TECNICO
LISBOA

New toric polarizations in CP'

Anténio Agostinho Freitas Gouveia

Thesis to obtain the Master of Science Degree in

Master in Applied Mathematics and Computation

Supervisor(s): Prof. Jodo Luis Pimentel Nunes

Examination Committee

Chairperson: Prof. Miguel Tribolet de Abreu
Supervisor: Prof. Jodo Luis Pimentel Nunes
Member of the Committee: Prof. José Cidade Mour&o

6 November 2023



”"I’'m not great at advice. But can | interest you in a sarcastic comment?”
Chandler Bing



Declaration
| declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.



Acknowledgments

Antes de mais, quero agradecer ao meu orientador Professor Jodo Pimentel Nunes por me ter
aturado durante este ano e por toda a ajuda, motivacao e paciéncia que teve comigo durante a

realizacao deste projeto.

Quero ainda agradecer a todos os meus Professores pela sua dedicacao ao ensino e por terem
contagiado com o “bichinho” da matematica. Em particular, gostava de deixar um grande obrigado
aos Professores Ana Paula Jardim, Cristina Sernadas, Leonor Godinho, Rosa Sena Dias, Patricia

Gongalves, Pedro Resende, Jodo Pimentel Nunes e José Natario.

Um agradecimento especial vai para todos os meus amigos, em particular ao Luis Maia pelas
otimas conversas e memes matematicos; ao Wormy por todos os cabelos brancos que ganhei; ao
Jodo pela companhia nas cadeiras; ao Vasco, Gongalo, Rita, Agua, Jodo, Miaw, Alves e Gui pelos
jantares e seccoes online de discord; ao Simao pelos jogos de civ, memes e fotocdpias; a Maria
Madrugo pelo gossip; ao Caria pelas longas conversas filosoficas; a Marta pela tua felicidade e
caos; a Filipa pelos berros logo de manha; a Mariana por deixares-me chatear-te, Huzzah; ao
Zé pelos teus batidos; a Catarina pelos longos audios; ao Pedro Leite pela tua serenidade; a
Ana Santos pelas longas conversas ao telemoével; ao Ruben pelos gelados, almocgos e idas ao
cinema; a Mena, Carolina e Mariana pelas idas ao forum; a Mafalda, Carolina e Laura Maria pelos

jantares de sushi; ao Anténio, Barbara Rivas e Nébrega pela companhia na ilha.
Quero também agradecer a Fernanda por ter aguardado a todo o momento.

Quero ainda agradecer a minha familia de Lisboa por terem cuidado de mim quando vim para ca

estudar e, em particular, por me terem alimentado.

Por fim, quero agradecer aos meus pais por tudo. Sem vocés, isto ndo seria possivel.



Resumo

Em [1], [2] e [3] foi mostrado, usando diferentes técnicas, como a escolha de uma fungéo estrita-
mente convexa no politopo de momento de uma variedade Kahler térica permite a degeneragao
das polarizacdes Kéhler na polarizagao real. Com esta degeneracao, foi ainda mostrado que as
secgoes holomorfas convergem para as secgoes delta de Dirac com suporte nos pontos intergais

do politopo de momento.

Esta tese explora o caso especial de S = CP' e generaliza os resultados prévios, considerando
fungdes com uma “bump function” como sua segunda derivada. Iremos abordar dois dos métodos:
secgdes normalizadas L' e abordagem de fluxo hamiltoniano em tempo complexo para secgoes
corrigidas meia forma. Seguindo essas abordagens, as polarizagbes Kéahler convergem para
uma nova polarizagao mista. Assim, somos entdo capazes de dividir o politopo do momento em
trés partes, que correspondem a uma decomposigcao do espaco de Hilbert da quantizacdo mista
em trés partes. Fora do suporte da “bump function”, as secdes holomorfa convergem para sua
restricdo normalizada na respectiva parte. Se houver pontos inteiros no suporte de nossa fungao,
as secgoes correspondentes convergem para secgoes distribucionais. Além disso, generalizamos

estes resultados para o caso quando temos mais “bump functions”.

Estes novos resultados sao interessantes porque, em geral, ndo ha como "decompor” um espaco
de fase em subconjuntos, de modo que a quantizacdo da variedade simplética também "decom-

ponha” como uma soma das quantizagdes desses subconjuntos.

Palavras-chave: Quantizagdo Geomeétrica, Geometria Torica, fluxos Hamiltonianos em

tempo imaginario, Polarizacdes mistas, seccoes distribucionais.



Abstract

In [1], [2], and [3] it was shown, using different techniques, how the choice of a strictly convex
function on the moment polytope of a toric Kéhler manifold allows for the degeneration of the
Kahler polarization into the real polarization. With this degeneration, it was further proved that the
holomorphic sections converge to the Dirac delta distributional sections supported on the integral

points of the moment polytope.

This thesis explores the special case of S? =~ CP' and generalizes the previous results, consider-
ing functions 1, which have bump functions as their second derivative. We will do this using two
methods: L!-normalized sections and Complex time Hamiltonian flow approach for half-form cor-
rected sections. Following these approaches, the Kahler polarizations converge to a new mixed
polarization. The moment polytope becomes divided into three parts, corresponding to the split-
ting of the Hilbert space of the mixed quantization into three parts. Outside the support of the
bump function, the holomorphic sections converge to their normalized restriction on the respec-
tive part. If there are integral points in the support of our function, the corresponding sections
converge to distributional sections. Moreover, we then generalize this for the case when we have

more bump functions.

These new results are interesting as, in general, there is no way of "decomposing” a phase space
into subsets, such that the quantization of the symplectic manifold also "decomposes” as a sum

of the quantizations of those subsets.

Keywords: Geometric Quantization, Toric geometry, Imaginary Time Hamiltonian Flows,

Mixed polarization, Distributional sections.
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Chapter 1

Symplectic Forms

In this chapter we will first define what is a symplectic structure on a vector space and then explore

some basic properties. Afterwards we will generalize this idea to manifolds.

1.1 Skew-Symmetric bilinear maps

From now on, let V be an m-dimensional real vector space. Let Q : V x V — R be a bilinear

skew-symmetric map.

Theorem 1.1.1. Let ) be a skew-symmetric bilinear map over V. Then there is a basis uy, ..., uy,

€1, ..., En, fl, ...,fn such that:

Qu,v) =0, Vie{l,...k} Yo eV,
Q(eiaej) = Q(f?af_}) = 07 v’L,? € {17...777,},

Proof. The proof can be found, for instance, [4] on page 3. |

The basis given in Theorem 1.1.1 is not unique, despite being called the canonical basis. Let

U={ueV:Qu,v)=0, Yv e V}. Consider the following map

Q: V-V

v Q) (u) == Qv, ).

It is clear that the kernel of Q is U.

Definition 1.1.1. We say that Q) is symplectic (or non-degenerate) if Q is bijective (equivalently,

ifU = {0}). Therefore, we call the tuple (V,)) a symplectic vector space.



It is immediate to see by theorem 1.1.1 that if Q is symplectic than dim V' = 2n, therefore we have

the following corollary:
Corollary 1.1.1. A symplectic vector space must have even dimension.

Example 1.1.1. /n R?" we have the prototype of a symplectic vector space (R?",Q), where Qq

is such that the basis:

is a symplectic basis. In particular, in this basis, the symplectic map is of the following form:

0, Id,
—Id, 0,

As usual, it is useful to consider transformations that “preserve” the symplectic structure.

Definition 1.1.2. A symplectomorphism ¢ between symplectic spaces (V,2) and (V',Y) is
linear isomorphism ¢ : V. — V' such that ¢*QV = Q, where (¢*QV')(u,v) = ' (d(u), d(v)).

Similarly to what happens with the inner product, there is a way to find, given a subspace of a

symplectic vector space, the “complement” of this subspace with respect to symplectic structure.

Definition 1.1.3. Let (V,Q) be a symplectic vector space andY a subspace of it. Then its sym-

plectic orthogonal Y* is the linear subspace defined by

Y= {veV:QUy) =0, VycY}

Definition 1.1.4. We say that Y is isotropic when Y C Y and that Y is coisotropic when
Y@ c Y. IfY is both isotropic and coisotropic then we say that Y is lagrangian (i.e.Y = Y*),
which implies that dim Y = 1 dim V.

1.2 Symplectic Manifolds

Let w be a 2-form on a manifold M such that for all p € M, the map w, : T,M x T,M — R is

skew-symmetric bilinear and w,, varies smoothly with p (i.e. w is de Rham 2-form).

Definition 1.2.1. The 2-form w is symplectic if w, is symplectic for all p € M and if it is closed,

i.e. dw = 0. In this case we say that (M, w) is symplectic manifold.

We therefore have, as a consequence of corollary 1.1.1, the following corollary:



Corollary 1.2.1. A symplectic manifold is even dimensional.

Example 1.2.1. Consider de 2-sphere S*. Then we can consider its volume form in spherical
coordinates
w = sin(¢)d¢ A db,

which tell us that S? is a symplectic manifold. (This extends smoothly to the whole of 52.)

Definition 1.2.2. Let (M,w) and (M’,w’) be symplectic manifolds and let ¢ : M — M’ be a diffeo-
morphism. Then ¢ is a symplectomorphism if p*w' = w, where (¢*w')(u,v) = w'(dp,(u), dp,(v))

is the pullback.

Theorem 1.2.1 (Darboux). Let(M,w) be a 2n-dimensional symplectic manifold, andp € M. Then

there is a chart U with local coordinates 1, ..., x,,y1, ..., Yo Centered at p such that on U

W= idazi A dy;.

i=1

These coordinates are known as Darboux coordinates.

Proof. The proof can be found in any book that deals with symplectic geometry. In particular, it

can be found in [4] on page 55. |

This theorem tell us that any symplectic manifold is locally symplectomorphic to (R?", wy). In fact,
symplectic manifolds are locally indistinguishable. This a clearly very different from Riemannian
geometry, where different metrics can be distinguished locally by curvature. In particular, this

result tells us that in symplectic geometry we are interested in looking at global properties.

Definition 1.2.3. A submanifold of M is a manifold X with a proper injective immersion (also

known as a closed embedding) i : X — M.
We usually regard the embedding i : X < M as being an inclusion(i.e. i(p) = p).

Definition 1.2.4. Given a symplectic manifold (M,w), we say that a submanifold Y of M is a
lagrangian submanifold if Vp € Y, T,Y is a lagrangian subspace of T, M, that is w|r,y = 0

(using the inclusion map, this is equivalent to i*w = 0) and dim T,Y = 1dim T, M.

Let X be any n-dimensional manifold and M = T*X its cotangent bundle. Then, considering
the usual cotangent coordinates given coordinates (7*U, z1, ..., z,, &1, .., &), We can thus define

a 2-form w in T*U by
w=> dv; Nd;, (1.1)

i=1



which is symplectic. And we can define the following 1-form on T*U
a= Zfidﬂ?i, (1.2)
i=1

Such that w = —da. « is known as the tautological form or the Liouville 1-form and w is the
canonical symplectic form. The Tautological form is coordinate independent. Consider the fol-

lowing definition:

Definition 1.2.5. Let 7 : T*X = M — X be the natural projection (i.e. ©(x,§) = x). Then the

tautological 1-form « is defined pointwise by
ap = (dmy)*¢ € Th M

Where (dm),)* represents the transpose of dmp,.

Consider v =37 | ;5> + bia% then:

n 8 n n n a 8
O@(’U):g(dﬂpv):£<zalax> :Zglatzzgtd]‘l Zaj%—&—ly@ 5
i=1 v i=1 i=1 j=1 J J

=v

which shows that the tautological form is well defined.

Definition 1.2.6. The canonical symplectic form w on M = T* X is defined as

w = —da

And thus it is given in local coordinates by 1.1

By a simple induction argument, it is easy to see that w™ = w A ... A w does not vanish. Thus, it

defines a volume form. In particular, the form

n!
is called the symplectic volume or the Liouville volume of (M, w).

Therefore, we have found a way to construct symplectic manifolds, by simply considering the
cotangent bundle of an existing manifold. However, it is not the case that all symplectic manifolds

are a cotangent bundle of another manifold, as we have seen in the case of S2.

Corollary 1.2.2. The w™ of any symplectic form w on a 2n-dimensional manifold M is a volume

form. This can easily be seen by the above proposition and noting that a symplectic form on M is



a 2-form, and therefore w™ is top degree.

Corollary 1.2.3. A symplectic manifold is orientable.

Proposition 1.2.1. If (M,w) is a compact symplectic manifold of dimension n, then [w"] €
H (M) # 0.

Proof. This result follows form a simple application of Stokes theorem. [ |

Proposition 1.2.2. /f (M,w) is a compact symplectic manifold of dimension n, then [w] # 0.

Proof. We know by the above proposition that [w™] € H32%(M) # 0. Then, by the cup product on

the cohomology, we have [w"] = [w]™, which allows us to conclude that [w] # 0. [ ]

Corollary 1.2.4. Forn > 1 5%" js not symplectic. This is easily seen because H3,(S*") = 0 for

n>1.

Definition 1.2.7. Let M be a manifold and p : M x R — M (we will write p;(p) := p(t,p)). Then p

is said to be an isotopy if p; : M — M is a diffeomorphism for every t and py = idy;.

Definition 1.2.8. Given an isotopy p, we have a time-dependent vector field, that is, a family of
vector fields X;, t € R such that :
dpt
Il '
dt t(pt)
Conversely, assuming that either M is compact or that X, have compact support for all of ¢ € R,
then there is an isotopy associated to the time-dependent vector field. If it happens that X, is

independent of ¢, then the isotopy associated is the flow or the exponential map of X.

Proposition 1.2.3. Letw,,t € R be a family of forms. Then

d, . . dw
5 (Prwe) = pi (Cxtwt + dtt>

Proof. See [4] on page 42-43. [ |

A natural question that may be asked is that given two symplectic forms in the same cohomol-
ogy class if there exists a diffeomorphism (homotopic to the identity of our manifold) such that it
behaves like a symplectomorphism? Moser answered this question in the positive in what is now

known as Moser theorem.

Theorem 1.2.2 (Moser). Let M be a compact manifold with two symplectic forms w.,w- such that
[w1] = [w2] and that the 2-form w, = (1 — t)w; + twa, is symplectic ¥Vt € [0,1]. Then there is an
isotopy p : M x R — M such that pfw; = wy, Vt € [0, 1].

Proof. See, for instance, page 50 in [4]. [ |



Chapter 2

Compatible Almost Complex

Structures

In this chapter we will dwell into almost complex structures on manifolds. Our main goal is to define
what is almost complex structures and to show that any symplectic and riemmanian manifold has
a almost complex structure which is “compatible” in some sense that we will also define. We will
also look into some consequences of this as well as define the Dolbeaut theory. This will be the

basis for the next chapter where we will deal with complex structures on manifolds.

2.1 Almost Complex structures

Example 2.1.1. R?" with the standard coordinates (x1, ..., Ty, y1,-..,yn) has the standard sym-

plectic form :

wo = id.ﬁl N dy7

=1
making it info a symplectic manifold. On the other hand we also have the standard Riemannian

metric, given by the standard inner product:
go = (")

Finally we can think of R*" being isomorphic to C" with coordinates z; = x; + iy;. In turn

the multiplication by i induces a linear map .J, on the tangent space of R?" as follows. Let

o) 9 9
Bor Dmn Dyr

, 52— be the standard basis for tangent space of R*" then:

0 0 0 0
JO (8l‘1> N ayi’ JO (8%) - 78(1}1‘




Notice that J3 = —1. Using the above coordinates we can write all of this maps in matrix form:

It is also worth to point out that we can define the symplectic form in terms of the metric and the

complex form and vice versa:

wo(u,v) = go(Jo(u),v)
go(u,v) = wo(u, Jo(v))
This is not a coincidence, as we will soon see.

Definition 2.1.1. LetV be a vector space. A complex structure onV is a linearmap: J : V — V,

such that J?> = —Id. The pair (V, J) is called a complex vector space.
Definition 2.1.2. Let (V, Q) be a symplectic vector space. A complex structure J onV is said to
be compatible (with ) if

G(u,v) = Qu, J(v)), Yu,v € V is a positive inner product on'V.

That is,

Q(Ju, Jv) = Q(u,v) [symplectomorphism)|

Q(u, Ju) > 0 [taming condition]

Proposition 2.1.1. Let (V,2) be a symplectic vector space. Then there is a compatible complex

structure J on V.

Proof. The proof can be found in [4] on page 84. |

2.2 Almost Complex Manifold

Borrowing the idea from vector spaces, we are then able to extend this concept into manifolds, in

the following way

Definition 2.2.1. An almost complex structure on a manifold M is a smooth field of complex
structures on its tangent space: x — J, : T,M — T, M linear, and J? = —Id. The pair (M, J) is

called a almost complex manifold.

Definition 2.2.2. Let (M,w) be a symplectic manifold. An almost complex structure J on M is



called compatible (with w) if the map:

x> gy T M XT, M — R

g (U, v) = wy(u, Jpv)

is a riemmanian metric on M. The triple (w, g, J) is called the compatible triple when g(-,-) =
w(-, J-).

Proposition 2.2.1. Let (M,w) be a symplectic vector space and g a riemmanian metric on M.

Then there is a canonical compatible almost complex structure J on M.

