

Viewport Adaptive Streaming for

Omnidirectional Video Delivery

Miguel Mateus D’Avó Luís

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Maria Paula dos Santos Queluz Rodrigues

Prof. João Miguel Duarte Ascenso

Examination Committee

Chairperson: Prof. José Fernando Alves da Silva

Supervisor: Prof. Maria Paula dos Santos Queluz Rodrigues

Member of the Committee: Prof. Pedro António Amado Assunção

July 2020

i

Acknowledgements
First, I would like to show my gratitude to my supervisors, Professor Maria Paula Queluz and

Professor João Ascenso for their guidance, patience, and constant support throughout the development

of this thesis.

I would like to thank my mother Zélia and my father Paulo for their love and support during all these

years of academic life, especially during the particularly different last few months.

I would also like to thank my sister Beatriz and her fiancé Lars for their advices.

I would like to thank my family and friends.

This work was funded by FCT/MCTES through national funds, and when applicable co-funded by

EU funds, under the project UID/EEA/50008/2019. I would like also to thank Instituto de

Telecomunicações for providing me the required means for the completion of this dissertation.

ii

iii

I declare that this document is an original work of my own authorship and that fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iv

v

Abstract
Nowadays, there is an increasing interest in 360o or omnidirectional video, which allows the user

to navigate through the video by changing its viewing direction. Although omnidirectional videos can be

displayed on conventional 2D monitors, a much better immersive experience can be achieved using

head mounted displays (HMD). Regardless of the used display type, the user only sees a fraction –

known as viewport – of the entire sphere, at a time. Accordingly, and in order to reduce the transmission

bandwidth, several viewport adaptive streaming (VAS) strategies have been proposed in the literature;

these provide the user’s viewport with higher quality (and higher bitrate), while the remaining part of the

video is transmitted with lower quality. Although several VAS strategies have been proposed in the

literature, there is still no generally recognized optimal solution.

In this thesis, the offset cubemap projection (OCM) – a VAS strategy developed by Facebook’s

Oculus – is optimized to provide an enhanced omnidirectional video streaming strategy. The OCM

projection allows higher spatial resolution (thus, higher quality) around a predefined direction of the

omnidirectional video – the offset orientation – by distorting spherical angles. The Oculus

implementation of the OCM streaming considers a fix offset magnitude of 0.7, which was proven (in this

thesis) to not provide the optimal viewport quality vs. bitrate results. To determine an appropriate offset

value, for improved quality, 11 offset values were objectively evaluated using three omnidirectional

videos, having distinct spatial-temporal activities. The best offset magnitude value was found to be 0.42,

allowing viewport quality gains (measured using the V-PSNR metric) between 1.7 dB and 2.3 dB,

relatively to an offset magnitude of 0.7.

The assessment of the optimized OCM projection, for adaptive omnidirectional video streaming,

was then conducted considering several state-of-the-art streaming strategies as benchmarks; these

were of two types: 1) the monolithic or conventional strategies - which encode the entire omnidirectional

frame with the same quality; 2) tiles-based strategies, which use tiles encoded with different

quality/spatial resolution to provide VAS. For static viewports, OCM based video streaming achieved

better results than the benchmarks, either when the requested (to the server) viewport center orientation

matched the viewing direction, either when an error of up to 20° between these two directions was

introduced. Using previously recorded head trajectories from real users, the OCM based streaming

provided better viewport quality than the conventional monolithic streaming, and competed with the

considered tiled based streaming strategies.

Keywords: Omnidirectional Video Streaming, Offset Cubemap Projection, Tile-based Streaming,

Objective Quality Assessment.

vi

vii

Resumo
Atualmente, há um interesse crescente em vídeos 360° ou omnidirecionais, em que é permitido

ao utilizador navegar no conteúdo da imagem reproduzida no ecrã, alterando a direcção de

visualização. Embora os vídeos omnidirecionais possam ser visualizados em monitores 2D

convencionais, obtém-se uma melhor experiência imersiva usando head mounted displays (HMD).

Independentemente do tipo de ecrã usado, em cada momento o utilizador observa apenas uma fracção

– designada por viewport – da imagem esférica. Consequentemente, e com o intuito de reduzir a largura

de banda necessária para a transmissão, têm sido propostas na literatura estratégias de streaming

adaptadas ao viewport (viewport adaptive streaming – VAS), que se baseiam na transmissão do

conteúdo do viewport com qualidade superior (e taxa de bits mais alta) à do restante conteúdo do vídeo.

Apesar de terem sido até agora propostas na literatura várias estratégias de VAS, não existe uma

solução reconhecida globalmente como sendo a óptima.

Nesta tese de mestrado, optimizou-se a projeção offset cubemap (OCM) – uma solução de VAS

desenvolvida pela empresa Oculus da Facebook – de forma a obter uma solução melhorada de

streaming de vídeo omnidirecional. A projeção OCM permite uma resolução espacial mais alta (e em

consequência, uma melhor qualidade) em torno de uma direção pré-definida do vídeo omnidirecional –

designada por offset – através da distorção dos ângulos esféricos. A implementação OCM utilizada

pela Oculus considera uma magnitude de offset com o valor fixo de 0.7 que, como comprovado nesta

tese, não é a óptima em termos da qualidade do viewport vs. bit rate resultantes. Para avaliar o impacto

do offset, foram considerados 11 valores de offset, aplicados a três vídeos omnidirecionais com

atividades espácio-temporais distintas. O melhor valor de offset encontrado foi de 0.42, permitindo

ganhos na qualidade do viewport (medida com a métrica V-PSNR) entre 1.7 dB e 2.3 dB, relativamente

à que se obtém com um valor de offset de 0.7.

Após a determinação do valor de offset óptimo, a projeção OCM foi avaliada e comparada com

estratégias de streaming de vídeo omnidirecional de dois tipos: 1) monolítica ou convencional, que

codifica todo o vídeo omnidirecional com a mesma qualidade; e 2) baseada em tiles, que utiliza tiles

codificados com qualidade/resolução espacial diferentes para obter VAS. Para orientações de

visualização do vídeo pré-definidas, o streaming baseado em OCM obteve resultados superiores às

técnicas de referência, desde que a orientação pedida (ao servidor) corresponda à direção de

visualização, ou desde que o erro entre as duas orientações não ultrapasse 20°. Ao utilizar trajetórias

resultantes do movimento da cabeça de utilizadores reais, previamente gravadas, a estratégia baseada

em OCM proporcionou viewports com qualidade superior ao método monolítico, e competiu com as

estratégias de streaming baseadas em tiles.

Palavras-chave: Streaming de Vídeo Omnidirecional, Projeção Offset Cubemap, Streaming Baseado

em Tiles, Avaliação Objetiva de Qualidade.

viii

ix

Table of Contents
Acknowledgements ...i

Abstract...v

Resumo .. vii

Table of Contents .. ix

Index of Figures ... xi

Index of Tables .. xiii

List of Acronyms ... xv

Chapter 1. Introduction .. 1

 Context and Motivation .. 1

 Objectives .. 3

 Main Contributions ... 3

 Thesis Outline .. 4

Chapter 2. MPEG-DASH Overview ... 5

 Introduction .. 5

 Adaptive HTTP streaming ... 5

 Media Distribution Architecture of MPEG-DASH .. 7

2.3.1 Content creation ... 8

2.3.2 DASH server and client .. 9

 DASH Media Presentation Description ... 10

 MPEG-DASH SRD .. 11

2.5.1 Tiled streaming ... 11

2.5.2 Feature specifications... 12

Chapter 3. Omnidirectional Video Adaptive Streaming ... 14

 Introduction .. 14

 The Omnidirectional Video Transmission Chain ... 14

3.2.1 Omnidirectional Video Transmission Architecture and Walkthrough 14

3.2.2 Mapping .. 16

3.2.3 Region-wise packing .. 17

3.2.4 Coding .. 17

 Challenges in Omnidirectional Video Streaming ... 19

 State-of-the-art in Omnidirectional Video Streaming ... 20

 Objective Quality Assessment Metrics .. 22

 Viewport-Adaptive Navigable 360-Degree Video Delivery .. 25

3.6.1 Context and objectives ... 25

3.6.2 Technical Solution .. 26

3.6.3 Performance Assessment .. 27

 Towards Bandwidth Efficient Adaptive Streaming of Omnidirectional Video over HTTP 29

3.7.1 Context and objectives ... 29

3.7.2 Technical Solution .. 29

x

3.7.3 Performance Assessment .. 31

 Adaptive 360-Degree Video Streaming using Scalable Video Coding 33

3.8.1 Context and objectives ... 33

3.8.2 Technical Solution .. 33

3.8.3 Performance Assessment .. 35

Chapter 4. Offset Cubemap Projection for Omnidirectional Video Streaming 38

 Introduction .. 38

 Cubemap Projection .. 38

4.2.1 Cubemap Creation ... 38

4.2.2 Viewport Rendering .. 40

 Offset Cubemap Projection ... 42

 Implementation of the Offset Cubemap... 46

4.4.1 Offset Cubemap Creation ... 47

4.4.2 Viewport Rendering .. 47

 Assessment of the Offset Magnitude Impact on Quality ... 48

4.5.1 Test Conditions ... 48

4.5.2 Results and analysis... 50

Chapter 5. Comparative Study of Different Omnidirectional Video Streaming Strategies 53

 Introduction .. 53

 Selected Omnidirectional Streaming Benchmarks .. 53

5.2.1 Monolithic Streaming Strategies ... 53

5.2.2 Tiles Streaming Strategies ... 54

 Fixed Viewport Evaluation ... 57

5.3.1 Test Conditions ... 57

5.3.2 Fixed Viewport Evaluation: Ideal Conditions .. 59

5.3.3 Fixed Viewport Evaluation with Mismatch .. 63

 Trajectory Based Viewport Evaluation .. 67

5.4.1 Test Conditions ... 67

5.4.2 Results and Analysis .. 69

Chapter 6. Conclusions ... 74

 Summary ... 74

 Future Work ... 74

Bibliography ... 76

xi

Index of Figures
Figure 1.1 – Omnidirectional video and HMDs.. 1

Figure 1.2 – Viewport rendering [5]. .. 2

Figure 2.1 - Evolution of streaming toward adaptive HTTP streaming. .. 6

Figure 2.2 – Workflow of adaptive HTTP streaming [15] .. 7

Figure 2.3 – Media distribution architecture of MPEG-DASH. .. 7

Figure 2.4 – Content creation process. ... 9

Figure 2.5 – Basic architecture of the server-client system, in DASH [14]. ... 9

Figure 2.6 – Flow of a DASH session [19]. ... 10

Figure 2.7 – MPD hierarchical data model [16]. .. 10

Figure 2.8 – Tiled streaming example [23] .. 12

Figure 2.9 –MPEG-DASH SRD use case [21]. ... 13

Figure 3.1 – Omnidirectional video transmission architecture [27] [28] .. 14

Figure 3.2 – Equirectangular projection [29] [30] .. 16

Figure 3.3 – Cubemap projection [28] ... 17

Figure 3.4 – Region-wise packing applied to a ERP frame [28].. 17

Figure 3.5 – History line of video coding standards by the ITU-T and ISO/IEC committee [31] 18

Figure 3.6 – QER-based streaming system: The server offers video representations for three QERs.

The dark brown is the part of the video encoded at high quality, the light brown the low quality. The

viewport is the dotted red rectangle, the viewport center the cross [7] ... 26

Figure 3.7 – Average MS-SSIM depending on the distance to the QEC for the four geometric layouts.

Global bitrate budget: 6 Mbit/s [7] ... 28

Figure 3.8 – Median PSNR gap between the viewports of the cube map layout and the uniEqui

depending on the number of QERs. Bitrate: 6Mbit/s [7] .. 29

Figure 3.9 – System architecture for bandwidth efficient tiled streaming. Adapted from [25] 30

Figure 3.10 – Client components for scalable tiled streaming [26]. .. 34

Figure 3.11 – Bandwidth saving results [26] ... 36

Figure 3.12 – First 120 seconds of experiments with best and worst case viewport, and 4 tiles per face

(white = rebuffering, red = low quality playback, blue = high quality playback) [26] 37

Figure 4.1 – Coordinates definition for cubemap. ... 39

Figure 4.2 – CM face coordinate systems. .. 40

Figure 4.3 – CM projection face layout. ... 40

Figure 4.4 – Viewport rendering. ... 41

Figure 4.5 – Comparison of the standard CM projection and the OCM projection. The red portion and

the green portion of the circle indicate the portions of the sphere mapped to the cubes’ front and back

face, respectively [8]. ... 43

Figure 4.6 – The OCM projection for 𝒃 = 0.7. ... 43

Figure 4.7 – Representation of the front faces of all 22 OCMs on a equirectangular image. 44

Figure 4.8 – Viewport rendering for OCM with offset 0.7 and viewport of 2000×2000 spatial resolution

and 96º horizontal and vertical FoV. White lines on a) and c) correspond to OCM face limits. Red lines

xii

on a) and c) delimit the regions shown in c) and d), respectively. Black regions on b) are not used for

the viewport rendered in a). ... 46

Figure 4.9 – OCM projection and related 3D coordinate system. ... 47

Figure 4.10 – First frame of omnidirectional video test sequences. .. 48

Figure 4.11 – RD performance for several offset magnitudes. ... 51

Figure 4.12 – Viewport quality evolution with offset value. ... 52

Figure 5.1 – Omnidirectional video streaming with tiles 6×4 layout. ... 55

Figure 5.2 – Number of HQ/HSR tiles by viewport center for 6×4 tiles layout. Viewport with 96° horizontal

and vertical FoV. .. 55

Figure 5.3 – Tiles OMAF layout. .. 56

Figure 5.4 –Omnidirectional video streaming with tiles OMAF layout. .. 57

Figure 5.5 – RD Performance for several streaming strategies. ... 60

Figure 5.6 – V-PSNR relative gain to MonoEqui. Sequence: ChairliftRide. .. 63

Figure 5.7 – V-PSNR relative gain to MonoEqui. Sequence: SkateboardInLot. 64

Figure 5.8 – V-PSNR relative gain to MonoEqui. Sequence: KiteFlite. .. 64

Figure 5.9 – Viewport section examples for viewport center (0°, 50°). ... 66

Figure 5.10 – First frame of omnidirectional video test sequences. .. 67

Figure 5.11 – Representation on an equirectangular image of the front faces of all 13 OCMs with the

offset orientations considered for the OCM streaming strategy. ... 68

Figure 5.12 – RD Performance for several streaming strategies. ... 70

xiii

Index of Tables
Table 3.1 – Bitrate savings in percent relative to monolithic video for different resolutions and tiling

patterns. Values in bold represent the highest and lowest bitrate savings for full delivery basic. [25] . 32

Table 3.2 – BD-BR of tiled content over monolithic content with a segment duration of 4 seconds using

V-PSNR. [25] ... 33

Table 4.1 – Vector 𝒅 coordinates for a given 𝑢, 𝑣 and cube face. ... 39

Table 4.2 – Correspondence of vector 𝒅 with cube face and coordinates 𝑢, 𝑣. 42

Table 4.3 – Pre-defined orientations for viewport adaptive streaming, used by Oculus [8]. 44

Table 4.4 – Offset values tested and corresponding OCM face width. ... 49

Table 4.5 – QP values used .. 50

Table 5.1 – Spatial resolutions of the omnidirectional video for 6×4-SRes. ... 57

Table 5.2 – Spatial resolutions of the omnidirectional video for OMAF-SRes. 57

Table 5.3 – Resolutions of the omnidirectional video used in OCM projection. 58

Table 5.4 – QP values used for fixed viewport evaluation. Sequence: ChairliftRide. 58

Table 5.5 – QP values used for fixed viewport evaluation. Sequence: SkateboardInLot. 58

Table 5.6 – QP values used for fixed viewport evaluation. Sequence: KiteFlite. 58

Table 5.7 – Average of BD-PSNR for directions (0°,0°), (0°,-90°) and (0,90°). Dark green, green, and

light green cells represent the best, second best, and third best BD-PSNR values (excluding partial

delivery strategies), respectively. .. 61

Table 5.8 – Average of BD-PSNR for directions (60°,0°) and (-60°,0°). Dark green, green, and light

green cells represent the best, second best, and third best BD-PSNR values (excluding partial delivery

strategies), respectively. .. 61

Table 5.9 – Average of BD-PSNR for all five directions. Dark green, green, and light green cells

represent the best, second best, and third best BD-PSNR values (excluding partial delivery strategies),

respectively. ... 61

Table 5.10 – Spatial resolutions of the omnidirectional video for 6×4-SRes. 67

Table 5.11 – Spatial resolutions of the omnidirectional video for OMAF-SRes. 67

Table 5.12 – Spatial resolutions of the omnidirectional video used in OCM projection. 68

Table 5.13 – OCM projection offset orientations. .. 68

Table 5.14 – QP values used for trajectory based viewport evaluation. Sequence: Turtle. 69

Table 5.15 – QP values used for trajectory based viewport evaluation. Sequence: UnderwaterPark.. 69

Table 5.16 – QP values used for trajectory based viewport evaluation. Sequence: Touvet. 69

Table 5.17 – BD-PSNR for the different trajectory types and streaming strategies compared to MonoEqui

2s. Dark green, green, and light green cells represent the best, second best, and third best BD-PSNR

values, respectively. .. 71

Table 5.18 – BD-PSNR difference between 1s and 2s for tiles-based and OCM streaming strategies.

 ... 72

Table 5.19 – Viewport average error (in degrees). ... 72

Table 5.20 – OMAF-SRes 1s tile streaming analysis. ... 73

xiv

xv

List of Acronyms
2D Two Dimensional

3D Three Dimensional

6×4-Qual Tiles 6×4 Quality

6×4-SRes Tiles 6×4 Spatial Resolution

ABS Adaptive Bitrate Streaming

AN-SNR Anti-noise signal-to-noise ratio

AVC Advanced Video Codec

BD Bjøntegaard Delta

BL Base Layer

BR Bitrate

CABAC Context-Adaptive Binary Arithmetic Coding

CDN Content Delivery Network

CM Cubemap

CTU Coding Tree Unit

CU Coding Unit

DASH Dynamic Adaptive Streaming over HTTP

DCT Discrete Cosine Transform

DLM Detail Loss Metric

EL Enhancement Layer

ERP Equirectangular Projection

FoV Field of View

GOP Group of Pictures

HDist High Distance

HEVC High Efficiency Video Coding

HM HEVC Test Model

HMD Head Mounted Display

HSR High Spatial Resolution

HQ High Quality

HTTP Hypertext Transfer Protocol

ITU-T International Telecommunication Union – Telecommunication Standardization

Sector

ISO International Organization for Standardization

IEC International Electrotechnical Commission

JVET Joint Video Experts Team

LQ Low Quality

LSR Low Spatial Resolution

MCPD Mean Co-Located Pixel Difference

MCTS Motion Constrained Tile Set

xvi

MonoCM Monolithic Cubemap

MonoEqui Monolithic Equirectangular

MPD Media Presentation Description

MPEG Moving Picture Experts Group

MSal Maximum Saliency

MSE Mean Squared Error

MSR Medium Spatial Resolution

MS-SSIM Multi-Scale Structural Similarity Index

OCM Offset Cubemap

OMAF Omnidirectional Media Format

OMAF-Qual Tiles OMAF Quality

OMAF-SRes Tiles OMAF Spatial Resolution

PSNR Peak Signal-to-Noise Ratio

QEC Quality Emphasized Center

QER Quality Emphasis Region

QoE Quality of Experience

QP Quantization Parameter

RD Rate-Distortion

RTP Real-time Transport Protocol

SAP Stream Access Point

SAO Sample Adaptive Offset

SHVC Scalable HEVC

S-PSNR Spherical Peak Signal-to-Noise Ratio

SRD Spatial Relationship Description

SVM Support Vector Machine

SSIM Structural Similarity Index

UDP User Datagram Protocol

UHDTV Ultra High Definition TV

VAS Viewport Adaptive Streaming

VIF Visual Information Fidelity

VMAF Video Multimethod Assessment Fusion

V-PSNR Viewport Peak Signal-to-Noise Ratio

VR Virtual Reality

WLR Weighted Linear Regression

WS-PSNR Weighted to Spherically Uniform Peak Signal-to-Noise Ratio

xvii

1

Chapter 1. Introduction

Context and Motivation

The increasing interest for virtual reality (VR) environments has generated the development of

many related technologies. One of these developments was the 360-degree or omnidirectional video,

depicted in Figure 1.1a), which allows the user to navigate through the video by changing its viewing

direction. Although omnidirectional videos can be displayed on conventional 2D monitors, a much better

immersive experience can be achieved using head mounted displays (HMD), which allow the user to

navigate on the video, while controlling the viewing direction with head movements. Several HMDs have

been produced by companies such as Oculus, HTC and Sony’s PlayStation. Furthermore, it is also

possible to turn common smartphones into HMDs, by displaying the screen as presented in Figure 1.1b),

using devices such as Google Cardboard and Samsung Gear VR, presented in Figure 1.1c) and d),

respectively. Besides HMD development, omnidirectional video streaming has also grown due to the

increasing availability of omnidirectional video cameras and streaming platforms, such as YouTube and

Facebook, as well as by several standardization activities, e.g. the MPEG Immersive Media (MPEG-I)

project [1] and its recent Omnidirectional MediA Format (OMAF) standard [2].

a) Omnidirectional video frame. b) Smartphone screen + Google Cardboard
displaying of an omnidirectional video.

c) Google Cardboard [3]. d) Samsung Gear VR [4].

Figure 1.1 – Omnidirectional video and HMDs.

Regardless of the used display type, the user only sees a fraction – or viewport – of the entire

sphere, at a time, whose content is defined by the viewing direction (V, in Figure 1.2a)), and by the

horizontal and vertical field of views (Fh and Fv, in Figure 1.2b)). To provide a good quality of experience

(QoE) to the user, the viewport content should have high spatial (and temporal) resolution, resulting in

an even higher resolution for the entire omnidirectional video. As an example, for a viewport with an

2

horizontal field of view (FoV) of 120°, the full video requires at least three times the spatial resolution of

the viewport resolution; a viewport with spatial resolution of 4K (3840×2160 pixels) requires a 12K

(11520×5760 pixels) omnidirectional video. This results in much higher video bitrates, and required

channel bandwidth, when compared to the 2D video. Accordingly, efficient omnidirectional video

streaming strategies should be developed, to reduce the transmission bitrate and to avoid the

interruption of the video playback due to insufficient channel bandwidth. This is especially important for

video streaming over wireless networks due to their lower, and variable, available bandwidth,

comparatively to wired networks.

Figure 1.2 – Viewport rendering [5].

To minimize the impact of the channel variability, Adaptive Bitrate Streaming (ABS) was adopted

by the most recent streaming solutions, including omnidirectional video streaming. In ABS, the

multimedia information is represented in different bitstreams, each one with a specific bitrate (and

subjective quality), and each stream is divided into independent segments. This allows the receiver to

switch between the available streams, during the transmission process, asking the server the most

appropriate segments, according to its buffer occupancy level, the available network bandwidth, or the

capabilities of the displaying device. ABS was first implemented in proprietary formats by Apple,

Microsoft and Adobe. While the resulting streaming formats were conceptually quite similar, they were

not totally compatible. To solve this incompatibility issue, the Moving Picture Experts Group (MPEG)

has developed a new standard for the streaming of multimedia information, named as DASH (Dynamic

Adaptive Streaming over HTTP) [6].

Concerning the particular case of omnidirectional video streaming, and to minimize the bitrate, only

the user’s viewport content should be streamed. However, current and near future internet infrastructure

do not allow sufficiently low delay response to user’s head directions and, as such, content outside the

viewport must be also transmitted to avoid absence of content when the viewing direction has a fast

change. Since, at each time instant, the user only sees a part of the whole spherical content, bandwidth

savings may be achieved by transmitting that part with high quality (and higher bitrate), while the rest of

the content is transmitted with lower quality, a strategy known as Viewport Adaptive Streaming (VAS).

There are two main approaches for providing VAS: Quality Emphasis Region (QER) based streaming

[7] [8], and tile-based streaming [9] [10] [11] [12]. QER based strategies generate several

representations of the omnidirectional video, each providing better visual quality to a possible viewport

region, either by encoding different regions with different qualities/spatial resolutions [7], or by projection

a) Coordinate system. b) Sphere to plan projection.

