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Resumo

A prevalência de anemia na população mundial é de 24.8%. A discriminação adequada entre ane-

mias microcı́ticas é fundamental para fornecer o tratamento adequado e providenciar aconselhamento

genético.

Uma vez que os métodos mais fidedignos para diagnosticar talassemias e anemia ferropénica (AF),

algumas das anemias microcı́ticas mais comuns, são caros e demorados, vários ı́ndices foram desen-

volvidos ao longo dos anos. Contudo, esses ı́ndices revelaram não ser 100% fiáveis.

Nesta tese foram utilizados dados hematológicos de uma amostra da população portuguesa con-

stituı́da por 390 indivı́duos e respetivo diagnóstico para treinar e testar diferentes algoritmos de apren-

dizagem automática. O propósito foi desenvolver um classificador binário, especificamente adaptado

à população portuguesa, a fim de discriminar entre portadores de β-talassemia e doentes com AF.

Para além disso, foi desenvolvido um classificador multi-classe capaz de distinguir entre portadores de

β-talassemia, portadores de α-talassemia, doentes com AF e indivı́duos saudáveis. De forma a não

comprometer o objetivo principal, a obtenção dum diagnóstico rápido e acessı́vel, os classificadores

desenvolvidos foram baseados apenas em informações obtidas através de um hemograma, um dos

exames laboratoriais mais comuns em medicina.

Embora não tenha sido possı́vel ultrapassar o desempenho com os classificadores binários criados

do ı́ndice mais fiável para a população portuguesa, RDWI (ı́ndice de distribuição de largura dos glóbulos

vermelhos), que apresentou uma exatidão mediana de 95.4%, foi possı́vel igualar esta exatidão com o

algoritmo florestas aleatórias. Este algoritmo apresentou um ótimo desempenho tanto na classificação

binária, como na classificação multi-classe, onde obteve resultados promissores revelando uma ex-

atidão mediana de 93.0%.

Palavras-chave: anemia microcı́tica, talassemia, anemia ferropénica, classificação, apren-

dizagem automática.
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Abstract

The prevalence of anaemia in the world population is 24.8%. Proper discrimination between micro-

cytic anaemias is essential to provide the right treatment and genetic counselling.

As the most reliable methods to diagnose thalassemias and IDA (iron deficiency anaemia), some of

the most common microcytic anaemias are expensive and time-consuming, many indexes have been

developed through the years. These indexes, however, have not been revealed to be 100% accurate.

In this thesis, haematological data from a sample of the Portuguese population constituted by 390

individuals and their diagnosis was used to train and test different machine learning algorithms. The

objective was to develop a binary classifier, specifically adapted to the Portuguese population, to dis-

criminate β-thalassemia carriers from IDA patients. Beyond that, a multi-class classifier capable of dis-

tinguishing between β-thalassemia carriers, α-thalassemia carriers, IDA patients, and healthy subjects

was also developed. In order not to compromise the main objective, to obtain a quick and accessible

diagnosis, the classifiers developed were only based on information obtained through a complete blood

count test, one of the most common laboratory tests in medicine.

Although it was not possible to surpass the performance with the binary classifiers created of the

most reliable index for the Portuguese population, RDWI (red cell distribution width index), which pre-

sented a median accuracy of 95.4%, it was possible to match it with the random forest algorithm. This

algorithm showed an excellent performance in the binary and in the multi-class classification, where it

achieved promising results, revelling a median accuracy of 93.0%.

Keywords: microcytic aneamia, thalassemia, iron deficiency anaemia, classification, machine

learning.
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Chapter 1

Introduction

1.1 Motivation

According to the World Health Organization (WHO [1]) anaemias are highly prevalent diseases world-

wide. Aneamias can be divided in three major classes: macrocytic, normocytic, and microcytic. The

microcytic anaemias are a group of anaemias characterized by a low mean corpuscular volume. Some

of the most common are the thalassemias and the IDA (iron deficiency anaemia) [2]. Hence, it becomes

relevant to develop fast, trustful, and cost-effective methods that can access the correct diagnosis of this

diseases, in order to provide the right treatment.

To reduce the cost of the diagnosis, several indexes have been developed to distinguish between

these different types of anaemias, as it would be especially advantageous in countries with less financial

resources and more limited healthcare systems. These indexes however, are not totally accurate and

have presented different performances when tested in populations from different countries [3–5], sug-

gesting that they are not making a good generalization across all populations. Therefore, it is important

to continue the study of this field of research in order to develop even better indexes able to make an

accurate diagnosis for specific target populations.

To develop new classifiers this thesis makes use of machine learning. Machine learning is a subset

of artificial intelligence, its algorithms are very useful tools for pattern recognition. Resorting to statistics

and optimization, these algorithms are able to learn from the data provided and construct models which

are capable of making predictions [6].

In respect to anaemia, multiple studies have used machine learning algorithms to create classifiers

able to distinguish between anaemic and non-anaemic subjects [7–10] and even between IDA patients

and thalassemia carriers [11]. These classifiers were developed using hematological data from individ-

uals whom the diagnosis was known. This collection of data was used to train the algorithms, so that

afterwards it was possible to make predictions about new subjects, which has led to accurate results

and, therefore, to good generalization capacity of the estimated models. Nevertheless, even though few

studies tried to distinguish between β-thalassemia carriers and IDA patients, like the known indexes do,

none used data from the Portuguese population.
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1.2 Objectives and Contributions

This project intended to develop a new binary microcytic anaemia classifier to discriminate between

β-thalassemia carriers and IDA patients with a better performance on the Portuguese population than

the existing indexes and go a step further, with the creation of a multi-class classifier capable of dis-

criminating between β-thalassemia carriers, α-thalassemia carriers, IDA patients, and healthy subjects

(control group). In order not to compromise the main objective of creating these classifiers, which is to

obtain a quick and accessible diagnosis, the classifiers developed in this thesis are only based on hema-

tological data from the Portuguese population obtained through a CBC (complete blood count) test, one

of the most common laboratory tests in medicine.

Under this context, it was necessary to evaluate the performance of the indexes that already exist

with the hematological data and the subject’s diagnosis confirmed by molecular analysis that were made

available. In addition, in order to exemplify and gain expertise, the molecular diagnosis of β-thalassemia

and α-thalassemia was also performed, from the DNA sample to the final diagnosis.

After that, several machine learning algorithms were trained and tested with the hematological data

and the molecular diagnosis of multiple individuals. To improve the accuracy of the models generated

by the algorithms, a genetic algorithm was employed to select new features created from existing ones,

and a hyperparameter optimization was done so that the learning process could be as successful as

possible.

Besides the machine learning algorithms, with the purpose of obtaining a classifier with the best

performance possible, other artificial intelligence technique, genetic programming, was employed to

generate binary and multi-class classifiers.

That being so, with this thesis it was possible evaluate several indexes and conclude that the index

that has a better performance on the Portuguese population is the RDWI, this index achieved a median

accuracy of 95.4%. Furthermore, multiple machine learning algorithms were tested for the first time

with Portuguese hematological data and even though was not possible to surpass the performance of

the RDWI index with the created binary classifiers, it was possible to match it with the random forest

algorithm. Among all the algorithms the random forest presented the best performance not only in the

binary classification but also in the multi-class classification, where it achieved promising results revelling

a median accuracy of 93.0%.

In addition, it was possible to develop a semi-automatic model able to identify instances that present

features different from what would be expected according to the attributed disease and, therefore, may

require a second analysis.

This thesis involved both a laboratory and a computational part. The laboratory methods were per-

formed at ”Grupo de I&D em Hemoglobinopatias, Metabolismo do Ferro e Patologias Associadas” of

Human Genetics Department of National Institute of Health Doctor Ricardo Jorge (INSA), and the code

(Python) written in this thesis is all open source and is freely available on my GitHub repository [12].
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1.3 Thesis Outline

Including this introductory chapter, Chapter 1, this thesis is divided into 5 chapters.

In Chapter 2, the theoretical background of this thesis is explained in detail. It starts by characterizing

the different microcytic anaemia diseases, followed by their genetic basis and clinical manifestations,

plus an explanation of the current process of diagnosis.

Subsequently, the machine learning artificial intelligence technique is explained, as well as some of

its best-known algorithms, and how to optimize the learning process. After that, another artificial intel-

ligence technique, evolutionary algorithms, is explained along with some of its types, genetic algorithm

and genetic programming. Following the artificial intelligence techniques are their evaluation metrics,

used to evaluate the performance of the models generated.

Later on, is the state of the art of the anaemia classifiers introducing some of the best-known indexes

that discriminate between β-thalassemia carriers and IDA patients, and examples of the application of

machine learning algorithms in the classification of anaemia.

Chapter 3, explains all the techniques that were implemented in this thesis, along with a description

of the data used. Right after, comes the results chapter, Chapter 4, containing all the results obtained

throughout this thesis.

Finally, the last chapter, Chapter 5, contains the conclusions that were possible to draw from the

results obtained, as well as future perspectives to continue the work developed here.
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Chapter 2

Theoretical Background

2.1 Microcytic Anaemia

Anaemia is a condition characterized by a decrease of red blood cell mass and low level of hemoglobin,

having as principal consequence a diminished oxygen carrying capacity of the blood [13]. The main

symptoms are therefore related with lack of oxygen, such as fatigue and shortness of breath [14].

According to the World Health Organization [1] anaemia was estimated to affect 24.8% of the global

population, having a bigger prevalence in low income countries, as depicted in Figure 2.1.

Figure 2.1: Prevalance of anaemia in the world (preschool-age children), adapted from WHO [1].

Regarding Portugal, two different studies assessed the prevalence of anaemia obtaining very dif-

ferent results. The first study indicated an anaemia prevalence of 19.9% [15], detecting that subjects

with ages between 18 and 34 years old and older adults (≥65) had the highest prevalence of anaemia.

The most recent study only included subjects with ages between 25 and 74 years old and revelled a

prevalence of only 5.8% [16]. Since the two studies do not cover the same age groups, the preva-
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lence of anaemia in Portugal is debatable. On one hand, the most recent study does not include some

of the most at-risk ages, such as young adults with ages between 18 and 24 years old, on the other

hand 19.9% seems to be a very high value for a European country, leaving some uncertainty as to the

prevalence of anaemia in Portugal.

As the name itself suggests, in the microcytic anaemias the red blood cells are smaller than the

usual. This occurs because of the decreased production of a major constituent of the red blood cells,

hemoglobin [2].

Inside the microcytic anaemias there are multiple variants, some of the most common are the tha-

lassemias and IDA (iron deficiency anaemia) [2], as illustrated in Figure 2.2.

Figure 2.2: Microcytic disorders. In the case of IDA, the lack of hemoglobin arises from the shortage of
iron; in thalassemias it results from the defective hemoglobin production, adapted from DeLoughery [2].

IDA is the most common cause of anaemia. In this condition, anaemia is associated with low levels of

iron. Iron is needed for the hemoglobin synthesis in erythropoiesis and essential for the oxygen transport

by the red blood cells [17].

Thalassemias are hemoglobinopathies autosomal recessive disorders [18]. The thalassemias, β-

thalassemia and α-thalassemia are associated with a defect in the synthesis of two globin chains,

β-globin and α-globin, respectively. These proteins form, in equal quantities, hemoglobin A, which

represents about 97.0% of the total red blood cell hemoglobin of a human adult [19]. Most of the re-

maining hemoglobin present in the red blood cells is hemoglobin A2, representing about 2.0% of the total

hemoglobin. Hemoglobin A2 differs from the hemoglobin A, being composed of two α-globin chains and

two δ-globin chains [14].
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Epidemiology

In the most developed countries, IDA arises mainly from eating habits (such as vegetarian diet or no

read meat intake), and pathologic conditions (chronic blood loss or malabsorption). In the developing

countries it typically results from insufficient dietary intake and/or loss of blood [17]. In that sense it is

crucial to find the cause, since there are no natural mechanisms, other than menstruation, for ridding

the body of iron [2].

