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➢ The Haber-Bosch (HB) process accounts for over 1 % of total carbon emissions whilst maintaining an extremely high 
energy consumption for a chemical process.

➢ Development and optimization of large-scale green ammonia production processes is pivotal to ensure green ammonia 
can substitute current ammonia synthesis processes .

➢ The aim of this work is to evaluate the viability of a large-scale green ammonia production plant and use heat 
integration to improve the energetic efficiency of this project. 

➢ The simulation, developed in Aspen Plus, was divided into three different segments, an air separation unit, an 
electrolyser and the ammonia synthesis section.
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➢ Air is compressed and then cooled into cryogenic temperatures to 
facilitate the air separation through two different distillation columns.

➢ Nitrogen then leaves the ASU at atmospheric conditions, ready to be 

mixed with the hydrogen produced from the electrolyser. 

➢ By varying the temperature outlets of the multi-heat exchangers and the 
distillate rate of the first distillation column:

• 164 kt/year of nitrogen were produced, with 99.1 % purity.

• A process yield of 99.3 % was achieved.

➢ The electrolyser was modelled with Aspen Custom Modeler:

• Pressure of 7 bar.

• Fraction of heat lost to surroundings fixed at 10%.

• Number of cells of the electrolyser established at 700 cells, with each 
one having an area of 3 𝐦𝟐 .

➢ Some notable results were:

• A temperature of 135 °C in the stack.

• A Hydrogen to Oxygen (HTO) diffusion ratio lower than 2 %.

• A hydrogen purity of 99.2 %.

➢ The electrolyser has 200 MW of power, leading to an annual production of 
35 kt of green hydrogen.
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➢ Nitrogen and Hydrogen are mixed and compressed to 128 bar to allow  
ammonia synthesis.

➢ The reaction mixture is equally split into two Plug Flow Reactors to 
increase process robustness.

• Conversion increased with catalyst loading 

• Optimum temperature of 450 °C inside the reactor.
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➢ A large – scale green ammonia production plant was developed 
successfully, with its three main sectors working efficiently.

➢ The energetic consumption of the process is promising, however, further 
improvements are needed for the utility usage to improve upon the results 
obtained.

➢ To further reduce energetic expenses, an absorbent – enhanced ammonia 
synthesis loop was tested at a large scale, but the results were not 
satisfactory.

➢ An economic evaluation should be done as future work, alongside 
additional simulations on the absorbent – enhanced process at a large 
scale. 

➢ The reactor outlets are then   
re – mixed and cooled to 
cryogenic temperatures to 
ensure that correct separation 
can occur.

➢ 200 kt/year of green ammonia 
were produced, with 99.7 % 
purity.

➢ ASU energy consumption aligned 

with literature values.

➢ Electrolysis process scaled well.

➢ Heat integration was most useful 

for the NH3 synthesis loops.

➢ Large inefficiencies regarding the 

NH3 synthesis loops.
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