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Abstract 

Obstructive sleep apnea is a common sleep disorder characterized by an interruption of one’s 

breathing during sleep. Due to the high cost, complexity, and accessibility issues related to 

polysomnography, which is the gold standard test for apnea detection, it is desirable that an 

automation of the diagnostic test be based on a simpler method.  A fourth level device, which has only 

one or two channels allows the study to be performed outside the sleep laboratory with a low level of 

intrusion to the patient. The obstruction or reduction of airflow normally decreases the blood oxygen 

saturation level which can be used as a marker for apnea detection. An investigation of obstructive 

sleep apnea showed that apnea events have progressive bradycardia, followed by abrupt tachycardia 

on the resumption of breathing. Thus, heart rate variability could be a complement to the oxygen 

saturation signal. In this PhD work, two systematic reviews were performed to analyze the already 

existing algorithms to detect obstructive sleep apnea. One review focused on the use of different 

sensors while the other review focused on deep learning, in order to discover future trends and 

knowledge gaps in the field. Two different methods are followed in this work: handcrafted feature-

based methods (using shallow networks) and automated feature-based methods (using deep networks). 

With regards to the handcrafted feature-based methods, it is necessary to find a subset of features that 

obtain the highest accuracy for the classifier. As for the automated feature-based methods, though the 

features are chosen automatically during the training, the structure of the deep neural network 

(namely, the choice of hyperparameters) plays a crucial part in the results. Therefore, for both 

methods, these criteria are investigated. In most of the cases, the proposed studies can achieve better 

results compared with those found in the literature. Using the classified apnea events, apnea patients 

(were classified global classification) which consequently also performed better than those in the 

literature. Among the different methods implemented in this work for handcrafted feature-based 

methods, a combination of certain classifiers performed better than single classifiers. In relation to 

automated feature-based Convolutional Neural Network (CNN) methods, the multi-objective method 

produced better results. To reduce the high simulation time, a greedy algorithm with a very similar 

performance was developed.  The greedy algorithm for CNN optimization achieved better results in 

similar databases in the literature, though it was assumed that the use of the patients’ heart rate could 

increase the accuracy of the system implemented with SpO2. This did not occur in the actual 

investigation; however, the use of the patients’ heart rate increased the sensitivity of some solutions. 

Both the handcrafted and the automated feature-based methods achieved better global accuracy than 

the results in the similar database results from the literature. In conclusion, it is possible to detect 

apnea events as well as apnea patients using fourth level devices with good accuracy. Furthermore, 

these solutions are relatively easy to integrate in different wearables.       
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Resumo 

A apneia obstrutiva do sono é um distúrbio do sono frequente, caracterizado pela interrupção da 

respiração durante o sono. Devido ao elevado custo, complexidade e problemas de acessibilidade 

relacionados com a polissonografia, o teste padrão para deteção da apneia, a automação do teste de 

diagnóstico com base em métodos mais simples é desejada. Um dispositivo de quarto nível, que possui 

apenas um ou dois canais, permite que o estudo seja realizado fora do laboratório do sono com um 

baixo nível de intrusão para o paciente. A obstrução ou redução do fluxo de ar tipicamente reduz o 

nível de saturação de oxigênio no sangue, podendo esta ocorrência ser usada como marcador para a 

deteção da apneia. A investigação no âmbito da apneia obstrutiva do sono mostrou que os eventos da 

apneia apresentam bradicardia progressiva, seguida de taquicardia abrupta na retomada da respiração. 

Desta forma, a variabilidade da frequência cardíaca pode ser um complemento ao sinal da saturação de 

oxigênio. Neste trabalho de Doutoramento, duas revisões sistemáticas foram realizadas de forma a 

analisar os algoritmos existentes para detetar a apneia obstrutiva do sono. Uma revisão analisou o uso 

de diferentes sensores e a outra focou-se na aprendizagem profunda, de forma a determinar as 

tendências futuras e as lacunas de conhecimento no estado da arte. Duas metodologias distintas foram 

examinadas neste trabalho: métodos baseados em características criadas pelo investigador (usando 

redes neuronais) e métodos baseados na extração automática de características (usando redes 

profundas). Para as abordagens baseadas em características criadas pelo investigador, é necessário 

encontrar um subconjunto de características que obtenha a maior precisão para o classificador. Para os 

métodos baseados na extração automática de características, estas são escolhidas durante o processo de 

treino, sendo que a estrutura da rede neuronal profunda e a escolha dos hiperparâmetros desempenham 

um papel crucial nos resultados. Desta forma, estes critérios foram analisados para ambos os métodos. 

Na maioria dos casos, os estudos propostos obtiveram melhores resultados que os apresentados na 

literatura. A classificação dos pacientes com apneia (classificação global) foi realizada através da 

análise dos eventos classificados como apneia, tendo também alcançado um desempenho melhor que o 

apresentado na literatura. Foi verificado que nos diferentes métodos implementados neste trabalho 

para a análise das características criadas pelo investigador, a combinação de classificadores teve um 

desempenho superior aos classificadores individuais. No que concerne aos métodos baseados na 

extração automática de características, baseados nas Convolutional Neural Networks (CNN), foi 

verificado que o método multi-objetivo alcançou os melhores resultados. Todavia, resultados 

semelhantes foram alcançados pelo algoritmo do tipo ganancioso que foi desenvolvido para reduzir o 

elevado tempo de simulação necessário. Este algoritmo foi utilizado para a otimização da CNN e 

obteve melhores resultados quando comparando com os reportados na literatura para bancos de dados 

semelhantes. Embora se supusesse que a frequência cardíaca poderia aumentar a precisão do sistema 
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implementado com SpO2. Tal não ocorreu na investigação realizada, no entanto, algumas soluções 

obtiveram uma sensibilidade superior. A precisão global alcançada pelos métodos baseados em 

características criadas pelo investigador e pelos métodos baseados na extração automática de 

características foi superior à reportada no estado da arte em bancos de dados semelhantes. Em 

conclusão, foi verificado que é possível detetar eventos de apneia e pacientes que sofram de apneia 

usando um dispositivo de nível quatro, com uma boa precisão, sendo as soluções desenvolvidas 

facilmente integráveis em diferentes dispositivos vestíveis. 