Proof. The proof follows immediately from proposition 2.1.1 and by noting that on its proof, the J

structure is canonical after the choice of the inner product. |

In particular, if (w, J, g) is a compatible triple, then any one of these maps can be written in terms
of the other two:

g(u,v) = w(u, Jv), w(u,v) = g(Ju,v), J(u) = g_l(d)(u))7
where

w:TM —T*M g:TM —T*M
wi wlu, ) w g(u,)
As in the other areas of geometry, we may then be interested to check when ¢ is flat and w is
closed. For the almost complex structure, the corresponding property we may dwell into is when

is J integrable, that is when is J induced by a structure of a complex manifold, i.e. the coordinates

maps establish a homeomorphism with C™ and the transition maps are biholomorphic.
Now, we will present the example of R?, which will be useful later on.

Example 2.2.1. Take M = R? = C. Then we can take the coordinates to be » = p + iq, where

(p, q) are the usual coordinates in R%. Thus

Then



Thenif f =u—+iv: C — C, where u,v are real functions, satisfy the Cauchy-Riemman equations:

u  _ Ov
dp — Oq
du _ _Ov
d¢g —  Op

is equivalent to

dp 9¢’ 9q  Op

Thus f is holomorphic iff g{

— = 0. Thus it is natural to define
z

0 0 0 0
J(ap) = o J(aq) = o

Therefore

()G E-) ) ()19

and in the same way

0 .0

We will now check that this complex structure is compatible with w = dx A dy.

0 0 0 0
=a-— + b Ju=—b—+a—
U aap+ aq U 8p+a8q
0 0 1o} 0
=c— 4+ d— Ju = —d— _
v cap+ aq [ 8p+c<9q

Then, w(u, Ju) = a®>+b® > 0. So ifu # 0, w(u, Ju) > 0. On the other hand, w(Ju, Jv) = ad—bc and
w(u,v) = ad — be, hence, it is compatible. The associated Riemannian metric is then w(u, Jv) =

ac + bd = (u,v) which is the usual one in R

Definition 2.2.3. A submanifold X of an almost complex manifold (M, J) is an almost complex
submanifold when J(T'X) C TX.

Proposition 2.2.2. Let (M,w) be a sympletic manifold equipped with a compatible almost com-
plex structure J. Then any almost complex submanifold X of (M, J) is a symplectic submanifold
of (M,w).

10



Proof. The Proof can be found in [4] on page 91. [ |

2.3 Dolbeault Theory

Let (M, J) be an 2n-dimensional almost complex manifold. As stated before, J has eigenvalues
+i. Therefore we can not decompose T'M (and T* M) with respect to the eigenvalues, because
TM (T*M) is real. But we may “complexify” it, using extension by scalars. So consider the
complexified tangent bundle of M to be TM ® C such thatp € M, (TM ®C), = T,M @ C.
Notice that now 7, M ® C is 2n-dimensional complex vector space.

We extend linearly J to TM ® C as
Jovec)=Jvee, YweTM, YeeC
Thus we may now define:

TW=weTMeC: Ju=iv}={v®l-Jv®i:vecTM}

T ={weTMeC:Jv=—iw}={vel+Jv®i:vcTM}

T19 is known as the (J—)holomorphic tangent vectors and 7%! is known as the (J—)anti-

holomorphic tangent vectors . We also have the natural projections:

a0 TM — 7O 70t TM — 7%
1 1
U}—>§(U®1—JU®Z') v>—>§(v®1+Jv®z’)
Note that:
1 1
(700 J)(v) = Uvel—Jvei)=(Jval+veid)= im0 (v)
And similarly

(7% o J)(v) = —irt(v)

Thus, these projections are isomorphisms (of complex vector bundles) and hence 70 = 701,

Thus extending the above projections to TM @ C we get that following decomposition:
TM ®C=T1T" ¢ 1%
We can repeat the process above to the cotangent bundle:

Tio={£€eT"MQC:&Jv)=i[), VweTMRC} ={£®@1—((oJ)®i: € T"M}

To1 ={{€eT"MRC:{(Jv)=—il(v), WeTMRC}={{®@1+ (o J)®i:{ € T*M}

11



Ty o is known as the (J—)holomorphic cotangent vectors and 7'—0, 1 is known as the (J—)anti-

holomorphic cotangent vectors with projections:

71,0 T*M ®RC — Tl,O 0,1 - T*M ®RC — T071

£ €ro= 5(E—i€0 ) v Gon = 5(E+i€0 )
Thus extending the above projections to T* M ® C we get that following decomposition:
T"M ®C=Ty 0@ Ty
Let
QF(M;C) : = sections of A*(T*M ® C),
be the set of complex-valued k-forms on M. Using the above decomposition we get

AMT*M @ C) = A¥ (T @ To,) = EB ATy o) AN™(Tp 1) = EB Ab™
l+m=k l+m=k

_:Al,7n

Definition 2.3.1. The differential forms of type (I,m) on (M, J) are the sections of A"™, and let
Q'™ denote the set consisting of them. Then Q*(M;C) = @, ,,,,_, Q"™

We may then define 7., : A¥(T*M ® C) — Ab™, with [ + m = k. We may then define two

analogous differentials operators on forms of type (I, m), using these projections, as follows:

: Q™M) — Q™9 =my,0d

9: (M) — QY9 =7y 0d

Let f : M — C be any smooth function. Then we extend the exterior derivative to f by setting
df = d(Re f)+id(Im f). We then say that f is (J—)holomorphic at p € M if df,, is linear complex,
thatis df, o J = idf,. We then say that f is (J—)holomorphic if it is (/—)holomorphic at all p € M.
In the same way, we say that f is (J—)anti-holomorphic at p € M if df, is complex antilinear,
that is df, o J = —idf,. We then say that f is (J—)anti-holomorphic if it is (/—)anti-holomorphic
atallp € M.

On functions, d = d + 9, thus we say that f is holomorphic if 9f = 0 and anti-holomorphic if
df = 0. However, in general, this does not hold for general k-forms. Nevertheless, will see next

chapter some extra conditions on the manifold for which it holds for general k-forms.
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For now, suppose that d = 9 + 9. Then for any 5 € Q'™ we have that

0=d28=d(03+08) = 0°8 +00B+00B+ 05
_~  —— ~~

cQit2,m cQli+1,m+1 cQl.m+2

Hence 8% = 99+ 89 = & = 0. Then this allows one to define a cohomology theory in the following

way. The following long sequence is exact

0 QZ,O a Ql,l a Ql,2 il

Thus we may define the Dolbeault cohomology groups:

ker 0 : Qb — Qbmtl

HY™M(M) = —=
o M) = S =1 5 g

Q0,0

E)

o
Ql,O QO,I
E) E]
3] o
Q270 Ql,l 90,2

Figure 2.1: relation between QF.

The Dolbeault cohomology is a very important tool in complex geometry. We will dwell a little bit
into it in the next chapter. Now, we will define the Nijenhuis tensor, which allows one to analyse if

the almost complex structure is integrable.

Definition 2.3.2. Letf (M, J) be an almost complex manifold. Its Nijenhuis tensor N is:
N, w) = [Ju, Jw] — J[v, Jw] — J[Jv,w] — [v, w]

Where v,w € X(M) and [-,-] is the Lie bracket.

13



Chapter 3

Kahler Manifolds

In this chapter our main goal is to define a Kahler manifold. These manifolds are particularly
unique as they are complex, symplectic and riemmanian manifolds. In the first section, we will
define what is a complex manifold. Then we will deal with Kahler forms, which is going to introduce

a restriction on the sympletic form. Finally we will dwell a bit into Hodge theory.

3.1 Complex manifolds

Definition 3.1.1. A n-dimensional complex manifold M is a manifold with an atlas of charts to
open sets of C™, such that the transitions maps are biholomorphic, that is bijective, holomorphic

and with holomorphic inverse.

Proposition 3.1.1. Any complex manifold has a canonical almost complex structure.
Proof. See, for instance, [4] page 101. |

We would like now to study what Q*(M7; C) looks like. Let U C M be a coordinate neighborhood

with coordinates z; = x; +iy;, Vi € {1,...,n},thenatp € U:

0 0
T,M = spang {&v-'p’ 8y|p}
J i

0 0
TpM ® C= spanc {Mzﬂ 8y|p}
) J

1 0 0 1 0 .0
Sp“”@{z(axj'f’Zayﬁ)}@sp“”c{z(a%'f?“ayj'f’)}

0 0
_spanc{azj|p}@span@{8zj|p}

14



Where we have decomposed the space according to the eigenvalues of J and used the result

from the example 2.2.1. Similarly
T*M ® C = spanc{dz;,dy,;} = spanc{dz;} & spanc{dz;}

Thus
Qbm — { Z byrdzy NdZg : bJ,KECOO(U;(C)}

| |=1, K |=m

As we have seen, on almost complex manifolds only for function we had that d = 9 + 9. What

about complex manifolds?

Theorem 3.1.1. Let 3 € QF(M;C), where M is any complex manifold. Then
dB = 0B + 0B.
Proof. See [4] on page 104-105. |

What this tell us is that in complex manifolds, we have a counterpart to de Rham cohomology, the
Dolbeaut cohomology, which we have defined in 2.3. We will analyse the relationship between the

two in section 3.3.

Example 3.1.1. If f is a function on M then in local coordinates:
of
df = Z xjdxj Lo j>

(5
8Zk 8f 8Zk 8f 8Zk 6f 8zk 8f
((830] Oz, ax] azk) p (e %) ) ((8% Oz, 3?4] ﬁk) l(dzj 4 ))
1
(@ ;

ik
0z; j) Rl ) (gzy_f>

Tt )
3z] '

Theorem 3.1.2 (Newlander-Nirenberg, 1957). Let (M, .J) be an almost complex manifold. Let N

dzj — dzj >

I
“M M = -

be the Nijenhuis tensor. Then:

M is a complex manifold < J is integrable
— N=0

= d=0+0

= T =0

—

7T2’0d|Qo,1 =0

15



Proof. The proof can be found on the original paper [5] and also [4]. [ |

3.2 Kahler forms

Definition 3.2.1. A Kédhler manifold is a symplectic manifold (M ,w) equipped with an integrable

compatible almost complex structure. The symplectic form is then called a Kahler form.

A natural question that one might ask is what restrictions does this add to the symplectic form. As

it turns out, quite a lot:

Proposition 3.2.1. Locally, the Kéhler form is given by

n .
1
w = .kg : §hjk.dzj A dzy,
Jik=

where, at each point of the chart, h;;, is a positive-definite hermitian matrix.
Proof. See [4] on page 110-111. [ |

Definition 3.2.2. Let M be a complex manifold. A function p € C*°(M;R) is strictly plurisubhar-

monic (s.p.s.h) if on each local coordinates U, z1, ..., z,, the matrix ( 3 fj 2;9% (p)) is positive definite

atallpeU.

Proposition 3.2.2. Let M be a complex manifold and p € C*°(M;R) be s.p.s.h. Then
i
is Kahler. p is then called a (global) Kdhler potential.

Proof. Because M is complex, w being closed comes trivially. It is also immediate to check that

w is real, as it is equal to its conjugate.

02
Z 5, P dz] A dzZg(Jv, Ju) Z 82782k —t)dz; N dzZi(v,u) = w(v,u)

Now because p is s.p.s.h we have that h; ,, = 6‘963 which is positive definite. [ |

Example 3.2.1. Take M = C™ with the usual coordinates z; = x; + iy;. Let

p(z1, - szz] = |z?
82

Then it is easy to see that h; ;, = ngk = 0;&, thus it is s.p.s.h and the Kéhler form associated to

16



itis:
i.= i _
w= 588;} =3 Z djpdz; N dzy, = Zdﬂcj A dy;
gk J
which is the standard symplectic form.

Theorem 3.2.1. Letw be a closed real-valued (1,1)-form on a complex manifold M and letp € M.
Then there exist a neighborhood U of p and p € C*>(U;R) such that on U.
i —
w= 588/)
Proof. The proof can be found on [6]. [ |

The function p is then called a (local) Kéhler potential.
Proposition 3.2.3. Let M be a complex manifold, p € C>°(M;R) s.p.s.h., X a complex submani-
fold, andi : X — M the inclusion map. Then i*p is s.p.s.h..

Proof. See, for instances, page 113-114 in [4]. [ |

Corollary 3.2.1. Any complex submanifold of a Kdhler manifold is Kahler.

Definition 3.2.3. Let (M,w) be a Kdhler manifold and X a complex submanifold, with the inclusion
mapi: X — M. Then (X,i*w) is called a Kdhler submanifold.

3.3 Hodge theory

Now, we have theorem 3.1.1, what may we say more about Dolbeaut cohomology?

Theorem 3.3.1 (Hodge). On a compact Kdhler manifold (M ,w) the Dolbeaut cohomology groups
satisfy

Hip(M;C) = @ Hpp'(M) (3.1)
I+m=k

with H-™ = Hm.l_ In particular, the spaces H' (M) are finite-dimensional.

The decomposition in 3.1 is known as the Hodge decomposition. In order to do this decomposi-
tion, Hodge identified the spaces of cohomology classes of forms with the space of actual forms,
by choosing the representative in each class that solves the Laplace equation, which is known as
the harmonic representative.

As such, we will need to define what is the Laplacian of a form. For that we will need to use the

Hodge x-operator.

17



Definition 3.3.1. Consider a vector space V with inner product (-,-). Letey, ..., e, be a positively
oriented orthonormal basis for V andw = ey A ... A e,,. Then the star operator is the unique linear

operator
*: AR(V) = AmF(V)

such that for all o, B € A*(V)

aA*f = (a, Blw
It also follows that xx = (—1)k(=k),
Example 3.3.1. /fV = R? then
*(1) =dz ANdy *dr = dy
*x(dx AN dy) =1 *xdy = —dx.

Now consider a Riemannian manifold A/. Then we may take V = T,M, p € M and (-,-) the
riemannian metric. Then, assuming that the manifold is compact, one can define the following

inner product on the forms (-,-) : Q% x QF — R:

Definition 3.3.2.

§ = (—1)"FHDHL i - QF (M) — QFH(M)

A=ds+6dd : QF(M) — QF(M)

The operator ¢ is knows as the codifferential, and A the Laplacian (or sometimes de Laplacian-

Beltrami) operator.

Example 3.3.2. We will now check that the Laplacian defined above is the usual Laplacian for
function in R™.

Let f : R™ — R. Then:

5f = (—1)" " wdx f = (=1)"" wd(fday A ... Adx,) =0

18



On the other hand

Sdf = (=1)*" M xdxdf

= Z(—l) *d * o2, dz;

= Zn:(—l) *d (g:i: *d:vi)

= En:(—n *d ( of (=)t day A AT A LA dmn>

i=1 axi
*i(*l)* s (=1)""Vda; Adzy A .. Add A A da
- 7 i n
ig=1 a.’I}iaCCj —
=(=1)7714; jdx1A...Adxp,
= _1 _ <
(15
— Af.

Proposition 3.3.1. ¢ is the adjoint of d with respect to the above inner product.

Proof.

<a,55>:/ a/\*&ﬁ:/ aA(=1)Fd*p = —d(a/\ﬁ)—i—da/\*ﬁz/ da A+ = (da, B).
M M M

M

In a similar fashion, we may define the adjoint of & and 9, 9* and 8", respectively, which are

defined by the following proposition:

Proposition 3.3.2.
<50¢7ﬁ> = <Oé, _*8*6>

(90, ) = (o, —x D% )
Proof. See, for instances, page 82-83 in [6]. [ |
Proposition 3.3.3. The Laplacian is self-adjoint and (Aca, o) = |da|? + |6a|?
Proof.
(@, AB) = (a,ddp) + (a, 0dB) = (b, 6f) + (dev, df) = (dbcv, B) + (dav, B) = (Aa, B)
It follows form the above computations that (Aa, o) = |da|? + |6a|?. [ |
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The Harmonic k-forms are the elements of H* := {a € Q% : Aa = 0}. Notice that
Aa=0 < da=da=0

Thus they define a de Rham cohomology class. The case when M is K&hler, it can be shown that
A =2(00" + 9°9) (for instances, see pag 106 in [6] or page 103 in [7]) and A : QL™ — Qbm,
Hence

Hk: @ Hl,m

I+m=k

Theorem 3.3.2 (Hodge). Every Dolbeault cohomology class on a compact Kdhler Manifold (M, w)

possesses a unique harmonic representative
Im ~ l,m
H"™=H Db (M )
Thus H“™ are finite dimensional. Thus, we have the following isomorphisms:

7 ~ AN m ~ l,m
Hip(M)= H* = B H'" = § Hp' (M)
l+m=k l+m=~k

Proof. See [6] on page 116 for the proof. [ |

There is also have the following useful decomposition.

Theorem 3.3.3 (Hodge-Dolbeault decomposition). Let M be a compact kdhler manifold. Then
Qb (M) = HY™(H) @ 908"~ 1(M) & 8 Qb+ (M)
Proof. See, for instances, page 108 in [7]. |

We also have a version of the Poincaré lemma

Lemma 3.3.4 (0 lemma). Let M be a complex manifold and let w € Q%' (M) such that 0w = 0.
Then, for all p € M there is a open neighborhood U of p and ¢ € C°°(U;C) such that w|y = d¢

(i.e. w is locally 0-exact).
Proof. See, for instances, [6] on page 25-27. |

Lemma 3.3.5 (Global i00 lemma). Let M be a complex manifold and let w be an exact, real, type
(1,1) form on M. Then, there is ¢ € C>(M) such that w = i00.

