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A B S T R A C T

This paper proposes an integrated architecture for navigation and attitude control of low-cost suborbital launch
vehicles, propelled by a solid motor. Single-nozzle, two Degrees-of-Freedom (DoF) Thrust Vector Control (TVC)
actuation is adopted. For architecture design purposes, a non-linear, unstable, 6 DoF model for the generic
thrust-vector-controlled launcher dynamics and kinematics is deduced, and a linear state-space representation
is proposed. The navigation system provides full-state estimates resorting to novel complementary kinematic
filters, whose design allows to establish an explicit relation with steady-state Kalman filtering. A globally
stable estimation solution is obtained, apart from the singularities arising from the use of Euler angles. The
attitude control law is derived from the Linear Quadratic Regulator (LQR) using the state-space models for
each linearization point of the reference trajectory, with an integral action (LQI) added to improve robustness
and to provide null steady state attitude tracking error. A correction method is proposed to allow for pitch and
yaw control in the presence of spinning motion, precluding the need of a supplementary roll control system.
The control system is implemented through gain scheduling, resorting to an altitude-based linear parametric
varying method. The architecture is implemented in a realistic simulation environment, composed by the 6
DoF non-linear model, the Navigation and Control solutions, and the environmental disturbances, to assess its
performance through Monte Carlo simulations. The navigation system is able to provide accurate estimates
of the state vector, while the control system satisfies attitude tracking performance and robustness to both
external disturbances and model parametric uncertainties.
1. Introduction

During the last decades, suborbital launch vehicles endowed the
scientific community with tools to perform a myriad of research stud-
ies [1,2]. Commonly denominated as sounding rockets, they provide
long periods of microgravity conditions, allow to collect in-situ data
across all atmospheric layers, and enable rapid Earth surveillance and
monitoring [1–3]. Simultaneously, they can be instrumental as low-
cost testing platforms to augment Technology Readiness Levels (TRL) of
different systems and payloads, before their use in high risk, potentially
crewed, orbital/space missions [3].

More recently, following the successful efforts of private companies,
such as SpaceX, Blue Origin, and Rocket Lab, a growing number of
both private corporations and national/international agencies, namely
at European level, are investing towards a new generation of reusable
micro and small launch vehicles [4], which motivates the development
of suborbital platforms for technology demonstration purposes [5–7].
In addition, suborbital transportation and space tourism motivated
a market increase which impacts the overall need for cost-effective,
dedicated suborbital launchers [8].

∗ Corresponding author.
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To meet specific mission requirements, in terms of stability and
trajectory tracking, launch vehicles must have a dedicated Guidance,
Navigation, and Control (GN&C) system. This system is responsible for
determining the trajectory to be followed and commanding the required
attitude (or orientation) over time (Guidance), for estimating the state
vector, composed by position, velocity, and attitude (Navigation), and
for calculating the necessary actuation inputs to achieve the desired
attitude (Control). In this paper, an integrated architecture for the
navigation and attitude control of low-cost suborbital launchers is
proposed. As for the actuation method, Thrust Vector Control (TVC),
or thrust vectoring for short, is selected.

TVC is used by most launch vehicles and works by redirecting the
thrust vector in order to create a control torque [9]. In this work,
single gimballed nozzle actuation is considered, which is a suitable
configuration for low-cost small suborbital launchers. However, it can
only impact the pitch and yaw angles, whereas roll has to be controlled
by an additional system, if needed. With respect to other actuation
vailable online 29 May 2024
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Nomenclature

Scalars

𝐶𝐴, 𝐶𝑌 , 𝐶𝑁 Aerodynamic force coefficients
𝐶𝑙 , 𝐶𝑚, 𝐶𝑛 Aerodynamic moment coefficients
𝐶𝑙𝑝 , 𝐶𝑚𝑞 , 𝐶𝑚𝛼̇ , 𝐶𝑛𝑟 ,
𝐶𝑛𝛽̇

Aerodynamic damping coefficients

𝐶𝑁𝛼 , 𝐶𝑌𝛽 Aerodynamic stability derivatives
𝑑 Fuselage diameter
𝑔 Gravitational acceleration
𝐽𝑙 Longitudinal inertia
𝐽𝑡 Transverse inertia
𝑙 Control moment arm
𝑚 Mass
𝑝, 𝑞, 𝑟 Body components of angular velocity
𝑞 Dynamic pressure
𝑆 Fuselage cross-sectional area
𝑆.𝑀 Static stability margin
𝑇 Thrust magnitude
𝑢, 𝑣, 𝑤 Body components of linear velocity
𝑉 Magnitude of the velocity vector
𝑥𝑐𝑚 Centre of mass location
𝑥𝑐𝑝 Centre of pressure location
𝛼 Angle of attack
𝛽 Sideslip angle
𝜇𝑝, 𝜇𝑦 Pitch and yaw control inputs (nozzle de-

flections)
𝜙, 𝜃, 𝜓 Roll, pitch, and yaw Euler angles

Vectors

𝐚 Acceleration
𝐛𝝎 Gyroscope bias
𝐟 Total external force
𝐠 Gravity
𝐦 Earth’s magnetic field
𝐩 Position
𝐮 Control input
𝐯 Linear velocity
𝐱 State vector
𝐲 Output vector
𝝀 Euler angles
𝝎 Angular velocity
𝝉 Total external moment

Matrices

𝐉 Inertia
𝐊 =

[

𝐊 𝐊𝐢
]𝑇 LQI gain matrix (LQR plus integrators)

𝐋1𝜆, 𝐋2𝜆 Time-invariant ACF gains
𝐋1𝑝, 𝐋2𝑝, 𝐋3𝑝 Time-invariant PCF gains
𝐐(𝝀) Attitude kinematics matrix
𝐐, 𝐑 LQR tuning matrices
𝐑(𝝀) Rotation matrix from body to inertial
𝐒( 𝑏𝝎) Skew-symmetric matrix of the body angu-

lar velocities
𝜣 Measurement noise covariance matrix
𝜩 Process noise covariance matrix
53
Subscripts/Superscripts

𝑏 Expressed in the body frame
𝑐 Used for control
𝑑 Desired value
𝑖 Expressed in the inertial frame
lon Associated with the longitudinal mode
lat Associated with the lateral mode
𝑟 Sensor reading
𝑠𝑙 At surface level
̂ Estimate
0 Nominal value

Acronyms/Abbreviations

ACF Attitude Complementary Filter
AD Attitude Determination
DoF Degrees-of-Freedom
GNSS Global Navigation Satellite System
LQI Linear Quadratic Integral
LQR Linear Quadratic Regulator
MC Monte Carlo
PCF Position Complementary Filter
PID Proportional-Integral-Derivative
TVC Thrust Vector Control
UAS Uniformly Asymptotically Stable

techniques, such as actively controlled fins, TVC allows for a wider
range of operating conditions and provides better efficiency [10].

Solid motors are the most common propulsion technology in sub-
orbital launch vehicles due to their Intercontinental Cruise Ballistic
Missile (ICBM) heritage [11] and associated low production costs,
which enables rapid and responsive launch missions [12]. Therefore,
it has been selected as reference for this work. Contrarily to liquid
or hybrid engines, solid motors do not possess throttle capability.
This means that thrust cannot be controlled and, consequently, control
authority is reduced.

The control system design tends to be very conservative in the
aerospace industry [13]. Restricting the dynamic analysis to accom-
modate more sophisticated control design techniques risks the later
realization that such restrictions would have to be lifted and would in-
validate the control design [14]. Due to the highly non-linear dynamics
and to the time-varying nature of the parameters, such as aerodynamic
and inertial, the applicability of linear control techniques relies on the
linearization of the system at several operating points. The design is
then focused in each linear model and the resulting controller gains are
changed during the flight through a technique called gain scheduling,
as in [15].

Classic and linear control solutions, based on thrust vectoring,
can be found in [9,16,17]. These include Proportional-Integrative-
Derivative (PID) control and pole placement techniques, with time-
varying gains. Although widely used, PID control has its limitations
when it comes to model uncertainty robustness and external distur-
bances rejection.

Still in the linear domain, the use of optimal controllers, such as the
Linear Quadratic Regulator (LQR), provides some degree of robustness
and ensures a (sub-)optimal reference tracking solution for a given cost
functional. In [18], the LQR is used to address the attitude control
problem, and in [19] a LQG algorithm is proposed for state estimation
and control, with both restricting the analysis and design to the pitch
plane at a single operating point.

Non-linear techniques have also been proposed for launch vehicle
control and estimation [20–22], and come with the advantage of en-

suring a global solution, not dependant on the specific mission nor
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vehicle. However, these methods all have particular design character-
istics which hinder the application of standardized, well-established,
verification and validation procedures [9,14,16].

Although several solutions to the launcher control problem can
be found in the literature, many fail to capture all the relevant dy-
namics and/or oversimplify the problem, while most assume full-state
knowledge, creating a considerable gap between theoretical design
and implementation. Hence, the main contribution of this paper is a
robust architecture, which integrates both the navigation and control
systems, that is computationally efficient and can be implemented in
suborbital launchers relying on readily available low-cost components.
It is suitable for vehicles using low-cost solid propulsion technology,
off-the-shelf inertial navigation sensors, and simplified actuation meth-
ods. Furthermore, the design process considers the 6 DoF and the
time-varying nature of the system, focusing on the entire trajectory
rather than a single operating point, contrarily to what is found in
the literature when using linear optimal control/estimation techniques.
Preliminary work from the authors on the topic can be found in [23].

For the navigation system, novel complementary kinematic filters
are proposed to fuse the sensor readings and obtain filtered, unbiased,
full-state estimates. Making use of the Lyapunov transform concept,
a relation is established between the derived time-varying filters and
the time-invariant case. By exploiting this relation, the tuning of the
complementary filters is performed for the time-invariant case relying
on Kalman filtering theory, avoiding extensive tuning for each specific
mission, and ensuring a globally stable solution apart from the sin-
gularities. This is an improvement with respect to classical methods
which rely on the linearization of the plant for a given trajectory, and
requires less computational effort than standard estimation solutions
for non-linear systems, such as the Extended Kalman Filter (EKF).

As for the control system, LQR control is proposed with additional
integral action (LQI) to improve robustness and provide zero attitude
tracking error. The gains are obtained for different operating points
of the reference trajectory using an original time-varying state-space
representation, and are scheduled during flight with an altitude-based
linear interpolation method. By considering the time-varying nature
of the system, the implementation in a real scenario is facilitated. To
prevent the additional complexity and cost of adding a roll control
system, the architecture is designed to provide pitch and yaw control
in the presence of uncontrolled spinning motion, up to a given limit.

This paper is organized as follows: some notation is detailed in Sec-
tion 2. The physical model is shown in Section 3. The linear state-space
representation is derived in Section 4. The proposed architecture is
explained in Section 5. The navigation and control systems are detailed
in Sections 6 and 7, respectively. Section 8 shows the implementation
in simulation of the architecture, as well as the reference vehicle and
mission used for validation. In Section 9, a linear domain analysis of the
system follows, and in Section 10 the simulation results are presented
and discussed. Finally, in Section 11, final remarks and conclusions are
drawn.

2. Notation

Throughout this paper bold lowercase and bold uppercase sym-
bols are used to represent vector and matrices, respectively. 𝐈 and 𝟎
respectively represent the identity and null matrices of appropriate
dimensions and 𝐃(𝑎1,… , 𝑎𝑛) is a diagonal matrix of dimension 𝑛, with
generic diagonal entries 𝑎1 to 𝑎𝑛. Finally, superscript 𝑇 is used to denote
he transpose of a vector or matrix and superscript −1 to denote the
54

nverse of a matrix.
Fig. 1. Reference frames.

