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Resumo

O uso humano de exoesqueletos tem aumentado nos últimos anos e, portanto, o desenvolvimento

de ferramentas computacionais para simulação e melhoramento das interações homem-máquina e

homem-ambiente é fundamental.

Este trabalho descreve uma nova metodologia para a análise dinâmica e estrutural de sistemas

biomecânicos que apresenta a utilização de um software de Dinâmica de Sistemas Mecânicos (DSM)

em constante comunicação com um programa do Método de Elementos Finitos (MEF). O software DSM

fornece a posição relativa dos corpos em contato ao programa MEF que realiza a deteção de contacto

e o cálculo das respetivas forças, que são reportadas de volta ao primeiro código. A metodologia de co-

simulação implementada combina a simplicidade e eficiência da formulação multicorpo no tratamento

da cinemática e cinética global do sistema com a análise estrutural detalhada fornecida pelo MEF.

A primeira aplicação do código desenvolvido foi o problema base de contacto bola-plano e os re-

sultados obtidos foram validados através da comparação com um modelo de contato já estabelecido.

Seguidamente foi considerada a simulação do contacto pé-solo durante a marcha humana, envolvendo

a aquisição de dados experimentais de natureza geométrica, cinemática e cinética, e no desenvolvi-

mento de um modelo de pé geometricamente preciso mas fisiologicamente simplificado. As forças

de reação do solo e as distribuições de pressão obtidas provaram ser consistentes com os dados

experimentais correspondentes. No entanto, algumas discrepâncias são destacadas principalmente

relacionadas com o modelo de fricção simplificado considerado e à posição elevada dos dedos do pé

na geometria digitalizada 3D utilizada no modelo do pé.

Palavras-chave: Co-Simulação, Sistemas Multicorpo, Elementos Finitos, Contacto Pé-Chão,

Marcha Humana.
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Abstract

The human use of exoskeletons has been rising in recent years and, therefore, the development

of computational tools to simulate and improve human-machine and human-environment interactions is

fundamental.

This work describes a new methodology for the dynamic and structural analysis of biomechanical

systems that features the use of a Multibody System Dynamics (MSD) software in constant communi-

cation with a Finite Element Method (FEM) program. The MSD software provides the relative position of

the contacting bodies to the FEM program that performs contact detection and the calculation of the con-

tact forces, which are reported back to the multibody side of the code. The implemented co-simulation

methodology combines the simplicity and efficiency of the multibody formulation in handling the global

kinematics and kinetics of the system with the detailed structural analysis provided by FEM.

The first application of the developed software was the benchmark problem of the bouncing ball

and the obtained results were validated through comparison with an already established contact model.

Next, the simulation of foot-ground contact during human gait was considered, resulting in the acquisition

of experimental data of geometric, kinematic and kinetic nature, and the development of a geometrically

accurate but physiologically simplified foot model. The obtained ground-reaction forces and pressure

distributions proved to be consistent with the correspondent experimental data. However, some discrep-

ancies are highlighted mainly related to the simplified friction model considered and the elevated position

of the toes in the 3D scanned geometry used for the foot model.

Keywords: Co-Simulation, Multibody Systems, Finite Element, Foot-Ground Contact, Human

Gait.
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Chapter 1

Introduction

1.1 Motivation

In the animal kingdom, an external skeletal structure that provides support and protection against

predators and the environment is known as an exoskeleton [1]. When referring to humans, an exoskele-

ton is a structural mechanism worn externally in order to enhance physical performance [2, 3]. Interest

in exoskeletons and their potential in both rehabilitation of patients with disabilities and performance

enhancement of healthy subjects has been growing in recent times [4]. When designing an exoskeleton

or an assistive device, one of the most fundamental aspects to have in consideration is comfort. This

type of devices are often used for long periods of time, so discomfort can dictate their acceptance or

rejection by the user. Therefore, it is important to study the structural compatibility between the user and

the exoskeleton, by estimating the forces generated in the human-machine interface, as these forces

are directly related to the pressure and wear transmitted to the skin. Furthermore, at the same level

of importance, the adequate characterization of the interface forces generated between the user and

the surrounding environment is also of paramount relevance. Not only these forces relate directly with

comfort issues but also their accurate estimation is a fundamental input for the correct simulation and

analysis of the human movement.

Given that the human body presents significant differences in terms of physiognomy between indi-

viduals, the design of exoskeletons usually implies a level of personalization to the user’s characteristics.

This further exacerbates the need to keep the designing process lean and cheap. Therefore, the inclu-

sion of computational simulation and analysis while designing this type of devices is mandatory, since

it allows the iteration phase to occur before prototyping is initiated, reducing waste and, consequently,

unnecessary costs. Additionally, and if desired, it provides data for the entire system, while physical

measurements are often limited by anatomical access to specific body sections. However, the accu-

racy in predicting human-exoskeleton contact forces and the resulting movement through computational

methods is still limited [5].

In Biomechanics, multibody dynamics methodologies are usually considered for gross-motion anal-

ysis and simulation, having as advantages their relative simplicity and low computational cost, but pro-
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ducing data with limited accuracy in regards to contact forces. On the other hand, in other fields of

engineering, resorting to detailed structural analyses is very common, being the Finite Element Method

(FEM) an extremely prominent computational tool to achieve such objective. This methodology is asso-

ciated with high data accuracy but also with an high computational effort. If made compatible with one

another, these two approaches can allow for highly accurate data at significantly lower computational

cost.

1.2 Objectives

The main objective of this work is to develop a computational methodology that allows for the detailed

and accurate estimation of the human-exoskeleton and human-environment contact forces. With such

objective in mind, a co-simulation strategy is adopted, in which a multibody program takes care of the

dynamics of the combined system and a finite element method code deals with the complex deforma-

tions occurring at the interface. The use of both methodologies in a co-simulation environment is, to

the author’s knowledge, unprecedented for this type of application and it aims to take advantage of their

complementary nature. It is important to note that, even though the main objective of the work refers to

contact in the human-machine interface in a general way, meaning it can be in any part of the human

body, as a starting point, the study of the interaction between the foot and the ground was selected.

The development of the required software resulted in the addition and adaptation of two already

existing computer programs: on the multibody side, a contact module was created and implemented

in a Matlab (MathWorks, Natick, MA) program developed in house and on the FEM side, a Fortran

program was adapted and further developed to accommodate the communication with the multibody

part. Both programs are briefly described in subsequent sections, while the contact module developed

in the context of the this work is presented in more detail, throughout the document.

1.3 Literature Review

In order to contextualize the work developed in this document, a brief overview of the main topics

is presented next, including methodologies centered around co-simulation between Multibody System

Dynamics (MSD) and Finite Element Method (FEM), the main foot models proposed in recent years, the

main marks in the history of exoskeleton design and their main applications, and the study of comfort.

1.3.1 Co-simulation

In this work, a co-simulation methodology is proposed between a MSD software and a FEM pro-

gram. The two codes are in continuous communication throughout the simulations, complementing

each other’s strengths and shortcomings by producing precise data at a reduced computational cost.

Co-simulation methodologies between MSD and FEM are still very scarce. Even though its potential

is promising, its implementation is rather complex and, therefore, the work produced is still of an ex-
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ploratory nature. However, some work has been published with co-simulation methodologies that bridge

the gap between these two domains. Monteiro et al. [6] proposed a similar co-simulation methodology

to the one used in this present work but applied to the study of cervical spine dynamics, in which an

intersomatic fusion is simulated to confirm its potential advantages. Müller et al. [7] presented a co-

simulation workflow to predict the patellofemoral joint kinematic behavior and contact, combining rigid

body dynamics with a nonlinear finite element analysis. Ambrósio et al. [8] proposed a co-simulation

environment that uses an integrated memory shared communication methodology between a multibody

and a finite element code applied to the interaction of highspeed catenary-pantograph system. Finally,

Dietz et al. [9] and Olivier et al. [10] also applied a co-simulation methodology to simulate the interaction

between vehicles (described using MSD) and flexible tracks and soil (associated with FEM).

Although promising, it is possible to conclude that this type of work is quite recent and still in early

development. However, it is expected that, with advances in computational efficiency and development

of more generic software, the challenges in combining these two domains will be reduced and they will

be more intertwined in the future.

1.3.2 Foot Models

The human foot is a complex system composed by bones, joints, ligaments and muscles, that provide

support for the rest of the human body and allow a wide range of different movements. Therefore, a

realistic representation of contact in this body section in computational models can be challenging.

A vast array of different foot-ground contact models are proposed in the literature and it is important

to understand what type of assumptions and simplifications are considered. Therefore, a brief overview

of the main differences found in these models is provided next.

Saraiva et al. [11] present a detailed review of foot-ground contact models considered by different

authors, in recent years. This review features 2D and 3D formulations, and both barefoot and shod foot

models. Given the scope of this work, only 3D barefoot models were analyzed. The different models

can be classified in regards to the geometric representation of the contacting surface, the modeling

assumptions considered and the numeric contact model adopted.

In terms of the representation of the foot, models can consider specific contact points or approximate

the bottom of the foot as a combination of geometric shapes, depending on the desired accuracy and

computational efficiency. In the first case, the number of contact points defined can vary, as well as

their location. There are many examples of models that only consider a single contact point [12–15], but

cases in which four [16], twelve [17] (see Figure 1.1) or even forty [13] are also available in the literature.

In the second case, the most common geometric shapes used are spheres [18, 19] and ellipsoids [20].

Moreira et al. [21] proposed a model in which the main foot and the toes are represented by a set of

spheres, as illustrated in Figure 1.1(b). Contact is simulated between these spheres and the rigid floor,

using a contact model based on the work by Kelvin-Voigt and Hunt and Crossley, which are discussed

in detail in the next section.

Jansen et al. [18] also described the foot’s geometry with the use of spheres, but proposed a dif-
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(a) (b)

Figure 1.1: Foot-ground contact models proposed by Fluit et al. [17] (a) and Moreira et al. [21] (b).

ferent contact model: the elastic foundation method. In this method, contacting bodies are considered

rigid with a thin layer of elastic material in their surfaces. The geometry of each contacting surface is

approximated with a triangular mesh of suitable density, and at the centroid of each triangular element

a spring is placed. In contacting elements, a contact force is calculated in terms of the characteristics

of the corresponding spring. The stiffness of this spring is associated with the area of the respective

element, the mechanical properties of the chosen material and the thickness of the elastic layer [22].

Another common simplification, which was considered by Moissenet et al. [12] and also adopted in

this present work, is the assumption of null acceleration and velocity at the contact point throughout the

entire contact phase. This can have implications on the results, depending on the friction model applied,

which will be discussed later in this document.

A deeper analysis of the main contact models considered in this work is presented in the next chapter,

in which their numerical formulations are compared.

1.3.3 Exoskeleton Design

There is no denying that the interest in exoskeletons and their potential in solving human physical

shortcomings in different fields in society has been increasing in recent years. This is evident by the

increased number of scientific papers being published on the topic, year after year [23, 24].

Before briefly exploring the evolution of exoskeletons through time, it is important to note that several

types of these devices can be identified based on their application purpose. As previously mentioned,

exoskeletons can have different purposes (replacement of normal physical performance, rehabilitation

or enhancement beyond human capabilities) and, therefore, be applied in different fields of society

(biomedical, industrial, military or sports). They can also be divided into: active and passive, in regards

to type of actuation and power consumption [25]; tethered and untethered, in terms of their adaptability

to everyday outside a clinical environment [26]; and between weight-bearing (which transfer load directly

to the ground and reduce the user’s physical stress) and joint-targeting (in which an additional torque is

applied to a specific joint or joints in order to achieve a physiological goal [27]). Exoskeletons can also

support the entire human body or only interfere with a specific section.
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The earliest mention of a device similar in appearance and purpose to what is considered an ex-

oskeleton nowadays dates back to 1890, when Nicholas Yagin, a russian engineer, developed an appa-

ratus for assisting movement. He was granted a US patent for his device, which could be described as

a long bow operating in parallel to the legs of the user [1, 24]. This mechanical structure would assist

the user in walking, running and jumping, and its concept model is presented in Figure 1.2.

Figure 1.2: Concept model of Yagin’s exoskeleton [28].

The term ”exoskeleton” was only associated with its current meaning in the 1960s, when the US

Armed Forces and General Electric created the first powered exoskeleton, named Hardiman, which

allowed a ratio of strength enhancement of 25 for human limbs, it had 30 degree of freedoms and weight

around 680 kg [1, 24].

In more recent years, in 2004, the Human Engineering and Robotics Laboratory of the University of

California, Berkeley, presented BLEEX to the world, the first functional energetically autonomous load

carrying human exoskeleton (see Figure 1.3(a)). This exoskeleton was designed for strength and en-

durance enhancement of soldiers, disaster relief workers, wildfire fighters, and other emergency person-

nel [29]. Another modern example of an exoskeleton designed for a military environment and, therefore,

to augment the performance of physically able users is HULC [30] (see Figure 1.3(b)).