Proof. The proof can be found in [8] on page 9. |
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Chapter 4

Hamiltonian Mechanics

In this chapter we will explorer an application of symplectic geometry. In particular we will study

classical mechanics.

4.1 Hamiltonian Vector fields

Let (M,w) be a symplectic manifold and H € C>(M;R). Then its exterior derivative dH is a
1-form. Because w is symplectic and therefore nondegenerate, there is a unique vector field Xy
such that

txy (W) =dH.

We then call Xy the hamiltonian vector field and we call H an hamiltonian function. In
particular, we may say that Xy is a hamiltonian vector field if . x,, w is exact.

If X5 is complete, then we may define the usual flow of Xy as usual.

¢4, M — M, teR

¢9(H =id,s

de?,
— = Xu(d,)

Proposition 4.1.1. The flow is a symplectomorphism vt € R.

Proof. Notice that for ¢ = 0 then this is trivially true. Therefore we will show that (¢%, )*w is
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constant V¢t € R, which will then imply the result.

d d rs d

GO = g (O = 0,) g (0%,)" = (0,) Lxw

= (qthH)*(dLXHW +ix, dw)
=0

= (¢x,,)" (ddH)
=0.

An important thing to note is that due to the fact that w is a symplectic form, we have that:
Lx,H=1x,dH =1x,tx,w=w(Xpg,Xg)=0
Which shows that hamiltonian vector fields preserve their hamiltonian functions. Hence:
(¢%, )" H =H, VteR

In the same way, we say that X is a symplectic vector field if . xw is closed. Note that because
d*> = 0, every hamiltonian vector field is symplectic. Locally on a contractible open set every
symplectic vector field is also hamiltonian. As a consequence, if H},(M) = 0 we have that every

symplectic vector field is hamiltonian.

Notice that proposition 4.1.1 is still valid for symplectic vector fields and its proof is essentially the

same.

Proposition 4.1.2. For any form «,
L[X7y]Ot = ﬁxLyOt - Ly,Con.

Proof. Notice that we only have to check for functions and 1-forms. Let f € C°. Then (x y|f =
Lxtyf=wyLxf=0.
Let now « be a one form. Then

ExLyOé =X a(Y)

tyLxa = tyda(X) + tytxda
= (da(X))(Y)+ da(X,Y)
=Y aX)+X -aY)-Y aX)—-alX,Y]

=X o) —aofX,Y]
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Thus

Lxiya—iyLxa=X- -aY)—X aY)+a[X,Y]
= a[X,Y]

= !X, v«

Proposition 4.1.3. If X and Y are symplectic vector fields on (M,w), then [X,Y] is hamiltonian

with hamiltonian function w(Y, X).

Proof. See page 130 in [4]. [ |

Definition 4.1.1. Let (M,w) be a symplectic manifold. Then we define the Poisson bracket of
two functions f,g € C>(M;R) to be

{f,9} = w(Xy, Xa).

Proposition 4.1.4.
X{f,!J} = _[Xf»Xg]~

Proof. Notice that Xy and X, are hamiltonian vector fields. Therefore by proposition 4.1.3 we

have that
UXyp, X)W = dw(Xg, Xf)-
And
Xoxp xp)W = dw(Xy, Xg) = —dw(Xy, Xy) = Xy, XgW
Thus X0y = Xu(x, . xa) = —[X5, Xl |

Proposition 4.1.5. The Poisson bracket satisfies the Jacobi identity:

{f’ {g?h}} + {97 {ha f}} + {hv {f,g}} =0.

Proof. See page 579 in [9]. |

23



4.2 Actions

Let M be a manifold and let X be a complete vector field in M. Then we define p, : M — M, t € R
the flow of X. We then call {p;;t € R} the one-parameter group of diffeomosphisms of 1/ and
denote p, = exp(tX).

Let G be a Lie group. Then a representation of G on a vector space V is a group homomorphism

¢ : G — GL(V). We will denote the left action of a Lie group G on M by

¢ : G — Diff(M), g =y

where ¢, : M — M is a bijection such that ¢,(p) = ¢ - p. Similarly, the evaluation map associated

to ¢ will be represented as

evy: M xG— M,  (g,p) v ¥,(p).

The action ¢ is smooth if the evaluation map is smooth.

Note: We will only consider left actions, although right-actions are defined in the exact same way.

Definition 4.2.1. An action ¢ is a symplectic action if

b G — Sympl(M,w) C Diff(M), g+ ¢,.

That is, G acts by symplectomorphisms.

Definition 4.2.2. Let v be a symplectic action of S' or R on a symplectic manifold (M,w). Then

we say that ¢ is an hamiltonian action if the vector field generated by 1 is hamiltonian.

Note: in the case of G = T" = S x ... x S! the action is hamiltonian when the restriction to each
component is hamiltonian and the hamiltonian function is preserved by the action of “the rest of
G”. A similar reasoning may be done when G is a product of S! and R.

Consider now the action of a Lie group G on itself by conjugation, that is,

¥ : G — Diff(G)

g, V(@) =g-3-9"

We then take the derivative of ¢, at the identity to be the map Ad, : g — g, where g is the Lie
algebra associated to G. Letting g vary, we thus obtain the adjoint representation (or the adjoint

action) of G on g:

Ad: G — GL(g) g— Ady
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Let (-, -) be the natural pairing of g* and g

<'7'>:g* xg—R
(€,9) = &(9)

Thus we may naturally define the Ad ¢ to be such that (Ad;¢, g)=(¢,Ad,-1§). In the same way we

define the coadjoint representation (or the coadjoint action) of G on g:

Ad* : G — GL(g")

g+~ Adj
Note: the inverse on the definition of Ad¢ is such that we obtain a left representation, the following
proposition may show why this makes sense.

Proposition 4.2.1. Ad; o Adj, = Ady,

Proof.

(Ad" (g x 1)(€), ) = (Adgsn(£), 9)

(

= (&, Ad}-1,5-19)
= (¢, Ad}-197"g9)
<Adh§,Ad ~1g)
=
= (Ad

A gh§ g>
“(gh)€, 9)-

We will now define what it means for an action of a general group to be hamiltonian. For that we

have to use the “moment map”.

Definition 4.2.3. Let (M,w) be a symplectic manifold and G a Lie group with Lie algebra g. Then

the action vy is hamiltonian if there is a map
w:M—g*

such that:
1. Foreach X € g, let:

XM — R, 11X (p) := (u(p), X), be the component of i along X,
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« X7 be the vector field on M generated by the one-parameter subgroup {exp(tX);t €
R} C G.

Then X is a hamiltonian function for the vector field X#, i.e.

Lxsw = dps.

2. u is equivariant with respect to the given action ) of G on M and the coadjoint action Ad"* of
Gong*:
potyy=Adjopn,  VgeG.
Then, (M,w, G, 1) is then called the hamiltonian G-space and .. is a moment map.

Example 4.2.1. If we take G = S' then the Lie algebra is g = R and thus g* = R. Then the

moment map . must satisfy the following:

1. The generator of g is 1 thus we take X = 1 and as such uX = . and X# is the usual vector

field associated to the action of S* on M. Hence dy = 1 x#w.
2. w is invariant because Lx#p = tx#du = 0.

The moment map may be used for “symplectic reduction”. Borrowing from physics, we may realize
a system of n particles as a symplectic manifold. Thus if there is a k dimensional symmetry group
free action on the mechanical system, then the degrees of freedom for the position and momenta
of particle may be reduced by k. This is the spirit of the symplectic redution. One of the most well

known theorem about reduction is the following

Theorem 4.2.1 (Marsden-Weinstein-Meyer). Let (M,w, G, 1) be a hamiltonian G-space for a com-
pact Lie group G. Let. : u=(0) — M be the inclusion map. Assume that u=1(0) is smooth and

that G acts freely on =*(0). Then
1. the orbit space My = 11~1(0)/G is a manifold,
2. 7 :uY0) — Myeq is a principal G-bundle, and
3. there is a symplectic form wreg 0N M ey Satisfying 1*w = m* wreq.

The pair (Meq, wreq) is called the reduction of (M, w) with respect to G, p.

Proof. See [4] on pag 171. [ |
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Chapter 5

Imaginary time flows

In this chapter we will study flows of vector fields with “imaginary time”. We will first provide a

motivating example and then will develop the general case .

Example 5.0.1. Recall that in example 2.2.1 we showed that R? has a Kahler structure. Consider
now the hamiltonian function h = y; Then, it follows that the associated hamiltonian vector field

is
0

Xhzy%

Let ¢t be the flow of X}, then it must satisfy the following equation:
Xn
étxh = Xh((thh)

It then follows that the flow is given by

o, (z,y) = (yt +2,9)

Recall that, given real-analytic conditions, the flow of a vector field may also be denoted by e*X".

Consider now the following family of coordinates in R™:

2y = etXn . 4

Where z is the usual complex coordinates. Then we see that:

— etXh

2t cz=z(yt+x,y) =yt + = +iy.
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Then if we take t = is, for some s € R, we get that
zis =z +i(s+ 1)y.

Then in these new coordinates we get that

Zis + Zis Zis T Ris

T YT ey

Thus we also obtain coordinates on the tangent space given by

o 1
(921-5_2

0 n 1 0 o 10 1 K
or  2i(s+1)0y’ 0Zis 20z  2i(s+1)dy
In order to find the associated complex structure J, we recall that on section 2.3 we saw that the
5. Is the eigenvector associated to the eigenvalue i and that = is the eigenvector associated to

the eigenvalue —i. Hence we get that :

J (L) =
J, (88 > _ Zaa — (Bw (s+1) oy .

Thus

And it is straightforward to check that J> = —Id. Now we check that J, is compatible with w. Let
u,v € T,R? be given by:

0 0] 0 a 3
0 0 0 c 3
U—C%‘i’d@ JS(U)—*d(S‘F].)% 87

w(u, Js(u)) = +0%(s +1)

s+1

Which is positive if s > —1 and is only 0 ifu = 0.

w(Js(u), Js(u)) = ad — cb = w(u,v)
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Thus it is compatible and the associated Riemannian metric is

ac
+1

gs = w(u, Js(v)) = . +bd(s+1)= 1dx2 + (s + 1)dy?

Thus we see that (w, Js, gs) is Kédhler, for all s > —1. In particular if we take s — oo we see that
the metric collapses in the x-axis while it diverges in the y-axis, that is, there is metric collapse of
R? into the vertical axis.

We also see that (R?, J,) and (R?, J,) are biholomorphic. Indeed consider:

vs 1 (R2,J,) = (R?, Jy)
(z,y) = (z,(s + 1)y)

Then

Hence:
d@s oJs=Jo Od(ps

i.e. the map is a holomorphism.
Alternatively, we can see that when we changed the complex structure what we are doing is
changing which functions are holomorphic. In particular, if f is an holomorphism with respect to

the usual complex structure, then f(vs) is an holomorphism with respect to J,:

2 R ,Jo)
f(z)
\ !

Figure 5.1: Diagram of the relationship between (R?, J;) and (R?, Jp)

(R=, J

This example is the motivation for this all chapter, as we will generalise this concept to manifolds.

5.1 Lie Series

Definition 5.1.1. Let M be a compact complex manifold, S be a real analytic tensor field and X

be a real analytic vector field on M. Then we define the exponential of TLx to be the lie Series:

x k

TLx _ZT k

(& S = E;CXS, T e C.
k=0

Theorem 5.1.1. For all S real analytic tensor field and X real analytic vector field, there exists a
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T such that ift € R and |t| < T then e'*x S converges and
X8 = (¢%)"S.
Proof. See lemma 2.1 and theorem 3.1 in [10], or page 15-16 in [8]. |

Theorem 5.1.2. For all S real analytic tensor field and X real analytic vector field, there exists a

T such that if 7| < T, T € C then e™*x S converges.

Proof. Notice that first e™#x .S converges iff .2, Tk—fﬁ’g(S(Xl, coey X, W1, oy Wy ) CONVErQES Vp €
M and X; € T,M, i € {1,...,m} and w; € T, M j € {1,...,n}. In particular, by theorem 5.1.1 we
know that if ¢ is real then there is T such that it converges. Let R be the radius of convergence of
the series. Then we must have R > T and as such "7 %L’%S(Xl, ey Xy W1, ..oy Wy ) CONVErgESs
forall |7] < T. [ ]

Proposition 5.1.1. Suppose that all the series below converges, then for r € C

« If S, R are tensor fields then:

€T£X<S®R) _ eTLX(S) ®6TLX(R)

« If S is tensor field type (m,n) then:

TﬁX

eTEX(S(X1,y oy Xy Wi,y ooy wp)) = €TEXS(eT5X X, eTEX X, eTEX Wy e X wy)

g ey

s ifY,Z € X(M) then:
eTEX[Y, Z] = [eTEXY, eTFX Z].

Proof. Notice that if we take 7 to be real, then e7“x is simply (¢%)*, i.e. the pullback, and the
above properties hold for the pullback. Then using analytic continuation on both sides of the
equations yields the desired result. Alternatively, one could easily use the definition to prove the

above. [ |

Theorem 5.1.3 (Mourdo and Nunes). Let (M, .Jy) be a compact complex manifold and X be a
real analytic vector field on M. Then there is aT > 0 such thatVr € B(0,T), there exists an

integrable almost complex structure J. such that:

1. Forp € M and (U, 2§, ...,2%) Jo holomorphic coordinates of p then there exists an open
neighborhood V,, ,, of p such that:

*peVap CVap CUy;
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* Va,p IS compact;
« the series I := ™ - 2} are uniformly convergent onV,, ,,;
* (Vap, 2L, ..., 27) is J, holomorphic coordinates of p.

2. There exists a unique biholomorphism ¢, : (M, J;) — (M, Jy) such that, using the same

sets as in (1), ¢+ (Vo) C Ua and z2 = zJ o ;.
Proof. See [10] for a proof. [ |

Note that by conjugation we have that e™* ~§g = z7 = %’ o ¢.. Notice also that ¢, depends
also on the original complex structure Jy, although for sake of simplicity we will omit the complex
structure , unless it is not obvious from the context. In fact, this implies that in general ¢, is not a

flow as ¢.., # ¢ + ¢, Unless 7,0 € R. In general, we have the following commutative diagram:

(M, Jr i) —227 (M, )
‘/450,,]7- Prieto ‘/Q%,JU
(M> J‘F) ael (M7 JO)

Figure 5.2: Commutative diagram of the relationships induced by the complex time flow.

Proposition 5.1.2. Let (M, wo, Jo, g0) be a compact Kéhler manifold, with all the structures ana-
lytic and let h an analytic function on M and X, the hamiltonian vector field associated to it. Let
f be an analytic function on M. If e™*» . f is well-defined, then its hamiltonian function is given by
eTExn . X -

Proof. See on page 19 in [8]. [ |

Corollary 5.1.1. Let (M, wq, Jo, g0), h and X;, as above. Let (U, z",...,z") be a J, complex coor-

dinate charton M and let (V, 21, ..., z™) be a J, complex coordinate chart defined by (U, 21, ..., 2™)

P )

as in theorem. Then onV we have:

€T'CX’LX i =X_j eTLXhX i =X
z 21 z zL

In summary, given a complex structure (M, wy, Jo) we obtain a new complex structure (M, wy, J;).

One might ask if this new structure is a Kahler. The answer follows from this theorem:

Theorem 5.1.4 (Mourdo and Nunes). Let (M, Jy,wo, go) be a compact Kdhler manifold. with Jy, wq

and gy be real analytic. Leth € C*"(M), then there is aT > 0 such that:
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1. For allt € By(T) (M, J;,wo,g-) is a Kdhler manifold, where J. is the complex structure

obtained from theorem 5.1.3 to (M, Jy,wo, go) with the vector field X, and setting g.(-,-) :=

wO('? JT)

2. Forallp € M there exists:

¢ U, 28, -, 28) Jo- holomorphic coordinates neighborhood of p;

* ko : U, — R alocal Kéhler potential for (M, wy, J.):

* V..p Open set such that:

—p€Vap CVap CUy;

Va,p is compact;

0

Qi

o
Vs

ke

forall T € By(T), k,

forallT € By(T), or(Vap) C Usy;

is defined by:

= %(30 - 5o)ko

t
— / e X1 (0(X,))ds
0
:= unique complex analytic continuation of o

—1q
= —e" X ko +7h — s

2

= —2Imn;

is well defined on V., , and is a local Kéhler potential for (M, wo, J-).