Palavras-chave 

Rede neuronal profunda, Escolha de características, Otimização, Rede neuronal, Apneia do 

sono 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xv 

Table of Contents 

Acknowledgement. ................................................................................................ ix 

Abstract................................................................................................................. xi 

Resumo ............................................................................................................... xiii 

Table of Contents................................................................................................. xv 

List of Figures .................................................................................................... xix 

List of Tables .................................................................................................... xxiii 

List of Acronyms ................................................................................................ xxv 

1. Introduction ............................................................................................... 1 

1.1. Introduction ........................................................................................................... 2 
1.2. Motivation ............................................................................................................. 2 

1.3. Research Hypothesis ............................................................................................. 3 
1.4. Research Objectives .............................................................................................. 4 

1.5. Research Contribution .......................................................................................... 5 
1.6. Document Structure .............................................................................................. 9 

2. Obstructive Sleep Apnea Detection ........................................................ 11 

2.1. Sleep Apnea ........................................................................................................ 12 

2.2. Polysomnography ............................................................................................... 13 
2.3. Apnea Criteria According to AASM .................................................................. 14 
2.4. AHI Index ........................................................................................................... 15 
2.5. Type of Test or Device........................................................................................ 16 

2.6. Summary ............................................................................................................. 16 

3. Materials for Research ............................................................................ 17 

3.1. Databases ............................................................................................................ 18 
3.2. Classifier and Classifier Parameters ................................................................... 18 

3.3. Performance Evaluation Parameters ................................................................... 19 
3.4. Summary ............................................................................................................. 20 

4. Literature Review .................................................................................... 21 

4.1. Introduction ......................................................................................................... 22 

4.2. Obstructive Sleep Apnea Detection Approaches ................................................ 22 
4.2.1. Introduction ............................................................................................... 22 
4.2.2. Based on pulse oximetry ........................................................................... 24 
4.2.3. Based on ECG ........................................................................................... 25 
4.2.4. Based on respiration .................................................................................. 28 

4.2.5. Based on sound ......................................................................................... 29 

4.2.6. Based on combined approaches ................................................................ 30 



 

xvi 

4.2.7. Summary ................................................................................................... 33 
4.3. Detecting Sleep Apnea using Deep Learning ..................................................... 35 

4.3.1. Introduction ............................................................................................... 35 
4.3.2. Automatic feature learning using DVNN ................................................. 36 
4.3.3. Human crafted feature learning using DVNN .......................................... 37 
4.3.4. Convolutional Neural Network (CNN) ..................................................... 38 
4.3.5. Recurrent Neural Network (RNN) ............................................................ 40 

4.3.6. Combination of multiple deep networks ................................................... 41 
4.3.7. Summary ................................................................................................... 43 

4.4. Summary and Choice of Work Done in This Thesis .......................................... 45 

5. Handcrafted Feature Based Method ........................................................ 47 

5.1. Introduction ......................................................................................................... 48 

5.2. Comparison of SFS and mRMR for Oximetry Feature Selection ...................... 48 
5.2.1. Introduction ............................................................................................... 48 
5.2.2. Oximetry feature selection ........................................................................ 49 
5.2.3. Performance of the mRMR method .......................................................... 52 
5.2.4. Performance of Sequential Forward Search .............................................. 57 

5.2.5. Comparison between mRMR and SFS ..................................................... 61 

5.2.6. Comparison with other methods ............................................................... 69 
5.2.7. Summary ................................................................................................... 70 

5.3. Genetic Algorithm for Feature Selection ............................................................ 71 

5.3.1. Introduction ............................................................................................... 71 
5.3.2. GA based feature selection method .......................................................... 71 

5.3.3. Optimization result .................................................................................... 73 
5.3.4. Summary ................................................................................................... 76 

5.4. Self-Configuring Classifier Combination (SC3) ................................................ 76 
5.4.1. Introduction ............................................................................................... 76 
5.4.2. Self-Configuring Classifier Combination method .................................... 77 

5.4.3. Performance of SC3 .................................................................................. 80 
5.4.4. Comparison of SF and IF for MaxV SC3 ................................................. 83 

5.4.5. Comparison of SF and IF for WLC SC3 ................................................... 85 
5.4.6. Comparison Between MaxV and WLC .................................................... 86 
5.4.7. Comparison with other work ..................................................................... 88 
5.4.8. Summary ................................................................................................... 90 

5.5. Combination of SpO2 and HR using SC3 .......................................................... 91 

5.5.1. Introduction ............................................................................................... 91 

5.5.2. HR features ............................................................................................... 92 
5.5.3. SpO2 and combination of SpO2 HRV features ........................................ 95 
5.5.4. Results of epochs based classification ...................................................... 95 
5.5.5. Global classification .................................................................................. 99 
5.5.6. Summary ................................................................................................. 100 

