to interact with ambient backgrounds. In such systems, the interplay between anisotropic dis-
tribution functions and collective electromagnetic modes governs energy redistribution, field
generation, and potentially even radiation emission. Using both analytical theory and linear
kinetic modeling, we explored how key parameters, such as transverse temperature and beam
divergence, determine the onset and growth of instabilities.

We then turned to large-scale particle-in-cell simulations performed in the context of the
Fireball-I experiment at CERN. These simulations closely reproduced the experimental condi-
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tions, validating the suppression of filamentation in realistic, divergent beams and highlight-
ing the sensitivity of instability growth to beam emittance and composition. In particular, we
identified a novel role for residual proton content in seeding specific filamentary modes, even
when the overall system is nearly charge-neutral.

Extending these results, we examined follow-up scenarios relevant to the upcoming Fireball-
III experiment. Our simulations show that the use of a new converter, designed to suppress
the proton component, and a longer plasma cell may enable the controlled excitation of kinetic
instabilities. By tuning beam parameters and observing the resulting magnetic structure, this
configuration may allow the first direct measurement of nonlinear beam-plasma dynamics in
relativistic pair plasmas.

We also presented preliminary theoretical and numerical results for the study of electron
cyclotron maser (ECM) emission in magnetic mirror fields, relevant to a new experiment at the
Beam Test Facility in Frascati. For the first time, this setup enables a systematic comparison
between pure electron beams and quasi-neutral pair beams in identical magnetic geometries.
Simulations show that both cases can develop population-inverted, horseshoe-shaped distri-
butions capable of triggering ECM emission, a mechanism increasingly favored to explain the
brightness and polarization of fast radio bursts.

Finally, we explored an outlook on "exotic" Fireball beams: multi-species plasmas contain-
ing not only leptons but also heavier hadronic products such as muons and pions. While these
components are often ignored in conventional modeling, our analysis suggests that nonlin-
ear beam evolution may eventually seed instabilities in heavier species, initiating a cascade
across mass scales. This presents a promising direction for future theoretical and experimental
efforts.

Taken together, the results presented here mark a significant step toward bridging labo-
ratory plasma experiments with open problems in high-energy astrophysics. They also em-
phasize the critical role of theory and simulation in guiding experimental design, interpreting
measurements, and uncovering the underlying physics of collective plasma behavior in rela-
tivistic regimes.
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CHAPTER 6

CONCLUSION

Philosophy, as the thought of the world, does not appear until
reality has completed its formative process, and made itself
ready ... When philosophy paints its grey in grey, one form of
life has become old, and by means of grey, it cannot be
rejuvenated but only known. The owl of Minerva takes its
flight only with the coming of dusk.

Georg W. F. Hegel — Preface to the Elements of the

Philosophy of Right [239]

6.1 SUMMARY

This doctoral work began with the goal of studying Compton-driven plasma processes in both
laboratory and astrophysical settings. However, the focus of the thesis shifted early on due
to the unexpected results outlined in Chapter 2. These findings, which emerged from PIC
simulations, found a phenomenon that was surprising yet welcome, and ultimately set the
direction for the rest of the thesis.

Chapter 2 presents original contributions that show how tenuous, highly magnetized, rel-
ativistically hot plasmas undergo significant radiative cooling. This process leads not only to
substantial losses in kinetic energy but also in entropy, rendering the plasma unstable. No-
tably, the local momentum distribution function of the cooling plasma develops a ring-like
structure in the plane perpendicular to the magnetic field. This marks the first instance of such
a ring distribution arising naturally through radiative processes, suggesting that ring distri-
bution plasmas may be a common feature in highly magnetized environments such as those
around compact astrophysical objects.

Chapter 3 presents the first demonstration that coherent maser emission can be sponta-
neously triggered and sustained in radiatively cooled, strongly magnetized relativistic plas-
mas. This process, driven by the electron cyclotron maser instability (ECMI), emerges from
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synchrotron-induced ring momentum distributions, established in Chapter 2, and develops in
a regime where radiation reaction qualitatively alters the instability dynamics. Using large-
scale PIC simulations and kinetic theory, it is shown that ultra-strong fields not only trigger
the ECMI but also sustain population inversion well into the non-linear regime, enabling long-
lived, linearly polarized, multi-harmonic radiation. This mechanism represents a new class of
plasma instability, one intrinsically shaped by radiative effects, and defines a clear hallmark
of extreme plasma conditions with direct relevance to pulsars and Fast Radio Bursts, as the
resulting emission naturally produces high brightness comparable to that observed in astro-
nomical observations.

Chapter 4 builds on the general principle established in Chapters 2 and 3, that nonlinear
radiative cooling drives phase-space compression and population inversion, by demonstrat-
ing its manifestation in unmagnetized, beam-plasma systems. Specifically, it shows that rela-
tivistic electron beams undergoing betatron oscillations in plasma wakefield accelerators nat-
urally develop ring-shaped phase-space structures as a result of radiation reaction. This pro-
cess, driven by the amplitude-dependent nature of betatron cooling, mirrors the synchrotron-
induced bunching seen in magnetized plasmas but arises purely from electric focusing fields.
Using analytical theory and large-scale 3D PIC simulations, this chapter provides the first
demonstration of radiatively induced phase-space structuring in accelerator beams, revealing
a broader class of kinetic phenomena governed by extreme-field-induced cooling. These re-
sults establish high-density wakefield accelerators as a promising experimental platform for
studying the fundamental dynamics of extreme plasmas.

Chapter 5 concerns itself with a distinct facet of extreme plasma physics, the dynamics of
relativistic electron-positron plasmas and their associated kinetic instabilities. Unlike the ra-
diatively structured electron-ion systems studied in previous chapters, pair plasmas exhibit
unique symmetry properties and instability behavior, particularly in beam-plasma configura-
tions. This chapter is based on our work within the Fireball experimental program at CERN,
where I led the PIC simulation effort to interpret and model the first laboratory-generated pair
plasma beams. These large-scale simulations were essential to understanding why the cur-
rent filamentation instability was not observed in Fireball-I, showing that beam divergence
and charge imbalance were key suppressing factors. By exploring a wide parameter space of
beam composition, divergence, and neutrality, our results identified the conditions required
for instability growth and informed the design of future campaigns. In particular, they helped
motivate the use of a longer plasma cell and improved beam converter in Fireball-III, which is
expected to enter the nonlinear regime. The chapter also investigates how small-scale modula-
tions in heavier species can seed instabilities in relativistic leptons, and outlines ongoing work
on coherent emission from magnetized pair beams via the electron cyclotron maser instability.
Finally, it explores multi-species effects, showing how nonlinear structures generated by light
particles can trigger filamentation in heavier, initially passive components.
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6.2 FUTURE PERSPECTIVES & CLOSING REMARKS

This thesis represents one of the first steps toward a kinetic theory of extreme plasmas. It
has shown that incorporating even a single physical ingredient, radiative cooling, can lead to
qualitatively new behaviors: phase-space compression, population inversion, and the sponta-
neous onset of coherent emission. These findings suggest a much richer landscape of plasma
dynamics, where strong fields, radiation, and collective effects are tightly coupled.

In studying the emergence of ring distribution functions in the magnetospheres of compact
objects, we considered an initially hot plasma in a uniform magnetic field. However, several
important extensions remain. How do realistic field geometries alter this behavior? What role
do curvature drifts play? These questions are currently being addressed by F. Assungdo in
forthcoming work [142], which includes radiation reaction and particle drifts in curved fields.
The influence of general relativity in such settings is also unclear, will it suppress or enhance
ring formation? Moreover, while we assumed a pre-heated plasma, the physical mechanisms
that generate such nonthermal initial states are still poorly understood. Preliminary PIC sim-
ulations suggest that high-energy gamma-ray beams may produce high-density plasmas via
shower-like processes (rather than self-sustaining avalanches), potentially converting gamma-
ray energy into a ring-shaped pair plasma [240]. This raises the intriguing possibility of realiz-
ing full pair cascades in aligned E and B configurations, reminiscent of those expected during
pair-cascade events in compact object magnetospheres.

Beyond the formation of ring distributions, their nonlinear evolution remains an open
problem. For instance, instabilities like the firehose instability may reshape these structures
under certain conditions, as discussed in Appendix F. A full mapping of the relevant pa-
rameter space, including plasma B, wpe/wc., and normalized magnetic field B/ Bs., will be
needed to understand this interplay. Extending these studies to more complex, turbulent en-
vironments such as collisionless shocks or realistic pair-cascade scenarios may help bridge
theoretical models with observed FRB features.

Chapter 4 opens a promising experimental avenue: the observation of radiatively induced
phase-space bunching in accelerator beams. Simulations using FACET-II parameters show
that such bunching should be observable with current technology. If achieved experimentally,
this could serve as a platform for generating coherent betatron emission via the ion-channel
laser instability, a mechanism that parallels the ECMI in magnetized plasmas. Further theoret-
ical and numerical work will be required to assess the viability of this scheme and its potential
as a laboratory analogue for coherent astrophysical phenomena.

In parallel, the Fireball experiment, discussed in Chapter 5, offers a complementary ap-
proach to studying pair plasmas. With Fireball-II currently under analysis and Fireball-III on
the horizon, the next generation of experiments will benefit from improved beam converters
and extended plasma cells. These upgrades will allow for greater control over beam composi-
tion, charge neutrality, and divergence, all of which were shown in Chapter 5 to influence in-
stability growth. The PIC simulations performed in this thesis helped explain the suppression
of the current filamentation instability in Fireball-I, identifying beam divergence and residual
proton content as key factors. Fireball-III will allow us to test these predictions directly. Addi-
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tionally, upcoming magnetized configurations, such as those proposed for Frascati, may allow
for the direct observation of maser instabilities in pair plasmas. These experiments, designed
to probe coherent emission in magnetic mirror setups, offer a concrete laboratory analogue to
conditions near pulsars and black holes.

Looking ahead, a complete theory of extreme kinetic plasma physics remains to be devel-
oped. Key open questions include: What other instabilities or nonlinear structures arise when
radiation, pair production, and QED effects are fully coupled? How is the radiation emitted
by unstable plasmas absorbed, scattered, or reprocessed, and what signatures does it carry?
Do such systems relax at all, or do they settle into quasi-stationary states shaped by radiative
and entropic constraints? Each of these questions opens a new direction of research.

Progress will require more than theoretical development. Experimental access to extreme
regimes remains limited, making large-scale simulations indispensable. These simulations not
only bridge theory and experiment, but often provide the only practical means of exploring
nonlinear plasma dynamics. The work presented in this thesis represents a small contribution
to that effort. The radiative structures uncovered in Chapters 2 through 4, and the instability
conditions identified in Chapter 5, mark the first steps into a broader, still largely unexplored
region of phase space.

More broadly, this work has shown that extreme plasmas fundamentally expand the scope
of kinetic theory. In these regimes, radiation is not a perturbation, it reshapes phase space,
sustains population inversion, and drives coherent emission. Instabilities and radiation be-
come entangled, leading to dynamics that co-evolve with dissipation. While radiation has not
yet played a central role in the Fireball experiments, the program offers a unique opportunity
to explore relativistic pair plasmas in the laboratory for the first time. These systems differ
fundamentally from traditional electron-ion plasmas, not only due to their symmetry but also
because they may host distinct instability behavior and nonlinear evolution. The early results
from Fireball have underscored the importance of kinetic modeling in capturing these effects,
especially as standard assumptions break down in the presence of charge imbalance and beam
divergence. Together, these developments point toward the need for a more complete kinetic
framework, one that treats radiation, quantum effects, and collective dynamics on equal foot-
ing.

There is still much to explore. But if this thesis has shown anything, it is that these regimes
are no longer remote curiosities. They are within reach, both theoretically and experimentally,
and they are extraordinarily rich. The time is ripe for a full kinetic description of extreme
plasma physics.



APPENDIX A

SIMULATIONS PARAMETERS

A.1 CHAPTER 2

For the simulations, we have considered the same physical scenario examined analytically.
There is in the x; direction a strong magnetic field By = 2.2 x 10~® (Normalized with respect
to the Schwinger field Bs.) with an associated cyclotron frequency w¢, = |e|BscBo/m., where e
is the electron charge and m, the electron mass. We normalised timescales and spatial dimen-
sions with respect to the gyrofrequency w. and c¢/we, respectively. And momentum with
respect to m,c. The simulations employ a temporal resolution that guarantees the gyromotion
is accurately resolved At ~ 0.0099 w!. The typical simulation is performed in one spatial di-
mension (and three momentum dimensions), using 5000 cells and 1024 particles per cell, with
a spatial domain length along the x1 direction of Ly = 50 cwg,! with periodic boundary condi-
tions. This yields a grid resolution of Ax = 0.01 ¢/w¢ = 0.99cAt, which verifies the Courant
condition Ax > cAt. A low-density electron plasma with plasma frequency w), = 10~ w fills
the whole simulation domain with a background of immobile ions. Three different momen-
tum distributions are initialized. A Maxwellian distribution fyas o e~ (PP (2 %h), with an
isotropic momentum spread py, = 50 mec, a Maxwell-Jiittner distribution fo o e~ 7"/ Pun

and a Maxwellian beam distribution fop o ¢ (7 | vemec)* +p1)/ (2ph) | where 7p is the bulk
Lorentz factor of the beam, which was chosen to be y;, = 500.

The macro-particles employ a cubic interpolation. We tested and compared different cur-
rent smoothing filters, it was found that smoothing did not significantly affect the ring forma-
tion under these simulation conditions, for this reason, the final simulation setup employed a
first-order binomial smoothing. The OSIRIS PIC code employs the reduced Landau-Lifshitz
model (LLR) for classical radiation reaction, which includes the two leading orders of the full
Landau-Lifshitz formulation, as described in [91].