Proof. The proof can be found in [10] theorem 4.1 [ |

5.2 The space of Kahler metrics

Definition 5.2.1. The space of Kédhler metrics on M in the cohomology class of [wy] is

H(wo, Jo) := {¢ wo; ¢ € DIf( M), [¢*wo] = [wol, (M, Jo, v wo,g0) is Kéhler }

Definition 5.2.2. The space of Kéhler potentials on M with base point [w] is

K(WO, Jo) = {(;5 S Coo(]\/[)’ g(, ) = (WO + 2.8050(;5)(', J()) is pOSiﬁVG definite }

One important remark about this spaces comes from an application of the 99-lemma 3.3.5 . By

this lemma, given any other K&hler metric that is in the same cohomology class of |wy] can be
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written using a global Kéhler potential. Due to this we can regard H(wo, Jo) as being the quotient

of K(wy, Jo) by constants:
H(WO, Jo) = IC(CU07 Jo)/R = {¢ S COO(M), g(, ) = (wo + i8050¢)(~, Jo) - 0,/M qbwg = 0}

Moreover, H(wo, Jo) can be regarded as an infinite dimensional manifold. In particular, its tangent

vector at g, denoted by dypq is a function on M. Indeed, consider the following curve in H(wq, Jo):

C:ICR%/H((UQ,J())

ts ¢y € C°(M)

Where ¢, is a family of representatives of the classes such that [, ¢.wi = 0 so that ¢ is smooth

map. Then we define the tangent space

d
(SQD() = %\t:o@ S COO(M)

Additionally, H(wy, Jo) can be equipped with a Riemannian metric called the Mabuchi metric

defined as:

<51¢a 52¢> = /M %(51¢ . (52¢)W¢ AN Nwg

where w, = wo + i9p0p¢. It can also be shown that it admits a unique Levi-Civita connection. As

such, a curve {¢: }+cr is a geodesic iff
. 1 .o
¢ = §|\V§t¢t|\gt (5.1)

Where §(-,-) := (wo + i000o 1), || - ||5, is its norm and V5, the gradient with respect to this norm.

We have now seen two different ways one may change the Kahler of a manifold: fixing w, and
change Jj to J;; or fixing Jy and change wq to w.. How different are these two approaches? As
we will see next, they are equivalent. Consider (M, J,w) a Kéhler manifold and let ¢ : M — M
be a diffeomorphism. Then it can be seen that (M, ¢*J, ¢*w) is also a Kahler manifold. Then
consider the following, starting with a Kahler manifold (M, Jy, wp), we can obtain K&hler structure
(Jr,wo), just like before. We also obtain a biholomorphism ¢, : (M, J;) — (M, Jy). As such,
we define w, = (¢-1)*wo. Therefore, we can regard ¢, : (M, J,,wo) — (M, Jy,w,) as a Kahler

isomorphism. Thus (J-,wo) and (Jy, w,) are isomorphic Kahler structures.

We are now ready to see an example of geodesic in H(wp, Jo). Consider a Kéhler manifold
(M, Jy,wp) and choose h € C**(M) and let X}, be the associated hamiltonian vector field. Choose
T as in theorem 5.1.4, and take 7 = it € By(T), where t € R. Then, we obtain new K&hler

structures (wo, Ji¢) for each ¢ € (=T, T). As such, we obtain a path {(wo, Jit) }+c(—7,r) Which has
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an isomorphic path {(wis, Jo)}+e(—7,7). Our goal for the remainder of this section is to show that
the path {(wit, Jo) }+e(—7,7) IS @ geodesic.

First, we fix our symplectic structure wy and show that w;; € H(wo, Jo) forall t € (=T, 7).

Proposition 5.2.1. w;; € H(wo, Jo) forallt € (-T,T).

Proof. By definition, ¢},w;: = wo. Now using the fact that ¢,; is homotopic to the identity we obtain:
[wo] = [rwit] = ¢fr[wit] = [wie]-
[ |

This result allows us to find and ¢; such that w;; = wy + i0y00s, for each t € (~T,T). Now we

want to get a better grip on what these ¢;, are. Writing wy is terms of the Kahler potentials we get:
wo = 19p00ko wo = 10:40itkit
From which the following equation follows (using the notation from the above proof):
1034 Oitkir = wo = ®fwir = 197 (8080 (ko + ¢1)) = 10000 ((ko + ¢1) 0 1)

Therefore, we are tempted to define ¢, = k;; o <I>t‘1 — kg, and thus, we need to show that is

independent of the choice of k.

Proposition 5.2.2. Let p € M and let U and V be neighborhoods of ¢ '(p) is M just like in
theorem 5.1.4 with the associated Kéahler potentials ko : U — R and k. : V — R. Then, in a
neighberhood W = ¢-1(V) of p we define:

(ptlw = kit [¢] @;1 — ko.
Then, ¢, is well defined and w;; = wy + i9y0p ;.
Proof. See [8] on page 27. [ |

Theorem 5.2.1 (Mourao and Nunes). Let ¢; be defined as above. Then ¢, is a geodesic, i.e.

. 1 .
Pt = §||v£~)m§0t||_¢2‘;“

As such {(wit, Jo) }+e(—1,1) IS @ geodesic.

Proof. See [10] proposition 9.1. [ |
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Chapter 6

Prequantization

In this Chapter we will explore the first step into quantization, called prequantization. In the first
section we will develop some basic concepts of line bundles, and in particular we will arrive at the
integrality condition, which will be fundamental for quantization. Then in the next section we will
define what an hermitian and holomorphic line bundles are. After that we will present the concept

of prequantization.

6.1 Integrality condition

Let M be a smooth manifold and be . =5 M be a line bundle with connection V. Let a be the

connection form of V, Q be the curvature form of (L, V).

Locally, in a trivialization chart (U, ¢), the connection is of the form:
Vxs=(X-f—ia(X)f)s1,

where s = fs;, f € C®°(U),p € U C M s1(p) = ¢¥~1(p,1), and X € X(U). Moreover, let Fy be

the curvature operator defined as follows:

Fy:X(U) x X(U) - End(T'(U, L))

(X,Y) = i([Vx,Vy] = Vix,y])

where U is an open set of M. Consider the curve « : I := [a,b] — M. Naturally, one may want to

lift this curve to the line bundle. This will ultimately lead us to a very important result.

We say that T" : I — L is parallel ( or horizontal), if there is a section s and a vector field
X € X(M) suchthatT" C s(M)
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1. X =dn(¢) on n(T'(I)) and ¢ is a tangent vector to T,
2. Vgs =0.

It turns out that any smooth curve v has a unique parallel curve 7, when we fix a base point, that
is, for each z, € L, ,), satisfying 7 o 4 = ~. This can be seen by noting that v can be covered by
a finite {U,} trivializations. In each of these trivilizations, the above conditions amount to find 5

given by the following formula

7)) = ¥ (v(1), 2(1)),

where z : I — C* is the unique solution of
2 =ia(€)z, 2(0) = zo. (6.1)
The uniqueness is guaranteed by Picard-Lindel6f theorem.

This in turn connects to the usual parallel transport along a curve ~:
P7: Loyga) = Ly
which associates each v € L., to ¥(t) € L, starting at v.

Now observe the following, let S € M be an oriented compact surface. We may assume that
this surface is contained in some trivialization U (otherwise we would have to “cut” the surface
into finitely many surfaces until this happens) . Choose ~ a curve such that it divides S into two
compact oriented surfaces St and S~—. Then 9S+ = S~ = 4. It then follows from equation 6.1

and Stokes theorem (and choosing and orientation) that the parallel transport is given by

P oo (i [ o) ~ow(-i[ 1)
e (i [ 0).

1
— [ QeZ.
27T S

This then implies that

hence we obtain that

Theorem 6.1.1. Let (L, V) be a line bundle with connection. Then the curvature ) satisfies the
following Integrality condition:
1

— | QeZ
2’/T S

for every oriented closed compact surface S C M in M.
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6.2 Hermitian and Holomorphic Line Bundles

Definition 6.2.1. Let M be a manifold, L = M be a complex line bundle. We say that L is a
Hermitian Line bundle if for all fibers L, have a Hermitian metric that smoothly depends on the

base point. As such the Hermitian metric will be given by the map:

H:|]J L,xL,—C.
peM
We will denote this map by
H(p,p) = (p, D).

Example 6.2.1. Let L be the trivial line bundle, i.e. L = M x C. Then it has a natural Hermitian
metric Hy defined as follows:

H()((a, Zl), (a, 22)) = 2129.

This Hermitian metric is called the constant Hermitian metric and it follows if H is any other

Hermitian metric on L is given by
H((a,z),(a,22)) = H(a,a)Ho((a,z1), (a,22)) = H(a,a)z1%3.

It is also immediate to see that given a Hermitian line bundle such that L = M x C is isomorphic

to the trivial line bundle with constant Hermitian metric Hy,.

What about for general lines bundles? Does a hermitian metric always exists? The answer is
yes. Indeed by the above observation we see that locally this metric always exists. Then using
partitions of unity (in the exact same way that one proves that every manifold admits Riemannian

metric) the result follows.

Definition 6.2.2. Let M be a manifold, L. = M be a Hermitian line bundle. A connection V on
L is said to be compatible with H if for all sections s,t € T'(U, L) and all vector fields X € X(U),
U C M open, we have:

Lx(s,t) = (Vxs,t)+ (s, Vxt).

In particular, such a connection is said to be Hermitian connection.

The above condition is an analogue to the condition for a connection to be compatible with the
metric. From now on, every time we refer to “A Hermitian Line bundle with connection”, we assume

that the connection is Hermitian. One important remark is

Suppose now that M is also a complex manifold. Naturally, we may want to consider now holo-

morphic line bundles, which are simply complex line bundles whose trivialization maps are holo-
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morphic. As a consequence, the transitions function are also going to be holomorphic. A section
s € I'(U, L) is said to be a holomorphic section if s is a holomorphic map. Let I';,,;(U, L) be the

space of such sections.

Definition 6.2.3. Let M be a manifold, L = M be a Holomorphic line bundle. A connection V
on L is said to be a holomorphic connection if on all trivializing holomorphic frames over U and
s € Tpo(U, L), the map

X — Vxs/s, X € X(U) X holomorphic

is a holomorphic one-form.

Just like before, a connection V on L is said to be compatible with holomorphic structure on

L if on all trivializing holomorphic frame U and s € T'no/(U, L) the one form
X — Vxs/s
is a (1,0)-form, that is, in local holomorphic coordinates

Vs =ds+ Z fidz;s,
J

where f; : U — C are holomorphic.

It follows, using basically the same proof for the connection, that every holomorphic line bundle

admits a holomorphic connection compatible with the holomorphic structure on L.

6.3 Prequantization

The concept of quantization comes from physics. The main idea is to obtain a “quantum system”
based on a mechanical systems. These mechanical systems are mathematically described as a
tuple (M,w, H), where H is a scalar function. This tuple is known as a Hamiltonian system. Dirac
was the first to try to describe this idea, and according to him, the quantization is a C-linear map
from the space of smooth functions on the classical phase space to the space of linear operators

on some Hilbert space of “quantum states”, denoted by H,
q: C=(M) — Op(H),

such that the following conditions are satisfied:
1. ¢(1) = idy,
2. q(f) is self-adjoint,

3. [q(f),q(9)] =iq({f,g}), Vf,g € C(M)
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4. If the set {f1,..., fn} is complete, in the sense of if {g, f;} = 0,Vi € {1,...,n} then g is
constant, then the set {q(f1),...,q(fn)} is also complete, in the sense that if [A,q(f))] =
0Vi e {i,..,n} then A = aidy for some a € H. This condition says that the representation
of H is irreducible.

As it turns out, this is too much to ask for, and even in the most elementary examples, such as
M = RR?, there is no solution. So in general, one weakens the above requirements. However, this
general idea still leads to rich and interesting Hilbert spaces H. The main goal of this chapter is

to begin to see how one may obtain these spaces and to start to analise its structure.

Definition 6.3.1. A symplectic manifold (M, w) is said to be quantizable if there exists a complex
line bundle L = M with connection V such that Curv(L,V) = —iw.
A prequantum Line Bundle (L,V, H) on a symplectic manifold (M,w) is a Hermitian line bundle

(L, H) together with a compatible connection V such that Curv(L,V) = —iw.

Recall that we have seen that the condition for a manifold to be quantizable is a topological one,

given by the integrality condition. Indeed, now is a good time to see an example.

Example 6.3.1. Let M = T*Q for some Q C R™ open, and consider the usual symplectic form
w =Y. dp; \ dg; with tautological form o = ", q;dp;. Consider L to be the trivial line bundle with
connection form «.. Then it follows that the curvature is —iw.

Moreover, consider any closed, compact and oriented surface S ¢ M. Then by Stokes, it follows

that:
/ w=0.
S

So (T*Q,w) is quantizable. In fact, by the exact same reasoning, any sympletic manifold (M, w)

such that w is exact, is quantizable.
Theorem 6.3.1. Let (M,w) be a symplectic manifold and consider (L,V, H) a prequantum line

bundle over M. Then the following operator

q:C*(M,C) — Endc(T'(M, L))
f— —iVx, + f
is C-linear and satisfies the following:
* q(1) = idr(ar, 1)

* [a(f),q(9)] = ig({f, 9})-

This operator is known as the prequantum operator.

Proof. It trivially follows that ¢ is C-linear and that ¢(1) = idr(as,z). So we only have to prove

the second condition. Now notice that given X,Y € X(M) we have by definition of the curvature
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tensor:
1 ([V)mVY] - V[X,Y}) =Iv(X,Y)=w(X,Y)

Taking X = Xy and Y = X, and by proposition 4.1.4, [X;, X ] = — X ; ,, We obtain
Vx;,Vx,]=—i{f.9} = Vx,-

Therefore

[a(f),q(9)] = [~iVx, + f,—iVx, + ¢]
(—i)® Vx,Vx,| —ifVx, +i Vx,of +igVx, —i Vx,0g

——— ——
Lx,f+fVx, Lx;9+9Vx,

= (—i)? (—i{f. g} — Vx,,,) —i _ﬁ(j_{“Lﬁ(,f_g/
{rgr  —{f9}

=1 (_{f’g} - iVX{f,g} + Q{f’ g})
=i (~iVx,,,, +{/.9})
=iq({f, 9})-

In spirit of quantum mechanics, we want to represent our observables as operators on a Hilbert
space (the so called representation space of a model). As such, we replace I'(M, L), the space
in which our operator acts, with a natural Hilbert space of sections.

Recall now that if (M, w) is simplectic manifold, there is a natural volume form (called the Liouville
volume) given by

n

w
vol := —.
n!

Definition 6.3.2. Let (M, w) be a simplectic manifold and (L, H) an Hermitian line bunide over it.

We define the space of square integrable smooth sections to be

Hype = {3 eT(M,L): |s|>dvol < oo} ,

M

where |s|? = (s, s). This space is a pre-hilbert space with respect to the inner-product
(5,8) = / (s, £)dvol,
M
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and its completion with respect to the norm

1/2
]| := (/ Sdeo/)
M

is the Hilbert space H(M, L).

We will write H for H(M, L) when (M, L) is clear from the context.
It is obvious that given f € C>°(M,C) that ¢(f) is defined on the space of compact supported
sections (I'o(M, L)), which in turn is a subspace of H, and in turn ¢(f)(T'o(M, L)) C T'o(M, L),

thus ¢(f) induces an operator whose domain contains I'g (M, L).
Theorem 6.3.2. Whenever f ¢ C>(M) is such that X; is complete, then ¢(f) is an essentially
self-adjoint operator in H (that is, the closure of q(f) is a self-adjoint operator).

Proof. See proposition 7.16 in [11]. [ |

Example 6.3.2. Let M = T*Q, where Q C R™ open and consider the usual symplectic form
w =, dp; A dg; with the tautological form o =, q,dp;. Take L = M x C. Consider now f = p;
and g = ¢’. Then we get that

0 0
Xp= o) Xy= ——.
! 8(]]' g 8pj
Thus
0 0 .
P_] :q(f)——ZVXf+f_ 1 a—‘rla % +p] _ZT +pj7
J J J
and similarly,

Q,._ ()__‘v + — _i_t'_ia _i + = —1 _i_i, + .__Z'i
j=aq9)="1Vx, Tg= "1 ap; ap; q; = ap; a; 4; = ap;

It follows from the above theorem that the conditions are satisfied forT'(M, L) = C*° (M), and also
on the space H = L*(T*Q).

However, looking from the point of view of quantum mechanics, we see that the resulting Hilbert
space is too big: the wave function on H should only depend on n variables, rather than 2n
variables we obtained. From a mathematical point of view, the representation of Q);, P; is not
irreducible, that is, there is a generalized subspace of H for which the action of Q;, P; is invariant.

That generalized subspace is
Ho={feH: f=gon},

where 7 is the usual projection of T*Q into Q). So a natural candidate for our representation space

is Hgy, in which we obtain:

0
P=p;, Q;i=—1—.
7= Pi Opj

41



Chapter 7

Polarizations

In the last chapter we saw the first step into quantization, called prequantization. In particular, in
example 6.3.2 we saw that, in general, the Hilbert space we obtain from this process is too big.
However in that particular case we could deduce a way to reduce it. In fact, we can generalize the
procedure for general symplectic manifolds through the use of so called polarizations. As such,
this chapter focuses mainly on these objects. In particular we are going to see three main types

of polarization: real polarizations, complex polarization and Kahler polarizations.

7.1 Real Polarizations

Definition 7.1.1. Let (M,w) be a symplectic manifold. A real polarization on M is a foliation

D c TM on M, if it is maximal isotropic, that is, for allp € M :
wp(X,Y)=0, VX,Y € D,

and there is no subspace of T,,M containing D,, properly with the above property.
However, there might not exist a real polarization, as can be seen in the following example.