However, as previously mentioned, exoskeletons can also be developed to replace or rehabilitate

the user’s natural physical ability. University of Tsukuba’s HAL exoskeleton (see Figure 1.4) special-

izes in assisting users who suffer from spinal cord injuries, traumatic brain injuries and cerebrovascular

diseases. It detects the user’s bio-electrical signals sent by the brain to the muscular system when a

movement is eminent and performs referred movements in accordance with the wearer’s voluntary com-

mands [31]. Other examples in the medical field are eLEGS (see Figure 1.4, once again from Berkeley,

which targets paraplegic users and gives them the ability to stand and walk again with the aid of crutches

[32]; ReWalk (see Figure 1.4), which provides powered hip and knee motion to enable individuals with

spinal cord injury to stand upright, walk, turn and climb and descend stairs; and ReStore (see Fig-

ure 1.4), which focuses on the rehabilitation of individuals with lower limb disability due to stroke and

illustrates that, depending on the size of the targeted area, exoskeletons can vary in their bulkiness [33].
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(a) (b)

Figure 1.3: Berkeley Lower Extremity Exoskeleton (BLEEX) [29] (a) and Human Universal Load Carrier
(HULC) [30] (b).

(a) (b) (c) (d)

Figure 1.4: Exoskeleton types: HAL [34] (a), eLEGS [32] (b), ReWalk [33] (c) and ReStore [33] (d).

1.3.4 Comfort

As previously stated, a comfortable adjustment of an exoskeleton over the biological structures of the

user is instrumental. When wearing an exoskeleton or an orthosis, contact and friction forces between

the device and the skin tend to develop, and the magnitude of said forces is crucial if the design is to

take into account the patient’s comfort. In particular, if the exoskeleton is to be used by people with

neuromuscular pathologies, the lack of sensitivity in the lower limbs can often lead to wounds as a
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consequence of inappropriate designs [35].

Therefore, it is extremely important to define the user’s comfort and to find ways to measure it,

especially because it is a very subjective concept.

The term comfort is often used on the basis of common knowledge regarding its meaning. It is

expected that the meaning is self evident, leaving its definition rather dubious [36].

Oxford’s Dictionary defines comfort as ”the state of being physically relaxed and free from pain” [37],

while, as stated in [22], Zhang et al. define it as lack of discomfort or a feeling of well-being. Both

of these definitions present two ways of measuring comfort: by quantifying a person’s wellness or by

their lack of discomfort. The latter is often preferred because the physiological mechanisms associated

with discomfort or pain are well documented and, therefore, a patient’s well being can be determined

in relation to their level of unwellness. Discomfort or pain are associated with sensory neurons known

as nociceptors, that alert the body to potentially damaging stimuli at the skin, whether it be related to

extremes in temperature, pressure and injury-related chemicals. These stimuli are transduced into long

ranging electrical signals that are relayed to higher brain centers [38].

In the context of exoskeleton design and other mechanical structures to be used by humans, such

as orthosis, comfort is usually evaluated through pressure pain thresholds (PPT), meaning the minimum

intensities of pressure stimuli that are perceived as painful [39].

1.4 Thesis Outline

Chapter I - The first chapter serves as an introduction to the work developed. It addresses the

motivation behind it and its main objective, while also providing some context regarding its exploratory

and, consequently, ever adapting nature. The chapter closes with a brief overview of the topics that are

at the core of the work.

Chapter II - The second chapter focuses on delivering theoretical knowledge needed to understand

the applied methodology and result analyses presented later.

Chapter III - The third chapter is dedicated to explaining the multibody formulation. Its main equa-

tions are presented, the advantages of using the Fully Cartesian Coordinates formulation (FCC) are

highlighted and the developed work is contextualized within the multibody system formulation. At the

end of the chapter, a multibody software developed in Matlab is concisely introduced, accompanied by

a brief description of the main additions resultant of this work.

Chapter IV - The fourth chapter shifts the attention to the Finite Element Method side of the work.

SimPlas, a FEM Fortran software used in this work is presented, and the main computational techniques

implemented are described in detail.

Chapter V - The fifth chapter introduces the bouncing ball problem as the benchmark contact exam-

ple, that is used for theoretical validation of the contact models implemented. The formulation used for

each one of the contact models implemented is showcased, followed by the obtained results.

Chapter VI - The sixth chapter marks the transition into practical applications of the developed soft-

ware. The chapter begins with a listing of all experimental procedures performed in order to gather all the
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necessary data. This data includes information used for the formulation of a satisfactory foot model and

the kinematic and dynamic behavior of a human foot during a gait cycle (human walking). The chapter

ends with the presentation and discussion of the results associated with the gait analysis performed.

Chapter VII - The seventh and final chapter concludes the work with its main considerations, present-

ing a critical overview of the developed work. The main obstacles are listed, alongside the knowledge

gathered from them and remarks are made about what could be done in the future to progress this type

of methodology.
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Chapter 2

Background

2.1 Ankle-Foot Biomechanics

In order to ensure reasonable simulation results, it is necessary to strive to create a model of the

ankle-foot structure as realistic as possible. Therefore, a brief description of its main structural compo-

nents, how they interact with each other and how that interaction results in motion is presented below.

The ankle-foot system is located in the lower extremity of the human body and it is responsible for

supporting its weight during standing and for providing stabilization in gait. Consequently, it is reason-

able that the anatomy of the ankle-foot is complex and robust. It is composed of: bones, which provide

structural integrity and rigidity; joints, that are associated with flexibility and range of motion; and mus-

cles, which control movement. Given that in the present work the muscular system is not featured in the

adopted foot model and its influence is not contemplated in the simulations, they will not be discussed

in the present overview.

Two different views of the skeleton structure of the ankle-foot are presented in Figures 2.1 and 2.2,

its superior and medial views, respectively.

Starting from the top, the foot is connected to the rest of the human body through the ankle artic-

ulation, which connects the talus, in the foot, to the tibia and fibula, located in the lower part of the

leg.

The bones in the foot can be organized in three distinct groups: tarsal, metatarsal and phalanx bones.

Beginning from the proximal portion of the foot, there are seven tarsal bones. The talus is located on

top of the largest and strongest tarsal bone, the calcaneus, which forms the heel and has the Achilles

tendon attached to it. The navicular bone sits between the posterior portion of the talus and the anterior

section of the cuneifornms (medial, intermediate and lateral). These three bones form a row alongside

the cuboid, which is a cube shaped bone that lies on the most lateral position of this distal row [21].

The middle section of the foot is characterized by the metatarsal bones. These long bones form

articulations that are connected to the proximal portion of the foot by the tarsometatarsal joints and

connected to the distal section of the foot by the metatarsophalangeal joints. There are five metatarsal

bones, each associated to one toe, and they are slightly distinct in regards to size and shape. The first
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Figure 2.1: Superior view of ankle-foot bone structure [40].

Figure 2.2: Medial view of ankle-foot bone structure [40].

metatarsal is the shortest and widest, and its base articulates with the medial cuneiform. The second

metatarsal extends further than the first one, making it the longest of the metatarsal bones, and its

base articulates with the intermediate cuneiform, as well as with the medial and lateral cuneiforms in a

”key-like” arrangement. This ensures stability and structural robustness. The additional three metatarsal

bones are all very similarly shaped: broad at the base, narrow in the shaft and dome shaped in the head

section. The third articulates at its base with the lateral cuneiform, while the fourth and fifth ones are

connected to the cuboid [21].

Finally, in the distal portion of the foot, the metatarsal bones are connected through the metatar-

sophalangeal joints to the phalanx bones. The big toe or hallux, which is associated to the first metatarsal

bone, is composed by two phalanges, while all other toes have three phalanges in their structure. The

main function of these bones is to ensure stability, weight bearing and distribution, and to promote

propulsion during human locomotion and other types of movement [21].
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Focusing now on joints, the foot is composed by six main joints, which allow motion and ensure that

the body’s contact with the floor is done at the most comfortable and stable angle at all times. As seen

in Figure 2.3, the six joints are: ankle, subtalar, midtarsal (talonavicular and calcaneocuboid joints),

tarsometatarsal, metatarsophalangeal and interphalangeal [21].

Figure 2.3: Main joints of the ankle-foot [41] (edited).

A joint is a link between two bodies that allows movement (translation or rotation) in some directions,

while restricting it in others. In the present case of the ankle-foot system, only rotational joints will be

considered. Each rotation occurs about an axis in a plane of motion. In biomechanics, the three planes

that define space are the sagittal plane, the frontal or coronal plane and the transverse plane (see Figure

2.4). Before presenting in detail each one of the ankle-foot joints, it is important to define what types of

movements are associated with the foot.

Figure 2.4: Anatomical planes [42].
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The foot is capable of performing 4 types of motion: adduction/abduction, plantarflexion/dorsiflexion,

inversion/eversion and supination/pronation. Figure 2.5 represents, in a very simple way, the three axis

around which the foot is able to rotate.

Figure 2.5: Foot movements [43].

Adduction of the foot occurs when its distal section rotates over its proximal section (heel) in the

transverse plane, towards the body’s midline. Abduction is characterized by a similar rotation but away

from the body’s midline. Plantarflexion and dorsiflexion of the foot can be described, once again, by a

rotation of its distal section over its proximal section, but this time in the saggital plane. Plantarflexion

is associated with a downward motion of the foot (away from the tibia), while dorsiflexion describes a

upward movement (closer to the tibia). In the frontal plane, the foot is capable of being inverted or

everted. The inversion of the foot occurs when it is tilted, such that its plantar surface is facing the

body’s midline and, naturally, eversion of the foot occurs when its plantar surface is facing away from the

body’s midline. Finally, supination results from the simultaneous occurance of adduction, inversion and

plantarflexion of the foot, while pronation is associated with the combination of abduction, eversion and

dorsiflexion of the foot [44].

Now that the available movements of the foot are defined, it is possible to fully characterize each

one of the joints and to illustrate how they contribute for its general motion. In regards to number of

degrees of freedom, the six foot joints can be organized in two different groups: the midtarsal, metatar-

sophalangeal and interphalangeal joints have two degrees of freedom, while the ankle, subtalar and

tarsometatarsal only have one. The first three joints are responsible for the adduction/abduction and

plantarflexion/dorsiflexion of the foot, and it is important to note that these can occur independently.

Starting once again from the distal section of the foot, the ankle joint is the link between the foot

and the rest of the human body. It connects the distal section of the tibia to the talus bone and it is

responsible for the foot’s ability to dorsiflex or plantarflex. The subtalar joint is comprised of both the

talocalcaneal joint and the talocalcaneal portion of the talocalcaneonavicular. This joint is associated
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with the supination and pronation of the foot. The midtarsal joint is composed by the talonavicular and

the calcaneocuboid joints. As previously stated, this joint is associated with two axes of motion, one

oblique and the other longitudinal, which are confined to the talonavicular joint and the calcaneocuboid

joint, respectively. It is important to note that, although each axis only allows movement in one plane,

because the combined angles act in the three body planes, the supination/pronation motions are linked

to this joint. The tarsometatarsal joints are located in the interface between the posterior portion of the

metatarsal bones and the lesser tarsus, and are only capable of a slight gliding motion (except between

the first metatarsal and the medial cuneiform bones, where considerable movement is possible). The

metatarsophalangeal joints are located between the round heads of the metatarsal bones and the bases

of the phalanges, and are responsible for large extensions of the phalanges but small flexions. Finally,

as the name hints to, the interphalangeal joints lay between the phalanges and allow extension, which

is linked to abduction, and flexion, which is linked to adduction.

2.2 Gait Cycle and Foot-Ground Contact Forces

Human walking, scientifically referred to as gait movement, can be defined as a method of locomotion

involving the use of two legs, alternately, to provide both support and propulsion [45].

Since it is one of the most basic human movements, the interest in analyzing it and breaking it down

into different phases has been present in mankind’s mind for centuries. Going as far back as ancient

Greece, Aristotle (384–322 BCE) is recognized as the first known written reference to the analysis of

human walking. Naturally, the tools and procedures available to perform an in depth analysis of the

movement were practically non-existent and, therefore, his observations were not scientifically tested

and remained, for many centuries, just observations. The further understanding of human anatomy

that characterized the time of the Renaissance in Europe or the invention of photography a couple of

centuries later are great examples of developments on different scientific fields that provided a gradually

more robust basis for the analysis of human locomotion. The most relevant definitions, concepts and

analysis techniques tend to be the most recent ones and, consequently, those will be the ones addressed

in this work. However, the interest reader on the full historic timeline of human walking related findings

is directed to the work developed by Baker [46].

