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Um agradecimento especial vai para todos os meus amigos, em particular ao Luis Maia pelas
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Resumo

Em [1], [2] e [3] foi mostrado, usando diferentes técnicas, como a escolha de uma função estrita-

mente convexa no politopo de momento de uma variedade Kähler tórica permite a degeneração

das polarizações Kähler na polarização real. Com esta degeneração, foi ainda mostrado que as

secções holomorfas convergem para as secções delta de Dirac com suporte nos pontos intergais

do politopo de momento.

Esta tese explora o caso especial de S2 ∼= CP1 e generaliza os resultados prévios, considerando

funções com uma “bump function” como sua segunda derivada. Iremos abordar dois dos métodos:

secções normalizadas L1 e abordagem de fluxo hamiltoniano em tempo complexo para secções

corrigidas meia forma. Seguindo essas abordagens, as polarizações Kähler convergem para

uma nova polarização mista. Assim, somos então capazes de dividir o politopo do momento em

três partes, que correspondem a uma decomposição do espaço de Hilbert da quantização mista

em três partes. Fora do suporte da “bump function”, as seções holomorfa convergem para sua

restrição normalizada na respectiva parte. Se houver pontos inteiros no suporte de nossa função,

as secções correspondentes convergem para secções distribucionais. Além disso, generalizamos

estes resultados para o caso quando temos mais “bump functions”.

Estes novos resultados são interessantes porque, em geral, não há como ”decompor” um espaço

de fase em subconjuntos, de modo que a quantização da variedade simplética também ”decom-

ponha” como uma soma das quantizações desses subconjuntos.

Palavras-chave: Quantização Geométrica, Geometria Tórica, fluxos Hamiltonianos em

tempo imaginário, Polarizações mistas, secções distribucionais.
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Abstract

In [1], [2], and [3] it was shown, using different techniques, how the choice of a strictly convex

function on the moment polytope of a toric Kähler manifold allows for the degeneration of the

Kähler polarization into the real polarization. With this degeneration, it was further proved that the

holomorphic sections converge to the Dirac delta distributional sections supported on the integral

points of the moment polytope.

This thesis explores the special case of S2 ∼= CP1 and generalizes the previous results, consider-

ing functions ψ, which have bump functions as their second derivative. We will do this using two

methods: L1-normalized sections and Complex time Hamiltonian flow approach for half-form cor-

rected sections. Following these approaches, the Kähler polarizations converge to a new mixed

polarization. The moment polytope becomes divided into three parts, corresponding to the split-

ting of the Hilbert space of the mixed quantization into three parts. Outside the support of the

bump function, the holomorphic sections converge to their normalized restriction on the respec-

tive part. If there are integral points in the support of our function, the corresponding sections

converge to distributional sections. Moreover, we then generalize this for the case when we have

more bump functions.

These new results are interesting as, in general, there is no way of ”decomposing” a phase space

into subsets, such that the quantization of the symplectic manifold also ”decomposes” as a sum

of the quantizations of those subsets.

Keywords: Geometric Quantization, Toric geometry, Imaginary Time Hamiltonian Flows,

Mixed polarization, Distributional sections.
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Chapter 1

Symplectic Forms

In this chapter we will first define what is a symplectic structure on a vector space and then explore

some basic properties. Afterwards we will generalize this idea to manifolds.

1.1 Skew-Symmetric bilinear maps

From now on, let V be an m-dimensional real vector space. Let Ω : V × V → R be a bilinear

skew-symmetric map.

Theorem 1.1.1. Let Ω be a skew-symmetric bilinear map over V. Then there is a basis u1, ..., uk,

e1, ..., en, f1, ..., fn such that:

Ω(ui, v) = 0, ∀i ∈ {1, ..., k} ∀v ∈ V,

Ω(ei, ej) = Ω(fi, fj) = 0, ∀i, j ∈ {1, ..., n},

Ω(ei, fj) = δij , ∀i, j ∈ {1, ..., k}.

Proof. The proof can be found, for instance, [4] on page 3. ■

The basis given in Theorem 1.1.1 is not unique, despite being called the canonical basis. Let

U = {u ∈ V : Ω(u, v) = 0, ∀v ∈ V }. Consider the following map

Ω̃ : V → V ∗

v 7→ Ω̃(v)(u) := Ω(v, u).

It is clear that the kernel of Ω̃ is U .

Definition 1.1.1. We say that Ω is symplectic (or non-degenerate) if Ω̃ is bijective (equivalently,

if U = {0}). Therefore, we call the tuple (V,Ω) a symplectic vector space.
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It is immediate to see by theorem 1.1.1 that if Ω is symplectic than dimV = 2n, therefore we have

the following corollary:

Corollary 1.1.1. A symplectic vector space must have even dimension.

Example 1.1.1. In R2n we have the prototype of a symplectic vector space (R2n,Ω0), where Ω0

is such that the basis:

e1 = (1, ..., 0), ..., en = (0, ..., 1︸︷︷︸
n

, 0, ...0)

f1 = (0, ..., 0, 1︸︷︷︸
n+1

, 0, ..., 0), ..., fn = (0, ..., 1),

is a symplectic basis. In particular, in this basis, the symplectic map is of the following form: 0n Idn

−Idn 0n



As usual, it is useful to consider transformations that “preserve” the symplectic structure.

Definition 1.1.2. A symplectomorphism ϕ between symplectic spaces (V,Ω) and (V ′,Ω′) is

linear isomorphism ϕ : V → V ′ such that ϕ∗Ω′ = Ω, where (ϕ∗Ω′)(u, v) = Ω′(ϕ(u), ϕ(v)).

Similarly to what happens with the inner product, there is a way to find, given a subspace of a

symplectic vector space, the “complement” of this subspace with respect to symplectic structure.

Definition 1.1.3. Let (V,Ω) be a symplectic vector space and Y a subspace of it. Then its sym-

plectic orthogonal Y Ω is the linear subspace defined by

Y Ω := {v ∈ V : Ω(v, y) = 0, ∀y ∈ Y }

Definition 1.1.4. We say that Y is isotropic when Y ⊂ Y Ω and that Y is coisotropic when

Y Ω ⊂ Y . If Y is both isotropic and coisotropic then we say that Y is lagrangian (i.e.Y = Y Ω),

which implies that dim Y = 1
2 dim V .

1.2 Symplectic Manifolds

Let ω be a 2-form on a manifold M such that for all p ∈ M , the map ωp : TpM × TpM → R is

skew-symmetric bilinear and ωp varies smoothly with p (i.e. ω is de Rham 2-form).

Definition 1.2.1. The 2-form ω is symplectic if ωp is symplectic for all p ∈ M and if it is closed,

i.e. dω = 0. In this case we say that (M,ω) is symplectic manifold.

We therefore have, as a consequence of corollary 1.1.1, the following corollary:

3



Corollary 1.2.1. A symplectic manifold is even dimensional.

Example 1.2.1. Consider de 2-sphere S2. Then we can consider its volume form in spherical

coordinates

ω = sin(ϕ)dϕ ∧ dθ,

which tell us that S2 is a symplectic manifold. (This extends smoothly to the whole of S2.)

Definition 1.2.2. Let (M,ω) and (M ′, ω′) be symplectic manifolds and let ϕ :M →M ′ be a diffeo-

morphism. Then ϕ is a symplectomorphism if ϕ∗ω′ = ω, where (ϕ∗ω′)(u, v) = ω′(dϕp(u), dϕp(v))

is the pullback.

Theorem 1.2.1 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold, and p ∈M . Then

there is a chart U with local coordinates x1, ..., xn, y1, ..., yn centered at p such that on U

ω =

n∑
i=1

dxi ∧ dyi.

These coordinates are known as Darboux coordinates.

Proof. The proof can be found in any book that deals with symplectic geometry. In particular, it

can be found in [4] on page 55. ■

This theorem tell us that any symplectic manifold is locally symplectomorphic to (R2n, ω0). In fact,

symplectic manifolds are locally indistinguishable. This a clearly very different from Riemannian

geometry, where different metrics can be distinguished locally by curvature. In particular, this

result tells us that in symplectic geometry we are interested in looking at global properties.

Definition 1.2.3. A submanifold of M is a manifold X with a proper injective immersion (also

known as a closed embedding) i : X ↪→M .

We usually regard the embedding i : X ↪→M as being an inclusion(i.e. i(p) = p).

Definition 1.2.4. Given a symplectic manifold (M,ω), we say that a submanifold Y of M is a

lagrangian submanifold if ∀p ∈ Y, TpY is a lagrangian subspace of TpM , that is ω|TpY ≡ 0

(using the inclusion map, this is equivalent to i∗ω = 0) and dimTpY = 1
2dimTpM .

Let X be any n-dimensional manifold and M = T ∗X its cotangent bundle. Then, considering

the usual cotangent coordinates given coordinates (T ∗U, x1, ..., xn, ξ1, ..., ξn), we can thus define

a 2-form ω in T ∗U by

ω =

n∑
i=1

dxi ∧ dξi, (1.1)

4



which is symplectic. And we can define the following 1-form on T ∗U

α =

n∑
i=1

ξidxi, (1.2)

Such that ω = −dα. α is known as the tautological form or the Liouville 1-form and ω is the

canonical symplectic form. The Tautological form is coordinate independent. Consider the fol-

lowing definition:

Definition 1.2.5. Let π : T ∗X = M → X be the natural projection (i.e. π(x, ξ) = x). Then the

tautological 1-form α is defined pointwise by

αp = (dπp)
∗ξ ∈ T ∗

pM

Where (dπp)
∗ represents the transpose of dπp.

Consider v =
∑n
i=1 ai

∂
∂xi

+ bi
∂
∂yi

then:

αp(v) = ξ(dπp · v) = ξ

(
n∑
i=1

ai
∂

∂xi

)
=

n∑
i=1

ξiai =

n∑
i=1

ξidxi


n∑
j=1

aj
∂

∂xj
+ bj

∂

∂yj︸ ︷︷ ︸
=v

 ,

which shows that the tautological form is well defined.

Definition 1.2.6. The canonical symplectic form ω on M = T ∗X is defined as

ω = −dα

And thus it is given in local coordinates by 1.1

By a simple induction argument, it is easy to see that ωn = ω ∧ ... ∧ ω does not vanish. Thus, it

defines a volume form. In particular, the form

ωn

n!

is called the symplectic volume or the Liouville volume of (M,ω).

Therefore, we have found a way to construct symplectic manifolds, by simply considering the

cotangent bundle of an existing manifold. However, it is not the case that all symplectic manifolds

are a cotangent bundle of another manifold, as we have seen in the case of S2.

Corollary 1.2.2. The ωn of any symplectic form ω on a 2n-dimensional manifold M is a volume

form. This can easily be seen by the above proposition and noting that a symplectic form on M is

5



a 2-form, and therefore ωn is top degree.

Corollary 1.2.3. A symplectic manifold is orientable.

Proposition 1.2.1. If (M,ω) is a compact symplectic manifold of dimension n, then [ωn] ∈

H2n
dR(M) ̸= 0.

Proof. This result follows form a simple application of Stokes theorem. ■

Proposition 1.2.2. If (M,ω) is a compact symplectic manifold of dimension n, then [ω] ̸= 0.

Proof. We know by the above proposition that [ωn] ∈ H2n
dR(M) ̸= 0. Then, by the cup product on

the cohomology, we have [ωn] = [ω]n, which allows us to conclude that [ω] ̸= 0. ■

Corollary 1.2.4. For n > 1 S2n is not symplectic. This is easily seen because H2
dR(S

2n) = 0 for

n > 1.

Definition 1.2.7. Let M be a manifold and ρ :M × R →M (we will write ρt(p) := ρ(t, p)). Then ρ

is said to be an isotopy if ρt :M →M is a diffeomorphism for every t and ρ0 = idM .

Definition 1.2.8. Given an isotopy ρ, we have a time-dependent vector field, that is, a family of

vector fields Xt, t ∈ R such that :
dρt
dt

= Xt(ρt)

Conversely, assuming that either M is compact or that Xt have compact support for all of t ∈ R,

then there is an isotopy associated to the time-dependent vector field. If it happens that Xt is

independent of t, then the isotopy associated is the flow or the exponential map of X.

Proposition 1.2.3. Let ωt, t ∈ R be a family of forms. Then

d

dt
(ρ∗tωt) = ρ∗t

(
LXtωt +

dωt
dt

)

Proof. See [4] on page 42-43. ■

A natural question that may be asked is that given two symplectic forms in the same cohomol-

ogy class if there exists a diffeomorphism (homotopic to the identity of our manifold) such that it

behaves like a symplectomorphism? Moser answered this question in the positive in what is now

known as Moser theorem.

Theorem 1.2.2 (Moser). Let M be a compact manifold with two symplectic forms ω1, ω2 such that

[ω1] = [ω2] and that the 2-form ωt = (1 − t)ω1 + tω2, is symplectic ∀t ∈ [0, 1]. Then there is an

isotopy ρ :M × R →M such that ρ∗tωt = ω1, ∀t ∈ [0, 1].

Proof. See, for instance, page 50 in [4]. ■
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Chapter 2

Compatible Almost Complex

Structures

In this chapter we will dwell into almost complex structures on manifolds. Our main goal is to define

what is almost complex structures and to show that any symplectic and riemmanian manifold has

a almost complex structure which is “compatible” in some sense that we will also define. We will

also look into some consequences of this as well as define the Dolbeaut theory. This will be the

basis for the next chapter where we will deal with complex structures on manifolds.

2.1 Almost Complex structures

Example 2.1.1. R2n with the standard coordinates (x1, ..., xn, y1, ..., yn) has the standard sym-

plectic form :

ω0 =

n∑
i=1

dxi ∧ dyi

making it into a symplectic manifold. On the other hand we also have the standard Riemannian

metric, given by the standard inner product:

g0 = ⟨·, ·⟩

Finally we can think of R2n being isomorphic to Cn with coordinates zj = xj + iyj . In turn

the multiplication by i induces a linear map J0 on the tangent space of R2n as follows. Let
∂
∂x1

, ..., ∂
∂xn

, ∂
∂y1

, ..., ∂
∂yn

be the standard basis for tangent space of R2n then:

J0

(
∂

∂xi

)
=

∂

∂yi
, J0

(
∂

∂yi

)
= − ∂

∂xi

7



Notice that J2
0 = −1. Using the above coordinates we can write all of this maps in matrix form:

J0(u) =

 0 −Id

Id 0

u, ω0(u, v) = vt

 0 −Id

Id 0

u, g0(u, v) = vtu

It is also worth to point out that we can define the symplectic form in terms of the metric and the

complex form and vice versa:

ω0(u, v) = g0(J0(u), v)

g0(u, v) = ω0(u, J0(v))

This is not a coincidence, as we will soon see.

Definition 2.1.1. Let V be a vector space. A complex structure on V is a linear map: J : V → V,

such that J2 = −Id. The pair (V, J) is called a complex vector space.

Definition 2.1.2. Let (V,Ω) be a symplectic vector space. A complex structure J on V is said to

be compatible (with Ω) if

GJ(u, v) = Ω(u, J(v)), ∀u, v ∈ V is a positive inner product on V.

That is,

Ω(Ju, Jv) = Ω(u, v) [symplectomorphism]

Ω(u, Ju) > 0 [taming condition]

Proposition 2.1.1. Let (V,Ω) be a symplectic vector space. Then there is a compatible complex

structure J on V .

Proof. The proof can be found in [4] on page 84. ■

2.2 Almost Complex Manifold

Borrowing the idea from vector spaces, we are then able to extend this concept into manifolds, in

the following way

Definition 2.2.1. An almost complex structure on a manifold M is a smooth field of complex

structures on its tangent space: x 7→ Jx : TxM → TxM linear, and J2
x = −Id. The pair (M,J) is

called a almost complex manifold.

Definition 2.2.2. Let (M,ω) be a symplectic manifold. An almost complex structure J on M is

8



called compatible (with ω) if the map:

x 7→ gx :TxM × TxM → R

gx(u, v) := ωx(u, Jxv)

is a riemmanian metric on M . The triple (ω, g, J) is called the compatible triple when g(·, ·) =

ω(·, J ·).

Proposition 2.2.1. Let (M,ω) be a symplectic vector space and g a riemmanian metric on M .

Then there is a canonical compatible almost complex structure J on M .

Proof. The proof follows immediately from proposition 2.1.1 and by noting that on its proof, the J

structure is canonical after the choice of the inner product. ■

In particular, if (ω, J, g) is a compatible triple, then any one of these maps can be written in terms

of the other two:

g(u, v) = ω(u, Jv), ω(u, v) = g(Ju, v), J(u) = g̃−1(ω̃(u)),

where

ω̃ :TM → T ∗M g̃ : TM → T ∗M

u 7→ ω(u, ·) u 7→ g(u, ·)

As in the other areas of geometry, we may then be interested to check when g is flat and ω is

closed. For the almost complex structure, the corresponding property we may dwell into is when

is J integrable, that is when is J induced by a structure of a complex manifold, i.e. the coordinates

maps establish a homeomorphism with Cn and the transition maps are biholomorphic.

Now, we will present the example of R2, which will be useful later on.

Example 2.2.1. Take M = R2 ∼= C. Then we can take the coordinates to be z = p + iq, where

(p, q) are the usual coordinates in R2. Thus

p =
1

2
(z + z) q =

1

2i
(z − z)

Then

∂

∂z
=

1

2

(
∂

∂p
− i

∂

∂q

)
,

∂

∂z
=

1

2

(
∂

∂p
+ i

∂

∂q

)
.

9



Then if f = u+ iv : C → C, where u, v are real functions, satisfy the Cauchy-Riemman equations:


∂u
∂p = ∂v

∂q

∂u
∂q = −∂v

∂p

is equivalent to

∂f

∂z
= 0 ⇐⇒ 1

2

(
∂f

∂p
+ i

∂f

∂q

)
= 0

⇐⇒ ∂u

∂p
+ i

∂v

∂p
+ i

∂u

∂q
− ∂v

∂q
= 0

⇐⇒ ∂u

∂p
=
∂v

∂q
,
∂u

∂q
= −∂v

∂p

Thus f is holomorphic iff
∂f

∂z
= 0. Thus it is natural to define

J

(
∂

∂p

)
=

∂

∂q
, J

(
∂

∂q

)
= − ∂

∂p
.

Therefore

J

(
∂

∂z

)
= J

(
1

2

(
∂

∂p
− i

∂

∂q

))
=

1

2

(
J

(
∂

∂p

)
− iJ

(
∂

∂q

))
=

1

2

(
∂

∂q
+ i

∂

∂p

)
= i

∂

∂z
,

and in the same way

J

(
∂

∂z

)
= −i ∂

∂z
.

We will now check that this complex structure is compatible with ω = dx ∧ dy.

u = a
∂

∂p
+ b

∂

∂q
Ju = −b ∂

∂p
+ a

∂

∂q

v = c
∂

∂p
+ d

∂

∂q
Jv = −d ∂

∂p
+ c

∂

∂q

Then, ω(u, Ju) = a2+b2 ≥ 0. So if u ̸= 0, ω(u, Ju) > 0. On the other hand, ω(Ju, Jv) = ad−bc and

ω(u, v) = ad − bc, hence, it is compatible. The associated Riemannian metric is then ω(u, Jv) =

ac+ bd = ⟨u, v⟩ which is the usual one in R2.

Definition 2.2.3. A submanifold X of an almost complex manifold (M,J) is an almost complex

submanifold when J(TX) ⊂ TX.