Example 7.1.1. Take S? with the usual symplectic form w. Now, H'(S?,7/27) is trivial, because
S? is simply connected. It turns out that classes of this group (also known as the first Stiefel-
Whitney class) uniquely determines real line bundles. Therefore it follows that all real line bundles
over S? are trivial. Moreover, given a one dimensional distribution on S? would have to have a
nowhere vanishing section which would in turn means that T'S? would also have to have a nowhere

vanishing section which contradicts the Hairy ball theorem.

This example serves to motivate us to generalize our notion of real polarization into a complex

polarization.
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Note: One often uses singular real polarizations, where some of the leaves of the polarization

are allowed to be singular. Of course, singular real polarizations exist on S2.

7.2 Complex Polarization

Definition 7.2.1. Let (M,w) be a 2n-symplectic manifold. A complex polarization P on M is a

complex vector subspace of T M ® C of dimension n such that:
* Forall X,Y e T'(M, P) we have that [X,Y] € I'(M, P) (i.e., P is involutive);
» Forallp € M, P, is maximal isotropic (i.e., P is Lagrangian);
« D, = P,NP,NT,M has constant rank k € {0, ..., n}.
Furthermore, we say that a complex polarization is
* Real, if P = P;

+ Pseudo Kabhler, if for all p € M, D, = {0} and Ké&hler if the hermitian form induced is

positive definite;
« Strongly involutive, if the distribution defined as E, = (P, + P,) N T,M is integrable;

» Reducible, if the orbit space M/D is a smooth manifold and the projection = : M — M/D

is a submersion.

Example 7.2.1. Take M = T*R" = C" using z; = p; + iq; . Then usual symplectic form is
w=>dp; Ndg; = % >, dzj A dz;. From example 2.2.1 we have that

9 _1(o 9 9 _1(9 ;9
8,2]- N 2 6pj 8q]‘ ’ %j a 2 c'ipj (9qu '

: p 9 g ) —_ j — *

In fact, it follows trivially from Schwarz lemma that this polarization is involutive. Moreover, it fol-

lows that this distribution is Lagragian and it is maximal isotropic because dimP = n. Furthermore,

P::span(c{(fg, 1§j§n},
J

and thus, P, N P, = {0}, hence P, ® P, = T,M & C. Thus we conclude that P is a K&hler
polarization, and it is known as the holomorphic polarization.

It also follows that P is a Kéahler polarization known as the antiholomorphic polarization.
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Going back to our example of S2, it follows that S? also has a holomorphic polarization defined

locally by % for a local complex coordinate z.

As the reader might have guessed by the name of Kahler polarization, that a having a Kahler
polarization might be related to the K&hler structure on a manifold. Indeed, it turns out that a
Kéahler manifold always have a Kahler polarization. But perhaps more strikingly, these two notions

are equivalent, as we shall see in the following theorem.

Theorem 7.2.1. Every Kéhler manifold admits a Kéhler polarization. Moreover, if (M,w) is a

symplectic manifold and admits a Kahler polarization, then it has a compatible complex structure.

Proof. Suppose that (M, J,w) is Kahler manifold of dimension 2n. Then it follows that dim7{; o) =

dimTg 1y = n. Moreover, given z,y € T(; oy and z,w € T{q 1) it follows from the compatibility that :

CU((E, y) = w(J:v, Jy) = w(im, Zy) = —w(m, y)

w(z,w) =w(Jz, Jw) = w(—iz, —iw) = —w(z, w)

From the dimensions, it follows that both 7{, o) and T\, ) are maximal isotropic. Futhermore
T,0) N To,1) = {0} so D, has constant rank. It follows from theorem 3.1.2 that 7{; o, and T\ )
are involutive, and therefore Kahler polarizations.

Suppose now that (M, w) has a Kéhler polarization P. Then TM ® C = P @ P. As such, given

v € T,M ® C we have that v = w; + ws, where w; € P, and w; € P,. Now take
Jy ToM = T,M,  w— —iwy + iws
Thus

w(Jz, Jy) = w(—iz1, —iy1) + w(—iz1, iy2) + w(ize, —iy1) + w(iza, iy2)

= —w(z1,y1) tw(rr, y2) + w(z2, ¥1) — w(T2, Y2)
=0 =0

= w(z1,y2) +w(z2,91)

= w(z,y).

So J is compatible with w. Moreover, P = T ) and P = T1,0)- Finally, it follows that the
Riemannian metric g(x,y) := w(x, Jy) is positive definite, and so we conclude that .J is a almost
complex structure on M compatible with w. By Newlander-Nirenberg theorem it follows that J is

integrable, and thus (M, J,w, g) is K&hler. [ |
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Chapter 8

Spaces of Polarized Sections

We now have all the ingredients necessary, we are able to construct our representation space,
that is, the Hilbert space of our quantum model. For that we will have to choose a complex
polarization on our manifold, and then consider polarized section, in order to obtain our desired
space. In general there is no easy way to do so, however, if our manifold is Kahler, there is indeed
a general way to proceed. As such, in this chapter we will start to define what are polarized

functions and sections, then we will why the Kahler is so special.

8.1 Polarized sections

Definition 8.1.1. Let (M,w) be a symplectic manifold and let P be a complex polarization on it.

We say that a function f € C*°(M,C) is a polarized function if
Lxf=0,VX cT'(M,P).

Similarly, given L = M line bundle with connection V, a polarized section is a s € T'(M, L) such
that
Vxs=0, VX e (M, P).

Intuitively, the polarized sections are sections of L which are constant along the fibers of P.

We also see that the Hilbert space of “waves functions” we are looking for should be based on the
space
IF'vp:={sel'(M,L); Vxs=0, VX e I'(M,P)}.

I'v » is clearly a vector space over C, and it is also easy to see that it a module over the ring of

polarized functions. However, in general, it is not the case that if s is polarized that V x s is going
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to be polarized. We will deal with this problem later.

What we would like now is to construct our Hilbert space from I'y ». Inevitably, we want to
endow this space with a inner-product, but then one has to contemplate which inner-product is
reasonable, as contrary to the prequantum space, integration along the induced volume form no

longer works.

8.2 Kahler quantization

As we have seen in the last chapter, given a K&hler manifold we have a Kahler polarization 7P on

M such that in local holomorphic coordinates P is the holomorphic polariazation.

In addiction to this, if we have a prequantum bundle (L, V, H) on M, then we have a unique com-
plex structure on L compatible with the prequantum bundle. Hence, L is naturally a holomorphic

line bundle, and the polarized sections are the holomorphic section.

As such, the symplectic form induces a volume form on M given by vol = Cw™, where C'is a

positive real constant and therefore our Hilbert space is

Hp = {s €Tlpgu(M,L): /M<s,s>dvol < oo} .

Example 8.2.1. Let M = T*R™ and consider the usual symplectic form w = ). dp; A dg;. Take

the usual complex coordinates z; = p; + iq; and consider P the holomorphic polarization

J

Consider also L =+ M to be the trivial line bundle. In this coordinates the symplectic form is given

byw = %>, dz; Adz; and its fundamental form is given by
7 _
o= 3 Z Z:dz;,
which yields a(X) =0, VX € T'(M, P).
Rather then defining the connection in terms of s1(p) = (p, 1), p € M, we consider the section

sv) = (pow (=5 1121P) ) = exo (=3 112112) 51(0).

and thus define the connection to be

Vste = (‘CXf+ia(X)f)8€7 f € COO(M)
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The section fs. is polarized iff Lx f = 0 for all X € T'(M,P). But by the choice of P, this is

equivalent to ask that f is holomorphic. Consequently
FV7P(M7 L) = O((Cn)
As a result we obtain that

Hp = {f € 0(C"); /C | f1?exp(—n|z|?)dvol < oo},

where, in this case, vol is the Lebesgue measure on C". Hp is Hilbert space with innerproduct
given by
(f,9) = /(c fgexp(—x|z|*)dvol.

Let’s now compare this with our previous result, that is, let’s compute q(g) for g = z; and for g = Z;.

We have that

9 x. -2l
8zj 7

X, =-2i ,
’ ! 82]-

and therefore for f holomorphic

_ Of . .0 B
Vij fs1= (—228% + o (—22% >> 51 =0,
S0 q(z;) = z;. Similarly,
Vx. [s1= <2z'8f + i <2iaf>> 51
J 8Zj 82]'

.0
= (2282]- —zzj> fs1,

_ o _ _ 0
Q(Zj)zzafzj_*%'*ZjZQafzj’

SO

which is exactly what we have obtained before, up to constants.

Let's compute Vs1, where s; = exp(5||z[|?)se = hse,

1 _
Vs = (dh + 2m§ Zzﬂz) Se

%

= (g Z(Zjdzj + Zjdzj) — 7'&'21') hse

i

i _
= 2m <4 Z(Zdej — Zjdfj)) S1.

i

So it turns out that if we wanted to define the connection using s1; we would have to use the
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sympletic potential 3 = + 3" ,(z;dz; — z;dz;). Indeed, if we denote this connection by V' then we
obtain that

Ty p(M, L) = {fs1; f€O(C")}
P p(M,L)={fse; f€O(C")} = {fsu; feXP(gHZHQ) e O(C™)}.

8.3 Directly quantizable observables

In a nutshell, what we have now is the created a Hilbert space. However constructing this hilbert
space is not enough. As such in this section we will dwell a bit into a different question. For which
f will ¢(f) be an operator on this Hilbert space? In particular, if s is a polarized section, will ¢(f)s

be polarized? In general this is not the case. As such we need to restrict our space of functions.

Definition 8.3.1. We say that a vector field X preserves P ifforallY € P we have that[X,Y] € P.
We say that a function f is directly quantizable with respect to P if X ; preserves P. We denote

the space of all directly quantizable functions to be Rp.

As we may see in the following proposition, if we restrict to work with functions on $ip, then ¢(f)s

will be polarized whenever s is.

Proposition 8.3.1. Let f € Rp and s polarized section of P. Then q(f)s is polarized.

Proof.

Vx(q(f)s) = Vx (=iVx,s + Fs)
=—-iVxVx,s+ (Lxf)s

Using the curvature we see that

1

VyVy,s =
omi XV Xr®

-1 1
%VXfVXS + (.L)(X, Xf)S — %V[X,Xf]s'

But because f is directly quantizable and s is polarized, the above is equal to w(X, X)s, which in

turn is equivalent to (—Lx f)s, which proves our claim. [ |

8.4 Existence of Polarized sections

We have now seen how to use polarization in order to obtain the correct Hilbert space. However,
we only saw that for Kahler Polarizations. This case is rather special, so what about the general

case? As one might have guessed, by the title of this section, we might run into a problem fairly
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quickly, does there always exist polarized sections? In particular, does there always exist non-zero

global polarized sections? The next example, or rather counterexample, give us a negative result.

Example 8.4.1. Consider M = T*S*. The cotangent bundle is trivial so in fact M = S' x R. Take
the trivial line bundle L. = M x C and H the induced hermitian inner product on L. Consider the
connection given by the Liouville form o = —pdq. Finally consider the polarization P generated by

the angle variable, i.e.,
0

aiq .
This polarization is also known as the horizontal polarization. As such, one sees that a general

section s = fsy, f € C°°(M) is a polarized section if in local coordinates we have

or .
a—q = 2mipf.

Thus we have that the solution of this ODE is given by

f(p,q) = g(p)exp(2mipq),

where, g is an arbitrary smooth function on R. But f must be periodic on q which implies that we
must have p € Z. That is, there are only non-zero solutions for a fixed p. But f is continuous, so f

must be zero.

There is another more general way to see why this problem raises from. Notice that the leaves of
our polarization are S, = S' x {p} for p € R. So considering the restriction of the line bundle to the

leaves L|s, = S, we obtain that the restriction of the connection V|s, must be a flat connection.

So consider x = (1,p) € S, and the curve v(t) = (exp(2rit),p), fort € [0,1]. Then the paral-

lel transport along ~ is given by

Q(v) = exp (—i A pdq) = exp(—ip).

So if we have s € I'(M, L) global polarized section, then its restriction to S, is a horizontal section
and therefore determines the parallel transport given by V|s,. So if s(z) # 0, then the parallel
transport is s(v(0)) — s(y(1)) and v(0) = (1) = = so Q(y) = 1, which implies that &~ < Z.
Therefore, we conclude that s must be zero outside the set

S:ZU{SP; %GZ}:SIX?]TZ.

Hence, by continuity of s, we get that s must be zero. This set is known as the Bohr-Sommetrfeld

set.
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As it turns out, this hindrance is not exclusive to this problem, but rather arises from the fact that

the leaves are not simply connected.

Given p € M and a loop v we have seen that Q(y) is going to be a complex number. If we
take the collection of all of these Q(v) we obtain a group, which we will denote by G(p). This
group is known as the Holonomy group of the connection at p, and if we assume that M is con-
nected, we have that G(p) = G(¢), p,q € M. In the case of a flat connection we get the following

natural group homomorphism:

HO|V : 7T1(]\/[) — G(l‘)
V] = Q7).

By construction of G(z), this homomorphism is always surjective. Consequently, if M is simply

connected, we have that G(x) is the trivial group.

Let (M,w) be symplectic manifold and let (L,V, H) be the prequantum line bundle. Let P be
a reducible complex polarization. Fix a leaf A of the distribution D = PNPNTM,i.e., A = 7~ 1(z)

for a suitable € M/D. It follows that V, is a flat connection.

Definition 8.4.1. Let Gx(x) denote the holonomy group of V5. Then the Bohr-Sommerfeld set

is the set

S=JpeM: Galp) = {1}}.
As a consequence, if the leaf A is simply connected, we conclude that A C S, and accordingly
{p € M : A(p) is simply connected} C S,

thence, it follows that if all the leaves are simply connect, S = M.

So, in order to formalize our argument motivated by our example, it sufices to prove the following

proposition.

Proposition 8.4.1. Any polarized section must vanish outside the Bohr-Sommerfeld set.

Proof. Suppose that s is polarized section s such that for a given p € M we have that s(p) # 0.
Let A be a leaf through p. Then s|y € T'(A, L|,) is the horizontal section with respect to V. In
particular, consider the parallel transport of L,, — L, of V. Taking p = ¢ and considering -y a loop
on p, the parallel transport of s(v(0)) = s(p) is determined by s(v(1)) = s(p), and so Q(y) = 1.

Therefore G is trivial, hence, p € S. [ |
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So we now have all the ingredients to answer our question

Theorem 8.4.1 ([11]). Given a complex reducible polarization, there is a global non-zero polarized
section only if the Bohr-Sommerfeld set has non-empty interior. In particular, if all leaves are
simply connected.

In general, this problem can be circumvented by considering distributional sections of L.
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Chapter 9

Half-form quantization

The main goal for this chapter is to introduce, in a elementary way, a common technique in quan-
tization, called the half-form quantization or the half-form correction. This technique is related to a
method used in physics for the quantization of the harmonic oscillator. We will also introduce the

concept of pairing maps, used to compare different quantizations.

9.1 Half-form quantization

As we have seen, in the case for the real polarizations, the prequantum Hilbert space may be
zero. Indeed this follows from the fact that the polarized sections may have infinity norm. In
order to work around this, we present now the so called “half form correction”. The ideia is rather
simple: Consider the M = T*R = R? with the vertical polarization. Then the polarized sections
are the ones that do not depend on the momentum. As such it makes no sense to integrate over
the “momentum” variables. Of course, in this case this can be done without introducing any new

machinery. Unfortunately, this is not so for the general case.

Consider the leaf space induced by the polarization. We will now assume that the leaf space has
a smooth manifold structure. Notice that it may be that the leaf space is not orientable. Even if
it is, there is no canonical “volume measure” on it. We will assume for sake of simplicity that the
leaf space is orientable. In the not orientable case, one has to introduce the notion of densites,
that allow us to integrate on non orientable manifolds (see more about densities, for example, in
[9] and about half-form quantization on the more general case on [11]). The ideia is the following:
We will construct a new Hilbert space called the half-form hilbert space such that the elements
are such that, pointwise, they are n-forms on the leaf space. We will follow the approach given in
[12].

Let = be the leaf space of P and let 7 : M — = be quotient map, where we assume it is smooth
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submersion.

Definition 9.1.1. The canonical bundle of P, written as IC,, is the real line bundle whose sections
are n forms such that:

txa=0, VX € P.

A section is said to be polarized if
txda =0, VX € P.

From this it follows that any n-form satisfying the above condition implies that «(X3, ..., X,,) = 0,
whenever any of the X; € P. As such it follows that any given point p, we may look at « as
an n-linear, alternating functional on the quotient of 7, M by the intersection of P, with the real
tangent space PE. Thus, at each point the space of possible values for « is one dimensional. On
the other hand, if « is polarized, then by the exact same reasoning we see that it is equivalent to

saying that da = 0.

Proposition 9.1.1. Let o be a polarized section of Kp. Then, there is a unique n-form & on =
such that :

a=Tr"a.

Conversely, if 5 is an n-form on Z, then o := ©* 3 is a polarized section of Kp.

Proof. —
Let 5 be an n-form on = and define o := 7*3. Then it follows that « is a section because P is
in the kernel of dn. Moreover, because the differential commutes with the pullback it follows that

da = 0. So it is indeed a polarized section of p.