For the parameters scan we kept all parameters constant and only changed the py, for the
initial Maxwellian distribution. Employing py, = 50, 100 & 200m,c.
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A.1.1 ENERGY CONSERVATION

To confirm that the numerical heating/energy conservation is addressed properly we have
compared energy conservation with and without radiation reaction for the same set of nu-
merical parameters and calculated the radiated energy for all the runs presented in this study.
This is shown in Fig. (A.1), which accounts for the energy of the plasma particles, the energy
radiated through synchrotron cooling and the expected kinetic energy of the plasma particles
as predicted from our analytical results. In the bottom row of Fig. (A.1) we show the evolu-
tion of the percentile change of the total energy, i.e. the sum of the plasma and synchrotron
radiated energy. Both plots demonstrate that energy is accurately conserved throughout the
simulations, even for many time steps.
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FIGURE A.1: Top: Simulation results for the total energy for an initial isotropic Maxwellian plasma with
pm = 50 mec and initial energy Ej as a function of simulation time . The plot shows plasma energy
(continuous line), the energy from the synchrotron radiation diagnostic (dashed line) and the evolution
of the energy of the plasma according to the theoretical calculation E = [dpf(p,, pj,t) (v —1) (crosses),
where f(p,p|,t) is given by Eq. (2.22). Bottom: Percentual change of the total simulation energy (sum
of plasma energy and synchrotron radiation) over time.

A.2 CHAPTER 3

We study radiatively cooled rings and the subsequent ECMI via particle-in-cell (PIC) simu-
lations with OSIRIS [81], including classical [91] and QED [28] radiation reaction. The PIC
method is widely used in plasma physics to model the behaviour of plasmas by solving the
equations of motion for charged particles and the self-consistent evolution of electromagnetic
tields. The plasma is represented by a large number of particles, which move according to the
Lorentz force (with Landau-Lifshiftz force to account for semi-classical radiative losses [91,
100], and QED Monte Carlo module to account for QED processes [28]) in response to the elec-
tromagnetic fields. These fields, in turn, are computed on a grid using Maxwell’s equations,



A.2. Chapter 3 123

with the particle motions and fields updated iteratively.

PIC simulations are well-suited for studying kinetic instabilities in plasmas, such as the
electron cyclotron maser instability (ECMI), because they capture the full range of particle
interactions and non-linear effects. The massively parallel nature of these simulations allows
for the handling of large-scale problems, making it possible to explore complex phenomena in
tenuous, synchrotron-cooled plasmas with high fidelity and at unprecedented scales.

For the simulations presented in this work, we have considered the setup described analyt-
ically. The ECMI is a kinetic instability for which the relevant dynamics occur in momentum
space, and the resulting excited wave modes propagate either parallel or perpendicular to the
magnetic field. Therefore, our simulations employ a 2D configuration space and full 3D mo-
mentum space. This guarantees that all the relevant physics of the ECMI and cooling dynamics
are captured in our setup. There is a magnetic field aligned along the x;-direction of strength
B = 100 GG, i.e. By ~ 0.002 normalized to the Schwinger field (Bs, = 4.4 x 10'3 Gauss).
The magnetic field has a cyclotron frequency we, = |e|B/m, = 1.75 x 10'8 s~1. All relevant
timescales and lengths are normalized to the cyclotron period wz! and ¢/ we,. The simulations
utilize a small timestep such that the cyclotron period is accurately resolved At = 0.014 wp,!
and a spatial resolution of Ax = 0.02 c/we. (in both directions), which fulfils the 2D Courant
condition Ax > 271/2¢cAt. This resolution resolves the gyromotion of all electrons with at least
~ 70 temporal steps, with higher energy particles being resolved with even more spatial and
temporal points. The simulation window has a size of Ly = 200c/wce and Ly = 1000 ¢/ wee,
this yields a simulation grid of size 10000 x 50000 and we employ 16 particles per cell, i.e. a
total of 16 billion computational particles.

The dimensions of the simulation box were carefully chosen, the x;-direction utilises a
larger domain to capture the theoretically predicted modes that propagate perpendicular and
almost perpendicular to the magnetic field (a 1D3V PIC simulation would solely capture the
the wave dynamics propagating perfectly parallel to the simulation domain, but not those at
small angles).

The simulations were run for 40000 w_,!, this is ~ 2.8 x 10° time iterations. Due to the size
of each simulation, the high-resolution runs were performed in LUMI-C (Finland) and had
an average cost of 1 million CPU hours. Smaller simulations were performed in Deucalion
(Portugal).

The plasma was initialized with a plasma frequency ratio of wp./wc =~ 0.00223 for each
species. This value was carefully chosen to model a low-density electron-positron pair plasma
in a strong magnetic field, where wp./wc < 1 is characteristic of tenuous astrophysical en-
vironments. From a computational standpoint, this ratio corresponds to a total normalized
density of n = 0.1 (i.e.,, 0.05 per species), which is the lowest density that still allows re-
solving multiple plasma skin depths within the simulation domain. Specifically, with py, =
1000 m,c, this density ensures that ¢/wp, < L ~ 1000 c/wc, while maintaining numerical
accuracy and avoiding excessive computational cost. Simulations at lower densities would
require prohibitively large box sizes or cell counts to adequately resolve the relevant kinetic

scales. The pair plasma is initialized from a relativistic Maxwellian distribution f (p 1, pH) x
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same results, as expected in the ultra-relativistic regime.

, with additional runs using a Maxwell-Jiittner distribution confirming the

The macro-particles employ cubic interpolation. Different current smoothing filters were
tested, and we found that first-order binomial smoothing was sufficient to reduce the compu-
tational collisionality, for the large number of time steps in the simulations. For the simulations
shown in this work, OSIRIS employed the Landau-Lifshitz model for classical radiation reac-
tion as described by [91]. Moreover, QED simulations which employ a Monte Carlo method
to model quantum synchrotron emission [28], were also used, QED simulations agree with
simulations employing the Landau-Lifshitz pusher with the inclusion of stochastic diffusion,
as expected as x = pBy/ (m.c) decreases rapidly during the cooling process. These effects will
be explored elsewhere at higher energies, where diffusive effects are expected to be dominant.

Convergence studies were performed to determine the computational parameters and to
ensure energy conservation accounting for synchrotron losses.

It is important to note that all results, both numerical and analytical, are presented in the
proper frame of the plasma or beam. This means that the results can be directly applied to
beam-plasma systems in other reference frames through the appropriate Lorentz transforma-
tion.

A.3 CHAPTER 4

The simulations were performed using the OSIRIS Particle-In-Cell code in a quasi-3D (cylin-
drical coordinates with azimuthal mode decomposition) geometry, retaining only the m = 0
azimuthal mode. The simulation domain spanned Ly x L, = 30 x 60 (c/ wpg)Z, discretized us-
ing 2500 x 5000 cells, yielding a grid spacing of Ax = 0.012 ¢/ wy,. The simulation employed a
moving window propagating along the longitudinal direction at the speed of light. The radial
extent of the simulation box was chosen to be twice the longitudinal size to avoid bound-
ary effects that might modify the blowout structure; this was verified through convergence
testing. The plasma had a peak density of np = 5 x 10! cm~3, corresponding to a plasma
frequency wy ~ 3.98 x 10! s~1. Time was normalized to w, 1, and the timestep was set to
At = 0.0069 w, !, satisfying the Courant condition At < Ax/ (cV/3).

The beam configuration consisted of a high-density driver beam and a lower-density wit-
ness beam, both initialized with Gaussian density profiles in the longitudinal and radial direc-
tions. The driver beam had a charge of 0.3nC, a waist size of 5™m, and a length of 2"m. The
witness beam had a total charge of approximately 0.1 nC, a longitudinal FWHM of ~ 1 tm, and
the same radial width as the driver. Each species was initialized with a 3D momentum distri-
bution. Both beams were initialized with a bulk energy of 10 GeV, a relative energy spread of
1%, and a transverse thermal spread of Ap,3 ~ 6 m.c, corresponding to a normalized emit-
tance of 300 mm mrad.

The background plasma consisted of cold electrons (T, = 0) and immobile ions. Its density
profile featured a 1 mm linear up-ramp, a 5 mm flattop region, and a 1 mm down-ramp. Macro-
particles employed cubic interpolation, with 64 particles per cell used for both the driver and
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witness beams, and 25 particles per cell for the background plasma. Fields were evolved
using a second-order finite-difference time-domain Maxwell solver. Several current smoothing
filters were tested, and it was found that smoothing did not significantly affect the formation of
ring structures under these simulation conditions. A first-order binomial filter was therefore
used in the final setup. Radiation reaction was included using the reduced Landau-Lifshitz
(LLR) model for classical radiation losses, which retains the two leading-order terms of the
full Landau-Lifshitz equation. Companion simulations with radiation reaction disabled were
carried out for direct comparison.

A.3.1 SYNTHETIC SCREEN AND SPECTROMETER DIAGNOSTICS FROM PIC
SIMULATIONS

We export the full macroparticle data at the final simulation iteration, i.e., positions r;, mo-
menta p;, and weights w;. Since the plasma has transitioned to vacuum, particles are prop-
agated ballistically to a detection plane placed 100 cm downstream. For each particle, the
intersection time is t; = (zser — 2;)/ 02, after which x} = x; + v, ;t] and y; = y; + v, ;t] are
recorded (constant momentum throughout). All particles that reach the plane are included; no
acceptance cuts are applied beyond the field of view. The screen image is formed by deposit-
ing the particle weights w; onto a regular (x,y) grid at (x},y}); intensities are normalized to
the peak, and we display the central window x,y € [—25,25] (cm in the figures).

For the synthetic spectrometer, we compute for each particle the divergence §; = tan~1(p, ;/ P|.i)
and energy E; = v;m,c?, then accumulate w; on a regular grid in (6, E). No instrumental re-
sponse, filtering, or resolution broadening is applied; the maps reflect direct projections of
the exported simulation data. To isolate the witness signal, particles tagged as driver are ex-
cluded prior to both projections. Experimentally, this corresponds to subtracting driver-only
background shots from shots containing both driver and witness.

A.4 CHAPTER 5

A.4.1 3D RUNS: FIREABLL-I

Three-dimensional (3D3V) PIC simulations were performed using the OSIRIS code at the exas-
cale LUMI supercomputer (Finland). Simulations use a moving window travelling at c along
the z-direction that follows relativistic electrons, positrons and protons in the secondary beam
as they propagate through the ambient plasma. The electron-positron-proton beam is ini-
tialised before entrance of the plasma, centred at z = —20cm and x = y = 0. The den-
sity and momentum phase-space distributions are accurately modelled by fitting analytical
forms to the distributions at the entrance of the plasma cell, after the glassy carbon window,
obtained from a FLUKA simulation. The longitudinal density profile of the plasma is cho-
sen to match closely the measured electron density profile of the plasma discharge: double
peaked with maximum plasma density ng = 1.78 x 10'> cm 3, see Appendix H. All quantities
in the simulations are normalized to the peak plasma density 7 (associated plasma period
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w;el = 13.29 ps, and plasma skin-depth ¢/wpe = 3.98 mm). The moving window has absorb-
ing boundary conditions and dimensions Ly x Ly X L, = 3.5cm x 3.5cm x 40 cm, discretised
into 879 x 879 x 10050 cells. This yields a spatial resolution Ax = 0.01¢/wpe = 0.096 mm. The
simulations employ a time resolution At = 0.0057 wgel = 43.7fs, fulfilling the 3D Courant-
Friedrichs-Lewy condition: cAt < Ax/+/3. We employ 8 macro-particles per cell (for each
species), and utilize quadratic interpolation with first-order binomial current smoothing. The
numerical parameters were carefully chosen after a convergence study with 2D3V PIC simu-

lations.