Proposition 2.2.2. Let (M,ω) be a sympletic manifold equipped with a compatible almost com-

plex structure J . Then any almost complex submanifold X of (M,J) is a symplectic submanifold

of (M,ω).
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Proof. The Proof can be found in [4] on page 91. ■

2.3 Dolbeault Theory

Let (M,J) be an 2n-dimensional almost complex manifold. As stated before, J has eigenvalues

±i. Therefore we can not decompose TM (and T ∗M ) with respect to the eigenvalues, because

TM (T ∗M ) is real. But we may “complexify” it, using extension by scalars. So consider the

complexified tangent bundle of M to be TM ⊗ C such that p ∈ M, (TM ⊗ C)p = TpM ⊗ C.

Notice that now TpM ⊗ C is 2n-dimensional complex vector space.

We extend linearly J to TM ⊗ C as

J(v ⊗ c) = Jv ⊗ c, ∀v ∈ TM, ∀c ∈ C

Thus we may now define:

T 1,0 = {v ∈ TM ⊗ C : Jv = iv} = {v ⊗ 1− Jv ⊗ i : v ∈ TM}

T 0,1 = {v ∈ TM ⊗ C : Jv = −iv} = {v ⊗ 1 + Jv ⊗ i : v ∈ TM}

T 1,0 is known as the (J−)holomorphic tangent vectors and T 0,1 is known as the (J−)anti-

holomorphic tangent vectors . We also have the natural projections:

π1,0 :TM → T 1,0 π0,1 : TM → T 0,1

v 7→ 1

2
(v ⊗ 1− Jv ⊗ i) v 7→ 1

2
(v ⊗ 1 + Jv ⊗ i)

Note that:

(π1,0 ◦ J)(v) = 1

2
(Jv ⊗ 1− JJv ⊗ i) =

1

2
(Jv ⊗ 1 + v ⊗ i) = iπ1,0(v)

And similarly

(π0,1 ◦ J)(v) = −iπ0,1(v)

Thus, these projections are isomorphisms (of complex vector bundles) and hence T 1,0 ∼= T 0,1.

Thus extending the above projections to TM ⊗ C we get that following decomposition:

TM ⊗ C ∼= T 1,0 ⊕ T 0,1

We can repeat the process above to the cotangent bundle:

T1,0 = {ξ ∈ T ∗M ⊗ C : ξ(Jv) = iξ(v), ∀v ∈ TM ⊗ C} = {ξ ⊗ 1− (ξ ◦ J)⊗ i : ξ ∈ T ∗M}

T0,1 = {ξ ∈ T ∗M ⊗ C : ξ(Jv) = −iξ(v), ∀v ∈ TM ⊗ C} = {ξ ⊗ 1 + (ξ ◦ J)⊗ i : ξ ∈ T ∗M}
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T1,0 is known as the (J−)holomorphic cotangent vectors and T−0, 1 is known as the (J−)anti-

holomorphic cotangent vectors with projections:

π1,0 :T ∗M ⊗ C → T1,0 π0,1 : T ∗M ⊗ C → T0,1

ξ 7→ ξ1,0 :=
1

2
(ξ − iξ ◦ J) v 7→ ξ0,1 :=

1

2
(ξ + iξ ◦ J)

Thus extending the above projections to T ∗M ⊗ C we get that following decomposition:

T ∗M ⊗ C ∼= T1,0 ⊕ T0,1

Let

Ωk(M ;C) : = sections of Λk(T ∗M ⊗ C),

be the set of complex-valued k-forms on M. Using the above decomposition we get

Λk(T ∗M ⊗ C) = Λk(T1,0 ⊕ T0,1) =
⊕

l+m=k

Λl(T1,0) ∧ Λm(T0,1)︸ ︷︷ ︸
:=Λl,m

=
⊕

l+m=k

Λl,m

Definition 2.3.1. The differential forms of type (l,m) on (M,J) are the sections of Λl,m, and let

Ωl,m denote the set consisting of them. Then Ωk(M ;C) =
⊕

l+m=k Ω
l,m.

We may then define πl,m : Λk(T ∗M ⊗ C) → Λl,m, with l + m = k. We may then define two

analogous differentials operators on forms of type (l,m), using these projections, as follows:

∂ : Ωl,m(M) → Ωl+1,m, ∂ = πl+1,m ◦ d

∂ : Ωl,m(M) → Ωl,m+1, ∂ = πl,m+1 ◦ d

Let f : M → C be any smooth function. Then we extend the exterior derivative to f by setting

df = d(Re f)+id(Imf). We then say that f is (J−)holomorphic at p ∈M if dfp is linear complex,

that is dfp◦J = idfp. We then say that f is (J−)holomorphic if it is (J−)holomorphic at all p ∈M .

In the same way, we say that f is (J−)anti-holomorphic at p ∈ M if dfp is complex antilinear,

that is dfp ◦ J = −idfp. We then say that f is (J−)anti-holomorphic if it is (J−)anti-holomorphic

at all p ∈M .

On functions, d = ∂ + ∂, thus we say that f is holomorphic if ∂f = 0 and anti-holomorphic if

∂f = 0. However, in general, this does not hold for general k-forms. Nevertheless, will see next

chapter some extra conditions on the manifold for which it holds for general k-forms.
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For now, suppose that d = ∂ + ∂. Then for any β ∈ Ωl,m we have that

0 = d2β = d(∂β + ∂β) = ∂2β︸︷︷︸
∈Ωl+2,m

+ ∂∂β + ∂∂β︸ ︷︷ ︸
∈Ωl+1,m+1

+ ∂
2
β︸︷︷︸

∈Ωl,m+2

Hence ∂2 = ∂∂+∂∂ = ∂
2
= 0. Then this allows one to define a cohomology theory in the following

way. The following long sequence is exact

0 Ωl,0 Ωl,1 Ωl,2 ...
∂ ∂ ∂

Thus we may define the Dolbeault cohomology groups:

H l,m
Db (M) :=

ker ∂ : Ωl,m → Ωl,m+1

Im ∂ : Ωl,m−1 → Ωl,m

Ω0,0

Ω1,0 Ω0,1

Ω2,0 Ω1,1 Ω0,2

...
...

...

∂

∂

∂

∂

∂

∂

Figure 2.1: relation between Ωl,k.

The Dolbeault cohomology is a very important tool in complex geometry. We will dwell a little bit

into it in the next chapter. Now, we will define the Nijenhuis tensor, which allows one to analyse if

the almost complex structure is integrable.

Definition 2.3.2. Let (M,J) be an almost complex manifold. Its Nijenhuis tensor N is:

N (v, w) := [Jv, Jw]− J [v, Jw]− J [Jv,w]− [v, w]

Where v, w ∈ X (M) and [·, ·] is the Lie bracket.
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Chapter 3

Kähler Manifolds

In this chapter our main goal is to define a Kähler manifold. These manifolds are particularly

unique as they are complex, symplectic and riemmanian manifolds. In the first section, we will

define what is a complex manifold. Then we will deal with Kähler forms, which is going to introduce

a restriction on the sympletic form. Finally we will dwell a bit into Hodge theory.

3.1 Complex manifolds

Definition 3.1.1. A n-dimensional complex manifold M is a manifold with an atlas of charts to

open sets of Cn, such that the transitions maps are biholomorphic, that is bijective, holomorphic

and with holomorphic inverse.

Proposition 3.1.1. Any complex manifold has a canonical almost complex structure.

Proof. See, for instance, [4] page 101. ■

We would like now to study what Ωk(M ;C) looks like. Let U ⊂ M be a coordinate neighborhood

with coordinates zj = xj + iyj , ∀i ∈ {1, ..., n}, then at p ∈ U :

TpM = spanR

{
∂

∂xj
|p,

∂

∂yj
|p
}

TpM ⊗ C = spanC

{
∂

∂xj
|p,

∂

∂yj
|p
}

= spanC

{
1

2

(
∂

∂xj
|p − i

∂

∂yj
|p
)}

⊕ spanC

{
1

2

(
∂

∂xj
|p + i

∂

∂yj
|p
)}

= spanC

{
∂

∂zj
|p
}
⊕ spanC

{
∂

∂zj
|p
}
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Where we have decomposed the space according to the eigenvalues of J and used the result

from the example 2.2.1. Similarly

T ∗M ⊗ C = spanC{dxj , dyj} = spanC{dzj} ⊕ spanC{dzj}

Thus

Ωl,m =

 ∑
|J|=l,|K|=m

bJ,KdzJ ∧ dzK : bJ,K ∈ C∞(U ;C)


As we have seen, on almost complex manifolds only for function we had that d = ∂ + ∂. What

about complex manifolds?

Theorem 3.1.1. Let β ∈ Ωk(M ;C), where M is any complex manifold. Then

dβ = ∂β + ∂β.

Proof. See [4] on page 104-105. ■

What this tell us is that in complex manifolds, we have a counterpart to de Rham cohomology, the

Dolbeaut cohomology, which we have defined in 2.3. We will analyse the relationship between the

two in section 3.3.

Example 3.1.1. If f is a function on M then in local coordinates:

df =
∑
j

(
∂f

∂xj
dxj +

∂f

∂yj
dyj

)

=
∑
j,k

((
∂zk
∂xj

∂f

∂zk
+
∂zk
∂xj

∂f

∂zk

)
1

2
(dzj + dzj)

)
+
∑
j,k

((
∂zk
∂yj

∂f

∂zk
+
∂zk
∂yj

∂f

∂zk

)
1

2i
(dzj − dzj)

)

=
∑
j

((
∂f

∂zj
+
∂f

∂zj

)
1

2
(dzj + dzj) +

(
∂f

∂zj
− ∂f

∂zj

)
1

2
(dzj − dzj)

)

=
∑
j

(
∂f

∂zj
dzj +

∂f

∂zj
dzj

)
.

Theorem 3.1.2 (Newlander-Nirenberg, 1957). Let (M,J) be an almost complex manifold. Let N

be the Nijenhuis tensor. Then:

M is a complex manifold ⇐⇒ J is integrable

⇐⇒ N ≡ 0

⇐⇒ d = ∂ + ∂

⇐⇒ ∂
2
= 0

⇐⇒ π2,0d|Ω0,1 = 0
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Proof. The proof can be found on the original paper [5] and also [4]. ■

3.2 Kähler forms

Definition 3.2.1. A Kähler manifold is a symplectic manifold (M,ω) equipped with an integrable

compatible almost complex structure. The symplectic form is then called a Kähler form.

A natural question that one might ask is what restrictions does this add to the symplectic form. As

it turns out, quite a lot:

Proposition 3.2.1. Locally, the Kähler form is given by

ω =

n∑
j,k=1

i

2
hjkdzj ∧ dzk,

where, at each point of the chart, hjk is a positive-definite hermitian matrix.

Proof. See [4] on page 110-111. ■

Definition 3.2.2. Let M be a complex manifold. A function ρ ∈ C∞(M ;R) is strictly plurisubhar-

monic (s.p.s.h) if on each local coordinates U, z1, ..., zn the matrix
(

∂2ρ
∂zj∂zk

(p)
)

is positive definite

at all p ∈ U .

Proposition 3.2.2. Let M be a complex manifold and ρ ∈ C∞(M ;R) be s.p.s.h. Then

ω =
i

2
∂∂ρ

is Kähler. ρ is then called a (global) Kähler potential.

Proof. Because M is complex, ω being closed comes trivially. It is also immediate to check that

ω is real, as it is equal to its conjugate.

J∗ω(v, u) =
i

2

∑
j,k

∂2ρ

∂zj∂zk
dzj ∧ dzk(Jv, Ju) =

i

2

∑
j,k

∂2ρ

∂zj∂zk
i(−i)dzj ∧ dzk(v, u) = ω(v, u)

Now because ρ is s.p.s.h we have that hj,k = ∂2ρ
∂zj∂zk

which is positive definite. ■

Example 3.2.1. Take M = Cn with the usual coordinates zj = xj + iyj . Let

ρ(z1, ..., zn) =
∑

zjzj = |z|2

Then it is easy to see that hj,k = ∂2ρ
∂zj∂zk

= δjk, thus it is s.p.s.h and the Kähler form associated to
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it is:

ω =
i

2
∂∂ρ =

i

2

∑
j,k

δjkdzj ∧ dzk =
∑
j

dxj ∧ dyj

which is the standard symplectic form.

Theorem 3.2.1. Let ω be a closed real-valued (1, 1)-form on a complex manifold M and let p ∈M .

Then there exist a neighborhood U of p and ρ ∈ C∞(U ;R) such that on U .

ω =
i

2
∂∂ρ

Proof. The proof can be found on [6]. ■

The function ρ is then called a (local) Kähler potential.

Proposition 3.2.3. Let M be a complex manifold, ρ ∈ C∞(M ;R) s.p.s.h., X a complex submani-

fold, and i : X ↪→M the inclusion map. Then i∗ρ is s.p.s.h..

Proof. See, for instances, page 113-114 in [4]. ■

Corollary 3.2.1. Any complex submanifold of a Kähler manifold is Kähler.

Definition 3.2.3. Let (M,ω) be a Kähler manifold andX a complex submanifold, with the inclusion

map i : X ↪→M . Then (X, i∗ω) is called a Kähler submanifold.

3.3 Hodge theory

Now, we have theorem 3.1.1, what may we say more about Dolbeaut cohomology?

Theorem 3.3.1 (Hodge). On a compact Kähler manifold (M,ω) the Dolbeaut cohomology groups

satisfy

Hk
dR(M ;C) ∼=

⊕
l+m=k

H l,m
Db (M) (3.1)

with H l,m ∼= Hm,l. In particular, the spaces H l,m
Db (M) are finite-dimensional.

The decomposition in 3.1 is known as the Hodge decomposition. In order to do this decomposi-

tion, Hodge identified the spaces of cohomology classes of forms with the space of actual forms,

by choosing the representative in each class that solves the Laplace equation, which is known as

the harmonic representative.

As such, we will need to define what is the Laplacian of a form. For that we will need to use the

Hodge ⋆-operator.
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Definition 3.3.1. Consider a vector space V with inner product ⟨·, ·⟩. Let e1, ..., en be a positively

oriented orthonormal basis for V and ω = e1 ∧ ... ∧ en. Then the star operator is the unique linear

operator

⋆ : Λk(V ) → Λn−k(V )

such that for all α, β ∈ Λk(V )

α ∧ ⋆β = ⟨α, β⟩ω

It also follows that ⋆⋆ = (−1)k(n−k).

Example 3.3.1. If V = R2 then

⋆(1) = dx ∧ dy ⋆ dx = dy

⋆(dx ∧ dy) = 1 ⋆ dy = −dx.

Now consider a Riemannian manifold M . Then we may take V = TpM , p ∈ M and ⟨·, ·⟩ the

riemannian metric. Then, assuming that the manifold is compact, one can define the following

inner product on the forms ⟨·, ·⟩ : Ωk × Ωk → R:

⟨α, β⟩ =
∫
M

α ∧ ⋆β

Definition 3.3.2.

δ = (−1)n(k+1)+1 ⋆ d⋆ : Ωk(M) → Ωk−1(M)

∆ = dδ + δd : Ωk(M) → Ωk(M)

The operator δ is knows as the codifferential, and ∆ the Laplacian (or sometimes de Laplacian-

Beltrami) operator.

Example 3.3.2. We will now check that the Laplacian defined above is the usual Laplacian for

function in Rn.

Let f : Rn → R. Then:

δf = (−1)n+1 ⋆ d ⋆ f = (−1)n+1 ⋆ d(fdx1 ∧ ... ∧ dxn) = 0
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On the other hand

δdf = (−1)2n+1 ⋆ d ⋆ df

=

n∑
i=1

(−1) ⋆ d ⋆
∂f

∂xi
dxi

=

n∑
i=1

(−1) ⋆ d

(
∂f

∂xi
⋆ dxi

)

=

n∑
i=1

(−1) ⋆ d

(
∂f

∂xi
(−1)i−1dx1 ∧ ... ∧ dx̂i ∧ ... ∧ dxn

)

=

n∑
i,j=1

(−1) ⋆
∂2f

∂xi∂xj
(−1)i−1 dxj ∧ dx1 ∧ ... ∧ dx̂i ∧ ... ∧ dxn︸ ︷︷ ︸

=(−1)j−1δi,jdx1∧...∧dxn

=

n∑
i

(−1)
∂2f

∂x2i

= ∆f.

Proposition 3.3.1. δ is the adjoint of d with respect to the above inner product.

Proof.

⟨α, δβ⟩ =
∫
M

α ∧ ⋆δβ =

∫
M

α ∧ (−1)kd ⋆ β =

∫
M

−d(α ∧ β) + dα ∧ ⋆β =

∫
M

dα ∧ ⋆β = ⟨dα, β⟩.

■

In a similar fashion, we may define the adjoint of ∂ and ∂, ∂⋆ and ∂
⋆
, respectively, which are

defined by the following proposition:

Proposition 3.3.2.

⟨∂α, β⟩ = ⟨α,− ⋆ ∂ ⋆ β⟩

⟨∂α, β⟩ = ⟨α,− ⋆ ∂ ⋆ β⟩

Proof. See, for instances, page 82-83 in [6]. ■

Proposition 3.3.3. The Laplacian is self-adjoint and ⟨∆α, α⟩ = |dα|2 + |δα|2

Proof.

⟨α,∆β⟩ = ⟨α, dδβ⟩+ ⟨α, δdβ⟩ = ⟨δα, δβ⟩+ ⟨dα, dβ⟩ = ⟨dδα, β⟩+ ⟨δdα, β⟩ = ⟨∆α, β⟩

It follows form the above computations that ⟨∆α, α⟩ = |dα|2 + |δα|2. ■
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The Harmonic k-forms are the elements of Hk := {α ∈ Ωk : ∆α = 0}. Notice that

∆α = 0 ⇐⇒ dα = δα = 0

Thus they define a de Rham cohomology class. The case when M is Kähler, it can be shown that

∆ = 2(∂∂
∗
+ ∂

∗
∂) (for instances, see pag 106 in [6] or page 103 in [7]) and ∆ : Ωl,m → Ωl,m.

Hence

Hk =
⊕

l+m=k

H l,m

Theorem 3.3.2 (Hodge). Every Dolbeault cohomology class on a compact Kähler Manifold (M,ω)

possesses a unique harmonic representative

H l,m ∼= H l,m
Db (M)

Thus H l,m are finite dimensional. Thus, we have the following isomorphisms:

Hk
dR(M) ∼= Hk ∼=

⊕
l+m=k

H l,m ∼=
⊕

l+m=k

H l,m
Db (M)

Proof. See [6] on page 116 for the proof. ■

There is also have the following useful decomposition.

Theorem 3.3.3 (Hodge-Dolbeault decomposition). Let M be a compact kähler manifold. Then

Ωl,m(M) = H l,m(H)⊕ ∂Ωl,m−1(M)⊕ ∂
∗
Ωl,m+1(M)

Proof. See, for instances, page 108 in [7]. ■

We also have a version of the Poincaré lemma

Lemma 3.3.4 (∂ lemma). Let M be a complex manifold and let ω ∈ Ω0,1(M) such that ∂ω = 0.

Then, for all p ∈ M there is a open neighborhood U of p and ϕ ∈ C∞(U ;C) such that ω|U = ∂ϕ

(i.e. ω is locally ∂-exact).

Proof. See, for instances, [6] on page 25-27. ■

Lemma 3.3.5 (Global i∂∂ lemma). Let M be a complex manifold and let ω be an exact, real, type

(1, 1) form on M . Then, there is ϕ ∈ C∞(M) such that ω = i∂∂ϕ.

Proof. The proof can be found in [8] on page 9. ■
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Chapter 4

Hamiltonian Mechanics

In this chapter we will explorer an application of symplectic geometry. In particular we will study

classical mechanics.

4.1 Hamiltonian Vector fields

Let (M,ω) be a symplectic manifold and H ∈ C∞(M ;R). Then its exterior derivative dH is a

1-form. Because ω is symplectic and therefore nondegenerate, there is a unique vector field XH

such that

ιXH (ω) = dH.