While the β-thalassemia is more concentrated in the Mediterranean and Asia, the α-thalassemia

is more frequent in Africa, Oceania, and India. Other hemoglobinopathies have their highest preva-

lence in Africa, Saudi Arabia, India, and south-east Asia [20]. These mentioned regions are associated

with high prevalence of endemic malaria, which can be explained by the fact that hemoglobinopathies

trait are thought to provide protection against this infectious disease. In malaria regions natural selec-

tion can even be responsible for maintaining higher frequencies of the genes causing those patholo-

gies. However, the distribution of hemoglobinopathies does not always coincide with the presence of

malaria, as the case of the Pacific region, where there is no malaria, albeit those exceptions can be

explained by genetic drift [20]. Hence, the presence of β-thalassemia in Northern Europe, America,

Caribbean, and Australia can be explained by population migration and intermarriage between different

ethnic groups [21].

Despite the epidemical and clinical studies that propose protection against malaria in the presence

of hemoglobinopathies trait, the mechanism underlying it is still unknown. The only consensus is that

there may exists an enhanced phagocytosis of the red blood cells infected with malaria [22].

More recently a study with the Italian population has also suggested a potential association between

SARSCoV-2 immunity and β-thalassaemic heterozygote population [23].

Genetic Basis and Clinical Manifestations

In the case of β-thalassemia the severity of the disease is directly related to the pathogenicity of

the β-globin gene mutation and the degree of excess of the α-globin chain, which will precipitate in

the red blood cell precursors, leading to ineffective erythropoiesis [24]. Given that there is one copy

of the β-globin chain gene in each chromosome 11, subjects can either be heterozygous or homozy-

gous [2]. Besides, these mutations can either partially or completely eliminate the synthesis of the

β-globin chain, being classified as β+ and β0, respectively [25]. As a result, there are three main forms

of β-thalassemia [2, 24]:

• thalassemia major, a transfusion-dependent anaemia, subjects are homozygotes or compound

heterozygotes for β0 or β+ genes;

• thalassemia intermedia, subjects are mostly homozygotes or compound heterozygote (β+/β+ or

β0/β+), still have residual β-chain synthesis, causing mild to moderate microcytic hypochromic (in

which the red blood cells are paler than normal) anaemia;
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• thalassemia minor, the β-thalassemia carrier state, where subjects are mostly heterozygotes (β+/β

or β0/β), leading to microcytosis and hypochromia, and mild or no anaemia.

Regarding α-thalassemia, there are two equal genes encoding the α-globin chain in each chromo-

some 16 and, for that reason, there are four types of α-thalassemias, two carrier states (trait 1 and 2)

and two clinically relevant forms (hemoglobin H and Bart diseases) [2, 26–28]:

• trait 1, defect in only one α-globin gene (−α/αα), cause no or very mild microcytic hypochromic

anaemia;

• trait 2, defect in two α-globin genes in one allele (−− /αα) or in one per allele (−α/− α), causing

mild or severe microcytic hypochromic anaemia;

• hemoglobin H disease, deletion or mutation in three α-globin genes (− − / − α), which may lead

to moderately severe microcytic hypochromic anaemia;

• hemoglobin Barts, complete absence of α-globin production (−−/−−), causing severe intrauterine

anaemia resulting in hydrops fetalis which is lethal in utero or soon after birth.

The distinction between IDA and thalassemias is fundamental in order to prevent iron therapy in

individuals with thalassemia trait, which could lead to iron overload, and also to provide genetic coun-

selling to thalassemia carriers and their families, and to evaluate the need for prenatal diagnosis of

thalassemia [29].

2.1.1 Diagnosis

Anaemia diagnosis is characterized by a hemoglobin concentration < 13 g/dL for men and < 12

g/dL for non-pregnant women [1]. Once diagnosed, it is classified into categories based on the mean

corpuscular volume (MCV) of the red blood cells as: microcytic (MCV, < 80 fL), normocytic (MCV, 80 −

100 fL), or macrocytic (MCV, > 100 fL) [19].

To get information about the MCV a complete blood count (CBC) test, one of the most common

laboratory tests in medicine, is required. This test, apart from the MCV, provides information regard-

ing [30, 31]:

• Hemoglobin (Hb);

• Red blood cell (RBC) count and red blood cell indexes, which give information on the physical fea-

tures of the red blood cells: red blood cell distribution width (RDW), mean corpuscular hemoglobin

(MCH), mean corpuscular hemoglobin concentration (MCHC) and the MCV;

• White blood cell (WBC) count;

• Platelet (PLT) count;

• Hematocrit (Hct), which reflects percentage of the total blood volume that consists of packed red

blood cells.
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After the microcytic anaemia diagnosis, there are three major possibilities: IDA, thalassemia, and

anaemia of chronic disease (ACD), see Figure 2.3.

Determine whether other
family members are affected

Check hemoglobin
electrophoresis

Consider anaemia of
chronic disease

Consider thalassemia

No

Evaluation of
microcytic anaemia

Check serum
ferritin

Is the microcytosis new? Iron-depleted state

LowNormal or Elevated

Yes

Figure 2.3: Microcytic anaemia evaluation, adapted from Tefferi [32].

First of all, it is important to evaluate the possibility of IDA since it is the most common cause. The

most accurate test for the diagnosis of IDA is bone marrow biopsy, however this approach is costly and

invasive [2]. Therefore, the diagnosis is usually based on low serum ferritin (Ft), low serum iron levels

(Fe), low transferrin saturation (TS), high transferrin (Tf), and total iron binding capacity (TIBC), being

the most sensitive for the IDA diagnostic the serum ferritin [33].

In the absence of inflammation, the concentration of serum ferritin, the ferritin secreted into the

plasma, is an indicator of the size of the total body iron store, therefore a low serum ferritin level is a

sign of depleted iron stores. Serum ferritin is normally accessed through enzyme-linked immunosorbent

assays (ELISA) or enzyme immunoassays after venous blood collection [34].

When the serum ferritin level is normal, it is important to understand if the microcytosis is recent in

the patient and in that case nonthalassemic conditions associated with microcytosis other than IDA such

as ACD should be considered. On the contrary, if it had been earlier identified, it insinuates a congenital

disorder, which is a strong indicator of a thalassemia diagnosis [19].

Once there is a strong suspicion of a thalassemic diagnosis the question is whether it is an α-

thalassemia or a β-thalassemia. In both cases, a microcytic and/or hypochromic anaemia (in which the

red blood cells are paler than normal) is observed. However, in presence of β-thalassemia trait there is

an increased level of hemoglobin A2 (>3.5%).

As previously mentioned hemoglobin A is composed by two α-globin chains and two β-globin chains.

However, hemoglobin A2 is different, being composed of two α-globin chains and two δ-globin chains.
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That said, in the case of β-thalassemia the results of the hemoglobin evaluation (by electrophoresis or

by high-performance liquid chromatography) are irregular, due to an increased in the hemoglobin A2

production as an adjust mechanism to compensate the reduce production of the β-globin chain. By a

process of elimination, if the result of the analysis is normal, it is an indicator of α-thalassemia trait [14].

Nevertheless, DNA testing, as example by gap-polymerase chain reaction (gap-PCR) analysis, is

mandatory to diagnose α-thalassemia and to determine the exact mutation that led to the α-thalassemic

trait [18].

2.2 Machine Learning Algorithms

Nowadays large amounts of data are generated in the modern healthcare systems. This data can be

analysed through machine learning algorithms to identify patterns with the aim of disease prevention as

well as personalized disease diagnosis and treatment. As a result, the combination of machine learning

and healthcare data can enhance the efficiency and quality of medical care, while reducing its costs [35].

One example of the application of these algorithms is the iLet, a bionic pancreas that manages the blood

sugar levels in patients with type 1 diabetes mellitus, reducing the costs and burden of diabetes care.

In comparison with an insulin pump, the bionic pancreas improves the management of the blood sugar,

reducing the frequency of the hypoglycemic episodes [36].

Machine learning comes from the assumption that there is a process that explains the data observed,

that there are patterns in the data, and even though we cannot completely identify them, it is possible to

make a good and applicable approximation of it [6].

Supposing that the future will not be that different from the past, we can collect samples from which

we know the outcome, constituting our training set, and make predictions about new samples by learning

from the previous data.

One example of a training set can be a collection of CBC tests from a group of subjects, in this

case the features could be Hb, RBC, MCV, and RDW values for each of them. A training set X is then

constituted by N rows corresponding to independent and identically distributed instances, our subjects

CBC tests, and d columns which are the features of those instances. In some cases, it is even possible to

have corresponding outputs of those instances, which in this example would be the respective diagnosis

of each of the subjects, healthy, IDA, or thalassemia carrier, Y:

X =


X1

1 X1
2 . . . X1

d

X2
1 X2

2 . . . X2
d

...

XN
1 XN

2 . . . XN
d

 ,Y =


Y 1

Y 2

...

Y N

 (2.1)

That said, we expect that the computer (machine) can automatically extract a model: instructions to

transform the input into an output.

In order to build these algorithms, machine learning uses the theory of statistics and optimization, to

make inferences from the training set. For this, is necessary to define some parameters in our model
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and using the training set the computer program will optimize them, in other words, it will learn from the

data [6].

The model learning approach can be supervised or unsupervised (to get knowledge from the data).

In supervised learning we have a training set with variables from our data and their corresponding

outputs. The most common types of supervised learning are regression, when the outputs may have

any numerical value within a range, and classification, in which we may want to classify subjects into

some discrete categories based on their characteristics, like a CBC test result.

An unsupervised model is when we have a training set with variables, an input, but no corresponding

output. In this case the objective of pattern recognition can be, for example, to create groups of similar

inputs, clustering our data, or for instance to transform data with high-dimensional space into more

easy-to-visualize dimensions (two or three) [37].

From the wide range of classification algorithms, this work will only focus on some of the most

important machine learning classification techniques, briefly described below.

Logistic Regression

The logistic regression approach for classification problems is an extension of the linear regression

model, the main difference being that the outcome of logistic regression is a binary variable [38].

In linear regression models the relationship between output and input is given by a linear function of

the parameters:

Z = wo + w1X1 + · · ·+ wpXp. (2.2)

Due to the fact that in logistic regression models it is more desirable to have values between 0 and

1, as we wish to predict discrete class labels, the logistic regression model forces the output to assume

these values using an activation function, which can be the sigmoid function, that maps the whole real

axis into a finite interval [37], see Figure 2.4.
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Sigmoid function

Figure 2.4: Sigmoid function.
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Therefore, considering the case of two-classes classification (C1 and C2), and Y ∈ (0, 1), Y = 1

represents C1 and Y = 0 represents C2. We can represent the probability of C1 as the P (Y = 1 | X) [37]:

P (Y = 1 | X) =
1

1 + exp(−(wo + w1X1 + · · ·+ wpXp))
. (2.3)

As a result we can use 0.5 as a threshold and assume that if the P (Y = 1 | X) = 0.7, for example, our

input belongs to C1, bearing in mind that it has a 70% probability of belonging to C1 and 30% probability

of belonging to C2.

Logistic regression can be generalize to multi-class problems, i.e. more than two possible discrete

outcomes (k > 2), using the multinomial logistic regression algorithm. This algorithm is a simple exten-

sion of the logistic regression comprising k discriminant functions, each evaluating the probability of an

instance X belonging to a certain class P (Ck | X). Then the instance is simply assigned to the class

Ck if P (Ck | X) > P (Cj | X) for all j 6= k [37].

Naive Bayes

The naive Bayes algorithm arises from the “naive” assumption that the features of the instances

are independent given the class (conditional independence), along with the application of the Bayes’

theorem:

P (Y | X1, . . . , Xp) =
P (Y )P (X1, . . . , Xp | Y )

P (X1, . . . , Xp)
. (2.4)

Ignoring the probability of an instance (P (X1, . . . , Xp)), as it is a common factor for all classes, and

therefore it does not influence the result. The probability of class Y given an instance’s features (P (Y |

X1, . . . , Xp)) is calculated by multiplying the probability of a class (the prior probability, P (Y )) by the

probability of the instances features given that class (P (X1, . . . , Xp | Y )). Since we assumed that the

features are independent given the class, it is simply calculated by multiplying the probability of each

feature given the class [39]:

P (X1, . . . , Xp | Y ) = P (X1 | Y )× P (X2 | Y )×, . . . , P (Xp | Y ) =

p∏
j=1

P (Xj | Y ). (2.5)

Therefore the probability of class given the instance’ features can be calculated as:

P (Y | X1, . . . , Xp) ∝ P (Y )

p∏
j=1

P (Xj | Y ). (2.6)

Afterwards the Maximum A Posterior (MAP) classification rule is applied: for a certain instance we

search among all the classes, for the class where the P (Y | X1, . . . , Xp) is the highest and assign the

instance to that class.