5.6. Summary of Handcrafted Feature Based Method ............................................. 101 

6. Automated Feature-Based Methods ...................................................... 103 

6.1. Introduction ....................................................................................................... 104 
6.2. Multi-Objective Architectural Hyperparameter Optimization of CNN ............ 106 

6.2.1. Introduction ............................................................................................. 106 

6.2.2. Optimization of CNN hyperparameters using GA .................................. 107 
6.2.3. Performance of the hyperparameter optimization ................................... 110 



 

xvii 

6.2.4. External database performance ............................................................... 115 
6.2.5. Effect of input size .................................................................................. 115 

6.2.6. Effect of layers ........................................................................................ 116 
6.2.7. Transfer learning performance ................................................................ 116 
6.2.8. Comparison with the state of the art works ............................................. 117 
6.2.9. Summary ................................................................................................. 119 

6.3. Greedy Based Optimization (GBO) of CNN .................................................... 119 

6.3.1. Introduction ............................................................................................. 120 
6.3.2. Classifier structure .................................................................................. 120 
6.3.3. Hyper-parameters optimization based on Greedy Algorithm ................. 121 
6.3.4. General result of Greedy Algorithms ...................................................... 125 
6.3.5. Comparison between different Greedy Algorithms ................................ 127 

6.3.6. Effect of input size .................................................................................. 131 
6.3.7. Responsiveness of the kSize and kNo ..................................................... 132 
6.3.8. Effect of the added CL ............................................................................ 133 

6.3.9. Comparison with literature ...................................................................... 134 
6.3.10. Summary ................................................................................................. 136 

6.4. Combination of SpO2 and HRV with CNN ..................................................... 136 
6.4.1. Introduction ............................................................................................. 136 

6.4.2. Combination of SpO2 and HR ................................................................ 137 
6.4.3. Transfer learning of classifiers and combination of signals ................... 137 

6.4.4. Performance of SpO2, HRV, and SpO2+HRV ....................................... 137 
6.4.5. Global classification ................................................................................ 143 
6.4.6. Summary ................................................................................................. 145 

6.5. Summary of Automated-Feature based Methods ............................................. 146 

7. Implementation ..................................................................................... 147 

7.1. Introduction ....................................................................................................... 148 
7.2. Implementation ................................................................................................. 148 

7.2.1. Wearable device ...................................................................................... 149 
7.2.2. Smartphone application ........................................................................... 152 

7.3. Summary ........................................................................................................... 154 

8. Conclusion and Future Work ................................................................ 157 

8.1. Conclusion ........................................................................................................ 158 
8.2. Future Work ...................................................................................................... 159 

References ......................................................................................................... 163 

 

 

 

 

 

 

 

 

 



 

xviii 

 

 

 

 

 

 

 

 

 



 

xix 

List of Figures 

Figure 1 : Simplified block diagram of the chapters. ................................................................. 9 

Figure 2 : No airway obstruction and airway obstruction during sleep [27] [28]. ................... 12 

Figure 3 : Polysomnography for adult [55] and children [56] . ............................................... 13 

Figure 4 : Flow of Sleep Apnea Detection Review Approaches [87]. ..................................... 23 

Figure 5 : Flow chart of the process for article selection using PRISMA reporting style. ...... 36 

Figure 6: Oxygen saturation (SpO2) in a 5 minute segment. ................................................... 49 

Figure 7 : General pipeline for finding the best feature sub-set from the SpO2 for sleep 

apnea detection. ................................................................................................ 50 

Figure 8 : Accuracy of the Physionet mRMR method. ............................................................ 54 

Figure 9 : Sensitivity of the Physionet mRMR method. .......................................................... 54 

Figure 10 : Specificity of the Physionet mRMR method. ........................................................ 55 

Figure 11: Accuracy of the Ucddb mRMR method. ................................................................ 55 

Figure 12 : Sensitivity of the Ucddb mRMR method. ............................................................. 56 

Figure 13 : Specificity of the Ucddb mRMR method. ............................................................. 56 

Figure 14: Accuracy of the Physionet SFS method. ................................................................ 58 

Figure 15 : Sensitivity of the Physionet SFS method............................................................... 59 

Figure 16 : Specificity of the Physionet SFS method. ............................................................. 59 

Figure 17: Accuracy of the Ucddb SFS method. ..................................................................... 60 

Figure 18 : Sensitivity of the Ucddb SFS method. ................................................................... 60 

Figure 19 : Specificity of the Ucddb SFS method. .................................................................. 61 

Figure 20 : Overall performance for all the classifiers using mRMR and SFS algorithms 

in both databases. .............................................................................................. 63 

Figure 21 : Overall selected number of features for all the classifiers using mRMR and 

SFS algorithms in both databases. .................................................................... 63 

Figure 22: The general pipeline of optimization of the sleep apnea detection classifier. ........ 71 

Figure 23 : Flow chart of GA. .................................................................................................. 73 

Figure 24 : Optimize structure of the system classifier using the GA and a ANN. ................. 74 

Figure 25  : Confusion matrix of a ANN with seven optimized features optimized using 

the GA over 100 generations. ........................................................................... 74 

Figure 26 : Non-apnea (Normal) and apnea minute with the wavelet scale coefficients 

chosen by a GA ANN classifier. ...................................................................... 76 

Figure 27 : Block diagram of the self-configuring classifier combination (SC3) 

technique. .......................................................................................................... 78 

Figure 28 : Accuracy (Acc), Sensitivity (Sen), and Specificity (Spc) of 1 minute, 3 

minute and 5 minute LDA over the generations for the best performance 

objective. ........................................................................................................... 81 