We then call XH the hamiltonian vector field and we call H an hamiltonian function. In

particular, we may say that XH is a hamiltonian vector field if ιXHω is exact.

If XH is complete, then we may define the usual flow of XH as usual.

ϕtXH :M →M, t ∈ Rϕ
0
XH

= idM
dϕtXH
dt = XH(ϕtXH )

Proposition 4.1.1. The flow is a symplectomorphism ∀t ∈ R.

Proof. Notice that for t = 0 then this is trivially true. Therefore we will show that (ϕtXH )
∗ω is
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constant ∀t ∈ R, which will then imply the result.

d

dt
(ϕtXH )

∗ω =
d

ds |s=0
(ϕt+sXH

)∗ω = (ϕtXH )
∗ d

ds |s=0
(ϕsXH )

∗ω = (ϕtXH )
∗LXHω

= (ϕtXH )
∗(dιXHω + ιXH dω︸︷︷︸

=0

)

= (ϕtXH )
∗(ddH)

= 0.

■

An important thing to note is that due to the fact that ω is a symplectic form, we have that:

LXHH = ιXHdH = ιXH ιXHω = ω(XH , XH) = 0

Which shows that hamiltonian vector fields preserve their hamiltonian functions. Hence:

(ϕtXH )
∗H = H, ∀t ∈ R

In the same way, we say that X is a symplectic vector field if ιXω is closed. Note that because

d2 = 0, every hamiltonian vector field is symplectic. Locally on a contractible open set every

symplectic vector field is also hamiltonian. As a consequence, if H1
dR(M) = 0 we have that every

symplectic vector field is hamiltonian.

Notice that proposition 4.1.1 is still valid for symplectic vector fields and its proof is essentially the

same.

Proposition 4.1.2. For any form α,

ι[X,Y ]α = LXιY α− ιY LXα.

Proof. Notice that we only have to check for functions and 1-forms. Let f ∈ C∞. Then ι[X,Y ]f =

LXιY f = ιY LXf = 0.

Let now α be a one form. Then

LXιY α = X · α(Y )

ιY LXα = ιY dα(X) + ιY ιXdα

= (dα(X))(Y ) + dα(X,Y )

= Y · α(X) +X · α(Y )− Y · α(X)− α[X,Y ]

= X · α(Y )− α[X,Y ]
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Thus

LXιY α− ιY LXα = X · α(Y )−X · α(Y ) + α[X,Y ]

= α[X,Y ]

= ι[X,Y ]α

■

Proposition 4.1.3. If X and Y are symplectic vector fields on (M,ω), then [X,Y ] is hamiltonian

with hamiltonian function ω(Y,X).

Proof. See page 130 in [4]. ■

Definition 4.1.1. Let (M,ω) be a symplectic manifold. Then we define the Poisson bracket of

two functions f, g ∈ C∞(M ;R) to be

{f, g} = ω(Xf , XG).

Proposition 4.1.4.

X{f,g} = −[Xf , Xg].

Proof. Notice that Xf and Xg are hamiltonian vector fields. Therefore by proposition 4.1.3 we

have that

ι[Xf ,Xg ]ω = dω(Xg, Xf ).

And

ιXω(Xf ,XG)
ω = dω(Xf , Xg) = −dω(Xg, Xf ) = −ι[Xf ,Xg ]ω

Thus X{f,g} = Xω(Xf ,XG) = −[Xf , Xg]. ■

Proposition 4.1.5. The Poisson bracket satisfies the Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Proof. See page 579 in [9]. ■
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4.2 Actions

LetM be a manifold and letX be a complete vector field inM . Then we define ρt :M →M, t ∈ R

the flow of X. We then call {ρt; t ∈ R} the one-parameter group of diffeomosphisms of M and

denote ρt = exp(tX).

Let G be a Lie group. Then a representation of G on a vector space V is a group homomorphism

ϕ : G→ GL(V ). We will denote the left action of a Lie group G on M by

ψ : G→ Diff(M), g 7→ ψg

where ψg :M →M is a bijection such that ψg(p) = g · p. Similarly, the evaluation map associated

to ψ will be represented as

evψ :M ×G→M, (g, p) 7→ ψg(p).

The action ψ is smooth if the evaluation map is smooth.

Note: We will only consider left actions, although right-actions are defined in the exact same way.

Definition 4.2.1. An action ψ is a symplectic action if

ψ : G→ Sympl(M,ω) ⊂ Diff(M), g 7→ ϕg.

That is, G acts by symplectomorphisms.

Definition 4.2.2. Let ψ be a symplectic action of S1 or R on a symplectic manifold (M,ω). Then

we say that ψ is an hamiltonian action if the vector field generated by ψ is hamiltonian.

Note: in the case of G = Tn = S1 × ...× S1 the action is hamiltonian when the restriction to each

component is hamiltonian and the hamiltonian function is preserved by the action of “the rest of

G”. A similar reasoning may be done when G is a product of S1 and R.

Consider now the action of a Lie group G on itself by conjugation, that is,

ψ : G→ Diff(G)

g 7→ ψg, ψg(g̃) = g · g̃ · g−1.

We then take the derivative of ψg at the identity to be the map Adg : g → g, where g is the Lie

algebra associated to G. Letting g vary, we thus obtain the adjoint representation (or the adjoint

action) of G on g:

Ad : G→ GL(g) g 7→ Adg
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Let ⟨·, ·⟩ be the natural pairing of g∗ and g

⟨·, ·⟩ : g∗ × g → R

(ξ, g) 7→ ξ(g)

Thus we may naturally define the Ad∗
gξ to be such that ⟨Ad∗

gξ, g̃⟩=⟨ξ,Adg−1 g̃⟩. In the same way we

define the coadjoint representation (or the coadjoint action) of G on g:

Ad∗ : G→ GL(g∗)

g 7→ Ad∗
g

Note: the inverse on the definition of Ad∗
gξ is such that we obtain a left representation, the following

proposition may show why this makes sense.

Proposition 4.2.1. Ad∗
g ◦ Ad∗

h = Ad∗
gh

Proof.

⟨Ad∗(g × h)(ξ), g̃⟩ = ⟨Ad∗
g×h(ξ), g̃⟩

= ⟨ξ,Ad∗
h−1×g−1 g̃⟩

= ⟨ξ,Ad∗
h−1g−1g̃g⟩

= ⟨Ad∗
hξ,Ad∗

g−1 g̃⟩

= ⟨Ad∗
ghξ, g̃⟩

= ⟨Ad∗(gh)ξ, g̃⟩.

■

We will now define what it means for an action of a general group to be hamiltonian. For that we

have to use the “moment map”.

Definition 4.2.3. Let (M,ω) be a symplectic manifold and G a Lie group with Lie algebra g. Then

the action ψ is hamiltonian if there is a map

µ :M → g∗

such that:

1. For each X ∈ g, let:

• µX :M → R, µX(p) := ⟨µ(p), X⟩, be the component of µ along X,
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• X# be the vector field on M generated by the one-parameter subgroup {exp(tX); t ∈

R} ⊂ G.

Then µX is a hamiltonian function for the vector field X#, i.e.

ιX#ω = dµX .

2. µ is equivariant with respect to the given action ψ of G on M and the coadjoint action Ad∗ of

G on g∗:

µ ◦ ψg = Ad∗
g ◦ µ, ∀g ∈ G.

Then, (M,ω,G, µ) is then called the hamiltonian G-space and µ is a moment map.

Example 4.2.1. If we take G = S1 then the Lie algebra is g ∼= R and thus g∗ ∼= R. Then the

moment map µ must satisfy the following:

1. The generator of g is 1 thus we take X = 1 and as such µX = µ and X# is the usual vector

field associated to the action of S1 on M . Hence dµ = ιX#ω.

2. µ is invariant because LX#µ = ιX#dµ = 0.

The moment map may be used for “symplectic reduction”. Borrowing from physics, we may realize

a system of n particles as a symplectic manifold. Thus if there is a k dimensional symmetry group

free action on the mechanical system, then the degrees of freedom for the position and momenta

of particle may be reduced by k. This is the spirit of the symplectic redution. One of the most well

known theorem about reduction is the following

Theorem 4.2.1 (Marsden-Weinstein-Meyer). Let (M,ω,G, µ) be a hamiltonianG-space for a com-

pact Lie group G. Let ι : µ−1(0) ↪→ M be the inclusion map. Assume that µ−1(0) is smooth and

that G acts freely on µ−1(0). Then

1. the orbit space Mred = µ−1(0)/G is a manifold,

2. π : µ−1(0) →Mred is a principal G-bundle, and

3. there is a symplectic form ωred on Mred satisfying ι∗ω = π∗ωred.

The pair (Mred, ωred) is called the reduction of (M,ω) with respect to G,µ.

Proof. See [4] on pag 171. ■
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Chapter 5

Imaginary time flows

In this chapter we will study flows of vector fields with “imaginary time”. We will first provide a

motivating example and then will develop the general case .

Example 5.0.1. Recall that in example 2.2.1 we showed that R2 has a Kähler structure. Consider

now the hamiltonian function h = y2

2 . Then, it follows that the associated hamiltonian vector field

is

Xh = y
∂

∂x

Let ϕtXh be the flow of Xh, then it must satisfy the following equation:

ϕ̇tXh = Xh(ϕ
t
Xh

)

It then follows that the flow is given by

ϕtXh(x, y) = (yt+ x, y)

Recall that, given real-analytic conditions, the flow of a vector field may also be denoted by etXh .

Consider now the following family of coordinates in Rn:

zt = etXh · z

Where z is the usual complex coordinates. Then we see that:

zt = etXh · z = z(yt+ x, y) = yt+ x+ iy.
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Then if we take t = is, for some s ∈ R, we get that

zis = x+ i(s+ 1)y.

Then in these new coordinates we get that

x =
zis + zis

2
, y =

zis − zis
2i(s+ 1)

.

Thus we also obtain coordinates on the tangent space given by

∂

∂zis
=

1

2

∂

∂x
+

1

2i(s+ 1)

∂

∂y
,

∂

∂zis
=

1

2

∂

∂x
− 1

2i(s+ 1)

∂

∂y

In order to find the associated complex structure Js we recall that on section 2.3 we saw that the
∂
∂z is the eigenvector associated to the eigenvalue i and that ∂

∂z is the eigenvector associated to

the eigenvalue −i. Hence we get that :

Js

(
∂

∂zis

)
= i

∂

∂zis
⇐⇒

Js
(
∂
∂x

)
= 1

(s+1)
∂
∂y

Js

(
∂
∂y

)
= −(s+ 1) ∂∂x

.

Thus

Js =

 0 −(s+ 1)

1
(s+1) 0


And it is straightforward to check that J2

s = −Id. Now we check that Js is compatible with ω. Let

u, v ∈ TpR2 be given by:

u = a
∂

∂x
+ b

∂

∂y
Js(u) = −b(s+ 1)

∂

∂x
+

a

s+ 1

∂

∂y

v = c
∂

∂x
+ d

∂

∂y
Js(v) = −d(s+ 1)

∂

∂x
+

c

s+ 1

∂

∂y

1.

ω(u, Js(u)) =
a2

s+ 1
+ b2(s+ 1)

Which is positive if s > −1 and is only 0 if u = 0.

2.

ω(Js(u), Js(u)) = ad− cb = ω(u, v)
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Thus it is compatible and the associated Riemannian metric is

gs = ω(u, Js(v)) =
ac

s+ 1
+ bd(s+ 1) =

1

s+ 1
dx2 + (s+ 1)dy2.

Thus we see that (ω, Js, gs) is Kähler, for all s > −1. In particular if we take s → ∞ we see that

the metric collapses in the x-axis while it diverges in the y-axis, that is, there is metric collapse of

R2 into the vertical axis.

We also see that (R2, Js) and (R2, J0) are biholomorphic. Indeed consider:

φs : (R2, Js) → (R2, J0)

(x, y) 7→ (x, (s+ 1)y)

Then

dφs =

1 0

0 (1 + s)


Hence:

dφs ◦ Js = J0 ◦ dφs

i.e. the map is a holomorphism.

Alternatively, we can see that when we changed the complex structure what we are doing is

changing which functions are holomorphic. In particular, if f is an holomorphism with respect to

the usual complex structure, then f(φs) is an holomorphism with respect to Js:

(R2, Js) (R2, J0)

C

φs

f(zs)
f(z)

Figure 5.1: Diagram of the relationship between (R2, Js) and (R2, J0)

This example is the motivation for this all chapter, as we will generalise this concept to manifolds.

5.1 Lie Series

Definition 5.1.1. Let M be a compact complex manifold, S be a real analytic tensor field and X

be a real analytic vector field on M . Then we define the exponential of τLX to be the lie Series:

eτLXS =

∞∑
k=0

τk

k!
LkXS, τ ∈ C.

Theorem 5.1.1. For all S real analytic tensor field and X real analytic vector field, there exists a
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T such that if t ∈ R and |t| < T then etLXS converges and

etLXS = (ϕtX)∗S.

Proof. See lemma 2.1 and theorem 3.1 in [10], or page 15-16 in [8]. ■

Theorem 5.1.2. For all S real analytic tensor field and X real analytic vector field, there exists a

T such that if |τ | < T, τ ∈ C then eτLXS converges.

Proof. Notice that first eτLXS converges iff
∑∞
k=0

τk

k! L
k
XS(X1, ..., Xm, ω1, ..., ωn) converges ∀p ∈

M and Xi ∈ TpM, i ∈ {1, ...,m} and ωj ∈ T ∗
pM j ∈ {1, ..., n}. In particular, by theorem 5.1.1 we

know that if t is real then there is T such that it converges. Let R be the radius of convergence of

the series. Then we must have R ≥ T and as such
∑∞
k=0

τk

k! L
k
XS(X1, ..., Xm, ω1, ..., ωn) converges

for all |τ | < T . ■

Proposition 5.1.1. Suppose that all the series below converges, then for τ ∈ C

• If S,R are tensor fields then:

eτLX (S ⊗R) = eτLX (S)⊗ eτLX (R)

• If S is tensor field type (m,n) then:

eτLX (S(X1, ..., Xm, ω1, ..., ωn)) = eτLXS(eτLXX1, ..., e
τLXXm, e

τLXω1, ..., e
τLXωn)

• if Y,Z ∈ X(M) then:

eτLX [Y,Z] = [eτLXY, eτLXZ].

Proof. Notice that if we take τ to be real, then eτLX is simply (ϕtX)∗, i.e. the pullback, and the

above properties hold for the pullback. Then using analytic continuation on both sides of the

equations yields the desired result. Alternatively, one could easily use the definition to prove the

above. ■

Theorem 5.1.3 (Mourão and Nunes). Let (M,J0) be a compact complex manifold and X be a

real analytic vector field on M . Then there is a T > 0 such that ∀τ ∈ B(0, T ), there exists an

integrable almost complex structure Jτ such that:

1. For p ∈ M and (Uα, z10 , ..., zn0 ) J0 holomorphic coordinates of p then there exists an open

neighborhood Vα,p of p such that:

• p ∈ Vα,p ⊂ Vα,p ⊂ Uα;
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• Vα,p is compact;

• the series zjτ := eτX · zj0 are uniformly convergent on Vα,p;

• (Vα,p, z
1
τ , ..., z

n
τ ) is Jτ holomorphic coordinates of p.

2. There exists a unique biholomorphism ϕτ : (M,Jτ ) → (M,J0) such that, using the same

sets as in (1), ϕτ (Vα,p) ⊂ Uα and zjτ = zjo ◦ ϕτ .

Proof. See [10] for a proof. ■

Note that by conjugation we have that eτX · zj0 = zτ
j = z0

j ◦ ϕτ . Notice also that ϕτ depends

also on the original complex structure J0, although for sake of simplicity we will omit the complex

structure , unless it is not obvious from the context. In fact, this implies that in general ϕτ is not a

flow as ϕτ+σ ̸= ϕτ +ϕσ, unless τ, σ ∈ R. In general, we have the following commutative diagram:

(M,Jτ+σ) (M,Jσ)

(M,Jτ ) (M,J0)

ϕτ+σ,J0

ϕτ,Jσ

ϕσ,Jτ ϕσ,J0

ϕτ,J0

Figure 5.2: Commutative diagram of the relationships induced by the complex time flow.

Proposition 5.1.2. Let (M,ω0, J0, g0) be a compact Kähler manifold, with all the structures ana-

lytic and let h an analytic function on M and Xh the hamiltonian vector field associated to it. Let

f be an analytic function on M . If eτXh · f is well-defined, then its hamiltonian function is given by

eτLXh ·Xf .

Proof. See on page 19 in [8]. ■

Corollary 5.1.1. Let (M,ω0, J0, g0), h and Xh as above. Let (U, z1, ..., zn) be a J0 complex coor-

dinate chart on M and let (V, z1τ , ..., znτ ) be a Jτ complex coordinate chart defined by (U, z1, ..., zn)

as in theorem. Then on V we have:

eτLXhXzj = Xzjτ
, eτLXhXzj = Xzjτ

.

In summary, given a complex structure (M,ω0, J0) we obtain a new complex structure (M,ω0, Jτ ).

One might ask if this new structure is a Kähler. The answer follows from this theorem:

Theorem 5.1.4 (Mourão and Nunes). Let (M,J0, ω0, g0) be a compact Kähler manifold. with J0, ω0

and g0 be real analytic. Let h ∈ Can(M), then there is a T > 0 such that:
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1. For all t ∈ B0(T ) (M,Jτ , ω0, gτ ) is a Kähler manifold, where Jτ is the complex structure

obtained from theorem 5.1.3 to (M,J0, ω0, g0) with the vector field Xh and setting gτ (·, ·) :=

ω0(·, Jτ ·).

2. For all p ∈M there exists:

• (Uα, z10 , ..., zn0 ) J0- holomorphic coordinates neighborhood of p;

• k0 : Uα → R a local Kähler potential for (M,ω0, Jτ ):

• Vα,p open set such that:

– p ∈ Vα,p ⊂ Vα,p ⊂ Uα;

– Vα,p is compact;

– for all τ ∈ B0(T ), φτ (Vα,p) ⊂ Uα;

– for all τ ∈ B0(T ), kτ is defined by:

θ :=
i

2
(∂0 − ∂0)k0

αt :=

∫ t

0

esXh(θ(Xh))ds

ατ := unique complex analytic continuation of αt

ψτ :=
−i
2
eτ Xh · k0 + τh− ατ

kτ := −2Imψτ

is well defined on Vα,p and is a local Kähler potential for (M,ω0, Jτ ).

Proof. The proof can be found in [10] theorem 4.1 ■

5.2 The space of Kähler metrics

Definition 5.2.1. The space of Kähler metrics on M in the cohomology class of [ω0] is

H(ω0, J0) := {φ∗ω0; φ ∈ Diff(M), [φ∗ω0] = [ω0], (M,J0, φ
∗ω0, g0) is Kähler }

Definition 5.2.2. The space of Kähler potentials on M with base point [ω0] is

K(ω0, J0) := {ϕ ∈ C∞(M); g̃(·, ·) := (ω0 + i∂0∂0ϕ)(·, J0·) is positive definite }

One important remark about this spaces comes from an application of the ∂∂-lemma 3.3.5 . By

this lemma, given any other Kähler metric that is in the same cohomology class of [ω0] can be
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written using a global Kähler potential. Due to this we can regard H(ω0, J0) as being the quotient

of K(ω0, J0) by constants:

H(ω0, J0) ∼= K(ω0, J0)/R ∼=
{
ϕ ∈ C∞(M); g̃(·, ·) := (ω0 + i∂0∂0ϕ)(·, J0·) ≻ 0,

∫
M

ϕωn0 = 0

}

Moreover, H(ω0, J0) can be regarded as an infinite dimensional manifold. In particular, its tangent

vector at φ0, denoted by δφ0 is a function on M . Indeed, consider the following curve in H(ω0, J0):

c : I ⊂ R → H(ω0, J0)

t 7→ ϕt ∈ C∞(M)

Where ϕt is a family of representatives of the classes such that
∫
M
ϕtω

n
0 = 0 so that c is smooth

map. Then we define the tangent space

δφ0 :=
d

dt
|t=0ϕt ∈ C∞(M).