3. Physical model

In this section, the dynamics and kinematics of a generic launch
vehicle with a single gimballed nozzle are provided. To derive the phys-
ical model some assumptions are used: the launch vehicle is assumed
to be a rigid body; it is assumed to be axially symmetric, as well as the
mass allocation; and the Earth’s curvature and rotation are neglected.
All these assumptions are often followed in the literature [13,22,24],
and are considered valid for first stage design of the architecture, not
compromising its overall structure when reproducing it in a real case
scenario.

3.1. Reference frames

To describe the dynamics and kinematics of the vehicle, it is crucial
to define the reference frames to be used. Two reference frames are
used: a body-fixed one {b}, where the equations of motion are written;
and an inertial, space-fixed one {i}, located at the launch site (see
Fig. 1).

The coordinate transformation between both reference frames is
defined using the Euler angles representation, 𝝀 =

[

𝜙 𝜃 𝜓
]𝑇 . With

this representation, the transformation from {b} to {i} is obtained
through a sequential rotation 𝐑(𝝀) = 𝐑𝑧(𝜓) ⋅ 𝐑𝑦(𝜃) ⋅ 𝐑𝑥(𝜙), where
𝐑(𝝀) ∈ 𝑆𝑂 (3) is given by [25]

𝐑(𝝀) =
⎡

⎢

⎢

⎣

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

⎤

⎥

⎥

⎦

,

in which 𝑠 and 𝑐 stand as abbreviations for the sine and cosine trigono-
metric functions. The inverse transform, from {i} to {b}, is defined by
the transpose 𝐑𝑇 (𝝀).

3.2. Dynamics and kinematics

Using Newton-Euler’s equations for rigid body translational and
rotational motion, the dynamics and kinematics of the launcher in the
6 DoF are obtained:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝐩̇ = 𝐑(𝝀) 𝑏𝐯
𝐑̇(𝝀) = 𝐑(𝝀)𝐒( 𝑏𝝎)
𝑚 𝑏𝐯̇ = −𝐒( 𝑏𝝎)𝑚 𝑏𝐯 + 𝑏𝐟
𝐉 𝑏𝝎̇ = −𝐒( 𝑏𝝎) 𝐉 𝑏𝝎 + 𝑏𝝉

, (1)

where the first two equations detail the position and orientation kine-
matics and the last two detail the translational and rotational dynamics.
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Fig. 2. Thrust vector decomposition in the body axes.

.2.1. External forces and torques
The total external force can be decomposed as 𝑏𝐟 = 𝑏𝐟𝑔 + 𝑏𝐟𝑝 + 𝑏𝐟𝑎,

where 𝑏𝐟𝑔 represents the gravity force, 𝑏𝐟𝑝 the propulsive force, and 𝑏𝐟𝑎
the aerodynamic force, all expressed in {b}. As for the external torque,
it is given by 𝑏𝝉 = 𝑏𝝉𝑝 + 𝑏𝝉𝑎 + 𝑏𝝉𝑟𝑐 , where 𝑏𝝉𝑝 represents the propulsive
control torque, 𝑏𝝉𝑎 represents the aerodynamic torque, and 𝑏𝝉𝑟𝑐 is the
reaction control torque provided by an additional system if present, all
expressed in {b}.

Gravitational
Considering the Earth as a perfect sphere, and looking at the defi-

nition of the inertial frame {i}, the gravity force is simply

𝑏𝐟𝑔 = 𝐑𝑇 (𝝀)
⎛

⎜

⎜

⎝

−𝑚𝑔
0
0

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−𝑚𝑔 𝑐𝜃𝑐𝜓
−𝑚𝑔 (𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 )
−𝑚𝑔 (𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 )

⎞

⎟

⎟

⎠

, (2)

where 𝑔, the gravitational acceleration, varies with the altitude accord-
ing to 𝑔 = 𝑔𝑠𝑙 𝑅2

𝐸 ∕ (𝑅𝐸 + ℎ)2, in which 𝑅𝐸 is the mean Earth radius.

Propulsive
Considering ideal propulsion, and all its underlying assumptions,

the thrust force produced by the motor is [10]

𝑇 = |𝑚̇| ⋅ 𝑣𝑒
⏟⏟⏟
Dynamic

+ (𝑝𝑒 − 𝑝𝑎) ⋅ 𝐴𝑒
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Static

,

where 𝑚̇ is the mass flow rate, 𝑣𝑒 is the effective exhaust velocity, 𝑝𝑒
is the nozzle exit pressure, 𝑝𝑎 is the atmospheric pressure, and 𝐴𝑒 is
the nozzle exit area. Two separate contributions can be identified: the
dynamic one, caused by the exhaust of the expanded combustion gases;
and the static, caused by the pressure gradient between the nozzle exit
and the atmosphere.

To obtain the resultant propulsive force and torque, the thrust
vector has to be decomposed in the three body axes as illustrated in
Fig. 2. According to it, the thrust vector is decomposed using the angles
𝜇𝑝 and 𝜇𝑦, which are the control inputs, where 𝜇𝑝 is the gimbal angle
that, on its own, produces a pitching moment, and 𝜇𝑦 is the one that
produces a yawing moment. Using these angles, the propulsive force
and torque in the body frame are, respectively, [13]

𝑏𝐟𝑝 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑇 𝑐𝜇𝑝 𝑐𝜇𝑦
−𝑇 𝑐𝜇𝑝𝑠𝜇𝑦
−𝑇 𝑠𝜇𝑝

⎞

⎟

⎟

⎟

⎟

⎠

and 𝑏𝝉𝑝 =
⎛

⎜

⎜

⎜

⎝

0
−𝑇 𝑠𝜇𝑝 𝑙
𝑇 𝑐𝜇𝑝𝑠𝜇𝑦 𝑙

⎞

⎟

⎟

⎟

⎠

, (3)

where 𝑙, the control torque arm, corresponds to the distance between
the nozzle gimbal point and the centre of mass of the rocket, 𝑥𝑐𝑚,
55

measured from the tip.
Aerodynamic
The aerodynamic force and moment, expressed in {b}, can be

modelled as [14]

𝑏𝐟𝑎 =
⎛

⎜

⎜

⎜

⎝

−𝑞 𝐶𝐴 𝑆

𝑞 𝐶𝑌 𝑆

−𝑞 𝐶𝑁 𝑆

⎞

⎟

⎟

⎟

⎠

, 𝑏𝝉𝑎 =
⎛

⎜

⎜

⎜

⎝

𝑞 𝐶𝑙 𝑆 𝑑

𝑞 𝐶𝑚 𝑆 𝑑

𝑞 𝐶𝑛 𝑆 𝑑

⎞

⎟

⎟

⎟

⎠

, (4)

where 𝐶𝐴, 𝐶𝑌 , and 𝐶𝑁 are, respectively, the axial, lateral, and normal
aerodynamic force coefficients, and 𝐶𝑙, 𝐶𝑚, and 𝐶𝑛 are, respectively,
the rolling, pitching, and yawing aerodynamic moment coefficients.

The normal and lateral force coefficients can be determined using a
linear relation with the aerodynamic angles of attack, 𝛼, and sideslip,
𝛽: 𝐶𝑌 = 𝐶𝑌 𝛽 𝛽 and 𝐶𝑁 = 𝐶𝑁𝛼 𝛼, whose derivatives (𝐶𝑌 𝛽 and 𝐶𝑁𝛼)
epend mainly on the angles themselves and Mach number. As for
he axial force coefficient, 𝐶𝐴, in most applications, its dependency
n the aerodynamic angles can be neglected and it is assumed to
ary only with Mach number. The relevant velocity for aerodynamic
omputations is the one expressed in relation to the fluid composing
he atmosphere, 𝑏𝐯rel =

[

𝑢rel 𝑣rel 𝑤rel
]𝑇 . This is given by 𝑏𝐯rel =

𝐯 − 𝑏𝐯𝑤, where 𝑏𝐯𝑤 is the wind velocity vector expressed in {b}. The
erodynamic angles are then given by 𝛼 = 𝑡𝑎𝑛−1(𝑤rel∕𝑢rel) and 𝛽 =
𝑖𝑛−1(𝑣rel∕𝑉rel), where 𝑉rel is the norm of the relative velocity vector.

Regarding the moment coefficients, if the reference moment station
s defined as the centre of pressure, and its location, 𝑥𝑐𝑝, measured from
he tip of the rocket, can be determined, the reference moments are
ero and the moment coefficients take the form 𝐶𝑙 = 𝐶𝑙𝑝 𝑝 𝑑∕(2𝑉rel),
𝑚 = −𝐶𝑁 𝑆.𝑀 + (𝐶𝑚𝑞 + 𝐶𝑚𝛼̇ ) 𝑞 𝑑∕(2𝑉rel), and 𝐶𝑛 = −𝐶𝑌 𝑆.𝑀 + (𝐶𝑛𝑟 +
𝑛𝛽̇
) 𝑟 𝑑∕(2𝑉rel), where the static stability margin, 𝑆.𝑀 = (𝑥𝑐𝑝 − 𝑥𝑐𝑚)∕𝑑,

ntuitively appears.

.2.2. Explicit dynamics and kinematics
The explicit dynamics and kinematics can be retrieved by substi-

uting the total external force and torque in (1) by all the individual
etailed components, (2), (3), and (4). Furthermore, following the axial
ymmetry assumption, the cross-products of inertia can be assumed as
ero and the 𝑦 and 𝑧 terms can be assumed equal, resulting in a diagonal
atrix, 𝐉 = 𝐃 (𝐽𝑙 , 𝐽𝑡, 𝐽𝑡) , yielding

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢̇ = −𝑔 𝑐𝜃𝑐𝜓 − 𝑞
𝑚 𝑆 𝐶𝐴 + 𝑇

𝑚 𝑐𝜇𝑝 𝑐𝜇𝑦 − 𝑞 𝑤 + 𝑟 𝑣

𝑣̇ = −𝑔 (𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 )+
𝑞
𝑚𝑆𝐶𝑌 − 𝑇

𝑚 𝑐𝜇𝑝𝑠𝜇𝑦 − 𝑟 𝑢 +𝑝𝑤

𝑤̇ = −𝑔 (𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 ) −
𝑞
𝑚 𝑆 𝐶𝑁 − 𝑇

𝑚 𝑠𝜇𝑝 − 𝑝 𝑣 + 𝑞 𝑢

𝑝̇ = 𝐽𝑙−1 ( 𝑞 𝑆 𝑑 𝐶𝑙 + 𝜏𝑟𝑐 )

𝑞̇ = 𝐽𝑡−1 ( 𝑞 𝑆 𝑑 𝐶𝑚 − 𝑇 𝑠𝜇𝑝 𝑙 − 𝑝 𝑟 (𝐽𝑙 − 𝐽𝑡) )

𝑟̇ = 𝐽𝑡−1 ( 𝑞 𝑆 𝑑 𝐶𝑛 + 𝑇 𝑐𝜇𝑝 𝑠𝜇𝑦 𝑙 − 𝑝 𝑞 (𝐽𝑡 − 𝐽𝑙) )

𝜙̇ = 𝑝 + (𝑞 𝑠𝜙 + 𝑟 𝑐𝜙) 𝑡𝜃

𝜃̇ = 𝑞 𝑐𝜙 − 𝑟 𝑠𝜙

𝜓̇ =
𝑞 𝑠𝜙 + 𝑟 𝑐𝜙

𝑐𝜃

, (5)

where the reaction control torque, 𝑏𝝉𝑟𝑐 , if present, is assumed to only
impact the roll axis, 𝑏𝑥, with the component 𝜏𝑟𝑐 . It is noted that by
using the Euler angles representation a singularity arises for 𝜃 = ± 𝜋

2 .
However, the way the reference frames are defined prevents the rocket
to reach this attitude inside the admissible range of operation (far from
horizontal orientation).

4. Linearized physical model

Linear control and estimation techniques, such as the LQR and
the Kalman filter, rely on mathematical representations of the linear
systems under study. These representations are usually written in the
state-space form. In this section, a generic state-space model for a thrust
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vector controlled launch vehicle is obtained by linearizing the already
detailed explicit dynamics and kinematics in (5).