Figure 29 : a) Cost and b) Number of features of 1 minute, 3 minute and 5 minute LDA 

over the generations for the best performance objective. ................................. 81 



 

xx 

Figure 30 : Accuracy (Acc), Sensitivity (Sen), and Specificity (Spc) of 1 minute, 3 

minute and 5 minute MaxV and WLC over the generations for the best 

performance objective. ..................................................................................... 82 

Figure 31 : a) Cost and b) Number of features of 1 minute, 3 minute and 5 minute 

MaxV Independent Feature (IF) and Shared Feature (SF) classification 

combination over the generations for the best performance objective. ............ 84 

Figure 32 : a) Cost b) Number of features of 1 minute, 3 minute and 5 minute WLCSF 

and WLCIF classification combination over the generations for the best 

performance objective. ..................................................................................... 85 

Figure 33 : A subtraction of the performance parameters between the MaxV and the 

WLC (MaxV-WLC) for the HuGCDN2008 database (Num indicates 

number). ............................................................................................................ 88 

Figure 34 : SpO2 and HR with apnea annotation for five-minute data. ................................... 91 

Figure 35 : Cost of the 5-minute MaxVIF classification combination over the 

generations for the best performance objective. ............................................... 96 

Figure 36 : Accuracy (Acc), Sensitivity (Sen), and Specificity (Spc) of 5 minute 

MaxVIF over the generations for the best performance objective for the 

HR and HR+SpO2 signals. ............................................................................... 97 

Figure 37 : Number of features of the 5-minute MaxVIF classification combination over 

the generations for the best performance objective. ......................................... 97 

Figure 38: Comparison of the global accuracy of HuGCDN2008 dataset with AHI 

calculated by medical physician (AHI G MP) and the by the CNN 

classifiers’ AHI time in bed (AHI C TiB) for SpO2, HRV and 

SpO2+HRV of 1 Min input. (+) symbol is used for normal subjects 

(AHI<=5) and (*) is used for apnea patients. ................................................. 100 

Figure 39 : Simplified representation of the CNN hyperparameters optimization strategy 

using NSGA-II [230]. ..................................................................................... 108 

Figure 40 : The multi objective problem space in percentage for the 1st and the 50th 

generation for a) 1 minute b) 3 minute, and c) 5 minute inputs for the 

HuGCDN2008 database. ................................................................................ 111 

Figure 41 : The changes of the multi objectives in percentage, a) Acc, b) Sen, and c) 

Spc, over the generations (Gen) of the populations (Pop) for 1 minute 

input for the HuGCDN2008 database. ........................................................... 112 

Figure 42 : The changes of the multi objectives in percentage, a)Acc, b)Sen, and c)Spc, 

over the generations (Gen) of the populations (Pop) for 3 minutes input 

for the HuGCDN2008 database. ..................................................................... 112 

Figure 43 : The changes of the multi objectives in percentage, a)Acc, b)Sen, and c)Spc 

over the generations (Gen) of the populations (Pop) for 5 minutes input 

for the HuGCDN2008 database. ..................................................................... 112 

Figure 44 : Comparison of the three inputs in the 50th generation in 3D (Acc, Sen, and 

Spc) problem space. ........................................................................................ 112 

Figure 45 : 1st Pareto front of the solutions for the HuGCDN2008. The first (1st ) and 

last (50) generation of a a) 1 minute b) 3 minute c) 5 minute Spo2 signal. 

The solution of the first generation is marked with star and the 50th is 

marked with box. ............................................................................................ 113 

Figure 46 : Comparison of three inputs in the 50th generation in 2D (Sen and 1-Spc) 

problem space. ................................................................................................ 113 



 

xxi 

Figure 47 : The solutions for the first (1st ) and the last (50) generation of a) 1 minute b) 

3 minute, and c) 5 minute SpO2 signal. The solution of first generation is 

marked with a star and 50th is marked with a box. d) comparison of all of 

the inputs in 50th generation............................................................................ 115 

Figure 48 : Clustered-layer (CL) base scalable CNN1D structure. ........................................ 121 

Figure 49 : Side by side comparison of the TT and WTT greedy methods. .......................... 123 

Figure 50 : Best validation (Val) CO solution for the first layer WTTRE. ............................. 126 

Figure 51 : Best (according to validation) test CO solution for each layer ((a), (c), (e)) 

and total simulation time (in hours((b), (d), (f))) for TT, RE (WTT) and 

FT(WTT). ....................................................................................................... 131 

Figure 52 : Total Mean Absolute Changes (MAC) of different objectives (in validation) 

with respect to unit parameter (kSize and kNo) change for 1-minute (1 

Min), 3-minute (3 Min) and 5-minute (5 Min) inputs. ................................... 133 

Figure 53 : Best (according to validation) training and validation (Val) CO for each 

layer WTTRE method. ..................................................................................... 134 

Figure 54 : The validation CO for the SpO2 signal using 1 Min, 3 Min, and 5 Min 

inputs with respect to the DO and the FC variation. ...................................... 139 

Figure 55 : The test CO for the SpO2 signal using 1 Min, 3 Min, and 5 Min inputs with 

respect to the DO and the FC variation. ......................................................... 139 

Figure 56 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

1 Min input of the SpO2. ................................................................................ 139 

Figure 57 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

3 Min input of the SpO2. ................................................................................ 140 

Figure 58 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

5 Min input of the SpO2. ................................................................................ 140 

Figure 59 : The validation CO for the HRV signal using 1 Min, 3 Min, and  5 Min 

inputs with respect to the DO and the FC variation. ...................................... 140 