Focusing on the last decades, through the invention of new analysis techniques and gradually more

precise data, the characterization of the different phases present in gait has simultaneously become

more precise and controversial. The different classifications of the several sub-phases of the gait move-

ment made by the main modern authors in the field are presented in Table 2.1, which was adapted from

the work of Baptista [22].

In this work, the classification system considered is the one by Whittle [45], which in turn agreed with

the one proposed by Perry [47]. This is regarded as the most commonly used formulation in the field.

Even though different authors disagree on the classification of sub-phases, there is consensus around

the two main phases and the starting point of a gait cycle, as it will be seen hereafter.

Considering the stride of one leg, each gait cycle is commonly divided into two periods: the stance
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Table 2.1: Major classification system of the gait cycle sub-phases (adapted from [22])

phase and the swing phase (see Figure 2.6). The stance phase encompasses the period during which

the foot is in contact with the ground (around 60% of the cycle), while the swing phase refers to the

period in which the foot is in the air for limb advancement (around 40% of the cycle).

Figure 2.6: Different phases and sub-phases during a gait cycle on a normalized time scale [45].

By definition, a gait cycle is the period of time between any two identical events during walking.

However, the common convention dictates that a gait cycle begins and ends with the heel strike, marking

also the beginning of the stance phase. This event is characterized by the initial contact of the leading

limb with the ground and marks the beginning of the load response sub-phase. This sub-phase sees

the leading limb taking over the full body weight by fully placing the foot in contact with the ground.
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Once this happens, foot flat is achieved. Next, during the midstance sub-phase, the body advances

and the opposite limb swings forward. This section of the movement puts the subject in some instability,

given that the supporting base is smaller and the center of gravity is higher. Once the opposite limb

achieves the heel strike, the leading limb reaches heel off. This event sees the heel lose contact with the

ground and it marks the beginning of the terminal stance sub-phase. During terminal stance, the body

moves forward and as the leading limb gradually reduces contact with the ground, the pre-swing sub-

phase occurs. The continuous propulsion of the body results in the toe-off event, in which the contact

between the toes and the ground is lost and the swing phase is initiated. During the swing phase, the

leading limb moves all the way from the back of the body to the front, passing through the opposite

limb that is in the stance phase. The swing phase is divided into three different sub-phases: initial, mid

and terminal swing. In the initial swing sub-phase, the leading limb accelerates forward, reaching the

mid-swing sub-phase, in which the swinging limb passes the opposite limb, finally reaching the terminal

swing sub-phase, in which deceleration occurs in preparation of a new heel strike event. Naturally, this

ends the swing phase and begins a new gait cycle [48].

The identification of specific gait events, phases and sub-phases is instrumental for laying a solid

base for nearly all aspects of gait analysis. Gait was previously described in a spatial dimension, mean-

ing the focus was on the positioning and orientation of the limbs, but it can also be described from a

temporal perspective. This approach focuses, naturally, on the duration of each section. When dealing

with gait analysis, it is important to consider both aspects, since pathologies can affect gait’s spatial and

temporal components independently [49].

Whether the gait analysis is being performed on a healthy subject or with the purpose of diagnosing a

certain pathology, the available techniques and equipment for data collecting have been rising in recent

years. Gait analysis, and all other multibody system analysis, are based on kinematic and kinetic data.

On the one hand, the term kinematics refers to the study of a movement without taking into account

the underlying forces that cause the movement. The focus is solely in the position, velocity and acceler-

ation of sections of the multibody system. This type of data can be collected from direct measurement of

linear and angular displacements of body sections provided by joint angles, limb velocities and accelera-

tions [48]. A more recent method of indirect measurement of the movement is based on motion capture

(MOCAP) systems. A group of cameras is set around the laboratory and through reflective markers

attached to the body, anatomical relevant points are tracked throughout the movement. It is important

to note that markerless MOCAP systems also exist and are starting to be used when the focus is the

overall behavior of the whole body, while marker based systems are still preferred when a specific body

section is under study, giving their higher precision. In the case of gait analysis, the placement of the

markers is more dense on the lower limbs than the rest of the body, as it will be seen in a later chapter.

On the other hand, the term kinetics is associated with the study of the forces and moments that

cause motion. These can be gravitational forces, external forces, forces produced by muscle contrac-

tions and ground reaction forces. Since the scope of this present work is the accurate determination of

the contact forces, the focus is pointed towards ground reaction forces and the respective data collecting

techniques and equipment. Ground reaction forces are registered through the use of force plates. These
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plates are placed on the ground and the subject is asked to performed the movements on top of them.

On the case of gait analysis, the laboratory setup usually resembles the one depicted in Figure 2.7.

Figure 2.7: Laboratory setup for data acquisition for gait analysis [50].

2.3 Contact Models

As previously established, one of the most important aspects in the design of exoskeletons is the

user’s comfort, which is directly related to the contact forces in the human-machine interface. These

forces are associated with contact-impact events that frequently occur and dictate the behavior of multi-

body systems [51].

Impact is described by Gilardi et al. [52] as a complex phenomenon which occurs when two or more

bodies collide for a very brief duration, involving high force levels, rapid dissipation of energy and large

changes in acceleration values. Additionally, contact is assumed to be a continuous process which takes

place over a finite time. However, impact and contact are usually used interchangeably.

Contact analysis and models can be divided into two different approaches, depending on the char-

acteristics of the contact problem considered. On the one hand, the nonsmooth dynamics formulation is

based on geometrical constraints and considers rigid bodies, meaning deformations are small enough

to not influence the global motion of the body. With this formulation, unilateral constraints are used to

compute contact impulses that prevent the occurrence of penetration. On the other hand, the regular-

ized approach is associated with flexible bodies, meaning the deformation of the bodies in the contact

zone is allowed, and the contact forces are determined based on the indentation or compliance of the

contact surfaces. This approach basically considers that the contacting surfaces are covered by spring-

damper elements [53]. The nonsmooth dynamics formulation is computationally efficient but it is not fit
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for a general-purpose program, requiring distinct numerical strategies for different contact scenarios. In

contrast, the regularized or continuous approach is much more capable of handling distinct contact prob-

lems, given that some contact parameters are well calibrated, including the equivalent stiffness or the

degree of nonlinearity of the indentation. Therefore, given its overwhelming advantages, the regularized

approach has been steadily more present in the most popular commercial multibody programs.

Next, some of the main continuous contact models that marked the evolution of the field are pre-

sented, starting by the pioneering work of Hertz, over which all of the subsequent models were devel-

oped upon.

Hertz’s Contact Model

Hertz’s work [54] is still regarded as the foundation for the majority of contact problems that arise

in all kinds of engineering applications. The model is based on the theory of elasticity and the collision

between two spheres of isotropic materials. It relates the contact force with a nonlinear power function

of the penetration and it is expressed as

FN = Kδn (2.1)

where K represents the generalized stiffness parameter, δ is the relative normal deformation between

the contacting bodies and n is typically equal to 1.5 for cases where there is a parabolic distribution of

contact stresses, as in the original work by Hertz [54]. The generalized stiffness parameter is associated

with the material properties and shape of the contacting surfaces.

For the case of contact between two spheres i and j, K is obtained using the radii of both spheres

and their material properties as

K =
4

3(σi + σj)

√
RiRj

Ri +Rj
, (2.2)

in which the material parameters σi and σj are obtained through

σl =
1− ν2l
El

(l = i, j) (2.3)

where νl represents the Poisson’s ratio and El represents the Young’s modulus, for each sphere.

It is evident in (2.1) that the contact is being modeled as a nonlinear spring that acts in the direction

of the collision and, therefore, it is limited to elastic deformations and does not account for any damping

effect. These limitations became the motivation for the subsequent contact models, including the one

proposed by Hunt and Crossley [55].

Hunt and Crossley’s Contact Model

After the addition of a Kelvin-Voigt like damping term to the Hertz’s model [54], Hunt and Crossley

[55] demonstrated that the linear spring-damper model does not represent the physical nature of energy
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transferred during the contact. Alternatively, they proposed the addition of a nonlinear viscous-elastic

element to Hertz’s force-deformation law, resulting in

FN = Kδn + χδnδ̇ (2.4)

where δ̇ is the relative normal contact velocity and χ is the hysteresis damping factor, which is given by

χ =
3K(1− cr)

2δ̇(−)
(2.5)

in which, once again, K represents the generalized stiffness parameter, cr represents the coefficient of

restitution and δ̇(−) represents the initial contact velocity.

Therefore, the Hunt and Crossley’s model can be represented in a more concise form as

FN = Kδn
[
1 +

3(1− cr)

2

δ̇

δ̇(−)

]
(2.6)

This model solved some problems that its predecessors had, regarding discontinuities at the initial

and final instants of contact, that is, contact starts and ends with a null value for the contact force [51].

By observing (2.5), it is possible to note that when considering a perfect plastic contact, i.e., cr = 0,

the hysteresis damping factor is not infinite as it would be expected. Consequently, this model is suited

for hard contacts with high values of the restitution coefficient, and it does not accurately predict contact

between soft materials. This was the motivation for the model presented by Flores, which is discussed

in the next section.

Flores Contact Model

With a similar expression as (2.6), Flores’ model [51] is described by

FN = Kδn
[
1 +

8(1− cr)

5cr

δ̇

δ̇(−)

]
(2.7)

with

χ =
8K(1− cr)

5cr δ̇(−)
(2.8)

As previously mentioned, this model aims to address contact problems, regardless of the restitution

conditions felt (from soft to hard materials). From the analysis of (2.8) it becomes clear that for a perfectly

elastic contact (cr = 1), the hysteresis damping factor assumes a null value, and when the contact is

purely plastic (cr = 0), the hysteresis damping factor is infinite, which is coherent from a physical point

of view [51].
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Chapter 3

Multibody Dynamics with Fully

Cartesian Coordinates

A multibody system can be defined as an array of rigid or flexible bodies that have their relative motion

constrained by kinematic joints and that are acted upon by forces. These forces may be associated with

springs, dampers, actuators or external forces [21].

In this section, the main equations associated with multibody dynamics are presented, followed by

a brief description of the Fully Cartesian Coordinates (FCC) formulation, highlighting its advantages.

Finally, the focus of this present work is formally defined, contextualizing it within the methodolgy asso-

ciated with multibody dynamics.

3.1 Fundamental Equations of Multibody Dynamics

Since the FCC formulation is associated with dependent coordinates, the vector of generalized coor-

dinates (q) is composed by a greater number of coordinates than the degrees of freedom (DoFs) of the

system. Therefore, the need for kinematic constraint equations arises in order to express the dependen-

cies between generalized coordinates. These equations form the vector of kinematic constraints of the

system (Φ), resulting in the following expression:

Φ(q, t) = 0 (3.1)

The solution of equation (3.1) provides the kinematic consistent position of any element of the multi-

body system during the analysis’ period. Its solution is obtained numerically, given its non-linearity

nature. Several numerical methods could be selected but the Newton-Raphson method was the one

chosen in this present work, and it was implemented as represented in equations (3.2):

Φq∆qk = −Φ(qk, t)

qk+1 = qk +∆qk

(3.2)
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where Φq represents the Jacobian matrix of the system, which is composed by the partial derivatives of

the kinematic constraints, with respect to the generalized coordinates. For a certain time step t, the index

k represents the iteration number and ∆qk is the residual of the Newton-Raphson method. The iteration

process will occur until the norm of the residual vector (∥∆qk∥) is smaller than a specified tolerance.

In order to fully characterize the kinematics of the system, it is necessary to define the generalized

velocities (q̇) and accelerations (q̈). The following equations are considered:

Φ̇(q, q̇, t) = 0 ⇔ Φqq̇ = ν = −Φt (3.3)

Φ̈(q, q̇, q̈, t) = 0 ⇔ Φqq̈ = γ = νt − (Φqq̇)qq̇ (3.4)

where ν and γ represent the right-hand-side vectors of the velocity and the acceleration equations,

respectively. Additionally, Φt and νt are the vectors that hold the partial derivatives of Φ and ν with

respect to time.

For a constrained multibody system, the equations of motion are as follows:

Mq̈+ΦT
qλ = g (3.5)

where M represents the global mass matrix of the system, λ is the vector of the Lagrange multipliers

and g is associated with the vector of generalized external forces.

Equation (3.5) can be solved through two different perspectives: forward dynamics and inverse dy-

namics.

Forward Dynamics

When analyzing a problem from a forward dynamics’ perspective, one is interested in obtaining the

system’s response to a set of known external forces. This means that the unknown variables are the

system’s generalized accelerations (q̈) and the Lagrange multipliers (λ). In order to assure the same

number of equations as the number of unknown variables, equation (3.4) is also considered, and the

system of equations of motion becomes:

M ΦT
q

Φq 0

q̈

λ

=

g

γ

 (3.6)

The sequence of steps that characterize forward dynamic analysis is schematically represented in

Figure 3.1 and briefly described hereafter.