A widely used linearization technique consists in finding an equi-
librium point of the system, in which the first-order derivatives of the
states are null, and performing a Taylor series expansion, considering
small perturbations around the equilibrium condition. However, rocket
flight is dominated by highly varying conditions and parameters, such
as mass and inertia, aerodynamic coefficients, dynamic pressure, and
thrust, which make it impossible to find a so called trimming trajectory,
for which equilibrium is reached with constant control inputs.

One viable alternative [13], is to linearize the system at multi-
ple points, denominated as operating points, throughout a previously
selected reference trajectory. The selected trajectory will impose the
reference values for system states (𝐱0) and inputs (𝐮0), and the outcome
is a linear time-varying system. Linear controllers can be designed for
the state-space representations associated with each operating point
and then scheduled during flight. Therefore, the operating points have
to be selected so as to capture all the relevant dynamics of the system,
preventing that the system destabilizes.

Firstly, the following variable transformations are defined: 𝛿𝑥 = 𝑥−
𝑥0 and 𝛿𝑢 = 𝑢− 𝑢0; where 𝛿𝑥 and 𝛿𝑢 are small perturbations around the
reference values for each point. By using the variable transformation
in the non-linear differential equations of the system (denoted by 𝑥̇ =
(𝑥, 𝑢)), generically, we have that 𝛿𝑥̇ = 𝑓 (𝑥, 𝑢)−𝑓 (𝑥0, 𝑢0) = 𝑓 (𝑥0+𝛿𝑥, 𝑢0+
𝑢) − 𝑓 (𝑥0, 𝑢0). Using the Taylor series expansion of 𝑓 (𝑥0 + 𝛿𝑥, 𝑢0 + 𝛿𝑢)
round (𝑥0, 𝑢0), and neglecting the higher-order terms, we obtain [26]

𝑥̇ = 𝑓 (𝑥0, 𝑢0) +
𝜕𝑓
𝜕𝑥

|

|

|

|𝑥0 ,𝑢0
⋅ 𝛿𝑥 +

𝜕𝑓
𝜕𝑢

|

|

|

|𝑥0 ,𝑢0
⋅ 𝛿𝑢 − 𝑓 (𝑥0, 𝑢0),

which simplifies to

𝛿𝑥̇ =
𝜕𝑓
𝜕𝑥

|

|

|

|𝑥0 ,𝑢0
⋅ 𝛿𝑥 +

𝜕𝑓
𝜕𝑢

|

|

|

|𝑥0 ,𝑢0
⋅ 𝛿𝑢 . (6)

Expression (6) is then applied to all non-linear first order differential
quations in (5), yet with further simplifications:

(i) the roll rate (𝑝) is assumed to be null;
(ii) the roll angle (𝜙) is taken as a parameter rather than a state;

(iii) actuator dynamics are not included in the model;
(iv) the wind velocity is considered to be zero;
(v) system parameters are considered constant at each operating

point (frozen parameters).

he first two simplifications are due to the fact that roll control is either
ot applied or achieved by an additional system, the third one makes
he relative velocity vector equal to the linear velocity vector expressed
n the body frame, and the final one removes the existent dependencies
f the parameters on the state variables when computing the Taylor
erivatives.

Considering a generic reference trajectory, the resultant state-space
epresentation follows:

𝐱 =
[

𝛿𝑢 𝛿𝑣 𝛿𝑤 𝛿𝑞 𝛿𝑟 𝛿𝜃 𝛿𝜓
]𝑇 , 𝜹𝐮 =

[

𝛿𝜇𝑝 𝛿𝜇𝑦
]𝑇 , (7a)

𝐱̇(𝑡) = 𝐀(𝑡) ⋅ 𝜹𝐱(𝑡) + 𝐁(𝑡) ⋅ 𝜹𝐮(𝑡) , (7b)

(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 𝑟0 −𝑞0 −𝑤0 𝑣0 𝑎16 𝑎17
−𝑟0 𝑎22 0 0 −𝑢0 𝑎26 𝑎27
𝑎31 0 𝑎33 𝑢0 0 𝑎36 𝑎37
𝑎41 0 𝑎43 𝑎44 0 0 0
0 𝑎52 0 0 𝑎55 0 0
0 0 0 𝑐𝜙0 −𝑠𝜙0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

, (7c)
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⎣
0 0 0 𝑠𝜙0∕𝑐𝜃0 𝑎85 𝑎86 0

⎦

𝐁(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 𝑇
𝑚 𝑠𝜇𝑝0 𝑐𝜇𝑦0 − 𝑇

𝑚 𝑐𝜇𝑝0 𝑠𝜇𝑦0
𝑇
𝑚 𝑠𝜇𝑝0 𝑠𝜇𝑦0 − 𝑇

𝑚 𝑐𝜇𝑝0 𝑐𝜇𝑦0
− 𝑇
𝑚 𝑐𝜇𝑝0 0

− 𝑇 𝑙
𝐽𝑡
𝑐𝜇𝑝0 0

− 𝑇 𝑙
𝐽𝑡
𝑠𝜇𝑝0 𝑠𝜇𝑦0

𝑇 𝑙
𝐽𝑡
𝑐𝜇𝑝0 𝑐𝜇𝑦0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (7d)

with

𝑎16 = 𝑔 𝑠𝜃0 𝑐𝜓0
𝑎17 = 𝑔 𝑐𝜃0 𝑠𝜓0

𝑎22 =
𝑞 𝑆 𝐶𝑌𝛽

𝑚
(

1 −
𝑣20
𝑉02

)1∕2
𝑉0

𝑎26 = −𝑔 (𝑠𝜙0 𝑐𝜃0 𝑐𝜓0 − 𝑐𝜙0 𝑠𝜓0 )

27 = 𝑔 (𝑠𝜙0 𝑠𝜃0 𝑠𝜓0 + 𝑐𝜙0 𝑐𝜓0 )

31 = 𝑞0 +
𝑞 𝑆 𝐶𝑁𝛼 𝑤0

𝑚 (𝑢02 +𝑤0
2)

𝑎33 = −
𝑞 𝑆 𝐶𝑁𝛼 𝑢0
𝑚 (𝑢02 +𝑤0

2)

36 = −𝑔 𝑐𝜙0 𝑐𝜃0 𝑐𝜓0
𝑎37 = −𝑔 (−𝑐𝜙0 𝑠𝜃0 𝑠𝜓0 + 𝑠𝜙0 𝑐𝜓0 )

𝑎41 =
𝑞 𝑆 𝑑 𝑆.𝑀 𝐶𝑁𝛼 𝑤0

𝐽𝑡 (𝑢02 +𝑤0
2)

𝑎43 = −
𝑞 𝑆 𝑑 𝑆.𝑀 𝐶𝑁𝛼 𝑢0
𝐽𝑡 (𝑢02 +𝑤0

2)

𝑎44 =
𝑞 𝑆 𝑑2 (𝐶𝑚𝑞 + 𝐶𝑚𝛼̇ )

2 𝐽𝑡 𝑉0

𝑎52 = −
𝑞 𝑆 𝑑 𝑆.𝑀 𝐶𝑌𝛽

𝐽𝑡 𝑉0

(

1 −
𝑣20
𝑉02

)1∕2

𝑎55 =
𝑞 𝑆 𝑑2 (𝐶𝑛𝑟 + 𝐶𝑛𝛽̇ )

2 𝐽𝑡 𝑉0

𝑎85 =
𝑐𝜙0
𝑐𝜃0

𝑎86 =
(𝑞0 𝑠𝜙0 + 𝑟0 𝑐𝜙0 ) 𝑠𝜃0

𝑐𝜃0
2

where 𝐀(𝑡) and 𝐁(𝑡) are the state-space matrices given by the first-
order Taylor derivatives in (6) with respect to system states and inputs,
respectively, calculated at the operating points. Due to the afore-
mentioned simplifications, 𝑝 and 𝜙 are not states of the linear time-
varying system, even though they are physical variables in the complete
non-linear model.

5. Architecture

To achieve a stable solution with accurate reference tracking for the
pitch and yaw angles of a naturally unstable launcher, the integrated
architecture in Fig. 3, comprising both the navigation and control
systems, is proposed. The selected techniques to tackle the problems
at hand are LQR control with integrative components (LQI) and com-
plementary kinematic filtering with a close relation to Kalman filtering
theory.

The navigation system relies on a set of on-board sensors, which
measure relevant quantities associated with rocket flight, 𝐲, and an
estimator, based on complementary kinematic filters, which provides
estimates on the state vector, 𝐱̂, given the measurements, 𝐲𝑟, by filtering
the noise and correcting the bias. The subset of the estimated state
vector, 𝐱̂, used for feedback control is represented by 𝐱̂𝑐 .

The control system is divided in two major blocks: feedforward
control and LQI feedback control. Feedforward control consists in the
pre-determined values for the system inputs, 𝐮0, that allow the vehicle
to follow the reference trajectory under nominal conditions, i.e, without
disturbances and model uncertainties. On the other hand, feedback
LQI control is responsible for ensuring stability and accurate reference
tracking (𝜃𝑑 and 𝜓𝑑) in a real flight scenario.

Feedback control is implemented in the perturbation domain, mean-
ing that the reference values of the states used for feedback, 𝐱𝑐0 , are
needed to retrieve the perturbed states according to 𝜹𝐱̂𝑐 = 𝐱̂𝑐 − 𝐱𝑐0 .
It acts on the perturbed states using the optimal gains calculated for
each operating point through the use of the LQI control law and
the respective state-space representation. To ensure a smooth time

evolution in the control inputs, linear interpolation is used to schedule
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Fig. 3. System architecture.
the gains. The variable selected to interpolate the gains is the altitude,
ℎ, to avoid potential mismatches resulting from delays that could occur
in a time-based interpolation. The scheduled controllers are represented
in Fig. 3 by multiple block layers. By summing the feedforward and
feedback control values, respectively 𝐮0 and 𝜹𝐮, the control inputs, 𝜇𝑝
and 𝜇𝑦, are obtained.

6. Navigation

As mentioned, the navigation system relies both on measurements
from on-board sensors and an estimator. In this section, the selected
sensor suite is detailed and the estimator is derived.

6.1. Sensor suite

To design a navigation system, it is necessary to select the on-
board sensor suite. Sensors either provide a direct measurement on the
required state variables or on other quantities that can then be used to
estimate them. For launch vehicles, and taking into account the state
variables to be estimated – position, linear and angular velocities, and
Euler angles – it is common to use an Inertial Measurement Unit (IMU)
combined with a Global Navigation Satellite System (GNSS) receiver.
Barometers and magnetometers are also standard sensors installed
on-board to provide measurements.

The IMU is composed by 3-axis accelerometers and gyroscopes. An
accelerometer supplies a measure of the system’s acceleration and can
be used to determine the vehicle’s velocity by integration. To do so,
it is necessary to know the initial condition. Over time, the velocity
measurement will drift from the true value due to the inherent noise
and bias properties of the accelerometer. By combining the 3-axis
accelerometers, a measurement on the linear acceleration vector in the
body frame is obtained, 𝐚𝑟 ∈ R3. A gyroscope provides a measurement
of the system’s angular rate expressed in the body frame. The angular
rate measurements, 𝝎𝑟 ∈ R3, can be integrated to determine an estimate
of the system’s attitude. Once again, the calculated attitude drifts
boundlessly from the true attitude of the system due to the inherent
noise and bias properties of the gyroscope.

If the 3-axis accelerometer is assumed to be measuring gravity
alone, it is possible to calculate the pitch and yaw angles from the
direction of the gravity vector. However, since the accelerometer is
assumed to be measuring gravity alone, any added dynamic motion
57
causes an error in the calculation of the system’s pitch and yaw. A
magnetometer can be used to obtain an estimate on the roll angle
by comparing the measurement of the magnetic field surrounding the
system to Earth’s magnetic field. Hence, the two vector observations,
gravity and magnetic, can be used to obtain an attitude solution, 𝝀𝑟 =
[

𝜙𝑟 𝜃𝑟 𝜓𝑟
]𝑇 .