In case of a continuous data set it is commonly assumed that the values within each class have

a normal (Guassian) distribution. This distribution can be represented by its mean (µ) and standard
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deviation (σ), allowing the probability of the instance feature given that class to be calculated as [40]:

P (Xj | Y ) = g(Xj ;µY ;σY ) =
1√

2πσY
e
−

(Xj−µY )2

2σ2
Y . (2.7)

Even though the conditional independence assumption rarely holds true, the naive Bayes algorithm

has shown a good performance even when compared to other classifiers in real-world situations, be-

ing one of the most efficient and effective algorithms. Although it is a good classifier it shows poor

performance in the output probability estimation [41].

Artificial Neural Network

Artificial neural networks (ANN) were designed with the aim of finding a mathematical representation

of the way a human brain processes and analyses information. In the brain a neuron is a cell that

communicates with other cells through synapses, in a simplified form we can say that neurons work as

computational units that receive an input in the dendrites and propagate it until the axons.

On an ANN, given an input with a set of features and an output, the algorithm learns a non-linear

function. A network learns by processing examples forming a probability-weighted association between

the input and the output, see Figure 2.5).

𝑤𝑖𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝐶1

𝐶2

Figure 2.5: Artificial neural network example.

In an ANN the connections between the neurons are associated with a weight (wi), by which the

inputs are multiplied and their sum is sent as an input to the hidden layer. The value obtained is passed

to an activation function and then the signal is propagated to the neuron of the next layer. In the last layer

(the output layer) in the case of a classification problem, there is an activation function, and therefore

the neurons indicate the probability of the given input belonging to each class. In regression problems

there is no activation function in the output layer, so the output is a set of continuous values. For the

learning task back-propagation is commonly used. This procedure repeatedly adjusts the weights of the

neurons connections in order to minimize the loss function, which measures the difference between the

prediction obtained and the true output [42].

One of the main differences between ANN and logistic regression is that linking the input to the output

there can be a series of non-linear hidden functions, layers with several neurons, that perform different

transformations on their inputs for either classification or regression problems.

13



Support Vector Machine

Support vector machine (SVM) models are used to solve problems of classification, regression, and

outliers detection. The idea of the SVM algorithm is to find an optimal hyperplane, defined as the

decision function, with maximal margin between the support vectors, the training instances of the two

classes that are closer to the hyperplane. That said, hyperplanes are decision boundaries that allow us

to classify new instances. Depending on the side of the hyperplane that the new instances are assigned

to, they are attributed to different classes [43].

In the simplest case where we have two classes (C1 and C0) with only two features (X1 and X2) and

the instances are linearly separable, we start by defining two hyperplanes, each hyperplane delimits a

class, allowing for the distances between the hyperplanes to be the largest possible, in this example:

w1 ×X1 + w2 ×X2 + wo = 1 for C0 (2.8)

w1 ×X1 + w2 ×X2 + wo = −1 for C1 (2.9)

These two hyperplanes now define a region called margin and the decision function with the maximal

margin between the classes that we wish to define is simply a third hyperplane right in the middle of the

other two:

w1 ×X1 + w2 ×X2 + wo = 0 (2.10)

In Figure 2.6 is a plot that illustrates how these hyperplanes separate the data. As a result, SVM works

as a decision machine so does not provide the posterior probabilities [37].

𝑋2

𝑋1

Figure 2.6: Support vector machine example, adapted from Cortes and Vapnik [43].
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Decision Tree

Decision trees are a hierarchical data structure, which can be used for classification or regression.

Decision trees are models that predict an output by learning decision rules from the training data. After

learning the decision rules, the predictive model is able to go from observations about a new instance

(the branches of the tree) to and output of that instance (the leaves of the tree) by applying those decision

rules [44].

One of the main advantages of decision trees is the fact that it can be simply understood and visual-

ized, at least until 3 dimensions, as in Figure 2.7, facilitating its interpretation.

𝑤1

Yes

Yes No

No

𝑋1 > 𝑤1

𝑋2 > 𝑤2

𝑋2

𝑋1

𝑤2

𝐶2

𝐶1

𝐶1𝐶2

𝐶1

Figure 2.7: Data set example and corresponding decision tree. The rectangle nodes are decision rules,
while the ovals, the leaves of the tree, are the output. Adapted from Alpaydin [6].

The most common decision tree algorithms are the ID3 (Iterative Dichotomiser 3), the C4.5 (the

successor to ID3), C5.0 and the CART (Classification and Regression Trees). These algorithms seek to

find for each node of the tree the feature and threshold that will yield the largest information gain for the

classification of an input (in the case of the CART, classification or regression) [45].

Random Forest

Random forest classifier is an ensemble method that results from a combination of decision trees.

In random forest, each tree in the set is constructed from a sample of the training data taken with

replacement, known as bootstrap, which reduces variance and helps to avoid overfitting of the model.

Other source of randomness to decrease the variance is in the construction of the tree nodes, where the

best split can either be found from all input features or a random subgroup of them.

That being so, the objective is to construct a number of estimators independently and then, the overall

output is the classification among all the trees having the most votes, improving the generalizability and

robustness of the prediction [46].

15



K-Nearest Neighbors

K-nearest neighbors is a nonparametric classifier/estimator used for classification or regression. In

nonparametric classification it is simply assumed that similar observations share the same class [6].

In that sense, in K-nearest neighbors classification, a new instance is classified based on a prede-

fined number of training samples (K) closest in distance to the new instance, that way the new instance

is ranked in the most common class among the K training samples [47]. If K = 1, the new instance

is simply assigned to the same class as the nearest training sample. In Figure 2.8 there is a graphical

example of a classification with different values of K. There are several ways to calculate this distance,

being the most common the Euclidean distance (straight line distance).

𝐾 = 2

𝑋1

𝑋2

𝐾 = 5

Figure 2.8: K-nearest neighbors example.

2.2.1 Hyperparameter Optimization

As previously stated in machine learning the training set is used to estimate the parameters of our

model, the learning process. The hyperparameters are the parameters whose values are used to control

the learning process.

Different machine learning models have different hyperparameters and the problem of selecting good

values for those hyperparameters is known as hyperparameter optimization [48]. Some of those hyper-

parameters are for example, in the case of random forest, the maximum depth of the trees and the

number of trees in the forest; in logistic regression, the algorithm used to solve the optimization problem

of the model and the maximum number of iterations of the solver; in the K-nearest neighbors, the K

number of neighbors; while in the ANN, the number and size of hidden layers and the activation function

of those layers.

Being Λ list of hyperparameters candidates, Aλ a learning algorithm with a set of chosen hyper-

parameters, X(train) the training set, X(test) the test set and L a loss function (which measures the

error between the predicted value and the actual value), the hyperparameter (λ) optimization problem,

in practice, can be addressed as the following equation [48]:

λ(∗) ≈ argmin
λ∈Λ

mean
χ∈X(test)

L(χ;Aλ(X(train))). (2.11)
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The most commonly use strategy to solve the hyperparameters optimization problem is a combina-

tion of manual search and grid search. Manual search is simply the manual selection and testing of

different hyperparameter values, without any automation in the selection of those. In grid search it is

necessary to manually choose a set of values for each hyperparameter, but afterwards an exhaustive

search through a set of trials with every possible combination of those values is done, which implies that

the number of trials grows exponentially with the number of hyperparameters, hence this solution ends

up suffering from the curse of dimensionality. Although these solutions are the most widely used, the

best approach has proven to be the random search, which replaces the exhaustive enumeration of all

possible combinations by randomly selecting them, making it a much more efficient solution because

not all hyperparameters are equally important to tune [48].

2.3 Evolutionary Algorithms

Evolutionary algorithms (EA) are a subset of evolutionary computations (EC) that performs optimiza-

tion or learning tasks. EA are well known by their efficiency in developing good approximate solutions to

difficult problems [49].

Inspired by Darwinian natural evolution, EA simulates evolution resorting to mechanisms such as

reproduction, mutation, recombination, and selection to generate solutions for complex real-world prob-

lems. Starting with an initial population of random individuals (solutions to a specific problem) a fitness

function is applied to evaluate the candidates and the best candidates are then chosen to seed the next

generation. The next generation will be created by applying recombination and/or mutation to two or

more parents (the solutions with the best fitness), leading to the creation of an offspring. Afterwards

this new offspring suffers a selective pressure, that is, using the same fitness function the offspring is

evaluated, having to compete not only with their siblings but also with the previous generation for a place

in the next generation. These steps are then iterated until an individual achieves a desired fitness score

or the number of generations reaches a limit previously established [50]. An example of an EA pseudo

code is depicted in Algorithm 1.

Algorithm 1 Evolutionary algorithm pseudocode, adapted from Eiben et al. [50].
INITIALISE population with random candidate solutions
EVALUATE each candidate
while TERMINATION CONDITION is not satisfied do

SELECT parents
RECOMBINE pairs of parents
MUTATE individuals
EVALUATE new candidates
SELECT individuals for the next generation

end while

While maintaining these general outline EA are further divided in genetic algorithm (GA), genetic

programming (GP), evolutionary programming (EP) and evolution strategies (ES) [50].
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Genetic algorithm

The most known EA is the genetic algorithm (GA). In genetic algorithms the candidate solutions are

often referred as chromosomes. Chromosomes are a way of coding the features rather than working

with the features themselves, in that sense, a chromosome is a string with finite length of alphabets

(genes) of certain cardinality [51]. As an example, we can think about the features obtained in a CBC

test. In order to make a classifier it is possible to use several different combinations of the features,

however, testing exhaustively all those combinations would be very demanding. Instead, we can use a

string of 0s or 1s, where 0 means that a feature is not used to construct the classifier and 1 the opposite.

Now each chromosome represents a set of features chosen to build a classifier and each gene a feature

of that classifier. Afterwards by using the steps represented in Figure 2.9, an optimal solution can be

achieved.

Initial population

Fitness

Selection

Crossover

Replacement

Mutation

Terminate?

… 0 1 1 0 …

Fitness = 7

… 0 0 0 0 … … 1 0 0 1 …

Fitness = 3 Fitness = 5

SelectedNot-selected

… 0 1 1 0 … X … 1 0 0 1 …

Selected

… 0 0 0 0 …

… 1 1 1 1 …

… 0 1 0 0 …

… 1 1 1 0 …

… 0 0 0 1 …

Fitness = 4

Not-selected

… 0 1 1 0 … … 0 1 0 0 … … 1 1 1 0 … … 1 0 0 1 …

Figure 2.9: Genetic algorithm scheme, adapted from [52]

Genetic programming

Genetic programming (GP) was first introduced by Koza [53] in 1992 as an evolutionary algorithm. In

GP it is not required to specify the structure of the solution in advance and, therefore, GP allows to solve

the problem without been explicitly told how to do it. In this case the evolution is applied to a population

of random programs to solve a specific problem [54]. This programs are traditionally represented as

tree structures, as illustrated in Figure 2.10. In this structures the functions, arithmetic operations, are

the internal nodes of the tree and the terminals (the leaves) the features and constants in the program

(combining features with operators instead of just selecting them), allowing mathematical expressions/

programs to be easily evolved and evaluated.
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Figure 2.10: Genetic programming scheme, adapted from Poli et al. [54].

2.4 Evaluation Metrics

To build the classifiers, and to further evaluate which is the optimal among them, it is necessary to

measure the effectiveness of the classifiers through evaluation metrics.

In case we are dealing with a binary classification problem, C1 if the patient has a certain disease and

C0 otherwise, a confusion matrix, illustrated in Table 2.1, can be built in order evaluate our classifiers [55].

Table 2.1: Confusion matrix.