Forward dynamic analysis begins with an initialization step that checks the consistency of the initial

conditions for the generalized position and velocity vectors. Next, the global mass matrix M, the Ja-

cobian matrix Φq, the vector of generalized forces g and the right-hand-side vector of the acceleration

equation γ are assembled and evaluated. Once these variables are defined, the equations of motion
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Figure 3.1: Flowchart of Forward Dynamic Analysis.

are solved and the generalized acceleration vector at the current time ti is determined, as well as the

Lagrange multipliers λ. Once this is achieved, by numerical integration of the generalized velocity and

acceleration vectors, the generalized position and velocity vectors at the following time instant ti+1 are

determined. The type of integrator used in this work will be discussed in a subsequent section as well

as the predictor-corrector integration method. If the new time instant is higher than the final time of the

simulation (ti > tf ), the process ends. Otherwise, it repeats itself, starting from the assembling step with

the data associated with the new time instant.

Inverse Dynamics

When an inverse dynamics strategy is chosen, one is focused in obtaining the system’s response

to known kinematics and external forces. In this case, the Lagrange multipliers are the only unknown

variables and, therefore, the solution can be found directly from:

ΦT
qλ = g −Mq̈ (3.7)

3.2 Fully Cartesian Coordinates Formulation with Generic 3D Rigid

Body

3.2.1 Generic 3D Rigid Body

The generic rigid body is the central piece in the FCC formulation, and so its clear definition is of the

upmost importance. For a generic 3D rigid body i, its generalized coordinate vector (qi) is composed by

one point and one directional vector, as follows:
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qi=
{
rTOi

v1i v2i v3i

}T

(3.8)

in which rOi
=

{
xi yi zi

}T

is the position vector of point Oi, and xi, yi and zi its cartesian coordi-

nates. Furthermore, v1i , v2i and v3i are the direction unit vectors that characterize the body’s reference

frame.

As established, the generalized coordinate vector (qi) is a column vector with twelve entries. How-

ever, a generic 3D rigid body only possesses six DoFs, which means the generalized coordinates are

not independent. Therefore, six kinematic constraints of the rigid body (Φ) are required to expressed

the said dependencies. These unit module constraints guarantee the rigid nature of the body and are

defined as follows:

vT
jivji − 1 = 0, j = 1, 2, 3 (3.9)

v1i
T · v2i = 0 (3.10)

v2i
T · v3i = 0 (3.11)

v3i
T · v1i = 0 (3.12)

Consequently, for a general 3D multibody system composed of nb unconstrained rigid bodies, the

global generalized coordinate vector and global kinematic constraints vector are, respectively, defined

as:

q(nc×1)=
{
qT
1 . . . qT

i . . . qT
nb

}T

(3.13)

Φ(nh×1)=
{
Φ1 . . . Φi . . . Φnb

}T

= 0 (3.14)

where nc = 12nb represents the total number of generalized coordinates of the system and nh = 6nb

represents the total number of kinematic constraints of the rigid body type.

Now that the generic 3D rigid body is defined, the main aspects of the FCC formulation that were

relevant for the development and implementation of this work are presented in the next section.

3.2.2 Kinematics of Generic Points and Vectors

While using the previously presented definition of a generic 3D rigid body, one guarantees that the

position and orientation of all bodies of the system is fully known throughout the analysis. This means

that the kinematics of any generic point or vector, belonging to a given rigid body, are fully determined

and can always be calculated from the vector of generalized coordinates (q) of the rigid body.
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Kinematics of a generic point

Considering a generic point P that belongs to a generic rigid body i, its position can be described in

two different ways: using the rotation matrix A or using the transformation matrix C, depending on the

convenience of the calculation.

When considering the system’s global reference frame xyz, the position of a generic point P can be

described through the position vector rP , such that rP =
{
xP yP zP

}T

. Alternatively, it can also be

described as the sum of vectors rOi and rOiP , resulting in:

rP = rOi + rOiP (3.15)

where vector rOi is the position vector of the origin point of body i ’s local reference frame and vector

rOiP is the vector that goes from point Oi to point P, in the global reference frame.

In the first case, considering body i ’s local reference frame ξiηiζi, equation (3.15) can be changed

into:

rP = rOi +Air
′
OiP (3.16)

in which Ai represents the transformation matrix associated with the orientation of the local reference

frame of body i in respect to the global reference frame and r′OiP
represents the vector that goes from

point Oi (origin of body i ’s local reference frame) to point P, in the body’s local reference frame. Matrix

Ai is simply composed by the body’s local reference vectors as column vectors:

Ai=
[
v1i v2i v3i

]
(3.17)

Furthermore, since this unitary vectors are orthogonal, matrix A is, as well, orthogonal (i.e., AT =

A−1).

In the second case, considering body’s i general coordinate vector, the position vector rP can be

obtained through:

rP=CP
i qi (3.18)

where CP
i is a [3× 12] constant transformation matrix that expresses the coordinates of a generic point

P as a function of the generalized coordinates of the generic body to which it belongs, resulting in:

CP
i =


1 0 0 ξPi 0 0 ηPi 0 0 ζPi 0 0

0 1 0 0 ξPi 0 0 ηPi 0 0 ζPi 0

0 0 1 0 0 ξPi 0 0 ηPi 0 0 ζPi

 (3.19)

with ξPi , ηPi and ζPi are the local coordinates of point P in the local reference frame of body i.

The velocity (ṙP ) and acceleration (̈rP ) of point P can be obtained directly from the constant matrix

CP
i , and from the vector of the generalized velocities (q̇i) and accelerations (q̈i) of body i, respectively:

23



ṙP = CP
i q̇i (3.20)

r̈P = CP
i q̈i (3.21)

It becomes clear that the use of matrix CP
i strongly benefits the computational efficiency when cal-

culating the generalized velocities and accelerations of the system. For a more detailed explanation of

how the matrix is formed, the interested reader is directed to Roupa et al. [56].

Contrary to what happens with matrix C, matrix A is not a constant matrix and needs to be updated

in each time step of the analysis.

Kinematics of a generic vector

Following a similar line of thought, let one consider a generic vector v in the local reference frame of

body i. This vector can be defined as:

v = Cv
i qi (3.22)

where Cv
i is also a [3 × 12] constant transformation matrix that expresses the coordinates of a generic

vector v as a function of the generalized coordinates of the generic body to which it belongs, such that:

Cv
i =


0 0 0 ξvi 0 0 ηvi 0 0 ζvi 0 0

0 0 0 0 ξvi 0 0 ηvi 0 0 ζvi 0

0 0 0 0 0 ξvi 0 0 ηvi 0 0 ζvi

 (3.23)

Similarly to the case of a generic point, this type of matrix allows the direct calculation of the velocity

(v̇) and acceleration (v̈) of the generic vector v, through the generalized velocities (q̇i) and accelerations

(q̈i) of body i, respectively:

v̇ = Cv
i q̇i (3.24)

v̈ = Cv
i q̈i (3.25)

3.3 Generalized External Forces

Considering that the main focus of the present work is the detailed description of the contact phe-

nomena, it is deemed necessary to define the way forces, and in particular contact forces, are included

in the equations of motion of a multibody system.

The vector of generalized forces associated with body i is the sum of the contributions of several

different types of forces, such as gravitational forces, external forces, forces exerted by springs and

dampers and contact forces, as follows:
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g=
{
ggrav + gext + gspring−damper + gcontact

}
(3.26)

The generalized form of a concentrated force f = {fx fy fz}T applied at point P is obtained resorting,

once again, to the transformation matrix C that expresses the coordinates of the force application point P

as a function of the generalized coordinates of the generic body to which it belongs to (equation (3.19)).

It can be defined in the following way:

gf
i =CPT

i f (3.27)

Considering the result presented in equation (3.27), the main focus of the present work is, therefore,

to accurately determine the contact forces and their relative application points, generated for a given

state of the system (i.e., position and velocity) at the interface between the anatomical structure and the

surrounding environment. Then assemble those forces into the generalized force vector to be applied to

the equations of motion of the system.

A general description of this co-simulation method is provided in the next section.
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Chapter 4

Continuum Contact with Static

Condensation based on Approximate

Distance Function

A multibody Matlab software developed in house [56] was used and further developed with the addi-

tion of a contact module. This additional module allows contact detection between bodies in a multibody

system and allows for contact forces to be added to the vector of generalized forces (g), contributing

for more realistic and complete analyses. The module features not only the previously described con-

tact model proposed by Flores et al., but also a new continuum contact model with static condensation

based on an approximate distance function. This model is associated with a co-simulation methodology,

in which the previously mentioned multibody Matlab program is in direct communication with a Fortran

program based on the finite element method. This program is called SimPlas and was also developed

in house [57].

In this section, the communication between the two programs associated with the co-simulation

methodology adopted is described in detail. Furthermore, the contact model implemented in SimPlas is

showcased and the main techniuues and concepts used are explained.

4.1 Communication between Programs

In order to contextualize where the communication between Matlab and SimPlas occurs in the sim-

ulation process, Figure 3.1 was updated into Figure 4.1.

And so, in each time step, when assembling the vector of generalized forces (g), SimPlas is called

as an executable file, it performs contact detection, it calculates the localized contact forces and returns

all the obtained results back toMatlab. The two programs communicate through writing and reading of

text files.

SimPlas interprets the contact between two bodies as one main body being penetrated by a group of

27



Figure 4.1: Multibody System Diagram with contact module.

points, that represent one secondary body. SimPlas is prepared to receive from the Matlab program, the

relative position of the points associated with the secondary body in the main body’s local coordinates.

With this information, it is capable of determining if each one of the points has penetrated the main body

and so, if contact has occurred (contact detection). In the case of contact, it calculates the respective

contact force and reports this information back to Matlab, which takes care of turning this localized force

into a generalized force and adds it to vector g.

Now, after this general overview of how the two programs communicate, it is important to formally

present SimPlas’ software.

4.2 SimPlas Program

SimPlas is a Fortran program that utilizes the finite element method to solve a vast array of types of

problems, from different fields of engineering. In the present work, it is used to solve contact problems.

Before focusing on the structure of SimPlas’ software and the computational techniques used to

achieve the developed contact model, a brief overview of the considered FEM formulation is presented.

Finite Element Method Formulation

SimPlas is a very complete program that allows a high degree of manipulation by the user, in terms

of what type of formulation, computational techniques and inputs they are interested in using. Therefore,

since FEM is a broad term that can encompass a lot of different approaches to a specific problem, it is

important to clarify, on a general level, what type of assumptions were considered.
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Firstly, the type of elements used are four nodes tetrahedral (FEM-TET4) and the shape functions

are defined as follows:

ψ=
{
1− ξ1 − ξ2 − ξ3, ξ1, ξ2, ξ3

}
(4.1)

with ξ1, ξ2 and ξ3 as the coordinates of the parent domain.

Secondly, the gradient of deformation is considered to be:

Fij=
∂ψK

∂Xj
XKi

(4.2)

with i, j = 1, 2, 3. The subscript K is associated to the node being considered and X represents the

position coordinates.

With the gradient of deformation defined, it is possible to establish the right Cauchy–Green deforma-

tion tensor as:

C=FTF (4.3)

Finally, it was considered the compressible neo-Hookean material model. This model is a hyperelas-

tic material model, often utilized in computational mechanics and biomechanics to describe the nonlinear

behavior of soft tissues.

SimPlas’ Contact Problems

Now that the general interpretation of a contact problem by SimPlas has been described, the next

subsections include a detailed presentation of SimPlas’ software structure, starting by introducing its

preprocessing module, SimPre, followed by the explanation of how contact detection occurs and the

contact model used to calculate the contact forces.

4.2.1 SimPre (SimPlas’ Preprocessing Module)

As part of the preprocessing stage associated with SimPlas, some inputs need to be provided before

the multibody simulation can be initiated.

At the current stage of development and as previously mentioned, SimPlas performs contact de-

tection between two bodies (one is considered the main body and the other one is designated as sec-

ondary). The mechanical properties of the two bodies’ materials need to be defined, including the Young

modulus and the Poisson ratio, and SimPlas also requires that a mesh of the main body be provided as

input. Still as part of the preprocessing procedure, SimPlas can apply static condensation to the main

body, which will be discussed next.
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Static Condensation

Static Condensation, also known as static reduction or Guyan reduction, is a technique used in

structural analysis and finite element analysis to reduce the size of a complex structure or system. This

is obtained by reducing the total number of degrees of freedom to the ones located on the boundary

nodes, also called ”master” nodes. This is possible through the condensation of the inner nodes, or

”slave” nodes, that are now expressed through the first ones. After static condensation is applied, and

the inner nodes are removed, a superelement remains in the boundary region, that retains the stiffness

of the whole model [58, 59]. This simplification results in improved computational efficiency without

significantly reducing accuracy in the results.