—
By the Flow-box theorem, we know that locally the polarization is going to look like the vertical
polarization in R2". Let U x V be one of those neighborhoods. Therefore we only have to prove
this in that case. Using the observation above, we see that if « is a section of Kp, then locally it
must be of the form

a= f(z,y)dzs A ... Ndzy,,

for some f € C°°(M). But « is polarized section, which implies that f cannot depend on the
“momentum variable” y. Hence

a= f(x)dxy A ... A dx,.

Then we conclude that « determines a n-form & on U x V using the pullback of the projection

U x V — U and thus, using now the quotient map, it follows the result. [ |
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Proposition 9.1.2. Let « be a section of Kp. Let X be a vector field that preserves P. Then L x«

is also a section of Kp. Moreover, if o is polarized, then so is L x c.

Proof. The first part follows from the following observation:
Let Xy, ..., X,, vector fields on M such that X; € P. Then, by using the formula in proposition
12.32(d) in [9] we have:

EXa(X17 7Xn) = Xa(Xla "'aXn) - Z O[(Xl, "'7Xj—17 [X7 X1]7Xj+1a "'aXn)_
j=2

- Oé([X, Xl}vXZa ) Xn)

Thus it follows that VX, € P, .xLa = 0. The second observation follows trivially form Cartan

magic formula. [ |

Proposition 9.1.3. Let X be a vector field that preseves P. Then there is a unique vector filed on
= such thatfor allp € P:
dmp(X) =Y.

If « = * is a polarized section, then

Lx(x*B) =" (Ly (B))-

It follows that
EX(F*B) = (dngY o 77‘)77*6.

Proof. See proposition 23.39 in [12]. [ |

Intuitively, what this result is saying is that when we identify the polarized sections of the canonical
bundle with the n-forms on the leaf space, the operator £Lx corresponds to the lie derivative on

the leaf space in the direction of Y.

Henceforth we assume that = is orintable.

Definition 9.1.2. choose a nowhere vanishing oriented n-form 3 so that o := =*3 is a nowhere
vanishing section of Kp. Then we say that a section of Kp is non-negative if at each point it is a

non-negative multiple of «.

By the fact that = is orientable, tell us that « is globally non-vanishing section and therefore Kp is
trivial. This allow us to consider its square root ép, that is, a line bundle such that 6p ® 0p = Kp.
For instances we may take Jp to be the trivial bundle. We assume that the above isomorphism

was choosen to be such that for any section s of §p we have that s ® s is non-negative.
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Let a be a section of Kp and X a vector field in P. Then we may define the following n-form:
Vxa = xda.

By Cartan’s magic formula we see that for section of Xp that Vxa = Lxa. Notice that as X € P
implies it preserves P, we conclude by proposition 9.1.2 that Vx« is a section Kp. Notice also
that this operator satisfies all the properties of a connection, except it is only defined along the
directions of P, as reader should have guessed by the use of the suggestive notation. We call this

operator the natural partial connection on Kp.

All of the above construction was done for real vector bundles. We can extend this construc-
tion to complex bundles. As such we, Let 6§ be the complex square root of K. Then we consider
the line bundle L ® 6%. If s € L ® 6%, then we may decompose as s = i ® v, where  is nonvan-

ishing section of L and v a section of 4&.

We may then consider the induced connection on L ® 6% given by:
Vxs=(Vxpu)@v+u® Vxr.

Given two sections s; and s, of L ® 65, we may combine them using the hermitian product of L,
in the following way:

(s1,82) := (1, H2)V1 @ va.

This yields a section of £%. Consider now the following inner-product on the space of polarized

(s1,52) 1:/(;;_5/2),

sections of L @ 6%:

—_~—

where (s1, s2) is the form obtained from the proposition 9.1.1 .

Definition 9.1.3. The half-form Hilbert space is the completion of the space of smooth polarized

sections of L @ 6% whose normed induced by the above inner product is finite.

Now we have to adjust our definition of quantum operator. In particular, we are going to use the
prequantum operator for the L (denoted now by ¢,,. as to not rise extra confusion). Now all we

need is to define how it should act on the 4&.

Definition 9.1.4. Let f be a smooth function such that X; preserves P. Then, we define the

quantum operator q(f) as follows:

Q(f)S = (%Jre(f),u) U+ U ,CXfy.
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We now need to see that it satisfies the properties that we have set. In particular, the only one we

have to check is the one about the lie and poisson brackects.

Proposition 9.1.4. Let f and g such that both X; and X, preserve P. Then:

ilg(f),a(9)] = a({f, 9})

Proof. It suffices to prove the result locally. As such let v, be a local nonvanishing section of 6%
such that any other section s of L ® §& may be decomposed as s = 1 ® vy. If X is any vector field

preserving P, then there is a function v(X) such that Lx (vy) = v(X)vo and as such we have

q(f) (1@ 1) = lapre(f) + 7(Xp)]u @ 1.

As such, form a very simple computation we can see that the result follows if we can justify that

Xr(v(Xyg)) = Xg(v(Xy)) = =v(X(1.9))-

In turn this follows from:

Lix, x,v0 = 7([Xys, Xg))ro

)
[£x; (), Lx,(v0)] = =7 (X {1,910
Lx,(Lx, (o)) — Lx,(Lx,(0)) = —7(X(f,41)%0
(Xr(v(Xg)) + Xg(v(Xp))vo = =¥ (X (5,900
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Chapter 10

Quantization of toric manifolds

In this chapter, we will first give a very short and elementary introduction to toric manifolds. These
geometric objects have been around for 50 years and are native to algebraic geometry. They
are of special interest for symplectic geometers, as they provide a rich class of objects with large
symmetries and are completely integrable hamiltonian spaces. Afterwards, we will see explicitly

how quantization may be achieved in this objects.

10.1 Toric manifolds

In this section we will introduce some elementary facts about toric manifolds. Our main goal is to

arrive at a theorem due to Miguel Abreu.

Definition 10.1.1. A Toric manifold is a compact connected 2n-symplectic manifold (M,w)
equipped with an effective hamiltonian action of a n-dimensional torus T" and with a choice of

corresponding moment map.

The 2-sphere is a toric manifold, where here our torus is simply S! and the action is given by
rotations around the z-axis. Then, the moment map is simply going to be the height function, and
its image is the interval [-1, 1].

The complex projective spaces are also toric manifolds. For instance, CP? equipped with the

Fubini-Study form, the action of T2 on CP? is given by
(€1, €2) - [20; 215 22] = [20; €™ 21, €% 23]
and the corresponding moment map is

1([z05 215 22]) = -1 ( |21 |21/ )
Y 2 \Jzol? + |21> + |22 |20]? + [21* + |22
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Itis easy to see that the its image is a triangle with vertices at the (0,0), (5£,0), (0, 5).

With this two examples in mind, one might wonder if it is a coincidence that the images of this two
manifolds under their moment map are polytopes. The answer is no, it has to be! This was first
proved (for the case that the action was not effective) by Atiyah (see [4] theorem 27.1). In fact,

when we imposed that the action is effective, then we get an even stronger theorem.
Definition 10.1.2. A Delzant polytope P is a polytope in R™ satisfying:
« simplicity, that is, at each vertex there are exactly n edges meeting there.

* rationality, that is, at the vertex p, the edges meeting there are of the form p + tu;, where

u; € Z".
« smoothness, that is, at each vertex, the u; can be chosen to be a Z-basis of Z"

It is quite easy to see that the polytopes of the above examples are indeed Delzant. As such one
might think that for toric manifolds, the moment polytope are Delzant polytopes. This is indeed
the case. But wait, there is more to it. The conserve is also true! That is, there is a one to one

correspondence between delzant polytopes and toric monifolds.

Theorem 10.1.1 (Delzant). Toric manifolds are classified by Delzant polytopes. More specifically,
there is a bijective correspondence between these two sets is given by the moment map.
?1—to—1”

{toric manifolds} ————— {Delzant polytope}

(M’M’T’n?/”l/) HP

Proof. See section 28.3 and onwards in [4] for the proof. |

One important thing to keep in mind is that there is a generic way to obtain the manifold using
the Delzant polytope. One simply has to consider A x T™ and then collapse the tori along the

boundary in an appropriate way. For more information regarding this, please see [4].

A lattice vector v € Z" is said to be primitive if it cannot be written as ku, where, |k| > 1, k € Z

and u € Z".

Take now v; to be the primitives of the d-faces of the P. Then, we may describe P as the set of:

P={ze@®")" | {x,v) <A\, i€{1,....d}}, forsome ); € R.

Definition 10.1.3. A toric kahler manifold is a toric manifold that is also kahler and such that the

effective hamiltonian action is also holomorphic.
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10.2 Symplectic potentials

Let P° be the interior of P. Then we have that Xp := 1~ '(P°), known as the open orbit, is an

open dense of M consisting of the points in which the action is free. It is then known that
Xp = C"/2miZ = R™ x 4T™ = (C*)™.
As such, in the “complex” coordinates > = u + iv the T™ action is given by
0-(u+iv)=u+i(v+0),

and the complex structure which is multiplication by i is then given by

o

Now, in these coordinates we see that because w must be invariant by the action of torus, then the
Kéhler potential must only depend of the u coordinate. Let f € C>(Xp) be that potential. Thus

the matrix that represents the symplectic form is given by

0 F
—-F 0

Where F is the hessian of f in u coordinates. Moreover, a simple computation shows that the

compatible riemannian metric must be of the form:

F 0
0 F

For this to be a metric, then we see that f must be strictly convex. This was from a point of view
of complex coordinates. However, our manifold is also symplectic. As such we may consider
coordinates given by the relation

M° = P° x T",

called the “symplectic” coordinates or the angle coordinates (z,y), as with this coordinates

the matrix associated to the symplectic form becames the usual one.

o
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In this coordinates the action of the torus is given by

H(SC,y):(.%‘,y-i-e)

As it turns out, the complex structure is then given by the hessian of a potential ¢ € C>°(P°)

(denoted by G), and the associated matrix is

(10.1)

As a consequence of this, is that the riemannian metric compatible is given by

G O
0 Gt

In order to change between these two coordinates, one simply considers the Legendre transform,
as follows
of

T = and y = v.

Consider now

er(l') = <.’E,'UT> - A,

where v, are taken to be inward pointing. Then it is easy to see that x € P° iff £,.(x) > 0 for all r.

Then we may consider the following smooth function gp : P° — R

-y

r=1

() log(Ly(2)) (10.2)

N =

Theorem 10.2.1 (Guillemin). The “canonical” compatible toric complex structure Jp on (Mp,wp)

is given in the (x,y) symplectic coordinates of X p = P° x T™ by

with G, = Hess,(gp).

Proof. See the original paper [13]. [ |

Theorem 10.2.2 (Abreu). Let (Mp,wp, Tp) be the toric symplectic manifold associated to a Delzant

polytope P C R™, and J any compatible toric complex structure. Then J is determined, using 10.1
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by a “potential” g € C*°(P°) of the form

g:gP+h,

where gp is given by 10.2, h is smooth on the whole P, and the matrix G = Hess,(g) is positive

definite on P° and has determinant of the form

det(G) =

with 6 being a smooth and strictly positive function on the whole P
Conversely, any such g determines a compatible toric complex structure J on (Mp,wp), which in

the (x,y) symplectic coordinates of X¢ = P° x T" has the form 10.1.
Proof. The proof can be found in [14]. [ |

This symplectic potential allow us to define a diffeomorphism between P° and R™ in the following
way: for each z € P° associate to y := % € R™. This, in turn, allow us to define a T™ equivariant
biholomorphism between P° x T™ and (C*)™, defined by assigning (x,0) € P° x R™ to a w given
by:

w = (eyl+i917 . eyn,-&-i@n)_
The w are therefore a coordinate system for M°. The inverse of this transformation is then given
by
T gy h(y) = =(y) -y — g(z(y)).
In a analogous way, we can define coordinates around the vertices of the polytope is the following
way: We first notice that a given vertex v is completely defined as the intersection of n faces. We

may assume that it is the first n faces (if not, we may need to do some reordering) i1 (v) = ... =

I,(v) = 0. We may therefore define a n by n matrix A, with integer coefficients such that:.

(Ay)ij = vl

?

We further define the domain of the chart to be

Uy =p! ({v}u U F)

faces adjacent to v

By letting A\, = (A1, ..., \,) we set
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B In the coordinates, we have that w =

We may then obtain w, = e¥ 7t where y, =
> dx, Ndb,. These w’s are going to permit us to describe the holomorphic sections of L explicitly,

as we will see latter.

10.3 Divisors and Fans

Following [15], in broad terms, a Divisor D C M in a complex manifold is a finite linear combina-

tion of irreducible complex hypersurfaces. So in particular a divisor D is given by

D = ijVj, m; € Z, for hypersurfaces V;.
j
A divisor is said to be effective if m; > 0, Vj. By hypersurfaces, we mean that there is an open
cover U, of M and non-constant holomorphic functions f,, : U, — C such that f;1(0) = V N U,.
By an irreducible hypersurface we mean that we cannot write it as the union of two non-empty

hypersurfaces.

Consider now 7 : L. — M a holomorphic line bundle. We say that s is a meromorphic section if
in a local holomorphic trivializations it is @ meromorphic function. Thus, the order of vanishing
of s at =, where s(z) = 0, is the lowest natural number m such that locally s has a non-zero partial
derivative of order m at z. The zero divisor of s is then simply the linear combination of irreducible
components of s~1(0):

Z(s) = ijVj, m; € N,

where m; are the order of vanishing of s along V;. Similarly, we say that s has a pole of order m
at z if 1/s has a zero of order m at . Moreover, the polar divisor of s is the linear combination of

the irreducible components of s~ (c0):
P(s) = anUj, n; € N,
where n; are the order of the pole at U;. Finally, the divisor of s is simply:
div(s) :== Z(s) — P(s).

Some author denote Z(s) by s~1(0) and P(s) = s~!(c0).

Let now V by an irreducible hypersurface of M. Then, on the intersection of two elements of the
open cover, U, and Ug, we have the corresponding holomorphic functions that define locally V,
fi : U; — Csuch that f{l(o) =VnU,, i = «a, 8. Moreover, we also have the transition functions ¢,;
and ¢,; # 0. Then, on U,; we have that f; = ¢;;f;, and so the zero sets coincide, and therefore

divisors are globally defined. Moreover, because the zeroes coincide, we can define the non-
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vanishing holomorphic function f.s : Usg — C as fag = fo/fs. Moreover, fosfsfya = 1. Thus,
we may use these function as transition functions for some holomorphic line bundle denoted
by Lgs.

Using the same reasoning as above, we may define the line bundle L, of a divisor D =

Z?zl m;V; as
k
.
Lp:= ®LV;.
j=1

If s is a meromorphic section of a line bundle L, then Lg;,(s) = L and D = div(s), where = means

linear equivalence, that is, if there exist a meromorphic function ¢ such that D — div(s) = div ().

Toric manifolds are native to algebraic geometry. There they are given by an object called fan.

These fans give us a tool to compute the divisors.

Definition 10.3.1. A convex polyhedral cone in R" is a set of the form

k
C{Zaﬂ}iGRn ; (11'20},
1=1

where v; are vectors called the generators of C.

The dual of a cone is given by

C* = {f € (R")*; f(z) > 0Vx € C}.

A cone is rational if the set of generators are in Z™ and it is said to be smooth if the set of
generators form a Z-basis of Z"™. Farkas’ theorem states that the dual of a rational cone is a

rational cone. A supporting hyperplane for a cone C is a hyperplane of the form

H;:={z eR"; f(z) =0},
where f € C*\{0}. A face of a cone is either itself (non proper face) or the intersection of C' with
any supporting hyperplanes (proper face).

Definition 10.3.2 ([16]). A fan A is a nonempty finite collection of strongly convex rational cones
such that every face of every cone belongs in the fan; and the intersection of any two cones is a
face of both them.

Using this, we may define toric varieties through the usage of the spectrum of a ring. We will not

provide any more details for this here. However, more information can be found in [17] and [16].

We will now see how to obtain a fan from a Polytope P. Let f : R™ — R be a linear function. Then

we denote by supp, f the collection of points in the polytope where f achieves its minimum. This
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set is known as the supporting face of f in P.

Definition 10.3.3. Let F' be a face of a polytope P. The cone associated to F is the closure of the
subset of (R™)* consisting of all linear functions f : R™ — R such that supppf = F. this subset
is generally denoted by Cr p. Then, the fan of the polytope P, denoted by Ap, is simply the

collection of cones Cr p for all faces Fof P.
Suppose now that the origin in the interior of the polytope, Then Ap coincides with the fan
spanned by the faces of the dual polytope:

P ={fe@®"); f(v) > -1, Vv e P}.

What this means is that the rays from the origin through the proper faces of P* and the origin
can be used to form the cones. To better understand how to obtain the fan from a polytope, we

present the following example.

Example 10.3.1. Consider a triangle, as our polytope. Then the associated fan can easily be

seen to be given by the collection of the following cones:

IF3

C . >

_[’/ Fo  F
Fs5

/ Cr,,p
F, e F:
1 i) 5

Cr,p

Cr,. C
Figure 10.1: Polytope. o Fo.

Figure 10.2: The associated cones.

Notice that the whole polytope corresponds to the zero dimension cone, the origin.