Actual Positive Class Actual Negative Class

Predicted Positive Class True positive (tp) False positive (fp)

Predicted Negative Class False negative (fn) True negative (tn)

In a confusion matrix the tp and tn represent correctly classified instances while fp and fn the mis-

classified. Afterwards, using these scoring parameters several evaluation metrics with different focus

can be generated to further characterize our models.

Accuracy (acc),

Accuracy =
tp+ tn

tp+ fn+ fp+ tn
, (2.12)

which measures the fraction of correct predictions over all the instances, is one of the most applied.

Error Rate (err),

Error Rate =
fp+ fn

tp+ fn+ fp+ tn
, (2.13)

on the contrary, indicates the fraction of incorrect predictions over all the instances and therefore is the

same as 1− Accuracy.

Sensitivity (sn), Recall (r) or true positive rate (tp rate),

Sensitivity =
tp

tp+ fn
, (2.14)

measures the ratio of positive predictions that are correctly identified over all the actual positives.
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Specificity (sp),

Specificity =
tn

tn+ fp
, (2.15)

in contrast, indicates the ratio of negative predictions that are correctly identified over all the actual

negative.

The ratio of negative predictions that are incorrectly identified are called the false positive rate (fp

rate) and can be calculated as 1− Specificity.

Precision (p),

Precision =
tp

tp+ fp
, (2.16)

refers to the portion of positive predictions that were correctly evaluated over all the positive predictions.

F-Score (FS),

F-Score =
2× p× r
p+ r

, (2.17)

is the harmonic mean between the precision and recall.

The area under the ROC curve (AUC)

A receiver operating characteristic (ROC) curve is a graphical plot that can be used to optimize and

compare models as it illustrates the sensitivity and specificity of the classifier using different discriminant

thresholds - the value that must be exceeded for an observation to be classified in a certain class. This

is relevant in classifiers created with algorithms like the logistic regression, where we assume that if the

P (Y | X) crosses a previously established discriminant threshold, that instance (Y ) belongs to a certain

a class.

The ROC curve is simply constructed by plotting the tp rate (Sensitivity) on the Y axis and the fp rate

(1− Specificity) on the X axis, as shown in Figure 2.11.
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(a) ROC curve example.
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(b) ROC curves from different classifiers.

Figure 2.11: ROC curve, adapted from Alpaydin [6].

By selecting different thresholds in our model, we can plot different points in the graph which will

represent the trade-off between the benefits (true positives) and the costs (false positives). The perfect
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threshold would be the one representing the point (0, 1) in the graph as it would mean a 0 fp rate and an

1 tp rate. Hence, we can consider that the best operating point of the ROC curve, i.e., best threshold,

corresponds to the closest point to the top left corner.

Afterwards to compare different classifiers we must have in attention the area under the curve (AUC),

which summarizes the performance of our classifier into a single scalar value in the interval [0, 1].

A random classifier would generate the diagonal line y = x, whose AUC value would be 0.5, that said

no reasonable classifier should have a AUC value below 0.5.

Monte Carlo cross-validation

We can simulate how well a model will generalize to an independent data set by splitting the data that

we have in a training set (X(train)), to fit the model, and in a test set (X(test)) to test the generalization

ability, this method is known as the holdout method [56]. However, one disadvantage of this solution is

assuming that the instances are not equally difficult to classify, the model’s accuracy estimation can have

large variation depending on the data split done. Some data splitting will end up having an easier/harder

test set to classify than others, which will have an impact on the estimated model’s accuracy and there-

fore can introduce a bias. To work around this problem the repeated random sub-sampling validation,

also know as the Monte Carlo cross-validation, can be used instead. The Monte Carlo cross-validation is

basically a repetition of the holdout method k times, and the estimated accuracy is derived by averaging

the k iterations [56], see Figure 2.12.

Iteration: 1

Test set 𝑋 𝑡𝑒𝑠𝑡

Iteration: 2

Iteration: 3

Iteration: 𝑘 − 2

Iteration: 𝑘 − 1

Iteration: 𝑘

accuracy1

accuracy2

accuracy3

accuracy𝑘−2

accuracy𝑘−1

accuracy𝑘

accuracy =
1

𝑘


𝑖=1

𝑘

accuracy𝑖

Training set 𝑋 𝑡𝑟𝑎𝑖𝑛

Figure 2.12: Monte Carlo cross-validation scheme, adapted from Patro [57].

2.5 Outlier Detection

An outlier, also referred to as an abnormality, a discordant, a deviant, or an anomaly in the data,

can be defined as “(...) an observation which deviates so much from the other instances as to arouse

suspicions that it was generated by a different mechanism.” [58]. Therefore, it consists of instances that

occur when the process that generates the data behaves in an unusual way.
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As stated earlier, in machine learning we seek to find patterns in data. Thus, if an instance does not

follow the general rule, i.e. it differs significantly from others, it can be considered an outlier which, if

not detected, can compromise the model. For this reason, over the years, several methods have been

developed to perform outlier detection.

Cook’s Distance

Cook’s distance, named in honour of R. Dennis Cook, is a measure of an instances’ influence on a

linear regression model, used to indicate which instances need to be checked for validity [59].

The Cook’s distance of instance i (Di) (for i = 1, . . . , n) is defined as the sum of the changes in the

regression model when instance i is deleted from it, measuring the effect on the predictions when that

instance is removed:

Di =

∑n
j=1

(
ŷ j − ŷ j(i)

)2

ps2
, (2.18)

where ŷ j is the fitted response value obtained with the full sample, ŷ j(i) is the fitted response value

obtained when excluding i from the sample, p is the number of features fitted in the model, and

s2 =
1

n

n∑
k=1

(y k − ŷ k)
2
, (2.19)

is the mean squared error of the regression model, where y k is the actual response value of instance k

and ŷ k is the fitted response value of that instance.

Generally, an instance is considered an outlier whenD(i) > 4/n, being n the number of instances [60].

Silhouette analysis

The silhouette method is used to find an optimal number of classes, as well as the consistency within

classes, providing a succinct graphical representation of how well each instance is considered to be

classified [61].

In a silhouette analysis, each class is represented by several silhouette coefficients that shows how

similar each instance is to its own class compared to other classes. Then by combining the silhouettes

of the classes in a single graph, an appreciation of the relative quality of the classes can be done. In

order to assess class validity, the mean silhouette is calculated and can be used to select an optimal

number of classes [61].

The silhouette coefficient of an instance (i) can be calculated as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
. (2.20)

22



Using as an example Figure 2.13.

𝐵

𝐴 𝐶
i

Figure 2.13: Illustration of the elements involved in the computation of s(i), where the instance i belongs

to class A. Adapted from Rousseeuw [61].

Where instance i belongs class A, a(i) is defined as:

a(i) = average dissimilarity of i to all other instances of A. (2.21)

For all classes Z 6= A (in this example classes B and C), calculate the average length of all lines

going from i to Z:

d(i, Z) = average dissimilarity of i to all instances of Z. (2.22)

Afterwards select the smallest of those numbers, effectively the average distance of i to all the

instances in the closest class, and denote it by:

b(i) = min
Z 6=A

d(i, Z), (2.23)

From s(i) equation we can easily see that −1 ≤ s(i) ≤ 1. When s(i) has a high value it means that

the within dissimilarity a(i) is smaller than the smallest dissimilarity of d(i, Z) and therefore the instance

i is well clustered, being the worst situation when s(i) is close to −1, suggesting that the instance has

been misclassified [61].

2.6 State of the Art of Anaemia Classifiers

2.6.1 Anaemia Indexes

Due to the clinical relevance of a proper distinction between microcytic anaemias, several indexes,

based on the blood cell parameters obtained in the CBC test, were constructed over the years. The

intention was to propose a suitable discrimination between IDA and β-thalassemia trait, while avoiding

a time-consuming and expensive method. In 1973 England et al. [62] published a discriminant function,

able to differentiate IDA from β-thalassemia trait. In the exact same year, two more new formulas were

published. Mentzer [63], built a simpler formula, as well as Shine and Lal [64]. Since then several in-

dexes have been developed, as summarized in Table 2.2, representing important indexes to discriminate

between both conditions. These indexes can be especially advantageous in countries with less financial

resources and more limited health systems.
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Table 2.2: Discriminant indexes, formula and cut-off values.

Index Formula Cut-off Reference

England and Fraser MCV− RBC− (5× Hb)− 3.4 0 [62]
Mentzer MCV/RBC 13 [63]
Shine and Lal MCV2 ×MCH 1.53 [64]
Ricerca RDW/RBC 4.4 [65]
Green and King (G&K) (MCV2 × RDW)/(100× Hb) 65 [66]
RDWI (MCV× RDW)/RBC 220 [67]
Sirdah MCV− RBC− (3× Hb) 27 [5]
Ehsani MCV− (10× RBC) 15 [68]
Telmissani–MCHD MCH/MCV 0.34 [69]
Telmissani–MDHL (MCH× RBC)/MCV 1.75 [69]
Index26 Combination of multiple indexes 16 [4]
CRUISE MCHC + 0.603× RBC + 0.523× RDW 42.63 [4]
Matos and Carvalho 1.91× RBC + 0.44×MCHC 23.85 [70]
Bessman RDW 14 [71]
Srivastava MCH/RBC 3.8 [72]

MCV is the mean corpuscular volume of the red blood cells, RBC the red blood cell count, Hb
the hemoglobin concentration, MCH the mean corpuscular hemoglobin, RDW the red blood cell
distribution width, and MCHC mean corpuscular hemoglobin concentration.

All the indexes shown in Table 2.2, are based on the MCV, RBC, Hb, MCH, RDW or MCHC, indicating

that the values that depend on the physical features of the red blood cells obtained on a CBC test are

the ones that give more information when differentiating between these diseases.

In the Portuguese population it was found that the index that has a better performance on the female

sex is the RDWI [73]. However, during the research for this thesis, was not found any study that evaluated

the performance of these indexes in individuals of both sexes in the Portuguese population. Yet, multiple

studies have tested these indexes in other populations. For example, it was concluded that G&K and

RDWI indexes, with an accuracy of 88.4% and 92.0% respectively, provided the highest reliabilities

in differentiating β-thalassemia trait from IDA in the Brazilian population [3]. In the Iranian population

the discriminating formula with the better performance was found to be Index26 with an accuracy of

84.7% [4]. In another study, conducted with the Palestinian population the best indexes were Sirdah,

G&K and the RDWI, all with an AUC of 0.91 [5]. Accordingly, it is plausible to say that some discriminating

formulas are better adjusted to a specific population than others. Even though some show a better

performance, none of them is 100% reliable, revealing the need to continue this search to develop a

more efficient index.

2.6.2 Machine Learning in Anaemia Classification

As previously mentioned the application of machine learning algorithms is not a novelty in disease

diagnosis and not even in the classification of anaemia, as in the last decade previous works have

already demonstrated the usefulness of different machine learning algorithms, see Table 2.3.
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Table 2.3: Anaemia classifiers constructed with machine learning algorithms.

Method Description Sample size Acc (%) Reference

Naive Bayes anaemic/ non-anaemic 2151 85 [7]

Naive Bayes anaemic/ non-anaemic 200 96 [8]

Random forest anaemic/ non-anaemic 200 95 [8]

C4.5 decision tree anaemic/ non-anaemic 200 95 [8]

C4.5 decision tree anaemic/ non-anaemic 514 98 [9]

Support vector machine anaemic/ non-anaemic 514 87 [9]

Support vector machine β-thalassemia/ non-anaemic 20 99 [10]

K-nearest neighbors β-thalassemia/ non-anaemic 20 99 [10]

Artificial neural network β-thalassemia/ non-anaemic 20 99 [10]

Artificial neural network IDA/ β-thalassemia 268 93 [11]

These studies referred in Table 2.3 have presented very exciting results regarding the performance

of their models, presenting great accuracies either in the discrimination between anaemic and non-

anaemic individuals, or between microcytic aneamia individuals. Nevertheless, it is important to keep in

mind that not all of these studies used the same methodology to assess the accuracy of their models.