Figure 60 : The test CO for the HRV signal using 1 Min, 3 Min, and 5 Min inputs with 

respect to the DO and the FC variation. ......................................................... 141 

Figure 61 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

1 Min input of the HRV. ................................................................................. 141 

Figure 62 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

3 Min input of the HRV. ................................................................................. 141 

Figure 63 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

5 Min input of the HRV. ................................................................................. 142 

Figure 64 : The validation CO for the combined signals (SpO2+ HRV) using the 1 Min, 

3 Min, and 5 Min inputs with respect to the DO and the FC variation. ......... 142 

Figure 65 : The test CO for the combined signals (SpO2+HRV) using 1 Min, 3 Min, and 

5 Min inputs with respect to the DO and the FC variation. ............................ 142 

Figure 66 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

a 1 Min input of the combined signals (SpO2+HRV). ................................... 142 

Figure 67 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

a 3 Min input of the combined signals (SpO2+HRV). ................................... 143 

Figure 68 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 

a 5 Min input of the combined signals (SpO2+ HRV). .................................. 143 



 

xxii 

Figure 69 : Comparison of the global accuracy of the HuGCDN2008 dataset with the 

AHI calculated by a medical physician (AHI G MP) and by the CNN 

classifiers’ AHI time in bed (AHI C TiB) for the SpO2, the HRV and the 

SpO2+HRV of 1 Min input. (+) symbol is used for normal subjects 

(AHI<=5) and (*) is used for apnea patients. ................................................. 144 

Figure 70 : Comparison of the global accuracy of the HuGCDN2008 dataset with the 

AHI calculated by a medical physician (AHI G MP) and by the CNN 

classifiers’ AHI time in bed (AHI C TiB) for the SpO2, the HRV and the 

SpO2+HRV of 3 Min input. (+) symbol is used for normal subjects 

(AHI<=5) and (*) is used for apnea patients. ................................................. 145 

Figure 71 : Comparison of the global accuracy of the HuGCDN2008 dataset with the 

AHI calculated by a medical physician (AHI G MP) and by the CNN 

classifiers’ AHI time in bed (AHI C TiB) for the SpO2, the HRV and the 

SpO2+HRV of 5 Min input. (+) symbol is used for normal subjects 

(AHI<=5) and (*) is used for apnea patients. ................................................. 145 

Figure 72 : Overall architecture of the proposed system. ...................................................... 149 

Figure 73 : User with the watch around their wrist, and the SpO2 sensor placed on their 

index finger. .................................................................................................... 150 

Figure 74 : User with the watch around their wrist, and the SpO2 sensor placed on their 

index finger. .................................................................................................... 150 

Figure 75 : Encloser for the battery and microprocessor board (main body of the watch). ... 151 

Figure 76 : Top part of the finger clip. ................................................................................... 151 

Figure 77 : Bottom part of the finger clip encloser for the sensor. ........................................ 151 

Figure 78 : a) Sign in page, and b) choice between collecting and viewing data. ................. 153 

Figure 79 : a) Recorded data and b) Results of recorded data. .............................................. 153 

Figure 80 : a) Connection of the sensor b) Putting on watch c) Turning on the sensor. ........ 154 

Figure 81 : a) User scan for device connected to the sensor and b) STOP-Bang 

Questionnaire. ................................................................................................. 154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xxiii 

List of Tables  

Table 1 : Brief advances of OSA according to Allan I. Pack [29]. .......................................... 12 

Table 2 : Classifiers used in the work. ..................................................................................... 19 

Table 3 : Evaluation of the Analyzed Algorithms [87]. ........................................................... 31 

Table 4 : Summary of the database information: The database, year of publication, 

number of subjects, used signals, window size and type of 

classifiers(A=apnea, H= hypopnea, N=Normal, S= Severity, 

O=obstructive, G=Global or OSA Severity) used by selected papers 

(According to year). .......................................................................................... 42 

Table 5 :Performance of the different works. .......................................................................... 42 

Table 6: List of SpO2 features. ................................................................................................ 51 

Table 7 : Comparison of the selected features for both databases using the mRMR 

method (best values are marked in bold). ......................................................... 57 

Table 8 : Comparison of selected features for both databases using the sequential 

forward search method (desired values are marked in bold). ........................... 57 

Table 9 : mRMR feature rank for the Physionet database. ...................................................... 63 

Table 10 : mRMR feature rank for the Ucddb database. ......................................................... 64 

Table 11 : SFS feature sequence for the Physionet database. .................................................. 64 

Table 12 : SFS feature sequence for the Ucddb database. ....................................................... 66 

Table 13 : Features’ importance by frequency (number of times the features are chosen) 

for the mRMR methods. ................................................................................... 67 

Table 14 : Features importance by frequency (number of times feature are chosen) for 

SFS methods. .................................................................................................... 68 

Table 15 : Comparison of sleep apnea detection approaches with SpO2. ............................... 70 

Table 16 : Comparison of sleep apnea detection approaches. .................................................. 74 

Table 17 : Self configuring classifier combination results for the HuGCDN2008 

database using two fold cross validation for different inputs. .......................... 82 

Table 18 : Self configuring classifier combination results for cross database (trained 

with HuGCDN2008 and tested with AED) comparison for different 

inputs. ............................................................................................................... 83 

Table 19: Selected Features and Classifiers for Different SC3. ............................................... 86 

Table 20 :Comparison with other works. ................................................................................. 89 

Table 21: List of HR features. .................................................................................................. 93 