A GNSS is a satellite configuration, or constellation, that provides
coded satellite signals which are processed by a GNSS receiver inside
the vehicle to calculate position, velocity, and time. In this paper,
the position measurements by the GNSS receiver are assumed to be
already translated into the Cartesian coordinates of the inertial frame
and, in combination with the indirect altitude measurements from the
barometer, yield the position readings available for the estimator, 𝐩𝑟 ∈
R3,

6.2. Estimator design

The estimator is based on the concept of complementary kinematic
filtering, as presented in [27]. Relying only on the kinematics of the
vehicle in attitude and position, two complementary filters can be used
to obtain an estimate on the full state vector, with the guarantee of hav-
ing an uniformly asymptotically stable tracking error around the origin.
Furthermore, through the use of appropriate variable transformations,
the gains can be computed for the time-invariant case resorting to the
steady-state Kalman filter. In real time, the estimator gains are then
recovered with expressions which have explicit dependency on the
time-invariant gains.

In this work, a continuous time version of the kinematic filters
proposed in [27] is derived, with the inclusion of gravity vector esti-
mation to improve the attitude determination from vector observations
by avoiding the aforementioned issue of corruption by the dynamic
acceleration component.

6.2.1. Estimator architecture
Figure 4 details the estimator architecture, which is composed by

the two complementary kinematic filters and an additional algorithm
to determine the attitude from vector observations.

The Attitude Determination (AD) algorithm takes the magnetic field
measurements, 𝐦𝑟, the value of the Earth magnetic field in the inertial
frame, 𝑖𝐦, the estimated gravity vector in the body frame, 𝑏𝐠̂, and the
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Fig. 4. Estimator architecture.

gravitational acceleration in the inertial frame, 𝑖𝐠 =
[

−𝑔 0 0
]𝑇 ,

to obtain an indirect measurement on the Euler angles, 𝝀𝑟, essentially
serving as a magneto-pendular sensor.

The first kinematic filter is the Attitude Complementary Filter
(ACF), which uses the Euler angles readings, 𝝀𝑟, from AD, and the
measured angular rates from the gyroscope, 𝝎𝑟, to provide a filtered
attitude estimate, 𝝀̂, and an estimate on the bias of the three angular
rates, 𝐛𝝎 ∈ R3, to correct the signal from the sensor.

The second one is the Position Complementary Filter (PCF), which
merges the position readings, 𝐩𝑟, obtained through the combination of
the GNSS receiver and the altimeter, with the acceleration measure-
ments from the accelerometer, 𝐚𝑟, to provide an estimate on the inertial
position, 𝑖𝐩̂, linear velocity vector, 𝑏𝐯̂, and gravity vector in the body
frame 𝑏𝐠̂. For this filter, the accelerometer is assumed to have been
previously calibrated to allow a completely observable estimation of
the gravity vector induced component. For reference, [28] presents a
method for offline accelerometer calibration.

6.2.2. Kalman filter
The Kalman filter is a widely used observer to tackle the estimation

problem for linear dynamic systems [29]. When both the process and
measurement associated with the estimated state are corrupted by
random, independent, zero mean Gaussian white noise, the solution
provided by the Kalman filter is statistically optimal with respect to
a quadratic function of the estimation error. For this reason, it is also
referred to as Linear Quadratic Estimator (LQE), and represents the dual
of the LQR to the estimation problem.

In continuous time, the random process and observation are given
by
{

𝐱̇ = 𝐀𝐱 + 𝐁𝐮 +𝐆𝐰
𝐲 = 𝐂𝐱 + 𝐯

,

where all terms are time dependant, 𝐰 is the process noise (associated
with the model), 𝐯 is the measurement noise (associated with the
sensors) and 𝐆 is the process noise coupling matrix. These random
noises are represented by the covariance matrices 𝜩 ⪰ 0 and 𝜣 ≻ 0
for the process and measurement noise, respectively.

Given the defined process, observation and noise properties, the
Kalman filter is capable of providing an optimal state estimation ac-
cording to the differential equation
̇̂𝐱 = 𝐀 𝐱̂ + 𝐁𝐮 + 𝐋 (𝐲 − 𝐂 𝐱̂) ,

in which 𝐱̂ is the state estimate and 𝐋 is the Kalman gain. Given an
initial condition 𝐱̂(𝑡0), the state estimate derivative ̇̂𝐱 is recursively
propagated by correcting the process with the state estimation error
(𝐲 − 𝐂 𝐱̂) multiplied by the Kalman gain. The Kalman gain is given by

𝐋 = 𝐏𝐂𝑇 𝜣−1,

where 𝐏 is the solution to the matrix Riccati differential equation

𝐏̇ = 𝐀𝐏 + 𝐏𝐀𝑇 +𝐆𝜩 𝐆𝑇 − 𝐏𝐂𝑇 𝐑−1 𝐂𝐏 . (8)

If the process is time-varying, this equation has to be continuously
propagated. However, for the steady-state case, 𝐏̇ is zero and (8)
simplifies to the Algebraic Riccati Equation (ARE). For the ARE to have
a unique positive definite solution 𝐏, it is a sufficient condition that the
pair (𝐀, 𝐂) is observable.
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6.2.3. AD
By using two non-collinear vector observations, expressed in both

reference frames, it is possible to get an indirect measurement on the
rotation matrix, 𝐑𝑇𝑟 , that transforms vectors from the inertial to the
body frame and, consequently, the attitude of the vehicle expressed
through the Euler angles [30]. The AD algorithm provides the Euler
angles readings, 𝝀𝑟, by implementing this technique, resorting to the
magnetic field measurements, which are expressed in the body frame,
𝐦𝑟, the value of the Earth magnetic field in the inertial frame, 𝑖𝐦, the
gravity vector in the body frame as estimated by the PCF, 𝑏𝐠̂, and the
gravitational acceleration in the inertial frame, 𝑖𝐠. By using the generic
structure for this algorithm [31], the estimated rotation matrix for this
case is

𝐑𝑇𝑟 = 𝐫𝟏 ⋅ 𝐬𝟏𝑇 + 𝐫𝟐 ⋅ 𝐬𝟐𝑇 + 𝐫𝟑 ⋅ 𝐬𝟑𝑇 , (9)

where

𝐫𝟏 =
𝑏𝐠̂

‖

𝑏𝐠̂‖
, 𝐫𝟐 =

𝐫𝟏 ×𝐦𝐫
𝐫𝟏 ×𝐦𝐫

, 𝐫𝟑 = 𝐫𝟏 × 𝐫𝟐,

𝐬𝟏 =
𝑖𝐠

‖

𝑖𝐠‖
, 𝐬𝟐 =

𝐬𝟏 × 𝑖𝐦
‖𝐬𝟏 × 𝑖𝐦‖

, 𝐬𝟑 = 𝐬𝟏 × 𝐬𝟐.

from which the Euler angle readings can be extracted, as described
in [32]. Note that there is a biased consideration when choosing the
vectors, with a preference being given to the gravity vector which
serves as an anchor in the computation of the rotation matrix. How-
ever, this selection is not arbitrary as the gravity vector estimates
will serve as an inclinometer, mostly influencing the pitch and yaw
measurements, while the magnetic readings mostly influence the roll
measurements — considering the vertical attitude to be the nominal
condition.

6.2.4. ACF
For the ACF, the attitude kinematics, expressed in Euler angles, are

rewritten as

𝝀̇ = 𝐐(𝝀) 𝑏𝝎 , 𝐐(𝝀) =
⎡

⎢

⎢

⎣

1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙
0 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐 𝜃 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐 𝜃

⎤

⎥

⎥

⎦

. (10)

Furthermore, it is assumed that the gyroscope readings are cor-
rupted by zero mean Gaussian white-noise, 𝐰𝝎 ∼  ( 𝟎, 𝜩𝜔), and have
a given bias, 𝐛𝝎, which is assumed to be slowly time-varying and taken
as constant for the process model, yielding

𝝎𝑟 = 𝑏𝝎 + 𝐛𝝎 + 𝐰𝝎 , 𝐛̇𝝎 = 0 . (11)

By combining the attitude kinematics (10) and (11), the following
representation of the process model in state-space form is obtained:
[

𝝀̇
𝐛̇𝝎

]

=
[

𝟎 −𝐐(𝝀)
𝟎 𝟎

] [

𝝀
𝐛𝝎

]

+
[

𝐐(𝝀)
𝟎

]

𝝎𝑟 +
[

−𝐐(𝝀)
𝟎

]

𝐰𝝎 . (12)

Given the attitude kinematics (12), the following nonlinear feedback
system is proposed as the ACF:
[ ̇̂𝝀
̇̂𝐛𝝎

]

=
[

𝟎 −𝐐(𝝀𝑟)
𝟎 𝟎

] [

𝝀̂
𝐛̂𝝎

]

+
[

𝐐(𝝀𝑟)
𝟎

]

𝝎𝑟

+
[

𝐐(𝝀𝑟)
(

𝐋1𝜆 + ̇𝐐−𝟏(𝝀𝑟)𝐐(𝝀𝑟)
)

𝐋2𝜆

]

(𝐲𝜆 − 𝐲̂𝜆) , (13a)

𝐲𝜆 = 𝐐−𝟏(𝝀𝑟)𝝀𝑟 + 𝐯𝜆 , 𝐲̂𝜆 = 𝐐−𝟏(𝝀𝑟) 𝝀̂ , (13b)

where 𝐲𝜆 is the vector of observed Euler angles (from AD) transformed
to the space of angular rate and corrupted by Gaussian white obser-
vation noise, 𝒗𝝀 ∼  ( 𝟎, 𝜣𝜆), and 𝐋1𝜆, 𝐋2𝜆 ∈ 𝑀(3, 3) are constant
feedback gain matrices.
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In order to obtain the constant feedback gain matrices and prove
the stability of the filter, let us consider the following time-invariant
version of the system (12):
[

𝐱̇𝝀
𝐱̇𝐛𝝎

]

=
[

𝟎 −𝐈
𝟎 𝟎

] [

𝐱𝝀
𝐱𝐛𝝎

]

+
[

𝐈
𝟎

]

𝝎𝑟 +
[

−𝐈
𝟎

]

𝐰𝝎 , 𝐲𝑥 = 𝐱𝝀 + 𝐯𝜆 (14)

which is equivalent to simplifying the attitude kinematics to the vertical
case, 𝝀 = [ 0 0 0 ]𝑇 .

Theorem 1. Let 𝐋1𝜆 and 𝐋2𝜆 be the steady-state kalman gains for the
system (14) and assume that the pitch angle is bounded, |𝜃| < 𝜋∕2. Then,
the ACF (13) is uniformly asymptotically stable (UAS).

Proof. By defining the estimation errors as 𝝀̃ = 𝝀 − 𝝀̂, 𝐛̃𝝎 = 𝐛𝝎 − 𝐛̂𝝎,
the system describing the ACF (13) can be represented in terms of the
estimation error dynamics:
[

̇̃𝝀
̇̃𝐛𝝎

]

=

[

−𝐐(𝝀𝑟)
(

𝐋1𝜆 + ̇𝐐−𝟏(𝝀𝑟)𝐐(𝝀𝑟)
)

𝐐−𝟏(𝝀𝑟) −𝐐(𝝀𝑟)
−𝐋2𝜆𝐐−1(𝝀𝑟) 𝟎

]

[

𝝀̃
𝐛̃𝝎

]

(15)

By definition, the filter is said to be UAS if the origin of the system (15)
is UAS.