Regarding the information used to build these models, in the vast majority of the studies mentioned

in Table 2.3 the models are only based on information obtained through a CBC test, only the study con-

ducted by Purwar et al. [10] used CBC test data fused with blood film features, which probably explains

why its accuracy is so high. However, none of the studies analysed used data from the Portuguese

population which may hamper the correct classification for these patients. Besides this problem, few

studies used machine learning in the classification of microcytic anaemia. Hence, it becomes relevant to

test these algorithms in the Portuguese population as it may allow us to construct new indexes, specif-

ically adjusted to this population, able to differentiate IDA from β-thalassemia trait, and even go a little

further and build a multi-class classifier able to discriminate between various microcytic anaemias and

consequently provide a more efficient, accurate and cost-effective diagnosis.

25



26



Chapter 3

Implementation

The implementation of this dissertation is divided into two parts, a laboratory part and a computa-

tional part, reflecting the two components of this work.

3.1 Dataset Description

The DNA samples used in the molecular diagnosis were made available by the ”Grupo de I&D em

Hemoglobinopatias, Metabolismo do Ferro e Patologias Associadas” of INSA.

The data used to test the indexes mentioned in section 2.6.1 and to train and test the predictive mod-

els had been previously obtained in Exame Nacional de Saúde com Exame Fı́sico, providing samples

and data obtained within the scope of the INSEF 2015 project [74] carried out in 2015 by Department

of Epidemiology of INSA, and by Bárbara Faleiro [73] and Daniela Santos during their masters disser-

tations research. This data was acquired in the Portuguese population and in order to address one of

the main objectives of this thesis, which is to reduce the cost of the diagnosis, is solely composed by

information obtained with a complete blood count test [hemoglobin (Hb), red blood cell distribution width

(RDW), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV)], the subjects’ sex, and

his confirmed diagnosis. The dataset used to train and test these predictive models is composed by a

total of 390 instances, Table 3.1. While all those instances were used in the multi-class models, only

196 (β-thalassemia carriers plus IDA patients) were used in the binary models. In order to be able to

depict the different groups of numerical data a descriptive data analysis was done resorting to boxplots,

and the calculation of p-values, mean, median, etc.

Table 3.1: Data description.

β-thalassemia α-thalassemia IDA Control Total

Female 68 32 54 97 251

Male 64 20 10 45 139

Total 132 52 64 142 390390390
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3.2 Molecular Diagnosis

In this thesis in order to exemplify, the molecular diagnosis of β-thalassemia and α-thalassemia was

carried out with samples from five individuals with β-thalassemia and three with α-thalassemia. In case

of the β-thalassemia, the diagnosis was made through the analysis of mutations in the β-globin gene

(exon 1, 2 and 3) by Sanger sequencing, while gap-PCR analysis was used for the identification of −α3.7

Kb deletion, a common deletion underlying α-thalassemia, being a predominant mutation in African,

Mediterranean and Asian subjects [75]. For both methods DNA quantity and quality were assessed

using a NanoDrop One (Thermo Fisher Scientific, USA) spectrophotometer, the concentration of DNA

(ng/µL) was estimated by measuring the absorbance at 260 nm and the quality assessed by measuring

the absorbance at 260/280 nm and a 260/230 nm, to determine the presence of proteins, salts, and

residual phenol.

3.2.1 β-thalassemia

The human β-globin gene cluster in chromosome 11 consists of five functional genes being one of

them the HBB gene, which encodes the β-globin chain, [76], as exemplified in Figure 3.1.

ε
5’ 3’

Gγ Aγ ψβ δ β

LCR 3’HS1

1 30 31 104 105 146

Figure 3.1: Illustration of the human β-globin multigene loci residing on chromosome 11 (11p15.4). Each
locus consists of functional genes (arranged according to their order of developmental expression) and
pseudogene (depicted in grey). The β-globin gene consists of 3 exons (yellow boxes) and 2 introns
(white boxes), flanked by untranslated regions (UTRs, grey boxes), the codon numbers are indicated
underneath. Adapted from Patrinos et al. [76]

In order to find mutations in the HBB gene to diagnose β-thalassemia, after the DNA quantity and

quality assessment, the HBB gene was amplified through polymerase chain reaction (PCR). This tech-

nique is performed in a thermocycler, in this particular case in a Biometra® thermocycler, that in repeated

cycles heats and cools the reaction tubes, with all the necessary reagents:

• DNA sample, with target DNA;

• Primers, two short DNA sequences designed to bind to the start and end of the DNA target;

• Taq DNA polymerase, which catalyses the DNA synthesis;

• Free 2’-deoxynucleotide triphosphates (dNTPs), for DNA synthesis;

• Buffer, to maintain the pH of the solution relatively stable.
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At the end of each cycle the amount of DNA target doubles, as the newly synthesized DNA segments

will serve as DNA templates in later cycles, through repetitive cycles the concentration of the DNA target

will increase exponentially [77].

After the PCR, the amplification of the DNA target was confirmed by agarose gel electrophoresis

and a purification of PCR products was performed with illustraTM ExoProStarTM 1-Step (GE Healthcare,

USA).

Later, to search for possible mutations causing the β-thalassemia, the HBB amplified gene was

sequenced by Automated Sanger Sequencing, a well-known technique developed by Sanger et al. [78]

that allows DNA sequencing based on the selective incorporation of fluorescent chain-terminating 2’, 3’-

dideoxynucleotide triphosphates (ddNTPs) by DNA polymerase during in vitro DNA replication.

The results were then analysed using FinchTV 1.4.0 [79] and compared with the RefSeq sequence

of the HBB gene (Transcript: HBB-201 ENST00000335295.4) accessed in Ensembl (release 104) [80].

3.2.2 α-thalassemia

The human α-globin gene cluster (HBAC) in chromosome 16 consists of four functional genes includ-

ing HBA2 and HBA1, which are the two equal genes encoding the α-globin chain previously mentioned.

To diagnose α-thalassemia the gap-PCR technique was performed to search for the common −α3.7

Kb deletion, Figure 3.2(a). This PCR technique is a fast and specific method of detecting previously

characterized recurrent deletions, it uses specific primers that only amplify a gene sequence if a deletion

joins the flanking gene sequences together [81]. The result of this PCR is then analysed by agarose gel

electrophoresis, as exemplified in Figure 3.2(b).
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(a) Schematic representation of the breakpoints in genes HBA2
(α2) and HBA1 (α1)
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(b) Interpretation of gap-PCR results. Where HET is a heterozy-
gous result, HOM a homozygous result and WT a wild-type re-
sult.

Figure 3.2: Gap-PCR analysis for diagnosis of −α3.7 kb deletion (α-thalassemia), adapted from Faleiro
[73].
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3.3 Indexes Evaluation

The accuracy of the discriminant formulas mentioned in section 2.6.1 was evaluated with the data

from β-thalassemia carrier individuals and IDA patients.

The indexes’ formulas were computed in the Python 3.8 programming language [82] and their accu-

racies were calculated resorting to the libraries sklearn [83], pandas [84] and numpy [85].

These indexes accuracy was calculated in two different ways, using all the data from β-thalassemia

carriers and IDA patients, and through the median accuracy of 30 random splits, each with 30% of the

individuals data, so that it would be more fairly compared with the machine learning models which were

evaluated using the Monte Carlo cross-validation technique mentioned in section 2.4.

3.4 Machine Learning Classification

Regarding the machine learning classification two different types of machine learning classifiers were

created: 1) binary to distinguish between β-thalassemia carriers and IDA patients (like the indexes) and

2) multi-class to distinguish between the β-thalassemia carriers, α-thalassemia carriers, IDA patients,

and control subjects.

All the machine learning algorithms explained in section 2.2 were used to create the predictive mod-

els. Their implementation was computed in the Python 3.8 programming language [82], and the theoret-

ical principles of the algorithms as well as the hyperparameter optimization were implemented with the

library sklearn [83], with the help of pandas [84], numpy [85] and Matplotlib [86].

The machine learning models were evaluated using the Monte Carlo cross-validation technique re-

sorting to the median of the accuracy during 30 random splits, where 70% of the data was allocated

to the training set (X(train)) and the remaining 30% of the data to the test set (X(test)). In addition, for

comparison, the models were also evaluated using all data as training and testing.

3.4.1 Features Selection

To construct the models, multiple different features resulting from the multiplication and division of the

original features were generated. To select the best features among them a genetic algorithm adapted

from Codes [87] was used. The recombination between the pairs of parents was only single-point

crossover, and the genetic algorithm parameter mutation probability was kept at 50%. To keep the

number of features used small, for each feature used in the model the fitness function, in this case the

accuracy, was penalized with a drop of 0.5%. The generation number and population size were explored

in only one machine learning model in order to find an appropriate number of generations and population

size.
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3.4.2 Hyperparameter Optimization

To solve the hyperparameter optimization problem, the random search solution, explained in sec-

tion 2.2.1, was applied with successive halving [88]. Successive halving works like a tournament be-

tween a set of random combinations of hyperparameters candidates, that is, using a small amount of

data all the set of random combinations of the hyperparameters are evaluated. Then the best candi-

dates will continue to be evaluated with different data while the worst are discarded. This process is

then repeated until the best candidate is obtained. To implement this solution a distribution over possi-

ble parameter values has to be established first. Table 3.2 displays, for each machine learning algorithm

used, the hyperparameters tested and their respective range of values.

Table 3.2: Machine learning hyperparameters tested and their range of values.

Model Hyperparameters Range of values

Logistic regression

C [0.1, 0.2, ..., 1.5]

max iter [100, 200, ..., 500]

solver [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’]

fit intercept [True, False]

Support vector machine

C [0.1, 0.2, ..., 1.5]

kernel [’linear’, ’poly’, ’rbf’, ’sigmoid’]

degree [1, 2, ..., 6]

gamma [’scale’, ’auto’]

shrinking [True, False]

max iter [-1, 100, 200, ..., 500]

decision function shape [’ovo’, ’ovr’]

Artificial neural network

solver [’lbfgs’, ’sgd’, ’adam’]

activation [’identity’, ’logistic’, ’tanh’, ’relu’]

hidden layer sizes [(100,), (300, 5), (400, 6), (250, 6), (500, 6), (300,2)]

max iter [100, 200, ..., 1000]

Decision tree

criterion [’gini’, ’entropy’]

splitter [’best’, ’random’]

max features [’auto’, ’sqrt’, ’log2’]

Random forest

n estimators [50, 100, ..., 300]

max features [’auto’, ’sqrt’, ’log2’]

min samples split [2, 3, ..., 10]

bootstrap [True, False]

max depth [50, 51, ..., 100]

criterion [’gini’, ’entropy’]

K-nearest neighbors

weights [’uniform’, ’distance’]

n neighbors [1, 2, ..., 10]

leaf size [5, 10, ..., 50]

algorithm [’auto’, ’ball tree’, ’kd tree’, ’brute’]

Naive Bayes var smoothing [1e-11, 1e-10, 1e-9, 1e-8, 1e-7]

The explanation of the meaning of each hyperparameter in this table is available at the sklearn website [89].
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3.5 Genetic Programming Classification

Genetic programming, other artificial intelligence technique, was also used to distinguish between

β-thalassemia carriers and IDA patients (binary classification) and between the β-thalassemia carriers,

α-thalassemia carriers, IDA patients, and control subjects (multi-class classification).

The genetic programming algorithm used was M3GP (multidimensional multi-class genetic program-

ming with multidimensional populations) [90], previously implemented in Python by Batista [91].

The M3GP algorithm works by evolving a population of models that maps all the p-dimensional

features of the training set into new d-dimensional features and subsequently calculating the covariance

matrix and class centroid, for each of the training data classes. Later, using the Mahalanobis distance,

the test data will be classified according to the class whose centroid is closer, in the end the model

obtained will be the one with the best fitness (higher accuracy). The biggest advantage of the M3GP

algorithm is that there is no need to specify the number of dimensions (d), since the algorithm evolves a

population of individuals whose dimensions can change during evolution, as there are genetic operators

that can add or remove dimensions. This way it is able to progressively search for the optimal dimensions

that maximize the classification accuracy.

Just like the machine learning models, the accuracy of M3GP models obtained in the end of the

algorithm was calculated using Monte Carlo cross-validation technique resorting to the median of the

accuracy during 30 random splits, where 70% of the data was allocated to the training set and the

remaining 30% of the data to the test set.