V

f

q

Z

X

Y

Fv

Fh

360o Image

Sphere to plan

projection

Viewport

Image

3

methods that distort the frame in such a way that more information is provided in a certain region [8];

the client then chooses the representation more appropriate to its viewing direction. Tile-based

streaming segments (spatially) the omnidirectional video in tiles, and encodes each tile in multiple

qualities/spatial resolutions; the client then selects higher quality/spatial resolution tiles for viewport

regions and lower quality/spatial resolution tiles for the remaining regions. While several strategies for

providing VAS have been proposed in the literature, there is still no clear winner solution.

Using VAS in DASH based streaming, besides conventional rate adaptation to the bandwidth

fluctuations, an additional spatial adaptation to the viewing direction (or viewport) must be applied. For

tile-based streaming, this is supported in DASH by a recently introduced feature, known as Spatial

Relationship Description (SRD), that allows to describe spatially related parts of a same media.

Objectives

In the previous section, two approaches for VAS were referred, QER-based and tile-based; while

both provide bandwidth waste reduction, the latter may lead to less efficient video encoding due to the

tile independence; also, spatial discontinuities between low/high quality tiles may become visible,

reducing the user QoE. The QER-based approach for omnidirectional video streaming was introduced

in [7]. In that work, the cubemap (CM) projection was used, with the center of one cube's face - the face

represented at highest quality - localized at the center of the most likely viewing directions; the other

faces are represented with lower quality. A variant of this strategy is the offset cubemap (OCM)

projection, that has been used by Facebook' s Oculus [8]. In this case, the spherical angle interval near

a pre-defined direction (offset angle) is distorted by the projection, so that this interval is mapped on a

larger cube area, and thus represented with higher spatial resolution than the other spherical angles.

The main objective of this thesis is to implement, assess and improve a VAS strategy based on

the OCM projection, and compare it with tiled-based approaches, including some of the tile-based

strategies proposed in OMAF.

Main Contributions

The OCM projection is characterized by the offset magnitude, which determines the area of the

omnidirectional video that is projected on the cube front face; the higher the offset magnitude, the lower

this area will be. This thesis evaluates the impact of the offset angle on the performance of the OCM

projection and concludes about the optimum (in a rate-distortion sense) offset angle value, providing an

enhanced video streaming quality comparatively to the OCM solution described in [8].

The optimized OCM projection was assessed and compared with the conventional streaming

strategy – which encodes the entire omnidirectional frame with the same quality – and with diverse tile-

based strategies, where the considered frame division in tiles was set according to the usual procedure

in related literature: 6×4 and OMAF (Annex D.6.3) tiles structure. This comparison considered both static

viewports and moving viewports resulting from real head motion trajectories.

4

Thesis Outline

This thesis is organized in six chapters, with the first one introducing the work in terms of context,

motivation, objectives and contributions.

Chapter 2 overviews the MPEG-DASH standard, its main concepts and design principles. This

includes a brief evolution of multimedia streaming towards ABS, the main motivations for the MPEG-

DASH standardization, and the media distribution architecture for MPEG-DASH, from content creation

to content consumption. The MPEG-DASH SRD feature is also described.

Chapter 3 describes the state-of-the-art in omnidirectional video streaming. Firstly, the main

procedures involved in omnidirectional video streaming are described. Secondly, several VAS strategies

are presented. Thirdly, the metrics used in omnidirectional video objective quality assessment are

described. Finally, three state-of-the-art approaches for providing viewport adaptive streaming of

omnidirectional video are overviewed.

Chapter 4 presents the OCM projection, its application to omnidirectional video streaming (as

described in [8]) and proposes an optimization of it. As the basis of the OCM projection, a formal

description of the CM projection is given. Then, a conceptual description of the OCM projection and the

conditions used by Oculus to provide VAS, are presented. Lastly, an optimization of the OCM conditions

used by Oculus is proposed.

Chapter 5 evaluates the OCM projection, with the optimized offset magnitude (as proposed in

Chapter 4) for omnidirectional video streaming and compares it with other state-of-the-art viewport

adaptive solutions. This evaluation is conducted using an objective evaluation of rendered viewports for

each solution, and accounting for the resulting bitrate. In a first phase, the evaluation uses static

viewports, with predefined orientations. In a final phase, the evaluation considers recorded head

trajectories obtained from real users while navigating on the video, providing results closer to a realistic

scenario.

Chapter 6 presents the conclusions of this thesis and some suggestions for future work.

5

Chapter 2. MPEG-DASH Overview

Introduction

The distribution of multimedia content on the internet has developed over the years. Streaming

websites, such as YouTube and Netflix, are now available and accessible to everyone. However,

bandwidth changes on the connection between server and user equipment may have a negative impact

on the provided streaming service; in particular, an insufficient bandwidth can lead to an empty buffer

on the user side, stopping the media playback, and compromising the user’s Quality of Experience

(QoE). Wireless networks are especially affected, as the radio channel is more unstable, when

compared to wired connections. To minimize the impact of the channel variability, Adaptive Bitrate

Streaming (ABS) was adopted by the most recent streaming solutions. In ABS, the multimedia

information is represented in different bitstreams, each one with a specific bitrate (and subjective

quality), and each stream is divided into independent segments. The characteristics of each segment –

such as timing, server location or associated bitrate (among others) – are defined in a description file,

that is sent before the transmission starts. This strategy allows the client to switch between the available

streams, during the transmission process, asking the server the most appropriate segments, according

to its buffer occupancy level, the available network bandwidth, or the capabilities of the displaying

device. ABS was first implemented in proprietary formats by Apple, Microsoft and Adobe. While the

resulting streaming formats were conceptually quite similar, they were not totally compatible. To solve

this incompatibility issue, the Moving Picture Experts Group (MPEG) has developed a new standard for

the streaming of multimedia information, called DASH (Dynamic Adaptive Streaming over HTTP) [13].

This chapter presents the main concepts and design principles subjacent to the MPEG-DASH

standard. In section 2.2, a brief evolution of multimedia streaming towards ABS, and the main

motivations for the MPEG-DASH standardization, are given. In section 2.3 and 2.4, the MPEG-DASH

media distribution architecture is described, from content creation to content consumption. Finally,

section 2.5 presents a new feature, recently added to the MPEG-DASH, known as Spatial Relationship

Description (SRD), and highlights its relevance in the context of omnidirectional video streaming.

Adaptive HTTP streaming

Media streaming is the continuous deliver of multimedia data, from a service provider to an end-

user, while the data is simultaneously presented on the user terminal. Streaming is an alternative to file

downloading, a process in which the end-user obtains the entire content before watching or listening to

it. In the last years, several streaming solutions have been proposed; Figure 2.1 describes,

schematically, their evolution.

6

Figure 2.1 - Evolution of streaming toward adaptive HTTP streaming.

In the earliest streaming solution, referred to as “RTP Streaming”, the Real-time Transport Protocol

(RTP) was used; RTP is an application layer protocol for delivering audio and video over IP networks.

The RTP streaming solution prioritizes the timely delivery of information and, to achieve this goal, it often

tolerates some packet loss; as such, it is built on the User Datagram Protocol (UDP). UDP is a transport

layer protocol that uses a simple connectionless communication model. It does not guarantee delivery,

ordering, or duplicate protection of data. An RTP streaming server has just one representation of the

media and sends it at a rate close to the streamed media bitrate, which is shown by the client’s media

player as the data arrives. This implies that, to avoid information loss during the streaming session, the

connection bandwidth between the server and a client must be equal to, or higher than, the bitrate of

the streamed media; if the connection bandwidth drops below the media bitrate, data will be lost, which

will result on a temporal discontinuity on the media playback. Another issue with RTP streaming is that

UDP often causes firewall problems. Moreover, nowadays it is common the use of content delivery

networks (CDN) for storing and distributing content, and many do not support RTP [14].

In “Progressive Download Streaming”, the Hypertext Transfer Protocol (HTTP) is the protocol used

for media transport. Since it is the main application layer protocol on Internet, it is allowed by most

firewalls and also supported by CDNs, making it a good option for the application layer protocols in

streaming services. In progressive HTTP download, the server has just one representation of the media

content, which the client obtains using HTTP requests. While the content file is downloaded, the client

media player is able to start reproducing the data, as the client does not need to download the whole

file before playback parts of it. The data is received at the available bandwidth between server and

client. With only one content representation accessible to the client, a connection bandwidth lower than

the media bitrate might lead to stalls on the media playback, reducing the user’s QoE. Furthermore,

Progressive Download Streaming does not allow live streaming.

To solve the problems of progressive download, while taking advantage on the use of HTTP,

adaptive HTTP streaming solutions were developed. In this case, the main idea is to adapt the media

bitrate to the available network bandwidth and to the client buffer fullness, seeking to continuously

playing the media without interruptions. To achieve this, the media is encoded with different bitrates

(and qualities), each one corresponding to a media representation, and each representation is divided

in temporal segments. The information about the available media, as its bitrate, quality and location (i.e.,

its URL) is available in a manifest file, which is sent to the client at the beginning of the streaming

7

session. The media can also be separated by types (e.g., video, audio, subtitles, etc.), so that the client

may choose between different camera angles, or between different languages, to just mention a few

possibilities.

Figure 2.2 shows a streaming session workflow, and where the client changes the requested media

quality over time, reacting to the changes on the available network bandwidth.

Figure 2.2 – Workflow of adaptive HTTP streaming [15]

Several proprietary adaptive HTTP streaming solutions were developed, including Apple’s HTTP

Live Streaming, Microsoft’s Smooth Streaming and Adobe’s HTTP Dynamic Streaming. All these

solutions are closed systems, with their own manifest and media content formats, although also having

several characteristics in common. To allow interoperability and an open-source standard for media

streaming, MPEG developed the first adaptive HTTP based streaming standard, the MPEG-DASH [13].

This standard resulted from a collaboration with other international organizations (such as 3GPP) and

companies (including Apple, Microsoft and Adobe), and as inherited many characteristics from their

proprietary solutions.

Media Distribution Architecture of MPEG-DASH

Figure 2.3 shows the media distribution architecture of MPEG-DASH. The content creation

encodes and segments the media, and creates the corresponding Media Presentation Description

(MPD) file, in a way compliant with the MPEG-DASH standard; the resulting files are then stored in an

HTTP server. Additionally, part of these files may be stored on HTTP caches, located close to the client

sites, in order to reduce bandwidth requirements, server load and response times.

Figure 2.3 – Media distribution architecture of MPEG-DASH.

The MPEG-DASH does not define the adaptive bitrate streaming logic; instead, it specifies [16]:

8

• A normative definition of a Media Presentation, with Media Presentation defined as a

structured collection of data that is accessible to the DASH client, through the Media

Presentation Description.

• A normative definition of the formats of a segment, with a segment defined as an integral data

unit of a media presentation that can be uniquely referenced by a HTTP-URL.

The following sections details the main blocks of the MPEG-DASH architecture.

2.3.1 Content creation

The media to be streamed needs to be prepared to comply with the DASH format. In the following,

this preparation process is explained only for video data since this is the media type that will be used on

this work.

First, the original video is spatially and/or temporally subsampled, creating different video sources

with different resolutions and/or frame rates, respectively. Then, each video source is encoded with

several bitrates, resulting in the so-called video representations. Although MPEG-DASH allows the use

of any video encoder, the most commonly used video encoders are, nowadays, H.264/AVC [17] and

H.265/HEVC [18]. Each video representation is then segmented in time intervals of fixed length

(typically, between 1 second and 15 seconds), and different lengths may be applied to the same video

representation. Each segment contains at least one stream access point (SAP) [14]; this is a position

where playback of a media stream may start, while using only information contained from that position

onwards [13]. An initialization segment might be created, which is used to initialize the video for playback

and that contains information about the media SAPs. If not created, every segment shall be self-

initialized.

Concerning the temporal segmentation, and as video encoders explore time redundancy, it

reduces the overall compression efficiency - the shorter the time intervals are, the larger the overall

media data size is; also, more requests are necessary from the client, which can lead to server

overloading. However, shorter segments allow a faster adaptation to bandwidth changes, which is

preferable in unstable connections, like wireless networks.

Finally, the Media Presentation Description is created, which contains the relevant information

about the available video representations, such as spatial resolution, frame rate, bitrate, segment time

intervals and server localization (URL).

Figure 2.4 illustrates a simplified version of the content creation process for a video track. It is

assumed that the spatial subsampling results in three different resolutions, the temporal subsampling is

kept constant and, for each spatial resolution version, three different bitrates are produced by the

encoder.

9

Figure 2.4 – Content creation process.

2.3.2 DASH server and client

Once created, the different video representations are stored on ordinary HTTP servers, and their

URLs are linked to the segments by the MPD information. This allows the use of HTTP GET requests

from the client, to download each media segment. Figure 2.5 shows the basic architecture of the HTTP

server and a DASH client.

Figure 2.5 – Basic architecture of the server-client system, in DASH [14].

The MPD is transmitted to the client at the start of the transmission. The client then parses the

MPD and starts requesting the selected video segments. For a continuous playback, without pauses (or

video stalls), the requested video representation may change from segment to segment, according to

the measured connection bandwidth. This strategy results in a DASH session with a flow like the one

presented in Figure 2.6. As already mentioned, the DASH scope does not cover the client's bitrate

adaptation heuristics, nor the media players.

10

Figure 2.6 – Flow of a DASH session [19].

DASH Media Presentation Description

When streaming with DASH, the Media Presentation Description (MPD) informs the client about

the available media content. This includes information about the media segments, and their

relationships, and about other metadata that may be needed by the clients. The MPD is an XML

document that respects a hierarchy established by the DASH standard, as depicted in Figure 2.7. From

the highest to the lowest, the different hierarchy levels comprise periods, adaptation sets,

representations and segments, and are all explained below.

Figure 2.7 – MPD hierarchical data model [16].

I. Period

An MPD file contains one or more periods. Typically, a period represents a media content period

during which a consistent set of encoded versions of the media content is available, i.e., the set of

available bitrates, languages, captions, subtitles, etc., does not change during a period. Each period

has an associated start time. Multiple periods may be created to enable splicing of the content, for

example for ad insertion. They can also provide a synchronization point to avoid drift in segment

numbering [13] [20].

II. Adaptation set

Adaptation sets are used to separate different parts of the media content in a period. During a

streaming session, the client chooses only the adaptation sets that are of interest to him. A simple

example consists on a separation of video and audio in different adaptation sets. This allows the client

11

to request only the audio component, or only the video component, or both. Separation between different

audio tracks is done with adaptation sets. Similarly, it is at this level that different spatial areas of the

video are selected when using the Spatial Relationship Description (SRD) feature [21] (described in

section 2.5). Adaptation sets can also contain subtitles or arbitrary metadata [13].

III. Representation

Each adaptation set is divided in different representations. Every representation of one adaptation

set is assumed to represent the same content but with different properties. A representation is defined

by its encoded conditions, such as bitrate, resolution and used encoder. Changing between

representations allows the client to adapt to the channel bandwidth variations, and device conditions

[13].

IV. Segment

Segments represent a split in time of the media contained in one representation, and are the final

result of the content creation step, described in section 2.3.1 . In order to access a segment, a URL is

provided for each one. Typically, all segments within a representation have the same or roughly similar

duration. To allow seamless switching during media playback across different representations, the

segment duration might be made equal to all representations of an adaptation set. However, this is not

normative as different representations of an adaptation set can have different segment durations [13].

MPEG-DASH SRD

DASH has the potential to evolve through the addition of new features. One problem that surged

after its development was how to represent different spatial parts of a video, so that the representation

of each part could be also adapted to the channel and client conditions. Omnidirectional video is one

instance where this functionality is quite useful. Since typical 360o displays only show a fraction (or

viewport) of the whole viewing sphere at a time, streaming the whole 360o video at constant quality

would be a waste of bandwidth. As such, different regions of the 360o video can be sent at different

qualities, so that the region of interest is sent with better quality. This streaming method is known as

viewport adaptive streaming (VAS). MPEG-DASH SRD serves as a way to describe spatially related

parts of a same media [21].

2.5.1 Tiled streaming

Tiled streaming allows a client to stream different spatial parts of the complete video with different

bitrates, selected by the client. This allows a better bandwidth allocation, since a region-of-interest (ROI)

on the video might be prioritized and streamed with the highest bitrate, and the other spatial parts can

either be retrieved at a lower quality or discarded.

Preparing the video for tiled streaming requires an extra step to the content creation process

described in subsection 2.3.1 – a spatial segmentation of the video has to be applied before the

encoding process; it consists on spatially splitting each video frame into several parts, named tiles. The

tiles that, along time, belong to the same single area of the video are taken together, encoded and stored

as a new independent video stream, or spatial segment. The result is a large number of video files, each

12

representing a specific area of the original video [22]. As the encoder explores spatial redundancy to

maximize compression, spatial segmentation leads to a decrease on the compression efficiency, and to

an increase in overall media data size.

Figure 2.8 presents a tiled streaming example of a conventional 2D video, where tiles are

rectangular shaped and the client only retrieves the tiles that contain the ROI.

Figure 2.8 – Tiled streaming example [23]

2.5.2 Feature specifications

The SRD feature describes how media assets (video, audio, etc.) relate to each other, i.e., how

the content is spatially organized. It does not presume anything about how a player shall use this

information. For instance, considering a tiled video described by SRD, a player may decide to display a

group of tiles at the same time, while another player only displays one tile at a time. Additionally, the

information in SRD describes how the media assets are spatially related from a content creator

perspective. Even though it can be used with other types of media, the SRD feature is only explained

for video data since this is the media type that will be used on this work.

To spatially position the tile, a 2D Cartesian coordinate system, with the origin of the coordinate

system at the top-left corner of the video, is used. This coordinate system represents an arbitrary

coordinate system in which the positioning of the video tile is provided. With this, it is possible to describe

from simple grid cell indices, like nonoverlapping tiled videos, to more complex representations, like

overlapping ones. Processing of spatially related videos by a client is not defined and, like DASH, SRD

is agnostic to the used encoder.

To express the SRD functionality on the MPD file, a property is added to adaptation sets, as

different adaptation sets contain different spatial parts of the media. A number is used as an identifier

of a reference space which implicitly defines a coordinate system. In the coordinate system, x and y

represent the position of the top-left corner of the associated media assets. The width and height of

each component and the total width and height of the media are also given, in coordinate system units.

Finally, certain use cases require the selection of tiles within the same resolution layer, e.g. when

panning, or from another resolution layer, e.g. when zooming in or out. This presence of different

resolution layers is indicated by an optional identifier [21].

Figure 2.9 presents an example of application of MPEG-DASH SRD. The user is able to navigate

and zoom within the video, allowing full control over what the user want to watch. This is achievable

13

using tiled streaming, allowing streaming of tiles with 4K resolution to be played on mobile devices like

smartphones and tablets.

Figure 2.9 –MPEG-DASH SRD use case [21].

14

Chapter 3. Omnidirectional Video Adaptive

Streaming

Introduction

The rise of streaming media allowed new types of content to develop, such as omnidirectional

video streaming. Omnidirectional video provides an immersive experience not achieved by regular 2D

video, by covering the 360º viewing angle with three degrees of freedom. The release of consumer

available electronics for omnidirectional video, such as cameras and head mounted displays, made the

consumption of this type of media easier. Furthermore, MPEG developed new standards for

omnidirectional video as the Omnidirectional Media Format (OMAF) [24]. OMAF specifies the means to

allow the consumption of omnidirectional video. Due to requiring more data than traditional 2D video,

streaming of omnidirectional video currently faces limitations mainly due to required bandwidth.

This chapter presents the state-of-the-art in omnidirectional video streaming. In Section 3.2, the

processes involved in omnidirectional video streaming are described, with emphasis on mapping,

region-wise packing and coding. In Section 3.3, the main challenges of omnidirectional video streaming

are presented. In Section 3.4, the state-of-the-art in omnidirectional video streaming is described with

different possible approaches on this subject. In Section 3.5, the metrics used for omnidirectional video

objective quality assessment are described. Finally, Sections 3.6, 3.7 and 3.8 provide a summary of the

strategies developed by Corbillon et al. [7], Graf et al. [25] and Nasrabadi et al. [26].

The Omnidirectional Video Transmission Chain

This section describes the end-to-end processes required for the creation, transmission and

consumption of omnidirectional video content. The architecture of the omnidirectional video processing

chain is first presented; after, mapping, region-wise packing and video coding are briefly explained.

3.2.1 Omnidirectional Video Transmission Architecture and Walkthrough

Figure 3.1 presents the key steps involved on in a typical omnidirectional video transmission chain.

This involves several processing steps to create, transmit and visualize omnidirectional frames, from

stitching to rendering.

Figure 3.1 – Omnidirectional video transmission architecture [27] [28]

The main functions of each module are [27] [28]:

15

• Acquisition: The acquisition of omnidirectional videos is typically done with multiple cameras,

that are time synchronized and uniformly placed along a rig. Each camera’s lens is oriented in

different directions, so that the whole visual scene around the camera rig is covered, thus

obtaining a full 360º field of view, captured by different cameras. All cameras sense the

environment to produce synchronized 2D images or video frames and the field of view of a single

camera overlaps with other cameras field of view to allow the next processing step.

• Stitching: Stitching consists on the process of combination of the 2D frames captured during

the acquisition with overlapped regions (between frames) to create a single omnidirectional

frame representation. This is a complex process that involves several steps such as registration,

calibration, blending and illumination compensation to assemble the omnidirectional frame. The

output of this step is a non-planar spherical representation of the visual scene.

• Mapping: The omnidirectional spherical frame must be projected onto a 2D plane in order to be

coded and transmitted. While there are many projection schemes, two popular projections,

equirectangular projection (ERP) and cubemap projection (CMP) are usually employed. The

output of the mapping process is a projected 2D omnidirectional frame. This process is explained

with more detail in Subsection 3.2.2 .

• Region-wise packing: This optional region-wise packing step enables manipulations (resize,

reposition, rotation, and mirroring) of any region in the projected omnidirectional frame and allows

to distinguish regions in the mapped frame with different quality levels (after coding). This

process may require the additional transmission of metadata. This process is explained with

more detail in Subsection 3.2.3 .

• Encoding: After having a planar representation, a 2D video codec is used, such as H.264/AVC

or HEVC. If the region-packed frame is separated in tiles (or slices), each tile (or slice) might be

independently encoded from each other, using HEVC or H.264/AVC. Another option is to use a

scalable HEVC (SHVC) encoder to obtain a set of hierarchical layers from low to high quality.

This process is explained with more detail in Subsection 3.2.4 .

• Channel/Transmission: The bit stream generated by the encoding step can be transmitted to

the client over a fixed or wireless communication channel. Nowadays, video streaming protocols

such as MPEG-DASH could be used to transmit video content as described in Chapter 2.

• Decoding: In the decoding step of this processing chain the inverse operation of the encoder is

performed and at the end the decoded projected omnidirectional video is obtained.

• Inverse Mapping: The planar omnidirectional video is mapped into a spherical representation,

by applying the corresponding inverse mapping transformation.

• Rendering: In omnidirectional video, the frames that are shown to the user correspond only to

a part of the entire viewing sphere. Thus, it is necessary to process the spherical representation

(or render) to obtain a 2D plane of a fraction of the sphere (also known as viewport) which can

then be shown to the users. Users can look around freely and only a small field of view (much

less than 360º) is shown according to the user viewing direction.

• Display: The final step is to display the obtained viewport to users. The displays for

omnidirectional video are of two types: the first corresponds to a navigable frame on a standard

16

2D display (e.g. a computer or a smartphone screen), where the user controls the viewing

direction with a mouse or by moving the display; the second type corresponds to a head mounted

display (HMD), which is a display that a user wears on his head, and tracks user’s head

movements to compute the corresponding viewport.

When streaming omnidirectional video, only a viewport is displayed at any particular time to the

user. This feature may be utilized to improve the performance of omnidirectional video systems, through

selective delivery depending on the user’s viewport, known as viewport-dependent streaming. For

generating a viewport-dependent video from an omnidirectional video, the most relevant steps of the

omnidirectional video transmission chain are mapping, region-wise packing and encoding.