A.4.2 CONVERGENCE STUDY: FIREBALL-I

Table 1: Particles per Skin-Depth Area
#PPC \ Ax 1 [c/wpel 0.64 [c/wpel | 0.32 [c/wpe] | 0.16 [c/wpe] | 0.04 [c/wpe] | 0.02 [c/wpel | 0.01 [c/wpel

1 1.0 2.44141 9.76562 39.0625 625.0 2500.0 10000.0
2 2.0 4.88281 19.53125 78.125 1250.0 5000.0 20000.0
4 4.0 9.76562 39.0625 156.25 2500.0 10000.0 40000.0
8 8.0 19.53125 78.125 312.5 5000.0 20000.0 80000.0
16 16.0 39.0625 156.25 625.0 10000.0 40000.0 160000.0
32 32.0 78.125 312.5 1250.0 20000.0 80000.0 320000.0
64 64.0 156.25 625.0 2500.0 40000.0 160000.0 640000.0
128 128.0 312.5 1250.0 5000.0 80000.0 320000.0 1280000.0
256 256.0 625.0 2500.0 10000.0 160000.0 640000.0 2560000.0

Table 2: Energy Conservation [0.01%]

#PPC \ Ax 1 [c/wpel 0.64 [c/wpel | 0.32 [c/wpe] | 0.16 [c/wpe] | 0.04 [c/wpe] | 0.02 [c/wpel | 0.01 [c/wpel

1 6.04128 4.03424 1.91417 0.95637 0.23584 0.1173 0.05839
2 6.35353 3.98504 1.93813 0.9499 0.23546 0.1173 0.0584
4 6.3554 3.98465 1.93873 0.94975 0.23544 0.1173 0.0584
8 6.34466 3.989 1.9311 0.95315 0.23554 0.11736 0.05839
16 6.30996 3.98949 1.93178 0.95316 0.23556 0.11735 0.0584
32 6.35589 3.96281 1.93184 0.95317 0.23555 0.11735 0.0584
64 6.35684 3.96281 1.93172 0.95317 0.23555 0.11735 0.0584
128 6.3567 3.96597 1.93172 0.95277 0.23555 0.11735 0.0584
256 6.35642 3.96598 1.93172 0.95278 0.23555 0.11735 0.0584

Table 3: B-Field Magnitude [m.cwp./e]
#PPC \ Ax 1 [c/wpel 0.64 [c/wpel | 0.32 [c/wpel | 0.16 [c/wpel | 0.04 [c/wpel | 0.02 [c/wpel | 0.01 [c/wpel

1 0.10066 0.09297 0.129 0.16863 0.17279 0.17233 0.17085
2 0.05271 0.05804 0.129 0.15145 0.16893 0.17059 0.17024
4 0.05244 0.05696 0.13054 0.15125 0.16879 0.17032 0.16985
8 0.03513 0.07037 0.12966 0.15371 0.16757 0.16972 0.1696
16 0.03529 0.071 0.12941 0.15395 0.16747 0.16913 0.16962
32 0.03573 0.07142 0.12964 0.15415 0.16743 0.16914 0.16962
64 0.03595 0.07117 0.12976 0.15409 0.16731 0.1691 0.16954
128 0.0362 0.07116 0.12983 0.15388 0.16744 0.16906 0.1696
256 0.03615 0.07094 0.1297 0.15388 0.1674 0.16898 0.16952

To ensure numerical accuracy, we conducted a resolution study with 2D3V PIC simula-
tions, using the same parameters later employed in the 3D simulations presented in the main
text. The grid resolution Ax was varied from 1 x ¢/ wWpe to 1072 x ¢/ Wpe, and the number of
particles per cell (PPC) from 1 to 256. The timestep At was adjusted accordingly to satisfy the
CFL condition. The number of computational particles per skin-depth area spans six orders
of magnitude, with the largest 2D run reaching 2.56 x 10° particles per skin-depth area. For
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the 3D simulation, we scaled this by a factor of ~ 4, achieving approximately 8 x 10° particles
per skin-depth cube. Achieving this level of numerical resolution in 3D is typically challeng-
ing, but our approach ensures accuracy and reliability. Energy conservation was also carefully
evaluated, with errors ranging from 0.06% (lowest resolution) to 0.0005% (highest resolution),
confirming the numerical stability of our results (see Table 2).

To demonstrate that the observed magnetic field amplification arises from physical pro-
cesses rather than numerical artifacts, we examined the field’s dependence on computational
parameters. Table 3 shows that increasing the resolution leads to stronger field growth, asymp-
totically approaching B ~ 0.1695 m,cwpy./e. Meanwhile, increasing the PPC slightly reduces
the growth rate, consistent with expectations, since the convergence study assumes a cold
plasma, the process is fluid-like rather than kinetic. Low-PPC PIC simulations resemble fluid
simulations, which tend to overestimate magnetic field growth. However, as PPC increases,
the field strength converges asymptotically.

We further analyzed the time evolution of the magnetic field as a function of beam propa-
gation length, considering two cases: (i) fixed PPC (256) with varying resolution and (ii) fixed
resolution (Ax = 0.01 ¢/wy,) with varying PPC (Figure A.2). The left panel shows that the B-
field evolution asymptotically converges, with minimal changes when increasing the resolu-
tion from 0.02 ¢/ wp, to 0.01 ¢/ wy,, demonstrating that Ax = 0.01 ¢/ wy, is sufficient to resolve
the relevant scales. Similarly, the right panel shows that increasing PPC leads to convergence,
with little difference between 128 and 256 PPC.

We also studied the effects of particle interpolation (particle shape function). Figure A.3
shows that increasing the interpolation order leads to convergence, with negligible differences
between quadratic and cubic interpolation. Thus, quadratic interpolation is sufficient to accu-
rately model the experimental setup.

B-Field Evolution for PPC = 256, Varying Az

0.20 0.90 B-Field E\"olutlon for Az = 0,0l’, Varying PPC
— Az =1 [c/wye] —PPC =1

. — Az = 0.64 [¢/wye] .

O =L Az = 0.32 [c/wy] O 3
\90'10 Az = 0.16 [¢/wy] \130.10
3 Az = 0.04 [c/wye] ig

) [ — Az = 0.02 [c/w] )

50'10 — A = 0.01 [¢/i] éO.lO
5 0.05 g 0.05

L

0-00; 100 200 300 0.00 100 200 300

Propagation length [¢/wye] Propagation length [¢/wy]

FIGURE A.2: B-field strength as a function of beam propagation distance, demonstrating convergence
for both spatial resolution (left) and PPC (right).

Finally, it is important to highlight that the fully 3D simulations used to study the exper-
imental setup employed a comparable spatial resolution and four times the number of com-
putational particles per skin-depth volume. Achieving this level of resolution in 3D is rare,
setting a new standard for simulations of beam-plasma interactions.
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FIGURE A.3: B-field strength as a function of beam propagation distance for different particle shapes,
showing that quadratic interpolation is sufficient.

A.4.3 FIREBALL-III BEAM PARAMETERS

Three-dimensional (3D3V) PIC simulations were performed using OSIRIS to model the Fire-
ball beam produced with a new converter geometry. All computational and numerical param-
eters were kept identical to the baseline configuration used for previous simulations: spatial
resolution Ax = 0.02, ¢/ wpe, timestep At = 0.01152, w};el,
mial current smoothing. Similarly, the plasma profile and normalization remain unchanged.
The main physical modification is the extension of the plasma cell, which now spans 3m,

allowing significantly longer beam propagation and enabling the onset of late-time kinetic

quadratic interpolation, and bino-

instabilities.

Compared to the previous converter setup, the new beam is significantly more collimated
and energetic. The bulk longitudinal momentum increased from p; ~ 205,m.c to p; =~
614, m.c, while the angular spread decreased from Af ~ 0.025 to Af ~ 0.008, yielding a beam
that is roughly three times more collimated. Transversely, the electron-positron beam broad-
ened from 7| ~ 0.80mm to ;| ~ 1.60 mm, while the proton beam remained tightly focused,
with a slight reduction from | ~ 0.28mm to r; ~ 0.27 mm.

In terms of composition, the relative densities of electrons and positrons remain simi-
lar, with n,-/n,+ =~ 0.3/0.25, but the proton content has been significantly reduced, from
np = 0.15 in the original setup to n, = 0.03, yielding a more pair-dominated beam. These
updates reflect improved spectral selection and reduced background contamination in the re-
vised converter geometry, leading to cleaner and more representative initial conditions for
studying beam-plasma interactions over meter-scale propagation.

A.4.4 PROTON-MODULATED SEEDING SIMULATIONS

The simulations presented in Fig. 5.10 were performed using 2D3V Particle-in-Cell simula-
tions with periodic boundary conditions in both transverse directions. The simulation domain
covered Ly = 25 ¢/wpe and Ly = 50 ¢/ wpe, discretized into 1000 x 2000 cells, with a timestep
of At = 0.009 w;el. The plasma consisted of electrons, positrons, and protons with initial
densities n,- = n,+ = ny/2 and n, = ny/2, ensuring overall charge neutrality.



A.4. Chapter 5 129

All species were initialized with the same momentum distribution as in the main simula-
tions, reflecting realistic beam spectra with an angular divergence of § = 0.025. To investigate
seeding, the proton beam was modulated with a weak transverse density perturbation of the
form (571,, / ny = 0.005 sin(27ry /A), with the wavelength A varied across simulations to assess
resonant enhancement of the instability. This imposed spatial modulation imprints a seed elec-
tromagnetic field structure that can selectively trigger the current filamentation instability at
specific scales.

A five-pass smoothing filter was applied to suppress high-frequency numerical noise. These
simulations enabled controlled studies of how initial background structure in a heavy species
can modulate and seed instabilities in relativistic pair plasmas.

A.4.5 SIMULATION PARAMETERS FOR EXOTIC SPECIES

The simulations shown in Fig. 5.15 were performed using the same 2D3V periodic PIC setup
as in Fig. 5.10 in Appendix A.4.4, with the same spatial resolution, box size (Ly = 25 ¢/wy,,
Ly = 50 ¢/ wpe), and timestep (At = 0.009 a);el). The setup was extended to include additional
heavy species: pions and antipions, each with charge-to-mass ratio g/m = +1/264. These
were initialized with densities of 0.5 1y and sampled from realistic energy distributions based
on the secondary particle spectrum of the hadronic cascade. Their longitudinal momentum
distribution matched that of the primary pair beam, and their transverse spread was set equal
to that of the positrons. All species were injected with homogeneous spatial profiles, ensur-
ing overall charge neutrality. Diagnostics and smoothing settings remained unchanged. This
configuration enabled the study of delayed filamentation in the pion component, triggered by
nonlinear structures in the lighter electron-positron beam.
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APPENDIX B

JUSTIFICATION OF THE RADIATIVE OPERA-
TOR IN THE KINETIC EQUATION

In this appendix, we derive an effective synchrotron cooling operator suitable for use in the
Vlasov equation. Starting from the quantum description of radiation reaction as a stochastic
process, we follow a standard kinetic-theory procedure to derive a Fokker-Planck operator
that captures photon emission in strong fields. This approach makes it possible to study the
interplay between radiation reaction and collective plasma effects, while allowing a smooth
transition between quantum and classical regimes.

Our goal is twofold: first, to establish the form of the radiative operator under quantum
synchrotron emission; and second, to show that in the classical limit 7 — 0, this operator re-
duces to a purely advective form that matches the relativistic Landau-Lifshitz force (shown
previously in Eq. (2.2)). In this limit, radiation reaction enters the Vlasov equation as a classi-
cal drift force, supplementing the Lorentz force. We demonstrate this reduction explicitly, thus
validating the use of the classical radiation reaction force in regimes where quantum correc-
tions become negligible.

To study the effects of quantum synchrotron cooling on a distribution of particles, we can
construct a radiative operator. The master equation models the evolution of a distribution
function due to stochastic synchrotron emission [28, 241, 242]

of
ot

:/deW(P+P7/Pv)f(P+P7rt)

—£(p) [ dps W (p.p1). (B.1)

RR

where W (p, p,) is the emission rate of a photon with momentum p., by an electron with
momentum p, W has units of momentum per unit of time. From now on we normalize time
per cyclotron period such that, the emission rate is in units of m.c. If we assume that photon
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emission occurs parallel to the particle momentum, is given by [18, 28]

1 «aBomec ., R
W (p,py) =5 (py — P)

Va7

X g,)/Kz/3(1/) , (BZ)

where K, (x) is the modified n-th order Bessel function of second-kind (or Basset function),
87 is the energy of the emitted photon in mecz, v is the Lorentz factor of the electron, BO =
B/Bs, and v = 2(&,/v)/ [3x(1 —&E,/7)]. Recall that x is the Lorentz invariant quantity
X = p.|B|/(mecBs.), that for a constant magnetic field simplifies to x = p B/ (mecBs.).
One notes that in the classical limit when the photon energy is much smaller than the kinetic
energy of the electron, ie., (€,/ ')/)2 < 1, one recovers the classical radiation rate from the
classical synchrotron, which can be derived from classical electrodynamics [17, 243-245]

V3 6 (py — P) Wee

W (p,py) = - aBomec

K x)dx, B.3
= oK) (B.3)

as v = 2w/ (3wcg’yz), ie, V = w/w, the ratio between the emitted frequency and critical
frequency. This hints that the term proportional to K;,3(v) is of quantum nature.

To make analytical progress, we approximate the integro-differential collision operator in
Eq. (B.1) using a Kramers—-Moyal expansion [242, 246, 247], which systematically expands the
integral in terms of the moments of the momentum change per emission event. Physically, this
corresponds to assuming that the cumulative effect of many small photon emissions can be
treated as a continuous stochastic process. Truncating the expansion at second order yields a
Fokker-Planck-type operator, which captures both deterministic drift (mean radiation reaction
force) and stochastic diffusion (energy spread due to quantum fluctuations). The resulting
transport-diffusion form is:

0 1
a*]; =V, [Ffl+ ivfa [Df], (B.4)
RR
where 5 s,
2 [2v°K K
,ﬂag oxp / v |2 5/2(1’2) 36v°x 2/35}1/)} (B.5)
| (24 3vy) (24 3vy)
represents the average radiative drag, and
2 o [213Ks)n(v)  54v4x5Ky5(v)
D= “uB 223/ d 5/2 2/3 B.
PO Jo V30 T T 24 Bux) (B.6)

the momentum diffusion coefficient associated with stochastic photon emission.