Considering a generic body associated with a finite element mesh, the first step when applying static

condensation is distinguishing between which degrees of freedom should remain and which ones should

be condensed and removed. When using FEM, the body’s degrees of freedom are associated with its

nodes, and so, in other words, the first step is defining which nodes will be featured in the condensed

state (master) and which ones can be removed (slave).

Therefore, three groups of degrees of freedom arise and are showcased in Figure 4.2: the DOFs that

are solely coupled to linear constituents (inner nodes) and that are associated with the subscript a; the

DOFs that are coupled to both linear and nonlinear constituents (interface nodes), which are represented

by the subscript b; and the DOFs that are only coupled to nonlinear constituents (outer nodes) and are

linked to subscript c.

Figure 4.2: Node and constituent partition for a system containing linear and nonlinear constituents.

Furthermore, it is possible to define two sets of elements (or phases) α and β. The first one is

composed by elements containing inner nodes and the second one features the elements that do not

contain any inner nodes.

Therefore, considering the three sets of nodes (a, b and c) and the two sets of elements (α and β),

Newton iteration is established as:

30




Kα

aa Kα
ab 0

Kα
ba Kα

bb +Kβ
bb Kβ

bc

0 Kβ
cb Kβ

cc

 ·


∆ua

∆ub

∆uc

 =


−ra (ua,ub)

−rb (ua,ub,uc)

−rc (ub,uc)

 (4.4)

where K represents the stiffness matrix, ∆u is the nodal displacement and ra, rb and rc are the residual

vectors for each one of the node sets.

And so, static condensation can be performed, resulting in a reduced system graphically and numer-

ically represented in Figure 4.3 and equation (4.5), respectively:

Figure 4.3: Static condensation of a generic body.


Kβ

bb +
(
Kα

bb −Kα
ba ·Kα−1

aa ·Kα
ab

)
︸ ︷︷ ︸

K⋆α
bb

Kβ
bc

Kβ
cb Kβ

cc

 ·

 ∆ub

∆uc

 =

 −rβb (ub,uc)−K⋆α
bb · ub

−rβc (ub,uc)

 (4.5)

in which, the term ub represents a vector of interface DoFs. It is important to note that the term Kβ
bb in

(4.5) is not included in the first determination of the global stiffness matrix.

Rotational Neutralization

When dealing with a nonlinear case, although constant when considering the local reference frame,

the stiffness matrix K⋆α
bb and residual force r⋆αb are affected by rotation when the global reference frame

is considered. Therefore, rotational neutralization is necessary.

Static condensation is performed once at instant t = 0 and the condensed-out stiffness matrix is

defined as:

K⋆α
bb = Kα

bb −Kα
ba ·Kα−1

aa ·Kα
ab (4.6)

The corresponding residual force is calculated as follows:

r⋆αb = K⋆α
bb · ub
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Considering a local reference frame Tl and a global reference frame Tg, for a generic time t, the

rotation matrix between reference frames is given by:

Rlg = TT
l ·Tg (4.7)

in which Rlg is a block diagonal matrix:

R0t =


R 0 · · · 0

0 R · · · 0
...

...
. . . 0

0 0 0 R

 (4.8)

Consequently, the rotationally neutralized residual force is given by

r⋆tαb = RT
lg · r⋆αb = RT

lg ·K⋆α
bb · ub (4.9)

Similarly, the rotationally neutralized displacement degrees-of-freedom are written as:

ut
b = RT

lg · ub (4.10)

and, therefore,

r⋆tαb = RT
lg ·K⋆α

bb ·Rlg · ut
b (4.11)

The system Jacobian is the derivative of r⋆tαb with respect to ut
b and is calculated as follows

[Jα
bb]kl =

∂

∂ [ut
b]l

[
r⋆tαb

]
k

(4.12)

in more detail using index notation,

[Jα
bb]kl =

[
RT

lg ·K⋆α
bb ·Rlg

]
kl

+
{
RT

lg

[
ut
b

]
l

}
·
[
K⋆α

bb ·Rlg · ut
b

]
k

+
[
RT

lg ·K⋆α
bb ·

{
Rlg

[
ut
b

]
l

}
· ut

b

]
k

(4.13)

Finally, when this result is added to equation (4.5) in the place of K⋆α
bb , the system’s rotation become

neutralized.
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4.2.2 Contact Detection through ADF

Once all the preprocessing steps are complete, the Matlab simulation is initiated. Once inside Mat-

lab’s contact module, the position of the secondary body’s points are expressed in the main body’s local

coordinates and SimPlas is called as an executable file.

The first operation performed by SimPlas is contact detection. Through a computational technique

called bucket sorting, SimPlas organizes the points associated with the secondary body in terms of its

location in space. Once the points are sorted, the software starts to go through them and determines if

they have penetrated the main body’s surface, in other words, if contact has occurred. This operation is

associated with an approximate distance function (ADF), which is presented next.

Approximate Distance Function (ADF)

An approximate distance function is a computational method used to estimate or approximate the

distance between two points in a space. ADFs allow for faster calculations and are a more efficient

solution than algorithms that heavily rely on computational geometry. Naturally, this improved efficiency

comes with a potential loss of accuracy compared to exact distance methods.

The ADF considered in this present work follows closely the one proposed by Areias et al. [60].

Let Ω be the deformed configuration of a generic body and Γ its boundaries. An arbitrary point with

coordinates xI is also considered and a potential function ϕ(xI), which is the solution of a scalar partial

differential equation (PDE). Once the necessary definitions are established, it is possible to introduce

the gap function as a differentiable function g[ϕ(xI)]:

g[ϕ(xI)] =


< 0 xI ∈ Ω

= 0 xI ∈ Γ

> 0 xI ̸∈ Ω ∪ Γ

. (4.14)

Assuming that an unique normal n(xI) exists when xI ∈ Γ, the gradient of g[ϕ(xI)] can be decom-

posed into parallel (∥) and orthogonal (⊥) terms:

∇g[ϕ(xI)] = ∇g[ϕ(xI)]∥ +∇g[ϕ(xI)]⊥ (4.15)

with ∇g[ϕ(xI)]⊥ ∥ n(xI).

The normal contact force component is identified as fc and contact conditions correspond to the

following complementary conditions:


g[ϕ(xI)] · fc = 0

fc = 0

g[ϕ(xI)] = 0

. (4.16)

By substituting the generic point with coordinates xI for the points associated with the secondary
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body, it becomes clear how SimPlas obtains the respective contact forces.

The vector form of the contact force is given by:

fc = fc∇g[ϕ(xI)] = κ min{0, g[ϕ(xI)]}2∇g[ϕ(xI)] (κ > 0) (4.17)

with κ as a penalty parameter for the Courant-Beltrami function. The interested reader is directed to the

work by Courant [61] and Beltrami [62].

Considering the screened Poisson equation:

cL∇
2ϕ(x)− ϕ(x) = 0 in Ω

ϕ(x) = 1 on Γ

. (4.18)

Varadhan [63] states that its solution produces an ADF given by −cLlog[ϕ(x)]. Finally, the exact distance

is obtained as the limit:

d(x)=− limcL→0 cLlog[ϕ(x)] (4.19)

In this chapter, a brief overview of the used FEM formulation was provided, with special focus on

the specific computational techniques used in the developed contact model. SimPlas is a vast and

complete software and, therefore, its description in full falls outside of this present work’s scope. The

same applies for the finite element method. The information provided suffices for the understanding of

the work developed. However, if a deeper explanation should be required, the interest reader is directed

to Bonet et al. [64].
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Chapter 5

Co-simulation of Bouncing Ball

Problem

This section is dedicated to the implementation and theoretical validation of the developed contact

model, presented in the previous section.

Firstly, the bouncing ball example is used for the validation of the implemented contact module based

on Flores’ formulation, through the comparison of the obtained results with the ones shown in Flores et

al. [51]. The implementation of Flores’ model served as an introductory step before advancing into the

innovative contact module. It allowed for a better understanding of some of the obstacles associated with

the chosen methodology, namely the comprehension of some contact related concepts, familiarization

with the Matlab code and the selection of the integrator.

The results obtained using Flores’ model were used as reference in validating the previously de-

scribed continuum contact model associated with a co-simulation methodology.

For a better and more complete comparison of the results obtained, the characteristics chosen for

the bouncing ball example were kept the same as the ones used in Flores et al. [51]. Therefore, it was

considered that an elastic ball made of PTFE and 1 kg of mass is dropped from an initial height of 1 m.

The ball has a radius of 0.1 m, a moment of inertia of 0.1 kg m2 and a equivalent stiffness equal to

140× 106N/m
3
2 . The ball is released from the initial position under the action of gravity only, falling until

it collides with the ground, which is considered rigid and stationary. Upon contact with the ground, the

ball rebounds to a certain height, depending on the chosen coefficient of restitution.

5.1 Application of Flores’ Contact Model

The first contact model to be implemented in the Matlab software’s contact module was the one

proposed by Flores et al. [51]. As observed in equation (2.7), in order to determine the contact force

correspondent to a specific moment, it is necessary to know the relative normal deformation between

the contacting bodies (δ) and the relative normal contact velocity, not only at the current instant (δ̇), but

also right before contact begins (δ̇(−)).
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In order to test the implementation of this contact model, the classical bouncing ball problem was

chosen. Therefore, the contact between a sphere and a plane was simulated. For a better understanding

of the problem’s formulation, Figure 5.1 is presented next, followed by a detailed explanation of how

contact detection occurs.

Figure 5.1: Bouncing ball example.

From Figure 5.1 it is possible to observe that the contact problem being studied occurs between two

geometries (one plane and one sphere), each associated with a different generic body (body i and body

j, respectively). A generic body can be associated to multiple contact geometries and its center of mass

(CoM) can be located outside these geometries, as represented in Figure 5.1 by its international symbol,

the sectioned circle. However, for the purpose of simplicity, in the following examples associated with

the bouncing ball problem, the center of the geometries was defined as the CoM of the respective body.

Each body has its own local reference frame, that can be distinct from the global reference frame of the

problem. Additionally, a random point that belongs to the plane (point A) is selected to, along with the

normal vector of the plane (vector n), to characterize the plane’s position and orientation. It is important

to note that in the way this example is set up, the contact occurs between only two points: the contact

point at the base of the sphere (CPj) and the contact point in the plane directly below the first one (CPi).

Therefore, the total contact force of each one of the bodies is applied in a single point.

When using this contact model, contact occurs when the relative deformation between the contacting

bodies is positive (δ > 0). In order to determine the relative deformation between the contacting bodies

(δ), it is necessary to know the sphere’s radius (R) and subtract from it the norm of vector d, as follows:
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δ=R− ||d|| (5.1)

As one can observe in Figure 5.1, vector d is obtained from the dot product between the vector

between points A and point B (rAB), and the plane’s normal vector (n):

d=rTAB · n (5.2)

with

rAB=rB − rA (5.3)

where rB and rA represent the global position vectors of point B and point A, respectively. It is important

to note that, when detecting contact while using this model, the points and vectors used should be

associated with the global reference frame and, therefore, they should be obtained from their local

equivalent by using equations (3.18) and (3.24):

rB=CB
j qj (5.4)

rA=CA
i qi (5.5)

n=Cn
i qi (5.6)

When determining the relative normal contact velocity (δ̇), one has to calculate the time derivative of

vector d, as follows:

δ̇=− ḋ=(ṙTAB · n+ rTAB · ṅ) (5.7)

with

ṅ=Cn
i q̇i (5.8)

With all the required variables defined, the contact force (FC) can be determined and applied to both

bodies. The force value obtained from equation (2.7) is multiplied by the planes’ normal vector (n) and,

naturally, the force applied to body i must be symmetrical to the one applied to body j :

Fi
C=− F · n (5.9)

Fj
C=F · n (5.10)

Finally, these concentrated contact forces need to be transformed into their generalized equivalents
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equation, using equation (3.27), so they can be added to the vector of generalized forces (g):

g
Fi

C
i =C

CPT
i

i Fi
C (5.11)

g
Fj

C
j =C

CPT
j

j Fj
C (5.12)

where CPi and CPj represent the contact points in bodies i and j, respectively.

In similarity to the methodology followed in Flores et al. [51], five different simulations were consid-

ered, in which the coefficient of restitution was set as cr = 1, cr = 0.8, cr = 0.6, cr = 0.4 and cr = 0.2;

and the exponent n was considered to be 1.5. The impact of these variations was studied in regards

to: the ball deformation (Figure 5.2), the ball deformation velocity (Figure 5.3) and the contact force

(Figures 5.4 and 5.5). These results are presented next and are associated with the contact period that

characterizes the first bounce.