3.2.2 Mapping

The spherical representation of omnidirectional video cannot be straightforward encoded. As such,

a mapping process is required to convert from the spherical representation to a planar representation

at the encoder. After decoding, this planar representation is converted into a spherical one through

inverse mapping. However, mapping a sphere to a flat plane always introduces some deformation and

changes in the area to be encoded. The two planar projections supported by OMAF are described below:

• Equirectangular projection: The ERP is the most often used planar projection. The projection

maps meridians to vertical straight lines, equally spaced, and parallels to horizontal straight lines,

also equally spaced. To keep the rectangular shape, the points are stretched more and more as

they approach the poles, increasing also the deformation of the content, as shown in Figure 3.2

by the distortion of the circles on the sphere to ellipses on the plane. This implies that the

stretched content uses more pixels for its projection, which increases the number of pixels to

encode. ERP is a relatively simple transformation and it is a friendly format to preview the whole

omnidirectional video. However, the distortion present in the projection affect the coding

performance, due to the larger number of redundant pixels representing small areas near the

poles.

Figure 3.2 – Equirectangular projection [29] [30]

• Cubemap projection: The CMP is a planar projection of a cube. As seen on the left side of

Figure 3.3, the sphere is surrounded by cube faces and then is stretched to cover the cube faces

completely. The content close to the cube edges and corners has to be stretched but not as

much as for the ERP near the poles. The cube faces are then organized to obtain a rectangular

layout. One possible layout is presented on the right side of Figure 3.3, which gives continuity to

the frame in each row. The final flat plane contains less distortion than the ERP, but the coding

performance may be affected due to discontinuities between the faces.

17

Figure 3.3 – Cubemap projection [28]

3.2.3 Region-wise packing

Additional changes can be made to the planar representation through region-wise packing. When

region-wise packing is used, 2D projected regions (e.g. after equirectangular mapping) are mapped onto

a packed frame by indicating the location, shape, and size of each projected frame region in the packed

frame (metadata that is also transmitted). Each projected frame region usually has a rectangular shape,

since this is the only shape currently supported by OMAF [24]. It is not mandatory that the packed frame

covers the entire sphere. Figure 3.4 illustrates one simple example of generating a packed frame

through region-wise resampling and repositioning, changing an equirectangular frame to a packed frame

where the “top” and “bottom” regions are resampled to half the width and positioned above the middle

part of the equirectangular frame, which remains with the same resolution [28].

Figure 3.4 – Region-wise packing applied to a ERP frame [28]

A known problem of region-wise packing consists on the appearance of artifacts along the

boundaries of the regions after rendering. To avoid or reduce these artifacts, a guard band might be

used. The guard band allows addition of some extra pixels at the boundaries of the regions when the

region-packed frame is created. The resampling of different regions (in the example a lower spatial

region) allows a region of interest to keep high quality, while reducing overall resolution of the frame to

be encoded and thus obtaining coding efficiency improvements.

One possible application of region-wise packing is viewport dependent streaming that will be

described in Section 3.4.

3.2.4 Coding

The bitrate required to transmit raw video data is rather large and thus requires enormous

resources for storage and transmission. Thus, video compression aims to lower the bitrate requirements

by exploiting different characteristics of the video, e.g. spatial or temporal redundancy but also

perceptual irrelevance. In the past several coding standards for video were developed and are

nowadays widely used for several applications. Figure 3.5 shows a brief timeline of the main video

18

codecs developed by the ITU-T and ISO/IEC committees. Video codecs have been improving their

coding performance (e.g. bitrate for the same quality), mainly due to advances in terms of hardware

which allow the development of more complex compressing algorithms. Nowadays, the most commonly

used video codecs are H.264/AVC (MPEG-4 part 10) and H.265/HEVC (or just HEVC).

Figure 3.5 – History line of video coding standards by the ITU-T and ISO/IEC committee [31]

HEVC was standardized in 2013 and is the current state-of-the-art video codec in terms of rate-

distortion (RD) performance. HEVC is the first codec to support UHDTV, supporting resolutions up to

8192×4320. As the previous ITU and MPEG standards, it typically uses the 4:2:0 color sampling,

meaning that the chrominance components (responsible for colors) are half, in both directions compared

to the luminance components. HEVC achieves better compression efficiency for the same perceptual

quality than its predecessors, reducing 50% the bitrate when comparing with the previous standard AVC.

HEVC also defines tiles, which are self-contained and independently decodable rectangular regions of

the frame. The HEVC encoding process [32] starts by partitioning each frame into multiple units called

Coding tree units (CTUs), usually 64x64. Then, each CTU is split recursively in a quadtree structure,

resulting in coding units (CUs), which can have a size from 8x8 to the size of the CTU. The next step of

HEVC encoding consists on exploiting redundancies spatially, through Intra-frame prediction, or

exploiting redundancies temporally, with inter-frame prediction. For intra-frame prediction, HEVC has

33 directional modes (prediction is obtained by extrapolation from neighboring pixels), a DC mode (mean

of left and upper neighboring pixels) and a planar mode (approximation of a smooth gradient between

near left and upper neighboring pixels). For inter-frame prediction, an 8th order finite impulse filter is

used to obtain motion vectors with ¼ precision. Within the inter-frame prediction loop, a deblocking filter

is used, followed by a sample adaptive offset (SAO) filter. Both filters are used to have decoded frames

with higher quality that are also used as reference during inter-frame prediction. The prediction type of

each CU is either intra-frame or inter-frame and this is selected with a mode decision process that

usually considers both rate and distortion. The difference between the original frame and the prediction,

referred as residual, is transformed and quantized. HEVC defines two transformations to be used, the

Discrete Cosine Transform (DCT) and one derived from the Discrete Sine Transform. The decoded

quality of the video is conditioned by the quantization parameter (QP) which regulates how much spatial

detail is saved. By increasing the QP the bitrate is decreased, but at the price of an increase in distortion.

The final coded bitstream is obtained by exploiting the statistical correlation between symbols (DCT

coefficients, motion vectors, etc.) through context-adaptive binary arithmetic coding (CABAC).

After its initial version in 2013, the HEVC standard has been extended to be better adapted to

some applications. Scalable HEVC (SHVC) is an extension that offers a way of coding video in multiple

19

layers, where each layer represents a different quality representation of the same video scene. The

base layer (BL) is the lowest quality representation and is backwards compatible with conventional

HEVC, while enhancement layers (ELs) provide improved video quality (at the cost of more bitrate) and

may be coded using lower quality layers frames as reference. To decode an EL with SHVC, its reference

layers must first be fully decoded to make them available as prediction references; interlayer prediction

tools are used to improve the prediction quality at some layer. The main types of video scalability are

temporal and spatial. Temporal scalability allows an EL to increase the frame rate of the video. Spatial

scalability allows an EL to increase the spatial resolution of the video.

Challenges in Omnidirectional Video Streaming

Nowadays, several platforms (such as YouTube) and network providers are working on systems

to stream omnidirectional video with a good quality of experience. Most often, to show high video quality

it is necessary to acquire, code and transmit the full high-quality omnidirectional frames. These high-

quality omnidirectional frames achieve high resolutions, up to 8K, and high frame rates, e.g.

120fps.Thus, the resulting bitrate required to fully transmit omnidirectional videos with high quality

between 50 to 100 Mbit/s, which demands transmission channels with large capacities difficult to

achieve nowadays, especially on wireless networks, especially when a large amount of users want to

consume this type of content.

During playback of omnidirectional video, only the user’s viewport is displayed. To reduce required

bandwidth to streaming, a solution that only streams the visual data corresponding to the current

viewport is streamed might be considered. This solution is similar to adaptive HTTP streaming, with the

spatial dimension added to the adaptation space. The server stores versions of the omnidirectional

video, each containing a different area of the omnidirectional frame covering a possible viewport. These

versions are encoded in different bitrates and can be temporally segmented to allow some adaptation

to the network bandwidth conditions. The clients choose which areas to download and their fidelity (e.g.

resolution) based on the user’s viewing direction and available bandwidth. However, the latency of the

network limits the speed of spatial adaptation. For example, when a user changes its viewport quickly

to an area not covered (entirely or partially) by the current video data, no content is available in this new

area (covered by the new viewport but not the old viewport) and thus it is necessary to wait for the arrival

of the new area data. This situation is only completely prevented for network latency lower than 10

milliseconds [24], which is currently not feasible for many transmission channels. As such, it is necessary

to prefetch future segments (spatio-temporal regions of the video), i.e. anticipate which areas of the

videos the users will need in the future. However, prefetching future segments requires knowledge about

the user’s future viewport and thus, attempts have been made to predict the user’s future viewport based

on the viewport history. Yet, the mismatch between user’s predicted and actual viewport is likely to occur

[33]; moreover, the accuracy of viewport prediction decreases with time.

As usually happens in the case of temporal segmentation (forcing Intra frames), spatial

segmentation also lowers the compression efficiency of a codec (not allowing spatial predictions).

Furthermore, it is possible that different video versions covering possible viewports have overlapped

areas, and thus being somewhat redundant between them. Moreover, spatial adaptation requires more

20

frequent temporal segmentation, to allow quicker adaptation to user’s viewport changes. All these issues

increase overall data size needed to be stored on a server and the number of files to be managed by a

server and to be included on a manifest file.

State-of-the-art in Omnidirectional Video Streaming

Recently, several solutions for omnidirectional video streaming have been suggested in the

literature, mainly to deal with the high amount of video data that needs to be stored, transmitted and

rendered compared to traditional 2D video streaming. With the OMAF specification, interoperability

among several VR related services, systems and devices are now possible. In addition, OMAF also

enables quality control for regions of the omnidirectional video according to their importance. From all

solutions available in the literature (some of them proposed in the context of the OMAF specification),

the following classes were identified by abstracting the differences between solutions and understanding

their commonalities:

• Conventional approach: This solution is also known as viewport-independent streaming and

monolithic streaming. The encoding of omnidirectional video is done like traditional 2D video,

meaning that a single encoded bit stream contains the full omnidirectional video, where quality

is similarly distributed on the entire frame. In this approach, the client decodes the bit stream

continuously to obtain the omnidirectional video data (complete frames) and thus, any viewport

can be rendered. However, the bandwidth required for transmission of the entire omnidirectional

video is rather large and a large part of each omnidirectional frame of the video will not be

covered by any viewport, thus wasting a significant amount of bandwidth [24].

• Personalized viewport approach: In this solution, the client requests the viewport that it should

display to the user. The server receives the client request, performs a suitable spherical to plane

projection using the omnidirectional video frames and encodes the result, i.e. the requested

viewport. With this approach, only the necessary bitrate to transmit the requested viewport to the

user is spent. However, since it is only sent the viewport, the absence of content after a quick

change of head direction (which requires a new viewport) might occur, especially if network

latency issues are considered. Additionally, the extra encoding (or re-encoding) step of a

personalized viewport further increases latency and requires a server capable of encoding

(highly complex process) a different video for each client and thus, doesn’t scale well when the

number of users increase.

• QER-based approach: In this solution, the full omnidirectional video frames are also encoded

(as in the conventional approach), but a specific spatial region, called Quality Emphasis Region

(QER), is encoded in higher quality and the rest with lower quality. This is achievable using

different methods: by choosing different qualities for different areas of the omnidirectional video

during encoding [7]; by using projections which represent areas of the omnidirectional video with

higher quality, such as the Offset cubemap projection [8]. QER-based approach requires multiple

bitstreams to be encoded, each one with a different QER, which are stored on a server to be

transmitted as requested by clients. The client requests the video representation that includes

21

the user’s viewport in the QER. The choice of QERs available at the server may take different

approaches. For example, the computation of QERs can be made to assure that every region of

the omnidirectional video has a high quality representation. However, increasing the number of

different QERs available at the server significantly increases the required storage. As such,

available QERs are chosen based on typical viewing directions [7] [34].

• MCTS-based approach: One or multiple spatially subsampled versions of the omnidirectional

video are divided in motion constrained tiles. These HEVC tiles are coded independently, which

means that intra prediction cannot use as reference, regions that do not belong to the tile as in

simple tiles. However, in motion constrained tiles it is not allowed to use motion vectors that

reference past frames and “point” outside the spatial region of the tile. The motion constrained

tile set (MCTS) technique limits the temporal inter prediction of the tile at the same position of

the current frame and the reference past frames. Motion constrained tiles allow to encode

different spatial-temporal regions of the video independently without a significant decrease in

terms of coding efficiency. Each tile is encoded in multiple bitstreams at different bitrates, using

different QPs and/or different resolutions, which are stored on a server. The idea is to stream

one tile or a combination of tiles covering the viewport in high quality and thus reducing the

required bandwidth transmission. In a streaming session, the client requests tiles covering its

viewport in better quality and the rest of the omnidirectional video in lower quality tiles, to

compensate for any latency on the transmission. However, the division of omnidirectional video

in tiles reduces the compression efficiency, as every tile is independently decodable and spatial

redundancy decreases [24] [25].

• SHVC with MCTS-based enhancement layer: The omnidirectional video is encoded with a

scalable codec such as SHVC. This codec structures the compressed video into layers which

allow the transmission of data that is combined with previous already received data to enhance

the quality of tiles. The BL corresponds to the omnidirectional video with the lowest quality and

can be encoded with AVC or HEVC. The EL layers can be divided into MCTS tiles, which are

encoded using inter prediction from the same layer (with restricted motion vectors) and inter-

layer prediction from the co-located region in an already decoded reference layer. The BL is

always streamed and ELs are used to cover the viewport requested by the client. Since the BL

is always streamed, it does not require temporal segmentation as frequently as an EL, and thus

allows to better exploit the video temporal redundancy [26].

• Simulcast with MCTS-based HEVC high-resolution representation: Similar to the previous

approach but a scalable codec is not used. In this case, a low quality representation of the entire

omnidirectional video is streamed; this video is not used as reference and thus is transmitted

simultaneously (simulcast) with a better quality representation of the omnidirectional video. Then,

the omnidirectional video is encoded using the MCTS technique. The resulting tiles can be used

to enhance some spatial regions of the omnidirectional video, namely the parts which contain

the user viewport. However, this approach does not support inter-layer prediction, which leads

to an increase in bandwidth and server storage required for streaming. Moreover, it is required

22

two HEVC decoders, one for the base layer and another for the high quality motion constrained

tiles [10].

The last Sections of this Chapter present more details about some of these solutions. More

specifically, Section 3.6 presents a QER-based approach, Section 3.7 presents a MCTS-based solution,

and Section 3.8 presents a SHVC with MCTS-based enhancement layer solution. For the offset

cubemap projection, a QER-based approach, more details and some optimization of the method are

presented in Chapter 4.

Objective Quality Assessment Metrics

During the entire omnidirectional video transmission chain, the video suffers several

transformations (such as mapping projection, lossy coding, etc.) which may introduce artifacts that can

impact the perceived quality. Furthermore, viewport dependent streaming may introduce discontinuities

on the quality of the omnidirectional video both spatially and temporally, which might be seen by users

after head movements that are not immediately followed by adaptation algorithms (unpredicted head

movements). This section provides a description of some objective quality metrics used for

omnidirectional video. Most metrics used for omnidirectional video are variations of metrics used for 2D

video. As such, it is first described the most commonly used metrics for 2D video:

• Mean Squared Error (MSE): MSE measures the mean of the squared differences between

pixels of a reference and of the corresponding impaired frames. This is described by (3.1), where

(𝑖, 𝑗) refers to a pixel position, 𝑋 refers to the impaired frame, 𝑌 refers to the reference frame,

and 𝐻 and 𝑊 refer to the frame height and width in pixels, respectively. To obtain a single value

for the video sequence, the resulting MSE values per frame are averaged along all the video

frames.

 𝑀𝑆𝐸 =
1

𝑊𝐻
∑ (𝑋𝑖𝑗 − 𝑌𝑖𝑗)

2

𝑊,𝐻

𝑖=1,𝑗=1

 (3.1)

• Peak Signal-to-Noise Ratio (PSNR): PSNR is defined by (3.2), where 𝑃 is the peak value of

the signal (255 for bit depth of 8 bits).

 𝑃𝑆𝑁𝑅 = 10 log10

𝑃2

𝑀𝑆𝐸
 (3.2)

As seen in previous sections, conventional 2D video and omnidirectional video are different in the

way they are created and consumed. As such, metrics for objective quality assessment applied for

spherical surfaces were created. The following metrics are adaptations of the PSNR metric to

omnidirectional video:

• Viewport PSNR (V-PSNR) [35]: V-PSNR applies traditional PSNR evaluation only to the pixels

of a given viewport, i.e., between corresponding viewports of the reference and impaired videos.

This metric requires explicit head motion data (which may be difficult to acquire in some cases)

and thus is dependent on how the user(s) interact with the content.

23

• Spherical PSNR (S-PSNR) [35]: S-PSNR was created to summarize the average quality over

all possible viewports. S-PSNR is calculated based on the squared value differences of points

uniformly sampled on two conceptual unit spheres, one generated by a reference frame and one

by an impaired frame. One of the S-PSNR disadvantages results from the fact that a sample on

the sphere might not correspond to an integer position on the planar projections, requiring the

use of some interpolation procedure, which may condition the metric result. It is also not suitable

for situations where quality is not equally distributed over the entire sphere.

• Weighted to Spherically Uniform PSNR (WS-PSNR) [36]: WS-PSNR uses two 2D frames of

the same resolution and of the same projection type. WS-PSNR weights the pixel error computed

between pixels on the reference and impaired frames, by the corresponding pixel area on the

spherical surface. As for S-PSNR, it is not suitable for situations where quality is not equally

distributed over the entire sphere.

When using a PSNR related metric on a content encoded in multiple bitrates, it is obtained a rate-

distortion (RD) curve characterized by a set of 𝑁 bitrate values (𝑅1, … , 𝑅𝑁) with corresponding PSNR

measurements (𝐷1, … , 𝐷𝑁). In [37], G. Bjøntegaard has proposed a method to measure the coding

efficiency between two different algorithms which may produce different pairs of rate and distortion

(neither rate or distortion values are aligned). This method is used to calculate the average PSNR and

average bitrate differences (in %) between two RD curves obtained from PSNR and bitrate

measurements. Considering 𝑟 = log 𝑅, two values can be obtained with this model:

• Bjøntegaard Delta PSNR (BD-PSNR) [37]: BD-PSNR corresponds to the average PSNR

difference in decibel (dB) for the same bitrate. The RD curves are represented by the distortion

as a function of the (the logarithm of the) bitrate and approximated with the following third order

polynomial fitting:

 �̂�(𝑟) = 𝑎𝑟3 + 𝑏𝑟2 + 𝑐𝑟 + 𝑑 (3.3)

where �̂� is the fitted distortion in PSNR and 𝑎, 𝑏, 𝑐, and 𝑑 are the parameters of �̂�. The average

PSNR difference ∆𝐷 between two RD curves is the BD-PSNR and is given by (3.4), where the

integration bounds, 𝑟𝐿 and 𝑟𝐻, are given by (3.5) and (3.6) [38].

 ∆𝐷 = E[𝐷2 − 𝐷1] ≈
1

𝑟𝐻 − 𝑟𝐿

∫ [�̂�2(𝑟) − �̂�1(𝑟)]𝑑𝑟

𝑟𝐻

𝑟𝐿

 (3.4)

 𝑟𝐿 = max{min(𝑟1,1, … , 𝑟1,𝑁1
) , min(𝑟2,1, … , 𝑟2,𝑁2

)} (3.5)

 𝑟𝐻 = min{max(𝑟1,1, … , 𝑟1,𝑁1
) , max(𝑟2,1, … , 𝑟2,𝑁2

)} (3.6)

• Bjøntegaard Delta Bitrate (BD-BR) [37]: BD-BR corresponds to the average bitrate difference

in percentage for the same PSNR. The RD curves are represented by (the logarithm of the)

bitrate as a function of the distortion and approximated with the following third order polynomial

fitting:

 �̂�(𝐷) = 𝑎𝐷3 + 𝑏𝐷2 + 𝑐𝐷 + 𝑑 (3.7)

24

where �̂� is the fitted bitrate function and 𝑎, 𝑏, 𝑐, and 𝑑 are the �̂� parameters. The average bitrate

difference ∆𝑅 between two RD curves is the BD-BR and is given by (3.8), where the integration

bounds, 𝐷𝐿 and 𝐷𝐻, are given by (3.9) and (3.10) [38].

 ∆𝑅 = E [
𝑅2 − 𝑅1

𝑅1

] ≈ 10
1

𝐷𝐻−𝐷𝐿
∫ [�̂�2(𝐷)−�̂�1(𝐷)]𝑑𝐷

𝐷𝐻
𝐷𝐿 − 1 (3.8)

 𝐷𝐿 = max{min(𝐷1,1, … , 𝐷1,𝑁1
) , min(𝐷2,1, … , 𝐷2,𝑁2

)} (3.9)

 𝐷𝐻 = min{max(𝐷1,1, … , 𝐷1,𝑁1
) , max(𝐷2,1, … , 𝐷2,𝑁2

)} (3.10)

PSNR is the simplest and most widely used quality metric. However, several studies have shown

that is not very well matched to the perceptual video quality and other metrics with better performance

have been proposed in the past. In omnidirectional video, a common practice is to adapt existing 2D

video metrics that correlate better with subjective evaluation to evaluate only the viewport based on

recorded users head movements, as is the case of V-PSNR. In this scenario, the most commonly used

metrics are:

• Structural Similarity Index (SSIM) [39]: SSIM is a perceptual metric that quantifies image

quality degradation caused by many processing steps, such as lossy image compression or

transmission errors, and is highly adapted to extract structural information from images. SSIM is

calculated based on comparisons of luminance 𝑙(𝑋, 𝑌), contrast 𝑐(𝑋, 𝑌), and structure 𝑠(𝑋, 𝑌)

between two image signals 𝑋 and 𝑌, computed by

 𝑙(𝑋, 𝑌) =
2𝜇𝑋𝜇𝑌 + 𝐶1

𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶1

 (3.11)

 𝑐(𝑋, 𝑌) =
2𝜎𝑋𝜎𝑌 + 𝐶2

𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2

 (3.12)

 𝑠(𝑋, 𝑌) =
𝜎𝑋𝑌 + 𝐶3

𝜎𝑋𝜎𝑌 + 𝐶3

 (3.13)

where 𝜇𝑋 and 𝜇𝑌 refer to the mean, 𝜎𝑋 and 𝜎𝑌 to the standard deviation and 𝜎𝑋𝑌 to the cross

correlation, and 𝐶1, 𝐶2, and 𝐶3 are model parameters. Considering that 𝛼, 𝛽, and 𝛾 are

parameters used to adjust the relative importance of the three components, the SSIM metric is

given by

 𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙(𝑋, 𝑌)]𝛼 ∙ [𝑐(𝑋, 𝑌)]𝛽 ∙ [𝑠(𝑋, 𝑌)]𝛾. (3.14)

• Multi-Scale Structural Similarity Index (MS-SSIM) [40]: MS-SSIM is an extension of the SSIM,

which has more flexibility than SSIM by including variations of image resolution and viewing

condition. MS-SSIM considers different spatial resolutions by iterative downsampling and

weighting the different par of each SSIM component (luminance, contrast and structure) at

different scales. The source image and the test image are low-pass filtered and then down

sampled by a factor of 2 successively. The source and the test images are denoted as scale 1

and the highest scale is denoted as 𝑘, which is obtained after 𝑘 − 1 interactions. The luminance

25

is compared at the highest scale only, while contrast and structure are compared for each scale

𝑧. The MS-SSIM metric is given by

 𝑀𝑆 − 𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙𝑘(𝑋, 𝑌)]𝛼𝑘 ∙ ∏[𝑐𝑧(𝑋, 𝑌)]𝛽𝑧 ∙ [𝑠𝑧(𝑋, 𝑌)]𝛾𝑧

𝑘

𝑧=1

. (3.15)

where 𝛼𝑘, 𝛽𝑧, and 𝛾𝑧 are parameters to define the relative importance of the different

components.

• Video Multimethod Assessment Fusion (VMAF) [41] [42]: VMAF was developed by Netflix

and uses a machine learning model to predict the subjective video quality; this model is trained

and tested using opinion scores obtained through subjective experiments. Also, it is a metric

focused on quality degradation due to compression and rescaling, the most common artifacts in

video streaming. VMAF uses four image quality metrics – Visual Information Fidelity (VIF), Detail

Loss Metric (DLM), Mean Co-Located Pixel Difference (MCPD), and Anti-noise signal-to-noise

ratio (AN-SNR) – and fuses them using a Support Vector Machine (SVM). The result is a single

score in the range of 0 to 100 per video frame (100 corresponds to identical quality), which then

can be averaged to obtain a single value for the entire video.