In the limit x < 1, the integrands in Egs. (B.5) and (B.6) simplify considerably. Specifically,
terms proportional to higher powers of ) in the numerator and denominator can be neglected.
This allows us to keep only the leading-order contributions:

293 9. [® 202Ks5 (V) 29[ )

Fr~-2Y" B = 0Ny = 5 B.7
3 8,7 “Box p/o 1 dv = 3 gy “Box’Ps (B.7)
- 22.3 /°° 20°Ks 2 (v) 55 22.3

D ~ —aBgm>c dv = aBomsc . B.8
34Bome ey | 3 24\60‘3)” (B.8)
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The resulting integrals are known from synchrotron radiation theory [245]:

2 71 3 7‘
V°Ks /o (V) dv = , / V°Ks /» (V) dv = . B.9
/0 5/2 ( ) 8\/§ 0 5/2 ( ) 16\/§ ( )
This yields the following effective operator for radiation reaction:
of 55 2292 [,3
V., - [F + Bomic™V B.10
ot RR 14 [ RRf] 48\/§“ om,cC p |:X r)/f:| ’ ( )

where Frp is the classical radiation reaction force from Eq. (2.2), valid in the relativistic limit
> 1L

Combining this with the Vlasov equation, we obtain a “semi-classical” kinetic model for
synchrotron-cooled plasmas, in which quantum effects enter as a momentum-space diffusion
operator:

Ty 2 Vaf + V- [(Fr 4+ F) f] = 2 aBom V3 [o0f]. (B11)

55
48V/3
The only remaining quantum correction appears on the right-hand side of Eq. (B.11). This
becomes evident by expressing x = (B/Bs.)(p./mec) = (hBep,)/(m3c®), and noting that
«/Bs. = 1/B, where B, is the classical critical field. This implies that the quantum diffusion
term scales as X3 [ h3, and thus vanishes in the classical limit i — 0, recovering the Vlasov
equation with only classical radiation reaction.

In summary, we have derived a quantum-corrected kinetic equation for synchrotron-cooled
plasmas by expanding the master equation for stochastic photon emission in the small-x limit.
This yields a semi-classical Vlasov equation with a classical radiation reaction force and a
quantum-induced momentum diffusion term. In the limit# — 0, the diffusion vanishes, recov-
ering the classical Landau-Lifshitz form. This framework provides incorporates leading-order
QED corrections in kinetic models, an explains the observed features of quantum particle-in-
cell simulations in regimes where x ~ 1.
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APPENDIX C

INVERTED LANDAU POPULATIONS DUE TO
SYNCHROTRON COOLING

C.1 ANALYTIC SOLUTION OF SYNCHROTRON COOLING TRA-
JECTORIES

The equations of motion for a relativistic particle under synchrotron radiation reaction in a
constant magnetic field are given by [132, 133]:

dp, 2 _pL+p]

T = SDLBO Y , (C.1)
dp) 2 PPt

T *50‘307, (C2)

where v = ,/1+ pﬁ + p% and a is the fine-structure constant. To simplify, define the dimen-
sionless time T = %thot.

We use the chain rule: ,
dp 1401 (C.3)
dpy  pypL

which integrates to:
dl __ Pl

\/1+Pi R \/1+P2LO

where p|g and p, o correspond to the initial parallel and perpendicular momentum, respec-

= const = Cq, (C4)

tively.

Using this constant of motion, the perpendicular equation becomes:

/ 2

dt m
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This can be separated and integrated:

dpy ___ T
/ PLm m

Solving the integral and exponentiating, one obtains:

2
—27/4/1+C2
1+ Ae 1
pi(t) = ( ) ~1, (C.6)

_ 2
1 Ae /G

-+ const

with
V1+p3,—1
V1+pip+1
Using the identity:
1—e % 1 —tanhx
h(x) = —— “x_ - T
tanh(x) Trezm > 1+ tanhx’

we rewrite the solution in closed form:

Pio
— , (C.7)
Pl cosh(t’) {1 +4/1+p3, tanh(T’)]

with

/ V1+1%, - -
T=T —, 702./1+pm+p”0.

Yo

Using the constant of motion C; = p)o/4/1 + pio, we can reconstruct the parallel momen-

tum as:
1+tanh(7')//1+p3,
pi(T) =pjo- (C.8)
1+ /1+ p3,tanh(7’)

These expressions fully describe the exact radiative cooling trajectories in momentum space.

Notably, as t — oo, p; — 0 and p| — Cy, preserving the quantity p/4/1+ p3 , consistent
with the covariant nature of the Landau-Lifshitz radiation reaction formulation.

C.2 SOLUTION TO THE KINETIC SYNCHROTRON COOLING EQUA-
TION (EQ. (2.17))

We now solve the kinetic equation governing synchrotron cooling in relativistic plasmas. As
introduced in Eq. (2.17), the Vlasov equation for a distribution function f undergoing classical
synchrotron cooling reads

af pLtpL of _PiP|\ﬁ_2+4Pif:0
ot v dpL v 9p| v '

(C.9)



C.2. Solution to the kinetic synchrotron cooling equation (Eq. (2.17)) 137

where 7 is a dimensionless time and v = , /1 + p2 + pﬁ is the Lorentz factor.

In regions where p; > p|, we approximate vy >~ /1 + p3 and neglect the term propor-
tional to df /dp |, yielding the reduced form

%_Mi_ﬂfzo‘ (C.10)

We solve this equation using the method of characteristics. The characteristic system reads:

dp. P tpu

7L T (C.11)
af 2+4.pi

i (C.12)

Equation (C.11) corresponds to the single-particle perpendicular equation of motion under
synchrotron cooling (cf. Eq. (2.3) with p| = 0). Its solution is

(1) = Pio , (C.13)
P cosh(7) [1 +4/1+ 1%, tanh(T)}

where p o = p, (T = 0) is the initial perpendicular momentum.

To invert this expression and solve for p | ¢, define the auxiliary variable

_ pL
a=log | —=——|. (C.14)
(,/1+pi+1)

We recall the identity for the hyperbolic cosecant of a sum:

1
sinh(a) cosh(7) + cosh(a) sinh(7)"

csch(a+ 1) = (C.15)

Using this identity, and substituting sinh(a) and cosh(a) in terms of p, , one can show that

sech?(1) — p? tanh?(t) 1+p2 +1

which yields the inverse solution:

pL
pro= —csch [log | ———— | +7|. (C.17)
( (\/1 Pt 1) )

This identity is useful for evaluating the distribution function at any later time by tracing
the solution backward along characteristics. Specifically, Eq. (C.12) integrates to

T 2+4p% (T) dT/‘|

e (C.18)

F(p) = folpao) - exp [ I
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with p (7') given by Eq. (C.13) and p ¢ as in Eq. (C.17).

The final closed-form expression for the distribution function at time 7 is

f1o(—csch(a)) (C.19)
[y1 p1 sinh(a) tanh(a)]*’ .

azlog(vfj_l)—i—r, YL =/1+Pp%. (C.20)

Equation (C.19) displays a formal singularity at 4 = 0, which occurs when p; = 1/ sinh(7).
However, this lies outside the physically allowed domain of the solution. As discussed in the

filp,T)=

where

main text, synchrotron cooling confines the momentum-space support to

1

pL < sinh(7)’ (C.21)

ensuring that Eq. (C.19) remains well-behaved for all T > 0. At T = 0, the distribution is
unconstrained and recovers its original support p; < c0.!

C.3 SOLUTION TO THE RELATIVISTIC KINETIC SYNCHROTRON
COOLING EQUATION (EQ. (2.21))
In the ultra-relativistic limit v > 1 and p; > 1, the single-particle trajectories and kinetic

equation simplify considerably. Using the asymptotic expressions derived in Egs. (2.5) and
(2.6), the momentum evolution becomes

- Pio C.22
pL(T) 1+ (PZLQ/VO) T, ( )
p|(t) = S — (C.23)

1+ (Plo/70) T’

where 9 =, /p3, + Pﬁo is the initial Lorentz factor.

In this regime, the Vlasov equation governing the distribution function f(p, p|, T) simpli-
fies to

of pLof rirdf 4l (C24)

We solve Eq. (C.24) using the method of characteristics. The characteristic equations read

dp, PBL

= (C.25)

dp| Pip

d7T —_— _T, (C.26)
af  4p1

1We note that at t = T = 0, Eq. (C.19) simplifies to f(p,, T = 0) = fo(p. ), as expected.
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Assuming 7y & p as is appropriate in the p; > p| limit, the characteristic equations can
be solved analytically. Integrating Eq. (C.25) yields

Pio
= , C.28
pi(t) =17 P10 (C.28)
which implies
_ _P1
Pio = 1— 7. . (C29)

Using this, the longitudinal momentum evolves as

pi(0) =1 _p”fm- (C.30)

Solving the final characteristic equation for f, and substituting the above relations, we obtain

fo *pTL 17 *pTH 1
flpLppt) = ((11 ij1)4p ) ' (C.31)

the general solution:

Equation (C.31) describes the evolution of an initial momentum distribution fy under syn-
chrotron cooling in the relativistic regime. This expression features a formal singularity at
p1 = 1/7, corresponding to p o — oo. However, this singularity is never reached physically.
As can be seen from Eq. (C.28), a particle with infinite initial momentum asymptotes toward
p1 = 1/7. Therefore, all finite-momentum particles are constrained to

1
0<pL <, (C.32)

which ensures the solution remains regular and finite for all physical values of 7.

C.4 ARGUMENTS DEMONSTRATING THE PERVASIVENESS OF
RING DISTIRBUTIONS

Sec. 2.2.1 present the necessary condition for the any arbitrary initial distribution f; to develop
into a ring distribution within a finite time. Now we present two weaker arguments that fur-
ther support our conjecture that any initial relativistic plasma eventually develops momentum
space bunching and an inverted Landau population in the shape of df /dp; > 0.

As Eq. (2.22) fully determines the temporal evolution for any given initial distribution fy,
and demonstrates several conclusions regarding the general evolution of momentum distribu-
tions undergoing synchrotron cooling. Firstly, The solution domain decreases with time, with
an upper bound at p% = 77! (such that p, T < 1). Therefore, the distribution function is com-
pressed within p; < p*, where p* describes the trajectory of a particle that p | (T = 0) = co.

ARGUMENT 1: From Eq. (2.22) we can conjecture that a Landau population inversion, char-
acterized by of/dp; > 0, develops in a finite time for a wide variety of initial momentum
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distributions. This can be shown by rearranging df/dp, > 0 and considering p =0

9
defo (P1L,0) > —pl a;{,i (¢',0), (C.33)

where p/, = p, /(1 — p,7) and we have used the fact that 0 < p, < p? to write p; =
ep| = €/, with 0 < € < 1. For an initially stable distribution fy all terms in Eq. (C.33)
are positive because fy > 0 and dfy/dp; < 0, everywhere. Equation (C.33) illustrates a very
simple condition for the development of unstable distributions. From this inequality, one can
obtain the range of p; where the unstable region is developed. Moreover, furthering our
conjecture, we have checked that a wide variety of momentum distributions fulfil Eq. (C.33),
including Maxwellian, Maxwell-Jiittner, constant negative slope distributions, power-laws up
to the power of 4, etc. For all of these distributions, or combinations a population inversion i.e.
a ring momentum distribution, will be formed.

ARGUMENT 2: The radiation reaction force for a relativistic particle in a constant magnetic
field B is

dp i
C.34
at v (C34)
where T = 2aB/3, as defined in the main text. We focus on particle trajectories with p| = 0

as the population inversion is expected to develop in that region of the distribution. We can
calculate the trajectory of a particle in the perpendicular momentum space:

Plo
) = P C35
pL(T,p10) T+ p.ot (C.35)

where p | g is the initial perpendicular momentum. For a particle at p g = oo the trajectory
simplifies to
1

ph (1) = o (C.36)
Eq. (C.36) describes the trajectory of a particle cooling from p g = ccattT =0top, = 0at
T = oo. Therefore, for any distribution function cooling due to synchrotron radiation, its do-
main lies within 0 < p; < p’ . Moreover, a momentum distribution undergoing synchrotron
cooling also obeys df /07| p,—0 = 0 because particles with no perpendicular momentum will
not cool down, and the momentum distribution at p; = 0 remains constant over time, as
shown in the simulations (Chapter 2.
Due to the conservation of the number of particles, the distribution function obeys

o p1(7)

N = /0 flpr,T=0)2mpdp, = /O f(pr,T)2mp . dpy, (C.37)

where N is the total number of particles. We can rewrite the right-hand side as
() .
N= [T flpum2mp dps = p (D), (€38)
where fa,¢ is the average f within 0 < p; < p’ . Thus, using Eq. (C.36),

favg = T/o f(py,7)2mp dp, = TN. (C.39)
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If the average of the distribution becomes larger than the value of the distributionat p;, =0
this implies a region where df /dp; > 0. Thus,

f(PL =0, T) < favg =TN. (C40)

As f(p, = 0,7) is constant over time, and finite valued, there is a finite time at which this
inequality becomes true. Therefore, a population inversion, i.e. a region where df /dp; > 0
occurs within a finite time.

C.5 GEOMETRIC ORIGIN OF THE UNIVERSAL TAIL IN f{(p|)

In the main text, we derived the asymptotic expression for the final parallel distribution func-
tion after synchrotron cooling (Eq. (2.33)), given by

i) = / 27tp 1o dp 1o fo (mo,p \/ 1+ Pio> \/ 1+p3, (C.41)

This expression follows from the cooling-induced constant of motion (Eq. (2.7) in the main
text),

£ Pijo

Pl =
V1+ 13,

which defines a one-to-one mapping from the initial momentum space (p 1o, p|jo) onto the final
parallel momentum p.

(C.42)

To isolate the origin of the universal decay observed in Eq. (2.36), we analyze the structure
of this mapping. The key observation is that a fixed interval dp| in the final distribution arises
from a region in the initial phase space whose area decreases as p|| increases. This geometric
contraction leads directly to the emergence of a power-law tail in f ﬁ (p))-

The limits of integration in Eq. (C.41) are controlled by the support of the initial distribution
fo- We assume that f is localized within a finite domain, characterized by a typical thermal
momentum spread py, > 1, such that

folpropjo) =0 for pio>pTg%, ppo>pjo - (C43)
These cutoff scales are not strict boundaries but represent the effective range over which fy
remains appreciable. For example, in a Gaussian or Maxwell-Jiittner distribution, one may
take p5* ~ p%ax ~ €, where € >> 1 defines the broad-distribution limit.

