

LCC and LCA Simplified Models to Foster the Design of Sustainable Plastic Injection Moulds

Plastic injection moulds

- ✓ Usually designed by the mould maker company that will afterwards produce it
- ✓ No available time and/or knowledge to build up and interpret LCC and LCA analysis since it is a resources consuming task

Efficient and less time-consuming life cycle models in the context of plastic injection moulding;

Forecast of the life cycle cost and environmental impacts in their design practices;

Models based on the specific industrial context;

Deviation acceptable for the comparison of engineering alternatives in the context of decision making → not accounting or financial tools;

Useful decision supporting tool for the mould making industry.

Enables more informed decisions based on their impacts throughout the whole life cycle of the mould and produced parts.

Mouldmaking Industry

Deep insight along the manufacturing chain in a early design phase

The materials and the manufacturing technologies used in different moulds are highly similar

Potential to implement life cycle approaches in the mould design phase

- Compilation of common industrial practices
- Correlations between: mould size vs. production equipment dimensions; equipment dimensions vs. equipment power
- Bibliographical research
- Build LCC and LCA Models
- Models application to a case study: Full model vs. Simplified Model
- Measure associated error and compare nº required inputs

Results

- √ 1.50% error regarding the total production cost of the mould
- √ 16.76% error for the mould in use phase (injection phase)
 - ✓ 5.66% error regarding the environmental impact analysis
- ✓ Required inputs: 16 instead of 173