Viewport-Adaptive Navigable 360-Degree Video Delivery

This section presents of the omnidirectional video streaming solution proposed by Corbillon et al.

[7]. First, its context and objectives are summarized, followed by a description of the solution. Lastly,

tests conditions and benchmarks are provided.

3.6.1 Context and objectives

Nowadays, omnidirectional video streaming is very challenging especially in the Internet and in

wireless networks due to their characteristics in terms of delay, available bandwidth, varying channel

conditions, etc. To provide good Quality of Experience (QoE) and avoid motion sickness, it is

recommended that video streaming systems react to head movements as fast as the HMD refresh rate.

Since the HMD refresh rates can be as high as 120Hz (and thus 10ms of delay) it is necessary efficient

mechanisms to provide the necessary fast adaptation to changes in the viewport (seen by the user)

location. Thus, it is typically transmitted the full omnidirectional video (and not only the viewport) for the

HMD to extract the viewport and thus avoid any QoE reduction. However, there is a significant bandwidth

waste since the user only sees a part of the entire omnidirectional video frames (1/3 of the

omnidirectional video for 120º FoV). This is critical since omnidirectional videos require very large spatial

and temporal resolution (up to 8K with 120fps) and thus bitrate (between 50 to 100 Mbit/s).

To reduce the bandwidth consumption, this solution proposed by [7] follows the same principles as

in rate-adaptive streaming technologies like DASH but the server offers multiple representations of the

same omnidirectional video that not only differ by bitrate (and thus quality or spatial resolution) but differ

by having better quality in a given spatial region of the video. The bandwidth necessary for streaming is

reduced due to the lower quality (and thus bitrate) required for representation of regions outside this

region, which should correspond as much as possible to the viewport seen by the user.

26

3.6.2 Technical Solution

The solution can be characterized by the creation of different representations of the omnidirectional

video, each one with an associated Quality Emphasis Region (QER). The center of the QER is the

Quality Emphasized Center (QEC), which is a position of the spherical video where the quality is

maximum. Outside of the QER, the quality of the video decreases. Depending on the user head motion,

the client selects the best representation to stream, this means the one that has the best viewport quality;

however, the entire video is available at the client so any viewport can be generated. Figure 3.6 shows

the QER-based omnidirectional video streaming system proposed.

Figure 3.6 – QER-based streaming system: The server offers video representations for three QERs. The dark brown
is the part of the video encoded at high quality, the light brown the low quality. The viewport is the dotted red
rectangle, the viewport center the cross [7]

The most important modules of the proposed QER-based streaming solution are detailed below:

• Server: The server receives as input the omnidirectional video in the equirectangular format

which is split into multiple segments from 1s to 10s. Then, each segment is encoded into multiple

representations, each one characterized by its QEC and bitrate. The output is 𝑛 QER-based

videos, encoded at 𝑘 global quality levels. The resulting number of available representations of

the omnidirectional video segment is 𝑛 × 𝑘. The manifest file contains a description about all

segment representations and the QEC associated to each one.

• Client: During the streaming session, the user head orientation changes as well as the available

bandwidth. The client periodically sends a request to the server for a new segment

representation that matches both the viewport center and the available bandwidth (throughput).

This is accomplished by an adaptation algorithm that selects the next segment representation.

First, it selects the QER of the video based on an estimation of the future position of the user

head; in this case, the algorithm implemented for QER selection consists on the selection of the

representation that has the QEC at the smallest orthodromic distance (smallest distance between

two points on the surface of a sphere) to the viewport center at the time the client runs the

adaptation algorithm. This is a simple algorithm, but better head motion prediction algorithms

could be employed, thus making better QEC selections. After selecting the QER, the client

chooses a representation using throughput estimation to reduce the mismatch between the

requested bitrate and the available bandwidth.

The solution takes advantage of the geometric structure of the mapping projection (before coding)

to optimize the video encoding based on QER. Each geometric projection is characterized by a number

of faces (e.g. 6 for the cube map) and a given central point (which corresponds to a position on the

sphere). For each QER version of the omnidirectional video, the front face of the geometric projection

27

corresponds to the QER and its central point is aligned with the QEC. This is achieved through rotation

of the omnidirectional video assuring that the QEC is always at the same position on the 2D layout. The

other faces of the geometric projection are encoded with reduced quality. The position of QECs is

determined using the Thomson positioning problem [43], meaning that the QECs selected are spread

on the sphere. However, the positioning of QECs could be improved based on saliency maps (probability

of viewing directions), extracted from the feedback of previous viewers.

3.6.3 Performance Assessment

For the performance assessment, a software was developed that includes several features:

• Projection from a spherical video into four geometric projection layouts (equirectangular, cube

map, pyramid, and dodecahedron). The software rotates the video so that the QEC is always at

the same position on the 2D layout.

• Adjustments of the video quality for each geometric face of any layout.

• Viewport extraction for any viewport center on the sphere. Measure of QoE was done by

measuring the quality of several extracted viewports instead of the full spherical video.

For the geometric projection layout evaluation described next, a 4K omnidirectional video using

ERP was taken from YouTube and used as a reference. As for the number of QERs evaluation, a dataset

of recorded head movements of real users watching omnidirectional videos was used. The number of

videos included were eleven and each one was ten seconds long. The head movements were taken

from eleven people who were asked to watch the videos on a current state-of-the-art HMD while

standing, to enable a high degree of freedom.

I. Geometric Projection Layout Evaluation

The first experiment measures the viewport video quality for several geometric projections and with

several face quality arrangements (quality of regions outside the QER); this will allow to measure the

efficiency of each projection. The extracted viewports had a 1080p resolution and the original

equirectangular video has a 4K resolution. The solutions compared with the reference video were the

following:

• UniEqui: The equirectangular video re-encoded with HEVC at a constant bitrate of 6 Mbit/s,

which corresponds to 75% of the original video bitrate. This solution is referred as uniEqui since

all regions have a similar quality.

• Equirec, CubeMap, Pyramid, Dodeca: Projection of the spherical video into an equirectangular

projection with 8x8 tiles, cube map, pyramid, and dodecahedron representations encoded with

QER at 6 Mbit/s. For each projection, only the “best” quality arrangement for the overall bitrate

budget is presented. For the CMP projection, the QEC is located at the center of the cube front

face at full quality while the other faces have 25% of the full quality target.

The performance of the geometric projection can be studied with two aspects: the best viewport

quality when the viewport center and the QEC perfectly matches; and the degradation of the viewport

quality when the user head direction (viewport center) moves away from the QEC. To examine both

aspects, one QEC was selected on the spherical video. Then, the orthodromic distance between the

28

center of the viewport and the QEC was varied from 0 to π. The MS-SSIM objective quality metric was

used to compare the viewport obtained from each representation with the viewport obtained from the

original reference video (at the same location). Figure 3.7 shows the results obtained for several

geometric projections. The cubemap provided the best results, since the MS-SSIM obtained was 0.98

when the viewport center matches the QEC and stays higher than any other projection. The cubemap

projection has a better result for the MS-SSIM metric than the uniEqui solution up to 2 units of distance.

Figure 3.7 – Average MS-SSIM depending on the distance to the QEC for the four geometric layouts. Global bitrate
budget: 6 Mbit/s [7]

II. Number of QERs Evaluation

The number of QER representations that are needed to perform efficient omnidirectional streaming

represent a key trade-off in this solution. The more QERs are computed, the better the coverage of the

spherical video which allows more fine adaptation, but the storage required at the server increases (as

well as the MPD file). In this experiment, the average was computed for all users from our dataset

assuming a different number of equally spread QECs on the spherical representation. The adaptation

algorithm referred in Subsubsection 3.6.2 uses the head positions in the dataset to determine the QER

for the next segment. The solutions considered were the following:

• CMP+QER: Omnidirectional video encoding with QER and cube-map projection (CMP) at 6

Mbit/s. For each QER version, the video is rotated in order to assure that the CMP has the QEC

located at the center of the front face set at full quality. The other cube faces are encoded at 25%

of the full quality target.

• UniEqui: The original equirectangular video re-encoded at 6 Mbit/s, which corresponds to 75%

of the original video bitrate.

Different durations for the time segments were considered. Figure 3.8 presents the median PSNR

gap between the viewports of the CMP+QER and uniEqui solutions, depending on the number of QERs.

The best number of QERs is between 5 and 7, since the gains obtained for higher number of QERs are

not significant enough to justify the extra-cost in terms of storage. With multiple QERs and short

segments, the median PSNR gap is higher due to the better re-synchronization between the QERs and

the viewport centers.

29

Figure 3.8 – Median PSNR gap between the viewports of the cube map layout and the uniEqui depending on the
number of QERs. Bitrate: 6Mbit/s [7]

Towards Bandwidth Efficient Adaptive Streaming of

Omnidirectional Video over HTTP

This section presents the omnidirectional video streaming solution proposed by Graf et al. [25].

First, its context and objectives are summarized, followed by a description of the solution. Last, tests

conditions and benchmarks are provided.

3.7.1 Context and objectives

The streaming of omnidirectional video content can be performed by using the same strategy as

2D video, which means streaming the entire omnidirectional video with equally distributed quality

(spatially) disregarding the user’s viewport area or region (the only part seen by the user). However, this

may lead to a significant waste of bandwidth or quality of experience. Region of interest-based coding

is one of the most promising candidate to solve this problem and is supported by the tiling mechanism

existing in recent video standards such as HEVC. Tiles may divide a video spatially and temporally into

regular-sized, rectangular regions which are independently decodable and allow efficient parallel

processing.

To reduce bandwidth consumption without significantly increasing required storage, the solution

proposed by [25] builds on rate-adaptive streaming technologies like DASH and adds spatial adaptation

provided by the tiling mechanism. Spatially segmenting the omnidirectional video into tiles and storing

each one in different bitrates allows the client to download each tile (and thus region) at different qualities

according to a policy that maximizes the user quality of experience. More precisely, this strategy allows

the visualization of any viewport with high quality by a client while saving bandwidth comparing to a

solution where the entire omnidirectional video is streamed. In such case, the regions outside the

viewport can be streamed with lower quality or not even transmitted at all.

3.7.2 Technical Solution

The proposed solution for adaptive omnidirectional video streaming aims to provide bandwidth

efficient omnidirectional video streaming using a tiling mechanism. Figure 3.9 depicts the proposed

system architecture. The projection format used is ERP, since it is the format most widely supported

and deployed in many applications. The omnidirectional video is encoded with HEVC motion constrained

tiles (MCTS as described in Section 3.4). Then, each tile is re-encoded in multiple quality

representations and time segmented. The resulting segmented tiles are made available at the server to

30

enable spatial and bandwidth adaptation to the content during streaming. The MPEG-DASH SRD (see

Section 2.5) is used to describe the tile structure to client devices. Then, the clients request some tiles

with an appropriate quality depending on the client conditions, such as bandwidth and current viewport.

The adaptation logic that a client runs to choose representations based on the client conditions is not

optimized, as it adopts only a very basic buffer management and throughput measurements.

Figure 3.9 – System architecture for bandwidth efficient tiled streaming. Adapted from [25]

The three streaming strategies proposed are described below:

• Full Delivery Basic: All tiles of the omnidirectional video are provided to the client resulting in a

full omnidirectional frame. The tiles visible to the user’s current viewport are requested in the

highest possible quality representation. The remaining of the tiles are requested in the lowest

available quality representation. Depending on the available bandwidth and the bitrate of the tiles

outside of the current viewport, the bitrate of the highest possible quality representation for the

tiles necessary to fully represent the current viewport changes. In the best case, it is the same

as the highest available quality representation and, in the worst case, it is the lowest available

quality representation.

• Full Delivery Advanced: This strategy is an improvement of the full delivery basic approach and

takes into consideration the quality of areas close to the viewport that are visible when the user’s

viewport (head) moves. As such, tiles around the visible viewport are requested in a lower (but

not the lowest) quality. This can be improved with prediction of the user’s viewport motion,

followed by the request of tiles that do not overlap with the current viewport but are highly likely

to be visible. Full delivery advanced is not evaluated, only suggested as a strategy to be studied

in the future.

• Partial Delivery: Only the tiles covering the current viewport are delivered and thus the available

bandwidth is consumed only in the transmission of these tiles. The tiles of the current viewport

are requested at the highest possible quality representation. It is important to note that user head

motions could lead to the rendering of blank areas or the corresponding tiles need to be rendered

with delay, which decreases the QoE. Thus, this strategy is considered as impractical but is used

as a benchmark to show what can be achieved by the other strategies in comparison.

31

3.7.3 Performance Assessment

The performance assessment was made using two omnidirectional videos downloaded from

YouTube: ExploreTheWorld and AssassinsCreed. While the first is a computer-generated video the

other is a documentary. However, the results shown in this section were only obtained for the

documentary video. The spatial resolution for the entire omnidirectional video were 1920x960,

3840x1920 and 7680x3840.

I. Bandwidth Requirements

The goal of this experiment is to compare the traditional streaming solution to the proposed tiled

streaming based on bandwidth constraints. As such, the required bitrate that achieves the same

objective quality in the viewport area was measured for the different strategies. Then, the resulting

measurements were compared to a traditional streaming solution in percentage of bitrate savings. To

evaluate the bandwidth required, it was considered a static viewport, at a pitch and yaw angle of 0º. The

viewport had a horizontal FoV of 96º. One solution and three different strategies for tile streaming were

compared:

• Traditional streaming solution (aka monolithic): The entire equirectangular video (all regions)

HEVC encoded with a QP of 27 and segment duration of 4 seconds.

• Tiles Monolithic strategy: Delivery of the entire omnidirectional video in tiles with the highest

quality. The segment duration was 1 second and the tiles were encoded with QP of 27.

• Full Delivery Basic strategy: Delivery of the viewport tiles at highest quality and other tiles at

lowest quality as described in subsection 3.7.2. The segment duration was 1 second, the high-

quality tiles were encoded with QP of 27, and the low-quality tiles were encoded with QP of 42.

• Partial Delivery strategy: Delivery of only the viewport tiles at highest quality as described in

Subsection 3.7.2. The segment duration was 1 second and the viewport tiles were encoded with

QP of 27.

Different tile patterns were considered for the tiled strategies (column x rows): 3x2, 5x3, 6x4, and

8x5. Larger tiles provide improved coding efficiency but less flexibility for viewport selection, while

smaller tiles can better cover a given viewport but have lower coding efficiency (temporal and spatial

correlation is not fully exploited).

Table 3.1 shows the results for bandwidth saving in comparison with the monolithic solution, where

‘positive’ values indicate an overhead and ‘negative’ values show actual savings. The results show

better bandwidth savings for partial delivery, but this strategy is impractical due to the delay in usual

network environments. Thus, partial delivery results are mainly to show the potential of tiled streaming.

The full delivery basic strategy shows better results for the tilling pattern 6x4, resulting in a bandwidth

reduction of over 64% comparing with the monolithic solution. The tile monolithic strategy allows to

evaluate the overhead caused by spatial segmentation and more frequent temporal segmentation than

the simple monolithic strategy.

32

Table 3.1 – Bitrate savings in percent relative to monolithic video for different resolutions and tiling patterns. Values
in bold represent the highest and lowest bitrate savings for full delivery basic. [25]

II. Viewport PSNR

To obtain a full evaluation of the proposed strategy and closer to a realistic streaming environment,

the V-PSNR quality metric (explained in Section 3.5) using the recorded head motion of three users was

used. The head motions were recorded while watching the omnidirectional video with resolution

1920x960. Additionally, one of the three users also had its head motion recorded while watching the

omnidirectional video with resolution 3840x1920. The head motion traces were used to generate

viewports simulating the streaming strategies described in the previous Subsection. One solution and

two different strategies (for the proposed solution) for tile streaming were considered:

• Monolithic solution (reference): Equirectangular video encoded with HEVC with QP = {22, 27,

32, 37} and segment duration of 4 seconds.

• Tiles monolithic strategy: Delivery of the entire omnidirectional video in tiles with the highest

quality. The segment duration was 1s and the tiles were encoded with QP = {22, 27, 32, 37}.

• Full delivery basic strategy: Delivery of the viewport tiles at highest quality possible

(considering some bandwidth constrain) and the tiles outside the viewport at the lowest quality.

The segment duration was 1 second, tiles within the viewport were encoded with QP = {22, 27,

32, 37, 42}, and tiles outside the viewport were encoded with QP of 42.

Partial delivery (as described in the previous section) was not considered for this test, since using

V-PSNR with partial delivery is impractical due to calculations evolving not available tiles. Similar tile

patterns that were used for bandwidth requirements experiment were also considered here for a spatial

resolution of 1920x960. In addition, results were provided for the tile pattern 6x4 which was considered

the best in the previous experiment for a spatial resolution of 3840x1920. After the measure of the V-

PSNR for each strategy, the Bjøntegaard-Delta (BD) Bitrate (BR) was used for comparison of monolithic

solution (reference curve) with the two tiled strategies. Table 3.2 shows the obtained results. The results

show that the full delivery basic tiling scheme provides the best results for a 6x4 tiling pattern, achieving

a bitrate saving up to 40%.

33

Table 3.2 – BD-BR of tiled content over monolithic content with a segment duration of 4 seconds using V-PSNR.
[25]

Adaptive 360-Degree Video Streaming using Scalable Video

Coding

This section presents the omnidirectional video streaming solution proposed by Nasrabadi et al.

[26]. First, its context and objectives are summarized, followed by a description of the solution. Lastly,

tests conditions and benchmarks are provided.

3.8.1 Context and objectives

The issues caused by network latency in omnidirectional video streaming can be mitigated with

several techniques, such as the prediction of the client’s viewport. Nowadays, viewport location can be

accurately predicted for one second and if longer predictions are employed, a mismatch between actual

and predicted viewport occurs and may lead to rebuffering, reducing the quality of experience offered

to the user. Other option is for the client prefetch more future time segments and replace them with new

ones every time the predicted viewport changes, which results in bandwidth waste. Thus, there is a

tradeoff between QoE and bandwidth waste which forces the client to not prefetch chunks for more than

the high accuracy viewport prediction interval, currently around 1 to 2 seconds. However, with this short

buffer, abrupt variations in network conditions could be enough for a client to consume all the data in

the buffer, leading to rebuffering.

To improve user’s QoE during omnidirectional video streaming, it is necessary to minimize the

amount of time spent on rebuffering, especially under challenging network conditions. To address this

issue, this solution proposes an adaptation method for omnidirectional video streaming using scalable

video coding, specifically SHVC. Since in SHVC, the BL is always required for decoding the ELs, the BL

can be prefetched and buffered at the client for a long duration, significantly reducing rebuffering. ELs

are then prefetched to increase the quality of the regions within the user’s predicted viewport.

3.8.2 Technical Solution

The proposed solution for adaptive omnidirectional video streaming aims to provide the best

possible QoE for the user viewport while minimizing the amount of bandwidth used. The CMP projection

34

is used due to its lower bandwidth requirements to convert the spherical representation to a planar

representation before encoding and transmission; however, any other projection can be used. Each

cube face is divided into a grid of tiles of equal size. Tiles are encoded with motion constrained in

different quality levels according to the layered scheme of SHVC. As in conventional streaming, temporal

segmentation is equally applied to all tiles of all layers, and during the streaming session the client

makes all the decisions. Figure 3.10 shows the client components of the scalable tiled solution.

Figure 3.10 – Client components for scalable tiled streaming [26].

The adaptation logic shown in Figure 3.10 is responsible for the adaptation of video quality to

network conditions and to the user’s viewport. Adaptation to network is done based on buffer occupancy

(buffer-based) and throughput estimation (rate-based). The buffer-based adaptation uses the amount

of data that is currently stored in the buffer of the video player and the throughput estimation is obtained

by smoothing throughput measures from previous chunk downloads. The adaptation logic uses buffer-

based adaptation for base layer buffering, since the proposed method can buffer the BL for longer

durations. Whenever the BL buffer is full, throughput estimation is used for viewport quality

enhancement. The decision of the tiles requested for viewport quality enhancement is done with

viewport prediction using previous viewport samples. The most important modules of the proposed

scalable tiled streaming solution are detailed below:

• Base layer buffering: The BL is the bottom layer, enabling the client to continue video playback

at the lowest quality during bandwidth drops, avoiding rebuffering. Base layer buffering occurs

when the buffer is not full, this means that all BL tiles are downloaded as soon as possible, i.e.

the client prefetches (downloads even if not immediately required) all base layer tiles for the

chunks sequentially. This allows to have low-quality BL chunks for longer duration compared to

the viewport prediction high-accuracy interval, which allows the client to continue playback during

bandwidth drops or mismatches in the viewport prediction.

• Viewport prediction: The client requests more data to enhance the BL quality, this means ELs

to be played in the future. Thus, to request EL tiles collocated in the viewport location some type

of prediction about the future viewport location is necessary. The selected prediction method

consists on the application of a Weighted Linear Regression (WLR) on the last 10 viewport

location samples, as proposed in [33]. The average prediction accuracy within 10 degrees of

deviation from the actual viewport is 96.6% for 1 second and 71.2% for 2 seconds. The prediction

interval defined for the solution was 1 second, i.e. at time t, the user’s viewport at time t + 1 is

predicted.

35

• Viewport quality enhancement: When the client’s BL buffer is full, the client tries to improve

the quality of the user’s viewport. Requesting a higher quality representation that requires higher

than available throughput causes delay on delivery, and consequently shrink of the BL buffer.

Then, during BL buffering, the quality is low until the buffer is full and finally quality improvement

of user’s viewport is possible, switching to higher quality. Repeating a request of a higher quality

representation not delivered in time by the network would repeat the previous process. To avoid

this change in quality, throughput estimation is used for viewport quality enhancement.

Throughput estimation is done through sampling of the available throughput, where the total size

in bits of the tiles downloaded in the near past is divided by its download time. It is assumed that

the BL has a bitrate of 𝑅0, and there are ELs up to quality 𝑙, with the bitrate of the BL + ELs up

to quality 𝑙 equal to 𝑅𝑙. The percentage of tiles covered by the predicted viewport is denoted by

𝑝. The adaptation logic chooses the highest quality level 𝑙 for the tiles within the predicted

viewport such that:

 𝑅0 + (𝑅𝑙 − 𝑅0) × 𝑝 < 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑒𝑠𝑡 (3.16)

The average of the last three samples of available throughput is denoted by 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑒𝑠𝑡. The

EL tiles with quality 𝑙 covered by the viewport prediction are downloaded and received by the

client. In (3.16) it is assumed that the bitrate of a video is uniformly distributed among tiles and

the bitrate of the BL + EL up to quality 𝑙 cannot exceed the estimated bandwidth.

3.8.3 Performance Assessment

The performance evaluation of the proposed solution includes two parts, the first focused on pure

coding efficiency while the other about the streaming performance. The first part is not reported here,

but it was shown that SHVC suffers from a lower performance with respect to HEVC and that coding

efficiency decreases when the number of tiles increase.

Regarding the streaming performance, the setup used for evaluation of the proposed solution

consisted of one client connected to a HTTP web server hosting the video chunks. This connection can

be emulated to have the behavior of a wireless connection in a mobile network. In all streaming

performance experiments, the client played 120 seconds of a fast motion omnidirectional video. Two

solutions were tested:

• Scalable tiled streaming: This corresponds to the proposed solution where tiles are encoded

with SHVC quality scalability. Only two quality layers were used, with a QP of 34 for BL and a

QP of 28 for EL. For the video used for evaluation, the resulting bitrate is 3230 Kbit/s for BL and

8229 Kbit/s for BL+EL. When streaming, the adaptation logic used by the client corresponds to

the one described in the previous section. A buffer of 10 seconds for the BL is considered.

• Non-scalable tiled streaming: Tiles are encoded with HEVC in two quality levels: QP of 34 for

quality level 0 and QP of 28 for quality level 1. For the tested video, the resulting bitrate is 3230

Kbit/s for quality level 0 and 7148 Kbit/s for quality level 1. When streaming with this solution, the

client predicts viewport for the next 1 second. Then, it uses throughput estimation to decide to

get either all tiles with quality level 0 or the viewport covered tiles at quality level 1 and the rest

36

with quality level 0. All requested tiles of a video chunk are buffered before playback of the

correspondent video chunk.