(a) (b)

Figure 5.2: Influence of the coefficient of restitution on ball deformation through time: implemented
contact model (a); Flores et al. [51] (b).

(a) (b)

Figure 5.3: Influence of the coefficient of restitution on ball deformation velocity through time: imple-
mented contact model (a); Flores et al. [51] (b).
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(a) (b)

Figure 5.4: Influence of the coefficient of restitution on contact force through time: implemented contact
model (a); Flores et al. [51] (b).

(a) (b)

Figure 5.5: Influence of the coefficient of restitution on contact force versus ball deformation: imple-
mented contact model (a); Flores et al. [51] (b).

From a quick observation of all four figures, it is clear that the results obtained from the implemented

contact module are identical to the ones proposed by Flores et al. [51]. However, it is important to

analyze in greater detail each one of the figures, not only to understand the influence of the coefficient

of restitution on contact situations, but also to understand what happens during the contact phenomena.

In Figure 5.2, it is possible to observe that, as the coefficient of restitution is reduced, the maximum

value for the ball deformation is also reduced, while the contact duration is increased. A reduction in

the coefficient of restitution leads to an increase in the structural damping of the material, also known

as hysteresis damping, and, consequently, a loss of energy after contact. This results, not only in less

energy associated with the deformation of the ball, but also in less structural reaction in restituting its

original shape, which leads to a longer contact period.

Focusing now on Figure 5.3, it is possible to conclude that during the compression phase, the de-

formation velocity is positive (deformation is increasing) and it decreases until it reaches zero, moment

at which maximum deformation is reached. After that, during the restitution phase, there is a change in

direction of the deformation velocity as the ball begins to return to its original form. It is clear that when
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varying the coefficient of restitution, although the value of the deformation velocity right before impact

with the ground remains the same, its value at the end differs. The first observation can be justified by

the fact that the same characteristics are kept for all cases and the ball is initially dropped under the

action of gravity only, resulting in the impact of the coefficient of restitution only being felt once contact

is initiated. The second observation is related to the fact that for higher coefficients of restitution, less

energy is lost during contact and, consequently, the ball tends to more closely restore the conditions at

which it initiated the contact. In this case, the velocity at which the ball leaves the ground after contact

tends to be closer to the one at which it reaches the ground (but with opposite signs), for higher coeffi-

cients of restitution. It is also interesting to note that, for smaller coefficients of restitution and, therefore,

greater losses of energy during contact, the deceleration is greater and the null velocity is reached more

quickly.

Moving on to Figure 5.4, it is noticeable that higher maximum values for the contact force are asso-

ciated with lower coefficients of restitution, with the exception of cr = 1, and that the moment at which

this maximum is registered coincides with the moment of maximum deformation and null deformation

velocity.

Finally, from Figure 5.5 one can observe that a decrease in the value of the coefficient of restitution

results in a increase of the hysteresis loop, which is directly associated with the energy lost during

contact. This is particularly clear for cr = 1, which corresponds to the pure Hertz’ contact law, and in

which, because there is no energy dissipation, the hysteresis loop is absent.

As a consequence of the very high resemblance between the obtained results and the ones proposed

by Flores et al. [51], the implemented contact module based on the Flores’ contact model is considered

validated.

5.2 Application of the Co-simulation Contact Model

Moving on to the application of the continuum contact model developed in the context of this work,

a different formulation had to be applied to the bouncing ball problem and, consequently, Figure 5.1

had to suffer some changes (see Figure 5.6). It is worth highlighting that the physical data chosen

for the problem was kept the same as in the Flores’ application case. The contact example is still

between a sphere and a plane that belong, respectively, to a generic body j and a body i. From SimPlas’

perspective, body j is considered to be the main body and body i is associated with the role of secondary

body. This means that SimPlas assumes that the sphere is still and the points that compose the plane

move up and down, penetrating the sphere’s surface.

By observing Figure 5.6, it is necessary to conciliate the two different approaches that the Matlab

multibody code and SimPlas have of the same problem.

On the one hand, from the multibody side’s perspective, there are two bodies: bodies i and j. Body

i represents the floor as a plane and is, therefore, still. Body j represents the ball as a sphere, which

moves vertically, colliding with body i and bouncing up and down. On the other hand, inside SimPlas,

there is a main body, which in this present case is the ball, that is still. A secondary body that represents

40



Figure 5.6: Bouncing ball example (SimPlas).

the ground is composed by a group of points that travel up and down, and interact with the main body.

Although the decision of having these opposite perspectives ended up not being relevant in this particular

problem, it will be justified in more practical applications discussed in the next chapter.

Since the following explanation is associated with multiple reference frames, it is important to first

clearly identify them: the global reference frame is identified as (gl); the local reference frame associated

with the sphere, which has its origin located in the body’s CoM, is identified as (j); the second local

reference frame associated with the sphere, which has its origin on the top point of the body and is the

one considered by SimPlas, is identified as (jj); and, finally, the local reference frame associated with

the plane, which has its origin located in the body’s CoM, is identified as (i).

Now that the relevant nomenclature of Figure 5.6 has been established, a detailed deduction of the

process to obtain the coordinates of a generic point A (in this case, a point that belongs to body i)

expressed in the coordinates of the reference frame (jj) is presented. Starting by considering a closed

vector loop, it is possible to write:

rj + sjjj + sAjj − rA=0 (5.13)

or alternatively,

rA=rj + sjjj + sAjj (5.14)

in which rA refers to the global position vector of point A; rj is associated with the global position vector

41



of the origin point of reference frame (j); sjjj represents the vector that goes from the origin point of the

reference frame (j) to the origin point of the reference frame (jj), expressed in global coordinates; and

sAjj is the vector that goes from the origin point of the reference frame (jj) to point A, expressed in global

coordinates.

Equation (5.14) can be expanded by writing vectors sjjj and sAjj in the local coordinates of the ref-

erence frames (j) and (jj), respectively. Vectors expressed in the local coordinate system of reference

frame (j) will be associated with the subscript ’, while the ones expressed in the local coordinate system

of reference frame (jj) will be associated with the subscript ”. Therefore, equation (5.14) becomes:

rA=rj +Ajs
jj′

j +Ajjs
A′′

jj (5.15)

with Aj as the transformation matrix between the global reference frame and the reference frame (j);

and Ajj as the transformation matrix between the global reference frame and the reference frame (jj).

Matrix Ajj can be expressed as:

Ajj=AjAjj′ (5.16)

in which Ajj′ represents the matrix that transforms the coordinates of a vector expressed in the local

coordinates of reference frame (jj) in a vector expressed in the local coordinates of reference frame (j).

Consequently, equation (5.15), when solved for sA
′′

jj becomes:

sA
′′

jj =AT
jj′(A

T
j (rA − rj)− sjj

′

j ) (5.17)

The final required step for obtaining the position of the points associated with body i, expressed in the

local coordinates of reference frame (jj), is to define the constant vector sjj
′

j . This vector expresses the

location of the origin point of reference frame (jj) in the local coordinates of reference frame (j). On the

one hand, as previously mentioned, the CoM of body j and, consequently, the origin point of reference

frame (j), are coincident with the center of the sphere geometry. On the other hand, the origin point of

reference frame (jj) was defined as the top point of body j. This results in:

sjj
′

j =
[
0 0 R

]
(5.18)

in which R represents the radius of the body j.

With the determination of sA
′′

jj , the Matlab program is ready to provide this information to SimPlas

and receive in return the corresponding contact forces, if contact detection occurs.

Before the co-simulation of the contact between a 3D sphere and a plane, using a forward dynam-

ics approach, a simpler case was considered using a cylinder, in which each node only had two DoFs

instead of three. The same bouncing ball problem was considered and the exact formulation previously

presented was followed. This simplification allowed for quicker simulations while the focus was on estab-

lishing the communication between the two programs, performing debug procedures on both software

codes and assessing the benefits and implications of some computational techniques used. The inter-
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mediate studies performed on understanding the behavior of the integrator, the computational efficiency

gained from performing static condensation and the results’ sensitivity to the penalty parameter used

are presented next.

5.2.1 Integrator Behavior on Stiff Problems

When considering a multibody system in which contact is being simulated using a forward dynamics’

formulation, the problem needs to be analyzed as a stiff problem. A stiff problem is a problem described

by a set of stiff ordinary differential equations. The stiffness of a set of equations is as greater as how

much time-constants differ in the problem to be analyzed. Time-constants are associated with the rate

of decay, which in turn, are related to the eigenvalues of the system’s Jacobian matrix. If within the

problem at hands, some of the decay rates are slow and others are fast, the last ones will dictate the

stability of the numerical method used to solve the system of equations [65]. In other words, an ordinary

differential equation problem is considered stiff if at certain time periods, the solution varies slowly while

in others it varies with high frequencies. This is relevant in terms of computational efficiency. If the size

of the time step used to solve the problem can be adjusted to how much the solution is varying, the CPU

time can be greatly minimized.

In order to depict the change in the size of the time step throughout a contact event, the vertical

position of the CoM of a cylinder throughout all the integration steps, in the conditions of the bouncing

ball problem, is presented in Figure 5.7.

Figure 5.7: Position of cylinder CoM during contact event.

In the case of a multibody system, while the bodies are not in contact, the solution for the integration

of the next time step is very similar to the last one (little variation), and so the size of the time step

can confidently be increased without the lost of numerical accuracy. This is depicted in the first 140

integration steps, during which the cylinder is falling only under the application of the gravitational force.
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However, when contact occurs, the solution shifts very quickly, and so the time discretization needs to

be increased. From step 140 until step 900, the time step considered is so small the plot resembles a

continuous line. Once again, as contact ends in step 900, the size of the time step increases and the

simulation progresses at a higher pace. From the four times provided associated with the beginning of

the simulation (ti), the beginning of the contact event (t1), the end of the contact event (t2) and the end

of the simulation (tf ), it is possible to conclude: although the contact event corresponds to 0.12 % of

the simulation time, it is associated with 76 % of all integration steps taken. It is important to note that a

non-stiff numerical method, with a constant time steps size, would also solve this type of problem, but it

would be extremely inefficient. Therefore, when selecting the right integrator for the present problem, its

ability to deal with stiff equations is instrumental.

The dynamic analysis of a multibody system presupposes the resolution of the equations of motion,

which are a set of ordinary differential equations (ODEs). For this purpose, in the present work, a Mat-

lab ODE solver was used. After comparing the available options, ODE23s was selected because it is

prepared to solve stiff differential equations by allowing a variable time-step integration. This solver is

associated with an implicit integration method based on a predictor-corrector scheme. In the predictor

step, an initial estimate of the solution is obtained through a simpler and less accurate numerical in-

tegration method. This approximation is used to predict the next value of the function at a small time

step. In the corrector step, a more accurate estimate of the solution is determined with a more complex

integration method, in order to refine the value obtained in the predictor step. Basically, a predicted

value is used to compute a corrected one, becoming closer to the actual solution. This prediction and

correction steps occur as part of an iterative process, meaning that the value keeps getting refined until

a desired level of accuracy is achieved through a defined tolerance. If this boundary error is achieved

within a defined maximum number of iteration steps, the method converges and a true corrector step

occurs. Otherwise, a false corrector step is set and the process starts all over again with a smaller time

increment from the previous evaluation step.

5.2.2 Static Condensation Impact on Computational Efficiency

In order to assess the benefits of performing static condensation on the models analyzed in this

present work and in what conditions it should be considered, simulation times with and without this

technique were compared (see Figure 5.8). It was once again considered the cylinder simplification

applied to the bouncing ball problem. The times depicted in the results are associated with one contact

step and are normalized for the time related to the model without static condensation for the coarser

mesh (t = 0.522 s).

Being that h represents the element size, it is possible to observe that, for higher values of h, and

therefore, less refined meshes, models in which static condensation was not applied present higher

computational efficiency. However, as the mesh is refined, static condensation starts to justify its use

and its computational efficiency increases exponentially when compared to the models in which it was

not performed. This is related to the ratio between external and internal nodes. For coarser meshes, this
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Figure 5.8: Computational efficiency of simulation with and without static condensation.

ratio is smaller and the additional steps associated with performing static condensation do not compen-

sate the reduction in DoFs of the system used in the simulation. However, as the value of h decreases,

the initial time spent on performing static condensation becomes less and less relevant when compared

to the efficiency it provides during the simulation.

Before presenting the obtained results, it is important to note that, as considered by Flores’ contact

model, the deformation of the sphere should be measured from its center point (equation (5.1)). There-

fore, to simplify the problem to solve, the contact of the sphere was simulated with the use of symmetry

planes.

In Figure 5.9, the comparison between contact models is done through the obtained ball deformation

throughout the period of time associated with contact.