3.6 Outliers Detection

The objective of the outliers detection section was to develop a semi-automatic model able to iden-

tify instances that present features different from what would be expected according to the attributed

disease, that are atypical, and that in the worst case scenario may actually require a second analysis.

The diagnosis of the subjects that make up the data used has already been confirmed by molecular

diagnosis. The study of the presence of outliers is not aimed at discarding data, because in this case

we would be simplifying the classification task and the performance results would be biased.

So to evaluate the possible presence of outliers in the data set used to train and test all the models,

the techniques Cook’s distance and silhouette analysis, explained in section 2.5, were applied in Python

using the libraries Yellowbrick [92] and sklearn [83] respectively. Besides these techniques, the in-

stances that were more often misclassified using the best binary and multi-class models were sought

and compared with the outliers found to see if there was any overlap.
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Chapter 4

Results

The following chapter presents the results obtained throughout this thesis. First, the results of the

molecular diagnosis performed at the National Institute of Health Doctor Ricardo Jorge (INSA), followed

by the performance results of the existing indexes, introduced in the section 2.6.1 and the classifiers

created in this thesis. At the end are the results of the outlier detection performed.

4.1 Molecular Diagnosis

As previously described, this thesis also involved laboratory experimental tasks. Although all the

datasets used were retrieved and analysed by the ”Grupo de I&D em Hemoglobinopatias, Metabolismo

do Ferro e Patologias Associadas” of INSA, additionally molecular diagnosis experiments were con-

ducted. The goal was to perform the molecular diagnosis of β-thalassemia and α-thalassemia to gain

expertise in the steps required for the analysis, from the DNA sample to the final diagnosis. Two exam-

ples of the results obtained after the gene sequencing of the HBB gene for the β-thalassemia diagnosis

are represented in Figure 4.1.
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(a) Case number 77287.
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(b) Case number 145457.

Figure 4.1: Example of two Sanger Sequencing results obtained.

Both cases present single nucleotide polymorphisms (SNPs) in heterozygosity at the same DNA

positions. In the case number 77287 there is a R in the Sanger sequencing result, in the International
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Union of Pure and Applied Chemistry (IUPAC) nucleotide code it means that in that specific position

the subject has different alleles for certain gene (a heterozygosity). In one allele he has an adenine in

that position and in the other a guanine. A healthy individual only presents guanine, therefore he has

guanine > adenine substitution located at the first nucleotide of intron 1, which is a known pathogenic

mutation. Consequently, this individual is a β-thalassemia carrier. The case number 145457 is similar

but, instead of having a R in Sanger sequencing result he has K, which stands for guanine and thymine,

so the subject instead of having only guanine in both alleles, has a guanine > thymine substitution

also located at the first nucleotide of intron 1, which is also a known pathogenic mutation. Thus, this

individual is also a β-thalassemia carrier. Mutations at this specific position severely affect gene splicing

and the synthesis of the β-globin chain (β0). As both individuals are heterezygotes, the other allele has

no mutation (β), they both have thalassemia minor (β/β0).

In Table 4.1 are summarized all the different mutations found in the β-thalassemia cases. These

results exemplify that there are several different mutations that can lead to β-thalassemia, having in turn

different impacts on the gene’s phenotype as some mutations lead to the partial or complete elimination

of the β-globin chain synthesis (β+ and β0, respectively).

Table 4.1: β-thalassemia diagnosis result.

Case number
Mutation

HGVS name Common name Allele Phenotype

77287 HBB:c.92+1 G > A IVS I-1 (G > A) β0

145457 HBB:c.92+1 G > T IVS I-1 (G > T) β0

040997 HBB:c.93-21 G > A IVS I-110 (G > A) β+

961401 HBB:c.92+6 T > C IVS I-6 (T > C) β+

950756 HBB:c.118 C > T CD 39 (CAG > TAG) β0
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Figure 4.2: Photo of an agarose gel electrophoresis of DNA fragments obtained by gap-PCR. The
analysis of fragments obtained in lanes 2&3, 4&5, and 6&7 allow an α-thalassemia diagnosis, where
HET is a heterozygous diagnosis and HOM a homozygous diagnosis. In lanes 8&9 is a normal control,
where WT is a wild-type diagnosis, and in lanes 10&11 is the negative control.

34



With regards to the α-thalassemia diagnosis, the results and interpretation of gap-PCR are pre-

sented in Figure 4.2. These results reveal different severities of the disease as some individuals present

deletions in homozygosity and others in heterozygosity.

As a consequence of the different mutations that can lead to β-thalassemia and α-thalassemia it is

expected that subjects with the same thalassemia diagnosis present slightly dissimilar CBC test results,

which will complicate the diagnosis as the pattern recognition task is more demanding.

4.2 Data Description

A descriptive analysis of the data was performed using boxplots with all the normalized features per

class and by calculating the mean, median, minimum and maximum of each feature for each class, see

Figure 4.3 and Table 4.2, respectively.

Hb MCV MCH RDW
Feature

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

Normalized Features per Class
IDA
β-thalassemia
α-thalassemia
Control

Figure 4.3: Boxplots with all the normalized features per class. Where Hb is the hemoglobin concentra-

tion, MCV the mean corpuscular volume of the red blood cells, MCH the mean corpuscular hemoglobin,

and RDW the red blood cell distribution width.

Both in Figure 4.3 and Table 4.2 it is possible to observe that there are several differences in the

median of some features between the different classes.

The hemoglobin (Hb) is lower in individuals with microcytic anaemia than in the control group (healthy

subjects), which is expected. The microcytic anaemias are associated with a decreased production of

hemoglobin. In the case of IDA, the lack of hemoglobin arises from the shortage of iron, in thalassemias it
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results from the defective hemoglobin production [2]. However, in the case of α-thalassemia, hemoglobin

is higher than in other microcytic anaemias, probably because most of the α-thalassemia data used

are from individuals with heterozygous mutations, suggesting that these individuals must have the α-

thalassemia trait 1, or at worst 2, and therefore still have some α-globin synthesis.

The decreased production of hemoglobin also affects the MCV (mean corpuscular volume) value,

because hemoglobin is a major constituent of the red bold cells, which explains why the individuals with

microcytic anaemia have a lower MCV than the control group.

In respect to the MCH (mean corpuscular hemoglobin), it is much lower in individuals with microcytic

anaemia, which is expected because it is the average amount of hemoglobin in each red blood cell, so

it is also dependent on the production of hemoglobin.

The RDW (red blood cell distribution width), represents the coefficient of variation of the red blood

cell volume distribution. In the β-thalassemia and α-thalassemia carriers practically all red blood cells

are microcytic due to mutations in the globin chain genes and therefore the RDW is low. However, the

IDA subjects have the highest RDW. This has been explained in previous studies by the administration

of iron therapy in patients with IDA, which results in a rise in the RDW few days after the initiation of the

iron therapy and during the next moth [93], which also probably explains why IDA patients present the

highest variation in all the features.

Table 4.2: Dataset features’ properties.

Class
Features

Hb MCV MCH RDW

β-thalassemia

mean 11.8± 1.2 65.0± 4.3 20.8± 1.5 15.0± 2.1

median 11.8 64.8 20.6 14.7

minimum 8.2 55.7 17.1 11.8

maximum 14.8 76.0 25.9 32.7

α-thalassemia

mean 13.5± 1.4 81.1± 3.2 25.9± 1.0 14.1± 1.3

median 13.1 81.2 26.3 14.0

minimum 10.9 68.5 22.4 12.1

maximum 16.5 86.9 26.9 19.1

IDA

mean 10.1± 1.4 71.5± 6.8 22.7± 2.9 24.8± 12.3

median 10.2 71.7 22.6 19.0

minimum 7.5 57.9 17.2 13.3

maximum 13.7 86.4 29.4 56.2

Control

mean 13.7± 1.2 91.4± 4.5 31.6± 1.9 12.7± 1.5

median 13.6 91.8 31.7 12.5

minimum 10.8 80.1 25.7 10.9

maximum 17.5 102.1 36.4 27.6

Hb is the hemoglobin concentration, MCV the mean corpuscular volume of the red blood
cells, MCH the mean corpuscular hemoglobin, and RDW the red blood cell distribution
width.
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As the β-thalassemia carriers have different allele phenotypes according to the mutation that they

have, boxplots that separates the β0 mutation carriers from the β+ was also constructed (Figure 4.4),

as well as a table with the p-values, obtained in a T-test, of the different features of the β-thalassemia

carriers (Table 4.3).
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Figure 4.4: β-thalassemia normalized features.

Table 4.3: β-thalassemia p-values of the T-

test.

Feature
P-value

Both sexes Female Male

Hb 0.002 0.068 0.002

MCV 0.001 0.091 0.012

MCH 0.001 0.046 0.020

RDW 0.059 0.513 0.109

The null hypothesis is that the mean values of the

features do not differ between the β0 and the β+ mu-

tation groups.

According to both Figure 4.4 and Table 4.3, there is a significant difference in almost all features of

the β-thalassemia carriers depending on the mutation they have, the only feature who’s p-value is not

statistically significant is the RDW. However, when we look to the p-values of each sex the values are

very different, while in the females only the MCH is statistically significant, in the males there is only one

that is not, the RDW. However, it should be noted that among all cases of β-thalassemia we only have

information regarding the mutation of 21 individuals from which 11 are female and 10 male. Therefore

to think that the type of mutation that a β-thalassemia carrier has is only significant in the male sex can

be hasty and therefore it would be advisable to have more data in order to draw this conclusion.
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4.3 Indexes Evaluation

As introduced in the section 2.6.1 there are already different discriminant formulas based on the CBC

test results to distinguish β-thalassemia carriers from IDA patients. With the aim of understanding which

formula to distinguish β-thalassemia carriers from IDA presents the higher accuracy in the Portuguese

population the reviewed indexes were tested. These indexes accuracy was calculated in two different

ways, using all the data from β-thalassemia carriers and IDA patients and through the median accuracy

of 30 random splits, each with 30% of the individuals data, so that it would be more fairly compared with

the machine learning models which were evaluated using the Monte Carlo cross-validation technique

mentioned in section 2.4. The resulting values are represented in Table 4.4 and 4.5, in descending

order.

Table 4.4: Indexes performance with 30 random
splits of the data.

Index Median accuracy %

RDWI 95.4

Green and King (G&K) 92.3

Ehsani 84.6

Ricerca 83.1

Sirdah 79.2

England and Fraser 76.9

Srivastava 75.4

Telmissani–MDHL 75.4

Shine and Lal 73.8

Mentzer 66.2

Matos and Carvalho 66.2

CRUISE 66.2

Telmissani–MCHD 63.1

Bessman 47.7

The indexes performance was calculated through the
median accuracy of 30 random splits, each with 30%
of the individuals data, so that it would be more
fairly compared with the machine learning models
which were evaluated using the Monte Carlo cross-
validation technique.

Table 4.5: Indexes performance with all the data.

Index Accuracy %

RDWI 94.9

Green and King (G&K) 91.8

Ricerca 83.7

Ehsani 83.2

Sirdah 78.6

England and Fraser 76.0

Srivastava 74.5

Telmissani–MDHL 74.5

Shine and Lal 74.0

Mentzer 67.3

Matos and Carvalho 67.3

CRUISE 67.3

Telmissani–MCHD 63.3

Bessman 48.0

These tables show clearly that the RDWI and G&K are the most reliable indexes in the studied

population, just like what was observed in the Brazilian [3] and Palestinian [5] populations. Both indexes

have in common the inclusion in their formulas of the MCV, RDW and Hb (since, RBC = Hb/MCH ×

10). This suggests that these three features may be very relevant in the discrimination between β-

thalassemia carriers and IDA patients in the Portuguese population.
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4.4 Machine Learning Classification

This section presents the results of the machine learning classification. It begins with the application

of a feature selection algorithm to select which features to use in the models, followed by a hyperpa-

rameter optimization of these same models. At the end, the performance results of all the models are

compared.

4.4.1 Models Improvement and Evaluation

Two different types of machine learning classifiers were created: 1) binary to distinguish between

β-thalassemia carriers and IDA patients (like the indexes) and 2) multi-class to distinguish between the

β-thalassemia carriers, α-thalassemia carriers, IDA patients, and control subjects.