The client runs the player application which supports streaming of both non-scalable and scalable

tiled videos with respective adaptation logic included. The vertical and horizontal FoV considered are

90 and 100 degrees, respectively.

I. Bandwidth saving experiment

For this experiment, both non-scalable and scalable tiled streaming solutions were compared in

terms of bandwidth saving with the conventional approach, which streams the whole video at QP of 28.

For this experiment, the following conditions are applied:

• Two static viewport scenarios: a best-case scenario, with the viewport entirely located at one

face of the cube, and a worst-case scenario, with the viewport located at the intersection point

between three faces of the cube.

• Two scenarios with different number of tiles per cube face: 1 and 4.

• Constant bandwidth of 50 Mbit/s to assure streaming of highest quality without any interruption.

Figure 3.11 shows the results for bandwidth saving. In the best-case scenario, only one face of the

cube is enough to cover viewport and scalable tiled has approximately 2% lower bandwidth savings,

mainly due to the coding overhead of the scalable representation. In the worst-case scenario, the

difference between 1 and 4 tiles per cube face is more visible. The reason is that using 4 tiles per face

means that the worst-case scenario corresponds to 7 tiles of size 512x512 pixels, while for the 1 tile

case, the viewport is covered with 3 tiles of size 1024x1024.

Figure 3.11 – Bandwidth saving results [26]

II. Quality of Experience experiment

For this experiment, non-scalable and scalable tiled streaming solutions were compared in terms

of QoE. For this experiment, the following conditions were applied:

• Two static viewport scenarios used on bandwidth saving experiment.

• Four tiles per face.

• Five pre-recorded traces of network packet transmissions and a constant bandwidth trace of

50Mbit/s.

37

Figure 3.12 shows the first 120 seconds of a streaming session (playback only). The right column

is for scalable streaming and the left column shows non-scalable streaming. Blue parts show playback

at high quality, red parts show playback at low quality, and white spaces show rebufferings. Results

show reduced buffering for scalable tiled streaming and thus much better overall quality of experience.

Also, the number of quality switches and average quality is improved using scalable tiled streaming. The

main reason is that the buffering of the base layer enables the adaptation algorithm used on scalable

tiled streaming to react better to network changes.

Figure 3.12 – First 120 seconds of experiments with best and worst case viewport, and 4 tiles per face (white =
rebuffering, red = low quality playback, blue = high quality playback) [26]

38

Chapter 4. Offset Cubemap Projection for

Omnidirectional Video Streaming

Introduction

The solution currently used by Facebook’s Oculus to address omnidirectional video streaming over

bandwidth limited channels is a variant of the cubemap (CM) projection, known as offset cubemap

(OCM) projection [8]. This projection distorts the image in such a way that results in a higher spatial

resolution (thus, in a higher quality) for the frame regions mapped to the cube front-face, than for other

directions. Encoding several versions of the omnidirectional video, where each version corresponds to

a different frame region projected on the cube´s front face, enables the implementation of a viewport

adaptive video streaming strategy. This chapter is focused on the OCM projection and on its application

to omnidirectional video streaming, as described in [8], and proposes an optimization of it.

Section 4.2 provides a formal description of the CM projection, since it is the basis of the OCM

one. Section 4.3 presents a conceptual description of the OCM projection, and the conditions used by

Oculus to provide viewport adaptive video streaming using this projection. The OCM projection is then

formally described in Section 4.4, together with the process of directly rendering a viewport from an

OCM projected planar image. Finally, Section 4.5 proposes an optimization of the OCM conditions used

by Oculus, which will be assessed and compared with other streaming strategies in Chapter 5.

Cubemap Projection

This section presents the method to create a CM projected omnidirectional video. The rendering

of a rectilinear projected viewport from a CM projection is also described.

4.2.1 Cubemap Creation

Consider the sphere inscribed in a cube presented in Figure 4.1a), with Cartesian coordinates,

(𝑋, 𝑌, 𝑍), centered at point 𝑂 and with unit radius. Points on the sphere surface can be described by

longitude (𝜙), with origin on the 𝑍-axis and range [−𝜋, 𝜋], and latitude (𝜃), with origin on the 𝑋𝑍 plane

and range [−𝜋/2, 𝜋/2]. The Cartesian coordinates of a point at the sphere surface are obtained from

the corresponding spherical coordinates by:

 𝑋 = cos 𝜃 sin 𝜙 (4.1)

 𝑌 = sin 𝜃 (4.2)

 𝑍 = cos 𝜃 cos 𝜙. (4.3)

Longitude and latitude can be computed by:

 𝜙 = tan−1
𝑋

𝑍
 (4.4)

 𝜃 = tan−1
𝑌

√𝑋2 + 𝑍2
. (4.5)

39

The CM projection consists on the projection of a point at the sphere surface, described by a vector

𝒄, onto a cube containing the sphere. The result is a vector 𝒅 with same longitude and latitude as vector

𝒄.

Let (𝑢, 𝑣) be a 2D coordinate system, associated to each cube face with a length of two units, as

represented in Figure 4.1b); for each cube face, the relationship between coordinates (𝑑𝑋, 𝑑𝑌 , 𝑑𝑍) of

vector 𝒅, and the (𝑢, 𝑣) coordinates of the same vector, is given in Table 4.1.

a) Projection of a point from the sphere to the cube. b) Coordinate system for each cube face.

Figure 4.1 – Coordinates definition for cubemap.

Table 4.1 – Vector 𝒅 coordinates for a given (𝑢, 𝑣) and cube face.

Cube Face
Cartesian coordinates

𝑑𝑋 𝑑𝑌 𝑑𝑍

Front −𝑢 + 1 −𝑣 + 1 1

Back 𝑢 − 1 −𝑣 + 1 −1

Top −𝑢 + 1 1 𝑣 − 1

Bottom −𝑢 + 1 −1 −𝑣 + 1

Left 1 −𝑣 + 1 𝑢 − 1

Right −1 −𝑣 + 1 −𝑢 + 1

Consider that 𝑊, 𝐻 are, respectively, the width and the height (in pixels) of a cube face, and that

the coordinate system (𝑚, 𝑛) defines the pixel position in a CM face, as shown in Figure 4.2; the

relationship between these coordinates and the (𝑢, 𝑣) coordinates, is given by:

 𝑢 =
2

𝑊
(𝑚 + 0.5) , 0 ≤ 𝑚 < 𝑊 (4.6)

 𝑣 =
2

𝐻
(𝑛 + 0.5) , 0 ≤ 𝑚 < 𝐻 (4.7)

40

Figure 4.2 – CM face coordinate systems.

The spherical coordinates (in longitude and latitude) of a pixel with coordinates (𝑚, 𝑛) in one given

CM face can then be obtained by applying (4.6) and (4.7), followed by computing its (𝑋, 𝑌, 𝑍) coordinates

using Table 4.1, and then its longitude and latitude with (4.4) and (4.5), respectively. Figure 4.3a) shows

a cube face layout that assures horizontal spatial continuity between faces; Figure 4.3b) and c) depict,

respectively, an equirectangular video frame and the resulting CM projected frame.

a) Face layout with (𝑢, 𝑣) coordinate system b) Equirectangular video frame

c) CM video frame.

Figure 4.3 – CM projection face layout.

4.2.2 Viewport Rendering

Figure 4.4a) shows the rectilinear projection of a viewport. The projection plane, denoted as 𝐴𝐵𝐶𝐷,

is perpendicular to the Z-axis and tangent to the sphere at 𝑍 = 1. The projection center is located at

point 𝑂. Point 𝒑 (on the plane) is the projection of point 𝒑′ (on the sphere). Figure 4.4b) defines the

coordinate systems (𝑥𝑝 , 𝑦𝑝) and (𝑢𝑝, 𝑣𝑝) at the viewport. Figure 4.4c) defines the viewport horizontal

and vertical sizes (in length units), 𝑣ℎ𝑠 and 𝑣𝑣𝑠, and horizontal and vertical field of views, 𝐹ℎ and 𝐹𝑣.

41

a) Projection of one point. b) Viewport coordinate systems c) FoV and viewport size.

Figure 4.4 – Viewport rendering.

From Figure 4.4 c), the viewport Relation between viewport sizes and field of views is given by:

 𝑣ℎ𝑠 = 2 tan
𝐹ℎ

2
 (4.8)

 𝑣𝑣𝑠 = 2 tan
𝐹𝑣

2
 (4.9)

The aspect ratio of the viewport is defined by:

 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑣ℎ𝑠

𝑣𝑣𝑠

=
𝑊𝑝

𝐻𝑝

=
tan

𝐹ℎ

2

tan
𝐹𝑣

2

 (4.10)

where 𝑊𝑝 and 𝐻𝑝 are, respectively, the width and the height (in pixels) of the viewport. On CM projection,

described in the previous subsection, the projection on each cube face is done using a rectilinear

projection with horizontal and vertical FoVs of 90°; generalizing for different FoV, it is possible to use

the coordinate systems of Figure 4.2. The viewport pixel (𝑚𝑝, 𝑛𝑝) has viewport coordinates (𝑢𝑝, 𝑣𝑝)

given by:

 𝑢𝑝 = (𝑚𝑝 + 0.5)
𝑣ℎ𝑠

𝑊𝑝

, 0 ≤ 𝑚𝑝 < 𝑊𝑝 (4.11)

 𝑣𝑝 = (𝑛𝑝 + 0.5)
𝑣𝑣𝑠

𝐻𝑝

, 0 ≤ 𝑛𝑝 < 𝐻𝑝 (4.12)

where 𝑊𝑝 and 𝐻𝑝 are, respectively, the width and the height (in pixels) of the viewport. The viewport

coordinates (𝑢𝑝, 𝑣𝑝) and (𝑥𝑝, 𝑦𝑝) are related by:

 𝑥𝑝 = 𝑢𝑝 −
𝑣ℎ𝑠

2
 (4.13)

 𝑦𝑝 = −𝑣𝑝 +
𝑣𝑣𝑠

2
 (4.14)

The resulting cartesian coordinates of viewport point 𝒑 are given by:

 𝒑 = (−𝑥𝑝, 𝑦𝑝 , 1) (4.15)

Since point 𝒑′ is contained on the spherical surface with unitary radius, its norm is one. Coordinates

of point 𝒑′ can then be obtained by normalizing 𝒑, resulting in:

 𝒑′ =
𝒑

‖𝒑‖
 (4.16)

42

For a viewport centered at (𝜃𝑣 , 𝜙𝑣) = (0°, 0°), the viewport matches the omnidirectional

coordinates. In this condition, the projected point 𝒑′ has the same cartesian coordinates as vector 𝒄. For

a viewport centered at (𝜃𝑣 , 𝜙𝑣) ≠ (0°, 0°), it is required to relate the projected point 𝒑′ coordinates with

the corresponding omnidirectional coordinates, 𝒄, given by:

 𝒄 = 𝑅𝜙𝑣𝑅𝜃𝑣𝒑′ (4.17)

where 𝑅𝜃𝑣 and 𝑅𝜙𝑣 are the rotations matrices for viewport center angles 𝜃𝑣 and 𝜙𝑣, respectively. The

rotation matrices 𝑅𝜃 and 𝑅𝜙 for given rotation angles 𝜃 and 𝜙 are obtained by:

 𝑅𝜃 = [
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

]. (4.18)

 𝑅𝜙 = [
cos 𝜙 0 sin 𝜙

0 1 0
− sin 𝜙 0 cos 𝜙

] (4.19)

The projection of vector 𝒄 in the CM, vector 𝒅, has one of its coordinates (𝑑𝑋, 𝑑𝑌 , 𝑑𝑍) equal to 1 or

-1 and the other coordinates contained in the interval [−1,1]. This is obtained by dividing vector 𝒄

coordinates by the absolute value of the coordinate of 𝒄 with maximum absolute value, expressed as

follows:

 𝒅 =
𝒄

max{|𝑐𝑋|, |𝑐𝑌|, |𝑐𝑍|}
. (4.20)

The relationship between vector 𝒅, CM face coordinates (𝑢, 𝑣) and CM face direction are given by

Table 4.2.

Table 4.2 – Correspondence of vector 𝒅 with cube face and coordinates (𝑢, 𝑣).

Max. absolute
index

Sign Face 𝒖 𝒗

|𝒅𝑿| > |𝒅𝒀| ∧
|𝒅𝑿| > |𝒅𝒁|

𝑑𝑋 = 1 Left 𝑑𝑍 + 1 −𝑑𝑌 + 1

𝑑𝑋 = −1 Right −𝑑𝑍 + 1 −𝑑𝑌 + 1

|𝒅𝒀| > |𝒅𝑿| ∧
|𝒅𝒀| > |𝒅𝒁|

𝑑𝑌 = 1 Top −𝑑𝑋 + 1 𝑑𝑍 + 1

𝑑𝑌 = −1 Bottom −𝑑𝑋 + 1 −𝑑𝑍 + 1

|𝒅𝒁| > |𝒅𝑿| ∧
|𝒅𝒁| > |𝒅𝒀|

𝑑𝑍 = 1 Front −𝑑𝑋 + 1 −𝑑𝑌 + 1

𝑑𝑍 = −1 Back 𝑑𝑋 + 1 −𝑑𝑌 + 1

Using CM face coordinates (𝑢, 𝑣) is then possible to compute the CM face pixel position (𝑚, 𝑛),

solving (4.6) and (4.7) to (𝑚, 𝑛), resulting in:

 𝑚 = 0.5(𝑊𝑢 − 1) , 0 ≤ 𝑢 ≤ 2 (4.21)

 𝑛 = 0.5(𝐻𝑣 − 1) , 0 ≤ 𝑛 ≤ 2 (4.22)

A viewport pixel with coordinates (𝑚𝑝, 𝑛𝑝) can then be rendered from a CM projection by applying

(4.11) to (4.17) and (4.20), followed by computation of cube face and coordinates (𝑢, 𝑣) using Table 4.2,

and finally obtaining the CM face pixel coordinates (𝑚, 𝑛) with (4.21) and (4.22).

Offset Cubemap Projection

To provide viewport adaptive streaming, thus improving the bandwidth efficiency relatively to a

monolithic streaming solution, Oculus uses a projection format referred to as offset cubemap (OCM)

43

projection [8]. This projection is similar to the standard CM projection, described in Section 4.2, mapping

the pixels from the spherical image to six cube faces. However, the spherical angle interval near pre-

established orientations – offset orientations, defined by (𝜃𝑜𝑓𝑓𝑠𝑒𝑡 , 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) – is distorted by the projection,

so that the corresponding sphere area is mapped on a larger cube area, and thus represented with

higher spatial sampling density (pixel per unit area on the spherical surface) than the rest of the sphere.

By creating several video versions with different (𝜃𝑜𝑓𝑓𝑠𝑒𝑡 , 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) values, the client may request the

version that better matches the user viewing orientation.

Figure 4.5 shows, side by side, the standard CM and the OCM projections; the red curve represents

the sphere area that is projected to the front face, and the green curve represents the sphere area

projected to the back face; the blue vector represents a pre-defined offset orientation. The conversion

between the standard CM and the OCM projections is done by considering a unit vector, 𝒂, pointing to

a pixel on the sphere surface, and adding an offset vector, 𝒃, with an orientation opposite to the vector

defining the offset orientation (blue vector in Figure 4.5). The resulting vector, 𝒂 + 𝒃 = 𝒄, points to the

resulting pixel position on the cube surface. Since the cube faces have the same number of pixels, the

area on the sphere projected to the front face is represented with higher spatial sampling density, thus

encoded in higher quality, than areas covered by the back face. Information about (𝜃𝑜𝑓𝑓𝑠𝑒𝑡 , 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) and

vector 𝒃 is provided to the clients through the DASH MPD file.

a) Standard CM projection. b) Offset CM projection.

Figure 4.5 – Comparison of the standard CM projection and the OCM projection. The red portion and the green
portion of the circle indicate the portions of the sphere mapped to the cubes’ front and back face, respectively [8].

In the Oculus' implementation of the OCM projection, ‖𝒃‖ = 0.7. This causes the front face to cover

roughly 30 degrees, horizontally and vertically, and the back face to cover roughly 150 degrees,

horizontally and vertically. Figure 4.6a) presents the limits of the OCM faces in a equirectangular

projected image and Figure 4.6b) depicts the correspondent OCM projected image, using ‖𝒃‖ = 0.7.

a) Equirectangular image, with the OCM face limits. b) Image resulting from the OCM projection.

Figure 4.6 – The OCM projection for ‖𝒃‖ = 0.7.

44

Oculus encodes a omnidirectional video using 22 offset orientations, listed in Table 4.3; Figure 4.7

presents the regions of a omnidirectional video that are projected on the cube front face, for all 22 offset

orientations. The combination of the 22 front faces does not cover the full spherical surface, as each

front face only covers a field of view (FoV) of 30º (in both directions). To account for bandwidth

adaptation, Oculus uses four spatial resolutions of the cube faces: 272×272 (272w), 400×400 (400w),

528×528 (528w) and 656×656 (656w). This results in 88 versions of an omnidirectional video [8].

Table 4.3 – Pre-defined orientations for viewport adaptive streaming, used by Oculus [8].

𝜽𝒐𝒇𝒇𝒔𝒆𝒕 (in degrees) 𝝓
𝒐𝒇𝒇𝒔𝒆𝒕

 (in degrees)

90 0

45 15, 105, 195, 285

0 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330

- 45 15, 105, 195, 285

- 90 0

Figure 4.7 – Representation of the front faces of all 22 OCMs on a equirectangular image.

Positioning the six faces of an OCM projection in a 3×2 layout (three columns and two rows), an

OCM projection with a face resolution of W×H pixels results in an OCM planar image with a resolution

of 3W×2H pixels, representing the entire omnidirectional image. Depending on the viewport FoV and

spatial resolution, the quality of a viewport extracted from an OCM projection changes:

• The wider the viewport FoV, the viewport coverage of areas not represented at the OCM front

face center increase. Since these areas have lower spatial sampling density, the quality of the

viewport decreases.

• The higher the viewport spatial resolution, the higher the distortion caused by spatial upsampling

of the lower spatial sampling density regions represented outside the OCM front face, reducing

the quality of the viewport.

The highest spatial resolution considered (by Oculus) for each OCM face, 656w, results in an

omnidirectional video with spatial resolution of 1968×1312 pixels. The viewport configuration used in [8]

has a spatial resolution of 2000×2000 pixels; accordingly, the number of pixels of the viewport surpasses

the number of pixels of the OCM projection. The same viewport configuration has horizontal and vertical

FoV of 96°. Figure 4.8a) shows the rendered viewport from the OCM projection, with added white lines

45

to represent the borders between OCM faces; the viewport center is the same as the OCM front face

center and has orientation (0°,0°). Figure 4.8b) depicts the pixels of the OCM used for rendering the

viewport of Figure 4.8a), showing that the rendered viewport uses a considerable portion of the entire

OCM for a horizontal and vertical FoV of 96°. However, since the total number of pixels of the OCM is

already smaller than the number of pixels of the viewport, the content used of the OCM requires spatial

upsampling to render the viewport. Moreover, in Figure 4.8a), only a small portion of the viewport is

covered by the OCM front face. Thus, viewport regions covered by other OCM faces are highly spatially

upsampled, causing noticeable distortions. To visualize this distortion, the viewport presented in Figure

4.8c) was rendered with the same viewport direction, (0°,0°), but using an OCM with offset orientation

(0°,30°). Figure 4.8d) and e) correspond to the red delimited regions of Figure 4.8a) and c), respectively.

For the offset orientation (0°,0°) it is possible to notice a quality degradation from the left to the right as

the distance from the offset orientation increases, where the content is highly upsampled. For offset

orientation (0°,30°) no noticeable distortions are present since the region showed is covered by the

OCM front face. Since a viewport centered with the offset orientation presents noticeable quality

degradation, an offset of 0.7 does not provide good quality for a viewport with spatial resolution of

2000×2000 pixels and horizontal and vertical FoVs of 96°.

46

a) Rendered viewport for offset

orientation (0°,0°).
b) Region covered by the viewport

for offset orientation (0°,0°).
c) Rendered viewport for offset

direction (0°,30°).

d) Red delimited region for offset orientation (0°,0°). e) Red delimited region for offset orientation (0°,30°).

Figure 4.8 – Viewport rendering for OCM with offset 0.7 and viewport of 2000×2000 spatial resolution and 96º
horizontal and vertical FoV. White lines on a) and c) correspond to OCM face limits. Red lines on a) and c) delimit
the regions shown in c) and d), respectively. Black regions on b) are not used for the viewport rendered in a).

Implementation of the Offset Cubemap

Figure 4.9 presents the OCM projection applied to the same coordinate systems defined in section

4.2; vector 𝒂 describes a point at the sphere surface with unitary radius, vector 𝒃 is the offset vector,

vector 𝒄 points to the resulting pixel position on the cube surface, and vector 𝒅 describes the pixel

position on the cube surface.

47

Figure 4.9 – OCM projection and related 3D coordinate system.

The following subsections provide details about the implementation of the OCM projection, notably

the creation of the corresponding OCM planar image and the viewport rendering from this image.

4.4.1 Offset Cubemap Creation

Vector 𝒅, with Cartesian coordinates (𝑑𝑋, 𝑑𝑌, 𝑑𝑍), has the same direction of vector 𝒄, which results

in:

 𝒄 = 𝐾𝒅, (4.23)

where 𝐾 is a positive value. Since vector 𝒃 has Cartesian coordinates (0,0, 𝑏𝑍), 𝑏𝑧 ∈]−1; 0], vector 𝒂 is

given by:

 𝒂 = 𝒄 − 𝒃 = (𝐾𝑑𝑋, 𝐾𝑑𝑌, 𝐾𝑑𝑍 − 𝑏𝑍). (4.24)

As the sphere has unity radius:

 ‖𝒂‖ = 1 ⇒ 𝐾2𝑑𝑋
2 + 𝐾2𝑑𝑌

2 + 𝐾2𝑑𝑍
2 − 2𝐾𝑑𝑍𝑏𝑍 + 𝑏𝑍

2 = 1. (4.25)

Applying the quadratic formula and considering that 𝐾 is a positive value, results:

𝐾 =

𝑑𝑍𝑏𝑍 + √𝑑𝑍
2𝑏𝑍

2 − ‖𝒅‖2(𝑏𝑍
2 − 1)

‖𝒅‖2
.

(4.26)

The OCM projection with (𝜃𝑜𝑓𝑓𝑠𝑒𝑡 , 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) = (0,0) can be obtained adding an additional step to

the CM projection: starting with the pixel coordinates (𝑚, 𝑛) on one given OCM face, equations (4.6)

and (4.7) are first applied, followed by the computation of cartesian coordinates of vector 𝒅, using Table

4.1; by applying (4.26) and (4.24) the Cartesian coordinates of vector 𝒂 are obtained, which can be

converted to longitude and latitude with (4.4) and (4.5), respectively. For an OCM projection with

(𝜃𝑜𝑓𝑓𝑠𝑒𝑡 , 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) ≠ (0,0), and after computing 𝒂, it is required to further relate this coordinate with the

corresponding omnidirectional coordinates, 𝒂′, given by:

 𝒂′ = 𝑅𝜙𝑜𝑓𝑓𝑅𝜃𝑜𝑓𝑓𝒂, (4.27)

where 𝑅𝜃𝑜𝑓𝑓 and 𝑅𝜙𝑜𝑓𝑓 are the rotations matrices for angles 𝜃𝑜𝑓𝑓𝑠𝑒𝑡 and 𝜙𝑜𝑓𝑓𝑠𝑒𝑡, respectively, computed

using (4.18) and (4.19).

4.4.2 Viewport Rendering

Viewport rendering from an OCM projection processes differently after determination of the vector

of coordinates on the sphere surface, 𝒑′. Two coordinates transformation are required. First, a rotation

is made to match the omnidirectional coordinates, 𝒂′, given by:

48

 𝒂′ = 𝑅𝜙𝑣𝑅𝜃𝑣𝒑′. (4.28)

Then, a rotation is made to match the coordinate system of the OCM projection:

 𝒂 = 𝑅𝜙𝑜𝑓𝑓
−1𝑅𝜃𝑜𝑓𝑓

−1𝒂′, (4.29)

where 𝑅𝜙𝑜𝑓𝑓
−1 and 𝑅𝜃𝑜𝑓𝑓

−1 are easily obtained by changing the sign of 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 and 𝜃𝑜𝑓𝑓𝑠𝑒𝑡 in (4.19) and

(4.18).