As for the auxiliary time-invariant system (14), it is straightforward
to infer that it is observable, hence, a steady-state Kalman filter applied
to it, yields UAS error dynamics. Upon this realization, if there is a well-
defined Lyapunov transform between the estimation error dynamics of
both systems ((13) and the time-invariant kalman filter), then the ACF
(13) is also UAS. The Lyapunov transform
[

𝝀̃
𝐛̃𝝎

]

= 𝐓
[

𝐱̃𝝀
𝐱̃𝐛𝝎

]

, 𝐓 =
[

𝐐(𝝀𝒓) 𝟎
𝟎 𝐈

]

(16)

is well defined [33] in the specified domain and, through algebraic
manipulation not here presented, when applied to the error dynamics
of the time-invariant filter leads to the error dynamics of the ACF (13).
Hence, the ACF is UAS. □

With this, we have proven that the ACF is stable apart from the
singularities in the attitude representation (|𝜃| = 𝜋∕2), while having
a structure that simplifies its design. The time-invariant gains, 𝐋1𝜆
and 𝐋2𝜆, are determined by applying the steady-state Kalman filter
to the auxiliary time-invariant system (14), with the design freedom
being present in the noise covariance matrices, which can be tuned to
obtained the desired performance. Although stable, the performance
of the ACF will not be optimal when the attitude differs from the
time-invariant condition, 𝝀 =

[

0 0 0
]𝑇 .

6.2.5. PCF
For the PCF, the process model proposed in [34] for navigation with

calibrated accelerometer is used, which was proven to be uniformly
completely observable. The position kinematics are rewritten in the
body frame, yielding
𝑏𝐩̇ = 𝑏𝐯 − 𝐒( 𝑏𝝎) 𝑏𝐩 , (17a)

𝑏𝐯̇ = 𝑏𝐚 − 𝐒( 𝑏𝝎) 𝑏𝐯 . (17b)

Additionally, by considering the gravitational acceleration as locally
constant in the inertial frame, the gravity vector time derivative ex-
pressed in the body frame is
𝑏𝐠̇ = −𝐒( 𝑏𝝎) 𝑏𝐠 . (18)

The acceleration measurements are considered to be corrupted by
zero mean Gaussian white noise, 𝐰𝐚 ∼  ( 𝟎, 𝜩𝑎), and the accelerome-
ter is assumed to be calibrated, resulting in the following measurement
equation:

𝐚 = 𝑏𝐚 − 𝑏𝐠 + 𝐰 . (19)
59

𝑟 𝐚 p
It is noted that the accelerometer measures the inertial acceleration as
well as the gravity vector, both expressed in the body frame.

By combining the position kinematics (17), the gravity vector time
derivative (18), and the accelerometer Eq. (19), the process model for
this filter can be written in state-space form:

⎡

⎢

⎢

⎢

⎣

𝑏𝐩̇
𝑏𝐯̇
𝑏𝐠̇

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−𝐒( 𝑏𝝎) 𝐈 𝟎
𝟎 −𝐒( 𝑏𝝎) 𝐈
𝟎 𝟎 −𝐒( 𝑏𝝎)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑏𝐩
𝑏𝐯
𝑏𝐠

⎤

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝟎
𝐈
𝟎

⎤

⎥

⎥

⎦

𝐚𝑟 +
⎡

⎢

⎢

⎣

𝟎
−𝐈
𝟎

⎤

⎥

⎥

⎦

𝐰𝐚 . (20)

Given this model (20), the following nonlinear feedback system is
proposed as the PCF:

⎡

⎢

⎢

⎢

⎢

⎣

𝑏 ̇̂𝐩
𝑏 ̇̂𝐯
𝑏 ̇̂𝐠

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−𝐒( 𝑏𝝎̂) 𝐈 𝟎
𝟎 −𝐒( 𝑏𝝎̂) 𝐈
𝟎 𝟎 −𝐒( 𝑏𝝎̂)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑏𝐩̂
𝑏𝐯̂
𝑏𝐠̂

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝟎
𝐈
𝟎

⎤

⎥

⎥

⎥

⎦

𝐚𝑟

+

⎡

⎢

⎢

⎢

⎣

𝐑𝑇
(

𝝀̂
)

𝐋1𝑝

𝐑𝑇
(

𝝀̂
)

𝐋2𝑝

𝐑𝑇
(

𝝀̂
)

𝐋3𝑝

⎤

⎥

⎥

⎥

⎦

(𝐲𝑝 − 𝐲̂𝑝) , (21a)

𝐲𝑝 = 𝐩𝑟 + 𝐯𝐩 , 𝐲̂𝑝 =
𝑖𝐩̂ = 𝐑

(

𝝀̂
) 𝑏𝐩̂ , (21b)

where 𝐲𝑝 is the vector of position observations, obtained from the
GNSS receiver and the altimeter, assumed to be corrupted by zero
mean Gaussian white observation noise, 𝐯𝐩 ∼  ( 𝟎, 𝜣𝑝), and 𝐋1𝑝, 𝐋2𝑝,
3𝑝 ∈ 𝑀(3, 3) are constant feedback gain matrices. It is important

o note that, in the process model, the skew-symmetric matrices are
omputed using the estimated angular velocity vector from the ACF
removed bias). Furthermore, the feedback component contains the
ecessary transformation of the observations from the inertial to the
ody frame, with the rotation matrix, 𝐑𝑇

(

𝝀̂
)

, being computed using
the estimated Euler angles from the ACF.

Similarly to what was done for the ACF, to obtain the constant
feedback gain matrices and prove the stability of the filter, let us
consider the following time-invariant version of the system (20):

⎡

⎢

⎢

⎣

𝐱̇𝐩
𝐱̇𝐯
𝐱̇𝐠

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝟎 𝐈 𝟎
𝟎 𝟎 𝐈
𝟎 𝟎 𝟎

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐱𝐩
𝐱𝐯
𝐱𝐠

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝟎
𝐈
𝟎

⎤

⎥

⎥

⎦

𝐚𝑟 +
⎡

⎢

⎢

⎣

𝟎
−𝐈
𝟎

⎤

⎥

⎥

⎦

𝐰𝐚 , 𝐲𝑥 = 𝐱𝐩 + 𝐯𝐩 , (22)

hich is equivalent to taking the angular velocity as zero.

heorem 2. Let 𝐋1𝑝, 𝐋2𝑝, and 𝐋3𝑝 be the steady-state kalman gains for the
ystem (22). Then, the PCF (21) is uniformly asymptotically stable (UAS).

roof. By defining the estimation errors as 𝑏𝐩̃ = 𝑏𝐩 − 𝑏𝐩̂, 𝑏𝐯̃ = 𝑏𝐯 − 𝑏𝐯̂,
nd 𝑏𝐠̃ = 𝑏𝐠− 𝑏𝐠̂, the system describing the PCF (21) can be represented
n terms of the estimation error dynamics:

⎡

⎢

⎢

⎢

⎣

𝑏 ̇̃𝐩
𝑏 ̇̃𝐯
𝑏 ̇̃𝐠

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−𝐒( 𝑏𝝎̂) − 𝐑𝑇
(

𝝀̂
)

𝐋1𝑝 𝐑
(

𝝀̂
)

𝐈 𝟎
−𝐑𝑇

(

𝝀̂
)

𝐋2𝑝 𝐑
(

𝝀̂
)

𝐒( 𝑏𝝎̂) 𝐈
−𝐑𝑇

(

𝝀̂
)

𝐋3𝑝 𝐑
(

𝝀̂
)

𝟎 𝐒( 𝑏𝝎̂)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑏𝐩̃
𝑏𝐯̃
𝑏𝐠̃

⎤

⎥

⎥

⎥

⎦

(23)

y definition, the filter is said to be UAS if the origin of the system (23)
s UAS.

As for the auxiliary time-invariant system (22), it is straightforward
o infer that it is observable, hence, a steady-state Kalman filter applied
o it, yields UAS error dynamics. Upon this realization, if there is a well-
efined Lyapunov transform between the estimation error dynamics of
oth systems ((21) and the time-invariant kalman filter), then the PCF
21) is also UAS. The Lyapunov transform
𝑏𝐩̃
𝑏𝐯̃
𝑏𝐠̃

⎤

⎥

⎥

⎥

⎦

= 𝐓
⎡

⎢

⎢

⎢

⎣

𝐱̃𝐩
𝐱̃𝐯
𝐱̃𝐠

⎤

⎥

⎥

⎥

⎦

, 𝐓 =
⎡

⎢

⎢

⎣

𝐑
(

𝝀̂
)

𝟎 𝟎
𝟎 𝐑

(

𝝀̂
)

𝟎
𝟎 𝟎 𝐑

(

𝝀̂
)

⎤

⎥

⎥

⎦

(24)

s well defined [33] and, through algebraic manipulation not here

resented, when applied to the error dynamics of the time-invariant
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filter leads to the error dynamics of the PCF (21). Hence, the PCF is
UAS. □

As done for the ACF, the PCF was proven to be stable and the
constant feedback gain matrices are obtained by applying the steady-
state Kalman filter to the time-invariant version of the system (22), with
the error covariance matrices as design freedom.

7. Control

In this section, the feedforward and feedback control components
are described. For feedback control, an LQR with integrative action
(LQI) is proposed and then particularized into a decoupled version.

7.1. Feedforward control

Given the natural instability of the system, and its time-varying
nature, finding the time evolution of the nominal control inputs, 𝐮0,
that places the vehicle in the desired trajectory can pose a difficult task.
A first approach could be to solve the non-linear differential equations
of the system (5) over time such that the attitude reference is correctly
followed. However, this is a mathematically complex problem that
would require a numerical solution.

A more practical strategy is to rely on a simulation model, based on
the detailed physical model (5), and use a controller that stabilizes the
plant and ensures that the reference trajectory is followed in simulation.
The resulting actuation values can then be stored to later use in
real-time as feedforward control. As long as the model is sufficiently
accurate and the varying parameters are approximately known, this
approach can be valid.

Since the simulated flight is disturbance-free and no uncertainties
are added to the model, a simple PID controller per degree of freedom
(pitch and yaw), with constant gains, can achieve this task.

7.2. Feedback control

Feedback control uses a subset of the state estimates from the
navigation system, 𝐱̂𝑐 , to stabilize the plant and provide reference
tracking of the desired pitch and yaw angles, 𝜃𝑑 and 𝜓𝑑 . Given the
nature of the TVC actuation, trying to control the linear velocities
would conflict with the attitude control, specially for non-zero attitude
references, therefore, 𝐱𝑐 =

[

𝑞 𝑟 𝜃 𝜓
]𝑇 .

7.2.1. LQR
The LQR is an optimal controller for linear systems that finds the

gain matrix 𝐊 in the linear control law 𝐮 = −𝐊𝐱, which minimizes the
quadratic cost functional

𝐽 = ∫

𝑇

𝑡
[ 𝐱𝑇 (𝜏)𝐐𝐱(𝜏) + 𝐮𝑇 (𝜏)𝐑𝐮(𝜏) ] 𝑑𝜏,

where 𝐐 ⪰ 0 and 𝐑 ≻ 0. In the cost functional 𝐽 , the quadratic form
𝐱𝑇𝐐𝑥 represents a penalty on the deviation of the state 𝐱 from the
origin, and the term 𝐮𝑇𝐑𝑢 represents the cost of control, making 𝐐 and
𝐑 the tuning parameters for the resulting controller.

It can be shown [35] that for the infinite-horizon, or steady-state,
version (𝑇 = ∞), the solution to this optimization problem, which
guarantees closed-loop asymptotic stability, is the constant gain matrix

𝐊 = 𝐑−1 𝐁𝑇 𝐌,

where 𝐌 is the solution to the ARE,

𝐌𝐀 + 𝐀𝑇 𝐌 −𝐌𝐁𝐑−1 𝐁𝑇 𝐌 +𝐐 = 𝟎 . (25)

In order for the ARE (25) to have a unique, positive definite solution
𝐌, it is a sufficient condition that the system defined by the pair (𝐀,
𝐁) is controllable.
60
Fig. 5. Generic LQI control scheme.