Additionally, H(ω0, J0) can be equipped with a Riemannian metric called the Mabuchi metric

defined as:

⟨δ1ϕ, δ2ϕ⟩ =
∫
M

1

n!
(δ1ϕ · δ2ϕ)ωϕ ∧ ... ∧ ωϕ

where ωϕ = ω0 + i∂0∂0ϕ. It can also be shown that it admits a unique Levi-Civita connection. As

such, a curve {ϕt}t∈R is a geodesic iff

ϕ̈t =
1

2
||∇g̃t ϕ̇t||2g̃t (5.1)

Where g̃(·, ·) := (ω0 + i∂0∂0ϕt), || · ||g̃t is its norm and ∇g̃t the gradient with respect to this norm.

We have now seen two different ways one may change the Kähler of a manifold: fixing ω0 and

change J0 to Jτ ; or fixing J0 and change ω0 to ωτ . How different are these two approaches? As

we will see next, they are equivalent. Consider (M,J, ω) a Kähler manifold and let ϕ : M → M

be a diffeomorphism. Then it can be seen that (M,ϕ∗J, ϕ∗ω) is also a Kähler manifold. Then

consider the following, starting with a Kähler manifold (M,J0, ω0), we can obtain Kähler structure

(Jτ , ω0), just like before. We also obtain a biholomorphism ϕτ : (M,Jτ ) → (M,J0). As such,

we define ωτ = (ϕ−1
τ )∗ω0. Therefore, we can regard ϕτ : (M,Jτ , ω0) → (M,J0, ωτ ) as a Kähler

isomorphism. Thus (Jτ , ω0) and (J0, ωτ ) are isomorphic Kähler structures.

We are now ready to see an example of geodesic in H(ω0, J0). Consider a Kähler manifold

(M,J0, ω0) and choose h ∈ Can(M) and letXh be the associated hamiltonian vector field. Choose

T as in theorem 5.1.4, and take τ = it ∈ B0(T ), where t ∈ R. Then, we obtain new Kähler

structures (ω0, Jit) for each t ∈ (−T, T ). As such, we obtain a path {(ω0, Jit)}t∈(−T,T ) which has
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an isomorphic path {(ωit, J0)}t∈(−T,T ). Our goal for the remainder of this section is to show that

the path {(ωit, J0)}t∈(−T,T ) is a geodesic.

First, we fix our symplectic structure ω0 and show that ωit ∈ H(ω0, J0) for all t ∈ (−T, T ).

Proposition 5.2.1. ωit ∈ H(ω0, J0) for all t ∈ (−T, T ).

Proof. By definition, ϕ∗itωit = ω0. Now using the fact that ϕit is homotopic to the identity we obtain:

[ω0] = [ϕ∗itωit] = ϕ∗it[ωit] = [ωit].

■

This result allows us to find and φt such that ωit = ω0 + i∂0∂0φt, for each t ∈ (−T, T ). Now we

want to get a better grip on what these φit are. Writing ω0 is terms of the Kähler potentials we get:

ω0 = i∂0∂0k0 ω0 = i∂it∂itkit

From which the following equation follows (using the notation from the above proof):

i∂it∂itkit = ω0 = Φ∗
tωit = iΦ∗

t (∂0∂0(k0 + φt)) = i∂0∂0((k0 + φt) ◦ Φt)

Therefore, we are tempted to define φt = kit ◦ Φ−1
t − k0, and thus, we need to show that is

independent of the choice of k0.

Proposition 5.2.2. Let p ∈ M and let U and V be neighborhoods of ϕ−1
τ (p) is M just like in

theorem 5.1.4 with the associated Kähler potentials k0 : U → R and kτ : V → R. Then, in a

neighberhood W = ϕ−1
τ (V ) of p we define:

φt|W = kit ◦ Φ−1
t − k0.

Then, φt is well defined and ωit = ω0 + i∂0∂0φt.

Proof. See [8] on page 27. ■

Theorem 5.2.1 (Mourão and Nunes). Let φt be defined as above. Then φt is a geodesic, i.e.

φ̈t =
1

2
||∇g̃it φ̇t||2g̃it

As such {(ωit, J0)}t∈(−T,T ) is a geodesic.

Proof. See [10] proposition 9.1. ■
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Chapter 6

Prequantization

In this Chapter we will explore the first step into quantization, called prequantization. In the first

section we will develop some basic concepts of line bundles, and in particular we will arrive at the

integrality condition, which will be fundamental for quantization. Then in the next section we will

define what an hermitian and holomorphic line bundles are. After that we will present the concept

of prequantization.

6.1 Integrality condition

Let M be a smooth manifold and be L
π−→ M be a line bundle with connection ∇. Let α be the

connection form of ∇, Ω be the curvature form of (L,∇).

Locally, in a trivialization chart (U,ψ), the connection is of the form:

∇Xs = (X · f − iα(X)f)s1,

where s = fs1, f ∈ C∞(U), p ∈ U ⊂ M s1(p) = ψ−1(p, 1), and X ∈ X(U). Moreover, let F∇ be

the curvature operator defined as follows:

F∇ : X(U)× X(U) → End(Γ(U,L))

(X,Y ) 7→ i([∇X ,∇Y ]−∇[X,Y ])

where U is an open set of M . Consider the curve γ : I := [a, b] → M . Naturally, one may want to

lift this curve to the line bundle. This will ultimately lead us to a very important result.

We say that Γ : I → L is parallel ( or horizontal), if there is a section s and a vector field

X ∈ X (M) such that Γ ⊂ s(M)
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1. X = dπ(ξ) on π(Γ(I)) and ξ is a tangent vector to Γ,

2. ∇ξs = 0.

It turns out that any smooth curve γ has a unique parallel curve γ̃, when we fix a base point, that

is, for each xa ∈ Lγ(a), satisfying π ◦ γ̃ = γ. This can be seen by noting that γ can be covered by

a finite {Uj} trivializations. In each of these trivilizations, the above conditions amount to find γ̃

given by the following formula

γ̃(t) = ψj(γ(t), z(t)),

where z : I → C× is the unique solution of

z′ = iαj(ξ)z, z(0) = z0. (6.1)

The uniqueness is guaranteed by Picard-Lindelöf theorem.

This in turn connects to the usual parallel transport along a curve γ:

Pγ : Lγ(a) → Lγ(t),

which associates each v ∈ Lγ(a) to γ̃(t) ∈ Lγ(t) starting at v.

Now observe the following, let S ⊂ M be an oriented compact surface. We may assume that

this surface is contained in some trivialization U (otherwise we would have to “cut” the surface

into finitely many surfaces until this happens) . Choose γ a curve such that it divides S into two

compact oriented surfaces S+ and S−. Then ∂S+ = ∂S− = γ. It then follows from equation 6.1

and Stokes theorem (and choosing and orientation) that the parallel transport is given by

Pγ = exp
(
i

∫
S+

Ω

)
= exp

(
−i
∫
S−

Ω

)
.

This then implies that

1 = exp
(
i

∫
S

Ω

)
,

hence we obtain that
1

2π

∫
S

Ω ∈ Z.

Theorem 6.1.1. Let (L,∇) be a line bundle with connection. Then the curvature Ω satisfies the

following Integrality condition:
1

2π

∫
S

Ω ∈ Z

for every oriented closed compact surface S ⊂M in M .
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6.2 Hermitian and Holomorphic Line Bundles

Definition 6.2.1. Let M be a manifold, L π−→ M be a complex line bundle. We say that L is a

Hermitian Line bundle if for all fibers Lp have a Hermitian metric that smoothly depends on the

base point. As such the Hermitian metric will be given by the map:

H :
⋃
p∈M

Lp × Lp → C.

We will denote this map by

H(p, p̃) = (p, p̃).

Example 6.2.1. Let L be the trivial line bundle, i.e. L = M × C. Then it has a natural Hermitian

metric H0 defined as follows:

H0((a, z1), (a, z2)) := z1z2.

This Hermitian metric is called the constant Hermitian metric and it follows if H is any other

Hermitian metric on L is given by

H((a, z1), (a, z2)) = H(a, a)H0((a, z1), (a, z2)) = H(a, a)z1z2.

It is also immediate to see that given a Hermitian line bundle such that L = M × C is isomorphic

to the trivial line bundle with constant Hermitian metric H0.

What about for general lines bundles? Does a hermitian metric always exists? The answer is

yes. Indeed by the above observation we see that locally this metric always exists. Then using

partitions of unity (in the exact same way that one proves that every manifold admits Riemannian

metric) the result follows.

Definition 6.2.2. Let M be a manifold, L π−→ M be a Hermitian line bundle. A connection ∇ on

L is said to be compatible with H if for all sections s, t ∈ Γ(U,L) and all vector fields X ∈ X(U),

U ⊂M open, we have:

LX(s, t) = (∇Xs, t) + (s,∇Xt).

In particular, such a connection is said to be Hermitian connection.

The above condition is an analogue to the condition for a connection to be compatible with the

metric. From now on, every time we refer to “A Hermitian Line bundle with connection”, we assume

that the connection is Hermitian. One important remark is

Suppose now that M is also a complex manifold. Naturally, we may want to consider now holo-

morphic line bundles, which are simply complex line bundles whose trivialization maps are holo-
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morphic. As a consequence, the transitions function are also going to be holomorphic. A section

s ∈ Γ(U,L) is said to be a holomorphic section if s is a holomorphic map. Let Γhol(U,L) be the

space of such sections.

Definition 6.2.3. Let M be a manifold, L π−→ M be a Holomorphic line bundle. A connection ∇

on L is said to be a holomorphic connection if on all trivializing holomorphic frames over U and

s ∈ Γhol(U,L), the map

X 7→ ∇Xs/s, X ∈ X(U) X holomorphic

is a holomorphic one-form.

Just like before, a connection ∇ on L is said to be compatible with holomorphic structure on

L if on all trivializing holomorphic frame U and s ∈ Γhol(U,L) the one form

X 7→ ∇Xs/s

is a (1,0)-form, that is, in local holomorphic coordinates

∇s = ds+
∑
j

fjdzjs,

where fj : U → C are holomorphic.

It follows, using basically the same proof for the connection, that every holomorphic line bundle

admits a holomorphic connection compatible with the holomorphic structure on L.

6.3 Prequantization

The concept of quantization comes from physics. The main idea is to obtain a “quantum system”

based on a mechanical systems. These mechanical systems are mathematically described as a

tuple (M,ω,H), where H is a scalar function. This tuple is known as a Hamiltonian system. Dirac

was the first to try to describe this idea, and according to him, the quantization is a C-linear map

from the space of smooth functions on the classical phase space to the space of linear operators

on some Hilbert space of “quantum states”, denoted by H,

q : C∞(M) → Op(H),

such that the following conditions are satisfied:

1. q(1) = idH,

2. q(f) is self-adjoint,

3. [q(f), q(g)] = iq({f, g}), ∀f, g ∈ C∞(M)
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4. If the set {f1, ..., fn} is complete, in the sense of if {g, fi} = 0,∀i ∈ {1, ..., n} then g is

constant, then the set {q(f1), ..., q(fn)} is also complete, in the sense that if [A, q(fi)] =

0 ∀i ∈ {i, ..., n} then A = aidH for some a ∈ H. This condition says that the representation

of H is irreducible.

As it turns out, this is too much to ask for, and even in the most elementary examples, such as

M = R2, there is no solution. So in general, one weakens the above requirements. However, this

general idea still leads to rich and interesting Hilbert spaces H. The main goal of this chapter is

to begin to see how one may obtain these spaces and to start to analise its structure.

Definition 6.3.1. A symplectic manifold (M,ω) is said to be quantizable if there exists a complex

line bundle L π−→M with connection ∇ such that Curv(L,∇) = −iω.

A prequantum Line Bundle (L,∇, H) on a symplectic manifold (M,ω) is a Hermitian line bundle

(L,H) together with a compatible connection ∇ such that Curv(L,∇) = −iω.

Recall that we have seen that the condition for a manifold to be quantizable is a topological one,

given by the integrality condition. Indeed, now is a good time to see an example.

Example 6.3.1. Let M = T ∗Q for some Q ⊂ Rn open, and consider the usual symplectic form

ω =
∑
i dpi ∧ dqi with tautological form α =

∑
i qidpi. Consider L to be the trivial line bundle with

connection form α. Then it follows that the curvature is −iω.

Moreover, consider any closed, compact and oriented surface S ⊂ M . Then by Stokes, it follows

that: ∫
S

ω = 0.

So (T ∗Q,ω) is quantizable. In fact, by the exact same reasoning, any sympletic manifold (M,ω)

such that ω is exact, is quantizable.

Theorem 6.3.1. Let (M,ω) be a symplectic manifold and consider (L,∇, H) a prequantum line

bundle over M . Then the following operator

q : C∞(M,C) → EndC(Γ(M,L))

f 7→ −i∇Xf + f

is C-linear and satisfies the following:

• q(1) = idΓ(M,L),

• [q(f), q(g)] = iq({f, g}).

This operator is known as the prequantum operator.

Proof. It trivially follows that q is C-linear and that q(1) = idΓ(M,L). So we only have to prove

the second condition. Now notice that given X,Y ∈ X(M) we have by definition of the curvature
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tensor:

i
(
[∇X ,∇Y ]−∇[X,Y ]

)
= F∇(X,Y ) = ω(X,Y )

Taking X = Xf and Y = Xg and by proposition 4.1.4, [Xf , Xg] = −X{f,g} we obtain

[∇Xf ,∇Xg ] = −i{f, g} − ∇X{f,g} .

Therefore

[q(f), q(g)] =
[
−i∇Xf + f,−i∇Xg + g

]
= (−i)2 [∇Xf∇Xg ]− if∇Xg + i ∇Xg ◦ f︸ ︷︷ ︸

LXg f+f∇Xg

+ig∇Xf − i ∇Xf ◦ g︸ ︷︷ ︸
LXf g+g∇Xf

= (−i)2
(
−i{f, g} − ∇X{f,g}

)
− i

−LXgf︸ ︷︷ ︸
{f,g}

+ LXf g︸ ︷︷ ︸
−{f,g}


= i
(
−{f, g} − i∇X{f,g} + 2{f, g}

)
= i
(
−i∇X{f,g} + {f, g}

)
= iq({f, g}).

■

In spirit of quantum mechanics, we want to represent our observables as operators on a Hilbert

space (the so called representation space of a model). As such, we replace Γ(M,L), the space

in which our operator acts, with a natural Hilbert space of sections.

Recall now that if (M,ω) is simplectic manifold, there is a natural volume form (called the Liouville

volume) given by

vol :=
ωn

n!
.

Definition 6.3.2. Let (M,ω) be a simplectic manifold and (L,H) an Hermitian line bunlde over it.

We define the space of square integrable smooth sections to be

Hpre :=

{
s ∈ Γ(M,L) :

∫
M

|s|2dvol <∞
}
,

where |s|2 = (s, s). This space is a pre-hilbert space with respect to the inner-product

⟨s, t⟩ :=
∫
M

(s, t)dvol,
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and its completion with respect to the norm

||s|| :=
(∫

M

|s|2dvol
)1/2

is the Hilbert space H(M,L).

We will write H for H(M,L) when (M,L) is clear from the context.

It is obvious that given f ∈ C∞(M,C) that q(f) is defined on the space of compact supported

sections (Γ0(M,L)), which in turn is a subspace of H, and in turn q(f)(Γ0(M,L)) ⊂ Γ0(M,L),

thus q(f) induces an operator whose domain contains Γ0(M,L).

Theorem 6.3.2. Whenever f ∈ C∞(M) is such that Xf is complete, then q(f) is an essentially

self-adjoint operator in H (that is, the closure of q(f) is a self-adjoint operator).

Proof. See proposition 7.16 in [11]. ■

Example 6.3.2. Let M = T ∗Q, where Q ⊂ Rn open and consider the usual symplectic form

ω =
∑
i dpi ∧ dqi with the tautological form α =

∑
i qidpi. Take L = M × C. Consider now f = pj

and g = qj . Then we get that

Xf =
∂

∂qj
, Xg = − ∂

∂pj
.

Thus

Pj := q(f) = −i∇Xf + f = −i
(
∂

∂qj
+ iα

(
∂

∂qj

))
+ pj = −i ∂

∂qj
+ pj ,

and similarly,

Qj := q(g) = −i∇Xg + g = −i
(
− ∂

∂pj
+ iα

(
− ∂

∂pj

))
+ qj = −i

(
− ∂

∂pj
− iqj

)
+ qj = −i ∂

∂pj
.

It follows from the above theorem that the conditions are satisfied for Γ(M,L) ∼= C∞(M), and also

on the space H = L2(T ∗Q).

However, looking from the point of view of quantum mechanics, we see that the resulting Hilbert

space is too big: the wave function on H should only depend on n variables, rather than 2n

variables we obtained. From a mathematical point of view, the representation of Qj , Pj is not

irreducible, that is, there is a generalized subspace of H for which the action of Qj , Pj is invariant.

That generalized subspace is

H0 = {f ∈ H : f = g ◦ π},

where π is the usual projection of T ∗Q into Q. So a natural candidate for our representation space

is H0, in which we obtain:

Pj = pj , Qj = −i ∂
∂pj

.
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Chapter 7

Polarizations

In the last chapter we saw the first step into quantization, called prequantization. In particular, in

example 6.3.2 we saw that, in general, the Hilbert space we obtain from this process is too big.

However in that particular case we could deduce a way to reduce it. In fact, we can generalize the

procedure for general symplectic manifolds through the use of so called polarizations. As such,

this chapter focuses mainly on these objects. In particular we are going to see three main types

of polarization: real polarizations, complex polarization and Kähler polarizations.

7.1 Real Polarizations

Definition 7.1.1. Let (M,ω) be a symplectic manifold. A real polarization on M is a foliation

D ⊂ TM on M , if it is maximal isotropic, that is, for all p ∈M :

ωp(X,Y ) = 0, ∀X,Y ∈ Dp

and there is no subspace of TpM containing Dp properly with the above property.

However, there might not exist a real polarization, as can be seen in the following example.

Example 7.1.1. Take S2 with the usual symplectic form ω. Now, H1(S2,Z/2Z) is trivial, because

S2 is simply connected. It turns out that classes of this group (also known as the first Stiefel-

Whitney class) uniquely determines real line bundles. Therefore it follows that all real line bundles

over S2 are trivial. Moreover, given a one dimensional distribution on S2 would have to have a

nowhere vanishing section which would in turn means that TS2 would also have to have a nowhere

vanishing section which contradicts the Hairy ball theorem.

This example serves to motivate us to generalize our notion of real polarization into a complex

polarization.
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Note: One often uses singular real polarizations, where some of the leaves of the polarization

are allowed to be singular. Of course, singular real polarizations exist on S2.

7.2 Complex Polarization

Definition 7.2.1. Let (M,ω) be a 2n-symplectic manifold. A complex polarization P on M is a

complex vector subspace of TM ⊗ C of dimension n such that:

• For all X,Y ∈ Γ(M,P ) we have that [X,Y ] ∈ Γ(M,P ) (i.e., P is involutive);

• For all p ∈M , Pp is maximal isotropic (i.e., P is Lagrangian);

• Dp = Pp ∩ P p ∩ TpM has constant rank k ∈ {0, ..., n}.

Furthermore, we say that a complex polarization is

• Real, if P = P ;

• Pseudo Kähler, if for all p ∈ M , Dp = {0} and Kähler if the hermitian form induced is

positive definite;

• Strongly involutive, if the distribution defined as Ep = (Pp + P p) ∩ TpM is integrable;

• Reducible, if the orbit space M/D is a smooth manifold and the projection π : M → M/D

is a submersion.