With the coordinates of the correspondent viewport point 𝒂 = (𝑎𝑋, 𝑎𝑌, 𝑎𝑍) and the offset vector 𝒃 =

(0,0, 𝑏𝑧), it is possible to obtain vector 𝒄:

 𝒄 = (𝑎𝑋, 𝑎𝑌, 𝑎𝑍 + 𝑏𝑧). (4.30)

The interception of vector 𝒄 with the cube face gives the coordinates of the point on the surface of

the OCM, vector 𝒅. One of its coordinates, (𝑑𝑋, 𝑑𝑌, 𝑑𝑍), is equal to 1 or -1 and the other coordinates are

contained in the interval [−1,1], given by:

 𝒅 =
𝒄

max{|𝑎𝑋|, |𝑎𝑌|, |𝑎𝑍 + 𝑏𝑧|}
, (4.31)

A viewport with coordinates (𝑚𝑝, 𝑛𝑝) can then be rendered from a OCM projection by applying

(4.11) to (4.16), (4.28) to (4.31), followed by computation of cube face and coordinates (𝑢, 𝑣) using Table

4.2, finally obtaining the OCM face pixel coordinates (𝑚, 𝑛) with (4.21) and (4.22).

Assessment of the Offset Magnitude Impact on Quality

This section provides an evaluation to determine the best OCM offset magnitude, to be used in

omnidirectional video streaming. First, the test conditions are described. Then, an evaluation of the rate-

distortion curve obtained for different offset values is presented.

4.5.1 Test Conditions

The test video sequences were selected from the JVET dataset [44]. From this dataset, three

videos were used: ChairliftRide, SkateboardInLot and KiteFlite. ChairliftRide has moderate motion

content, SkateboardInLot has fast motion content, and KiteFlite has low motion but contains high spatial

detail. All videos are in the equirectangular format, with spatial resolution of 7680×3840 pixels, temporal

resolution of 30 frames/s and have a duration of 10 seconds. The first frame of ChairliftRide,

SkateboardInLot and KiteFlite are presented in Figure 4.10.

a) ChairliftRide b) SkateboardInLot c) KiteFlite

Figure 4.10 – First frame of omnidirectional video test sequences.

A total of 11 offset values, presented in Table 4.4, were assessed. The spatial resolutions of the

OCM frames were selected according to the equirectangular frames resolutions, notably:

• The OCM front face spatial sampling density should be approximately equal to the spatial

sampling density of regions near the equator of the equirectangular frames, to not spatially

49

oversample regions covered by the OCM front face. The width of a cube face, 𝑊𝐹, is

approximately given by:

 𝑊𝐹 ≅
𝑊𝑒𝑞𝑢𝑖

360°
× 𝐹𝐹𝐹, (4.32)

where 𝑊𝑒𝑞𝑢𝑖 is the width of the equirectangular frame and 𝐹𝐹𝐹 is the front face angle in degrees.

• Each OCM face size should be a multiple of 64, to allow correct split of the frame in slices, during

HEVC encoding.

The equivalent equirectangular spatial resolutions selected were 7680×3840 for high spatial resolution

(HSR), 6144×3072 for medium spatial resolution (MSR), and 4608×2304 for low spatial resolution

(LSR), resulting in three RD points. For each spatial resolution, five OCM offset orientations were

considered: (0°, 0°), (60°, 0°), (-60°, 0°), (0°, 90°) and (0°, -90°). Since rendered viewports were fixed

with respective center matching the offset orientation, these offset orientations provided five different

viewports directions, covering a larger area of the video. The five OCM offset orientations also provided

three viewports for evaluation around the equator, with low overlap between viewports, plus evaluation

of regions near each pole. The OCM videos were built from the original version of the videos. The OCM

pixel values were obtained by using bicubic interpolation.

Table 4.4 – Offset values tested and corresponding OCM face width.

Offset
‖𝒃‖ = |𝒃𝒛|

Front
Face
Angle

OCM Face Width

HSR
(7680×3840

ERP)

MSR
(6144×3072

ERP)

LSR
(4608×2304

ERP)

0.70 30º 640 512 384

0.64 36º 768 640 448

0.58 41º 896 704 512

0.54 45º 960 768 576

0.48 50º 1088 832 640

0.42 55º 1152 960 704

0.36 60º 1280 1024 768

0.30 65º 1408 1088 832

0.24 70º 1472 1216 896

0.18 75º 1600 1280 960

0.12 80º 1728 1344 1024

The videos were encoded with the reference software for HEVC, HEVC Test Model (HM) version

16.20 [45], using the Random Access configuration with a GOP size of 16 frames. Only the first 80

frames of each video were encoded; no temporal segmentation was considered in this test. For each

video, offset value, and spatial resolution, the Quantization Parameter (QP) was adjusted in order to

result in similar bitrate values for the same spatial resolution, thus, regardless of the used offset value

and video sequence. Table 4.5 presents the QP values used for the test. All OCM videos were encoded

with two slices, one corresponding to the top, back, and bottom cube faces, and the other corresponding

to the left, front, and right cube faces (see Figure 4.3-a); this avoids artifacts produced around the border

50

between the two slices, since it blocks intra and inter encoding between the spatial discontinuity of the

frame.

Table 4.5 – QP values used

Offset
‖𝒃‖ = |𝒃𝒛|

Front
Face
Angle

QP

ChairliftRide SkateboardInLot KiteFlite

HSR MSR LSR HSR MSR LSR HSR MSR LSR

0.70 30º 24 25 26 27 27 28 26 27 27

0.64 36º 25 26 27 28 28 29 27 29 29

0.58 41º 26 27 28 29 29 30 28 30 30

0.54 54º 27 28 29 30 30 31 30 31 31

0.48 50º 28 29 30 31 31 32 31 32 32

0.42 55º 29 30 31 32 32 33 32 34 33

0.36 60º 30 31 32 32 32 33 33 34 34

0.30 65º 31 32 33 32 33 34 33 35 35

0.24 70º 31 32 33 33 33 34 34 36 36

0.18 75º 32 33 34 33 34 35 34 37 37

0.12 80º 33 34 35 34 34 35 35 37 38

The considered viewport dimension was 2000×2000 pixels, with horizontal and vertical FoV of 96o.

The viewports are rendered using the rectilinear projection, meaning that the projection center is located

at the center of the omnidirectional video sphere. The viewport pixel values were obtained by using

bicubic interpolation.

4.5.2 Results and analysis

The goal of the test was to determine the offset value that provides the best results for the used

viewport configuration. For each offset values and spatial resolution, viewports were rendered for all 80

frames and for five static viewing directions (latitude, longitude): (0°, 0°), (60°, 0°), (-60°, 0°), (0°, 90°)

and (0°, -90°). Each viewport was rendered using the OCM with the offset orientation that matches the

center of the viewport. Each rendered viewport was compared to the same viewport rendered from the

original video using the PSNR metric, this means computing the V-PSNR for each frame, followed by

averaging the V-PSNR for the 80 frames of each sequence.

The rate-distortion plots obtained for the viewport directions (0°, 0°) and (0°, -90°), and for the three

considered video sequences, are presented in Figure 4.11, where each point corresponds to the RD

obtained for each spatial resolution. The offset 0.7 provides the worst rate-distortion curves. As

previously discussed in section 4.3, the low spatial sampling density of regions outside the front face,

but that are still included in the viewport, reduce the quality of the viewport. Reducing the offset

magnitude from 0.7 provides an initial viewport quality increase, followed by an eventual decrease in

quality as the offset magnitude reaches low values. Depending on the direction and content, offsets of

0.36, 0.42, and 0.48 provided the best results. As an example, for direction (0°, -90°) and sequence

SkateboardInLot, depicted in Figure 4.11e), offsets of 0.42 and 0.48 present a slight advantage

compared to an offset 0.36, while for direction (0°, 0°) and sequence KiteFlite depicted in Figure 4.11c),

results for offsets of 0.36, 0.42, and 0.48 are quite similar.

51

a) Direction (0º, 0º). Sequence: ChairliftRide. b) Direction (0º, 0º). Sequence: SkateboardInLot.

c) Direction (0º, 0º). Sequence: KiteFlite. d) Direction (0º, -90º). Sequence: ChairliftRide.

e) Direction (0º, -90º). Sequence: SkateboardInLot. f) Direction (0º, -90º). Sequence: KiteFlite.

Figure 4.11 – RD performance for several offset magnitudes.

To better visualize the evolution of the viewport quality with the offset value, each RD curve was

approximated with a second order polynomial fitting. Then, for each direction and sequence, three bitrate

values were selected: 1) the minimum bitrate obtained for all HSR RD points, 2) the mean bitrate

obtained for all MSR RD points, and 3) the maximum bitrate obtained for all LSR RD points. For these

three bitrate values the corresponding V-PSNR values were computed for each RD curve using the

corresponding second order polynomial fitting. Finally, the resulting V-PSNR values for each offset

magnitude were averaged for all sequences and directions. Figure 4.12 presents the resulting average

and standard deviation of the V-PSNR with the offset magnitude for the three bitrate values. Depending

on the spatial resolution of the points, the best offset value changes between 0.48 for HSR, 0.42 for

36

38

40

42

1.5 2 2.5 3 3.5 4 4.5 5 5.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

Offset 0.12

Offset 0.18

Offset 0.36

Offset 0.42

Offset 0.48

Offset 0.64

Offset 0.7
33

35

37

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

Offset 0.12

Offset 0.18

Offset 0.36

Offset 0.42

Offset 0.48

Offset 0.64

Offset 0.7

31

33

35

37

39

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

Offset 0.12

Offset 0.18

Offset 0.36

Offset 0.42

Offset 0.48

Offset 0.64

Offset 0.7
35

37

39

41

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

Offset 0.12

Offset 0.18

Offset 0.36

Offset 0.42

Offset 0.48

Offset 0.64

Offset 0.7

34

36

38

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

Offset 0.12

Offset 0.18

Offset 0.36

Offset 0.42

Offset 0.48

Offset 0.64

Offset 0.7

29

31

33

35

37

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

Offset 0.12

Offset 0.18

Offset 0.36

Offset 0.42

Offset 0.48

Offset 0.64

Offset 0.7

52

MSR, and 0.36 for LSR. These three offset values outperform offset 0.7. For example, offset 0.42

provides gains between 1.7dB and 2.3dB compared to offset 0.7.

a) Minimum HSR bitrate b) Mean MSR bitrate c) Maximum LSR bitrate

Figure 4.12 – Viewport quality evolution with offset value.

The results of this test suggest a possible offset value that maximizes the quality of the video for a

target bitrate, dependent on the video content; however, it is possible to assume that it is contained in

the interval [0.36; 0.48]. As such, the offset value 0.42 is selected for the comparative tests, as it is close

to the middle of the interval, providing a good approximation of the best offset value for the considered

viewport dimensions and FoV.

36

38

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

V
-P

S
N

R
 [

d
B

]

Offset

35

37

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

V
-P

S
N

R
 [

d
B

]

Offset

33.5

35.5

37.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

V
-P

S
N

R
 [

d
B

]

Offset

53

Chapter 5. Comparative Study of Different

Omnidirectional Video Streaming

Strategies

Introduction

The main objective of this Chapter is to evaluate the proposed offset cubemap (OCM) projection

defined in Chapter 4 for omnidirectional video streaming with other state-of-the-art strategies

(benchmarks). The performance evaluation is done by measuring objectively viewport quality and

accounting for the rate. First, in section 5.2, several omnidirectional video streaming strategies to be

used as benchmarks are described. In section 5.3, some initial tests are made considering static

viewports, which allows representation of the best and worst case scenarios, providing results that can

be seen as the upper and lower bound of what is possible to achieve with several omnidirectional video

streaming strategies. Finally, section 5.4 provides a test close to a realistic scenario where viewport

evaluation is made with a set of selected trajectories obtained from users that were interacting with the

content in the past.

Selected Omnidirectional Streaming Benchmarks

This section presents the several omnidirectional video streaming strategies which will be

compared with the proposed OCM Projection. These benchmark solutions were obtained from the

OMAF standard [24], which supports two planar projections for omnidirectional video streaming and

describes a spatial segmentation method, and from [25], which recommends only a spatial segmentation

method. The omnidirectional video streaming strategies presented can be divided into two categories,

namely monolithic streaming and tile based streaming, and are described in the following subsections.

5.2.1 Monolithic Streaming Strategies

Monolithic streaming strategies are one of the most commonly used strategies for omnidirectional

video streaming. For monolithic strategies, a single encoded bit stream that contains the full

omnidirectional video, where quality is similarly distributed on the entire frame, is streamed. The client

decodes the bit stream continuously to obtain the omnidirectional video data, and consequently, any

viewport can be rendered. The projection used for a monolithic strategy allows the generation of a

viewport for any position and angle in the sphere without any information loss. The two monolithic

strategies considered use the two projections currently supported by OMAF, equirectangular and

cubemap, and are described next:

• Monolithic Equirectangular (MonoEqui): The projection used is the equirectangular

projection. The entire equirectangular projected omnidirectional video is encoded with the

original resolution and with some target QP. Naturally, the QP value is changed to obtain several

rate-distortion points and thus evaluate the solution for several target qualities and rates.

54

MonoEqui is one of the most common strategy used for omnidirectional video streaming.

However, a large part of each omnidirectional frame of the video will not be covered by any

viewport, thus wasting a significant amount of bandwidth. Moreover, the distortion near the poles

present in the equirectangular projection has some impact on the coding performance.

• Monolithic CM (MonoCM): The projection used is the CM projection described in section 4.2,

with the face layout of Figure 4.3a). The entire cube-map omnidirectional video is encoded with

a spatial resolution that approximates the spatial sampling density of regions near the equator of

the original video and with some target QP. The QP value is changed to obtain several rate-

distortion points. Two slices are considered, one in top of the frame, comprising the top, back

and bottom faces of the cube, and one in the bottom of the frame, containing the left, front and

right faces of the cube. Cubemap projection produces less quality degradation across the video

than the equirectangular projection. MonoCM also provides a comparison to the OCM projection

streaming strategy, as the CM projection is an OCM projection with offset zero.

5.2.2 Tiles Streaming Strategies

Tiles streaming strategies divide the omnidirectional video in motion constrained tiles. All tiles

strategies layouts use equirectangular projection. Tiles have high quality/spatial resolution or low

quality/spatial resolution. The selection of the high quality/spatial resolution tiles is based on the

coverage of the viewport, i.e., the entire viewport area must be covered with high quality/spatial

resolution tiles. Ideally, only the tiles covering the viewport would be streamed. However, in that case

the user head motion could lead to the rendering of blank areas or the corresponding tiles need to be

rendered with delay, which decreases the QoE. As such, tiles not covering viewport area are streamed

with low quality/spatial resolution. The tiles strategies tested are described next:

• Tiles 6×4 Quality (6×4-Qual): Spatial segmentation of the equirectangular omnidirectional video

in 6×4 motion constrained tiles, as recommended in [25]. All tiles are generated from the original

full omnidirectional video spatial resolution. The low quality (LQ) tiles QP is (+5) higher than the

high quality (HQ) tiles QP. The different rate-distortion points are obtained by changing the QP

of all tiles, while keeping the QP difference between HQ and LQ tiles fixed. Figure 5.1a) presents

two examples of tiles streamed for different viewport positions, where 𝑊 and 𝐻 are the width and

height of the original omnidirectional video. Blue tiles correspond to HQ tiles, covering the

viewport region, and orange tiles correspond to LQ tiles, covering the rest of the omnidirectional

frame. Figure 5.2 presents the number of HQ tiles required to completely cover a viewport with

96° horizontal and vertical FoV using a 6×4 tiled layout. Each pixel of the map shown in Figure

5.2 represents the number of tiles with a color, if the viewport center is located at the pixel

location. As shown, the number of tiles increases significantly as the viewport center moves to

the poles. 6×4-Qual strategy is based on tiles strategy proposed in [25], with the condition of

fixed QP difference between HQ and LQ tiles to reduce the impact in QoE due to the difference

in quality between HQ and LQ tiles.

• Tiles 6×4 Spatial Resolution (6×4-SRes): Spatial segmentation of the equirectangular

omnidirectional video in 6×4 uniform tiles, as recommended in [25]. This is similar to the previous

55

one but the spatial resolution changes instead of the coding quality. The low spatial resolution

(LSR) tiles have half the resolution of the high spatial resolution (HSR) tiles but the QP is the

same. The four rate-distortion points are obtained by changing the resolution of all tiles, while

keeping the resolution ratio between HSR and LSR tiles. This solution avoids coding artifacts by

changing the spatial resolution, but some blurring may occur. Figure 5.1b) presents two

examples of tiles streamed for different viewport positions, where 𝑊 and 𝐻 are the

omnidirectional video width and height selected for the HSR tiles. Green tiles correspond to HSR

tiles, covering the viewport region, and yellow tiles correspond to LSR tiles, covering the rest of

the omnidirectional frame. Since 6×4-SRes uses the same tiles layout as 6×4-Qual, Figure 5.2

also presents the number of HSR tiles required to completely cover a viewport with 96° horizontal

and vertical FoV. Since no comparative study between streaming tiles with different quality and

different spatial resolution was found, 6×4-SRes strategy is also included as benchmark.

•

a) 6×4-Qual b) 6×4-SRes

Figure 5.1 – Omnidirectional video streaming with tiles 6×4 layout.

Figure 5.2 – Number of HQ/HSR tiles by viewport center for 6×4 tiles layout. Viewport with 96° horizontal and
vertical FoV.

• Tiles OMAF Quality (OMAF-Qual): Spatial segmentation of the equirectangular omnidirectional

video in motion constrained tiles according to the layout described in the OMAF Annex D.6.3 [1],

represented in Figure 5.3a). All tiles are generated from the original full omnidirectional video

resolution. The LQ tiles QP is (+5) higher than the HQ tiles QP. The different rate-distortion points

are obtained by changing the QP of all tiles, while keeping the QP difference between HQ and

LQ tiles fixed. Figure 5.4a) presents two examples of tiles streamed for different viewport

positions, where 𝑊 and 𝐻 are the width and height of the original omnidirectional video. Blue

tiles correspond to HQ tiles, covering the viewport region, and orange tiles correspond to LQ

56

tiles, covering the rest of the omnidirectional frame. Figure 5.3b) presents the number of HQ tiles

required to completely cover a viewport with 96° horizontal and vertical FoV using the OMAF

tiled layout. Each pixel of the map shown in Figure 5.3b) represents the number of tiles with a

color, if the viewport center is located at the pixel location. As shown, the number of tiles

increases as the viewport center moves to the poles, starting from 3 or 4 tiles at the equator to

requiring 9 out of 10 tiles near the poles. The same difference between HQ and LQ tiles of 6×4-

Qual are given to OMAF-Qual to obtain a comparable strategy.

• Tiles OMAF Spatial Resolution (OMAF-SRes): Spatial segmentation of the equirectangular

omnidirectional video in motion constrained tiles according to the OMAF Annex D.6.3,

represented in Figure 5.3a). This strategy takes advantage of the fact that the tiles containing

the poles of the omnidirectional video are regions with double (or higher) spatial sampling density

compared to the equator. As in 6x4-SRes, the LSR tiles have half the resolution of the HSR tiles

but the QP is the same. In addition, tiles of the poles are represented with half the spatial

resolution comparing to the tiles of the equator. The four different bitrates are obtained by

changing the resolution of all tiles, while keeping the resolution ratio between HSR and LSR tiles

(and naturally also of the poles). Figure 5.4b) presents two examples of tiles streamed for

different viewport positions, where 𝑊 and 𝐻 are the omnidirectional video width and height

selected for the HSR tiles contained in the equator. Green and light blue tiles correspond to HSR

equator and pole tiles, respectively, covering the viewport region, yellow and red tiles correspond

to LSR equator and pole tiles, respectively, covering the rest of the omnidirectional frame, and

gray tiles are not available for streaming. Since OMAF-SRes uses the same tiles layout as

OMAF-Qual, Figure 5.3b) also presents the number of HSR tiles required to completely cover a

viewport with 96° horizontal and vertical FoV. Since no comparative study between tiles OMAF

layout and tiles 6×4 layout was found, the same difference between the HSR and LSR tiles

resolution of 6×4-SRes are given to OMAF-SRes.

a) Tile layout described in OMAF Annex D.6.3. b) Number of HQ/HSR tiles by viewport center for

OMAF tiles layout. Viewport with 96° horizontal and

vertical FoV.

Figure 5.3 – Tiles OMAF layout.

57

a) OMAF-Qual b) OMAF-SRes

Figure 5.4 –Omnidirectional video streaming with tiles OMAF layout.

Fixed Viewport Evaluation

This section evaluates the proposed OCM solution and the benchmark streaming strategies

considering fixed viewports, i.e. viewports which do not change the location. First, the test conditions for

the tests are described. Then, an evaluation of the rate-distortion obtained for a viewport covered always

by the highest quality is made. Finally, some quality drop is measured in function of the distance of the

actual viewport to the requested viewport.

5.3.1 Test Conditions

The test video sequences were selected from the JVET dataset [44]. From this dataset, the same

three videos defined in Section 4.5 were used: ChairliftRide, SkateboardInLot and KiteFlite. All videos

are in the equirectangular format with spatial resolution of 7680×3840, sampling rate of 30 frames per

second and have a duration of 10 seconds.

The spatial resolutions of the omnidirectional video for each benchmark are the following:

7680×3840 for MonoEqui, 6×4-Qual and OMAF-Qual and 5760×3840 for MonoCM. Table 5.1 shows

the spatial resolution for 6×4-SRes while the spatial resolutions for OMAF-SRes are shown in Table 5.2.

Table 5.1 – Spatial resolutions of the omnidirectional video for 6×4-SRes.

RD point HSR LSR

1 7680×3840 3840×1920

2 6144×3072 3072×1536

3 4608×2304 2304×1152

4 3072×1536 1536×768

Table 5.2 – Spatial resolutions of the omnidirectional video for OMAF-SRes.

RD point HSR Equator
LSR Equator /

HSR Pole
LSR Pole

1 7680×3840 3840×1920 1920×960

2 6144×3072 3072×1536 1536×768

3 4608×2304 2304×1152 1152×576

4 3072×1536 1536×768 768×384

58

For the proposed OCM projection the resolutions are shown in Table 5.3. In this case, five offset

orientations (𝜃𝑜𝑓𝑓𝑠𝑒𝑡 , 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) were considered: (0°, 0°), (60°, 0°), (-60°, 0°), (0°, 90°) and (0°, -90°).

Table 5.3 – Resolutions of the omnidirectional video used in OCM projection.

RD point
ERP equivalent

resolution
OCM

resolution
OCM face

size

1 7680×3840 3456×2304 1152

2 6144×3072 2880×1920 960

3 4608×2304 2112×1408 704

4 3072×1536 1344×896 448

The videos were encoded with the HEVC reference software, HEVC Test Model (HM) version

16.20, using the Random Access configuration with GOP size of 16 frames. All 300 frames of each

video were encoded; no temporal segmentation was considered in this initial test. For each video and

resolution, the Quantization Parameter (QP) was adjusted so that the bitrate of each RD point would not

differ too much from four predefined bitrates. These bitrates are 6Mbps, 4Mbps, 2.5Mbps and 1 Mbps

for RD points 1, 2, 3, and 4 respectively. Table 5.4 to Table 5.6 present the QP values used for the test

for all the solutions to be evaluated (proposed solution and benchmarks). All CM and OCM projected

videos were encoded with two slices, one including three cube faces on top of the video (top, back, and

bottom) and the other including the three bottom cube faces of the video (left, front, and right).

Table 5.4 – QP values used for fixed viewport evaluation. Sequence: ChairliftRide.

RD
point

Mono
Equi

6×4-Qual
6×4-
SRes

OMAF-Qual
OMAF-
SRes

Mono
CM

OCM

QP HQ QP LQ QP QP HQ QP LQ QP QP QP QP

1 34 31 36 30 32 37 30 32 27

2 37 33 38 31 35 40 31 35 28

3 40 37 42 32 38 43 32 38 29

4 46 42 47 33 45 51 33 44 31

Table 5.5 – QP values used for fixed viewport evaluation. Sequence: SkateboardInLot.