7.2.2. LQR with integrative component (LQI)
The LQR feedback control law, applied to the system under study,

would ideally drive the states in the perturbation domain to zero,
ensuring that the nominal values throughout the trajectory would be
followed. However, it does not guarantee a zero tracking error for
non-zero attitude references, 𝝀𝑑 =

[

𝜃𝑑 𝜓𝑑
]𝑇 . In order to minimize

reference tracking error, and to increase the robustness of the con-
troller to model uncertainties and external disturbances, an integrative
component that acts on the attitude tracking error is added.

To obtain this controller using the already detailed LQR technique,
it is only necessary to modify the state-space matrices when calculating
the ARE. Generically, the closed-loop control with LQI follows the
scheme in Fig. 5. Let the difference between the reference signal, 𝐫, and
the output of the system, 𝐲, (the tracking error) be the time derivative
of the state-space variables that result from adding the integrative
component, 𝐱𝐢. The state-space representation of the resulting regulator
is obtained by combining the open-loop state-space representation with
the feedback law, yielding

𝐳̇ =
([

𝐀 𝟎
−𝐂 𝟎

]

−
[

𝐁
𝟎

]

𝐊
)

𝐳 +
[

𝟎
1

]

𝐫,

where 𝐳 =
[

𝐱 𝐱𝐢
]𝑇 is the augmented state vector and 𝐂 is the output

matrix that selects the output of the system, i.e, the states for reference
tracking, from the original state vector (𝐲 = 𝐂𝐱). The optimal gain
is 𝐊 =

[

𝐊 𝐊𝐢
]𝑇 , where 𝐊 is the original gain matrix for the state

variables, and 𝐊𝐢 is the gain matrix for the integrative components, and
can be obtained by solving the ARE using the rearranged state-space
matrices

𝐀 =
[

𝐀 𝟎
−𝐂 𝟎

]

, 𝐁 =
[

𝐁
𝟎

]

.

Since the system under study is time-varying, the ARE has to be
solved for models coming from each linearization point, resulting in a
set of gain matrices to be selected, or scheduled, throughout the flight.
Moreover, it is important to note that the state-space representation
obtained is expressed in the perturbation domain. The augmented
state-vector is

𝜹𝐳 =
[

𝛿𝑢 𝛿𝑣 𝛿𝑤 𝛿𝑞 𝛿𝑟 𝛿𝜃 𝛿𝜓 𝛿𝜃𝑖 𝛿𝜓𝑖
]𝑇 ,

where 𝛿𝜃𝑖 and 𝛿𝜓𝑖 are the states associated with the integrative com-
ponents. The 𝐂 matrix is given by

𝐂 =
[

0 0 0 0 0 1 0
0 0 0 0 0 0 1

]

in order to select 𝛿𝜃 and 𝛿𝜓 as the variables for reference tracking.
Given the order of the augmented system and the number of inputs,

each gain matrix 𝐊 will be of dimension 2 by 9, however, since partial
feedback is used, 𝜹𝐳𝑐 =

[

𝛿𝑞 𝛿𝑟 𝛿𝜃 𝛿𝜓 𝛿𝜃𝑖 𝛿𝜓𝑖
]𝑇 , the columns

associated with the linear velocities are removed, yielding a 2 by 6
matrix, with 𝐊 being 2 by 4 and 𝐊𝐢 being 2 by 2. The implementation of
the resultant pitch and yaw controller (seen in the architecture diagram
of Fig. 3) is detailed in Fig. 6. The integral component acts on the
tracking error for the pitch and yaw angles, which are a subset of 𝐱𝑐
represented by 𝝀𝑐 =

[

𝜃 𝜓
]𝑇 . The attitude command 𝝀𝑑 is given in

absolute pitch and yaw values, meaning that it has to be transformed
into a relative command with respect to the values for the reference
trajectory according to 𝜹𝝀 = 𝝀 − 𝝀 .
𝑑 𝑑 𝑐0
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Fig. 6. Pitch and yaw LQI controller.

Once again, it is important to recall that the gain matrices 𝐊 and
𝐊𝐢 are obtained for each operating point and are scheduled throughout
the flight via linear interpolation with respect to altitude.

7.3. Decoupled control and spin correction

Considering the state-space representation of the system (7), it is
possible to identify the conditions under which it can be separated
into two decoupled modes: the lateral, composed by the state vector
𝐱lat =

[

𝑣 𝑟 𝜓
]𝑇 and the input 𝜇𝑦; and the longitudinal, composed

by the state vector 𝐱lon =
[

𝑢 𝑤 𝑞 𝜃
]𝑇 and the input 𝜇𝑝. Besides

the assumption of a null roll rate, 𝑝 = 0, a condition that allows
for decoupling is to consider a reference trajectory restricted to one
plane, for instance, the pitch plane. By doing so, the nominal values
of the lateral states and input are zero and a decoupled state-space
representation is easily derived from (7).

Using the decoupled state-space representation, the gains for the
longitudinal and lateral modes, 𝐊lon and 𝐊lat, can be obtained by
applying the previously detailed LQI control law, particularized to
the state-space matrices associated with each individual mode. The
implementation of the resultant control system is equivalent to the one
in Fig. 6, but now each control input is calculated separately using
the gains, state estimates, and references for each mode, yielding two
decoupled scheduled controllers.

7.3.1. Spin correction
The derived control system relies on the assumption that the roll

rate, or spinning motion, is null (𝑝 = 0). This can be valid if an
additional roll control system is used, for instance through reaction
control devices. However, it cannot be guaranteed that spinning motion
does not occur, given that such system can be designed to limit and
not eliminate spin, or that disturbances may cause its appearance.
Furthermore, it is a possibility only to have pitch and yaw control and
use spinning motion for passive stabilization through the gyroscopic
effect. In this way, it is important to consider the possibility of a non-
zero roll rate, 𝑝, and add the necessary corrections to the system so that
it can still perform under that condition. In this work, we decided to
correct the actuation given by the original control law, as opposed to
rewrite the linearized dynamics including the roll rate 𝑝 and derive a
new control law.

Firstly, an additional frame of reference is defined: the non-spinning
frame {n}. This frame of reference is attached to the body but it does
not rotate with respect to the 𝑥-axis, which is the spinning axis of
rotation in the original body frame {b}. This is the frame where the
states used in feedback, 𝐱𝑐 , and the control inputs, 𝐮, will be defined
according to the original control law. With the appearance of spinning
motion, the body frame will rotate with respect to the non-spinning
frame, with the instant angle of rotation being represented by 𝜒 , as
depicted in Fig. 7. In most scenarios, 𝜒 will be very similar to 𝜙, since
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Fig. 7. Non-spinning frame {n}.

Fig. 8. Spin correction for the control system.

for small angles the roll angle approximately coincides with the 𝑥-axis
body rotation.

The appearance of the angle 𝜒 means that the TVC actuation is
rotated, as well as the measurements of the pitch and yaw angular
velocities, both expressed in {b}. Therefore, the estimates of the angular
velocities, 𝑞 and 𝑟̂, have to be translated from {b} to {n} before passing
to the control system, and the input vector computed in the non-
spinning frame, 𝐮n, has to be translated to {b}, according to scheme
in Fig. 8. These translations are simply given by a positive or negative
instantaneous rotation of 𝜒 around the x-axis:

𝐑𝐬(𝜒) =
[

𝑐𝜒 −𝑠𝜒
𝑠𝜒 𝑐𝜒

]

, 𝐑𝐬(−𝜒) = 𝐑𝐬
𝑇 (𝜒),

yielding,
(

𝑞n

𝑟̂n

)

=

(

𝑞 𝑐𝜒 + 𝑟̂ 𝑠𝜒
−𝑞 𝑠𝜒 + 𝑟̂ 𝑐𝜒

)

,

(

𝜇𝑝
𝜇𝑦

)

=

(

𝜇𝑝n 𝑐𝜒 − 𝜇𝑦n 𝑠𝜒
𝜇𝑝n 𝑠𝜒 + 𝜇𝑦n 𝑐𝜒

)

.

With this correction method, both the coupled dynamics caused
by the spinning motion and the potential lack of axial symmetry are
disregarded by the control system. Therefore, its validity has to be
verified for the vehicle under study, taking into account the maximum
expected spin rate.

8. Implementation in simulation

To test the proposed architecture, a realistic simulation environ-
ment, composed by the 6 DoF non-linear model, the integrated ar-
chitecture, and the environmental properties, was implemented in
Matlab&Simulink®. Additionally, a reference vehicle and trajectory
had to be selected. In this section, the simulation environment, the
reference vehicle and trajectory, and the implementation details of the
architecture are presented.
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Fig. 9. Average horizontal wind and total wind.

8.1. Simulation environment

The simulation environment follows the structure of the architec-
ture previously shown in Fig. 3, with additional components for the
generation of the model parameters and environmental properties.

The environmental properties are generated by the atmospheric,
wind, and gravitational models. The 1976 U.S standard atmosphere
model [36] was implemented, which describes the evolution of tem-
perature and pressure with altitude using average annual values, from
which density and speed of sound are derived. Wind is introduced
through the summation of the average horizontal wind components
from the U.S Naval Research Laboratory horizontal wind model with
a stochastic component (wind gusts) added from the Dryden model
(Fig. 9), both available as Simulink blocks. Finally, the gravitational
model is implemented according to the equations in Section 3.2.

Several varying model parameters have to be computed during
simulation. The ideal thrust force and mass flow rate are taken as
pre-calculated inputs, and the static, atmospheric pressure-dependant
thrust component is added during the simulation. The aerodynamic
properties, i.e., the aerodynamic coefficients and derivatives, and cen-
tre of pressure location, are stored in look-up tables and are selected
according to the instant values of the aerodynamic angles and Mach
number. The mass properties are also computed during the simulation,
including the mass, inertia, and centre of mass, which vary due to the
propellant consumption.

The block corresponding to the rocket model in Fig. 3 is responsible
for computing the non-linear equations of motion, as presented in Sec-
tion 3.2, using the time-varying model parameters and environmental
properties. It is important to note that some assumptions were used
when deriving the model and, although considered valid for design, can
have an impact on the expected performance, obtained in simulation,
when in a real case scenario. Elastic modes might be excited by the
control action if the associated frequencies are similar, causing unde-
sired oscillatory behaviour; asymmetries may cause the centre of mass
to be dislocated from the 𝑥-axis of the body, which imposes additional
effort on the control action; and non-linear aerodynamic effects may
cause unexpected behaviour, as well as unaccounted effects caused by
the rotation of the Earth, such as the Coriolis acceleration.

8.2. Reference vehicle

The reference vehicle was obtained through a preliminary design
of a low-cost, solid motor rocket to serve as a testing platform for TVC
technology. The vehicle is designed to have a burning phase coinciding
with the full duration of the climb, so that TVC can be used to control
its attitude until close to the apogee. It is also required for the terminal
velocity to be inside a safe range to allow the correct activation of
a recovery system. To meet these design requirements, the thrust
produced by the motor is adjusted by iteratively testing different solid
motor parameters, and the flight for a vertical undisturbed trajectory is
simulated resorting to the simulation model. Tables 1 and 2 respectively
present the main vehicle characteristics and the simulation results,
while Fig. 10 details the ideal thrust and thrust-to-weight ratio.
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Table 1
Main vehicle characteristics.

Total mass 82.9 kg
Dry mass 40.0 kg
Length 3.57 m
Max diameter 24 cm

Table 2
Vertical trajectory parameters.

Apogee 4945 m
Max velocity 82 m/s
Max acceleration 1.7 m/s2
Time to apogee 100 s

Fig. 10. Ideal thrust and thrust-to-weight ratio.

Fig. 11. Reference pitch rate (𝑞0) and angle (𝜃) over time.

Fig. 12. Nominal pitch control input (𝜇𝑝0 ).