In the toric case, these cones play an important role. Each of these cones corresponds to orbits
of the torus action on the variety. Moreover, each of these cones are then associated to a unique
irreducible invariant divisor (called the irreducible torus-invariant divisors). Let A! denoted the
set of 1-cones. As it turns out, there is a one-to-one correspondence between irreducible torus-
invariant divisors and the elements of Al. Following the example above, we see that elements
of Al are then the primitive integral vectors v; which are normal to the j-face the Polytope. So it

then follows that the irreducible divisors are:
Dj=put({z € P;lj(x) = (vj,z) + \; = 0}).
So given a divisor D¥ = Y7, Al'D;, A\l € Z, we define the Line bundle L = O(D*). Let op:

j=1"J
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be the unique up to a constant meromorphic section of L, with corresponding divisor D¥. Then,
following Proposition 4.1.2 in [17], we obtain that for any meromorphic function w™, m € Z™ on
the open orbit, its divisor is given by

T

div(w™) = > (v;,m)D;,

j=1

and so we have that the space of holomorphic sections is
H°(M, L) = spanc{w™opr ; m € Z", div(wi'opr) = (v;,m) + AL > 0}.

Now, looking at this, we see there is a bijection between the basis of H°(M, L) and the integral

points of the Delzant polytope with integral vertices.

10.4 Complex line bundle, holomorphirc polarization and the

Hilbert space for Kahler toric manifolds

It is not hard to see that given a complex line bundle L, there is a canonical isomorphism given by
(| |, arg) such that L = |L| @ LY. This isomorphism, will induce a split on the connection. It is
straightforward to see that the connections form are, respectfully, a!“! = Rea and oY = iima.
Using this ideia and the coordinates we have defined above, we may define a Hermitian structure
on L, by setting ||1o|| = e~*® and ||1,|| = e~"®), where h,(z) = (z — m)' 22 — g(x). So one
may define a system of normalized sections as follows:

1 1
1({)](1) _ H10H’ 111)1(1) = Y pvertex
0

[[1o]]
Moreover, this allow us to define a connection with curvature —iw

viv®W = —izap1l W, w1V = —iz,d0,1YD | o vertex (10.3)

Using the Liouville measure, we are able to consider the injection of smooth in distributional sec-

tions:

L1 C%(Luly) = O™ (Lulv) = (C(Lg |v)*

s+ 1s(9) = /USQS%T,
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where U is any open subset of Xp and L., is the prequantum line bundle on P°. Consider now

the following family of symplectic potentials:
gs = gp + 59,
where ¢ is a smooth uniformly convex on P and consider the associated holomorphic polarization
Ps = span 9 1=1,..,n (10.4)
s — p C awé7 e A . .

We then define the limit Polarization

Poo := lim Ps. (10.5)
S§—00
Consider also the real polarization
[
Pr = spang 200 = 1,...,np. (10.6)

Proposition 10.4.1. On Xp, P, = Ps.

Proof. This follows from the fact that the hessian is positive definite and

0 0

- = G_l 1] )
ayz ;( s ) J 8Ij
and so because (G—l)ij — 0 as s — oo, we get that :

S

a S§—00

spang i = spanc i—i - > ——— spang i = Pr
ow’, oy 00" 00'

So this result says that the holomorphic polarization at infinity collapses to a real polarization.
This is an interesting way to see real polarization, due to the fact that this allow us to study them

through complex polarization, as the former are easier to work with.

Now over the boundary of P, it follows that w can only be zero as 4! goes to —oo, which may

only happen at the boundary. Therefore, if over a face we have that w® # 0, then it follows that

9 9 i i
w7 — o+ @nd then, we arrive at the following result

Proposition 10.4.2. On Xp, we have that:
Pos = Pr ® span, 9 i 0
Proof. See [1] theorem 3.4. [ |
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From which follows that

Theorem 10.4.1.
o ( lim ps) = C%(Pp).

§—00

Proof. See [1] theorem 1.2. [ |

This result tells us that the considered family of Kahler polarizations converges to the real polar-
ization. Now it is a consequence that the norm of a polarized holomorphic section o™ is given
by e~m°#_ As such, in order to study the norm for a given = € P°, we only have to look at the

function

fml@) = (m =) 55— b(a).

As it turns out, for ¢ strictly convex, this function has a global minimum at m, which yields the

following result

Proposition 10.4.3.

e—sfm(x) 5—00

Z T 6 _
RN (& =m),

in the sense of distributions.
Proof. See [1] lemma 3.7. [ |

Consider now W c Xp to a open set that is invariant by the action of T™. Then, following [1] we
define
0" (1) = / MmO — 2(x =m,0 = —m), V1 € Ce(L; ),
ppt(m)

where 7 represents the Fourier transform of . Moreover, the holomorphic sections are given as
follows:

m ._ ,—hs(z),, m
0. =e wy 1.

This proposition then let us prove the following theorem, which describes what happens to the

sections of the line bundle.
Theorem 10.4.2. Forn € P N Z, consider the family of L' -normalized J,-holomorphic sections

m O-;L oo 4 (T — *
R+ > S’-)fs = ||0'77'H1 GO (Lw) — (Cc (Lwl‘U)) .

Then, as s — oo, (") converges to 6™ in (C° (LY v))*-

Proof. See [1] Theorem 1.3. [ |
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This result does not use the half form-correction. In order to implement it, we will consider the
split Kp = |Kp| @ Icg(l). In particular, notice that |Kp| is always trivial, and therefore admits a
square root, denoted by |Kp|z. For instances, if we consider Pg, then the fibers are generated by

dX =dz; A ... Ndzx,, and as such we may define |dX| as:
|dX|: X(M°)" — C°(M°®), (X1, Xpn) = [dX (X1, ..., Xn)|

This gives a better picture of what the sections of |[Kp| are. As a consequence, we may define
VIdX[(Xy, ..., X)) = [dX (X1, ..., X,)|2. We also define dZ, := dz! A ... A dz", as the generators

of the fibers defined by the g,. A global trivializing section of |P, |2 is then HVd‘ZdTIZ‘ . Therefore, we

obtain the following half-form Hilbert space for each s

|[dZ| . . .
Hs :=<R0® —: o is a polarized section of L ;.
|dZ||2

The following propositions shows us how this objects behave.

Proposition 10.4.4.

dZs|[=
Proof. See lemma 4.14 in [2] [ |
Proposition 10.4.5.
IIJ’ZH |dZ,||z 222 28 i om.
O'S 2
Proof. See theorem 4.13 in [2] [ |

Proposition 10.4.6. For large values of s we have that:

o2l ~ s,
Proof. See lemma 4.12in [2] |
Taking 67" = 0" ® 7”‘”1' we obtain:
1dZ||2
Proposition 10.4.7.
Os 5200 o8 niem g /]dX].
o]z
Proof. See theorem 4.15 in [2] [ |
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Has it was shown in [2], we have that

Hp = {a@ ACZIy o€ ﬂKerVag},

1
HdZ8H2 i=1

From which it follows that Hr has a basis given by {6™ ® +/|dX|}. Thus we see that the above
result is also valid for the half form space.

Example 10.4.1. Take the sphere S*. Then its moment polytope is the interval P = [-1, N + 3],

for N natural. Consider also the inequalities:

1 1

We consider now the following strictly convex function ) = % on the moment polytope. Therefore
the symplectic potential is given by:

2

1 ST
gs = 5 (51 (z)log(l1(x)) + €2(x) log(ég(x))) + -5
The associated coordinates are:
1 1 ‘
Ys = log H712 — sz, Wi H712685L’+20.
N + 5 N+ 53—

Let now h.,,(x) be:

hon () = (. —m)ys — gs(x).
For s considerably large, it follows that h,,(x) ~ M — % Let the Hessian of g, be H. Then
a basis for the space of holomorphic sections is given by:

o™ = efh,,,L(z)Jrim@detH% 1([]](1)7

S

and for large s we get

, 1 sm?2 s(;c—m)2 U(1l
oyt ~ste 2 e 2 10( ),

It also follows that ||o7"||2 ~ e ri. Looking now at the z; coordinates, we see that for large

values of s, z, ~ logws. Therefore:
dzs ~ sdz +id0 and ||dzs|| = detH?T ~ s7.

This allows us to explicity see that

m
O.S

|log?

s(urfm,)2 .
+im6 U(l)
ez 15

1dZy||% ~

3
NI BRI
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which converges to §(x — m). Therefore we have shown a particular case of proposition 10.4.5.

10.5 Relationship with complex time Hamiltonian flow

We may reformulate this using Hamiltonian complex time flow. We will be using the notation
establish in chapter 5. This method is based on the work of Thiemann and known as the Thiemann
complexifier method. For this, let ¢ be the strongly convex function on P. Let P, be K&hler

polarization of (Xp,w) given by

where z; = C%‘?j + 6.
Proposition 10.5.1. Lefs > 0. Then:
« As distributions, P, = e"*“*v P,

* In the pointwise sense as a power series in s, dZ, = el Exy dZy.
Proof. See [3] theorem 3.4. [ |

Consider now the Kostant-Souriau prequantum operator associated to a smooth function 7 is
defined by h := iV x, +h. Therefore, we may consider the ¢-time flow of the lifted vector field using

e~ith . I'(L) — I'(L). We would like to extend this to imaginary time.

Recall from 10.3 that we defined the connection on L to be
VIV = —jzdo1v®

The prequantum operator associated to v is:

- ) 0
wszw—x-a—i)—Fw.

We now need to know how the operator will behave with half-forms. In other to do this in a

consistant manner, we set

e LAz = \/dZ,

Proposition 10.5.2 ([3]). Forany s > 0, the operator ¢*%  ei*£+ : Hp, — Hp, is an isomorphism
and

eV ® et oyt =0,

For allm € P integral.
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Proof. This result follows from using the above observations, in particular the ones about the
basis of Hp, and how we defined the action for half-forms. As such we only need to make the

following effortless calculation:

651/; (wnefho) _ E*S(x'%f’lﬁ)*hoeisxw (wan) — efhswzn'

As P is preserved by the flow of v we may consider the natural quantization of v» on Hp, given

by the operator:
Vg : Hp, — Hp,, 6" @ VdX — p(m)d™ @ VdX,

which is well defined, as the support of 6™ ® v/dX is p~!(m). This operator may be extended in
the following way:

JJR:HPQ %Hpg, CTmi—>’l/)(m)O'm.
Define an operator AY  : Hp, — Hp,:

AZ’_’S = (e‘“z’ ® eiscw) o ¥r

We may consider the operator A;”,oo : Hp, — Hp,determined by:

06" |2 o2

m 7 e9(m)
AY (| % ) = BT o o VIR

Theorem 10.5.1 ([3]).

Proof. Notice that

o () = S

oglz) 2 4t
00 .
—g)J .
:Z( ‘?) w(m)jo_m
=
fefsw(m)gan
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Therefore

L

A ( o ) _ (esq/; ®eis£¢) 0 e—5Ur ( oy )
)
o] llog" |2
e=s¥(m) (e“ﬁ ® ei“"ﬁw) (o

llog* ]2
e_sw(m)o';n

llog|l2

Which, using proposition 10.4.6 and the theorem 10.4.7, the result follows.
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Chapter 11

New Toric Polarizations on CP!

As we have seen in the last chapter, the choice of a strictly convex function ¢ in the moment poly-
tope allows for the degeneration of the Kahler polarizations into the vertical polarization. More-
over, under this degeneration, it was shown that holormorphic sections converge to the Dirac delta
distributional sections, with support on the fibers corresponding to the integral points of the mo-
ment polytope. This was seen using three different techniques: L!-normalized sections as in [1];
L2-normalized and half-form corrected sections as in [2]; and using the “Hamiltonian flow” with
complex time is, as in [3]. Taking the special case of S = CP!, this translates into the collapse of

the sphere into a infinite rod from the metric point of view.

In this chapter, we are going to generalize these results for the special case of S2. In particular, we
are going to study what happens to theorem 10.4.2 when we consider a special class of function
on the moment polytope of S2. Here we are considering the sphere with the momentum map
given by the height function, whose moment polytope corresponds to a interval in R. The class
of functions that we are interested in is the class of functions on the moment polytope whose
second derivative is a bump function. As such, our main goal is to study the consequences of this
choice and to reformulate theorem 10.4.1, theorem 10.4.2, and theorem 10.5.1 for these types of

functions, which had not been considered previously.

11.1 L'-normalized sections

Let P =[-1,N + 1], where N € N be moment polytope of 52. For the rest of this section, we
will fix a m € P and consider « to be a function on P such that its second derivative is a bump

function with support supp ¢ = [m — a, m + a], like shown below:

"For simplicity we will use this polytope P throughout chapter 11. In fact, for L1-normalized sections, without half-forms,
P = [0, N] would be more appropriate. This simplification does not change the final results and conclusions.
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Figure 11.1: ¢” Figure 11.2: ¢/

1 suppy” )

Figure 11.3: ¢

Where P, = [-1,m — o, and P, = [m + a, N + 3|. We also assume, without loss of generality,
that

/ 'dx = 1.
supp P’

This is so that '(m + «) = 1. We shall first see what happens to the polarizations, along the
family of this polarizations given by g, + si, s > 0. Recall the definition of P; in 10.4, of P in
10.5 and of Py in 10.6.

Lemma11.1.1. On Xsuppwu = u~t(supp'®), Ps = Pr. On the remaining part of the open orbit,
the polarization remains unchanged, that is equal to P,.

Proof. The proof of this lemma follows exactly as the proof of proposition 10.4.1 |
We now have two cases: either supp /" does not contain the boundary of P; or it does contain it.
In either of these cases we obtain the following result:

Proposition 11.1.1. 1. Ifsuppy” NOP = (), then on ! (supp)”) with have P, = Pr and on
1~ (P\suppy"), Poc = Po.

2. If suppy” N AP # 0, then on =t (suppy”)

Poo = Pr @ spanc {83)’ wj = 0},
J
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and on = (P\suppy"), Pso = Po.

Proof. The first case follows immediately from lemma 11.1.1. For the second case, we have to

0 0
spanc § = — spanc %6,
k

on any occasion that wy # 0. Let F' be any face in the coordinate chart. We will write that j € F

show:

whenever w; = 0 in F. Then it follows that

J

o . 0 .0
J J J

0 o . o
k J j

_ 9 . 19 .9
_spanc{awj, J eF}@spanC{(HeSSgs) a; Zaej’ J géF}
Which yields the desired result as s — oc. [ |

As a consequence, we have that

Theorem 11.1.2. On u~'(supp”) :
C* (Pso) = C°(Pr).

Proof. We have two cases, either if supp ¢’ NOP = ( or if supp " NAP # (. The first case follows

from 11.1.1. For the other case, using proposition 11.1.1, we have to show that:

o> (7300 = Pr @ spang {ai}, wj = O}) = C™®(Pg).
J

But this follows from the following observation: any complexified vector field ¢ such that when
restricts to a section of P on an open dense subset must be such that £ = ¢, but this implies that

it cannot have components along the holomorphic direction, i.e, spang {a%j; wj = 0}. [
Lemma 11.1.3. Let be as before. Then forx > m + o, Y(x) =z —m.

Proof. Let

This result follows from the fact that

(@ —m)y') = (z —m)y” + ¢/,
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and so

m+ta , m+o
[ (wmmp@) o= [ - m) (@) + o (@))ds

—
n—ao m—«
m+ta
a=c+ / (x —m)y" (z)dz =
a=c+/ yy" (y +m)dy =
a=c —
m—+a
a :/ Y (z)dx =
a=9(m+ ).

The fourth equivalence sign comes from the fact that the integrand function is odd.

As such, forall z > m + a, ¢¥(z) =z —m. [ |

Consider now the following function

fulz) = (z— n)% — ().

In the following lemmas, we will study the behavior of the wave functions, as we take s — oo

Lemma 11.1.4. Forn € suppv”, f, has a global minimum at x = n, and in the sense of distribu-

tions:
efsfn (E)

lle=s/nl4

Ehde el

—— 0(x — n).

Proof. Notice that
fo(x) = (x = n)y" ().

Thus it follows that
fo(z) = fuln) + /0 %fn(n +t(x —n))dt
1
= () + [t =0 (0t to =)
> _¢(n)7

where the last observation comes from the fact that the integral is always greater than zero. So

x = n is a global minimum. Notice also that whenever m — o < = < n, f, is decreasing and
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whenever m + « > x > n f, is increasing. In a neighborhood of n, f,,(z) < 0. Take £ > 0, then
||e—3an1 _ / e—5Fn (@) gy
P

> / o550 (@) gy
Bz(n)

>/ o= s+ 2" () g
Bg(n)

g2
> VO|(Bg(n))esw(")_STT/) (n)

Consider now the following cases:

« x ¢ suppy”. Notice that f,, is zero in P;. Moreover, in Pa, f,(x) = m —n. As we have seen,
—1(n) is the global minimum of f,,, so we conclude that m — n + ¢(n) > 0. Thus, choosing

£ such that ¢(n) > £4" (n), we have

e_sfn (z)

[le=s/nl4

55— 00

—= 0, Vz ¢ supp”

» x € suppy”. Consider now, 0 < ¢ < a. Thus:

/ o 5Fal@) gy — / @) g 4 / o=@ gt
P\B.(n) [-1/2,m—qa] [m—a,n—¢]

—l—/ e_sf"(w)dm—i—/ e 3@y
[n+e,m+a] [m+a,N+1/2]

1

<(m—a+g)+(n—e—m+ a)e s 4
1
+(m+a—n—e)e 30+ L (N 4+ 3= m= a)e”s(m=m)
]. 52 "
<(m-a+ 5) +(n—e—m+ )V sTI ey

2 1
+(m+a—n—e)etWsTv 0+ L (N 4 5~ m- a)e=s(m=n),

Thus, choosing ¢ such that ¢)(n)+m—n > %w“(n) and %w”(nie) > 9" (n), we conclude

that
e—an(I) 5—00
/ [Py aT—
P\B.(n) lle757 (|1

which proves our claim.