Example 7.2.1. Take M = T ∗Rn ∼= Cn using zj = pj + iqj . Then usual symplectic form is

ω =
∑
i dpi ∧ dqi =

i
2

∑
j dzj ∧ dzj . From example 2.2.1 we have that

∂

∂zj
=

1

2

(
∂

∂pj
− i

∂

∂qj

)
,

∂

∂zj
=

1

2

(
∂

∂pj
+ i

∂

∂qj

)
.

Thus we consider the following polarization

P := spanC

{
∂

∂zj
, 1 ≤ j ≤ n

}
.

In fact, it follows trivially from Schwarz lemma that this polarization is involutive. Moreover, it fol-

lows that this distribution is Lagragian and it is maximal isotropic because dimP = n. Furthermore,

P := spanC

{
∂

∂zj
, 1 ≤ j ≤ n

}
,

and thus, Pp ∩ P p = {0}, hence Pp ⊕ P p = TpM ⊕ C. Thus we conclude that P is a Kähler

polarization, and it is known as the holomorphic polarization.

It also follows that P is a Kähler polarization known as the antiholomorphic polarization.
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Going back to our example of S2, it follows that S2 also has a holomorphic polarization defined

locally by ∂
∂z for a local complex coordinate z.

As the reader might have guessed by the name of Kähler polarization, that a having a Kähler

polarization might be related to the Kähler structure on a manifold. Indeed, it turns out that a

Kähler manifold always have a Kähler polarization. But perhaps more strikingly, these two notions

are equivalent, as we shall see in the following theorem.

Theorem 7.2.1. Every Kähler manifold admits a Kähler polarization. Moreover, if (M,ω) is a

symplectic manifold and admits a Kähler polarization, then it has a compatible complex structure.

Proof. Suppose that (M,J, ω) is Kähler manifold of dimension 2n. Then it follows that dimT(1,0) =

dimT(0,1) = n. Moreover, given x, y ∈ T(1,0) and z, w ∈ T(0,1) it follows from the compatibility that :

ω(x, y) = ω(Jx, Jy) = ω(ix, iy) = −ω(x, y)

ω(z, w) = ω(Jz, Jw) = ω(−iz,−iw) = −ω(z, w)

From the dimensions, it follows that both T(1,0) and T(0,1) are maximal isotropic. Futhermore

T(1,0) ∩ T(0,1) = {0} so Dp has constant rank. It follows from theorem 3.1.2 that T(1,0) and T(0,1)

are involutive, and therefore Kähler polarizations.

Suppose now that (M,ω) has a Kähler polarization P. Then TM ⊗ C = P ⊕ P. As such, given

v ∈ TpM ⊗ C we have that v = w1 + w2, where w1 ∈ Pp and w1 ∈ Pp. Now take

Jp : TpM → TpM, w 7→ −iw1 + iw2

Thus

ω(Jx, Jy) = ω(−ix1,−iy1) + ω(−ix1, iy2) + ω(ix2,−iy1) + ω(ix2, iy2)

= −ω(x1, y1)︸ ︷︷ ︸
=0

+ω(x1, y2) + ω(x2, y1)− ω(x2, y2)︸ ︷︷ ︸
=0

= ω(x1, y2) + ω(x2, y1)

= ω(x, y).

So J is compatible with ω. Moreover, P = T(0,1) and P = T(1,0). Finally, it follows that the

Riemannian metric g(x, y) := ω(x, Jy) is positive definite, and so we conclude that J is a almost

complex structure on M compatible with ω. By Newlander-Nirenberg theorem it follows that J is

integrable, and thus (M,J, ω, g) is Kähler. ■
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Chapter 8

Spaces of Polarized Sections

We now have all the ingredients necessary, we are able to construct our representation space,

that is, the Hilbert space of our quantum model. For that we will have to choose a complex

polarization on our manifold, and then consider polarized section, in order to obtain our desired

space. In general there is no easy way to do so, however, if our manifold is Kähler, there is indeed

a general way to proceed. As such, in this chapter we will start to define what are polarized

functions and sections, then we will why the Kähler is so special.

8.1 Polarized sections

Definition 8.1.1. Let (M,ω) be a symplectic manifold and let P be a complex polarization on it.

We say that a function f ∈ C∞(M,C) is a polarized function if

LXf = 0, ∀X ∈ Γ(M,P).

Similarly, given L π−→M line bundle with connection ∇, a polarized section is a s ∈ Γ(M,L) such

that

∇Xs = 0, ∀X ∈ Γ(M,P).

Intuitively, the polarized sections are sections of L which are constant along the fibers of P.

We also see that the Hilbert space of “waves functions” we are looking for should be based on the

space

Γ∇,P := {s ∈ Γ(M,L); ∇Xs = 0, ∀X ∈ Γ(M,P)}.

Γ∇,P is clearly a vector space over C, and it is also easy to see that it a module over the ring of

polarized functions. However, in general, it is not the case that if s is polarized that ∇Xs is going
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to be polarized. We will deal with this problem later.

What we would like now is to construct our Hilbert space from Γ∇,P . Inevitably, we want to

endow this space with a inner-product, but then one has to contemplate which inner-product is

reasonable, as contrary to the prequantum space, integration along the induced volume form no

longer works.

8.2 Kähler quantization

As we have seen in the last chapter, given a Kähler manifold we have a Kähler polarization P on

M such that in local holomorphic coordinates P is the holomorphic polariazation.

In addiction to this, if we have a prequantum bundle (L,∇, H) on M , then we have a unique com-

plex structure on L compatible with the prequantum bundle. Hence, L is naturally a holomorphic

line bundle, and the polarized sections are the holomorphic section.

As such, the symplectic form induces a volume form on M given by vol = Cωn, where C is a

positive real constant and therefore our Hilbert space is

HP :=

{
s ∈ ΓHol(M,L) :

∫
M

⟨s, s⟩dvol <∞
}
.

Example 8.2.1. Let M = T ∗Rn and consider the usual symplectic form ω =
∑
i dpi ∧ dqi. Take

the usual complex coordinates zj = pj + iqj and consider P the holomorphic polarization

P = spanC

{
∂

∂zj
, 1 ≤ j ≤ n

}
.

Consider also L π−→M to be the trivial line bundle. In this coordinates the symplectic form is given

by ω = i
2

∑
i dzi ∧ dzi and its fundamental form is given by

α =
i

2

∑
i

zidzi,

which yields α(X) = 0, ∀X ∈ Γ(M,P).

Rather then defining the connection in terms of s1(p) = (p, 1), p ∈M , we consider the section

se(p) =
(
p,exp

(
−π
2
||z||2

))
= exp

(
−π
2
||z||2

)
s1(p),

and thus define the connection to be

∇Xfse := (LXf + iα(X)f)se, f ∈ C∞(M).
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The section fse is polarized iff LXf = 0 for all X ∈ Γ(M,P). But by the choice of P, this is

equivalent to ask that f is holomorphic. Consequently

Γ∇,P(M,L) ∼= O(Cn).

As a result we obtain that

HP =

{
f ∈ O(Cn);

∫
Cn

|f |2exp(−π|z|2)dvol ≤ ∞
}
,

where, in this case, vol is the Lebesgue measure on Cn. HP is Hilbert space with innerproduct

given by

⟨f, g⟩ :=
∫
Cn
fgexp(−π|z|2)dvol.

Let’s now compare this with our previous result, that is, let’s compute q(g) for g = zj and for g = zj .

We have that

Xzj = −2i
∂

∂zj
, Xzj = 2i

∂

∂zj
,

and therefore for f holomorphic

∇Xzj
fs1 =

(
−2i

∂f

∂zj
+ iα

(
−2i

∂

∂zj
f

))
s1 = 0,

so q(zj) = zj . Similarly,

∇Xzj
fs1 =

(
2i
∂f

∂zj
+ iα

(
2i

∂

∂zj
f

))
s1

=

(
2i

∂

∂zj
− izj

)
fs1,

so

q(zj) = 2
∂

∂zj
− zj + zj = 2

∂

∂zj
,

which is exactly what we have obtained before, up to constants.

Let’s compute ∇s1, where s1 = exp(π2 ||z||
2)se = hse,

∇s1 =

(
dh+ 2πi

i

2

∑
i

zih

)
se

=

(
π

2

∑
i

(zjdzj + zjdzj)− πzi

)
hse

= 2πi

(
i

4

∑
i

(zjdzj − zjdzj)

)
s1.

So it turns out that if we wanted to define the connection using s1 we would have to use the
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sympletic potential β = i
4

∑
i(zjdzj − zjdzj). Indeed, if we denote this connection by ∇′ then we

obtain that

Γ∇′,P(M,L) = {fs1; f ∈ O(Cn)}

Γ∇,P(M,L) = {fse; f ∈ O(Cn)} = {fs1; fexp(
π

2
||z||2) ∈ O(Cn)}.

8.3 Directly quantizable observables

In a nutshell, what we have now is the created a Hilbert space. However constructing this hilbert

space is not enough. As such in this section we will dwell a bit into a different question. For which

f will q(f) be an operator on this Hilbert space? In particular, if s is a polarized section, will q(f)s

be polarized? In general this is not the case. As such we need to restrict our space of functions.

Definition 8.3.1. We say that a vector fieldX preserves P if for all Y ∈ P we have that [X,Y ] ∈ P .

We say that a function f is directly quantizable with respect to P if Xf preserves P . We denote

the space of all directly quantizable functions to be RP .

As we may see in the following proposition, if we restrict to work with functions on RP , then q(f)s

will be polarized whenever s is.

Proposition 8.3.1. Let f ∈ RP and s polarized section of P . Then q(f)s is polarized.

Proof.

∇X(q(f)s) = ∇X

(
−i∇Xf s+ Fs

)
= −i∇X∇Xf s+ (LXf)s

Using the curvature we see that

1

2πi
∇X∇Xf s =

−1

2πi
∇Xf∇Xs+ ω(X,Xf )s−

1

2πi
∇[X,Xf ]s.

But because f is directly quantizable and s is polarized, the above is equal to ω(X,Xf )s, which in

turn is equivalent to (−LXf)s, which proves our claim. ■

8.4 Existence of Polarized sections

We have now seen how to use polarization in order to obtain the correct Hilbert space. However,

we only saw that for Kähler Polarizations. This case is rather special, so what about the general

case? As one might have guessed, by the title of this section, we might run into a problem fairly
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quickly, does there always exist polarized sections? In particular, does there always exist non-zero

global polarized sections? The next example, or rather counterexample, give us a negative result.

Example 8.4.1. Consider M = T ∗S1. The cotangent bundle is trivial so in fact M = S1 ×R. Take

the trivial line bundle L = M × C and H the induced hermitian inner product on L. Consider the

connection given by the Liouville form α = −pdq. Finally consider the polarization P generated by

the angle variable, i.e.,
∂

∂q
.

This polarization is also known as the horizontal polarization. As such, one sees that a general

section s = fs1, f ∈ C∞(M) is a polarized section if in local coordinates we have

∂f

∂q
= 2πipf.

Thus we have that the solution of this ODE is given by

f(p, q) = g(p)exp(2πipq),

where, g is an arbitrary smooth function on R. But f must be periodic on q which implies that we

must have p ∈ Z. That is, there are only non-zero solutions for a fixed p. But f is continuous, so f

must be zero.

There is another more general way to see why this problem raises from. Notice that the leaves of

our polarization are Sp = S1×{p} for p ∈ R. So considering the restriction of the line bundle to the

leaves L|Sp
π−→ Sp we obtain that the restriction of the connection ∇|Sp must be a flat connection.

So consider x = (1, p) ∈ Sp and the curve γ(t) = (exp(2πit), p), for t ∈ [0, 1]. Then the paral-

lel transport along γ is given by

Q(γ) = exp
(
−i
∫
γ

pdq

)
= exp(−ip).

So if we have s ∈ Γ(M,L) global polarized section, then its restriction to Sp is a horizontal section

and therefore determines the parallel transport given by ∇|Sp . So if s(x) ̸= 0, then the parallel

transport is s(γ(0)) 7→ s(γ(1)) and γ(0) = γ(1) = x so Q(γ) = 1, which implies that p
2π ∈ Z.

Therefore, we conclude that s must be zero outside the set

S :=
⋃{

Sp;
p

2π
∈ Z

}
= S1 × 2πZ.

Hence, by continuity of s, we get that s must be zero. This set is known as the Bohr-Sommerfeld

set.
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As it turns out, this hindrance is not exclusive to this problem, but rather arises from the fact that

the leaves are not simply connected.

Given p ∈ M and a loop γ we have seen that Q(γ) is going to be a complex number. If we

take the collection of all of these Q(γ) we obtain a group, which we will denote by G(p). This

group is known as the Holonomy group of the connection at p, and if we assume that M is con-

nected, we have that G(p) ∼= G(q), p, q ∈ M . In the case of a flat connection we get the following

natural group homomorphism:

Hol∇ : π1(M) → G(x)

[γ] 7→ Q(γ).

By construction of G(x), this homomorphism is always surjective. Consequently, if M is simply

connected, we have that G(x) is the trivial group.

Let (M,ω) be symplectic manifold and let (L,∇, H) be the prequantum line bundle. Let P be

a reducible complex polarization. Fix a leaf Λ of the distribution D = P ∩P ∩TM , i.e., Λ = π−1(x)

for a suitable x ∈M/D. It follows that ∇Λ is a flat connection.

Definition 8.4.1. Let GΛ(x) denote the holonomy group of ∇Λ. Then the Bohr-Sommerfeld set

is the set

S :=
⋃

{p ∈M : GΛ(p) = {1}}.

As a consequence, if the leaf Λ is simply connected, we conclude that Λ ⊂ S, and accordingly

{p ∈M : Λ(p) is simply connected} ⊂ S,

thence, it follows that if all the leaves are simply connect, S =M .

So, in order to formalize our argument motivated by our example, it sufices to prove the following

proposition.

Proposition 8.4.1. Any polarized section must vanish outside the Bohr-Sommerfeld set.

Proof. Suppose that s is polarized section s such that for a given p ∈ M we have that s(p) ̸= 0.

Let Λ be a leaf through p. Then s|Λ ∈ Γ(Λ, L|Λ) is the horizontal section with respect to ∇Λ. In

particular, consider the parallel transport of Lp → Lq of ∇Λ. Taking p = q and considering γ a loop

on p, the parallel transport of s(γ(0)) = s(p) is determined by s(γ(1)) = s(p), and so Q(γ) = 1.

Therefore GΛ is trivial, hence, p ∈ S. ■
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So we now have all the ingredients to answer our question

Theorem 8.4.1 ([11]). Given a complex reducible polarization, there is a global non-zero polarized

section only if the Bohr-Sommerfeld set has non-empty interior. In particular, if all leaves are

simply connected.

In general, this problem can be circumvented by considering distributional sections of L.
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Chapter 9

Half-form quantization

The main goal for this chapter is to introduce, in a elementary way, a common technique in quan-

tization, called the half-form quantization or the half-form correction. This technique is related to a

method used in physics for the quantization of the harmonic oscillator. We will also introduce the

concept of pairing maps, used to compare different quantizations.

9.1 Half-form quantization

As we have seen, in the case for the real polarizations, the prequantum Hilbert space may be

zero. Indeed this follows from the fact that the polarized sections may have infinity norm. In

order to work around this, we present now the so called “half form correction”. The ideia is rather

simple: Consider the M = T ∗R ∼= R2 with the vertical polarization. Then the polarized sections

are the ones that do not depend on the momentum. As such it makes no sense to integrate over

the “momentum” variables. Of course, in this case this can be done without introducing any new

machinery. Unfortunately, this is not so for the general case.

Consider the leaf space induced by the polarization. We will now assume that the leaf space has

a smooth manifold structure. Notice that it may be that the leaf space is not orientable. Even if

it is, there is no canonical “volume measure” on it. We will assume for sake of simplicity that the

leaf space is orientable. In the not orientable case, one has to introduce the notion of densites,

that allow us to integrate on non orientable manifolds (see more about densities, for example, in

[9] and about half-form quantization on the more general case on [11]). The ideia is the following:

We will construct a new Hilbert space called the half-form hilbert space such that the elements

are such that, pointwise, they are n-forms on the leaf space. We will follow the approach given in

[12].

Let Ξ be the leaf space of P and let π : M → Ξ be quotient map, where we assume it is smooth
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submersion.

Definition 9.1.1. The canonical bundle of P , written as Kp is the real line bundle whose sections

are n forms such that:

ιXα = 0, ∀X ∈ P.

A section is said to be polarized if

ιXdα = 0, ∀X ∈ P.

From this it follows that any n-form satisfying the above condition implies that α(X1, ..., Xn) = 0,

whenever any of the Xj ∈ P . As such it follows that any given point p, we may look at α as

an n-linear, alternating functional on the quotient of TpM by the intersection of Pp with the real

tangent space PR
p . Thus, at each point the space of possible values for α is one dimensional. On

the other hand, if α is polarized, then by the exact same reasoning we see that it is equivalent to

saying that dα = 0.

Proposition 9.1.1. Let α be a polarized section of KP . Then, there is a unique n-form α̃ on Ξ

such that :

α = π∗α̃.

Conversely, if β is an n-form on Ξ, then α := π∗β is a polarized section of KP .

Proof. ⇐=

Let β be an n-form on Ξ and define α := π∗β. Then it follows that α is a section because P is

in the kernel of dπ. Moreover, because the differential commutes with the pullback it follows that

dα = 0. So it is indeed a polarized section of KP .

=⇒

By the Flow-box theorem, we know that locally the polarization is going to look like the vertical

polarization in R2n. Let U × V be one of those neighborhoods. Therefore we only have to prove

this in that case. Using the observation above, we see that if α is a section of KP , then locally it

must be of the form

α = f(x, y)dx1 ∧ ... ∧ dxn,

for some f ∈ C∞(M). But α is polarized section, which implies that f cannot depend on the

“momentum variable” y. Hence

α = f(x)dx1 ∧ ... ∧ dxn.

Then we conclude that α determines a n-form α̂ on U × V using the pullback of the projection

U × V → U and thus, using now the quotient map, it follows the result. ■
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Proposition 9.1.2. Let α be a section of KP . Let X be a vector field that preserves P . Then LXα

is also a section of KP . Moreover, if α is polarized, then so is LXα.

Proof. The first part follows from the following observation:

Let X1, ..., Xn vector fields on M such that X1 ∈ P . Then, by using the formula in proposition

12.32(d) in [9] we have:

LXα(X1, ..., Xn) = Xα(X1, ..., Xn)−
n∑
j=2

α(X1, ..., Xj−1, [X,X1], Xj+1, ..., Xn)−

− α([X,X1], X2, ..., Xn).

Thus it follows that ∀X1 ∈ P , ιXLα = 0. The second observation follows trivially form Cartan

magic formula. ■

Proposition 9.1.3. Let Xbe a vector field that preseves P . Then there is a unique vector filed on

Ξ such that for all p ∈ P :

dπp(X) = Y.

If α = π∗β is a polarized section, then

LX(π∗β) = π∗(LY (β)).

It follows that

LX(π∗β) = (divβY ◦ π)π∗β.

Proof. See proposition 23.39 in [12]. ■

Intuitively, what this result is saying is that when we identify the polarized sections of the canonical

bundle with the n-forms on the leaf space, the operator LX corresponds to the lie derivative on

the leaf space in the direction of Y .

Henceforth we assume that Ξ is orintable.

Definition 9.1.2. choose a nowhere vanishing oriented n-form β so that α := π∗β is a nowhere

vanishing section of KP . Then we say that a section of KP is non-negative if at each point it is a

non-negative multiple of α.