First, all binary and multi-class models were trained using the features: sex, Hb, MCV, MCH and

RDW. Then, in an attempt to optimize these models, several different features resulting from the multi-

plication and division of the mentioned ones were generated and a genetic algorithm was used to select

those that could achieve greater accuracy with each model.

Figure 4.5(a) shows how the number of generations in the genetic algorithm influenced the final

accuracy of a binary logistic regression model. It seems that after 10 generations the accuracy no

longer improves. For this reason, the genetic algorithm used with all models to select the features was

set to 20 generations, as it gives a good margin for improvement. The same rationale was used to select

the initial population size of the genetic algorithm, Figure 4.5(b). The initial population size chosen was

50, since a huge initial population does not seem to translate into greater final accuracy, and so 50 was

considered to be a good enough size to run the evolution.

After selecting the features that could possibly achieve greater accuracy in each model, the random

search solution technique with successive halving was used to solve the hyperparameter optimization

problem and thus allow the models to further improve their accuracy. In addition, the random search

solution was also used in the models with the initial features (sex, Hb, MCV, MCH and RDW), as it could

also improve their accuracy.

The accuracy of the binary models is summarized in Table 4.6. This accuracy was calculated using

the median accuracy over 30 random divisions of the data, where 70% of the data were allocated to the

training set and the remaining 30% to the test.

In the binary classifiers, the highest accuracy achieved was 95.4%. This performance was reached

with two different algorithms, random forest and artificial neural network. Both algorithms were using the

features created and later selected by the genetic algorithm. These new features contributed significantly

to the improvement of the accuracy of most classifiers, almost all the best classifiers of each algorithm

are the ones using the new features.

There can be several reasons why this optimization through feature creation and selection did not

work in all models. The genetic algorithm used to select the features evaluated the set of features chosen

with only on split of the data, which may have introduced a bias, since some splits of the data can result

in a test set easier to classify and therefore that group of features is wrongly associated with a high
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(b) Accuracy over population size.

Figure 4.5: Accuracy of the binary logistic regression model in the genetic algorithm, over the number of
generations and the population size.

Table 4.6: Median accuracy of the machine learning binary classifiers

Model
Median accuracy (%)

Without hyperparameter optimization With hyperparameter optimization

Initial features Selected features Initial features Selected features

Random forest (RF) 92.3 95.495.495.4 90.8 93.8

Artificial neural network (ANN) 93.8 93.8 94.6 95.495.495.4

Logistic regression (LR) 93.8 94.694.694.6 93.1 93.8

Decision tree (DT) 90.8 93.1 90.8 93.893.893.8

Support vector machine (SVM) 80.0 75.4 93.893.893.8 93.8

Naive Bayes (NB) 90.8 92.392.392.3 90.8 88.5
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accuracy. In Table 4.6 the models were evaluated resorting to a median accuracy of 30 different splits of

the data and therefore that bias is mitigated. That said some of the features selected were not the best,

as the original features actually presented a higher accuracy. This also leads us to think that maybe if

these initial features were forced to be in the initial population of the genetic algorithm, they could have

been selected. However this genetic algorithm initial population was seeded completely randomly, which

may also justify why this optimization did not work in all models. Even if the initial features were in the

initial population or had appear through mutations the genetic algorithm may have discarded them due

to the penalization on the number of features.

The hyperparameter optimization, despite having improved the performance of some algorithms, did

not have as notable an impact as the new features, suggesting that the default hyperparameters were

already adequate in most classifiers. Besides this, this optimization just like the feature selection was

done resorting to only one split of the data which may also have introduced the bias previously explained.

It is curious to note that accuracy value obtained, 95.4%, was also the highest value achieved by the

existing indexes, which suggests that there is some difficulty in surpassing this value.

To assess the variation in accuracy across the different divisions of the data, boxplots were con-

structed with the best binary models, Figure 4.6.
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Figure 4.6: Machine learning binary models accuracy with 30 data random splits and the accuracy when
training and testing the models with all data.
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The random forest algorithm not only had the highest median accuracy, but also showed a very little

performance variation in classifying microcytic anaemia across different data splits. In contrast, the naive

Bayes algorithm obtained the lowest median accuracy and a much larger variation.

This boxplot also shows the accuracy when training and testing the algorithms with all data. Even

though in the random forest and in the decision tree it led to an accuracy of 100%, it does not represent

the true accuracy of a classifier built with these algorithms, as the accuracy rarely reached this value,

in the case of the random forest, and never, with the decision tree, when the models were trained and

tested with different data. This 100% accuracy when training and testing with all data, however, indicates

a greater tendency to overfit the data than the remaining algorithms. The logistic regression and support

vector machine, for example, had very similar accuracy when using all the data and when splitting the

data and therefore appear to be more proof against overfitting. In the case of the decision tree algorithm

this overfitting can be explained by the fact that the maximum depth of the tree was not defined and

therefore, the nodes of the tree were expanded until all leaves were pure or until all leaves contain less

than the minimum number of samples required to split an internal node, which by default was established

as two.

In Table 4.7 it is summarized the accuracy of the microcytic anaemia multi-class models.

Table 4.7: Median accuracy of the machine learning multi-class classifiers.

Model
Median accuracy

Without hyperparameter optimization With hyperparameter optimization

Initial features Selected features Initial features Selected features

Random forest (RF) 92.6 92.2 93.093.093.0 91.5

k-nearest neighbors (KNN) 92.692.692.6 92.2 91.5 91.5

Artificial neural network (ANN) 89.1 89.9 92.292.292.2 89.9

Naive Bayes (NB) 89.1 91.591.591.5 89.1 91.5

Decision tree (DT) 89.9 89.9 90.790.790.7 90.7

The highest accuracy achieved with multi-class classifiers was 93.0%, with the random forest algo-

rithm. This accuracy is not as good as that reached in the binary classifiers but considering that this

classification is between four classes it is a more difficult task. In multi-class classification, the best

classifiers for the different algorithms were almost never the ones that used the selected features, al-

though they improved the accuracy of some classifiers, in multi-class classification the hyperparameters

optimization was more significant in improving its accuracy. As explained before, the feature selection

may not have worked due to the bias in the test set, the lack of the initial features on the population that

seeded the genetic algorithm or due to the penalization on the number of features.

The Table 4.8 presents the accuracy of the best microcytic anaemia multi-class classifiers, with the

median accuracy overall the classes and the median accuracy per class. The control class had the

highest accuracy regardless of the algorithm used to create the model, on the other hand, patients with

IDA almost always had the worst accuracy, which means that with the data used, this class is the most

difficult to be identified.
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Table 4.8: Median accuracy per class of the best machine learning multi-class classifiers.

Model
Median accuracy (%)

IDA α-thalassemia β-thalassemia Control Overall %

Random forest (RF) 93.4 96.9 95.3 98.4 93.0

k-nearest neighbors (KNN) 93.8 96.9 95.3 99.2 92.6

Artificial neural network (ANN) 95.3 96.1 95.3 96.9 92.2

Naive Bayes (NB) 93.4 96.9 94.6 99.2 91.5

Decision tree (DT) 91.5 96.1 95.0 98.1 90.7

As for the binary classifiers, boxplots with the accuracy across the different divisions of the data were

also constructed with the best multi-class models, Figure 4.7.
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Figure 4.7: Machine learning multi-class models accuracy with 30 data random splits and the accuracy
when training and testing the models with all data.

Within the multi-class models, random forest is not only the one with the highest median accuracy,

but it also continues to show a very low variation in accuracy between the different divisions of the

data, as what was observed with the binary classifiers, which means that it is the most stable method.

However, random forest and decision tree are again the classifiers most likely to suffer from overfitting,

their accuracy reaches significantly higher values when using all the data, never reaching these values

when the data is split in the training and testing set.

Overall, we can conclude that the algorithm that reaches the best accuracy with little variation, both in

the binary classification and in the multi-class classification of microcytic anaemia, is the random forest.
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Yet, as this algorithm tends to overfit the data, measures must be taken to avoid overfitting the model like

for example, the cross-validation technique. This technique was used to select hyperparameters that do

not cause overfitting and thus allow the correct classification of new instances by the classifier obtained

with the trained algorithm.

4.5 Genetic Programming Classification

Just like the machine learning algorithms, the genetic programming algorithm M3GP was used to

create binary and multi-class classifiers.

In Figure 4.8 are two graphical representations of the data separation in the feature space of clas-

sifiers obtained with the M3GP algorithm. In Figure 4.8(a) a binary classifier with 3 dimensions, that

is, using 3 new features, and in Figure 4.8(b) a multi-class classifier, which to simplify the graphical

representation was forced to have only 3 dimensions.
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(b) Data separation of a M3GP multi-class classifier.

Figure 4.8: Graphical representation of the data separation in feature space of the M3GP classifiers.

As we can see, there seems to be a good separation between all the classes, however, when evalu-

ating the accuracy of the classifiers obtained with the M3GP algorithm in the same way as the machine

learning classifiers, Table 4.9 (binary and multi-class), the accuracy was not better than that of these

classifiers.

Table 4.9: Median accuracy of the M3GP classifiers.

Classifier
Median accuracy %

IDA β-thalassemia α-thalassemia Control Overall

Binary 93.8 93.8 - - 93.8

Multi-class 95.0 95.3 96.9 98.4 92.2
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4.6 Oultiers Detection

Considering that the best median accuracy achieved with both binary classifiers and indexes was

not able to surpass the value of 95.4% and the best multi-class median accuracy achieved is 93.0%, the

suspicion of the presence of outliers arose. For this reason, the consistency within classes as well as

the presence of outliers were evaluated.

To assess consistency within classes, a silhouette analysis was performed, Figure 4.9.
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Figure 4.9: Silhouette analysis and respective class mean.

As reported by the silhouette plot, α-thalassemia is the class with the highest mean silhouette co-

efficient. However, it is important to emphasize that it is the class with the lowest number of instances,

which will make it difficult to train the models and probably for this reason it is not the class that regis-

tered the best accuracy in any of the models. The control class had the second lowest average silhouette

coefficient, yet registered the best accuracy in the models, which demonstrates the importance of the

number of instances in the performance of the algorithms since it is the class that has more instances.

With negative mean silhouette coefficient, IDA is the class with the lowest consistency, probably

because no information about the iron status was used and also, due to the administration of iron therapy

in some patients with IDA. However, this low consistency did not compromise the differential diagnosis

between IDA and β-thalassemia in the binary classifiers, most likely because the β-thalassemia class

has a very high class consistency, yet, it had a greater impact on the performance of multi-class models.
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Owing to the fact that the average silhouette coefficient is 0.37, we can say that the consistency of

the classes is, in general, good.

To evaluate the presence of outliers the Cook’s distance was calculated for all the instances used in

the binary and multi-class models, Figures 4.10(a) and 4.10(b), respectively. According to the Cook’s

distance, the percentage of outliers found was 5.61% in the data used in binary models and 4.36%

within all the data. This may explain why the accuracy could not surpass the value of 95.4% in the

binary models and 93.0% in the multi-class. In both cases the class where most outliers were found was

IDA, which is consistent with the results obtained with the silhouette analysis. In opposition, the control

class does not have any outliers which certainly helped this class to be the class that always presented

the best accuracy.
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Figure 4.10: Cook’s distance outlier detection. IDA (blue), β-thalassemia (green), Control (yellow) and
α-thalassemia (red).

Afterwards in order to understand if these outliers found by the Cook’s distance were the instances

that were being misclassified in the models, the models were trained and tested with all the instances,

that is, without cross-validation, and the instances that were most frequently misclassified with the best

models of each algorithm were identified. In addition, the classes in which these instances were placed

were also identified, both with the created models and with the already existing indexes.

In Table 4.10 are the most frequently misclassified instances in the binary models. The instances

that are most often misclassified are not only from IDA patients, these instances belong to both IDA

patients and β-thalassemia carriers. However, this does not mean that both classes are equally hard to

identify because the β-thalassemia carriers in the data used are more than double of the IDA patients.