We now estimate how this upper bound in p)| restricts the range of p | ¢ that contributes to
a given value of p||. Inverting Eq. (C.42), we obtain

pIHnax 2 pﬂnax P 2
0 0
= 4] —1=—"—,]1- . (C.44)
pLO,max(pH) ( PH ) pH <pr|noax>
In the regime p| < pﬂbﬂx, this reduces to
pITE)aX
pLO,max(pH) ~ LL| ’ (C~45)
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indicating that higher final momenta are sourced from increasingly smaller domains in the
initial momentum space.

To evaluate how much of the initial phase space contributes to a fixed interval dp|, we

analyze the structure of the cooling map. For fixed p | o, the transformation p|o = p)|{/1 + P,

implies
dpjo = \/1+piodp)- (C.46)

The corresponding infinitesimal area element in the (p_1o, p|o) plane is

dA=dp, - deO =4/14+ pi_O dpio- de (C.47)

The total area contributing to a given dp || is thus

pLOmax
A(p) =dp / V1+pigdpio~dp)- PI " (C.48)

which decreases as 1/p|. This shrinking of the contributing momentum-space area directly
explains the suppression of fﬁ ( p”) atlarge p.

To compute the resulting scaling, we return to Eq. (C.41). In the broad-distribution limit,
we may approximate

fo(propo) ~ € >g(pLo/e pjo/e), (C.49)

with g smooth and normalized. For € >> 1, the function fy varies slowly over the narrow
region contributing to a fixed p|, and the integral becomes dominated by geometric factors
that come from the Jacobian:

pLO,max
fﬁ(PH) ~ /0 pioy/1+p%odp.Lo- (C.50)

For p g max > 1, valid when p| < pﬂ‘ax the integrand scales as p3 ), so

f P L0,max 2 3 (p%aX)S
fH(PH) ~ /0 PLodP1o ~ Plomax ™ i (C.51)
|
This recovers the universal asymptotic form presented in Eq. (2.36).
Finally, the resulting distribution is normalizable:
[ Aiwan ~ [ ¢ e (€52)
1(Py)dpy Pz = -

This analysis confirms that the power-law tail f, ﬁ (p)) pﬁ’ arises directly from the geom-
etry of the synchrotron cooling transformation. The shrinking of the contributing momentum-
space area with increasing p|, combined with the broad and smooth nature of the initial dis-
tribution, determines the final scaling behavior independently of the detailed form of f.
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C.5.1 BEAM-LIKE DISTRIBUTIONS

To illustrate the geometric origin of the universal decay from a different perspective, we now
consider a beam-like initial distribution with small momentum spread and finite drift velocity.
Specifically, we take the initial distribution fo(p 1, p||) to be a uniform “waterbag” in cylindrical
momentum space, centered at p = u > 1 and p, = 0, with width py, < u:

—, H0<p; <pm u—pm<p|<utpm
folprpy) = { 2P, | (C.53)
0, otherwise,

where the normalization ensures unit integral over phase space.

Substituting this into Eq. (C.41), the final parallel distribution becomes

1 "Pth
filpyp) = oy Pyt Pio® (rf V14 € = pmu+ pth]) dpio-  (C54)
th

The Heaviside function restricts the integration to values of p | g such that

u—pm < pp/1+piy <+ pu (C.55)

Solving for the corresponding bounds on p o, we obtain

2 2
plo€ \J (Ll_pth> —1, \l <u+pth> —1/, (C.56)
P P

provided this interval lies within the physical support [0, py,].

The resulting expression for the final distribution is

1 _
—— |+ pw)® — (u—pw)|, ifp € <up¢h, u+ Pth) ,
fi(py) = < 3Pmp) | } =\ (C.57)
0, otherwise,

demonstrating the power-law dependence p[g’ explicitly for beams undergoing cooling.

The parallel momentum spread is

Ap = (u+pwm) — (” _Pih ) , (C.58)

which simplifies in the limit py, < 1 to

Pth
Apy =~ — L~ opy.. C.59
P| = P+ . Pth (C.59)
Pin

Thus, the beam remains narrow in p|| after cooling, but the distribution acquires an algebraic
tail over a finite window.
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Finally, expanding the exact expression in Eq. (C.57) in the limit py, < u, we find

61p3
filpp) = =32, (C.60)
P
which exhibits the same asymptotic decay as the broad thermal distributions considered ear-
lier.

To estimate the spread, we compute the standard deviation Tp| of the final distribution.
Introducing the small-angle parameter § < 1 via py, = uf, the expression for the standard
deviation becomes a function of 6 alone. Expanding the exact expression in powers of 0, we

obtain

0
Oy =5 0(6%), (C.61)

where the leading-order term reflects the maximum achievable fractional spread from syn-
chrotron cooling.

This expansion shows that the maximum spread of the final distribution is bounded by

max ., Pth
Op, " = X (C.62)
and that increasing the initial momentum spread py, (or angle 8) beyond this point leads to a
decrease in the final spread.

This example illustrates two central geometric consequences of synchrotron cooling. First,
the emergence of a pﬁ tail in the final parallel distribution is not limited to broad or symmet-
ric initial conditions: it arises generically from the phase-space compression induced by the
cooling map, even in the case of narrow, drifting beams. Second, the width of the resulting
distribution exhibits non-monotonic behavior as a function of the initial momentum spread.
For small angular spreads, the standard deviation of the final distribution reaches a maximum
of Uﬁax = pw/+/3. Further initial broadening of the initial distribution leads to a narrow-
ing of the final one, as large-angle particles are strongly compressed. Together, these features

highlight the universal nature of synchrotron-cooled momentum-space distributions.
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C.6 WEAKLY-RELATIVISTIC REGIME (py, = m,c) RING FOR-
MATION

— f(pat =0)
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FIGURE C.1: Particle-in-cell simulation results demonstrating the evolution of a mildly-relativisitc initial
isotropic Maxwellian distribution. For reference, the distribution function f(px, py = 0) is shown at
t = 0and t = 3tg on the top row (1). The second row (row 2) shows the perpendicular plane of
the momentum distribution (f| (px, py), where p2 = p2 + pf) and the bottom row (3) the f(p_L, p|)
momentum distribution, at t ~ tg.

To demonstrate the ring formation in the weakly-relativistic regime, simulations with p;;, ~
1 mec were also performed, the results are shown in Fig. C.1. Here we show the simulation
results for an isotropic Maxwellian distribution with py;, = m.c, Most of the distribution lies in
the region where y =~ 1, simulations with smaller py, significantly increase the timescale for the
onset of the ring distribution. This result illustrates the development of the ring distribution
as expected because even if the thermal energy is mildly-relativisitc it still produces a ring
because it is above the threshold estimated previously in Sec. 2.2.1.
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APPENDIX D

PROPERTIES OF THE SYNCHROTRON RADI-
ATION

D.1 RADIATION OF ENTROPY

The definition of entropy is subtle and often context-dependent. Still, it remains a cornerstone
of statistical physics and, by extension, plasma physics. In systems close to classical ther-
modynamic equilibrium, where collisional processes dominate locally, the Boltzmann-Gibbs-
Shannon (BGS) entropy provides a well-established framework. Defined as [248]

Sncs = —ks [ dpdr f(p,1)10g (f(p,1), )

it quantifies disorder in terms of the distribution function f(p,r)f(p,r), and its maximization
leads naturally to a Maxwellian distribution (or Jiittner in the relativistic case), characteristic
of equilibrium. However, recent studies have shown that BGS entropy is not always sufficient
to capture the dynamics of collisionless systems governed by long-range interactions [89]. Al-
ternative, more nuanced entropy measures have been explored to better describe such regimes
[88, 89, 249].

Still, even in the absence of collisions, and in particular under conditions of synchrotron
cooling, it remains an intriguing question how entropy, under any definition, evolves. While
BGS entropy may not be the definitive measure in these regimes, it remains a useful diagnostic.
Tracking it provides insight into the irreversible processes and potential loss of phase-space
volume induced by radiative effects.

For a system described by a Vlasov equation coupled with a collision operator or radiative
operator the change in entropy dS/dt depends on the nature of the operators [250]

(2—? = —kB/dpdr (Z{) log (f(p,1)), (D.2)

df

where (E) refers to the operators. For a collisionless system there are no collisions and there-
fore dS/dt = 0. The inclusion of collisions one finds that dS /dt > 0 [250].

147
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Interestingly, when a radiative operator is introduced, such as one modeling synchrotron
cooling, the system’s entropy can decrease. Using Eq. (D.2) together with the radiative opera-
tor

(Zlmz—Werﬁ/ (D3)

or equivalently, the full solution of f in Eq. (2.22), one obtains

dgo | dgo _ _ 20

i (ot 1) S G

dt

where g9 = fo (1 P pir’ 1} p”L T) is the rescaled initial distribution, note that we are now writing

dS/dt, where T = 2aBywet/3, and t is in cgs. Thus, dS/dt « B2dS/dt, and the entropy
radiation rate in cgs units is proportional to the magnetic field intesity squared.

Without loss of generality we can set t = 0 (T = 0), which simply redefines the initial
condition and yields the instantaneous entropy change:

G2 = ko [[dp pulog (p.)) 120 (D5)
It is nontrivial to show that any arbitrary distribution fy will resultin dS/dt < 0. However, Eq.
(D.5) provides more than just a diagnostic, it tells us which shapes of distribution functions ra-
diate entropy, and at what rate. While it is not necessary to prove this explicitly for all possible
forms of fy, we have verified that a wide range of physically relevant distributions do satisfy
dS/dt < 0 under the action of the synchrotron cooling operator. This supports the broader
conclusion that synchrotron cooling acts as a compressive, entropy-reducing mechanism in
phase space.

As a concrete example, consider a Maxwellian distribution of the form given in Eq. (2.24).
In this case, we find
ds 3
e =- (5+1og (87) +6log (pun) ) ks < 0. (D.6)
That is, the entropy of the plasma decreases for synchrotron cooled plasmas (Note that this
was obtained in the relativistic limit, i.e., py, > 1). Physically, this lost entropy is carried away
by the emitted synchrotron radiation, transferring entropy from the particle distribution into
the photon distribution. Notably, the rate of entropy loss scales with py, meaning that broader
(i.e., higher-temperature) distributions radiate more strongly and lose entropy more rapidly,
as expected.

D.2 SYNCHROTRON SPECTRUM FROM RING DISTRIBUTIONS

We have demonstrated that plasmas undergoing strong synchrotron cooling will modify their
kinetic properties. And we have self-consistently modelled how that is modified as the syn-
chrotron radiation escapes. Still how does the synchrotron spectrum change over time instan-
taneously or how will the total spectrum be changed needs to be answered.
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FIGURE D.1: Analytical results show that synchrotron cooling modifies the emitted spectrum over time
and the averaged synchrotron spectrum during the cooling process. The spectrum is normalized to
mec?we, per particle and the time averaged spectrum is normalized to m.c?w?,. Left columns demon-
strate the evolution of the instantaneous synchrotron power spectrum at different times. Right column
shows the time integrated spectrum (blue) against the synchrotron emission spectrum of a static thermal
plasma, i.e. a plasma distribution that is not undergoing synchrotron cooling. Two different initial ther-
mal spreads are initialised: Top row the initial p;;, = 1000 m,c, and Bottom row p;;, = 5000 m.c. Both
time averaged spectrums demonstrate the appearance of a power-law distribution with index « = —1/2,

where (P(w)) « w®.

The spectrum for any given distribution can be obtained from integrating the single-particle
instantaneous synchrotron spectrum with the distribution function of particle f, (p,,t) [115,
245]

V3B
me

Py(w,t) = /Ooo pLopy weeF (:}1) fi(p,t), (D.7)

where F(x) = x [° K% (x)dx and K 5 (x) is the modified Bessel function and w; is the critical
frequency w, = 392w /2, where wy, is the cyclotron frequency.

For a plasma undergoing synchrotron cooling f, (p., t) evolves as described by Eq. (4.15),
the instantaneous emission spectrum at different times during the cooling can be obtained via
numerical integration of Eq. (D.7). And the total emitted power during the cooling process
can be obtained. In Fig. D.1 the time evolution of the instantaneous synchrotron spectrum
is shown for two different initial thermal distributions. The ring formation modifies the in-
stantaneous spectrum. Surprisngly, the time-averaged spectrum (P(w)) exhibits a power-law
distribution (P(w)) « w®, where the power-law index « = —1/2 is independent of the initial
thermal spread.

The emergence of a power-law spectrum can be understood analytically. As the plasma
cools, its perpendicular momentum distribution rapidly approaches a ring-like structure. This
can be approximated as f, (p,,T) ~ é(p.L — pr)/27p,, where p, ~ 1/7 describes the shrink-
ing radius of the ring with time. In this limit, where all electrons radiate at approximately
the same energy, the synchrotron emission per particle at a given time becomes equivalent to
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that of a single electron. Thus, the instantaneous spectrum reflects the standard single-particle
synchrotron spectrum.

To compute the time-averaged emission, we integrate this single-particle spectrum over

(Py(w)) o /Ooo dt, F (2“’TZ> . (D.8)

3wee

the cooling time:

In the high-frequency limit x >> 1, the kernel asymptotes as F(x) ~ e *y/x [245]. Applying
this approximation to Eq. (D.8) and performing the integration yields

(P(w)) x w12, (D.9)

which explains the observed power-law scaling.