By the fact that Ξ is orientable, tell us that α is globally non-vanishing section and therefore KP is

trivial. This allow us to consider its square root δP , that is, a line bundle such that δP ⊗ δP ∼= KP .

For instances we may take δP to be the trivial bundle. We assume that the above isomorphism

was choosen to be such that for any section s of δP we have that s⊗ s is non-negative.
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Let α be a section of KP and X a vector field in P . Then we may define the following n-form:

∇Xα = ιXdα.

By Cartan’s magic formula we see that for section of KP that ∇Xα = LXα. Notice that as X ∈ P

implies it preserves P , we conclude by proposition 9.1.2 that ∇Xα is a section KP . Notice also

that this operator satisfies all the properties of a connection, except it is only defined along the

directions of P , as reader should have guessed by the use of the suggestive notation. We call this

operator the natural partial connection on KP .

All of the above construction was done for real vector bundles. We can extend this construc-

tion to complex bundles. As such we, Let δCP be the complex square root of KC
P . Then we consider

the line bundle L⊗ δCP . If s ∈ L⊗ δCP , then we may decompose as s = µ⊗ ν, where µ is nonvan-

ishing section of L and ν a section of δCP .

We may then consider the induced connection on L⊗ δCP given by:

∇Xs = (∇Xµ)⊗ ν + µ⊗∇Xν.

Given two sections s1 and s2 of L ⊗ δCP , we may combine them using the hermitian product of L,

in the following way:

(s1, s2) := ⟨µ1, µ2⟩ν1 ⊗ ν2.

This yields a section of KC
P . Consider now the following inner-product on the space of polarized

sections of L⊗ δCP :

⟨s1, s2⟩ :=
∫
Ξ

˜(s1, s2),

where ˜(s1, s2) is the form obtained from the proposition 9.1.1 .

Definition 9.1.3. The half-form Hilbert space is the completion of the space of smooth polarized

sections of L⊗ δCP whose normed induced by the above inner product is finite.

Now we have to adjust our definition of quantum operator. In particular, we are going to use the

prequantum operator for the L (denoted now by qpre as to not rise extra confusion). Now all we

need is to define how it should act on the δCP .

Definition 9.1.4. Let f be a smooth function such that Xf preserves P . Then, we define the

quantum operator q(f) as follows:

q(f)s := (qpre(f)µ)⊗ ν + µ⊗ LXf ν.
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We now need to see that it satisfies the properties that we have set. In particular, the only one we

have to check is the one about the lie and poisson brackects.

Proposition 9.1.4. Let f and g such that both Xf and Xg preserve P . Then:

i[q(f), q(g)] = q({f, g}).

Proof. It suffices to prove the result locally. As such let ν0 be a local nonvanishing section of δCP
such that any other section s of L⊗ δCP may be decomposed as s = µ⊗ ν0. If X is any vector field

preserving P , then there is a function γ(X) such that LX(ν0) = γ(X)ν0 and as such we have

q(f)(µ⊗ ν0) = [qpre(f) + γ(Xf )]µ⊗ ν0.

As such, form a very simple computation we can see that the result follows if we can justify that

Xf (γ(Xg))−Xg(γ(Xf )) = −γ(X{f,g}).

In turn this follows from:

L[Xf ,Xg ]ν0 = γ([Xf , Xg])ν0

[LXf (ν0),LXg (ν0)] = −γ(X{f,g})ν0

LXf (LXg (ν0))− LXg (LXf (ν0)) = −γ(X{f,g})ν0

(Xf (γ(Xg)) +Xg(γ(Xf )))ν0 = −γ(X{f,g})ν0.

■
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Chapter 10

Quantization of toric manifolds

In this chapter, we will first give a very short and elementary introduction to toric manifolds. These

geometric objects have been around for 50 years and are native to algebraic geometry. They

are of special interest for symplectic geometers, as they provide a rich class of objects with large

symmetries and are completely integrable hamiltonian spaces. Afterwards, we will see explicitly

how quantization may be achieved in this objects.

10.1 Toric manifolds

In this section we will introduce some elementary facts about toric manifolds. Our main goal is to

arrive at a theorem due to Miguel Abreu.

Definition 10.1.1. A Toric manifold is a compact connected 2n-symplectic manifold (M,ω)

equipped with an effective hamiltonian action of a n-dimensional torus Tn and with a choice of

corresponding moment map.

The 2-sphere is a toric manifold, where here our torus is simply S1 and the action is given by

rotations around the z-axis. Then, the moment map is simply going to be the height function, and

its image is the interval [−1, 1].

The complex projective spaces are also toric manifolds. For instance, CP2 equipped with the

Fubini-Study form, the action of T2 on CP2 is given by

(eiθ1 , eiθ2) · [z0; z1; z2] = [z0; e
iθ1z1, e

iθ2z2]

and the corresponding moment map is

µ([z0; z1; z2]) =
−1

2

(
|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z1|2

|z0|2 + |z1|2 + |z2|2

)
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It is easy to see that the its image is a triangle with vertices at the (0, 0), (−1
2 , 0), (0,

−1
2 ).

With this two examples in mind, one might wonder if it is a coincidence that the images of this two

manifolds under their moment map are polytopes. The answer is no, it has to be! This was first

proved (for the case that the action was not effective) by Atiyah (see [4] theorem 27.1). In fact,

when we imposed that the action is effective, then we get an even stronger theorem.

Definition 10.1.2. A Delzant polytope P is a polytope in Rn satisfying:

• simplicity, that is, at each vertex there are exactly n edges meeting there.

• rationality, that is, at the vertex p, the edges meeting there are of the form p + tui, where

ui ∈ Zn.

• smoothness, that is, at each vertex, the ui can be chosen to be a Z-basis of Zn

It is quite easy to see that the polytopes of the above examples are indeed Delzant. As such one

might think that for toric manifolds, the moment polytope are Delzant polytopes. This is indeed

the case. But wait, there is more to it. The conserve is also true! That is, there is a one to one

correspondence between delzant polytopes and toric monifolds.

Theorem 10.1.1 (Delzant). Toric manifolds are classified by Delzant polytopes. More specifically,

there is a bijective correspondence between these two sets is given by the moment map.

{toric manifolds} ”1−to−1”−−−−−−→ {Delzant polytope}

(M,ω,Tn, µ) 7→ P

Proof. See section 28.3 and onwards in [4] for the proof. ■

One important thing to keep in mind is that there is a generic way to obtain the manifold using

the Delzant polytope. One simply has to consider △ × Tn and then collapse the tori along the

boundary in an appropriate way. For more information regarding this, please see [4].

A lattice vector v ∈ Zn is said to be primitive if it cannot be written as ku, where, |k| > 1, k ∈ Z

and u ∈ Zn.

Take now vi to be the primitives of the d-faces of the P . Then, we may describe P as the set of:

P = {x ∈ (Rn)∗ | ⟨x, vi⟩ ≤ λi, i ∈ {1, ..., d}}, for some λi ∈ R.

Definition 10.1.3. A toric kahler manifold is a toric manifold that is also kahler and such that the

effective hamiltonian action is also holomorphic.
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10.2 Symplectic potentials

Let P ◦ be the interior of P . Then we have that X̆P := µ−1(P ◦), known as the open orbit, is an

open dense of M consisting of the points in which the action is free. It is then known that

X̆P
∼= Cn/2πiZ = Rn × iTn ∼= (C∗)n.

As such, in the “complex” coordinates z = u+ iv the Tn action is given by

θ · (u+ iv) = u+ i(v + θ),

and the complex structure which is multiplication by i is then given by 0 −Id

Id 0


Now, in these coordinates we see that because ω must be invariant by the action of torus, then the

Kähler potential must only depend of the u coordinate. Let f ∈ C∞(X̆P ) be that potential. Thus

the matrix that represents the symplectic form is given by 0 F

−F 0


Where F is the hessian of f in u coordinates. Moreover, a simple computation shows that the

compatible riemannian metric must be of the form:F 0

0 F


For this to be a metric, then we see that f must be strictly convex. This was from a point of view

of complex coordinates. However, our manifold is also symplectic. As such we may consider

coordinates given by the relation

M◦ ∼= P ◦ × Tn,

called the “symplectic” coordinates or the angle coordinates (x, y), as with this coordinates

the matrix associated to the symplectic form becames the usual one. 0 Id

−Id 0


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In this coordinates the action of the torus is given by

θ · (x, y) = (x, y + θ)

As it turns out, the complex structure is then given by the hessian of a potential g ∈ C∞(P ◦)

(denoted by G), and the associated matrix is

J =

0 −G−1

G 0

 (10.1)

As a consequence of this, is that the riemannian metric compatible is given byG 0

0 G−1


In order to change between these two coordinates, one simply considers the Legendre transform,

as follows

x =
∂f

∂u
and y = v.

Consider now

ℓr(x) = ⟨x, vr⟩ − λr,

where vr are taken to be inward pointing. Then it is easy to see that x ∈ P ◦ iff ℓr(x) > 0 for all r.

Then we may consider the following smooth function gP : P ◦ → R

gP (x) =

d∑
r=1

1

2
ℓr(x) log(ℓr(x)) (10.2)

Theorem 10.2.1 (Guillemin). The “canonical” compatible toric complex structure JP on (MP , ωP )

is given in the (x, y) symplectic coordinates of X̆P
∼= P ◦ × Tn by

Jp =

 0 −G−1
P

GP 0

 ,
with Gp = Hessx(gp).

Proof. See the original paper [13]. ■

Theorem 10.2.2 (Abreu). Let (MP , ωP , τP ) be the toric symplectic manifold associated to a Delzant

polytope P ⊂ Rn, and J any compatible toric complex structure. Then J is determined, using 10.1

60



by a “potential” g ∈ C∞(P ◦) of the form

g = gP + h,

where gP is given by 10.2, h is smooth on the whole P , and the matrix G = Hessx(g) is positive

definite on P ◦ and has determinant of the form

det(G) =

[
δ(x)

d∏
r=1

ℓr(x)

]−1

,

with δ being a smooth and strictly positive function on the whole P.

Conversely, any such g determines a compatible toric complex structure J on (MP , ωP ), which in

the (x, y) symplectic coordinates of X̆◦
P
∼= P ◦ × Tn has the form 10.1.

Proof. The proof can be found in [14]. ■

This symplectic potential allow us to define a diffeomorphism between P ◦ and Rn in the following

way: for each x ∈ P ◦ associate to y := ∂g
∂x ∈ Rn. This, in turn, allow us to define a Tn equivariant

biholomorphism between P ◦ × Tn and (C∗)n, defined by assigning (x, θ) ∈ P ◦ × Rn to a w given

by:

w := (ey1+iθ1 , ..., eyn+iθn).

The w are therefore a coordinate system for M◦. The inverse of this transformation is then given

by

x :=
∂h

∂y
, h(y) = x(y) · y − g(x(y)).

In a analogous way, we can define coordinates around the vertices of the polytope is the following

way: We first notice that a given vertex v is completely defined as the intersection of n faces. We

may assume that it is the first n faces (if not, we may need to do some reordering) l1(v) = ... =

ln(v) = 0. We may therefore define a n by n matrix Av with integer coefficients such that:.

(Av)ij = vji .

We further define the domain of the chart to be

Uv = µ−1

{v} ∪
⋃

faces adjacent to v

F


By letting λv = (λ1, ..., λn) we set

xv = Avx− λv, θv = (A−1
v )tθ.
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We may then obtain wv = eyv+iθv , where yv = ∂g
∂xv

. In the coordinates, we have that ω =∑
dxv ∧dθv. These ω’s are going to permit us to describe the holomorphic sections of L explicitly,

as we will see latter.

10.3 Divisors and Fans

Following [15], in broad terms, a Divisor D ⊂M in a complex manifold is a finite linear combina-

tion of irreducible complex hypersurfaces. So in particular a divisor D is given by

D =
∑
j

mjVj , mj ∈ Z, for hypersurfaces Vj .

A divisor is said to be effective if mj ≥ 0, ∀j. By hypersurfaces, we mean that there is an open

cover Uα of M and non-constant holomorphic functions fα : Uα → C such that f−1
α (0) = V ∩ Uα.

By an irreducible hypersurface we mean that we cannot write it as the union of two non-empty

hypersurfaces.

Consider now π : L → M a holomorphic line bundle. We say that s is a meromorphic section if

in a local holomorphic trivializations it is a meromorphic function. Thus, the order of vanishing

of s at x, where s(x) = 0, is the lowest natural number m such that locally s has a non-zero partial

derivative of orderm at x. The zero divisor of s is then simply the linear combination of irreducible

components of s−1(0):

Z(s) :=
∑

mjVj , mj ∈ N,

where mj are the order of vanishing of s along Vj . Similarly, we say that s has a pole of order m

at x if 1/s has a zero of order m at x. Moreover, the polar divisor of s is the linear combination of

the irreducible components of s−1(∞):

P (s) =
∑

njUj , nj ∈ N,

where nj are the order of the pole at Uj . Finally, the divisor of s is simply:

div(s) := Z(s)− P (s).

Some author denote Z(s) by s−1(0) and P (s) = s−1(∞).

Let now V by an irreducible hypersurface of M . Then, on the intersection of two elements of the

open cover, Uα and Uβ , we have the corresponding holomorphic functions that define locally V ,

fi : Ui → C such that f−1
i (0) = V ∩Ui, i = α, β. Moreover, we also have the transition functions ϕij

and ϕij ̸= 0. Then, on Uij we have that fi = ϕijfj , and so the zero sets coincide, and therefore

divisors are globally defined. Moreover, because the zeroes coincide, we can define the non-
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vanishing holomorphic function fαβ : Uαβ → C as fαβ = fα/fβ . Moreover, fαβfβγfγα = 1. Thus,

we may use these function as transition functions for some holomorphic line bundle denoted

by LS .

Using the same reasoning as above, we may define the line bundle LD of a divisor D =∑k
j=1mjVj as

LD :=

k⊗
j=1

L
mj
Vj
.

If s is a meromorphic section of a line bundle L, then Ldiv(s) ∼= L and D ∼= div(s), where ∼= means

linear equivalence, that is, if there exist a meromorphic function ψ such that D − div(s) = div(ψ).

Toric manifolds are native to algebraic geometry. There they are given by an object called fan.

These fans give us a tool to compute the divisors.

Definition 10.3.1. A convex polyhedral cone in Rn is a set of the form

C =

{
k∑
i=1

aivi ∈ Rn ; ai ≥ 0

}
,

where vi are vectors called the generators of C.

The dual of a cone is given by

C⋆ := {f ∈ (Rn)⋆ ; f(x) ≥ 0 ∀x ∈ C}.

A cone is rational if the set of generators are in Zn and it is said to be smooth if the set of

generators form a Z-basis of Zn. Farkas’ theorem states that the dual of a rational cone is a

rational cone. A supporting hyperplane for a cone C is a hyperplane of the form

Hf := {x ∈ Rn ; f(x) = 0},

where f ∈ C⋆\{0}. A face of a cone is either itself (non proper face) or the intersection of C with

any supporting hyperplanes (proper face).

Definition 10.3.2 ([16]). A fan △ is a nonempty finite collection of strongly convex rational cones

such that every face of every cone belongs in the fan; and the intersection of any two cones is a

face of both them.

Using this, we may define toric varieties through the usage of the spectrum of a ring. We will not

provide any more details for this here. However, more information can be found in [17] and [16].

We will now see how to obtain a fan from a Polytope P . Let f : Rn → R be a linear function. Then

we denote by suppP f the collection of points in the polytope where f achieves its minimum. This
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set is known as the supporting face of f in P .

Definition 10.3.3. Let F be a face of a polytope P . The cone associated to F is the closure of the

subset of (Rn)⋆ consisting of all linear functions f : Rn → R such that suppP f = F. this subset

is generally denoted by CF,P . Then, the fan of the polytope P , denoted by △P , is simply the

collection of cones CF,P for all faces FofP.

Suppose now that the origin in the interior of the polytope, Then △P coincides with the fan

spanned by the faces of the dual polytope:

P ⋆ := {f ∈ (Rn)⋆ ; f(v) ≥ −1, ∀v ∈ P}.

What this means is that the rays from the origin through the proper faces of P ⋆ and the origin

can be used to form the cones. To better understand how to obtain the fan from a polytope, we

present the following example.

Example 10.3.1. Consider a triangle, as our polytope. Then the associated fan can easily be

seen to be given by the collection of the following cones:

F1 F2

F3

F4

F5

F6

Figure 10.1: Polytope.

CF5,P

CF4,P

CF3,P

CF1,PCF2,P

CF6,P

Figure 10.2: The associated cones.

Notice that the whole polytope corresponds to the zero dimension cone, the origin.

In the toric case, these cones play an important role. Each of these cones corresponds to orbits

of the torus action on the variety. Moreover, each of these cones are then associated to a unique

irreducible invariant divisor (called the irreducible torus-invariant divisors). Let △1 denoted the

set of 1-cones. As it turns out, there is a one-to-one correspondence between irreducible torus-

invariant divisors and the elements of △1. Following the example above, we see that elements

of △1 are then the primitive integral vectors νj which are normal to the j-face the Polytope. So it

then follows that the irreducible divisors are:

Dj = µ−1 ({x ∈ P ; lj(x) := ⟨νj , x⟩+ λj = 0}) .

So given a divisor DL =
∑r
j=1 λ

L
j Dj , λLj ∈ Z, we define the Line bundle L = O(DL). Let σDL
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be the unique up to a constant meromorphic section of L, with corresponding divisor DL. Then,

following Proposition 4.1.2 in [17], we obtain that for any meromorphic function wm, m ∈ Zn on

the open orbit, its divisor is given by

div(wm) =

r∑
j=1

⟨νj ,m⟩Dj ,

and so we have that the space of holomorphic sections is

H0(M,L) = spanC{wmσDL ; m ∈ Zn, div(wm0 σDL) = ⟨νj ,m⟩+ λLi ≥ 0}.

Now, looking at this, we see there is a bijection between the basis of H0(M,L) and the integral

points of the Delzant polytope with integral vertices.

10.4 Complex line bundle, holomorphirc polarization and the

Hilbert space for Kähler toric manifolds

It is not hard to see that given a complex line bundle L, there is a canonical isomorphism given by

(| · |, arg) such that L ∼= |L| ⊗ LU(1). This isomorphism, will induce a split on the connection. It is

straightforward to see that the connections form are, respectfully, α|L| = Reα and αL
U(1)

= iImα.

Using this ideia and the coordinates we have defined above, we may define a Hermitian structure

on L, by setting ||10|| = e−h(x) and ||1v|| = e−hv(x), where hm(x) = (x −m)t ∂g∂x − g(x). So one

may define a system of normalized sections as follows:

1
U(1)
0 =

10
||10||

, 1U(1)
v =

1v
||1v||

, v vertex

Moreover, this allow us to define a connection with curvature −iω

∇1
U(1)
0 = −ixdθ1U(1)

0 , ∇1U(1)
v = −ixvdθv1U(1)

v , v vertex (10.3)

Using the Liouville measure, we are able to consider the injection of smooth in distributional sec-

tions:

ι : C∞(Lω|U ) → C−∞(Lω|U ) := (C∞
c (L−1

ω |U ))∗

s 7→ ιs(ϕ) =

∫
U

sϕ
ωn

n!
,
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where U is any open subset of X̆P and Lω is the prequantum line bundle on P ◦. Consider now

the following family of symplectic potentials:

gs = gP + sψ,

where ψ is a smooth uniformly convex on P and consider the associated holomorphic polarization

Ps = spanC

{
∂

∂wis
, i = 1, ..., n

}
. (10.4)

We then define the limit Polarization

P∞ := lim
s→∞

Ps. (10.5)

Consider also the real polarization

PR = spanR

{
∂

∂θi
, i = 1, ..., n

}
. (10.6)

Proposition 10.4.1. On X̆P , P∞ = PR.