For this reason, if both classes were equally difficult to classify, β-thalassemia cases should be more

than double in this table. Since there are less than those with IDA, it can be concluded that the IDA class

is much more difficult to be identified by the created models. It is also interesting to note that, in the

case of the most frequently misclassified instances of β-thalassemia carriers, the models created are

very divided on the class they assign to these individuals, while the existing indices vote mainly on the

IDA class. A possible justification is that due to the fact that IDA is more common than β-thalassemia,

these indexes consider right from the start that the individual is more likely to have IDA.
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Table 4.10: Most frequently misclassified instances in binary classification.

Instance
Best machine learning models Best indexes

Diagnosis
Times misclassified IDA % β-thalassemia % IDA % β-thalassemia %

29 4 33 67 75 25 IDA
34 3 50 50 75 25 IDA
36 3 50 50 25 75 IDA
50 3 50 50 50 50 IDA
51 3 50 50 50 50 IDA
59 3 50 50 75 25 IDA
115 3 50 50 100 0 β-thalassemia
121 4 66 34 75 25 β-thalassemia
139 3 50 50 75 25 β-thalassemia
153 2 33 67 75 25 β-thalassemia
189 2 33 67 75 25 β-thalassemia

The machine learning models used were the best for each type and the best indexes were the best 4.

Regarding the most incorrectly classified instances in the multi-class models, Table 4.11, the class

that is less frequently incorrectly classified is the control class, being the easiest class to classify, prob-

ably due to the fact that it is the class with the most instances and has a good consistency. On the

other hand, IDA and α-thalassemia seem to be the most difficult classes to classify, which can be jus-

tified by the scarcity of instances of these classes, since both have less than half of the instances of

β-thalassemia and control, and in the case of the IDA class also by the lack of information about the iron

status of the body that can have led to the low consistency of the IDA class. Even so, one would expect

fewer instances of the α-thalassemia class compared to IDA since the α-thalassemia class did not show

any outliers and is the class with the highest consistency.

Table 4.11: Most frequently misclassified instances in multi-class classification.

Instance
Best machine learning models

Diagnosis
Times misclassified IDA % β-thalassemia % α-thalassemia % Control %

10 4 20 0 0 80 IDA
21 3 40 0 40 20 IDA
29 3 40 60 0 0 IDA
115 3 60 40 0 0 β-thalassemia
159 3 40 40 20 0 β-thalassemia
170 3 60 40 0 0 β-thalassemia
189 3 60 40 0 0 β-thalassemia
195 3 60 40 0 0 β-thalassemia
333 4 80 0 0 20 Control
338 3 40 20 40 0 α-thalassemia
353 4 20 60 20 0 α-thalassemia
357 4 80 0 20 0 α-thalassemia
363 4 0 80 20 0 α-thalassemia
364 3 60 0 40 0 α-thalassemia

The machine learning models used were the best for each type.
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To understand if there was any overlap between the outliers found by Cook’s distance and the most

frequently misclassified instances Venn diagrams were made, Figure 4.11.
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(a) Venn diagrams of the machine learning binary models most
misclassified instances and the outliers detected in the β-
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Figure 4.11: Venn diagrams of the machine learning models most misclassified instances and the out-
liers detected.

In the binary classification three of the instances that were considered outliers, instances 115, 121

and 139, they are also among the instances that are most frequently misclassified by binary models.

In the case of multi-class classification, only instance 115 was considered outlier, while it is among the

most frequently misclassified instances by multi-class models. These three instances, 115, 121 and

139, are all from individuals with β-thalassemia trait.

To understand if there is in fact anything strange about these instances, in Table 4.12 are the features’

values from these patients, the mean values of the features in the different classes and the mean values

of a group of five individuals with both β-thalassemia trait and IDA. The data from the individuals with both

β-thalassemia trait and IDA were also made available by Bárbara Faleiro [73] and Daniela Santos during

their masters dissertations research, but due to the small number of instances (only five observations)

with both conditions it was not included in the multi-class classification.

Table 4.12: Mean feature values per class and some instances’ values.

Features

Hb MCV MCH RDW

Instances
115 12.4 69.9 22.9 32.732.732.7

121 11.6 74.6 25.7 15.2

139 8.2 68.1 20.6 15.9

Class mean

β-thalassemia 11.8± 1.2 65.0± 4.3 20.8± 1.5 15.0± 2.1

IDA 10.1± 1.4 71.5± 6.8 22.7± 2.9 24.8± 12.3

Control 13.7± 1.2 91.4± 4.5 31.6± 1.9 12.7± 1.5

α-thalassemia 13.5± 1.4 81.1± 3.2 25.9± 1.0 14.1± 1.3

β-thalassemia and IDA 12.3± 0.9 60.3± 1.5 19.9± 0.5 34.634.634.6± 0.8
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Regarding instances 121 and 139, some values are a little farther from the β-thalassemia average,

such as the MCV in instance 121 and the Hb in instance 139. Although nothing extraordinary, due to

the high sensitivity of the algorithms it seems to have been enough to lead them to misclassify these

instances. In the case of instance 115, the situation is different, as the RDW is more than double the

average obtained in the β-thalassemia class. A similar value was only obtained in individuals who had

both β-thalassemia trait and IDA, which leads to the suspicion that this subject was misdiagnosed and

that, in fact, instead of just having β-thalassemia trait, he has both β-thalassemia trait and IDA.

In general, due to the percentage of outliers detected through Cook’s distance, we can admit that

in fact some instances may have values a little more distant than what was expected for their class

and therefore it was not possible to achieve greater accuracy. However, it is also important to bear in

mind that the absence of data regarding iron status of the body seems to affect the performance of

these classifiers in identifying patients with IDA and that effectively the more data there is to train the

classifiers, the better their performance will be.
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Chapter 5

Conclusions

5.1 Achievements

Anaemia is a disease that affects millions of people across the world and Portugal is not an ex-

ception. Regarding the microcytic anaemias, its differential diagnosis is important to provide the right

treatment. This way iron overload can be avoided, and genetic counselling can be provided when ap-

propriate. However, the most reliable methods to diagnose thalassemias and IDA are expensive and

time-consuming. Therefore, indexes able to discriminate between β-thalassemia carriers and IDA pa-

tients have been created, in order to make the diagnosis faster and more accessible. These indexes

however, have not revealed to be 100% accurate. The results obtained in this thesis indicate that the

RDWI and G&K are the most reliable indexes for the Portuguese population, with a median accuracy of

95.4% and 92.3%, respectively.

Through molecular diagnosis it was possible to verify that multiple mutations of different severity

can lead to β-thalassemia or α-thalassemia, which gives them variability in the CBC tests, making the

screening by indexes more difficult. In order to pursuit for a higher accuracy, the principal objective of this

thesis was to test different machine learning algorithms with data from the Portuguese population, as

they could allow the creation of a new classifier specifically suited for this population. Beyond that, multi-

class classification was also explored, to enable that, with just one multi-class classifier, it is possible to

distinguish between β-thalassemia carriers, α-thalassemia carriers, IDA patients and healthy subjects,

based on a CBC test alone.

Among all the algorithms tested in this thesis it was possible to conclude that the algorithm that

reaches the best accuracy with little variation, both in the binary and in the multi-class classification

of microcytic anaemia, is the random forest. This algorithm was able to achieve 95.4% accuracy in the

binary classification, to distinguish between β-thalassemia carriers and IDA patients like the indexes, and

93.0% in the multi-class classification. However, as this algorithm tends to overfit the data, measures

must be taken to avoid overfitting the model, which, in this case, was cross-validation.

In an attempt to make the classifiers even more accurate, the M3GP genetic programming algorithm

was used to create binary and multi-class classifiers. However, its accuracy was below those obtained
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with the models created by the random forest algorithm, having reached only a median accuracy of

93.8% in the binary classification and 92.2% in the multi-class classification.

Regardless of the algorithm used to create the model, in the multi-class classification the control

class was found to be the class with the highest median accuracy. On the other hand, patients with

IDA almost always had the worst median accuracy, which means that with the data used this class is the

most difficult to be identified, probably due to the fact that information regarding the iron state of the body

is not being incorporated in the classifiers. The low amount of data of patients with IDA also seems to

have impaired the performance of their classification, with the same being observed in the classification

of α-thalassemia, these classes have less than half the amount of data of the others and are the ones

that present the smallest accuracy.

Considering that the best median accuracy achieved with both binary classifiers and indexes was

not able to surpass the value of 95.4% and the best multi-class median accuracy achieved is 93.0%,

the suspicion of the presence of outliers arose, and for this reason, the consistency within classes was

evaluated, as well as the presence of outliers. Owing to the fact that the average silhouette coefficient

is 0.37, we can say that the consistency of the classes is good in general. However, with negative mean

silhouette coefficient, IDA is the class with the lowest consistency, reinforcing the need to use data

regarding the body’s iron status to identify this disease. This low consistency did not compromise the

differential diagnosis between IDA and β-thalassemia trait in the binary classifiers, most likely because

the β-thalassemia class has a very high class consistency, however, it had a greater impact on the

performance of multi-class models.

To evaluate the presence of outliers, the Cook’s distance was calculated for all the instances used

in the binary and multi-class models. The percentage of outliers found was 5.61% in the data used in

binary models (data from the classes: β-thalassemia and IDA) and 4.36% within all the data (data from

all the four classes). Due to the percentage of outliers detected through the Cook’s distance, we can

admit that in fact some instances may have values a little more distant than what was expected for their

class and therefore it was not possible to achieve greater accuracy.

When comparing the outliers found by Cook’s distance with the most frequently misclassified in-

stances, there was an overlap of three instances (115, 121 and 139) in the data used in the binary

classification and one instance (115) in the multi-class classification. All these instances belong to the

β-thalassemia class. Regarding instances 121 and 139, some values were found to be little farther from

the β-thalassemia class average and due to the high sensitivity of the algorithms it seems to have been

enough to lead them to misclassify these instances. In the case of instance 115, the situation is differ-

ent, as the RDW is more than double the average obtained in the β-thalassemia class. This leads to the

suspicion that this subject was misdiagnosed and that, in fact, instead of just having β-thalassemia trait,

he has β-thalassemia trait and IDA, because its values are more similar to those obtained in subjects

who have both β-thalassemia trait and IDA.

In conclusion, the existing indexes are well adapted to the Portuguese population, especially the

RDWI which presented a median accuracy of 95.4% and even though was not possible to surpass

its performance with the created binary classifiers, it was possible to match it with the random forest
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algorithm, which among all the algorithms presented the best performance, both in the binary and in the

multi-class classification. In addition, it was possible to develop a semi-automatic model able to identify

instances that present features different from what would be expected according to the attributed disease

and, therefore, may require a second analysis.

5.2 Future Work

As a future work, we should seek to obtain more data from patients with microcytic anaemia, espe-

cially from the classes that are less represented in the data used in the scope of this thesis, as it could

allow to obtain classifiers for microcytic anaemias with a higher accuracy.

However, the availability of more data will probably not be enough to reach 100% accuracy consider-

ing that information about the iron status of the body seems to be important for the identification of IDA.

So despite the acquisition of more data, since for now it is not possible to acquire information about the

serum ferritin through the CBC test, it must be analysed whether the cost and time required to obtain

information regarding the iron status of the body compensates for the increase in accuracy, as the main

objective of creating these classifiers is to make the diagnosis faster and more accessible.

Furthermore, since the latest hematology analyzers are already able to use classifiers for diagnosis,

it would be an advantage to be able to add the best multi-class classifier developed in this thesis, in

order to give an early warming and prevent health complications.
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[23] E. Lansiaux, P. P. Pébaÿ, J.-L. Picard, and J. Son-Forget. Covid-19: beta-thalassemia subjects

immunised? Medical Hypotheses, 142:109827, 2020.

[24] R. Origa. β-thalassemia. Genetics in Medicine, 19(6):609–619, 2017.

[25] S. Chaudhary, D. Dhawan, P. G. Bagali, P. S. Chaudhary, A. Chaudhary, S. Singh, and S. Vudathala.

Compound heterozygous β+ β0 mutation of hbb gene leading to β-thalassemia major in a gujarati

family—a case study. Molecular Genetics and Metabolism Reports, 7:51–53, 2016.

[26] D. R. Higgs. The molecular basis of α-thalassemia. Cold Spring Harbor perspectives in medicine,

3(1):a011718, 2013.

56

https://github.com/BeatrizNL/ml-anaemia
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