8.3. Reference trajectory

Regarding the attitude reference that defines the reference trajec-
tory, a varying pitch trajectory, in which the controller restricts the
motion to the pitch plane (yaw equal to zero) and makes the vehicle
deviate from the vertical to later recover it, is selected. In this way, the
apogee is reached further away from the launch site, increasing safety,
and an overall demanding scenario is presented to the system. Figure 11
shows the reference pitch rate and angle over time. The feedforward
control inputs are computed as stated in Section 7.1, yielding the
nominal actuation present in Fig. 12. The PID gains were set to 𝑘𝑝 =
−10, 𝑘 = −20, and 𝑘 = −5.
𝑖 𝑑
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Table 3
Covariance and gain matrices of the filters.

Cov. matrices Filter gains

ACF
𝜩𝝎 = 𝜎2𝜔𝐈 𝐋1𝜆 = 1.93𝐈

𝐋2𝜆 = −0.02𝐈𝜩𝒃 = 4 × 10−11𝐈
𝜣𝝀 = 10−7𝐈

PCF

𝜩𝒑 = 10−2𝐈 𝐋1𝑝 = 𝐃 ( 0.94, 0.54, 0.54 )
𝐋2𝑝 = 𝐃 ( 0.44, 0.15, 0.15 )
𝐋3𝑝 = 𝐃 ( 0.1, 0.02, 0.02 )

𝜩𝒂 = 𝜎2𝑎 𝐈
𝜩𝒈 = 10−2𝐈
𝜣𝒑 = 𝐃 ( 𝜎ℎ2 , 𝜎𝑝2 , 𝜎𝑝2 )

8.4. Architecture implementation and parameters

In this section, the implementation of the architecture in simulation
is discussed, and the parameters, obtained after tuning, are presented.
These include the gains for both the navigation and control systems,
as well as the models used to represent the on-board sensors and the
actuators’ dynamics.

8.4.1. Navigation system
The implementation of the navigation system follows the scheme in

Fig. 4. Besides the components detailed on the scheme, the sensors are
represented by adding noise to the exact value of the state variables.
More specifically, zero-mean additive white Guassian noise is added
to the measurements, sampled at 100 Hz. The assumed standard devia-
tions for each sensor were: 𝜎𝑎 = 0.014m s−2 for the accelerometer, 𝜎𝜔 =
.035 ◦/s for the rate gyro, 𝜎ℎ = 1m for the altimeter, 𝜎𝑝 = 5m for the
NSS receiver, and 𝜎𝑚 = 140nT for the magnetometer. Additionally,

he rate gyro bias is set as 𝐛𝜔 =
[

−0.1 0.2 0.1
]𝑇 in degrees per

econd, and is driven by zero-mean white Gaussian noise to simulate
he slowly time-varying nature. The noise intensity can be fine-tuned
ccording to the change rate of the bias.

Considering the noise properties described above, the noise co-
ariance matrices of both complementary filters were tuned and the
ime-invariant gain matrices were obtained, with all values shown in
able 3. While some weights have a direct correspondence with the
oise covariances of the on-board sensors, others act as tuning knobs,
hich can be adjusted by analysing simulation results or by using

eal flight data. A noteworthy mention is the one associated with the
ate gyro bias, 𝜩𝑏: although assumed constant for the process model
𝐛̇𝝎 = 0), a small covariance value is used on the filter design so
hat a small correspondent gain, 𝐋2𝜆, allows the system to track slowly
ime-varying bias. This property makes it necessary to have an initial
alibration period before the start of the mission so that there is time
or the bias estimates to converge to the true values.

.4.2. Control system
The implementation of the control system follows the schemes in

igs. 6 and 8, with an additional component to perform the altitude
ased gain scheduling.

The design degree of freedom is the selection of the tuning matrices
and 𝐑. First of all, setting all non-diagonal entries to zero, and only

ocusing on the diagonal ones, allows for a more intuitive matrix se-
ection given by the ‘‘penalty’’ method [35]. According to this method,
he diagonal entries of the 𝐐 matrix will determine the relative impor-
ance of the state variables in terms of origin tracking performance,
hile the diagonal entries of the 𝐑 matrix allow to directly adjust the

ontrol effort for each input. Therefore, the weighting matrices have
he following generic format, 𝐐 = 𝐃 ( 0, 0, 0, 𝑞𝑞 , 𝑞𝑟, 𝑞𝜃 , 𝑞𝜓 , 𝑞𝜃𝑖 , 𝑞𝜓𝑖 ),
= 𝐃 ( 𝑟𝜇𝑝 , 𝑟𝜇𝑦 ), where the terms associated with the linear velocities

n the 𝐐 matrix are set to zero since those variables are not used
or feedback control. The matrix entries can differ between operating
oints and are iteratively adjusted by analysing the closed-loop poles
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nd the step response of the system in the linear domain.
Fig. 13. Controller gains over time.

The decoupled version of the controller is implemented, yielding
two separate gain matrices, one for each mode: 𝐊lon =

[

𝑘𝑞 𝑘𝜃 𝑘𝜃𝑖
]𝑇

and 𝐊lat =
[

𝑘𝑟 𝑘𝜓 𝑘𝜓𝑖
]𝑇 . The altitude-based gain scheduling is

performed through the linear interpolation Simulink block, resulting
in the time evolution of the control gains, throughout the nominal
trajectory, depicted in Fig. 13, obtained after tuning the 𝐐 and 𝐑
matrices. The gains remain approximately constant given that the
tuning matrices were left constant for all operating points, except for
the ones associated with the longitudinal mode during the varying pitch
section, which were tuned in order to reduce the control effort and
avoid saturation.

The actuator dynamics are modelled using a first-order transfer
function for each input (𝜇𝑝 and 𝜇𝑦), considering a servo-actuated sys-
tem. The transfer function is
𝜇𝑟𝑒𝑠𝑝
𝜇

= 1
𝜏 𝑠 + 1

,

where 𝜇𝑟𝑒𝑠𝑝 is the actuator angular response and 𝜏 is the time constant.
Additionally, servo motors typically have a maximum rotation speed,
which is modelled by a rate limiter block in Simulink. The time constant
and maximum rotation speed were set to 0.02 s and 1 full rotation per
second, respectively, considering a standard high grade servo motor.

9. Linear domain analysis

Using the linear representation of the system (7) and the reference
values of its states, inputs, and parameters, it is possible to derive both
the open-loop and closed-loop stability and response in the linear do-
main. For a time-varying system, determining the location of the poles
throughout the reference trajectory does not provide a mathematical
stability proof, however, the study is carried out to understand the
behaviour of the system throughout the flight. Given the symmetry of
the vehicle, and the fact that the reference trajectory is inside the pitch
plane, the study is performed for the longitudinal mode.

9.1. Open-loop stability

Figure 14 details the pole evolution (from blue to green) during
the initial vertical section (up to 25 s) and the poles at 𝑡 = 60 s, which
exemplifies the distribution type during the varying pitch section. By
evaluating the location of the open-loop poles some conclusions can
be made. Firstly, the system is naturally unstable, which was expected
due to negative static stability margin caused by the absence of aero-
dynamic fins. Secondly, the system displays natural unstable oscillatory
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Fig. 14. Open-loop poles. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 15. Closed-loop poles and zeros.

Table 4
Closed-loop step response parameters.

Op. point Rise time (s) Settling time (s) Overshoot (%)

𝑡 = 5 s 0.27 0.45 0.57
𝑡 = 35 s 0.34 0.57 0.12
𝑡 = 65 s 0.33 0.53 1.76
𝑡 = 95 s 0.37 0.61 0.80

behaviour during the first seconds, after which all poles are located in
the real axis. Finally, it is concluded that the velocity of the vehicle
is a driving factor for the response of the system: at higher velocities
the system is seen to have higher magnitude poles and hence faster
dynamics.

9.2. Closed loop stability and response

By closing the loop with the derived control law, the closed-loop
poles and zeros are obtained for all operating points of the reference
trajectory. Figure 15 displays the ones associated with the longitudi-
nal mode. The control law stabilizes all operating points, placing the
closed-loop poles in the left-hand side of the complex plane. The pole-
zero cancellation of the poles and zeros approximately located at the
origin is noted. For each operating point, the relevant poles correspond
to a pair of stable conjugated complex poles and a stable real pole.
The complex poles are expected to cause oscillatory behaviour in the
response of the system, nonetheless, it was the ideal compromise found
between limiting oscillations while keeping a fast settling time. To
exemplify this, Fig. 16 displays the response to a step request of 3
degrees in pitch angle, and the associated control input variation, at
𝑡 = 60 s. Table 4 details some key parameters of the closed-loop system
step response in the linear domain for distinct operating points. A fast
response with limited overshoot is obtained for all operational regimes.

10. Simulation results

In this section, the results obtained using the proposed architecture
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in the simulation environment are presented. Given the stochastic f
Fig. 16. Response to a 3◦ step in pitch angle.

Fig. 17. Rate gyro bias estimation (initial calibration).

nature of the system, caused by the noise from the sensors and ex-
ternal disturbances (wind gusts), Monte Carlo (MC) simulations were
performed by varying the noise seeds associated with the stochastic
components in each run and by sampling the initial state of the navi-
gation system. The performance of the navigation and control systems
is detailed, both together and individually, with the MC simulations
results being presented. Additionally, the robustness of the overall
architecture to parametric uncertainties was tested by introducing ran-
domness and uncertainty in some model parameters in a further MC
study.

10.1. Navigation system

Firstly, the initial calibration period was simulated over 100 MC
runs. During this period, the vehicle is standing vertically on the
launch pad while the navigation system estimates the approximately
constant rate gyro bias. In each run, the state vector is sampled
using Gaussian distributions to add a given uncertainty to the initial
estimates. The following distributions were used: 𝝀̂(𝑡0) ∼  ( 𝟎, 0.12),
n degrees; 𝐛̂𝜔(𝑡0) ∼  ( 𝟎, 0.012), in degrees; 𝑏𝐩̂(𝑡0) ∼  ( 𝟎, 1), in
eters; 𝑏𝐯̂(𝑡0) ∼  ( 𝟎, 0.12), in meters per second; and 𝑏𝐠̂(𝑡0) ∼
(

[

−𝑔𝑠𝑙 0 0
]𝑇 , 0.012

)

, in meters per square second. Figure 17
isplays the evolution of the rate gyro bias on the three axis in terms of
he MC mean and standard deviation intervals. It is possible to conclude
hat the bias estimates converge to the true values after a relatively
hort time period. By inspection, the time 𝑡 = 300 s is selected as
he end of the calibration period, after which launch is initiated. The
C standard deviation calculated at this instant, averaged for the 3

xes, is used to correctly propagate the uncertainty for the following
art of the simulation. This is done by initializing the bias estimates
ith the normal distribution 𝐛̂𝜔0 ∼ 

(

[

−0.1 0.2 0.1
]𝑇 , 0.00352

)

,
n degrees. The remaining state variables are sampled once again using
he previous distributions. In the following sections, the MC results for
he estimation performed by each complementary filter are shown for
he nominal scenario, where no disturbances are present and only the
eedforward control input is required.
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Table 5
ACF estimation Monte Carlo results (expressed in degrees).

𝜃 𝜓 𝑏𝜔𝑦 𝑏𝜔𝑧

ACF 𝑟𝑚𝑠𝑒 0.0654 0.0567 0.0028 0.0021
𝜎𝑟𝑚𝑠𝑒 0.0208 0.0169 0.0012 0.0013

AD 𝑟𝑚𝑠𝑒 0.0714 0.0799 n/a n/a
𝜎𝑟𝑚𝑠𝑒 0.0196 0.0124 n/a n/a

Fig. 18. ACF pitch and yaw angles estimation.