Table 22 : Selected features for HR and SpO2+HR using S3C. .............................................. 97 

Table 23 : Compared to other works. ....................................................................................... 98 

Table 24 : Chromosome decoding techniques and ranges for the CNN. ............................... 108 

Table 25 : The results of both CNNs trained using the HuGCDN2008 database in two-

fold. ................................................................................................................. 111 

Table 26 : Chosen CNN’s layers and hyperparameters (layer parameters such as the 

input size, size of the filter, number of the filters represented as a form of 

[number of filter]@ [vertical width of filter]x [horizontal width of filter]x 



 

xxiv 

[number of Channels of filter]_ [vertical width of stride]x[horizontal 

width of stride]). ............................................................................................. 114 

Table 27 : Transfer learning (TL). ......................................................................................... 117 

Table 28 : Comparison with the literature (P is for proposed networks optimized by a 

GA and trained using the HuGCDN2008 database. TL indicates transfer 

learning where the proposed networks were retrained using the respective 

database. aBetween two networks the best one is showed.). .......................... 118 

Table 29 : Comparison of the results between the muti-objective method and two greedy 

based optimization (GBO) methods,  the WTT and the TT optimized 

(Opt) classification using the HuGCDN2008 database, Cross 

Database(CD), and Transfer Learning (TL) . ................................................. 127 

Table 30 : Chosen CNN’s layers and hyperparameters by WTT (RE and FT). .................... 128 

Table 31: Chosen CNN’s layers and hyperparameters by TT 1 minute and 5 minutes 

WTT, FT. ........................................................................................................ 129 

Table 32 : Test performance of the HuGCDN2008 database for the SpO2, the HRV and 

the SpO2+HRV for 1 Min, 3 Min and 5 Min inputs. ..................................... 139 

Table 33 : STOP-BANG sleep apnea questionnaire .............................................................. 162 



 

xxv 

List of Acronyms  

Abbreviations and Acronyms used in this work. 

Abbreviation and Acronyms Full form 

2,3-DPG 2,3-diphosphoglycerate 

AASM American Academy of Sleep Medicine 

Acc Accuracy 

AdaBoost AdaBoost 

AE Autoencoder 

AED Apnea-ECG database 

AF Air Flow 

AHI Apnea Hyperpnea Index 

AHI C TiB AHI TiB Calculated from the Output of Classifiers 

AHI G MP AHI Calculated by The Medical Professional 

AHI TiB Apnea Hypopnea Minute Per Hours in Bed 

ANFIS Adaptive Neuro Fuzzy Inference System 

ANN Artificial Neural Network 

App Applications 

AUC Area Under ROC Curve 

Avg Mean 

BatchN Batch Normalization 

batchnorm Batch Normalization 

bpm Beats Per Minutes 

C Central Apnea 

CART Classification and Regression Trees 

CC Cepstrum Coefficient 

CD Cross Database 

CF Cost Function 

CNN Convolution Neural Network 

CTM Central Tendency Measure 

CL Clustered-Layer 

CO Combined Objective 

conv Convolution Layers 

CoV Coefficient of Variation 

CWT Continuous Wavelet Transform 

D Dimension 

DAE Deep Autoencoder 

DBN Deep Belief Network 

DIndex Delta Index 

DL Deep Learning 

DNN Deep Neural Network 

DNN-FF Deep Neural Network Feedforward 



 

xxvi 

DO Dropout Layers 

DVNN Deep Vanilla Neural Network 

EA Evolutionary Algorithms 

EB Epoch-Based 

EBLS Exclusion of The Borderline Subjects 

ECG Electrocardiography  

EDR ECG Derived Respiration 

EEG Electroencephalogram 

EMD Empirical Mode Decomposition 

EMG Electromyography 

EOG Electrooculogram 

ES Exhaustive Search 

𝐹1 𝐹1 Score 

𝐹1𝑤 Weighted 𝐹1 Score 

Fb Filter Bank 

FC Fully Connected 

FD Frequency Domain 

FDA Food and Drug Administration 

FN False Negative 

FP False Positive 

FT Fine Tuning 

F-LSTM LSTM With Feature Inputs 

G Global 

GA Genetic Algorithm  

GAcc Global Classification Accuracy 

GBO Greedy Based Optimization 

GE Grammatical Evolution 

Gen Generation 

GMM Gaussian Mixture Models 

GRU Gated Recurrent Unit 

HL Hidden Layer 

HMM Hidden Markov Model 

HR Heart Rate 

HRV Heart Rate Variability 

HuGCDN2008 
Dataset from Sleep Unit of Dr. Negrín was Collected in Gran Canaria 

University Hospital 

HYP Hypopnea 

Hz Hertz 

IF Independent Feature 

IHR Instantaneous Heart Rates 

IIR Infinite Impulse Response 

KNN K-Nearest Neighbor  

kNo Kernel Number 



 