Proof. This follows from the fact that the hessian is positive definite and

∂

∂yis
=
∑
j

(G−1
s )ij

∂

∂xj
,

and so because (G−1
s )ij → 0 as s→ ∞, we get that :

spanC

{
∂

∂wis

}
= spanC

{
∂

∂yis
− i

∂

∂θi

}
s→∞−−−→ spanC

{
∂

∂θi

}
= PR

■

So this result says that the holomorphic polarization at infinity collapses to a real polarization.

This is an interesting way to see real polarization, due to the fact that this allow us to study them

through complex polarization, as the former are easier to work with.

Now over the boundary of P , it follows that wis can only be zero as yiv goes to −∞, which may

only happen at the boundary. Therefore, if over a face we have that wis ̸= 0, then it follows that
∂
∂wis

→ ∂
∂θis

, and then, we arrive at the following result

Proposition 10.4.2. On XP , we have that:

P∞ = PR ⊕ spanC

{
∂

∂wi
; wi = 0

}
.

Proof. See [1] theorem 3.4. ■
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From which follows that

Theorem 10.4.1.

C∞
(
lim
s→∞

Ps
)
= C∞(PR).

Proof. See [1] theorem 1.2. ■

This result tells us that the considered family of Kähler polarizations converges to the real polar-

ization. Now it is a consequence that the norm of a polarized holomorphic section σm is given

by e−hm◦µ. As such, in order to study the norm for a given x ∈ P ◦, we only have to look at the

function

fm(x) = (m− x)
∂ψ

∂x
− ψ(x).

As it turns out, for ψ strictly convex, this function has a global minimum at m, which yields the

following result

Proposition 10.4.3.
e−sfm(x)

||e−sfm ||1
s→∞−−−→ δ(x−m),

in the sense of distributions.

Proof. See [1] lemma 3.7. ■

Consider now W ⊂ X̆P to a open set that is invariant by the action of Tn. Then, following [1] we

define

δm(τ) =

∫
µ−1
P (m)

eiℓ(m)θτ = τ̂(x = m, θ = −m), ∀τ ∈ C∞
c (L−1

ω |U ),

where τ̂ represents the Fourier transform of τ . Moreover, the holomorphic sections are given as

follows:

σms := e−hs(x)wms 1.

This proposition then let us prove the following theorem, which describes what happens to the

sections of the line bundle.

Theorem 10.4.2. For n ∈ P ∩ Z, consider the family of L1-normalized Js-holomorphic sections

R+ ∋ s 7→ ξms :=
σns

||σns ||1
∈ C∞(Lω)

ι
↪−→ (C∞

c (L−1
ω |U ))∗.

Then, as s→ ∞, ι(ξns ) converges to δm in (C∞
c (L−1

ω |U ))∗.

Proof. See [1] Theorem 1.3. ■
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This result does not use the half form-correction. In order to implement it, we will consider the

split KP ∼= |KP | ⊕ KU(1)
P . In particular, notice that |KP | is always trivial, and therefore admits a

square root, denoted by |KP |
1
2 . For instances, if we consider PR, then the fibers are generated by

dX = dx1 ∧ ... ∧ dxn, and as such we may define |dX| as:

|dX| : X (M◦)n → C0(M◦), (X1, ..., Xn) 7→ |dX(X1, ..., Xn)|

This gives a better picture of what the sections of |KP | are. As a consequence, we may define√
|dX|(X1, ..., Xn) = |dX(X1, ..., Xn)|

1
2 . We also define dZs := dz1s ∧ ... ∧ dzns , as the generators

of the fibers defined by the gs. A global trivializing section of |Ps|
1
2 is then

√
|dZs|

||dZs||
1
2

. Therefore, we

obtain the following half-form Hilbert space for each s

Hs :=

{
σ ⊗

√
|dZs|

||dZs||
1
2

; σ is a polarized section of L

}
.

The following propositions shows us how this objects behave.

Proposition 10.4.4. √
|dZs|

||dZs||
1
2

s→∞−−−→
√
|dX|.

Proof. See lemma 4.14 in [2] ■

Proposition 10.4.5.
σms

||σms ||2
||dZs||

1
2
s→∞−−−→ 2

n
2 π

n
4 δm.

Proof. See theorem 4.13 in [2] ■

Proposition 10.4.6. For large values of s we have that:

||σms ||2 ∼ π
n
4 egs(m).

Proof. See lemma 4.12 in [2] ■

Taking σ̃ms = σms ⊗
√

|dZs|

||dZs||
1
2

we obtain:

Proposition 10.4.7.
σ̃ms

||σms ||2
s→∞−−−→ 2

n
2 π

n
4 δm ⊗

√
|dX|.

Proof. See theorem 4.15 in [2] ■
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Has it was shown in [2], we have that

HR =

{
σ ⊗

√
|dZs|

||dZs||
1
2

; σ ∈
n⋂
i=1

Ker∇ ∂
∂θi

}
,

From which it follows that HR has a basis given by {δm ⊗
√

|dX|}. Thus we see that the above

result is also valid for the half form space.

Example 10.4.1. Take the sphere S2. Then its moment polytope is the interval P = [− 1
2 , N + 1

2 ],

for N natural. Consider also the inequalities:

ℓ1(x) = x+
1

2
> 0 ℓ2(x) = N +

1

2
− x > 0.

We consider now the following strictly convex function ψ = x2

2 on the moment polytope. Therefore

the symplectic potential is given by:

gs =
1

2

(
ℓ1(x) log(ℓ1(x)) + ℓ2(x) log(ℓ2(x))

)
+
sx2

2
.

The associated coordinates are:

ys = log

(√
x+ 1

2

N + 1
2 − x

)
− sx, ws =

√
x+ 1

2

N + 1
2 − x

esx+iθ.

Let now hm(x) be:

hm(x) = (x−m)ys − gs(x).

For s considerably large, it follows that hm(x) ∼ s(x−m)2

2 − sm2

2 . Let the Hessian of gs be H. Then

a basis for the space of holomorphic sections is given by:

σms = e−hm(x)+imθdetH
1
4 1
U(1)
0 ,

and for large s we get

σms ∼ s
1
4 e

sm2

2 e
s(x−m)2

2 1
U(1)
0 .

It also follows that ||σms ||2 ∼ e
sm2

2 π
1
4 . Looking now at the zs coordinates, we see that for large

values of s, zs ∼ logws. Therefore:

dzs ∼ sdx+ idθ and ||dzs|| = detH
1
4 ∼ s

1
4 .

This allows us to explicity see that

σms
||σms ||2

||dZs||
1
2 ∼ s

1
2

π
1
4

e
s(x−m)2

2 +imθ1
U(1)
0
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which converges to δ(x−m). Therefore we have shown a particular case of proposition 10.4.5.

10.5 Relationship with complex time Hamiltonian flow

We may reformulate this using Hamiltonian complex time flow. We will be using the notation

establish in chapter 5. This method is based on the work of Thiemann and known as the Thiemann

complexifier method. For this, let ψ be the strongly convex function on P . Let Pg be Kähler

polarization of (XP , ω) given by

Pg = spanC

{
∂

∂zj
, j = 1, ..., n

}
,

where zj = ∂g
∂xj

+ iθj .

Proposition 10.5.1. Let s > 0. Then:

• As distributions, Ps = eisLXψPg.

• In the pointwise sense as a power series in s, dZs = eisLXψ dZ0.

Proof. See [3] theorem 3.4. ■

Consider now the Kostant-Souriau prequantum operator associated to a smooth function h is

defined by ĥ := i∇Xh+h. Therefore, we may consider the t-time flow of the lifted vector field using

e−itĥ : Γ(L) → Γ(L). We would like to extend this to imaginary time.

Recall from 10.3 that we defined the connection on L to be

∇1U(1) = −ixdθ1U(1).

The prequantum operator associated to ψ is:

ψ̂ = iXψ − x · ∂ψ
∂x

+ ψ.

We now need to know how the operator will behave with half-forms. In other to do this in a

consistant manner, we set

eisLψ
√
dZ =

√
dZs

Proposition 10.5.2 ([3]). For any s > 0, the operator esψ̂ ⊗ eisLψ : HP0
→ HPs is an isomorphism

and

esψ̂ ⊗ eisLψσm0 = σms ,

For all m ∈ P integral.
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Proof. This result follows from using the above observations, in particular the ones about the

basis of HPs and how we defined the action for half-forms. As such we only need to make the

following effortless calculation:

esψ̂
(
wne−h0

)
= e−s(x·

∂ψ
∂x−ψ)−h0eisXψ (wm0 ) = e−hswms .

■

As PR is preserved by the flow of ψ we may consider the natural quantization of ψ on HPs given

by the operator:

ψ̂R : HPR → HPR , δm ⊗
√
dX 7→ ψ(m)δm ⊗

√
dX,

which is well defined, as the support of δm ⊗
√
dX is µ−1(m). This operator may be extended in

the following way:

ψ̂R : HPg → HPg , σm 7→ ψ(m)σm.

Define an operator Aψg,s : HPg → HPs :

Aψg,s :=
(
esψ̂ ⊗ eisLψ

)
◦ e−sψ̂R

We may consider the operator Aψg,∞ : HPg → HPRdetermined by:

Aψg,∞

(
σm0

||σm0 ||2

)
:=

(2π)
n
2 eg(m)

||σm0 ||2
δm ⊗

√
dX

Theorem 10.5.1 ([3]).

lim
s→∞

Aψg,s = Aψg,∞.

Proof. Notice that

e−sψ̂R

(
σm0

||σm0 ||2

)
=

∞∑
j=1

(−s)j

j!
ψ̂jR(σ

m
0 )

=

∞∑
j=1

(−s)j

j!
ψ(m)jσm0

= e−sψ(m)σm0
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Therefore

Aψg,s

(
σm0

||σm0 ||2

)
=
(
esψ̂ ⊗ eisLψ

)
◦ e−sψ̂R

(
σm0

||σm0 ||2

)

=
e−sψ(m)

(
esψ̂ ⊗ eisLψ

)
(σm0 )

||σm0 ||2

=
e−sψ(m)σms
||σm0 ||2

. (10.7)

Which, using proposition 10.4.6 and the theorem 10.4.7, the result follows. ■
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Chapter 11

New Toric Polarizations on CP1

As we have seen in the last chapter, the choice of a strictly convex function ψ in the moment poly-

tope allows for the degeneration of the Kähler polarizations into the vertical polarization. More-

over, under this degeneration, it was shown that holormorphic sections converge to the Dirac delta

distributional sections, with support on the fibers corresponding to the integral points of the mo-

ment polytope. This was seen using three different techniques: L1-normalized sections as in [1];

L2-normalized and half-form corrected sections as in [2]; and using the “Hamiltonian flow” with

complex time is, as in [3]. Taking the special case of S2 ∼= CP1, this translates into the collapse of

the sphere into a infinite rod from the metric point of view.

In this chapter, we are going to generalize these results for the special case of S2. In particular, we

are going to study what happens to theorem 10.4.2 when we consider a special class of function

on the moment polytope of S2. Here we are considering the sphere with the momentum map

given by the height function, whose moment polytope corresponds to a interval in R. The class

of functions that we are interested in is the class of functions on the moment polytope whose

second derivative is a bump function. As such, our main goal is to study the consequences of this

choice and to reformulate theorem 10.4.1, theorem 10.4.2, and theorem 10.5.1 for these types of

functions, which had not been considered previously.

11.1 L1-normalized sections

Let P = [− 1
2 , N + 1

2 ]
1, where N ∈ N be moment polytope of S2. For the rest of this section, we

will fix a m ∈ P and consider ψ to be a function on P such that its second derivative is a bump

function with support suppψ′′ = [m− α,m+ α], like shown below:

1For simplicity we will use this polytope P throughout chapter 11. In fact, for L1-normalized sections, without half-forms,
P = [0, N ] would be more appropriate. This simplification does not change the final results and conclusions.
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Figure 11.1: ψ′′ Figure 11.2: ψ′

Figure 11.3: ψ

Where P1 =
[
− 1

2 ,m− α
]
, and P2 =

[
m+ α,N + 1

2

]
. We also assume, without loss of generality,

that ∫
suppψ′′

ψ′′dx = 1.

This is so that ψ′(m + α) = 1. We shall first see what happens to the polarizations, along the

family of this polarizations given by gp + sψ, s ≥ 0. Recall the definition of Ps in 10.4, of P∞ in

10.5 and of PR in 10.6.

Lemma 11.1.1. On X̆suppψ′′ := µ−1(suppψ′′◦), P∞ = PR. On the remaining part of the open orbit,

the polarization remains unchanged, that is equal to P0.

Proof. The proof of this lemma follows exactly as the proof of proposition 10.4.1 ■

We now have two cases: either suppψ′′ does not contain the boundary of P ; or it does contain it.

In either of these cases we obtain the following result:

Proposition 11.1.1. 1. If suppψ′′ ∩ ∂P = ∅, then on µ−1(suppψ′′) with have P∞ = PR and on

µ−1(P\suppψ′′), P∞ = P0.

2. If suppψ′′ ∩ ∂P ̸= ∅, then on µ−1(suppψ′′)

P∞ = PR ⊕ spanC

{
∂

∂wj
; ωj = 0

}
,
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and on µ−1(P\suppψ′′), P∞ = P0.

Proof. The first case follows immediately from lemma 11.1.1. For the second case, we have to

show:

spanC

{
∂

∂wsk

}
→ spanC

{
∂

∂θk

}
on any occasion that wk ̸= 0. Let F be any face in the coordinate chart. We will write that j ∈ F

whenever wj = 0 in F . Then it follows that

spanC

{
∂

∂wsk

}
= spanC

{
∂

∂wj
; j ∈ F

}
⊕ spanC

{
∂

∂wsj
; j /∈ F

}

= spanC

{
∂

∂wj
; j ∈ F

}
⊕ spanC

{
∂

∂ysj
− i

∂

∂θj
; j /∈ F

}

= spanC

{
∂

∂wj
; j ∈ F

}
⊕ spanC

{
(Hessgs)−1 ∂

∂lj
− i

∂

∂θj
; j /∈ F

}

Which yields the desired result as s→ ∞. ■

As a consequence, we have that

Theorem 11.1.2. On µ−1(suppψ′′) :

C∞ (P∞) = C∞(PR).

Proof. We have two cases, either if suppψ′′∩∂P = ∅ or if suppψ′′∩∂P ̸= ∅. The first case follows

from 11.1.1. For the other case, using proposition 11.1.1, we have to show that:

C∞
(
P∞ = PR ⊕ spanC

{
∂

∂wj
; ωj = 0

})
= C∞(PR).

But this follows from the following observation: any complexified vector field ξ such that when

restricts to a section of PR on an open dense subset must be such that ξ = ξ, but this implies that

it cannot have components along the holomorphic direction, i.e, spanC

{
∂
∂wj

; ωj = 0
}

. ■

Lemma 11.1.3. Let ψ be as before. Then for x ≥ m+ α, ψ(x) = x−m.

Proof. Let

c :=

∫ m+α

m−α
ψ′(x)dx = ψ(m+ α).

This result follows from the fact that

((x−m)ψ′)
′
= (x−m)ψ′′ + ψ′,
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and so

∫ m+α

m−α
((x−m)ψ′(x))

′
dx =

∫ m+α

m−α
[(x−m)ψ′′(x) + ψ′(x)]dx ⇐⇒

α = c+

∫ m+α

m−α
(x−m)ψ′′(x)dx ⇐⇒

α = c+

∫ α

−α
yψ′′(y +m)dy ⇐⇒

α = c ⇐⇒

α =

∫ m+α

m−α
ψ′(x)dx ⇐⇒

α = ψ(m+ α).

The fourth equivalence sign comes from the fact that the integrand function is odd.

As such, for all x ≥ m+ α, ψ(x) = x−m. ■

Consider now the following function

fn(x) = (x− n)
∂ψ

∂x
− ψ(x).

In the following lemmas, we will study the behavior of the wave functions, as we take s→ ∞

Lemma 11.1.4. For n ∈ suppψ′′, fn has a global minimum at x = n, and in the sense of distribu-

tions:
e−sfn(x)

||e−sfn ||1
s→∞−−−→ δ(x− n).

Proof. Notice that

f ′n(x) = (x− n)ψ′′(x).

Thus it follows that

fn(x) = fn(n) +

∫ 1

0

d

dt
fn(n+ t(x− n))dt

= −ψ(n) +
∫ 1

0

t(x− n)2ψ′′(n+ t(x− n))dt

> −ψ(n),

where the last observation comes from the fact that the integral is always greater than zero. So

x = n is a global minimum. Notice also that whenever m − α < x < n, fn is decreasing and
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whenever m+ α > x > n fn is increasing. In a neighborhood of n, fn(x) < 0. Take ε̃ > 0, then

||e−sfn ||1 =

∫
P

e−sfn(x)dx

≥
∫
Bε̃(n)

e−sfn(x)dx

≥
∫
Bε̃(n)

e−s(−ψ(n)+
x2

2 ψ
′′(n))dx

≥ Vol(Bε̃(n))esψ(n)−s
ε̃2

2 ψ
′′(n).

Consider now the following cases:

• x /∈ suppψ′′. Notice that fn is zero in P1. Moreover, in P2, fn(x) = m− n. As we have seen,

−ψ(n) is the global minimum of fn, so we conclude that m− n+ ψ(n) > 0. Thus, choosing

ε̃ such that ψ(n) > ε̃2

2 ψ
′′(n), we have

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 0, ∀x /∈ suppψ′′

• x ∈ suppψ′′. Consider now, 0 < ε < α. Thus:

∫
P\Bε(n)

e−sfn(x)dx =

∫
[−1/2,m−α]

e−sfn(x)dx+

∫
[m−α,n−ε]

e−sfn(x)dx+

+

∫
[n+ε,m+α]

e−sfn(x)dx+

∫
[m+α,N+1/2]

e−sfn(x)dx

≤ (m− α+
1

2
) + (n− ε−m+ α)e−sfn(n−ε)+

+ (m+ α− n− ε)e−sfn(n+ε) + (N +
1

2
−m− α)e−s(m−n)

≤ (m− α+
1

2
) + (n− ε−m+ α)esψ(n)−s

ε2

2 ψ
′′(n−ε)+

+ (m+ α− n− ε)esψ(n)−s
ε2

2 ψ
′′(n+ε) + (N +

1

2
−m− α)e−s(m−n).

Thus, choosing ε̃ such that ψ(n)+m−n > ε̃2

2 ψ
′′(n) and ε2

2 ψ
′′(n±ε) ≥ ε̃2

2 ψ
′′(n), we conclude

that ∫
P\Bε(n)

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 0,

which proves our claim.

■

Lemma 11.1.5. For n < m and n /∈ suppψ′′,

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 1

m− α+ 1
2

χP1
.
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Proof. For n < m and n /∈ suppψ′′, it then follows that f ′n is positive in suppψ′′ and it is zero in

the remaining parts of the polytope. Also fn(x) = 0 on P1 and fn(m+ α) = m− n > 0, thus fn is

a non-negative bounded function.

Notice now that by the dominated convergence theorem, we have that

||e−sfn ||1 =

∫
P

e−sfn(x)dx

=

∫
[−1/2,m−α]

e−sfn(x)dx+

∫
[m−α,m+α]

e−sfn(x)dx+

∫
[m+α,N+1/2]

e−sfn(x)dx

= m− α+
1

2
+

∫
[m−α,m+α]

e−sfn(x)dx+ (N +
1

2
−m− α)e−s(m−n)

s→∞−−−→ m− α+
1

2

Which immediately implies that

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 1

m− α+ 1
2

χP1 .

■

Lemma 11.1.6. For n > m and n /∈ suppψ′′,

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 1

N + 1/2−m− α
χP2

.