0.1.1. ACF
The complete MC results for the ACF estimation are present in

able 5 for 100 MC runs, where the average and standard deviation
f the root mean square error between the estimated and true values
or all runs (𝑟𝑚𝑠𝑒 and 𝜎𝑟𝑚𝑠𝑒) are displayed. The root mean square error
s shown for the pitch and yaw angles estimation in degrees, as well as
or the pitch and yaw rate bias, 𝑏𝜔𝑦 and 𝑏𝜔𝑧 , estimation in degrees per
econd. For comparison, the pitch and yaw determination performance
y the AD algorithm, which relies solely on the aiding sensors, is also
hown. The average root mean square errors are reduced, as well as its
tandard deviation for all runs, making it possible to infer that AD is
ble to provide accurate observations on the attitude of the vehicle, and
hat the ACF further improves those estimates, while correcting the bias
f the gyroscope. Figure 18(a) visually displays the estimation results
or the pitch angle in terms of the MC mean with ±1𝜎 boundaries, while
ig. 18(b) presents the equivalent results for the yaw angle.

0.1.2. PCF
Regarding the PCF, it was also possible to verify its correct function-

ng by analysing the position, velocity and gravity vector estimates. The
omplete MC results for the PCF estimation are present in Table 6, once
gain for 100 MC runs and in terms of the mean and standard deviation
f the root mean square estimation error, using SI units. The filter is
ble to reject the noise from the position measurements while main-
aining good accuracy with respect to the true value. The root mean
quare error on the position estimates is one order of magnitude below
he standard deviation assumed for the altimeter and GNSS receiver
oises. Accurate estimates on the velocity and gravity vectors are also
btained, both quantities which are not available as a measurement
o the filter. Figure 19 details the position estimation by the PCF in
erms of the MC mean with the ±1𝜎 bounds (a), and a zoomed section
f the crossrange position (𝑖𝑧) estimation (b) to illustrate the filtering
erformed by the PCF by comparison with the noisy measurements.
igure 20 details the estimation of the velocity and gravity vectors
n the body frame, also by representing the MC mean with the ±1𝜎
oundaries. Due to the small standard deviations, the shaded intervals
epresenting the ±1𝜎 boundaries are hardly visible in the figures.
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Table 6
PCF estimation Monte Carlo results (SI units).

𝑖𝑥 𝑖𝑦 𝑖𝑧 𝑢 𝑣 𝑤

𝑟𝑚𝑠𝑒 0.18 0.69 0.71 0.09 0.10 0.9
𝜎𝑟𝑚𝑠𝑒 0.028 0.050 0.047 0.035 0.034 0.032

𝑏𝑔𝑥 𝑏𝑔𝑦 𝑏𝑔𝑧
𝑟𝑚𝑠𝑒 0.02 0.01 0.01
𝜎𝑟𝑚𝑠𝑒 0.006 0.003 0.003

Fig. 19. PCF position estimation.

Fig. 20. PCF velocity and gravity estimation.

10.2. Control system

The control system was tested by adding stochastic wind as external
disturbance, according to the previously detailed model. For this part,
the seeds associated with the wind gusts generation were the additional
parameters to be randomly changed in each MC run. The system was
tested for two distinct cases: assuming exact full-state knowledge, and
using the state estimates provided by the navigation system in the
presence of sensor noise, which represents the complete architecture.
For each scenario, 100 MC runs were completed.

Table 7 presents the detailed MC results in terms of the average
over all runs of the root mean square of the tracking errors and
actuation signals, with the correspondent standard deviations also be-
ing displayed. Moreover, the results are shown both when using the
derived LQI control law, and when using a PID controller per degree of
freedom (pitch and yaw) for comparison. It is concluded that, with the
implementation of the control system, the complete architecture was
able to reject the external wind perturbation while maintaining both
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Table 7
Pitch and yaw tracking error and control effort Monte Carlo results (expressed in
degrees).

Exact state

LQI PID

𝑥 𝜎 𝑥 𝜎

𝜃𝑟𝑚𝑠𝑒 0.017 0.001 0.026 0.0028
𝜓𝑟𝑚𝑠𝑒 0.007 0.0004 0.016 0.0018
𝛿𝜇𝑝𝑟𝑚𝑠 0.64 0.089 1.53 0.227
𝛿𝜇𝑦𝑟𝑚𝑠 0.47 0.081 0.48 0.077

Estimated state

LQI PID

𝑥 𝜎 𝑥 𝜎

𝜃𝑟𝑚𝑠𝑒 0.073 0.024 0.072 0.019
𝜓𝑟𝑚𝑠𝑒 0.060 0.020 0.059 0.017
𝛿𝜇𝑝𝑟𝑚𝑠 0.65 0.080 1.55 0.24
𝛿𝜇𝑦𝑟𝑚𝑠 0.51 0.081 1.00 0.20

Fig. 21. Attitude reference tracking.

Table 8
Monte Carlo results for different roll rates (expressed in degrees).
𝑝 0.1 Hz 0.5 Hz 1 Hz

𝑥 𝜎 𝑥 𝜎 𝑥 𝜎

𝜃𝑟𝑚𝑠𝑒 0.054 0.015 0.077 0.014 0.12 0.016
𝜓𝑟𝑚𝑠𝑒 0.056 0.015 0.13 0.009 0.25 0.009
𝛿𝜇𝑝𝑟𝑚𝑠 0.92 0.13 1.11 0.20 1.45 0.25
𝛿𝜇𝑦𝑟𝑚𝑠 0.94 0.11 1.30 0.12 1.93 0.14

satisfactory attitude tracking performance and reduced control effort.
Additionally, it is noted that LQI control provides similar attitude track-
ing performance to PID control, although with significantly less control
effort, and that there is a decrease in performance when measurement
noise and bias are added. In fact, the attitude tracking performance is
mostly limited/imposed by the estimation accuracy.

Figure 21 presents the simulation results for the pitch (a) and yaw
(b) angles reference tracking, with the navigation system included in
the loop. It depicts the average evolution of both angles for all MC runs,
as well as the ±𝜎 intervals. For the pitch angle, a zoomed interval where
the maximum pitch occurs is shown. Figure 22 details the actuation by
the TVC system for a single MC run to exemplify the typical actuation
profile.

The step response is also analysed to determine if the system is
able to track deviation requests from the reference condition. Figure 23
illustrates the results for the same instant and request as shown for the
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linear domain (Fig. 16). It is possible to verify that the step response
Fig. 22. Actuation profile example.

Fig. 23. Response to a 3◦ step in 𝛿𝜃.

performance is similar to the one found for the linear domain, apart
from disturbance/noise induced irregularities.

10.3. Spinning motion impact

So far, the simulation results were presented for the case in which
there is no spinning motion. When spinning motion is present, the
system must track the same pitch and yaw reference angles by relying
on the correction of the actuation signals explained in Section 7.3.1.
Table 8 details the values obtained for the previously used performance
metrics when the vehicle possesses different values of roll rate in the
body frame (𝑝), once again conducting a total of 100 MC runs for
each case. Looking at the results, it is seen that the attitude tracking
performance gradually degrades with the increase of the roll rate in
the body frame, and that the control effort increases. Nonetheless,
we conclude that the system is still able to correctly function in the
presence of spinning motion. Through simulation, it was verified that
above the approximate rate of 1Hz (1 full rotation per second) the
vehicle starts to display unstable coupled oscillatory behaviour towards
the end of the flight, when the control authority is at its minimum.
It is noteworthy that for 0.1Hz the attitude tracking performance is
superior to the one shown in the absence of spinning motion. This fact
is attributed to the increase in natural stability and external disturbance
rejection provided by the gyroscopic effect, which, until a given roll
rate value, surpasses the negative effect caused by the adjustment effort
imposed on the actuators and by the cross-coupling of the pitch and
yaw axes.

10.4. Robustness analysis

Finally, an analysis was performed to determine the robustness of
the architecture to model uncertainties. Several system parameters, in-
cluding mass, inertia, thrust, centre of mass position, and aerodynamic
coefficients, were altered in each run inside admissible ranges in terms
of percentage of the nominal value. The multiplication factors were
sampled according to Gaussian distributions with unitary mean and the
following ±3𝜎 bounds: 3𝜎𝑇 = 0.05; 3𝜎𝑐𝑚 = 3𝜎𝐽𝑦 = 3𝜎𝑚𝑑𝑟𝑦 = 0.1; and
3𝜎 = 3𝜎 = 0.2, where 𝐽 is the inertia in the 𝑦-axis and 𝑚 is the
𝐶𝐴 𝐶𝑁 𝑦 𝑑𝑟𝑦
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Table 9
Monte Carlo robustness analysis results (expressed in degrees).

LQI PID

𝑥 𝜎 𝑥 𝜎

𝜃𝑟𝑚𝑠𝑒 0.054 0.013 0.065 0.014
𝜓𝑟𝑚𝑠𝑒 0.055 0.013 0.073 0.011
𝛿𝜇𝑝𝑟𝑚𝑠 0.98 0.17 2.53 0.56
𝛿𝜇𝑦𝑟𝑚𝑠 0.94 0.16 1.32 0.20

dry mass. The inertia and lateral aerodynamic coefficient selected for
the study are the ones associated with the pitch plane, which allows to
verify if the system is able to perform when the assumed symmetry is
broken.

A total of 500 MC runs were conducted assuming a roll rate in the
body frame of 0.1Hz. The robustness when using a PID is also studied
or comparison. Table 9 presents the results. The system is concluded to
e robust to model parametric uncertainties as it was able to stabilize
he plant and track the attitude reference while keeping a similar
erformance to the nominal case. In comparison, the PID attitude
racking performance is slightly worse and the associated control effort
s significantly larger. This indicates that the designed control system
s more robust than its classical PID counterpart.

1. Conclusions

With the conclusion of this work, it is possible to state that the
rimary goal has been achieved: the successful design of an integrated
rchitecture for attitude control and navigation, applicable to low-cost
uborbital launch vehicles. Initially, both a non-linear model for the
ynamics and kinematics of a generic thrust-vector-controlled launch
ehicle and an original linear state-space representation were derived,
hich served as foundation for the architecture design. Subsequently,

he proposed architecture, comprising the navigation and control sys-
ems, was completely detailed by presenting its overall structure and
ach of its individual components.

The navigation system relies on readily available components, pro-
iding accurate state estimates by removing measurement noise and
ias. Its structure is derived starting directly from the available on-
oard measurements, facilitating a future implementation. Namely,
uler angle determinations are obtained from vector observations, with
he particularity of using an estimate on the gravity vector instead of
elying on accelerometer readings, as commonly done in the literature,
otentially corrupted with a dynamic component. Furthermore, the
tructure of the time-varying complementary kinematic filters simpli-
ies the tuning procedure by establishing an explicit relation with the
ime-invariant case, and ensures an UAS estimation solution apart from
he singularities. However, solely relying on kinematic models yields
on-optimal performance in the sense that the dynamics of the problem
re not considered. The time-invariant design can be based on the well-
stablished linear Kalman filtering theory, enabling the application of
tandardized requirements.

The control system, based on the scheduling of pre-calculated gains
ith an LQI control law, ensured satisfactory attitude reference track-

ng performance and robustness to model uncertainties. A method for
orrecting the actuation in the presence of spinning motion, which al-
ows the implementation of the architecture in a vehicle with limited, or
ven without, roll control capability, was also proposed. In future work,
n extension of the control system to non-linear techniques, which
llow for global, trajectory-independent solutions, will be exploited
ith the goal of comparing the performance of both formulations.

The integrated architecture was intensively tested in simulation
hrough Monte Carlo analysis, using a simulation model implemented
n Simulink, yielding an overall satisfactory performance. The simula-
ion model includes the proposed architecture, the derived non-linear
odel for the vehicle dynamics and kinematics, models for generating
67
the environmental conditions, and the time-varying model parameters.
As future work, the simulation environment shall be improved by
including phenomena yet to be modelled, such as elastic modes, non-
linear aerodynamic effects, the curvature and rotation of the Earth, and
body asymmetries, to further verify the system. A final validation of
the proposed architecture shall occur through the use of small-scale
rocket prototypes, before its implementation in a real suborbital launch
vehicle.
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