Physically, this time average corresponds to a scenario in which a high-field plasma re-
gion is continually replenished with hot, uncooled particles. Each population cools indepen-
dently and contributes its own instantaneous single-particle-like spectrum. The superposition
of these spectra, emitted at different stages of the cooling process, gives rise to the observed

power-law scaling (P(w)) « w~1/2, independent of the initial thermal spread.



APPENDIX E

GROWTH RATE OF THE ECMI IN SYNCHROTRON
COOLED REGIME

E.1 ZEROTH ORDER STATIONARY SOLUTION

We begin our analysis by recalling the results Sec. 2.3.2, where the evolution of the synchrotron
cooled plasma where outlined to zeroth order, this is necessary to perform the first order ex-
pansion and obtain a linear theory of synchrotron cooled plasma instabilities. We onsider a
time-dependent spatially homogeneous distribution function f = fo(p., p|,t) for a tenuous
pair-plasma in a strong magnetic field, the momentum distribution is axi-symmetric in mo-
mentum space along the momentum direction parallel to the magnetic field. To zeroth order,
there are no self-generated electromagnetic fields, therefore V, - (Fp fo) = 0. For this distribu-
tion function one can show that Eq. (2.14) simplifies to [23, 113]
9fo

o + V]? ’ (FmdfO) =0. (E.1)

Equation (E.1) can be solved with the method characteristics to obtain the evolution of any
given initial distribution undergoing synchrotron cooling [23, 113]

fO 1_;7L /1_pH /TZO
folpL.p,T) = ( R L ) (E.2)
(I—7p1)

T is a normalised time such that T = %"‘Bowcet. Equation (E.2) demonstrates the evolution of
the plasma purely due to synchrotron losses. One can demonstrate that any initial distribution
function fy, following Eq. (E.2) eventually develops a positive gradient in p, i.e. an inverted
Landau population or ring distribution, making it unstable to the electron cyclotron maser
instability [23, 113].

Thus, a relativistic plasma, independently of the initial shape of f, will develop into an
anisotropic ring momentum distribution [23, 24, 113, 168]. This results from the nonlinear
nature of synchrotron radiation, which bunches the momentum distribution in the radial mo-
mentum direction p,. The radiation reaction force violates the conservation of phase-space

151



152 Appendix E. Growth rate of the ECMI in synchrotron cooled regime

volume, in contrast with the classical collisionless plasma dynamics mediated by the Lorentz
force [88, 141]. Therefore, synchrotron radiation drives the plasma away from kinetic equilib-
rium and eventually fulfils the conditions for efficient maser emission.

E.2 LINEAR PERTURBATION: DISPERSION RELATION

Now consider the effects of the self-consistent fields. To first order they will produce a small
perturbation on fy. Thus, we linearize the Vlasov equation employing

fo.r8) = folp o pyt) (1+3f(pLo by pott)) (E3)

such that fj is the resulting ring distribution from the radiative cooling process (Eq. (E.2)) and
fod f will capture the azimuthal perturbation that gives rise to the maser instability.! Thus, we

can write
9fo 35f
(1+0f) 57 +foz; +f0* Viof + (14 6f)Vp - [Fraafo] = —0FL- Vpfo— foFp - Vpif, (E4)
Equation (E.4) can be further simplified with Eq. (E.2)
asf P
ij +f077m'Vr5f+vp‘(FLf0)+vp'(FLf05f) =0, (E.5)

the Lorentz force can be decomposed to first order as F;, = Fp + JF;, where Fp is the force
due to the guiding magnetic field and JF; is the Lorentz force due to the self-generated elec-
tromagnetic fields. Notice that Vp - (Fpfo) = 0 and to first order V, - (6F3f fo) = O, therefore

AL 4 fo R F Yy (BFL) + oV (Fadf) = 0. (E6)

Then we can follow the standard procedure and employ the ansatz §f o e(~H@wi=kv))  Wwe
know that the underlying distribution f is changing as a function of time, which means
strictly that w has a time dependence. As waves are propagating in a time-varying medium.
We will employ the WKB approximation which is valid as long as |w|2 > |w|, i.e. that the
change in frequency due to the change of f; over time is smaller than the frequency itself. This
is valid once the ring is formed and a steep gradient develops, at that point the underlying
distribution is slowly varying dfy/dt < we, and the the frequency tends to w,, therefore the
WKB is a valid approximation to estimate the linear growth rate of X-mode waves. We can
then write

fo (—i(w —k- V)(Sf—f— Vp . (FB(Sf)) = —Vp . ((SFLfo) . (E.7)
Following the standard procedure for magnetised plasmas one obtains that Vy, - (Fpdf) =
—(wee/¥)0pgdf,*> and V- (6Fy fo) = E -V, fo. We conclude that

—i(w—k~v)fo(5f—a;“agopif +E-V,fo=0. (E.8)

!While the standard linearization uses f = fo + 6f, this would require evolving J f under radiation reaction, since
both fy and df cool over time. By instead writing f = fo(1 4 df), we account for the fact that any perturbation must
evolve along with the background distribution, simplifying the analysis.

2Where 0y is the partial derivative with respect to the azimuthal momentum coordinate.



E.2. Linear perturbation: dispersion relation 153

One notices that the perturbed current ] = [ dp% fo(pL py, t)of(pg, 1, t) that will modify the
dielectric tensor and that Eq. (E.8) has the usual form encountered throughout literature for
the derivation of the dielectric tensor of a magnetised plasma. We can solve for fydf using
the method of characeristics and following the steps given by Ref. [169] we can obtain the
time-varying dielectric tensor

Whe 1 kjog\ afo(t) | kjowafo(t) | 11, (0)IL;,(b)
H—Zw/dp {,Y [( Y ) aPJ_ * Y aPH ‘| w — ”‘f;ce _ kHvH }
PI [9fo(t) 7 dfo(t)
a2 3 /dp{ ” l a(;?n TETh H (E9)

order Bessel function of x and Jy (x) is its derivative, and [ dp expandsto [° 27tp dp, [ dp).

€ij(t) :51']'

E.2.1 GROWTH RATE OF THE X-MODE

We consider waves propagating along ky, i.e., the perpendicular direction to the magnetic field
(z-direction parallel to k). This waves have k| = 0. Thus, the dielectric tensor simplifies to

0 9 in(0)1T ()
cyt) = g + ot n__oo{/ mdm/ dp) gom 7_@ } (E-10)

For the sake of simplicity we will consider a distribution function such that [~ fo(p_, P, t)op|
f1(pL,t), givenby Eq. (E.2), then 7? ~ 1 + p% . Thus, the dielectric tensor simplifies to

e,-]-(t):zsl-]-+ {/ prdp, afL) W(i)l;ﬁz(b)}. (E.11)

n=—oo

The growth rate of small perturbations can be determined from the dispersion relation is given
by [169]
A, 1 )E) = k26 — kikj — w?e;j(t) /| Ej = 0. (E.12)

which is equivalent to the condition

2

det kzéi]‘ — klk] — (;JT €1‘]‘(a), t) ’ =0. (E.13)

Under the conditions relevant here the fastest-growing branch is the X-mode. For the X-mode
with dominant E, we have k, = 0 and k| = k.. Strictly speaking, the X-mode is elliptically
polarized with both E, and Ey components, but in the strongly magnetized limit w¢, > wp, the
off-diagonal components of the dielectric tensor are suppressed by O(a)%,e /wwee). This makes

3The O-mode also has k, = 0 and k| = ky, the difference being that the O-mode is polarized along E:. Its growth
rate is given in App. E.2.3.
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the longitudinal fraction small, |[Ex/E,| < 1 (see App. E.2.2). Neglecting these off-diagonal
corrections, the relevant dispersion reduces to

Ayy(w, K t) =K — weyy(t)/c* =0. (E.14)

w is a complex-valued number; from now on we write w — w + i, where I represents a
small damping or growth rate, with |T'| < |w|. This allows us to perform a Taylor expansion
of the dispersion relation. We also assume that the imaginary part of A arises solely from the
analytic continuation through the pole, and not from the explicit form of A(w) when w is real.
We adopt the standard causal prescription w — w + i0", which implies that poles are treated
via the Sokhotski-Plemelj theorem.

Under this approximation, we expand the dispersion function as

Alw + i,k £) = Alw, &, t) + ir% [R{A(w, k 1)}]. (E.15)

Since the dispersion relation satisfies A(w + il', k) = 0, we obtain the pair of conditions:

R{A(w, k,t)} =0 (E.16)
and N
r=-—- S{Alwk b} (E.17)
a0 R{A(w K 1)}]
The function A(w, k) is given by
Aw, Kk, t) = w? — K —|—27Tw / pdp, afL ){n<_w&2} . (E.18)
nwce

The integral over p, develops a pole at v =
integration path. We apply the Sokhotski—Plemeh theorem [169] to evaluate the singular con-

()]
pi=r" Wee

, and since w is real, the pole lies on the

tribution:

/ooo P dp, L) e )r = —imp2 L)

op.L v e B toapL
2
© 5 apim [ ()]
2 I
E.1
+P ; pidpy P (E.19)

where P denotes the Cauchy principal value, and p/, = \/n?w3, — w?/w is the resonant mo-
mentum.

Substituting into Egs. (E.16) and (E.17), we obtain:

0=cw?—c*3 + 27ra12 / pidp, afL J [L;(_w,fim)} , (E.20)
'rl—foo
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and

Af L (t
2n2w%62‘;°1{17’f j;fzi) )

2
1=p []n (%)} }

(ko121
oo {7 i e 0 BEDLY

T(w,t) = (E.21)

J
(,U"'% P

Where we have taken into account that [J}, (x)]* = [J, (x)]> = [J}, (=x)]* and that the n = 0
term in the numerator sum is equal to zero. The term proportional to wy, in Eq. (E.20) can be
made arbitrarily small when compared to w in the limit of wee /7y ~ w > wpe. Therefore, the
X-modes in strongly magenetised dilute plasmas have a dispersion relation close light waves,
such that w = ck . In the same limit Eq. (E.21) simplifies to

2
/ {]{1 (ki’i)] } : (E.22)
pL=pr) ce

We can check that the condition for the WKB approximation taken to derive the dispersion
relation Eq. (E.9) fulfills |w?| > |&|. As R(w) varies slowly as the distribution cools down,
then the condition means that [I?| > |T.

Whe = [ 0 AfL()
I(t) =2m-* e
( ) w n; {pL apL

E.2.2 POLARIZATION OF THE X-MODE

For perpendicular propagation (k| = 0), the X-mode dispersion relation is obtained from [169]
2 g ;
N* =gy, — %, €] =gy, §=iexy. (E.23)

The corresponding polarization vector satisfies
(exx = N?) Ex +exyEy =0, (E.24)

so that the ratio of the field components is

E. Exy
—_— = E.25
E, exy — N2 (E-25)

In a highly magnetized plasma, w¢ > wpe and w ~ wee, the dielectric tensor satisfies ey, ~
gy =14 (’)(wlz,g/ w?) and eyy = i (’)(w,z,g/ wwee). Substituting into Eq. (E.25) yields

wze
~ 0( P ) < 1. (E.26)

This shows that the X-mode is elliptically polarized but becomes nearly linearly polarized
along E, as the degree of magnetization increases. The residual longitudinal component E;
quantifies the ellipticity and vanishes in the limit wpe/wce — 0.
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E.2.3 GROWTH RATE OF THE O-MODE
The dispersion relation of the O-mode is obtained from Eq. (E.12) as
Azz(w, K, t) = K& — w?e(t)/? =0, (E.27)

where the longitudinal dielectric function €, reads

2 ko )]
e (t) = n_zoo / p2d af;;(f) :il []T;<_“’,§;2 | . (E.28)

As in the case of the X-mode, the integral has a pole at v = *?«. Applying the Sokhotski-
Plemelj theorem to isolate the singular contribution, we obtain

NWee 1

L Ui_ T W apL vl

[y, 20" )] eyt L0 []n (M)F

2 Wee

pi=pr"

NWee 4

2 kiog 2
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where again P denotes the Cauchy principal value and p/|, = \/n?w2, — w?/w.

This yields the real and imaginary parts of the dispersion relation:
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While the sign of df /dp | can be positive (which would normally favor growth), the ac-
companying suppression by vﬁ/ 0% < 1 near the ring effectively quenches the instability.
Thus, the O-mode remains damped or weakly amplified in narrow ring distributions, in con-
trast with the X-mode, which exhibits strong growth in this regime.

As with the X-mode, the background distribution fy(t) evolves slowly once the ring has
formed. Therefore, the frequency w and growth rate I' vary adiabatically in time. The WKB
approximation used to derive Egs. (E.30)—(E.31) remains valid as long as |w?| > ||, which is
satisfied in the strongly magnetized, slowly cooling regime considered here.

E.2.4 GROWTH RATE OF ELECTROSTATIC MODES

For electrostatic modes propagating along the magnetic field direction, we consider k = k.2
and E = E,Z, so the only relevant componentis A,, = 0, yielding the scalar dispersion relation:

2
y w
ks —

—ez(t) =0. (E.32)
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We now evaluate the zz component of the dielectric tensor from Eq. (E.9), setting k| = 0
so that b = 0 and only the n = 0 harmonic contributes:

2 2
=1%o (o120 0. )

v w g
2
Ao e ) e

We now take the limit v < v, , appropriate for synchrotron-cooled ring distributions. In
this regime, the parallel velocity is much smaller than the perpendicular velocity, such that
(v:/v,)? < 1. Additionally, the longitudinal momentum p is small compared to p_ , making
the longitudinal pressure correction negligible. Since the distribution is strongly anisotropic,
the derivative dfy(t)/dp: is also subdominant compared to dfy(t)/9dp_, allowing further sim-
plification of the dielectric response.