xxvii 

kSize Kernel Size 

Kurt Kurtosis 

L Linear 

LDA Linear Discriminant Analysis  

LR Logistic Regression 

LSTM Long Short-Term Memory 

LZC Lempel-Ziv Complexity 

M Mixed Apnea 

Max Maximum 

MaxV Maximum Voting 

maxpooling Maximum Pooling 

MCE Misclassification Error 

MESA Multi-Ethnic Study of Atherosclerosis  

MFCC Mel Frequency Cepstral Coefficient 

MGH Massachusetts General Hospital 

MHLNN Multiple Hidden Layers Neural Network 

min Minimum 

Min Minute 

mRMR Minimum Redundancy Maximum Relevance 

MrOS Osteoporotic Fractures in Men 

NB Naive Bayes Classifier 

NCPAP Nasal Continuous Positive Airway Pressure 

NoFL Numbers of Flexible Layers 

NSGA-II Non-Dominated Sorting Genetic Algorithm II 

NSRR National Sleep Research Resource 

O Obstructive Apnea 

ODI Oxygen Desaturation Index 

OL Output Layer 

Opt Optimized 

OSA Obstructive Sleep Apnea 

OSAH Obstructive Sleep Apnea Hypopnea 

P Polynomial 

PCA Principal Component Analysis 

pH Power of Hydrogen 

PLC Polylactide 

PM Portable Monitor 

Pop Population 

PPG Photoplethysmogram 

PPV Precision or Positive Predictive Value 

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses  

PRV Pulse Rate Variability 

PSG Polysomnography 

QDA Quadratic Discriminant Analysis 



 

xxviii 

Rf Number of Repetitions 

RBF Radial Basis Function 

RBM Restricted Boltzmann Machines 

REPTree Reduced-Error Pruning Tree 

RCNN Combined Deep Recurrent and Convolutional Neural Networks 

RE Rough Estimation 

Rec Recordings from database 

REn Renyi Entropy 

ReLU Rectified Linear Unit  

RF Random Forest 

RMS Root Mean Square 

RNN Recurrent Neural Network 

ROC Receiver Operating Characteristic Curve 

RR Inter-Beat 

RR-ECG R To R Interval From ECG 

RUSBoost Random Under Sampling Boosting 

SAE Stacked Autoencoder 

SB Subject-Based 

SC3 Self-Configuring Classifier Combination 

SCSMC Sleep Center of Samsung Medical Center 

Se Sensitivity 

Sen Recall or Sensitivity 

SEn Shannon Entropy 

SF Shared Feature 

SFS Sequential Forward Selection  

SHHS Sleep Heart Health Study 

Sk Skewness  

SNUBH Seoul National University Bundang Hospital 

SNUH Seoul National University Hospital 

SpAE Sparse Autoencoder 

Sp Specificity 

Spc Specificity 

SpO2 Blood Oxygen Saturation Index 

SRBD Sleep-Related Breathing Disorder 

Sub Subjects 

SVM Support Vector Machine 

TD Time Domain 

TFD Time Frequency Domain 

TT Topology Transfer Method 

TEt Test Time 

TEO Teager Energy Operator 

TF Time Frequency  

TFMadCA Median Absolute Deviation of Approximation 



 

xxix 

TFMadCD Median Absolute Deviation of Details 

TFSdCA Standard Deviation of Approximation 

TFSdCD Standard Deviation of Details 

TFSEnCA Entropy of Approximation 

TFSEnCD Entropy of Details 

TFVarCA Variance of Approximation 

TFVarCD Variance of Details 

TiB Time in Bed 

TL Transfer Learning 

TN True Negative 

TP True Positive 

TRt Training Time 

TW Time Window 

UCD, Ucddb 
St. Vincent’s University Hospital/University College Dublin Sleep 

Apnea Database 

VAD Voice Activity Detection 

Val Validation 

Var Variance 

WLC Weighted Linear Combination 

WTT Weighted-Topology Transfer Method 

 

 

 

  



 

xxx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

         Chapter 1 

1. Introduction 

This chapter gives a brief overview of the motivation, objective, and hypothesis.  The research done 

for the thesis is also presented. At the end of the chapter, the thesis structure is provided. 
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1.1. Introduction  

Obstructive Sleep Apnea (OSA) is a common sleep disorder with a high prevalence among the adult 

population (4% in adult men and 2% in adult women) [1]. It was estimated that over 200 million 

people suffer from sleep apnea [2]. Polysomnography (PSG) is the gold standard to detect the bio-

physiological changes that occur during sleep[3]. It monitors different recordings such as 

Electroencephalogram (EEG), Electrooculogram (EOG), Electromyography (EMG), and 

Electrocardiography (ECG) during sleep. The number of signals being monitored can increase 

according to the requirements. Managing a PSG is a tedious and time-consuming task requiring the 

analysis of multiple signals [4]. There is a high economic cost associated with the equipment 

maintenance and the limited quantity of professionals [5], [6]. The use of different sensors creates an 

uncomfortable situation for the patient during sleep. Consequently, a simpler system with a lower 

number of sensors for apnea detection is desirable. 

Blood oxygen saturation (SpO2), measured by pulse oximetry, could be a suitable signal used to 

face this challenge since the lack of airflow caused by OSA events frequently causes repetitive oxygen 

desaturation [7]. SpO2 sensors are readily usable and are appropriate for portable monitoring [8]. A 

significant amount of time domain [9] and frequency domain features [10] were developed by 

different researchers to classify apnea events, creating a vast pool of suitable features. The learning 

process with all the available features could have a negative effect on the performance generalization, 

particularly when irrelevant or redundant features are present. One of the solutions could be the 

combination of the best features found in all the previous works. However, combining two or more 

independent best features cannot guarantee a better feature set [11]. For this reason, it is necessary to 

find a subset of dominant and optimum features for a useful classification. 

There are two main approaches that could be followed to solve the feature selection of the signal. 

The first approach consists of choosing the best handcrafted feature set. The other approach consists of 

automated features estimated by the classifier. In this thesis, both methods were taken into account 

with the aim of trying to find an optimum solution for apnea detection. 