Proof. For n > m and n /∈ suppψ′′, we now have that f ′n is negative in suppψ′′ and zero in the

remaining parts of the polytope. Also fn|P1 = 0 and fn(m+ α) = m− n < 0. We then have that

||e−sfn ||1 ≥
∫
P2

e−sfn(x)dx = (N +
1

2
−m− α)e−s(m−n),

which in turn implies that

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 0, ∀x ∈ P1 ∪ suppψ′′.

Moreover, notice that ∫
P

e−sfn(x)

||e−sfn ||1
dx = 1,

and for any ε > 0

∫
[−1/2,m+α−ε)

e−sfn(x)

||e−sfn ||1
dx ≤ (m+ α− ε+

1

2
)(N +

1

2
−m− α)−1es(−fn(m+α−ε)+(m−n))

s→∞−−−→ 0

Which yields the desired result. ■
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The following theorem is simply the combination of the three previous lemmas.

Theorem 11.1.7. Let ψ be as above. Consider also the function

fn(x) = (x− n)
∂ψ

∂x
− ψ(x),

where n ∈ P ∩ Z. Then

1. For n ∈ suppψ′′, fn has a global minimum at x = n, and in the sense of distributions:

e−sfn(x)

||e−sfn ||1
s→∞−−−→ δ(x− n).

2. For n < m and n /∈ suppψ′′,

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 1

m− α+ 1
2

χP1 .

3. For n > m and n /∈ suppψ′′,

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 1

N + 1/2−m− α
χP2 .

The following table condenses some facts regarding the function e−sfn(x)

||e−sfn ||1 , which are going to be

useful later on.

fn(x) e−sfn(x) e−sfn(x)

||e−sfn ||1
for n < m,n /∈ suppψ′′ is positive is decreasing is bounded by 1

m−α+1/2

for n > m,n /∈ suppψ′′ is negative is increasing is bounded by 1
N+1/2−m−α

Table 11.1: Some facts about the functions of theorem 11.1.7.

Theorem 11.1.8. For n ∈ P ∩ Z, consider the family of L1-normalized Js-holomorphic sections

R+ ∋ s 7→ ξns :=
σns

||σns ||1
∈ C∞(Lω)

ι
↪−→ (C∞

c (L−1
ω |U ))∗.

Then,

1. For n ∈ suppψ′′, as s→ ∞, ι(ξns ) converges to δn in (C∞
c (L−1

ω |U ))∗.

2. For n ∈ Pj as s→ ∞, ι(ξns ) converges to 1
||σn0 ||L1(Pj)

∫
Pj
σn0 τ̂(·,−n)dx in (C∞

c (L−1
ω |U ))∗.

Proof. The proof of this result follows exactly the same as in 1.3. In short, we can consider a

partition of unity {ρv} subordinated to the covering by vertex charts {P̆v}, and therefore we only
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have to check the result in each chart. Thus choosing a test section τ ∈ C∞(L−1
ω ), we may define

hsn(x) = (x− n)tψ′ − gs = h0n(x)− sfn(x).

Hence, following the computations in 1.3

(ι(ξns ))(τ) =
1

||σns ||1

∫
P

e−h
s
n(x)τ̂(x,−n)dx.

Also

||σns ||1 =

∫
M◦

e−h
s
n◦µP ωn = (2π)n

∫
P

e−h
s
ndx.

Then we see
||e−h0

n−sfn ||1
||e−sfn ||1

=

∫
P

e−sfn

||e−sfn ||1
e−h

0
ndx.

Now, using theorem 11.1.7 we obtain

• For n ∈ suppψ′′,

||e−h0
n−sfn ||1

||e−sfn ||1
s→∞−−−→ e−h

0
n(n);

• For n < m and n /∈ suppψ′′, using the dominated convergence theorem, we have

||e−h0
n−sfn ||1

||e−sfn ||1
s→∞−−−→ 1

m− α+ 1/2

∫
P1

e−h
0
n(x)dx;

• For n > m and n /∈ suppψ′′, using the dominated convergence theorem, we have

||e−h0
n−sfn ||1

||e−sfn ||1
s→∞−−−→ 1

N + 1/2−m− α

∫
P2

e−h
0
n(x)dx.

Which then implies that:

• for n ∈ suppψ′′,

ι(ξns )(τ) =

∫
P

e−h
0
n−sfn

||e−h0
n−sfn ||1

τ̂(·,−n)dx

=

∫
P

e−h
0
n−sfn

||e−h0
n−sfn ||1

||e−sfn ||1
||e−sfn ||1

τ̂(·,−n)dx

s→∞−−−→
∫
P

e−h
0
neh

0
nδnτ̂(·,−n)dx

= δn(τ);

80



• For n < m and n /∈ suppψ′′, using the dominated convergence theorem:

ι(ξns )(τ) =

∫
P

e−h
0
n+sfn

||e−h0
n+sfn ||1

τ̂(·,−n)dx

=

∫
P

e−sfn

||e−sfn ||1
||e−sfn ||1

||e−h0
n+sfn ||1

e−h
0
n τ̂(·,−n)dx

s→∞−−−→
∫
P

1

m− α+ 1/2
χP1

m− α+ 1/2

||σn0 ||1
e−h

0
n τ̂(·,−n)dx

=
1

||σn0 ||L1(P1)

∫
P1

σn0 τ̂(·,−n)dx

• For n > m and n /∈ suppψ′′, using the dominated convergence theorem:

ι(ξns )(τ) =

∫
P

e−h
0
n+sfn

||e−h0
n+sfn ||1

τ̂(·,−n)dx

=

∫
P

e−sfn

||e−sfn ||1
||e−sfn ||1

||e−h0
n+sfn ||1

e−h
0
n τ̂(·,−n)dx

s→∞−−−→
∫
P

1

N + 1/2−m− α
χP2

N + 1/2−m− α

||σn0 ||1
e−h

0
n τ̂(·,−n)dx

=
1

||σn0 ||L1(P2)

∫
P2

σn0 τ̂(·,−n)dx

■

Remark 11.1.1. These Theorems shows that these degenerations allow us to “split” the phase

space.

For instance, suppose that there are no integral points on the support of ψ. In this case, then the

sections σn converge to their normalized-restriction on the corresponding part of the polytope, i.e.

P1 if n < m or P2 if n > m. Therefore, the polytope is broken up into three pieces

P = P1 ∪ P2 ∪ suppψ′′,

where suppψ′′ does not support any sections. Moreover, as these sections only have support

on their respective Pi, this result says that the quantization on the whole S2, corresponds to a

sum of the contributions from each part. We then observe that the Hilbert space of holomorphic

quantization breaks into two parts corresponding to regions in the phase space separated by ∞

Riemanninan distance, generated by the corresponding sections.

If the support does contain at least one integral point, we now have three pieces which support

sections. In particular, the the sections supported in supp ψ′′ converge to distributional sections.

And yet again, doing quantization in each pieces, or the sphere, will lead to the same results.

In this case, we see that the phase space breaks into three pieces, with the new extra piece

corresponding to the ∞ segment ”connecting” the two parts from above.
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This result is quite interesting as, in general, there is no way of “decomposing” a phase space into

subsets, in some geometrically natural way, in such a way that the quantization of the symplectic

manifold also “decomposes” as a sum of the quantizations of those subsets.

Remark 11.1.2. Notice that all the above results are still valid on the plane, where the moment

polytope is of the form
[−1

2 ,+∞
]
.

Remark 11.1.3. One may generalize straightforwardly for larger dimension, for instance for P2,

where one can divide the polytope by codimension 1 “walls”.

11.2 More bump functions

Let us now further generalize the results of the previous section and suppose that the second

derivative of ψ now is given by two bump functions with disjoint supports, say supp1 = [m1 −

α,m1 + α] and supp2 = [m2 − β,m2 + β], where m1 < m2. Furthermore, we assume that each

of these bump functions has area equal to 1. We will see that the same behaviour as described

above will prevail. Indeed, one can clearly see this simply by observing the following:

Let P1 = [− 1
2 ,m1 − α], P2 = [m1 + α,m2 − β] and P3 = [m2 + β,N + 1

2 ]. Then the addition of the

second bump function will only affect the expression of ψ and ψ′ on supp2 ∪ P3. In fact, on P3, ψ′

will be 2 rather than 1, which now is the value it takes on P2. For ψ, the following can be said: on

P1, ψ = 0, on P2, ψ(x) = x−m1. Now on P3:

∫ m2+β

m2−β
((x−m2)ψ

′(x))
′
dx =

∫ m2+β

m2−β
(x−m2)ψ

′′(x) + ψ′(x)dx ⇐⇒

βψ′(m2 + β) + βψ′(m2 − β) =

∫ m2+β

m2−β
ψ′(x)dx+

∫ m2+β

m−β
(x−m2)ψ

′′(x)dx ⇐⇒

3β =

∫ m2+β

m2−β
ψ′(x)dx+

∫ β

−β
yψ′′(y +m2)dy ⇐⇒

3β = ψ(m2 + β)− ψ(m2 − β) ⇐⇒

3β = ψ(m2 + β)− (m2 − β −m1) ⇐⇒

2β +m2 −m1 = ψ(m2 + β).

As such, for all x ∈ P3, ψ(x) = 2x−m2 −m1.

In fact, we can clearly see that this result can be further generalized if we had N bump functions

with disjoint supports, each with area 1. Let suppj := [mj − αj ,mj + αj ], mj ∈ P , αj > 0,

j = 1, ..., N be the supports of theN bump functions. Then, following the same naming convention

as before, let

P1 = [−1/2,m1 − α1], PN+1 = [mN + αN , N + 1/2], Pj = [mj−1 + αj−1,mj − αj ], j = 2, ..., N.
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then

ψ(x) = jx−
j∑

k=1

mk, ∀x ∈ Pj .

As such, the inclusion of another bump function only changes the behaviour of fn on the support

of that bump function and on the Pj immediately before it and the Pj after it. This leads us to the

following generalization of the theorem 11.1.7:

Theorem 11.2.1. Let ψ be as describe above. Consider also the function

fn(x) = (x− n)
∂ψ

∂x
− ψ(x),

where n ∈ P ∩ Z. Then

1. For n ∈ suppψ′′, fn has a global minimum at x = n, and in the sense of distributions:

e−sfn(x)

||e−sfn ||1
s→∞−−−→ δ(x− n).

2. For n ∈ Pj
e−sfn(x)

||e−sfn ||1
s→∞−−−→ 1

Vol(Pj)
χPj ,

Proof. We will prove this theorem will be done by induction on the number of bump functions K.

For K = 1, this case is the same as theorem 11.1.7.

For K =⇒ K + 1. We assume without loss of generality that mK+1 > mK > ... > m1. Thus by

the induction hypothesis, we only have to take care whenever n ∈ PK+1 ∪ suppK+1 ∪ PK+2. As

usual, we will divide the proof in cases:

1. n ∈ suppK+1

(a) n = mK+1. In this case it follows that f ′n = 0 on P1 ∪ ... ∪ PK+1 ∪ {mK+1} ∪ PK+2, and

f ′n < 0 on supp1 ∪ ...∪ suppK ∪ (mK+1 − αK+1,mK+1) and f ′n > 0 on (mK+1,mK+1 +

αK+1). Thus, using the exact same argument as before,

fmK+1
(x) = −ψ(mK+1) +

∫ 1

0

t(x−mK+1)
2ψ′′(mK+1 + t(x−mK+1))dt

> −ψ(mK+1).

So x = mK+1 is a global minimum of fmK+1
.
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Moreover,

fmK+1
(mK+1 + αK+1) = (K + 1)αK+1 − ((K + 1)(mK+1 + αK+1)−mK −mK−1

= mK +mK−1 − (K + 1)mK+1 < 0.

Following the proof of theorem 11.1.7, we take ε̃ > 0, then

||e−sfmK+1 ||1 ≥
∫
Bε̃(mK+1)

e−sfmK+1
(x)dx ≥ Vol(Bε̃(mK+1))e

sψ(mK+1)−s ε̃
2

2 ψ
′′(mK+1).

Thus, choosing ε̃ such that ψ(mK+1) >
ε̃2

2 ψ
′′(mK+1), we have that for x /∈ suppK+1 :

e−sfm(x)

||e−sfm ||1
s→∞−−−→ 0

Consider now, 0 < ε < α. Thus:

∫
P\Bε(mK+1)

e−sfmK+1
(x)dx =

K+2∑
j=1

∫
Pj

e−sfmK+1
(x)dx+

K∑
j=1

∫
suppj

e−sfmK+1
(x)dx+

+

∫
[mK+1−αK+1,mK+1−ε]

e−sfmK+1
(x)dx+

∫
[mK+1+ε,mK+1+αK+1]

e−sfmK+1
(x)dx

≤ Vol(P1) +

K+1∑
j=2

Vol(Pj)e−sfmK+1
(mj−αj) +

K∑
j=1

αje
−sfmK+1

(mj+αj)+

+ 2(αK+1 − ε)e−sfmK+1
(mK+1±ε) + Vol(PK+2)e

−sfmK+1
(mK+1+αK+1)

Thus, choosing ε̃ such that ψ(mK+1) >
ε̃2

2 ψ
′′(mK+1) and ε2

2 ψ
′′(mK+1±ε) ≥ ε̃2

2 ψ
′′(mK+1),

we obtain ∫
P\Bε(mK+1)

e−sfmK+1
(x)

||e−sfmK+1 ||1
dx

s→∞−−−→ 0,

which proves our first claim.

(b) n ̸= mK+1 This follows easily using the same argument as above. In this case it follows

that f ′n = 0 on P1∪ ...∪PK+1∪{n}∪PK+2, and f ′n < 0 on supp1∪ ...∪suppK∪(mK+1−

αK+1, n) and f ′n > 0 on (n,mK+1 + αK+1). Thus, using the exact same argument as

before,

fn(x) = −ψ(n) +
∫ 1

0

t(x− n)2ψ′′(n+ t(x− n))dt

> −ψ(n).

So x = n is a global minimum of fn.It also follows that in neighborhood of n, fn(x) =
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−ψ(n) < 0. Now, as before, we consider ε̃ > 0:

||e−sfn ||1 ≥ Vol(Bε̃(n))esψ(n)−s
ε̃2

2 ψ
′′(n).

Thus, choosing ε̃ such that ψ(n) > ε̃2

2 ψ
′′(n), we have that for x /∈ suppψ′′ :

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 0.

Let now 0 < ε < α. Thus:

∫
P\Bε(n)

e−sfn(x)dx ≤ Vol(P1) +

K+1∑
j=2

Vol(Pj)e−sfmK+1
(mj−αj) +

K∑
j=1

αje
−sfmK+1

(mj+αj)+

+ (n− ε−mK+1 + αK+1)e
−sfmK+1

(mK+1−ε)+

+ (mK+1 + αK+1 − n− ε)e−sfmK+1
(mK+1+ε) + Vol(PK+2)e

−sfmK+1
(mK+1+αK+1)

So we choose ε̃ such that ψ(n) > ε̃2

2 ψ
′′(n) and ε2

2 ψ
′′(n ± ε) ≥ ε̃2

2 ψ
′′(n). We now just

have to look at ψ(mK+1 + αK+1) + ψ(n), which is positive regardless if n < mK+1 or

n > mK+1. So it follows that

∫
P\Bε(mK+1)

e−sfmK+1
(x)

||e−sfmK+1 ||1
dx

s→∞−−−→ 0,

which proves our claim.

2. PK+1 ∪ PK+2

(a) n ∈ PK+1 we have that f ′n is positive in suppK+1, negative on the others supp′
ks and it

is zero in the remaining parts of the polytope. In particular, it follows that fn is constant

on PK+1, where its value is −ψ(n), which is the minimum of the function.

We then have that

||e−sfn ||1 ≥
∫
PK+1

e−sfn(x)dx = Vol(PK+1)e
sψ(n),

which in turn implies that

e−sfn(x)

||e−sfn ||1
s→∞−−−→ 0, ∀x /∈ PK+1.

Moreover, notice that ∫
P

e−sfn(x)

||e−sfn ||1
dx = 1,
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and

∫
P\PK+1

e−sfn(x)

||e−sfn ||1
dx ≤

K∑
j=1

Vol(Pj)
Vol(PK+1)

e−s(fn(mj−αj)+ψ(n)) +
Vol(PK+2)

Vol(PK+1)
e−s(fn(N+1/2)+ψ(n))+

+

K+1∑
j=1

Vol(suppj)
Vol(PK+1)

e−s(fn(mj+αj)+ψ(n))

s→∞−−−→ 0

Which yields the desired result.

(b) n ∈ PK+2. This case follows exactly as the above, but instead of PK+1 we exchange

that for PK+2.

■

Notice furthermore, that the theorems 11.1.1, 11.1.2 and 11.1.8 , are still valid for these types of

functions, and in particular, their proofs are essential the same.

Remark 11.2.1. Remarks 11.1.1, 11.1.2, and 11.1.3 are still valid when we consider more bump

functions, with the appropriate adaptations.

11.3 Complex time Hamiltonian flow approach for half-form

corrected sections

In the previous two sections, we have studied the effect of the imaginary time flow generated by

ψ on the holomorphic L1-normalized sections. We will now deduce the same results following

the approach given in section 10.5. In order to accomplish this, we notice that we have already

seen that the polarization converges. Moreover, proposition 10.5.1 is easily seen to be valid in

this case. As such, all that is left to do is to prove the analogue of Theorem 10.5.1.

Theorem 11.3.1. Recall that the operator Aψg,s : HPg → HPs : is defined by

Aψg,s :=
(
esψ̂ ⊗ eisLψ

)
◦ e−sψ̂R .

Then the operator Aψg,∞ : HPg → HPR is determined by:

1.

Aψg,∞

(
σn0

||σn0 ||2

)
:=

(2π)
n
2 eg(n)

||σn0 ||2
δn ⊗

√
dX,

if n ∈ suppψ′′;
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2.

Aψg,∞

(
σn0

||σn0 ||2

)
:=

1

||σn0 ||2
χPiσ

n
0 ⊗

√
dX,

if n ∈ Pi,

is such that

lim
s→∞

Aψg,s = Aψg,∞.

Proof. Notice that the first case follows exactly like theorem 10.5.1. Therefore we only have to

worry about whenever n ∈ Pi. From 10.7 we have that

Aψg,s

(
σn0

||σn0 ||2

)
=
e−sψ(n)σns
||σn0 ||2

.

Assume now that n ∈ P1, then ψ(n) = 0. It then follows that by the dominated convergence

theorem,

∫
P

e−sfn(x)e−((x−n)g′0(x)−g0(x))dx =

∫
P1

e−((x−n)g′0(x)−g0(x))dx+

+

∫
P\P1

e−sfn(x)e−((x−n)g′0(x)−g0(x))dx

s→∞−−−→
∫
P1

e−((x−n)g′0(x)−g0(x))dx

which implies our result.

Lastly, assume now that n ∈ P2. Then ψ(n) = (n−m). For any ε > 0, we obtain that

∫
[−1/2,m+α−ε]

e−s(n−m)e−sfn(x)e−((x−n)g′0(x)−g0(x))dx ≤ Ae−s(n−m)e−sfn(m+α−ε)

s→∞−−−→ 0,

where A = (m + α − ε + 1
2 )e

−((ξ−n)g′0(ξ)−g0(ξ)), where ξ is the maximum of the function on this

interval. The convergence follows from the fact that (n−m) = −fn(m+α) and that fn is decreasing

non-positive function. Moreover, notice that on P2, we have that

∫
P2

e−s(n−m)e−sfn(x)e−((x−n)g′0(x)−g0(x))dx =

∫
P2

e−s(n−m)e−s(m−n)e−((x−n)g′0(x)−g0(x))dx

=

∫
P2

e−((x−n)g′0(x)−g0(x))dx

which proves our claim. ■
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