Using the approximation w — kz% ~ w in the denominator, the leading contribution to €.,
becomes

W, v Afy(t
€(t) =1+ %/ dp <7Z;i afop(L) + O(v2), (E.34)

which vanishes in the limit v, — 0. However, keeping the leading finite contribution that sur-
vives when the distribution is strictly perpendicular (v, = 0), the non-resonant denominator
can be treated as constant, giving

2 19
e(t) ~ 1+ ‘;—”2 /dp (72 ggp) . (E.35)

This expression shows that longitudinal electrostatic waves can become unstable if the
distribution exhibits a positive gradient in perpendicular momentum, such thatdfy(t)/op, >
0, which leads to €., (t) < 0, and thus to an unstable mode.

Both the electrostatic and X-mode instabilities are driven by the same source of free en-
ergy: a positive gradient in perpendicular momentum, of, (f)/dp, > 0, characteristic of
synchrotron-cooled ring distributions. However, their coupling to the plasma differs signif-
icantly. The electrostatic mode, described by the scalar dielectric function €., (t) in Eq. (E.35),
responds to the global integral of this gradient and is non-resonant, with growth suppressed
by relativistic factors 1/2. In contrast, the X-mode couples resonantly through the full form
of €;;(t), as shown in Eq. (E.11), selectively amplifying waves at cyclotron harmonics where the
gradient is steepest. As a result, the X-mode typically exhibits stronger and sharper growth,
making it the dominant channel for instability and coherent emission in this regime.
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APPENDIX F

INTERPLAY BETWEEN THE FIREHOSE AND ELEC-
TRON CYCLOTRON MASER INSTABILITY

As pointed out by V. Zhdankin et al. (2022) [24], synchrotron cooling is inherently anisotropic.
This has also been highlighted in P. ]. Bilbao et al. (2023) [23]. Specifically, particles are pref-
erentially cooled in the direction perpendicular to the magnetic field, leading to anisotropic
momentum distributions. Such distributions are known to be unstable to Weibel and Firehose
instabilities due to their pressure anisotropy.

This becomes particularly relevant when the parallel plasma beta, defined as
87tn <pﬁ >
B = — (E1)

exceeds unity. In this regime, the parallel kinetic pressure dominates over the magnetic pres-
sure. Anisotropic distributions with P| > P, can then drive the Firehose instability, provided
the anisotropy satisfies the threshold condition

2

P =P > f—n, (F2)
or, in terms of momentum moments,
2 2 B
<pH> — <pl> > yp— (E3)

This instability is characterized by perturbations with wavevector k || B, which induce
transverse magnetic fluctuations that “wiggle” the field lines. The growth rate scales with the
strength of the anisotropy and the Alfvén speed, and it saturates by scattering particles along
constant-energy contours, promoting isotropization. This isotropization is key, and occurs
along lines of constant energy, i.e., p7 + pﬁ = const., transferring particles from lower p, to
higher p, , and vice versa for p).

At the same time, as discussed in Ref. [23], the electron cyclotron maser instability (ECMI)
becomes active when wpe/wc, < 1, which is a distinct condition from ﬁH < 1, since 'BH also
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depends on the plasma temperature. The ECMI relies on perpendicular momentum inver-
sion, typically associated with ring distributions, and favors wavevectors k L B, leading to
emission of X-mode radiation.

The Firehose instability and ECMI are both seeded by synchrotron cooling, but they arise
on different timescales in different regions of parameter space, depending primarily on B, n,
and py,. The Firehose instability is triggered when sufficient perpendicular cooling lowers
P, such that P — P, > B2/47. This occurs rapidly, and its onset time can be estimated
analytically from [24] as

5C -1
o 12“ (930 or g c) ) (F4)

where 0,0 = kpT/m,c? is the initial dimensionless temperature. Expressing this in terms of
thermal momentum py, = 6,0 m.c, we find the scaling

1

FH

T, 15s| ~ F.5
onset (13 (Pih [100 m10c])? 1 [106 cm—3] (£9)

Notably, this timescale does not depend on the magnetic field strength: stronger B fields in-
crease the synchrotron cooling rate but also stabilize the instability, and these effects cancel out
in the threshold condition.

In contrast, the onset of the ECMI requires the development of a perpendicular population
inversion, which occurs on a longer cooling scale. As estimated by Eq. (3.3), the ECMI onset
time is

2
M [12 x 107* ys} o~ (B [MG] 1 [10° cm 3] pg, [100 mgc]> (E6)
Comparing both timescales gives the ratio

ECMI

- 1/2
S~ 4% 107 (Bo [1] B [MG] pry [100mec] "2, (E7)
onset

where By is the initial plasma beta. This scaling shows that, for fixed B, increasing either B or
Pih reduces the Firehose onset time relative to the maser. This occurs because increasing B or
pwn at fixed B implies a larger density n, which shortens the firehose timescale while leaving
the maser onset time relatively unaffected. This expression demonstrates the importance of
the different parameters to determine what instability will occur first.

This separation of thresholds opens the possibility of a regime where both instabilities co-
exist: a hot plasma with strong pressure anisotropy (high ) and low density-to-field ratio
(small wpe/wee). In this work, we explore this joint regime using 2D3V particle-in-cell simu-
lations of a relativistic pair plasma, initially isotropic, with thermal momentum py, = 100 m.c
and parameters set such that wy, = 1w, corresponding to f = 100.

To explore this, we performed two-dimensional, three-velocity (2D3V) particle-in-cell sim-
ulations of an initially isotropic, relativistic electron-positron plasma with a Maxwellian distri-
bution characterized by py, = 100 m.c. The background magnetic field is oriented along the x;
direction, and the plasma parameters are set such that wy, = 0.2 we,, yielding an initial plasma
beta of § = 4.
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FIGURE F.1: Particle-in-cell simulations demonstrate the onset of the Firehose instability in a pair plasma,
as indicated by the emergence of perpendicular magnetic-field fluctuations with k along the guide field.

We normalize the simulation such that B = 10* G, which implies a ratio nggy/ nget ~
0.4. This places the system in a regime where both instabilities become comparable in timescale

and can potentially interplay dynamically.

As shown in Fig. F1, the simulation clearly demonstrates the onset of the synchrotron-
driven Firehose instability. This is evidenced by the growth of magnetic field fluctuations in
the out-of-plane component B3, with a characteristic wavevector aligned along the magnetic
field.

Following the development of the Firehose instability, the distribution function undergoes
significant deformation. Allowing the plasma to continue cooling radiatively after the onset
of the instability reveals that the distribution does not relax into a simple ring. Instead, two
distinct rings form. This bifurcation results from the saturation of the Firehose instability un-
der continuous radiative cooling. The instability works to isotropize the plasma by scattering
particles along resonant momentum-space paths of constant -y, effectively redistributing them
from high p|, low p, to lower p|, higher p, values. This behavior is reminiscent of adiabatic
motion in magnetic mirrors, where the magnetic moment is conserved, although here it is not
stricly conserved due to radiative losses. Synchrotron losses, which remain stronger in the
perpendicular direction, then cause particles to accumulate at an intermediate angle, approx-
imately ~ 45°, where perpendicular and parallel pressures are critically balanced, reaching
saturation and no further growth of the firehose instability.

This emergent double-ring structure is still unstable to the electron cyclotron maser insta-
bility, as it exhibits regions with 0f/dp; > 0. Once the Firehose instability saturates, these
rings generate coherent emission. Importantly, because the rings are tilted, the wave vec-
tor associated with the emitted radiation is no longer purely perpendicular to the magnetic
field. Instead, Doppler-shifted emission appears at a characteristic angle of approximately
45°, as confirmed by a Fourier analysis of the out-of-plane electric field component E3 shown
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FIGURE F.2: The distribution function evolves into a double-ring structure, where the peak density oc-
curs at ~ 45°. Left: f integrated along the magnetic field. Right: f integrated along the out-of-plane
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FIGURE F.3: Spectral analysis (FFT) of the out-of-plane electric field E;5 demonstrates coherent maser
emission and its harmonics emitted at ~ 45°, following the saturation of the Firehose instability.
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in Fig. F.3.

At this oblique angle, the emitted waves are elliptically polarized. The modes no longer
correspond to the canonical X-mode, which are strictly defined for perpendicular propagation
[176]. Instead, they arise from the oblique branches of the plasma dispersion relation, which
smoothly interpolate between the linear polarization of perpendicular modes and the circu-
lar polarization of parallel ones. This elliptical character reflects both the oblique emission
geometry and the plasma’s mixed-mode response at intermediate angles [169].

These results suggest a non-trivial interplay between the Firehose instability and the ECMI
in relativistically hot, radiatively cooled pair plasmas. Synchrotron cooling not only drives the
pressure anisotropy that seeds the Firehose instability but also shapes the final distribution
function into configurations favorable for coherent maser emission.



164 Appendix E Interplay between the Firehose and Electron Cyclotron Maser Instability




APPENDIX G

BETATRON COOLING IN THE ION-CHANEL

G.1 KRYLOV-BOGOLIUBOV AVERAGED SOLUTION TO BETA-
TRON COOLING

In order to solve the non-linear differential Eq. (4.8), describing the dynamics of an electron
undergoing betatron cooling,

dzAT’L
dt?

lamewgoﬂ\ dAr |
6  ecEg. dt

= —w%ArL — Ari, (G.1)

where wg = wp/ /27 is the betatron frequency. The general (and still exact) solution to the

transverse displacement equation with radiation reaction is
Ar (t) = A(t)sin (wpt + ¢o(t)), (G.2)

where A(t) and ¢o(t) vary with time. While obtaining the exact forms of A(t) and ¢o(f) is
generally not feasible, the Krylov—-Bogoliubov (KB) averaging method can be employed when
the radiative cooling rate is smaller than the betatron frequency [204]. Here we outline how
this method is derived (Following Ref. [204]) and applied to this differential equation.

This method can be employed to solve differential equations of the form

d? d

C3rig=atef (g,dét’), G3)
assuming that f is a smooth function and that k >> € [204]. The exact solution for ¢ = 0 is

g(t) = k”—z + Asin (kt + B), (G.4)

where A and B are chosen based on the initial conditions. When ¢ # 0, the solution is assumed
to take the same form, but with slowly varying amplitude and phase, A — A(t) and B — B(t).
It is further assumed that

Z—‘(’Z ~ kA cos (kt + B), (G.5)
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neglecting terms of order O ().
We now substitute the ansatz into the original equation and collect the O(¢) residual:
d2g+k2g—a—£f( + Asing, kAcos4>) (G.6)
dt? ‘

where we define ¢ = kt + B(t). This residual includes contributions from the time derivatives
of A(t) and B(t). To extract evolution equations for these variables, we project the residual
onto the basis functions cos ¢ and sin ¢ and average over one period:

A= % <f (k2 + Asing, kA coscp) Cosq>> (G.7)
<f (k2 + Asing, kA cosgb) smgb> (G.8)

where the angle brackets denote averaging over ¢ € [0,27].

Equivalently, one can define the slowly varying components A (t) and By(t) as the aver-
ages over the fast oscillatory timescale. Their evolution equations take the form

dA 27
dto 27rk/ kz + Agsinb, kAo cos 9) cos 6 do,
(G.9)
dB
dT0 - _ZnIiA f (ki + Agsin 6, kAo cos 9) sin0do,
0

which correspond to the Krylov-Bogoliubov averaged dynamics of the amplitude and phase.

Applying the Krylov-Bogoliubov averaging method to Eq. (G.1), we identify the perturba-

tion function as .
dg\ = lamew,y dg ,
f <g' dt> T 76 ecEs dt® (G.10)

with k = wg = wpc/+/27 and a = 0. Substituting into the averaged evolution equations, we
obtain
4
. 1 1 amew t
Alt) = —— 1 amewpcy (t)
27tk 6  ecEs.

1 amew pc'Y()
= —%/ A3 sin? 6 cos? 6 d6

(kA cos8)(Asin8)?| cos 6 do

1 amecwpey(t) o
"B et A (G.11)

and

. 2n 1am€wpc’)/(> . 2 .
P(t) = — anA/ [ W(kAcosG)(AsmG) sin 6 do

Zeawpc'y(t)
—M/ AZsin 0.cos 0 d6 — 0. (G.12)

The vanishing of the phase evolution ¢ = 0 reflects the symmetric structure of the cooling
term and the absence of any resonant frequency shift at this order.
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G.2 SOLUTION TO EQ. (4.14) VIA THE METHOD OF CHARAC-
TERISTICS

We consider the evolution of the distribution function under the Vlasov equation:

f 19 {AdA(t) ]er,;af_o

o A dt Aoy (©19)

ot = AJA
where A is the betatron amplitude and ¢ is the betatron phase. The solution to Eq. (G.13) can
be obtained via the method of characteristics.