Figure 5.9: Contact model comparison for ball deformation through time.

Although there is some variation between the deformation values associated with both contact mod-

45



els, this does not result in a variation of contact force values, as depicted in Figure 5.10.

Figure 5.10: Contact model comparison for contact forces through time.

And as a last comparison, Figure 5.11 depicts the relation between the contact force determined

and the ball’s deformation. As expected, it is possible to observe that the force-deformation relation

associated with Flores’ model is exponential (in equation (2.7) δn, with n = 1.5), while SimPlas considers

a linear relation.

Figure 5.11: Contact model comparison for contact forces versus ball deformation.

Once compared the equivalent results between the two contact models, it is important to highlight

the additional data that the implemented co-simulation model provides, allowing for a deeper analysis.

These include the local displacement of the points belonging to the sphere during contact (see Figure

5.12), the internal stress values (see Figure 5.13), which are of relevance if the structural design of the

sphere is being considered, and the pressure distribution on the contact points (see Figure 5.14). The

three figures are associated with the point of maximum deformation and SI units are used.
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Figure 5.12: Displacement values for maximum ball deformation.
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Figure 5.13: Internal stresses distribution and value for maximum ball deformation.

It is important to note that, in the case of comfort analysis (for exoskeletons, for example), the pres-

sure distribution resultant of skin-machine contact is very important. Furthermore, the use of static

condensation on the model has no influence on the type of results showcased in Figure 5.14, since only

the outside nodes are required. However, if the desired results require the stress values in the interior of

the body, static condensation cannot be performed, because in this case the interior nodes are needed

for the calculation of the internal stress distribution.

After this presentation of the results associated with the co-simulation methodology implemented for

the bouncing ball problem, its application to practical scenarios is finally possible. The next chapter

focuses on the application of the developed software to gait analysis.
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Chapter 6

Co-simulation of Foot-Ground Contact

Theoretical simulations are instrumental for validation of software, methodologies or even new mod-

els. But once it is established that the tools being used are capable of replicating realistic results that

are in accordance to what has already been published in the literature, it is finally possible to push the

boundary of progress further by applying what has been developed into producing new data and by

tackling practical cases.

This section is dedicated to showcasing the practical applications of the developed co-simulation

methodology, considering gait analysis. It starts highlighting the overwhelming similarities and few

changes between this new case and the bouncing ball problem, previously described in detail. Next,

the foot model used in the simulations and all the simplifications considered are introduced. After that,

all the data that was acquired is listed and the respective acquisition procedures are described in depth.

Then, it moves onto explaining how said data was used as input for the considered simulations, followed,

naturally, by the obtained results.

6.1 Foot Model

When compared to the different foot models previously discussed, the one used in this work is

simultaneously more detailed in some aspects, while introducing considerable simplifications in others.

On the one hand, it does not represent the foot’s geometry as a summation of geometrical shapes, such

as spheres and ellipsoids. It has an extremely realistic shape, due to the fact that it was obtained through

3D scanning. A detailed contact surface is instrumental for realistic contact detection between the foot

and the ground. On the other hand, in terms of the internal structure and material of the foot, the model

presents a simple homogeneous isotropic single material structure, as the definition of an anatomically

and physiologically detailed internal foot structure is outside the scope of this work. This means that no

distinction was made between the different foot constituents: bones, muscles, tendons, ligaments and

skin. The mechanical properties of all these components were represented as realistically as possible

in an hypothetical equivalent material. Furthermore, since no bones and joints were considered, the

deformability of the foot in a realistic way was partially compromised.
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6.2 Experimental Data Acquisition

The data acquired in the scope of the present work refers to a healthy 23 years old male, measuring

181 cm of height, weighing 63.4 kg, and it was all gathered in Lisbon’s Biomechanical Laboratory, located

at the Department of Mechanical Engineering of Instituto Superior Técnico.

The experimental data acquired are of geometrical, kinematic and kinetic nature, and the associated

procedures are described next.

6.2.1 Acquisition of the Foot Geometry

In order to simulate the contact of a human foot with the ground, it is necessary to obtain a virtual

representation of said foot. Depending on the desired accuracy of the results and, naturally, the available

resources, the foot is often simplified into a combination of geometrical shapes, usually spheres. How-

ever, in the present work, a 3D scanner was available, allowing for a much more realistic representation

of a human foot. Therefore, the subject´s feet were scanned using an Einscan Pro HD scan (SHINING

3D, Hangzhou, China) (see Figure 6.1). The subject was in the siting position, with their leg placed on

top of another chair, leaving the foot to be scanned in a suspended and undeformed state. It is important

to note that the development of the foot model was based on the subject’s left foot.

Figure 6.1: 3D scanning of human foot.

During the scanning procedure, the 3D scan records the foot’s geometry and generates a computer

file with a list of point coordinates. This file was exported to a computer program named GID (GID

Simulation, Barcelona, Spain), in which the geometry was processed and a mesh was generated.
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6.2.2 Static and Dynamic Tests on Pressure Plates

Once the foot geometry was acquired, static and dynamic tests were preformed using pressure

plates. The foot scanning system used was composed by one 1.0 x 0.5 m2 pressure plate by RSscan.

At first, the subject was asked to stand in the standard anatomical position with one foot on each one

of the plates. This originated the pressure distribution illustrated in Figure 6.2.

Figure 6.2: Pressure distribution of foot-ground contact during standing position.

After, the subject was asked to take some steps away from the plates, walk towards them, assuring

that a single step was recorded for each foot.

6.2.3 Foot Deformation Test on Force Plates

As previously mentioned, as a result of the simplifications applied to the foot model used, a homoge-

neous and equivalent material had to be characterized in terms of its mechanical properties, namely its

Young modulus (E) and Poisson ratio (ν).

In order to determine an equivalent value for the Young modulus, which will be explained in the

section dedicated to the preprocessing of the foot model, an experimental test was performed at the

laboratory, followed by a trial and error methodology applied during the post-processing of the gathered

data.

Firstly, the deformation on the subject’s foot between its undeformed and maximum deformed states

was measured. This was achieved through a test performed at the laboratory, using one force plate and

a motion capture system. The force plate is an AMTI OR 6-7 and the marker-based MOCAP system was

composed by 14 Qualisys ProReflex 1000 infrared cameras. As part of the preparation phase of the trial,

one reflective marker was placed on each side of the subject’s ankle joint and their location was tracked

at all times by the surrounding cameras. It is important to note that the position of the ankle joint was

51



considered to be the mean value between the ones associated with the two markers placed on opposite

sides. Furthermore, it is worth highlighting that because of data noise, any force value registered in the

force plate that was below 5 N was considered as a null value.

At the beginning of the trial, the subject was positioned in the reference anatomical position, with only

his left foot on top of the force plate. After this, the subject began to shift his weight between his feet:

one foot would lift up, losing contact with the ground and assuming an undeformed state, while the other

one would support the subject’s full body weight and, thus, achieving its maximum deformed state. This

alternating movement was repeated cyclically. The position of the ankle joint and the ground reaction

forces felt in the force plate were recorded simultaneously, and the data collected associated with the z

coordinate is presented in Figures 6.3 and 6.4, respectively.

Figure 6.3: Ankle position (coordinate z) during deformation test.

By analyzing Figure 6.4, it is possible to determine the moments in which the foot initiates contact

with the ground (recorded force close to zero) and the moments in which the subject is fully supported

by his left foot (recorded force at maximum value). Once these moments are identified, and since the

recording of the two types of data was synchronized, one can determine the corresponding position of

the ankle joint at those moments. The displacement of the ankle joint within each cycle provides the

amplitude of deformation of the human foot.

By considering the two recorded cycles of the movement, an average value was calculated and, thus,

the final results are: ∆z = 8.8 mm and Fmáx = 622 N . This means during the one support phase of

gait, when the subject has its full body weight over one foot, the foot deforms around 8.8 mm.
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Figure 6.4: Ground reaction forces (vertical component) and ankle displacement during deformation
test.

6.2.4 Kinematics and Dynamics of a Gait Cycle

For the final data acquisition procedure performed, the kinematic and kinetic behavior of the subject’s

foot, ankle, leg and knee during gait were obtained. Three force plates and the motion capture system

were used.

Once again, as part of the preparation phase of the trial, reflective markers were placed in key

location in accordance with the market set protocol adopted by the gait lab (see Figure 6.5).

Once all the conditions were gathered for the initiation of the trial, the subject was asked to walk on

top of three force plates, which were laid out as illustrated in Figure 6.6. The subject was instructed to

step with only one foot on each of the force plates, starting always with his right foot. Therefore, the

data used in this work was associated with the second force plate, in which the subject stepped with his

left foot. The kinematics were recorded by the motion capture system, while the kinetic response was

obtained through the force plates.

After this description of all the data that was obtained in the laboratory, in the following sections, it is

explained how the collected data was used to not only preprocess the foot model but also as input for

the simulations in which it was subsequentially utilized

6.3 Preprocessing of the Foot Model

Once the foot’s geometry was obtained through 3D scanning, the output file was opened in GID (GID

Simulation, Barcelona, Spain) with the purpose of initiating its preprocessing procedure.
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(a) (b)

Figure 6.5: Positioning of reflective markers for the gait cycle trial: side view (a) and front view (b).

Firstly, the geometry was cut at the ankle joint level. This decision was motivated by the fact that,

at this stage of development, the main focus is to simulate the contact between a human foot and the

ground. Therefore, the leg area will not register contact with another body during a gait cycle and its

inclusion in the simulations will only contribute to reduce computational efficiency. Additionally, since the

considered foot model does not represent realistically the behavior of joints, by encompassing the ankle

joint, another level of inaccuracy would have been introduced to the model.

Secondly, once the desired geometry was achieved, a volume mesh was generated. Some areas

required manual correction of elements in order to guarantee the best uniform distribution possible. This

was specifically important at the top of the foot, in the irregular surface that resulted from the geometry’s

cut, as the elements were big and irregular, and this could compromise the results. Smoothing was

avoided with the purpose of losing as little definition as possible of the foot surface’s details, in order to

assure a realistic contact surface. Additionally, it was necessary to associate the foot to an equivalent

homogeneous material, meaning that a Young modulus and a Poisson ratio had to be defined. This was

obtained through a trial and error process that used the results determined through the static deformation

test previously described. In SimPlas, the contact between the foot and the ground with a relative

deformation of δ = ∆z = 8.8 mm was simulated multiple times, while the values of the material’s E and

ν and the orientation of the foot were tweaked, until a realistic response was achieved. The final iteration
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Figure 6.6: Force plates and surrounding motion capture system.

is presented in Figure 6.7 and the corresponding parameter values are: E = 3.62MPa, ν = 0.3. This

initial calibration of the foot model was done through a qualitative comparison of the obtained results with

the pressure distribution associated with the experimental trial. It is worth noting that a quantitative and

more robust calibration of the model could be done in the future. An optimization process based on deep

learning could be a great solution for tackling the multiple variables that characterize this problem. This

possibility is further discussed at the end of this document. It is also important to note that the obtained

mechanical properties for this equivalent material fit the ones featured in the materials used for this type

of applications. For external protheses, especially in applications like a prosthetic foot, a combination

of flexibility and support is very important when choosing a material. One option is EVA (ethylene-vinyl

acetate) foam, a copolymer of ethylene and vinyl acetate that is associated with a Young’s Modulus

between 1 and 4 MPa, which aligns with the obtained value of 3.62 MPa.

Thirdly, a mesh convergence study was performed and a satisfactory number and size of elements

was attained. With h as the characteristic length of the elements, three meshes are presented (h =

3 mm, h = 4 mm and h = 5 mm). The three meshes are showcased in Figure 6.8 and its respective

foot-ground contact test results are presented in Figures 6.9 and 6.10 in SI units (it is worth noting that

the negative values of pressure are only related to the type of scale used; in the foot regions where

contact does not occur, the pressure value is 0). In Figure 6.11 is possible to observe that the reaction
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Figure 6.7: Local displacement (a), pressure distribution (b), experimental pressure distribution on the
left foot sole (c).

force obtained for each one of the meshes is very similar and in accordance to the 622N measured in

the deformation test performed in the laboratory. The mesh associated with h = 4 mm was chosen as

the final mesh for the analyses that follows.