RD
point

Mono
Equi

6×4-Qual
6×4-
SRes

OMAF-Qual
OMAF-
SRes

Mono
CM

OCM

 QP HQ QP LQ QP QP HQ QP LQ QP QP QP QP

1 36 33 38 32 33 38 32 35 30

2 38 36 41 33 36 41 33 37 32

3 41 40 45 33 40 45 33 41 32

4 51 46 51 36 46 51 36 50 34

Table 5.6 – QP values used for fixed viewport evaluation. Sequence: KiteFlite.

RD
point

Mono
Equi

6×4-Qual
6×4-
SRes

OMAF-Qual
OMAF-
SRes

Mono
CM

OCM

 QP HQ QP LQ QP QP HQ QP LQ QP QP QP QP

1 37 34 39 33 34 39 33 36 32

2 40 37 42 34 37 42 34 39 34

3 43 41 46 34 41 46 35 42 33

4 51 46 51 36 46 51 36 50 36

59

The viewport dimensions considered were 2000×2000 pixels, with 96 degrees horizontal and

vertical FoV. The viewports are rendered using the rectilinear projection, meaning that the projection

center is located at the center of the omnidirectional video sphere. The viewport pixel values were

obtained by using bicubic interpolation.

5.3.2 Fixed Viewport Evaluation: Ideal Conditions

The goal of the test was to provide the first evaluation to the several strategies in an ideal scenario,

where the viewport location does not change and receives the best quality representation. This is an

ideal case, since there is no mismatch between the video representation received and the viewport

location.

For each strategy, viewports were rendered for all 300 frames and for five static viewing directions

(latitude, longitude): (0°, 0°), (60°, 0°), (-60°, 0°), (0°, 90°), and (0°, -90°). An ideal streaming scenario

was considered, i.e., for tiles-based strategies only tiles covering the rendered viewport are HQ/HSR

and for OCM streaming, the offset orientation matches the rendered viewport center. Each rendered

viewport was compared to the same viewport rendered from the original video using the PSNR metric,

this means computing the V-PSNR for each frame, followed by averaging the V-PSNR for the 300

frames of each sequence. Note that the LQ/LSR tiles are not considered in the quality evaluation but

account for rate. The Bjøntegaard Delta PSNR (BD-PSNR) was computed for each viewport direction,

strategy and sequence always using the MonoEqui as reference.

For each tiles strategy, a partial delivery streaming strategy was also considered. For these partial

delivery streaming strategies, LQ/LSR tiles are not transmitted, as only the tiles that cover viewport

regions are transmitted and have HQ/HSR. Partial delivery tiles strategies provide an upper bound

performance by only transmitting the viewport but note that in real scenarios cannot be applied due to

head motion and network delays in obtaining high quality tiles for the viewport area.

The rate-distortion curves for strategies MonoEqui, MonoCM, 6×4-SRes, OMAF-SRes, and OCM,

for directions (0°, 0°), (0°, 90°), and (60°, 0°) for sequences SkateboardInLot, and KiteFlite, and for

directions (0°, 0°) and (60°, 0°) for sequence ChairliftRide, are shown in Figure 5.5, where each point

corresponds to a RD point. 6×4-Qual and OMAF-Qual obtained worse performance than 6×4-SRes and

OMAF-SRes and, as such, rate-distortion curves for strategies 6×4-Qual and OMAF-Qual are not shown

in Figure 5.5. Table 5.7 presents the average BD-PSNR values for directions (0°, 0°), (0°, 90°), and

(0°, -90°) which covers regions of the omnidirectional video with latitude zero and thus more perceptually

important (head directions more frequently assessed). Table 5.8 presents the average of BD-PSNR

values for the other directions (60°, 0°) and (-60°, 0°), respectively. The average of BD-PSNR values for

all directions are shown in Table 5.9.

60

a) Direction (0°,0°). Sequence: ChairliftRide. b) Direction (0°,0°). Sequence: SkateboardInLot.

c) Direction (0°,0°). Sequence: KiteFlite. d) Direction (0°,90°). Sequence: SkateboardInLot.

e) Direction (0°,90°). Sequence: KiteFlite. f) Direction (60°,0°). Sequence: ChairliftRide.

g) Direction (60°,0°). Sequence: SkateboardInLot. h) Direction (60°,0°). Sequence: KiteFlite.

Figure 5.5 – RD Performance for several streaming strategies.

34

36

38

40

42

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM

31

33

35

37

39

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM

28

30

32

34

36

38

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM

32

34

36

38

40

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM

28

30

32

34

36

38

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM
36

38

40

42

44

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM

36

38

40

42

44

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM
28

30

32

34

36

38

40

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui

MonoCM

6×4-SRes

OMAF-SRes

OCM

61

Table 5.7 – Average of BD-PSNR for directions (0°,0°), (0°,-90°) and (0,90°). Dark green, green, and light green
cells represent the best, second best, and third best BD-PSNR values (excluding partial delivery strategies),
respectively.

Strategy ChairliftRide SkateboardInLot KiteFlite
P

a
rt

ia
l

D
e

li
v

e
ry

 6×4-Qual 3.00 2.42 3.99

6×4-SRes 3.13 2.55 4.05

OMAF-Qual 2.95 2.40 3.69

OMAF-SRes 3.13 2.55 3.78

6×4-Qual 0.84 0.59 1.26

6×4-SRes 1.38 1.31 1.96

OMAF-Qual 0.85 0.71 1.29

OMAF-SRes 1.91 1.56 2.27

MonoCM 0.94 0.28 0.83

OCM 2.00 1.71 2.08

Table 5.8 – Average of BD-PSNR for directions (60°,0°) and (-60°,0°). Dark green, green, and light green cells
represent the best, second best, and third best BD-PSNR values (excluding partial delivery strategies), respectively.

Strategy ChairliftRide SkateboardInLot KiteFlite

P
a

rt
ia

l

D
e
li

v
e

ry
 6×4-Qual 2.94 3.07 3.86

6×4-SRes 3.13 3.18 3.92

OMAF-Qual 1.05 1.15 1.39

OMAF-SRes 0.97 1.43 0.67

6×4-Qual 0.77 0.78 1.20

6×4-Sres 1.38 1.62 1.87

OMAF-Qual 0.23 0.38 0.56

OMAF-SRes 0.50 1.06 0.14

MonoCM 0.55 0.12 -0.25

OCM 1.37 1.09 1.42

Table 5.9 – Average of BD-PSNR for all five directions. Dark green, green, and light green cells represent the best,

second best, and third best BD-PSNR values (excluding partial delivery strategies), respectively.

Strategy ChairliftRide SkateboardInLot KiteFlite

P
a

rt
ia

l

D
e
li

v
e

ry
 6×4-Qual 2.98 2.68 3.94

6×4-SRes 3.13 2.80 4.00

OMAF-Qual 2.19 1.90 2.77

OMAF-SRes 2.27 2.10 2.53

6×4-Qual 0.81 0.66 1.24

6×4-SRes 1.38 1.43 1.92

OMAF-Qual 0.60 0.58 1.00

OMAF-SRes 1.34 1.36 1.42

MonoCM 0.78 0.22 0.40

OCM 1.75 1.46 1.82

From the BD-PSNR results, it is possible to observe that partial delivery tiles strategies obtain the

best quality for the same bitrate. This was expected and the gap between the best non-partial delivery

62

and the best partial delivery streaming strategies is rather high which shows that there is still room for

improvement.

From Table 5.9 it is possible to conclude that the overall best performing tiles-based strategies are

6×4-SRes and OMAF-SRes. However, the performance for strategies 6×4-SRes and OMAF-SRes

depend of the latitude of the viewport center:

• For directions with latitude zero: OMAF-SRes performs better than 6×4-SRes. This behavior

can be observed in Figure 5.5a) to e) and Table 5.7, with OMAF-SRes providing 0.25dB to

0.53dB gains compared to 6×4-SRes. For viewport directions (0°, 0°), (0°, 90°) and (0°, -90°), the

HSR tiles for 6×4 and OMAF layouts cover 33.3% of the equirectangular projected

omnidirectional frame. The 6×4 layout results in more tiles than OMAF layout, as can be seen

comparing Figure 5.2 and Figure 5.3b), meaning that spatial redundancy is less exploited for

6×4-SRes compared to OMAF-SRes, increasing the bitrate for 6×4-SRes.

• For directions with latitude different than zero: 6×4-SRes performs better than OMAF-SRes.

This behavior can be observed in Figure 5.5f) to h) and Table 5.8, with 6×4-SRes providing

0.56dB to 1.73dB gains compared to OMAF-SRes. For viewport directions (60°, 0°) and

(-60°, 0°), the region covered by the HSR tiles is larger for the OMAF layout (covering 66.7% of

the equirectangular frame) than for the 6×4 layout (covering 41.6% of the equirectangular frame).

This leads to the OMAF-SRes requiring more bitrate for the same viewport representation.

Furthermore, when regions near the poles have high frequency content, the lower spatial

resolution of OMAF-SRes pole regions decreases the detail of these regions, compared to the

same regions for 6×4-SRes, thus decreasing quality for viewports covering these regions using

OMAF-SRes. This can be observed on Figure 5.5h), for sequence KiteFlite and direction

(60°, 0°), which covers leaves motion with the wind.

6×4-Qual and OMAF-Qual strategies present similar behavior with latitude compared to 6×4-SRes

and OMAF-SRes, respectively, as shown in Table 5.7 and Table 5.8, due to the similar tile layout.

However, 6×4-Qual and OMAF-Qual perform worse than tiles spatial resolution strategies, showing tiles

with different spatial resolutions provide better performance than tiles with different encoding qualities.

The OCM projection strategy provides the best or second-best overall results, according to the

results in Table 5.9. These results can be further investigated with the behavior to latitude:

• For directions with latitude zero: As it can be observed in Table 5.7, the OCM projection results

are rather close to those obtained by OMAF-SRes, with gains up to 0.15dB and losses up to

0.19dB. Moreover, OCM projection results provided gains between 0.12dB and 0.62dB

compared to 6×4-Sres.

• For directions with latitude different than zero: As it can be observed in Table 5.8, OCM

results are second best to 6×4-SRes, with losses up to 0.53dB. However, OCM projection leads

to gains up to 1.28dB compared to OMAF-SRes.

These results demonstrate that OCM projection not only provides similar quality of the OMAF-

SRes for latitudes close to zero, which are the most viewed regions, but also provides reduced quality

loss compared to 6×4-SRes for latitudes closer to the poles.

63

5.3.3 Fixed Viewport Evaluation with Mismatch

The goal of this experiment was to determine the degradation of the viewport quality when the

rendered viewport does not match the viewport requested. This may occur during typical streaming

situations where the network delay doesn’t allow to quickly receive the areas covered by the viewport

with high quality and when the head motion prediction algorithm fails to predict the new regions of the

viewport. To examine the viewport quality degradation, the viewport center requested was fixated at

(0°, 0°). Next, 36 viewport directions uniformly distributed along latitude zero degrees (which are most

frequently requested by streaming clients in a realistic scenario) were selected for viewport extraction.

For each evaluated sequence and viewport direction, viewports were rendered from the first frame of

each second, totalizing 10 frames per sequence, in order to keep computational costs low while still

being representative. Each rendered viewport (after decoding) was compared to the same viewport

rendered from the original video by computing the V-PSNR for each frame, followed by averaging the

V-PSNR for the 10 frames of each sequence. Lastly, for each viewport direction, the resulting V-PSNR

for MonoEqui was subtracted to the V-PSNR obtained for all strategies, obtaining the relative V-PSNR

gain to MonoEqui, ΔV-PSNR. Figure 5.6, Figure 5.7, and Figure 5.8 present the ΔV-PSNR evolution for

all streaming strategies evaluated when the longitude of the viewport center varies along the sphere.

The bitrates are shown on the legend of all Figures, and results were obtained for sequences

ChairliftRide, SkateboardInLot, and KiteFlite, respectively. Naturally, the ΔV-PSNR for MonoEqui is

equal to zero.

Figure 5.6 – V-PSNR relative gain to MonoEqui. Sequence: ChairliftRide.

-2

-1

0

1

2

3

-170 -150 -130 -110 -90 -70 -50 -30 -10 10 30 50 70 90 110 130 150 170

Δ
V

-P
S

N
R

 [
d

B
]

Longitude [º]

MonoEqui (6.12Mbps)

MonoCM (6.05Mbps)

6×4-Qual (6.46Mbps)

6×4-SRes (6.71Mbps)

OMAF-Qual (5.44Mbps)

OMAF-SRes (5.68Mbps)

OCM (6.17Mbps)

64

Figure 5.7 – V-PSNR relative gain to MonoEqui. Sequence: SkateboardInLot.

Figure 5.8 – V-PSNR relative gain to MonoEqui. Sequence: KiteFlite.

From Figure 5.6 to Figure 5.8 it is possible to identify three gain regions for tiles-based strategies:

1) approximately constant gain around longitudes close to 0°, 2) approximately constant loss around

longitudes close to 180°, and 3) dropping gain between longitudes close to 0° and longitudes close to

180°. Analyzing tiles-based strategies for approximately constant ΔV-PSNR longitudes:

• For longitudes close to 0°: Among the tiles-based strategies, OMAF-SRes provided the highest

gain for a larger longitude interval compared to other tiles-based strategies although it is not the

best for longitudes close to zero. As can be seen from the results in Figure 5.6 to Figure 5.8,

OMAF-SRes achieved higher gains than 6×4-Qual and OMAF-Qual, and the same gain as 6×4-

SRes. However, for OMAF-SRes the region with the highest gain is 60° wider compared to 6×4-

SRes. This is due to the OMAF-SRes HSR tiles covering in total 180° horizontal FoV, while 6×4-

SRes HSR tiles only cover 120° horizontal FoV total.

• For longitudes close to 180°: Results for tiles-based strategies depend on the characteristics

of the sequence. For example, results for sequence SkateboardInLot, presented in Figure 5.6,

show similar results for all tiles strategies, while results for sequence KiteFlite, presented in

Figure 5.8, depict losses for tiles spatial resolution strategies of approximately 0.6dB compared

to tiles quality strategies.

Depending on the distance to the viewport center requested, the OCM strategy has a different

performance behavior compared to OMAF-SRes. As shown in Figure 5.6 to Figure 5.8, the OCM

-2

-1

0

1

2

3

-170 -150 -130 -110 -90 -70 -50 -30 -10 10 30 50 70 90 110 130 150 170

Δ
V

-P
S

N
R

 [
d

B
]

Longitude [º]

MonoEqui (5.72Mbps)

MonoCM (5.64Mbps)

6×4-Qual (6.34Mbps)

6×4-SRes. (6.78Mbps)

OMAF-Qual (6.10Mbps)

OMAF-SRes (6.08Mbps)

OCM (6.50Mbps)

-2

-1

0

1

2

3

-170 -150 -130 -110 -90 -70 -50 -30 -10 10 30 50 70 90 110 130 150 170

Δ
V

-P
S

N
R

 [
d

B
]

Longitude [º]

MonoEqui (5.64Mbps)

MonoCM (5.65Mbps)

6×4-Qual (5.81Mbps)

6×4-SRes. (5.86Mbps)

OMAF-Qual (6.05Mbps)

OMAF-SRes (5.76Mbps)

OCM (6.36Mbps)

65

provides higher quality than OMAF-SRes for up to a longitude distance to the viewport requested

between 10° and 20°, with gains up to 0.54dB for sequence ChairliftRide. Thus, for a requested viewport

with low distance error, OCM provides the best quality. Between 20° and 50° longitude distance to the

viewport requested, the OCM provides lower quality than OMAF-SRes, with losses up to 0.84dB for

sequence KiteFlite. However, the OCM strategy provides a smoother quality decrease with respect to

the angular distance to the viewport requested center, while OMAF-SRes quality drop is quicker for

angular distances above 50° due to the difference in quality on a viewport when it covers both HQ/HSR

and LQ/LSR tiles. This difference in quality is often perceptible, creating an unnatural border on the

observed viewport, which may decrease the overall QoE. To illustrate these differences, Figure 5.9

presents sections of three viewports rendered using OMAF-SRes and OCM projection. For the OMAF-

SRes it is possible to notice the difference in quality between HQ and LQ tiles, in Figure 5.9a) and b),

on the back of the car, in Figure 5.9c) and d), by the difference in blur of the bushes, and in Figure 5.9e)

and f), by the discontinuity on the floor and on the base of the publicity stand.. Note that these differences

are more perceptual visible in an HMD where the display is close to the user’s eyes. In contrast, OCM

projection presents a smoother loss of quality due to the proposed projection algorithm. As such, visual

quality decay is usually not as noticeable as for tiles strategies.

66

a) OMAF-SRes. Sequence: SkateboardInLot. b) OCM Projection. Sequence: SkateboardInLot.

c) OMAF-SRes. Sequence: ChairliftRide. d) OCM Projection. Sequence: ChairliftRide.

e) OMAF-SRes. Sequence: KiteFlite. f) OCM Projection. Sequence: KiteFlite.

Figure 5.9 – Viewport section examples for viewport center (0°, 50°).

67

Trajectory Based Viewport Evaluation

This section evaluates the proposed OCM solution and the benchmark streaming strategies

considering viewports following real trajectories. First, the test conditions are described. Then, an

evaluation of the rate-distortion obtained for viewports extracted using selected trajectories obtained

from users that were interacting with the content in the past.

5.4.1 Test Conditions

The test video sequences were selected from the Salient360 dataset [46], since no recorded head

movements were available for the sequences used in section 5.3. The videos of Salient360 dataset are

available encoded with H.264/AVC always using the same video configuration. From the Salient360

dataset, three videos were used: Turtle, UnderwaterPark and Touvet. These sequences were selected

considering three conditions: 1) frame rate equal to the sequences used for fixed viewport evaluation

(30 frames/s); 2) low amount of stitching artifacts; 3) different bitrate levels of the available encoded

videos – Turtle with medium bitrate, UnderwaterPark with higher bitrate, and Touvet with lower bitrate.

Figure 5.10 presents the first frame of Turtle, UnderwaterPark and Touvet. All videos are in the

equirectangular format, with spatial resolution of 3840×1920, sampling rate of 30 frames per second

and have a duration of 20 seconds.

a) Turtle b) UnderwaterPark c) Touvet

Figure 5.10 – First frame of omnidirectional video test sequences.

The spatial resolutions of the omnidirectional video for each streaming strategy are the following:

3840×1920 for MonoEqui, 6×4-Qual, and OMAF-Qual, and 2880×1920 for MonoCM. Table 5.10 shows

the spatial resolution for 6×4-SRes, while the spatial resolution for OMAF-SRes are shown in Table

5.11.

Table 5.10 – Spatial resolutions of the omnidirectional video for 6×4-SRes.

RD point HSR LSR

1 3840×1920 1920×960

2 3072×1536 1536×768

3 2304×1152 1152×576

4 1536×768 768×384

Table 5.11 – Spatial resolutions of the omnidirectional video for OMAF-SRes.

RD point HSR Equator
LSR Equator /

HSR Pole
LSR Pole

1 3840×1920 1920×960 960×480

2 3072×1536 1536×768 768×384

3 2304×1152 1152×576 576×288

4 1536×768 768×384 384×192

68

For the proposed OCM projection the spatial resolutions are shown in Table 5.12. In this case, 13

offset orientations (𝜃𝑜𝑓𝑓𝑠𝑒𝑡 , 𝜙𝑜𝑓𝑓𝑠𝑒𝑡) were considered and are presented in Table 5.13. These offset

orientations were based on the 22 offset orientations used by Oculus, listed in Table 4.3, by covering a

similar area of the omnidirectional frame with OCM front faces, represented in Figure 4.7. Figure 5.11

presents the regions of an omnidirectional video that are projected on the cube front face, for all 13

offset orientations considered.

Table 5.12 – Spatial resolutions of the omnidirectional video used in OCM projection.

RD
point

ERP equivalent
resolution

OCM resolution OCM face size

1 3840×1920 1728×1152 576

2 3072×1536 1344×896 448

3 2304×1152 1152×768 384

4 1536×768 768×512 256

Table 5.13 – OCM projection offset orientations.

𝜽𝒐𝒇𝒇𝒔𝒆𝒕 (in degrees) 𝝓𝒐𝒇𝒇𝒔𝒆𝒕 (in degrees)

55 26, 146, 266

0 0, 51, 103, 154, 206, 257, 309

-55 26, 146, 266

Figure 5.11 – Representation on an equirectangular image of the front faces of all 13 OCMs with the offset
orientations considered for the OCM streaming strategy.

The videos were encoded with the HEVC reference software, HEVC Test Model (HM) version

16.20, using the Random Access configuration with GOP size of 16 frames. All 600 frames of each

video were encoded. Considering the GOP size, two different temporal segmentation intervals were

selected to each streaming strategy: 32 frames (approximately one second and referred as 1s) and 64

frames (approximately two seconds and referred as 2s). The QP values were chosen based on the QP

values selected in section 5.3.1 to provide RD points between similar bitrate intervals for each sequence.

Table 5.14, Table 5.15, and Table 5.16 present the QP values used for the test for all the strategies to

be evaluated (proposed solution and benchmarks). All CM and OCM projected videos were encoded

with two slices, one including three cube faces on top of the video (top, back, and bottom) and the other

including three bottom cube faces of the video (left, front, and right).

69

Table 5.14 – QP values used for trajectory based viewport evaluation. Sequence: Turtle.

RD
point

Mono
Equi

6×4-Qual
6×4-
SRes

OMAF-Qual
OMAF-
SRes

Mono
CM

OCM

QP HQ QP LQ QP QP HQ QP LQ QP QP QP QP

1 34 32 37 32 32 37 32 34 28

2 40 38 43 33 37 42 33 40 29

3 45 41 46 34 40 45 34 45 30

4 51 43 48 35 42 47 35 50 32

Table 5.15 – QP values used for trajectory based viewport evaluation. Sequence: UnderwaterPark.

RD
point

Mono
Equi

6×4-Qual
6×4-
SRes

OMAF-Qual
OMAF-
SRes

Mono
CM

OCM

QP HQ QP LQ QP QP HQ QP LQ QP QP QP QP

1 34 32 37 32 32 37 30 33 28

2 40 38 43 33 37 42 33 40 29

3 45 41 46 34 40 45 34 45 30

4 51 43 48 35 42 47 35 50 32

Table 5.16 – QP values used for trajectory based viewport evaluation. Sequence: Touvet.

RD
point

Mono
Equi

6×4-Qual
6×4-
SRes

OMAF-Qual
OMAF-
SRes

Mono
CM

OCM

QP HQ QP LQ QP QP HQ QP LQ QP QP QP QP

1 34 32 37 32 32 37 30 33 30

2 40 38 43 33 37 42 33 40 33

3 45 41 46 34 40 45 34 45 34

4 51 43 48 35 42 47 35 50 35

The viewport dimensions considered were 2000×2000 pixels, with 96 degrees horizontal and

vertical FoV. The viewports are rendered using the rectilinear projection. The viewport pixel values were

obtained with bicubic interpolation.

5.4.2 Results and Analysis

The goal of the test was to evaluate the different streaming strategies using head motions obtained

in a realistic scenario. The head motions used are also available in the Salient360 dataset [46]. This

dataset contains head motion data obtained from 57 users observing each sequence for its entire

duration with an HMD. Each head motion trajectory contains 100 samples indicating the longitude,

latitude and fixation timestamp. For each sequence, eight head motion trajectories divided in two types

were considered:

• Maximum saliency (MSal): four trajectories were selected based on maximum saliency, this

means cover the more commonly watched regions of the video.

• High distance (HDist): another four trajectories were chosen based on maximum distance

covered, which cover faster head movements.

The streaming scenario considered requested the next segment higher quality/spatial resolution

region (e.g. tiles) based on the coordinates of the trajectory sample that immediately precedes it. These

coordinates are then used as the requested viewport center, for tiles-based strategies, or for determining

the closest offset orientation, for OCM streaming. The viewports were rendered for all 600 frames using

the trajectories coordinates as viewport center. Each viewport was compared to the same viewport

70

rendered from the original video using the PSNR metric, this means computing the V-PSNR for each

frame, followed by averaging the V-PSNR for the 600 frames of each sequence. Then, both rate and

PSNR for each strategy were averaged for the MSal and HDist trajectories. The BD-PSNR was

computed for each trajectory type, streaming strategy, temporal segmentation and sequence always

using the MonoEqui 2s as reference.