To proceed, we introduce a normalized cooling time T = At, where

T ame 4
A=— , G.14
2 ESCCE(UPO’YH ( )

This separates the slow cooling timescale from the fast betatron oscillations. As a result, the
characteristic equations involve derivatives with respect to different time variables: the cool-
ing is governed by 7, while the phase evolves on the faster timescale t. The full set of charac-
teristic equations reads:

A~ A3
P (G.15)
¢ _ _ g
r__P N
T e (G.16)
df 2
= =2Af. 17
= 24% (G17)
The amplitude equation integrates to
A(r) = Do (G.18)
/14 Al
where Ay is the initial amplitude at T = 0. Inverting this relation gives
A
Ay = —, G.19
0= e (G.19)

which defines the domain of validity T < A~2 for real-valued trajectories.
We next solve for the phase ¢ by integrating the characteristic equation d¢ /dt = —wg/ A(t)

with A(t) = Ag/y/1+ A2t. Solving with initial condition ¢(0) = ¢y, and inverting to express
¢o in terms of ¢(¢), A, and f, we obtain

(1— A2%t/7)3/2

(PO: 3A3

3A3¢p — 2Awg + 2Aw 1+A72t o (G.20)
¢ P P A(1 = A2t/A) ' ‘

valid within the domain ¢ < A/ AZ2. This expression captures how amplitude-dependent cool-
ing distorts phase evolution.
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In the adiabatic limit where A >> 1, corresponding to slow cooling compared to the betatron
period, the phase evolution simplifies to

wﬂt
¢(t) = g0+ — (G.21)
which highlights that phase advances inversely with amplitude.

We now solve for the distribution function f (A, ¢, t) along characteristics. Using Eq. (G.17)
and the solution for A(T), we integrate

af _ 42
=247, (G.22)
which yields
Ao,
f(A 1) = (flo E ;24:)))2, (G.23)

where we used Ag = A/V'1— AT to express the solution in terms of final amplitude A and
time ¢t.

Substituting Ap and ¢p in terms of A, ¢, and ¢, and using the adiabatic expression for ¢,
the full solution becomes

fo 7%%17—%
f(A ¢, t) = ( (11‘ - TAZT)Z z ) (G.24)

This expression describes the evolution of the distribution function under amplitude-dependent
radiative cooling, including both phase-space compression and phase mixing.

G.3 COHERENT CONDITIONS FOR ICL

For the coherent, or near coherent amplification of radiation via FEL or ICL processes, the
beam necessitates that the so-called wiggler parameter K has a small and same for energy
spread [126]

Ay 2
— < = 2
o <3P (G.25)
and 5
AK 24K
® < P (&.26)

where 7 is the Lorentz factor of the electrons, p is the so-called pierce parameter [164, 189]

_ l12(2+1<2)2 DJ]Z]U3 (G27)

Ia (4+K2)%y

where I is the beam current, [ is the Alfvén current, and

K2 K2
=1 (g35) =1 (1322 G28)
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221712
where J,(x) is the nth order Bessel function. It can be shown that %

between 1/2 and 0.9699393. The most stringent Pierce parameter corresponds to the small K
limit, and simplifies to

is bounded

1117Y3
P = [ZIA’Y] . (G.29)

Thus, a sufficient energy spread condition can be expressed as Ay/y < 2p/3 =2[I/(2147)] 173 /3.

2o 1/3
In a similar manner, 2;}(122 <2(2(:le)[2” ] > is bounded between o and 0.494846 ~ 1/2.

Thus, the sufficient condition the wiggler spread parameter must fulfill is

AK 11113 _
L LA’J _ o =223, (G30)

The wiggler parameter corresponds to the radial amplitude in phase-space, what we have
described as A. Therefore, Eq. 4.15, can be employed to obtain K average, and AK.

K= / AZF(A, 1) 27tdA, (G31)
0
and AK defined as the standard deviation
AK? = / (A—K)?f(A 1) 2nAdA (G.32)
0

For a gaussian beam, that is emittance matched fy(A) = e~ A/ (201) 27102, where 0 is the

amplitude of oscillation, and f such that it is symmetric in phase ¢. We can obtain

K ﬁu<lo ! ) (G.33)

T2y \2 203 T

where U(a,b,c) = T(a)~! fooo A= 1e=¢A (1 4- A)P=9714A is the confluent hypergeometric func-
tion of the second kind, and I'(x) is the complete gamma function [251]. Notably,

1 1 2
I 20, — | = = 34
Tgrolou (2’0’ 20i7> NZ (G34)

and therefore, as t — oo K — 7~1/2. This is expected as the distribution as discussed in the
main text the whole phase-space volume is constricted into a region.

Then AK
2 2
1 1 1 20y T 1
AK= == U (5,0—5] - 55T (05—, (G.35)
T A4t 2 209 T 209 T 209 T
where T'(a, b) = fboo t1=1e=tdt is the incomplete gamma function. It can easily be shown that
AK/K — 0 as t increases for any fixed ¢, . Which demonstrates that the wiggler conditions

are eventually fulfilled in a finite time, and beams undergoing betatron cooling develop the
conditions for coherent amplification of betatron radiation.
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The exact form of AK/K is cumbersome to obtain the time at which the wiggler condition
is fulfilled. Therefore, we approximate K = r,(7) as the radius in phase-space defined in
Eq. (4.16) and AK = 2(t~1/2 — r,(1)), this slightly overestimates AK/K. Therefore the critical
time for the wiggler condition to be fulfilled is

2+ "2
S CL.0 (G36)
4o'(4+p')0]
Finally, the gain length of the radiation power
2(2+K?
Lep = 2+K) « (G.37)

(4+K2)V/3p wp

must be shorter than the skin-depth of the beam k;bl to avoid damping of the radiation [126,
252]. This yields the following condition
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FIREBALL BEAM PROPERTIES

H.1 BEAM MOMENTUM DISTRIBUTIONS

The momentum distributions of the electron-positron beams were obtained from FLUKA sim-
ulations of the converter-target generation process. These distributions are modeled as sepa-
rable in longitudinal and transverse momentum components:

f(pzpr) = fi(p=) fL(po | p2), (H.1)

where the longitudinal distribution f (p:) is described by a broken power-law and the trans-
verse distribution f, (p, | p-) is modeled as a Gaussian with a p.-dependent width.

H.1.1 ELECTRON DISTRIBUTION

The longitudinal momentum distribution of the electrons is fitted by a three-segment power
law:
_ kq ko—kq ks —ko
fiLe(Pz) = Ay e 2" (P2 + P12)2 (P2 + p23)" 2, (H.2)

with best-fit parameters:
kl = —1.6, kz =0., k3 = -22, P12 = 0.012 GeV/c, P23 = 0.25 GeV/c,

and normalization constant A, chosen such that Ik file(pz) dpz = 1 over the range p. €
0.01,10] GeV /c.
The transverse distribution is modeled as a Gaussian:
_ il
filpilpz) = AL(p:z) exp <_2p$h(pz)> : (H.3)
with py,(pz) = A6 p; and best-fit angular spread A0 = 0.025. The normalization A (p;) =
(27 p,) ™" ensures [ fi (py | pz)27tpodpy =1.

The full electron distribution is thus:

fe(pzpL) = fle(pz) fL(pL | p2), (H.4)
normalized so that [[ fo(pz,py)27p, dp, dp, = 1.
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H.1.2 POSITRON DISTRIBUTION

The positron longitudinal distribution is best described by a two-segment power law:

k —
fip(pz) = Ay, pzt (p= + pro)e M, (H.5)
with parameters:
k1 =017, ky=-22, pi1o=017GeV/c,

and A , chosen so that ff”,p(pz) dp; = 1 over the same range.

The transverse distribution is assumed to follow the same Gaussian form as for the elec-
trons:

2
filprlpe) = eXP( s ) pin(pz) = A6 p-.

2m P%h 2 P%h

The full positron distribution is then:

fo(pzp1) = flp(pz) fL(pL | p2), (H.6)

with full normalization as above.

H.2 INITIALIZATION SCHEME

To initialize the beam momentum distribution in the simulation, we adopted an inverse trans-
form sampling approach tailored to the longitudinal momentum distribution f(p)). First, we
obtained an analytical fit to this distribution based on the output of the FLUKA simulations,
providing a smooth and tractable representation of f(p) ) suitable for numerical integration.

Before the start of the simulation, we computed the cumulative distribution function (CDF)
by numerically integrating f(p|) over a finely discretized grid using a small step size dp||. We
then constructed an inverse mapping from the unit interval [0, 1] to p| by recording the values
of P each time the cumulative integral crossed fractional thresholds i/n fori = 1,2,..,n —1,
where 7 is the number of desired bins. This yielded a monotonic array of CDF values and their
corresponding p values.

To assign momenta to particles, we drew random numbers r € [0,1] and used linear in-
terpolation between neighboring stored values in the CDF to compute the corresponding p).
This allowed us to sample from the continuous distribution with high fidelity, avoiding dis-
cretization artifacts and ensuring that the initialized particle ensemble closely follows the tar-
get distribution. Then a random angle is sampled to account for the effects of divergence and
the full momentum is initialized. The results of this methods are seen in Fig. H.1. Importantly,
this sampling method allows to efficiently sample distribution functions with very large value
differences, such as in this case power-law distributions, where a sampling-rejection method
would necessitate many more samples to initialize such distrbution. This scheme guarantees
a single sample per particle to be initialized and still accuretaly describes power-law distirbu-
tions and their region with low probabilities.
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FIGURE H.1: Initial conditions of the electron-positron distribution in the OSIRIS PIC simulations com-
pared against the FLUKA obtained distributions.

Interestingly, we found no significant qualitative difference in 2D3V simulations employ-
ing this initialization method vs the use of a Maxwell-Jtittner distribution Lorentz boosted with
the correct Lorentz factor such that the beam has the correct perpendicular pressure and the
correct emmittance. As the exact finer details of the distribution shape are not that important
as long as the key quantities that characterise the beam are equivalent.

H.3 SEED MAGNETIC FIELD DUE TO CHARGE IMBALANCE

We calculate the initial seed field from which the current filamentation instability (CFI) can
grow, based on the initial conditions of the proton and electron-positron beams. Since the
beam is not fully charge neutral, it provides an initial modulation that can seed the instability.

The current density J(r) is given by the sum of the species profiles:

J(r) = cop+(r) + cpe+(r) = coe—(r)- (H.7)

From FLUKA simulations, we know the profiles follow Cauchy distributions. However, for
simplicity, we approximate them with Gaussian profiles, which makes the calculation analyti-
cally tractable and does not significantly affect the result.

From Ampere’s law, the azimuthal magnetic field is

2 2

12 (Me— — 1ey) (ezr? - 1) +r5np (1 —e 2’%’)

By(r) = uoc ,
o(r) = o oy

where 7, = 22mm and r, = 1.0mm are the beam widths for the pair and proton beams,

(H.8)

respectively. The peak densities are 1, = 6.04 x 10! em~3, n,y = 4.71 x 10! cm~3, and
ny ~ 3 X 10" em 3.

To obtain the spectrum of this seed field, we take the Fourier transform of Eq. (H.8):

By (k) = %i [rf(ng — e ) (erf <r\;§> — 1> - rf,np (erf (%) + 1)} , (H.9)

where erf(x) is the error function. The result is purely imaginary since By (r) is an odd function
of r.
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FIGURE H.2: Radial structure of the seed magnetic field calculated using experimental beam parameters.
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FIGURE H.3: Fourier spectrum of the seed field as a function of wavelength A. The seed peaks around
A ~ 2-3 mm, consistent with the beam size.

In real units, the azimuthal magnetic field becomes:

2

2
By(r) = —10.2mTr7e <1 —e2r3> +7.22mTr7p (1 —e 2’%> . (H.10)

In Fourier space, the field amplitude is:

Bi(k) = [14.53 (erf (%) - 1) —~128 (erf (%) + 1)] mmmT. (H.11)

The imaginary part, corresponding to the phase, is dropped here as we are only interested in
the amplitude spectrum.

The seed field spectrum can be compared to the growth rate of the instability to determine
which modes are amplified. As expected, modes with wavelengths longer than the beam
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FIGURE H.4: Growth rate of the current filamentation instability for collimated and divergent beams.
The collimated case shows a higher growth rate.

width are not supported. The seed peaks near 2-3 mm, within the size of the beam. For the
collimated case, filaments are spaced by approximately 4 mm, about twice the magnetic field
modulation wavelength, which is consistent.
The growth rate is approximately 1 ns~! for the perfectly collimated case, in good agree-
ment with simulations. For the divergent beam, the growth rate is reduced to about 0.5 ns .
To excite modes with longer wavelengths, the beam width must be increased to allow for

larger-scale modes, and the proton beam should be broader to imprint seed fields at those
scales.

H.4 PI1TCH-ANGLE EVOLUTION EQUATION (EQ. (5.6))

We work in the guiding-center, collisionless limit where the field varies slowly compared to
the gyro-motion, so the first adiabatic invariant is conserved. Assuming negligible parallel
electric field and radiative losses, the energy is constant, ¢ = 0, and the first invariant is

2
U= ZIZ'L)/ 5= const. (H.12)
Here p = ymuv is the relativistic momentum, B = B(z), and v = %

Differentiate y along the trajectory:

) 2
_df Pl \_ pidp  pl dB (H.13)
dt \ 2m~yB myB dt  2myB? dt
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which gives
ddp, 1B

it T aBdr (H.14)

With constant y the magnitude p = ,/p% + pﬁ is constant, so write p; = psinf and
p| = pcost withtan® = p, /p|. Then

dpL o do
T pcost e (H.15)

Insert this into (H.14) and use dB/dt = 4l dB/dz = %‘;—f:

d0 _ psind cpy dB

pcosf i~ 2B om iz (H.16)
Cancel p and use p|| = p cos 6 to obtain
de . cp 1dB
i sin @ 2’77 B (H.17)
Finally, with p/(mc) = /7% — 1/,
V7P —-1 ¢ dB(z)
i sin 6 5 2B(z) dz (H.18)

which is Eq. (5.6) with the explicit CGS factor c. This result uses only ¥ = 0, i = 0, and

guiding-center motion along z with v = %
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