Before advancing into the use of this foot model in the context of foot-ground contact during gait,

some remarks can be made about the model’s strengths and limitations. Once again considering Figure

6.7, it is possible to observe some differences between the experimental data gathered and the most

realistic foot model’s response achieved. Firstly, as evidenced by the experimental data of pressure

distribution, when a healthy human foot fully contacts with the ground, the resulting footprint includes

contact of the biggest toe, sometimes even the second one. This was not possible to achieve with the

computational model for two reasons. On the one hand, the foot’s geometry features an elevation of the

toes, as it can be observed in Figure 6.8. During the 3D scanning procedure, the subject was asked to

rest his leg on top of a chair and maintain a 90 degree angle between the foot and the lower leg. The

dorsiflexion movement of the foot required to maintain the said position promotes the extension of the

toes, resulting in their elevation. On the other hand, since the model does not feature metatarsopha-

langeal joints, the contact of the metatarsal region with the ground results in an additional elevation of

the toes. This is evident by the positive displacement associated that area. Secondly, the pressure

distribution on the metatarsal region was not as significant as the one evidenced in the experimental

data. The absence of contact in the middle section is associated with the application of an unrealistic

high stiffness value for that region, in consequence of considering a homogeneous equivalent stiffness

for the entirety of the foot. This prevented the foot from bending, as it should do, and achieve full contact

in the metatarsal region.

Both these differences between the computational response of the foot model and the experimental

data were mitigated by expanding the clamped region closer to the foot’s bottom. This region is com-

posed by nodes, in which all DoFs are restricted and its purpose is to simulate the foot’s connection to
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Figure 6.8: Coarse mesh (h = 3 mm) (a), medium mesh (h = 4 mm) (b), fine mesh (h = 5 mm) (c).
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Figure 6.9: Local displacement of coarse mesh (h = 3 mm) (a), medium mesh (h = 4 mm) (b), fine
mesh (h = 5 mm) (c).
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Figure 6.10: Pressure distribution of coarse mesh (h = 3 mm) (a), medium mesh (h = 4 mm) (b), fine
mesh (h = 5 mm) (c).

the rest of the human body, considering the absence of the internal skeletal structure of bones. The

chosen nodes are located at the top of the foot. However, if the clamped region is expanded down and

it becomes less concentrated on the posterior portion of the foot, more contact in the metatarsal and toe

areas is achieved. However, this increased restriction proved to be incompatible with the use of the foot

model in gait simulations. The purpose of this region is discussed in the next section.

6.4 Foot-Ground Contact during Gait

With a tuned foot model ready to be used in simulation and the gathering of the required kinematic

data complete, the conditions for studying the foot-ground contact during gait are all available.

The co-simulation methodology used for simulating the gait movement was identical to the one used
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Figure 6.11: Reaction forces associated with the deformation test for three different meshes.

for the bouncing ball example with two exceptions. First, the introduction of the clamped region that is

defined in SimPre, during the preprocessing procedure. Second, given that the human foot is a much

more geometrically complex body than a sphere, the definition of vector sjj
′

j is not as easily deduced as

in the case of the bouncing ball problem (see equation (5.18)).

In order to determine this vector that connects the CoM of the foot (origin point of reference frame

(j)) and the origin point of reference frame (jj), expressed in the local coordinates of reference frame (j),

kinematic data gathered during a static trial was used.

The kinematic data associated with a gait cycle gathered in the laboratory was used as input to study

the contact forces and pressure distribution between the subject’s left foot and the ground. Although the

followed procedure features the same steps as an inverse dynamics analysis, the present analysis was

carried out only until the contact forces were calculated. A complete inverse dynamics analysis, that

would allow for the calculation of the moments of force at the ankle joint fall outside the scope of the

present work, as such would require a more detailed and complex biomechanical model. Therefore, the

relative position of the ground in regards to the foot is deduced by the multibody code from the kinematic

data. Once again, this information is communicated to SimPlas, that returns to the multibody side the

corresponding contact forces (ground reaction forces).

It is important to note that, in order to achieve a realistic result in terms of contact forces between the

foot and the ground, a Coulomb friction model was implemented and a coefficient of friction of 0.3 was

considered [66]. Although this value can be considered as low, simulations using higher values were

done with very similar results.

Next, the results obtained for the simulation of a gait cycle are presented. From the full movement,

the five most important moments that characterize gait were selected: heel strike (Figure 6.12), foot flat

(Figure 6.13), heel-off (Figure 6.14), toe-off (Figure 6.15) and swing (Figure 6.16). For each one of the

moments, the foot deformation and respective pressure distribution obtained are presented in SI units,

alongside the experimental pressure distribution measured in the laboratory. It is worth noting that the

reference frame displayed in each figure corresponds to reference frame (j).
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Figure 6.12: Heel strike: foot deformation (a), pressure distribution (b) and experimental pressure distri-

bution (c).
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Figure 6.13: Foot flat: foot deformation (a), pressure distribution (b) and experimental pressure distribu-

tion (c).
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Figure 6.14: Heel-off: foot deformation (a), pressure distribution (b) and experimental pressure distribu-

tion (c).
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Figure 6.15: Toe-off: foot deformation (a), pressure distribution (b) and experimental pressure distribu-

tion (c).
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Figure 6.16: Swing: foot deformation (a) and pressure distribution (b).

The obtained pressure distribution is in accordance with the correspondent experimental data: through

a qualitative comparison, it is possible to observe the similarities between the pressure footprints for each

of the five moments (there is pressure distribution for the swing moment because there is no pressure

being registered) and, in a quantitative capacity, the peak values registered in the experimental data

were 4.2e+ 05Pa for the heel region, 4.8e+ 05Pa for the metatarsal region, similar to the ones obtained

in the results.

Additionally, the obtained ground reaction forces are presented in Figure 6.17 for Fx, Figure 6.18 for

Fy and Figure 6.19 for Fz.

From observing Figures 6.17, 6.18 and 6.19 it is clear that in some instances the ground reaction

forces obtained in the simulation are similar to the experimental data, while in other sections of the

movement they present different values. The analysis of these forces can be divided between Fx and
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Figure 6.17: Ground reaction force (coordinate x).

Figure 6.18: Ground reaction force (coordinate y ).

Fy, which are forces closely related to the friction between the foot and the ground, and Fz, which

represents the component of the force normal to the contact plane.

Starting from the analysis of Fz, the first point worth highlighting is the correspondence between the

subject’s full weight (622 N ) and the obtained results. The subject’s full body weight usually corresponds

to a value slightly below the first force peak, and thus, this result is in accordance to the previously

calculated value. However, the results obtained do not feature a second peak. This is related to a very

light contact between the toes and the ground. As previously referred, since that in the foot’s geometry

used the toes are elevated, its interaction with the floor is decreased and in the place of a second force

peak, the results show a sudden drop in the force value. In future analyses, it is very important to aim for

a more neutral position while its geometry is being scanned. A more correctly positioned foot will lead to
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Figure 6.19: Ground reaction force (coordinate z).

a more realistic model and, thus, more realistic results. Additionally, the lack of a drop in the force value

during foot flat (region between the two peaks of force) can be related to a high stiffness of the foot arch

that does not allow the foot to fully contact with the ground.

Moving on to Fx, some challenges associated with the friction model used are highlighted in the

results. Since SimPlas solves each step as a static contact problem, no information is provided about

the history of the system, namely the relative velocity of the contacting bodies. This can be related to

the differences seen between the obtained results and the experimental data in the Fx values. In the

experimental data, in the first half of the movement the foot is breaking and, therefore, the respective

friction force is negative (opposite to the direction of the velocity). In the second half of the movement

the foot pushes back the ground to propel the body forward and, naturally, the friction force is positive

(once again, opposite to the foot’s movement). In the first half, the contacting velocity is positive and

reducing, while in the second half, it is null and increasing. Since the implemented friction model does

not feature knowledge of the previous step, it is always assumed that the contacting velocity is null. This

explains why the obtained results present positive forces during both halves of the movement.

Finally, focusing now on Fy, a very similar behavior is registered between heel strike and the lowering

movement of the foot. However, once the anterior portion of the foot initiates contact with the floor, the

force values felt by the foot model differ from the ones registered in the laboratory. This can be related to

the orientation of the foot geometry during the simulation. As evidenced in Figure 6.12, a slight inversion

of the foot is visible, resulting in an increase of the force in the medial direction. Once heel-off occurs

the experimental data and the obtained results present, once again, a high level of similarity.

It is worth noting that, although both Fx and Fy are associated with friction forces, since the gait move-

ment is performed mainly in the saggital plane, bigger differences were expected in the x coordinate of

the ground reaction forces than in the y coordinate, which is mainly associated with foot stabilization.

As an additional observation, it possible to verify that the pressure distribution associated with the
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moment of foot flat is very similar to the one obtained in the deformation test, both resulting from the

support of the subject’s full body weight (see Figure 6.20).
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Figure 6.20: Foot flat: foot deformation (a) and pressure distribution (b).

Although some limitations of the foot model conditioned the realism of the obtained results, it is

important to highlight the benefits of the co-simulation methodology used. The positioning of the foot in

regards to the ground was done correctly, as evidenced by the realistic deformation of the foot throughout

the gait cycle. The software was able to handle a large number of contact points and in different regions

of the contacting bodies. When considering inverse dynamic analyses, the simulation time is small,

proving that the communication between programs is efficient. The desired objective of combining the

simplicity of MSD with the detailed structural analysis of FEM was fulfilled, proving that co-simulation

methodologies that connect these two fields of engineering can create tools with a lot of potential in the

future.
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Chapter 7

Conclusions

7.1 Final Considerations

A co-simulation methodology that features the use of a Multibody System Dynamics (MSD) software

in constant communication with a Finite Element Method (FEM) program in order to simulate the foot-

ground contact during gait was presented and discussed in this work. The combination of the simplicity

and efficiency of the multibody formulation in handling the global kinematics and kinetics of the system

with the detailed structural analysis provided by FEM resulted in a successful strategy.

Through the input kinematic data regarding the gait movement, in an inverse dynamic analysis, the

multibody code provides the relative position of the two contacting bodies to the FEM software, which

statically solves each contact problem presented in each step. It starts by performing contact detection,

followed by the subsequent calculation of the contact forces. The system was also used in forward

dynamic analysis for less complex contact events, such as the benchmark problem of the bouncing ball,

in which the communication between codes was continuous and bilateral.

On the multibody side, a contact module was added to a Matlab software developed in house. First, a

simpler contact model proposed by Flores et al. [51] was implemented, allowing for better understanding

of the contact phenomena and the structure of the program. On the FEM side, a Fortran program

was adapted and further developed to feature the system’s contact model. Static condensation was

implemented, increasing the computational efficiency during simulations. The communication between

programs was done through text files.

In order to analyze the foot-ground contact for the gait cycle, a foot model was developed. This

model is characterized by a high level of geometric realism, since a 3D scan of a subject’s left foot

was acquired. However, the model presents a low physiological level of resemblance to a human foot,

since it does not feature any bone, muscle or joint behavior in its structure. An equivalent homogeneous

material was used for the entire foot and its mechanical properties were obtained through a calibration

process based on experimental data gathered in a laboratory setting.

When simulating the foot-ground contact, the developed system provided satisfactory results in re-

gards to the ground reaction forces and the pressure distribution, proving the potential of the adopted co-
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simulation methodology. Some relevant discrepancies were highlighted, resulting from the foot model’s

limitations combined with a simple Coulomb friction model, which requires improvement with the addition

of dynamic information about the history of the system.

With further development, this type of methodology could be seen as a powerful alternative to ex-

pensive laboratory equipment, such as force plates, when performing motion analysis.

Finally, it is important to note that this work was an initial step in the development of a methodology

capable of simulating not only contact between humans and the surrounding environment, but also

contact in the human-machine interface of exoskeleton users. Even though further development is

required, the combination of MSD and FEM in a co-simulation methodology to simulate contact can be

seen as a powerful tool in future analyses.

7.2 Future Work

As previously stated, further development is required in order to increase the realistic nature of the

obtained results.

Firstly, a more realistic foot model can be developed. This can be achieved by either featuring bone,

muscle and joint structures in the model or by performing a more robust calibration the foot’s equivalent

homogeneous material. For the latter, an optimization procedure using deep learning to determine the

mechanical parameters of the material to use can lead to better behavior of the foot model.

Secondly, the use of dynamic boundary conditions would remove the need of a clamped region.

This would more closely simulate the contact phenomena and, furthermore, it would contribute for more

accurate friction forces.

Thirdly, the use of a different integrator with a higher level of user control is needed. In simulations in

which forward dynamic analysis was performed, the behavior of the integrator was hard to control and

predict, resulting in long simulation times with very limited results.

Fourthly, parallelization of the software could be advantageous if multiple contact events are to be

analyzed at the same time.

Fifthly, the determination of the center of pressure (CoP) can be added as a possible output of the

system to allow for a more complete analysis of the movement. Furthermore, considering the application

of a more complete pressure analysis to exoskeleton design, a better understanding of the user’s comfort

with more detailed data will be possible.

Finally, since the geometry of the model of the contacting bodies can be obtained through 3D scan-

ning, the methodology presented can be applied to any body section. Contact simulations of the upper

limbs should also be considered if full body exoskeletons are to be studied.
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