The RD curves for strategies MonoEqui, MonoCM, 6×4-SRes, OMAF-SRes, and OCM, and for

each trajectory type and sequence are shown in Figure 5.12, where each point corresponds to the

average of RD points obtained for four trajectories. MonoEqui and MonoCM are only presented for 2s

segment duration, since longer segments provide better results for monolithic strategies. 6×4-SRes,

OMAF-SRes, and OCM are only presented for 1s segmentation, as 1s provided better overall results

than 2s for these streaming strategies. 6×4-Qual and OMAF-Qual are not included since they perform

worse than 6×4-SRes and OMAF-SRes.

a) MSal trajectories. Sequence: Turtle. b) HDist trajectories. Sequence: Turtle.

c) MSal trajectories. Sequence: UnderwaterPark. d) HDist trajectories. Sequence: UnderwaterPark.

e) MSal trajectories. Sequence: Touvet f) HDist trajectories. Sequence: Touvet

Figure 5.12 – RD Performance for several streaming strategies.

31

33

35

37

39

41

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui 2s

MonoCM 2s

6×4-SRes 1s

OMAF-SRes 1s

OCM 1s
32

34

36

38

40

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui 2s

MonoCM 2s

6×4-SRes 1s

OMAF-SRes 1s

OCM 1s

31

33

35

37

39

41

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui 2s

MonoCM 2s

6×4-SRes 1s

OMAF-SRes 1s

OCM 1s
31

33

35

37

39

41

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui 2s

MonoCM 2s

6×4-SRes 1s

OMAF-SRes 1s

OCM 1s

29

31

33

35

37

39

41

0.1 0.3 0.5 0.7 0.9 1.1 1.3

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui 2s

MonoCM 2s

6×4-SRes 1s

OMAF-SRes 1s

OCM 1s
29

31

33

35

37

39

0.1 0.3 0.5 0.7 0.9 1.1 1.3

V
-P

S
N

R
 [

d
B

]

Bitrate [Mbps]

MonoEqui 2s

MonoCM 2s

6×4-SRes 1s

OMAF-SRes 1s

OCM 1s

71

BD-PSNR values for all strategies, temporal segmentations, sequences, and trajectory type are

presented in Table 5.17. Naturally, the BD-PSNR for MonoEqui 2s is zero since it is the reference.

Table 5.17 – BD-PSNR for the different trajectory types and streaming strategies compared to MonoEqui 2s. Dark
green, green, and light green cells represent the best, second best, and third best BD-PSNR values, respectively.

Strategy
Segment
duration

Turtle UnderwaterPark Touvet

MSal HDist MSal HDist MSal HDist

MonoEqui
1s -0.20 -0.19 -0.23 -0.23 -0.33 -0.33

2s 0.00 0.00 0.00 0.00 0.00 0.00

MonoCM
1s 0.64 0.57 0.57 0.60 -0.17 -0.24

2s 0.85 0.76 0.79 0.82 0.16 0.10

6×4-Qual
1s 0.44 0.25 0.21 -0.06 -0.68 -0.91

2s 0.57 0.11 0.26 -0.21 -0.57 -0.84

6×4-SRes
1s 0.78 0.56 0.76 0.45 -0.68 -1.05

2s 0.85 0.30 0.78 0.22 -0.81 -1.25

OMAF-Qual
1s 0.98 0.63 0.32 0.15 0.09 -0.26

2s 1.14 0.58 0.44 0.08 0.20 -0.19

OMAF-SRes
1s 1.80 1.41 1.51 1.25 0.46 -0.13

2s 1.90 1.26 1.60 1.11 0.30 -0.35

OCM
1s 1.48 1.21 1.78 1.71 0.26 -0.13

2s 1.61 1.07 1.90 1.66 0.24 -0.27

The different segment duration leads to different results for monolithic, for tiles strategies and for

OCM. The following conclusions regarding the segment duration can be taken:

• MonoEqui and MonoCM streaming strategies: 2s segments performs better than 1s, as

shown in Table 5.17. Longer segments allow the encoder to exploit inter frame prediction and

doesn’t require so many Intra frames which are costly in terms of bitrate, resulting in lower

bitrates for the same quality.

• Tiles and OCM streaming strategies: Table 5.18 presents the difference between the BD-

PSNR shown in Table 5.17 for 1s and 2s segments for tiles and OCM streaming strategies; a

positive difference means a better performance for 1s segments and a negative difference

means a better performance of 2s segments. As shown in Table 5.18, there are many cases

where the BD-PSNR of 2s segments compared to 1s is worst for all tiles strategies and OCM.

To understand this behavior a more detailed analysis is made. Consider that the viewport

average error, 𝐸𝑟, is equal to the average angular distance between the centers of the current

and the requested viewport (requested viewport center coordinates for tiles strategies and front

face center coordinates for OCM Projection). Table 5.19 shows the viewport average error for

1s and 2s segments, 𝐸𝑟1𝑠 and 𝐸𝑟2𝑠, respectively, and the difference between 2s and 1s viewport

average error, 𝐸𝑟2𝑠 − 𝐸𝑟1𝑠; the higher the difference, the lower the accuracy of the requested

viewports for 2s segments compared to 1s and, thus, lower viewport quality for 2s. As shown in

Table 5.19, MSal trajectories for Turtle and UnderwaterPark provide the lowest difference

between 2s and 1s viewport average error, meaning that is not required correction of the

72

requested viewport center more frequently (i.e. with smallest 1s segments) to have a viewport

with high quality, resulting in better performance for 2s segments for MSal trajectories for Turtle

and UnderwaterPark as shown in Table 5.18. The remaining trajectories have higher difference

between 2s and 1s viewport average error and, as shown in Table 5.18, for HDist trajectories for

Turtle and UnderwaterPark and all trajectories for Touvet, 1s segments perform better than 2s

segments for all tiles strategies and OCM, except for 6×4-Qual and OMAF-Qual for Touvet.

Table 5.18 – BD-PSNR difference between 1s and 2s for tiles-based and OCM streaming strategies.

Strategy
Turtle UnderwaterPark Touvet

MSal HDist MSal HDist MSal HDist

6×4-Qual -0.13 0.14 -0.05 0.15 -0.11 -0.07

6×4-SRes -0.07 0.26 -0.02 0.23 0.13 0.2

OMAF-Qual -0.16 0.05 -0.12 0.07 -0.11 -0.07

OMAF-SRes -0.1 0.15 -0.09 0.14 0.16 0.22

OCM -0.13 0.14 -0.12 0.05 0.02 0.14

Table 5.19 – Viewport average error (in degrees).

Strategy Error
Turtle UnderwaterPark Touvet

MSal HDist MSal HDist MSal HDist

Tiles

𝐸𝑟1𝑠 8.4 27.8 16.3 35.0 22.6 34.1

𝐸𝑟2𝑠 14.6 42.0 24.3 53.0 36.8 51.6

𝐸𝑟2𝑠 − 𝐸𝑟1𝑠 6.2 14.2 8.0 18.0 14.2 17.5

OCM

𝐸𝑟1𝑠 17.4 33.2 28.8 40.2 29.0 39.3

𝐸𝑟2𝑠 20.6 45.6 35.9 56.3 40.8 56.4

𝐸𝑟2𝑠 − 𝐸𝑟1𝑠 3.2 12.4 7.1 16.1 11.8 17.1

From Table 5.17 it is possible to conclude that the overall best performing tile-based strategy is

OMAF-SRes. This is expected since, as discussed in sections 5.3.2 and 5.3.3, among the tiles

strategies, OMAF-SRes provided the best quality for regions near the equator, which are the most

viewed regions, and better tolerance to error between the current viewport and the requested viewport.

OMAF-SRes and OCM with 1s segmentation provided the best overall results. However, results for

these two strategies depend on the sequence:

• Sequence Turtle: better results are achieved for OMAF-SRes. As shown for Table 5.17, OMAF-

SRes 1s provides gains of 0.32dB for MSal and 0.2dB for HDist compared to OCM 1s. This can

also be confirmed for the RD curves of Figure 5.12a) and b).

• Sequence UnderwaterPark: better results were obtained for the OCM Projection. As shown in

Figure 5.12c) and d) and Table 5.17, OCM 1s provides gains of 0.27dB for MSal and 0.46dB for

HDist compared to OMAF-SRes 1s.

• Sequence Touvet: close results between strategies were obtained. As shown in Figure 5.12e)

and f) and Table 5.17, OMAF-SRes 1s provides gains of 0.20dB for MSal trajectories compared

to OCM 1s. However, for HDist trajectories, OMAF-SRes and OCM strategies with 1s segments

provide losses of 0.13dB to MonoEqui.

73

The difference in RD performance between OMAF-SRes and OCM can be explained with the

OMAF-SRes behavior. Table 5.20 presents the following results obtained for OMAF-SRes 1s: 1) the

average number of HSR tiles requested for each sequence and trajectory type; 2) the percentage of

times that an HSR pole tiles is requested. As shown in Table 5.20, the average number of HSR tiles per

frame is lower for Turtle and for Touvet MSal, resulting in better performance for OMAF-SRes compared

to OCM. On the other hand, the average number of HSR tiles per frame is higher for UnderwaterPark

and Touvet HDist. The number of frames with one HSR pole tile is also higher for UnderwaterPark and

Touvet HDist and, as seen in subsection 5.3.2, viewports covering HSR pole tiles decrease OMAF-

SRes performance. Furthermore, UnderwaterPark contains high frequency content in the pole regions,

resulting in worst performance for OMAF-SRes compared to OCM. Results for Touvet HDist between

OCM and OMAF-SRes are similar, even though both provided worse performance than MonoEqui and

MonoCM.

Table 5.20 – OMAF-SRes 1s tile streaming analysis.

Sequence Trajectory
Average # HSR
tiles requested

Requested HSR
pole tile (%)

Turtle
MSal 3.54 10.5

HDist 3.57 15.8

Underwater
Park

MSal 4.17 57.9

HDist 4.07 42.1

Touvet
MSal 3.68 21.1

HDist 4.45 46.1

Sequence Touvet provided the biggest difference in performance compared to the other

sequences. As shown in Table 5.17, performances of all strategies compared to MonoEqui 2s are worse

for Touvet than for Turtle and UnderwaterPark, with only MonoCM 2s providing better results than

MonoEqui 2s for Touvet HDist trajectories. This behavior can be attributed to Touvet content, as it

consists on a very low motion environment captured by a traveling camera moving towards direction

(0°,0°). For MonoEqui, the encoding of Touvet can efficiently exploit temporal redundancy in the entire

frame, as content moves from the center of the equirectangular projection to the sides, increasing

encoding efficiency. For tiles-based strategies, by introducing spatial segmentation, motion vectors are

restricted, decreasing encoding efficiency and reducing performance. For OCM, due to the distortion

caused by mapping and the discontinuities between the borders of the three faces on the top and the

three faces on the bottom of the OCM frame, temporal redundancy is somewhat reduced, also

decreasing encoding efficiency and thus reducing overall performance. Moreover, as shown in Table

5.19, Touvet HDist trajectories have high viewport average error for segment durations 1s and 2s and

for tiles-based and OCM strategies, further decreasing the performance of these strategies for Touvet

HDist trajectories.

74

Chapter 6. Conclusions

Summary

In this thesis, the offset cubemap projection was optimized to provide an enhanced omnidirectional

video streaming strategy, enabling high quality transmission through channels with limited and varying

bandwidth. Developed by Oculus ®, the OCM projection allows higher spatial resolution (thus, higher

quality) around a predefined direction of the omnidirectional video – the offset orientation – by distorting

spherical angles. The distortion level is dictated by the offset magnitude: the higher the offset

magnitude, the higher the distortion and the smaller the region around the offset orientation provided

with higher resolution.

The Oculus ® implementation of the OCM streaming considers a fix offset magnitude of 0.7, which

was proven (in this dissertation) to not provide a good viewport quality. To determine an appropriate

offset value, for improved quality, 11 offset values were objectively evaluated using three omnidirectional

videos, having distinct spatial-temporal activities. The best offset magnitude value was found to be 0.42,

providing V-PSNR gains of up to 2.3 dB relatively to an offset magnitude of 0.7.

The assessment of the optimized OCM projection, for adaptive omnidirectional video streaming,

was then conducted considering several state-of-the-art streaming strategies as benchmarks; these

were of two types: 1) the monolithic or conventional strategies – which encode the entire omnidirectional

frame with the same quality – and considering the two most common sphere-to-plan projections, namely

equirectangular and cubemap; 2) tiles-based strategies, which use tiles encoded with different

quality/spatial resolution to provide viewport adaptive streaming; in this case, tiles corresponding to the

viewport regions are transmitted with the highest possible quality (allowed by the available bandwidth),

while the others are transmitted with lower quality. The considered frame division in tiles was set

according to the usual procedure in related literature: 6×4 and OMAF (Annex D.6.3) tiles structure. In

an initial phase, the proposed OCM streaming strategy and benchmarks were tested considering static

viewports (i.e., static viewing directions) to analyze the upper and lower bound of performance for each

strategy. Results for static viewports showed the potential of OCM based video streaming, either when

the requested (to the server) viewport center orientation matched the viewing direction, either when an

error of up to 20° between these two directions was introduced. Finally, the considered streaming

strategies were evaluated and compared using real head motion trajectories. For this test, the OCM

strategy showed to provide better results than the monolithic strategies and to compete with the best

tiles based solutions, although results are dependent on content and trajectory.

Future Work

The quality of experience provided to the user, with OCM based video streaming, can be improved

by minimizing the distance between the requested offset direction and the actual user viewing direction;

this could be achieved by improving the offset orientation encoding selection. While in this dissertation

only 13 offset orientations were considered, the quality provided to the users may increase with a larger

75

number of offset values at the server, at the expense of an increase in the required storage space. Also,

instead of using pre-defined offset angles, these could be obtained from visual attention maps, seeking

to increase the quality of those parts of the omnidirectional video that are more likely to be observed by

the users.

In the trajectory based evaluation of the streaming strategies, the requested offset direction (and

also the requested high quality tiles, in the tiles based approaches) corresponds to the last known user’s

head orientation. This may lead to the request of an offset orientation too much far from the user viewing

direction, reducing the viewport quality. To improve the performance of the OCM streaming (as well as

of the tiles based strategies) user´s head motion prediction should be included at the client side.

For the quality evaluation of the different streaming strategies, the V-PSNR metric was used. This

metric was adopted from the traditional PSNR metric, commonly used in 2D video and, as such, has

some limitations for the evaluation of omnidirectional video. In particular, tiles based streaming produce

noticeable quality differences when different quality/spatial resolution tiles are present in the viewport,

notably at the tiles frontier, where spatial discontinuities may appear; this was clearly visible in the 2D

computer monitor used for rendering the viewports and is expected to be even more visible (and

annoying) if HMD displays are used, due to content magnification. The V-PSNR averages the error in

each pixel and is not able to measure the visibility of the above-mentioned spatial discontinuity. To

improve the evaluation and comparison of the considered omnidirectional video streaming strategies, a

better objective metric should be applied (and, eventually, developed); additionally, subjective

assessment tests, with users wearing HMD devices, should be also conducted.

76

Bibliography

[1] M. Wien, J. Boyce, T. Stockhammer and W.-H. Peng, "Standardization Status of Immersive Video

Coding," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1,

pp. 5-17, March 2019.

[2] ISO/IEC 23090-2:2019, Information technology – Coded representation of immersive media – Part

2: Omnidirectional media format.

[3] Google, "Google Cardboard," [Online]. Available: https://arvr.google.com/cardboard/. [Accessed

20 May 2020].

[4] Samsung, "Samsung Gear VR with Controller," [Online]. Available:

https://www.samsung.com/global/galaxy/gear-vr/. [Accessed 2020 May 20].

[5] F. Jabar, J. Ascenso and M. Queluz, "Content-Aware Perspective Projection Optimization for

Viewport Rendering of 360° Images," in IEEE International Conference on Multimedia and Expo

(ICME), Shanghai, China, 2019.

[6] ISO/IEC, Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1:

Media presentation description and segment formats, 2014.

[7] X. Corbillon, A. Devlic, G. Simon and J. Chakareski, "Viewport-Adaptive Navigable 360-Degree

Video Delivery," in 2017 IEEE International Conference on Communications (ICC), Paris, France,

2017.

[8] C. Zhou, Z. Li and Y. Liu, "A Measurement Study of Oculus 360 Degree Video Streaming," in

MMSys'17 Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 2017.

[9] M. Graf, C. Timmerer and C. Mueller, "Towards Bandwidth Efficient Adaptive Streaming of

Omnidirectional Video over HTTP," in MMSys'17 Proceedings of the 8th ACM on Multimedia

Systems Conference, Taipei, Taiwan, 2017.

[10] R. Ghaznavi-Youvalari et al., "Comparison of HEVC Coding Schemes For Tile-based Viewport-

adaptive Streaming of Omnidirectional Video," in 2017 IEEE 19th International Workshop on

Multimedia Signal Processing, Luton, UK, 2017.

[11] A. T. Nasrabadi, A. Mahzari, J. D. Beshay and R. Prakash, "Adaptive 360-Degree Video Streaming

using Scalable Video Coding," in MM '17 Proceedings of the 25th ACM international conference

on Multimedia, Mountain View, California, USA, 2017.

77

[12] R. Schatz, A. Zabrovskiy and C. Timmerer, "Tile-based Streaming of 8K Omnidirectional Video:

Subjective and Objective QoE Evaluation," in Eleventh International Conference on Quality of

Multimedia Experience, Berlin, 2019.

[13] ISO/IEC 23009-1, Information technology — Dynamic adaptive streaming over HTTP (DASH) —

Part 1: Media presentation description and segment formats.

[14] I. Sodagar, "The MPEG-DASH Standard for Multimedia Streaming Over the Internet," IEEE

MultiMedia, vol. 18, no. 4, pp. 62-67, 2011.

[15] C. Timmerer and C. Griwodz, "Dynamic adaptive streaming over HTTP: From content creation to

consumption," in Proceedings of the 20th ACM international conference on Multimedia, Nara,

Japan, 2012.

[16] T. Stockhammer, "Dynamic Adaptive Streaming over HTTP – Design Principles and Standards,"

in Proceedings of the Second Annual ACM SIGMM Conference on Multimedia Systems, MMSys

2011, Santa Clara, CA, USA, 2011.

[17] ISO/IEC 14496-10, Information technology – Coding of audio-visual objects – Part 10: Advanced

Video Coding.

[18] ISO/IEC 23008-2, Information technology – High efficiency coding and media delivery in

heterogeneous environments – Part 2: High efficiency video coding.

[19] "Understanding MPEG-DASH," 14 March 2014. [Online]. Available:

https://www.hometoys.com/content.php?post_type=2239. [Accessed 19 March 2019].

[20] 3GPP TS 26.247, Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive

Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH).

[21] O. A. Niamut et al., "MPEG DASH SRD - Spatial Relationship Description," in MMSys '16:

Proceedings of the 7th International Conference on Multimedia Systems, Klagenfurt, Austria, 2016.

[22] R. v. Brandenburg, O. Niamut, M. Prins and H. Stokking, "Spatial Segmentation For Immersive

Media Delivery," in 2011 15th International Conference on Intelligence in Next Generation

Networks, Berlin, Germany, 2011.

[23] L. D’Acunto, J. v. d. Berg, E. Thomas and O. Niamut, "Using MPEG DASH SRD for zoomable and

navigable video," in MMSys '16: Proceedings of the 7th International Conference on Multimedia

Systems, Klagenfurt, Austria, 2016.

[24] ISO/IEC 23090-2, Information technology – Coded representation of immersive media (MPEG-I)

– Part 2: Omnidirectional media format.

78

[25] M. Graf, C. Timmerer and C. Mueller, "Towards Bandwidth Efficient Adaptive Streaming of

Omnidirectional Video over HTTP," in MMSys'17 Proceedings of the 8th ACM on Multimedia

Systems Conference, Taipei, Taiwan, 2017.

[26] A. T. Nasrabadi, A. Mahzari, J. D. Beshay and R. Prakash, "Adaptive 360-Degree Video Streaming

using Scalable Video Coding," in MM '17 Proceedings of the 25th ACM international conference

on Multimedia, Mountain View, California, USA, 2017.

[27] F. Lopes, J. Ascenso, A. Rodrigues and M. P. Queluz, "Subjective and Objective Quality

Assessment of Omnidirectional Video," in Applications of Digital Image Processing XLI, San Diego,

CA, USA, 2018.

[28] Y. Xu et al., "Omnidirectional Media Format and Its Application to Immersive Video Streaming: An

Overview," 2018.

[29] S. Kühn, "File:Tissot world from space.png," Wikimedia Commons, 9 December 2004. [Online].

Available: https://commons.wikimedia.org/wiki/File:Tissot_world_from_space.png. [Accessed 3

May 2019].

[30] E. G. –. W. C. u. Sting, "File:Tissot indicatrix world map equirectangular proj.svg," Wikimedia

Commons, June 2008. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Tissot_indicatrix_world_map_equirectangular_proj.svg.

[Accessed 3 May 2019].

[31] J. Zeng et al., "A Tutorial on Image/Video Coding Standards," in 2013 Asia-Pacific Signal and

Information Processing Association Annual Summit and Conference, Kaohsiung, Taiwan, 2013.

[32] G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, "Overview of the High Efficiency Video

Coding (HEVC) Standard," IEEE Trans. Circuits and Systems for Video Technology, vol. 22, no.

12, pp. 1649-1668, December 2012.

[33] F. Qian, L. Ji, B. Han and V. Gopalakrishnan, "Optimizing 360 video delivery over cellular

networks," in Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications

and Challenges, New York City, New York, 2016.

[34] X. Corbillon, A. Devlic, G. Simon and J. Chakareski, "Optimal Set of 360-Degree Videos for

Viewport-Adaptive Streaming," in MM '17 Proceedings of the 25th ACM international conference

on Multimedia, Mountain View, California, USA, 2017.

[35] M. Yu and B. Girod, "A Framework to Evaluate Omnidirectional Video Coding Schemes," in 2015

IEEE International Symposium on Mixed and Augmented Reality, Fukuoka, Japan, 2015.

[36] Y. Sun, A. Lu and L. Yu, "Weighted-to-Spherically-Uniform Quality Evaluation for Omnidirectional

Video," IEEE Signal Processing Letters, vol. 24, no. 9, pp. 1408-1412, 2017.

79

[37] G. Bjøntegaard, "Calculation of average PSNR differences between RD-curves," document

VCEG-M33, 2001, Austin, Texas, USA.

[38] P. Hanhart and T. Ebrahimi, "Calculation of average coding efficiency based on subjective quality

scores," J. Vis. Commun. Image Represent., vol. 25, no. 3, pp. 555-564, 2014.

[39] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Quality Assessment: From Error

Visibility to Structural Similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-

612, 2004.

[40] H. Zhang, X. Ma, Y. Zhao and H. Yang, "Perceptual Quality Assessment Metric MS-SSIM," in Joint

Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Geneva,

Switzerland, 2016.

[41] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy and M. Manohara, "Toward a practical perceptual

video quality metric," Netflix TechBlog 6, Los Gatos, CA, USA, 2016.

[42] Wikipedia, "Video Multimethod Assessment Fusion - Wikipedia," Wikipedia, the free encyclopedia,

9 April 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Video_Multimethod_Assessment_Fusion. [Accessed 23 July 2019].

[43] E. Rakhmanov, E. Saff and Y. Zhou, "Electrons on the sphere," Series in Approximations and

Decompositions, no. 5, pp. 293-310, 1994.

[44] J. Boyce, E. Alshina, A. Abbas and Y. Ye, "JVET common test conditions and evaluation

procedures for 360° video," in Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and

ISO/IEC JTC 1/SC 29/WG 11, JVET-G1030v2, 7th Meeting, Torino, Italy, July, 2017.

[45] ITU-T Q.6/SG 16, ISO/IEC JTC 1/SC 29/WG 11, "High Efficiency Video Coding (HEVC),"

Fraunhofer Heinrich Hertz Institute, [Online]. Available: https://hevc.hhi.fraunhofer.de. [Accessed

07 April 2020].

[46] E. J. David, J. Gutiérrez, A. Coutrot, M. P. D. Silva and P. L. Callet, "A Dataset of Head and Eye

Movements for 360° Videos," in Proceedings of the 9th ACM on Multimedia Systems Conference

(MMSys’18), Amsterdam, Netherlands, Jun. 2018.