Lemma 11.1.5. Forn < m andn ¢ suppi)”,

e_sfn(m)

5— 00 1

le=*1lx m—a+ 3
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Proof. For n < m and n ¢ supp”, it then follows that f/, is positive in suppt” and it is zero in
the remaining parts of the polytope. Also f,(z) =0on P, and f,(m + a) =m —n > 0, thus f, is
a non-negative bounded function.

Notice now that by the dominated convergence theorem, we have that
Ty
P

:/ e_sf"(””)dx—i—/ e_sf"(w)dx—i—/ e Mm@ dy
[-1/2,m—a] [m—a,m+a] [m+a,N+1/2]

1 1
=m-a+ -+ / e @ dy 4+ (N 4+ = —m — a)es(m=n)
2 [m—a,m+a] 2

1
SH—Oown—oz—i—ﬁ

Which immediately implies that

e—sfn(r) S—00 1
e[y m—a+ 3
|
Lemma 11.1.6. Forn > m andn ¢ suppv”,
eisf"(m) §—00 1
eI, N+1/2—m—a P

Proof. For n > m and n ¢ suppv”, we now have that f/ is negative in supp " and zero in the

remaining parts of the polytope. Also f,|p, = 0 and f,,(m + a) = m —n < 0. We then have that
—sfa (@) gy 1 —s(m—n)
||6 le € dx—(N+§—m—a)e ,
P

which in turn implies that

e_sfn(a:) 5300
e 0 Vze U suppy”.
[le=sIn][x
Moreover, notice that
e_sfn(m)
TdI = 1,
plle=/ |y
and forany € > 0
—sfn(x)
/ e do < (m+a—c+ ) (N+2—m—a) les-Inimra—e)tm—n)
[—1/2,m+a—¢) ||eisfn||l 2 2
S5—>00 O
Which yields the desired result. [ |
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The following theorem is simply the combination of the three previous lemmas.

Theorem 11.1.7. Let ) be as above. Consider also the function

wheren € PNZ. Then

1. Forn € suppy”, f, has a global minimum at x = n, and in the sense of distributions:

e_sfn(z)
lle=s/n ]y

5— 00

—= d(x —n).

2. Forn <m andn ¢ suppv”,

e_sfn(m) 5500 1

lle=/ ]y m-a+y

XPy-

3. Forn >m andn ¢ suppv”,

efsfn(m) S—300 1

[le==/ |1 N+1/2—-m—a«

XPy-

e—sfn(@)

[le=s/n]ly>

The following table condenses some facts regarding the function which are going to be

useful later on.

—s P e—sfn(@)
fulx) e—5fn(x) R
forn < m,n ¢ suppy” | is positive | is decreasing | is bounded by ﬁm
for n > m,n ¢ suppy” | is negative | is increasing | is bounded by m

Table 11.1: Some facts about the functions of theorem 11.1.7.

Theorem 11.1.8. Forn € P N Z, consider the family of L' -normalized J,-holomorphic sections

g

llog 1l

n
S

RT 550 €0 = € C%®(Ly,) <> (C(L )"

Then,
1. Forn € suppv”, as s — oo, 1(£7) converges to 5™ in (C2° (L, |v))*.

2. Forn € P; as s — oo, 1(£7') converges to i

1
O-gHLl(Pj)

Jp, o7, —n)da in (C2°(L5 )"

Proof. The proof of this result follows exactly the same as in 1.3. In short, we can consider a

partition of unity {p,} subordinated to the covering by vertex charts {P,}, and therefore we only

79



have to check the result in each chart. Thus choosing a test section 7 € C>°(L_;

hy(x) = (& =n)"¢' — gs = hy (x) — sfu ().

Hence, following the computations in 1.3

((E)(7) = /P @R (2, —n)da.

llo2|lx
Also
ot = [ e ionran — @y [ oM
Me° P
Then we see .
‘|67hnfsfn|‘1 _ "~ =St e’hgdx.
lle=s ]|y plle=* ]

Now, using theorem 11.1.7 we obtain

« Forn € suppv”,

||e—h2—sfn

||1 S$—00 —h?L(n),
e co

1), we may define

» Forn < mandn ¢ supp«”, using the dominated convergence theorem, we have

— 0_
He hn an 1 s—o0 1 / e_hsl(m)dq;'
1 m—oa+1/2 [p '

| |e*3fn

» Forn > m and n ¢ suppv”, using the dominated convergence theorem, we have

|le=hn=sfn]|y

5—00 1 / —h0 (x)
e "\ Py,
[le=s/ |1 N+1/2—m—a Jp,

Which then implies that:

« forn € suppv”,

n
5 / He an

an He sfn

( —n)dx

1 .
—n)dzx
T sfn||1|\e oAU

H—“’)/ e hneh "5”%(~,—n)d1‘
P

=6"(7);
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» Forn < mandn ¢ supp”, using the dominated convergence theorem:

—hn—&-sjﬂ
0= |, e

e el
e "nr(., —n)dx
- [ e e mwsh, ¢ 70

S—00 m_a+1/2 —ho .
e "n7(-,—n)dx
fom e G =)

1
R Tmed) AEAACEEILE
ot llLrpy) J

* Forn > mand n ¢ suppv”, using the dominated convergence theorem:

—hl +sf,
/|e AT

—Sfn He sanl Y
- P He_sf"”l ||e*h‘%,+sfn||1e nf (-, —n)dx

N+1/2—-m—a _,o.
e "7 (-, —n)dx
|7 e )
1

= oy 7 (-, —n)dx
HUOHLl(Pz) /132 0

S§—00

Remark 11.1.1. These Theorems shows that these degenerations allow us to “split” the phase

space.

For instance, suppose that there are no integral points on the support of 1. In this case, then the
sections o™ converge to their normalized-restriction on the corresponding part of the polytope, i.e.

Py ifn < m or Py ifn > m. Therefore, the polytope is broken up into three pieces

P =P, UP,Usuppy”,

where suppy)” does not support any sections. Moreover, as these sections only have support
on their respective P;, this result says that the quantization on the whole S?, corresponds to a
sum of the contributions from each part. We then observe that the Hilbert space of holomorphic
quantization breaks into two parts corresponding to regions in the phase space separated by ~o

Riemanninan distance, generated by the corresponding sections.

If the support does contain at least one integral point, we now have three pieces which support
sections. In particular, the the sections supported in supp 1" converge to distributional sections.
And yet again, doing quantization in each pieces, or the sphere, will lead to the same results.
In this case, we see that the phase space breaks into three pieces, with the new extra piece

corresponding to the co segment "connecting” the two parts from above.
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This result is quite interesting as, in general, there is no way of “decomposing” a phase space into
subsets, in some geometrically natural way, in such a way that the quantization of the symplectic

manifold also “decomposes” as a sum of the quantizations of those subsets.

Remark 11.1.2. Notice that all the above results are still valid on the plane, where the moment

polytope is of the form [}, +o0].

Remark 11.1.3. One may generalize straightforwardly for larger dimension, for instance for P2,

where one can divide the polytope by codimension 1 “walls”.

11.2 More bump functions

Let us now further generalize the results of the previous section and suppose that the second
derivative of ¥ now is given by two bump functions with disjoint supports, say supp; = [m; —
a,my + «] and supps = [ma — 8, ma + (], where m; < mo. Furthermore, we assume that each
of these bump functions has area equal to 1. We will see that the same behaviour as described

above will prevail. Indeed, one can clearly see this simply by observing the following:

Let Py = [—1,m1 — o], P2 = [m1 + a,mg — ] and P; = [mz + 3, N + 3]. Then the addition of the
second bump function will only affect the expression of ¢ and ¢’ on supps U Ps. In fact, on Ps, ¢’
will be 2 rather than 1, which now is the value it takes on P». For v, the following can be said: on
Py, =0,0n Py, ¥(x) =2 —my. Now on Ps:

ma+p3 , mo+f3
[ @oma@) do= [ (o= ma)u (@) + ¥ (a)da -
mao—L ma—p
mao+p3 ma+f3
B/ (ma + B) + B (ma — B) = / ¥ (@)da + / (@ —ma)(@)ds =
ma—f m—p
mo+f B
38 = V' (x)dx + / y" (y + ma)dy =
ma—p -8
38 =(ma + B) — Y(ma — B) —
38 =(ma+ B) — (ma2 — B —my) —

28 4+ mg — my :w(m2+ﬁ).

As such, for all x € Ps, 9(x) = 22 — mg — my.

In fact, we can clearly see that this result can be further generalized if we had N bump functions
with disjoint supports, each with area 1. Let supp; := [m; — a;,m; + a;], m; € P, a; > 0,
j =1,..., N be the supports of the N bump functions. Then, following the same naming convention

as before, let
Pl = [—1/2,7’711 — Oél], PN+1 = [mN +OzN,N+ 1/2], P] = [mj,l +ozj,1,mj —Oszj = 27...,N.
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then

J
P(z) = jo — ka, Vo € P;.
k=1

As such, the inclusion of another bump function only changes the behaviour of f,, on the support
of that bump function and on the P; immediately before it and the P; after it. This leads us to the

following generalization of the theorem 11.1.7:

Theorem 11.2.1. Let ) be as describe above. Consider also the function
fula) = (= m) 5~ (@),

wheren € PNZ. Then

1. Forn € suppy”, f, has a global minimum at x = n, and in the sense of distributions:

75fn(m)
€ 5—00
—— =" 5(x —n).
lle=s/n 1]y
2. Forn € P;
e—sf"(z) S—00 1
[le=s71I1 Voi(P;)

Proof. We will prove this theorem will be done by induction on the number of bump functions K.
For K = 1, this case is the same as theorem 11.1.7.

For K — K + 1. We assume without loss of generality that my .1 > mg > ... > m;. Thus by
the induction hypothesis, we only have to take care whenever n € Pk 1 USUpPy ;U Pk 2. AS

usual, we will divide the proof in cases:

(@) n =mg41. Inthis case it follows that f/, =0on Py U...U Pg11 U{mg41}U Pk42, and
7 < 0onsupp; U...Usuppyx U(mgi1 — akxs1,mi41)and f, > 00n (myi1, M1 +

ak+1)- Thus, using the exact same argument as before,

1
me+1 (IL‘) = _w(mKJrl) +/ t($ - mK+1)2wH(mK+1 + t(x - mK+1))dt
0
> (M)
S0 z = mg 1 is a global minimum of f,, ..
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Moreover,

fmgpr (M1 +argr) = (K + Dagyr — (K +1)(mry1 + ax1) —mi —mg 1

=mg+mr_1— (K +1)mgy1 <O0.
Following the proof of theorem 11.1.7, we take £ > 0, then

||e—sme+1 Hl > / e8I mp i1 (@) gq > Vol(Bg(mK+1))esd)(mKJrl)—S%w//(mKJrl)'
Bz(mx 1)

Thus, choosing ¢ such that ¥(mg1) > %w“(mKH), we have that for = ¢ suppg,, :

e—sfm(x) 5—00
lle=sFm|y
Consider now, 0 < € < . Thus:
K42 K
/ e 3 mp i1 (@) gy — Z / e 8 fmr i1 (@) gy + Z/ efsmeJrl(as)der
P\Be(mx41) j=1"F; j=18upp;
[MmK41—aK4+1,MK+1—¢] [mrt1+emrr1takii]
K+1 K
<Vol(Py) + Y Vol(Py)e e (=) 1§ s Fmucs (mtes) g
j=2 j=1

+ 2(ag 1 —e)e Hmrn (macie) | VOI( Py g)e s (Michitar)
Thus, choosing ¢ such that ¢ (mg 1) > %w”(mKH) and %w”(mKHiE) > %d/’(mKH),

_Sf'mK+1 (w)
/ - da 222
P\B.(mg1) |le” e+ |]y

which proves our first claim.

we obtain

n # mg1 This follows easily using the same argument as above. In this case it follows
that f, =00on P U...UPg 11 U{n}UPki2,and f; < 0onsupp; U...UsuppU(mgi+1—
ak+1,n) and fi > 0o0n (n,mgy1 + ax+1). Thus, using the exact same argument as

before,

So z = n is a global minimum of f,.It also follows that in neighborhood of n, f,(x) =
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—1(n) < 0. Now, as before, we consider £ > 0:
e[y > Vol(Be(n))es (= ¥,

Thus, choosing ¢ such that ¢(n) > %z//’(n), we have that for = ¢ supp ¢ :

efsfn(z)

S§—00
_ 0
le=7Th
Let now 0 < ¢ < a. Thus:
K+1 K
/ e dg < VOI(Py) + Y Vol(Py)e*mces (M=) 37 e Fmacia (maben)
P\Bc(n) j=2 Jj=1

+(n—e—mgi1+agr)e Tren ey

(M1 + agqr —n —e)e T (M1 Fe) Vol (P g)e™ s (mrcsiferce)

So we choose ¢ such that ¥(n) > %1//’(71) and %z//’(n +e) > %w”(n). We now just
have to look at ¥ (mk4+1 + akx41) + ¥(n), which is positive regardless if n < mg1 or

n > mg41. S0 it follows that

—sfmgesy (@)
/ © -y dy 2= 0,
P\B.(mx41) |l M1y

which proves our claim.
2. Pgy1UPk o
(@) n € Pxy1 We have that f] is positive in supp ;, negative on the others suppj s and it
is zero in the remaining parts of the polytope. In particular, it follows that f,, is constant

on Pk 1, where its value is —«(n), which is the minimum of the function.

We then have that

||6_an

L > / e (@) dg: = Vol(Prc 1 1)e*¥ ™),
Pr 41

which in turn implies that

e_sf"(x) s—00
M—>O, V{E%PK+1.
Moreover, notice that
e_sfn(f)
——dxr =1,
plle=s/ |
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and

—Sin(T K .
/ I N VOUPY)  pm—ayy i YOUPr42) g (a2 o)
P\Pi, e (11 = VOI(Pre+1) VoI(Prc+1)

K+ vol( supp]
VoI

e~ 5(fn(mj+a;)+¥(n))

5— 00

0

Which yields the desired result.

(b) n € Pxyo. This case follows exactly as the above, but instead of Pk we exchange

that for PK+2.

Notice furthermore, that the theorems 11.1.1, 11.1.2 and 11.1.8 , are still valid for these types of

functions, and in particular, their proofs are essential the same.

Remark 11.2.1. Remarks 11.1.1, 11.1.2, and 11.1.3 are still valid when we consider more bump

functions, with the appropriate adaptations.

11.3 Complex time Hamiltonian flow approach for half-form

corrected sections

In the previous two sections, we have studied the effect of the imaginary time flow generated by
1 on the holomorphic L'-normalized sections. We will now deduce the same results following
the approach given in section 10.5. In order to accomplish this, we notice that we have already
seen that the polarization converges. Moreover, proposition 10.5.1 is easily seen to be valid in

this case. As such, all that is left to do is to prove the analogue of Theorem 10.5.1.

Theorem 11.3.1. Recall that the operator A_j]/’ :Hp, — Hp, . is defined by
Az)’s = (e‘“& ® eis£'¢’) 0 e SYR,

Then the operator A} ., : Hp, — Hp, is determined by:

AY (Ug ) (QW)Qeg(n)é"eaF,

N llog ]2

ifn € suppy”;
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oy 1
AV ( 6 );zua%xﬂag@gx/dx,
0

P2 \log]l2
ifn e P;,
is such that
lim AY, =AY .

§— 00

Proof. Notice that the first case follows exactly like theorem 10.5.1. Therefore we only have to

worry about whenever n € P;. From 10.7 we have that

. ( ol )esw(”)ag
2 \llog ]2 llog ]2

Assume now that n € Py, then ¢(n) = 0. It then follows that by the dominated convergence

theorem,

/ =8I0 (@) o= (2 =) gh (2)=90(2)) gy — / o~ ((2=m)g(@) =90 () gy
P Py
n / o= In(®) o= ((z=) g (2) —90(2)) g
P\ P,

s—>—oo> / 67((m7n)gé(:c)*go(w))dx
Py

which implies our result.

Lastly, assume now that n € P,. Then ¢(n) = (n —m). For any € > 0, we obtain that

/ e—s(n—m) o=sfn(®) ;= (z=1)g5(2)=g0(2)) 1 < Ae—3(n—m)g=sfn(mta—c)
[—1/2,m+a—¢]

55— 00

0,

where A = (m + a — ¢ + )~ (696090 where ¢ is the maximum of the function on this
interval. The convergence follows from the fact that (n—m) = — f,,(m+«) and that f,, is decreasing

non-positive function. Moreover, notice that on P, we have that

/ o= s(n=m) =5 (@) o~ (2= gh(2)~g0(2) g _ / = s(n—m) ;—s(m—n) o~ (x—n)gs(2)~g0(2))
Ps Ps

_ / o~ ((a=m)gh(2)=g0(2) g
Ps

which proves our claim. |
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