  

1.2. Motivation 

Population-based studies show that OSA is a common sleep disorder. When using an apnea-

hypopnea index (AHI) of 15 events/hour, it was estimated an OSA prevalence of 10% and 17% among 

30-49 year-old and 50-70 year-old men, respectively. In women, this prevalence is 3% and 9% among 

30-49 year-olds and 50-70 year-olds, respectively [12]. Moreover, more than 80% of apneic patients 

are not aware of the problem [13].  
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OSA has different effects on a persons’ health. Sleep-Related Breathing Disorder (SRBD) was 

related to Hypertension [14]. Additionally, patients with coronary artery disease are associated with a 

worse long-term prognosis [15]. SRBD appears to contribute as a risk factor for stroke through 

hemodynamic and hematologic changes[16]. Each additional apnea or hypopnea per sleep hour 

increased the fasting insulin level and HOMA-IR by about 0.5% [17].  

A national survey of adults living within the United States, conducted by WB&A Market Research 

and commissioned by the National Sleep Foundation, disclosed some of the effects of a sleep disorder 

in a person’s relationship [18], where 28% of people said their intimate relationship had been affected 

because they were too sleepy. Thirty five percent of those surveyed note the occurrence of diverse 

problems in their relationship due to sleep disorders. On the other hand, 26% lose sleep due to their 

partner’s sleep problem, 23% sleep in a separate bed bedroom or couch, 8% alter their sleep schedule, 

and 7% use an eye mask and/or an earplug [18]. 

In severe cases of apnea, it can also lead to accidents. The odds of work accidents were found to be 

nearly double in workers with OSA [19]. It has been recently estimated that 7% of road traffic injuries, 

for a population of male drivers, involved in motor vehicle accidents are attributable to OSA [20]. 

The gold standard for diagnosing sleep disorders requires an in-laboratory technician attending a 

PSG. Although this technique provides detailed and highly accurate results, it has several 

disadvantages [21].  The analysis with this multi-channel system is time-consuming and labor 

intensive [4]. It is costly and there is a limited number of professionals for Sleep Apnea diagnosis [5], 

[6]. For these reasons, patients not only have to pay high diagnostic fees but also have to wait a long 

time for their turn in waiting lists [22]. In addition to this, during the PSG test, patients have to stay in 

a hospital (or sleep laboratory) which is not their natural place to sleep and they must cope with 

multiple uncomfortable sensors which also affect the measured results. 

Therefore, an easy to use, relatively cheap setup and one that does not displace the patients from 

their natural sleep is needed. In addition to this, automated algorithms to detect apnea can reduce the 

time and cost of the analysis.  

1.3. Research Hypothesis  

These are the hypothese used for this work: 

• It is possible to detect apnea with good accuracy using a single sensor or two signals. 

• The features used by a physician and those suitable for automatic classification may be 

different. In order to detect apnea events, physicians use some basic features, such as the 

percentage of oxygen desaturation. More complex features can be used by the classifiers 

because the classifier does not need any visual references to detect apnea events. 
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• Adding Heart Rate Variability (HRV) to the SpO2 signal increases the accuracy of the system. 

In some cases, the lack of air flow does not create oxygen desaturation. HRV can fill this void 

due to the dynamic of HRV in apnea events with some cyclic variations. 

• Automatic feature methods (Deep classifiers) can perform better than feature based methods 

(shallow classifiers). The creation of handcrafted features that achieve good performance 

requires significant domain knowledge and the combination of two or more features does not 

guarantee an improvement [11]. In addition to this, the best features are sometimes dependent 

on the classifiers used. Deep learning can automatically learn features from raw data [23]; 

thus, by using deep networks these problems can be solved. 

 

1.4.  Research Objectives 

Alternative diagnostic devices, in place of a PSG have been developed to address the identified 

issues, allowing for the monitoring of patients in their homes [24]. A proposed categorization of 

devices was carried out by dividing the methods into four levels [25]. The fourth level devices include 

one or two signals and could be used at home without the presence of an attendant. These devices use 

fewer sensors than a PSG and, are more comfortable for patients. In addition to this, home monitoring 

devices are gaining importance in health care systems and are likely to become the major diagnosis 

tools in the future. Compared to PSG, these devices are inexpensive and easy to self-assemble. 

Therefore, a fourth level device was chosen for the research. 

Blood oxygen saturation, measured by pulse oximetry (SpO2), could be suitable to face this 

challenge since the lack of airflow caused by sleep apnea events frequently causes repetitive oxygen 

desaturation [7]. However, some respiratory pauses do not produce a clear pattern in the oximetry 

signal. This could be related to the hemoglobin dissociation curve, where short events would not be 

able to decrease the SpO2 percentage because a marked reduction in the partial oxygen pressure did 

not occur. In addition to that, pH (Power of Hydrogen), temperature and 2,3-DPG (2,3-

diphosphoglycerate) levels, which are specific to each person, can displace the hemoglobin 

dissociation curve [10]. Investigations in the OSA process pointed out that apnea events showed 

progressive bradycardia, followed by abrupt tachycardia on the resumption of breathing [26]. For that 

reason, the HRV or the Heart Rate (HR) can be a good addition to the SpO2 signal. Another added 

advantage of HRV is that the pulse oximeter used for the measurement of the SpO2 can also measure 

the HRV. This makes it possible to record two signals with only one device.  

The main goals of this thesis are aimed at detecting apnea events with simple fourth level devices 

providing a new contribution in bio signal analysis methods. In order to face the previously mentioned 

goals, the following objectives are proposed:  
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1. Literature review: One of the first objectives is to search and analyze previously published 

works to understand recent trends and knowledge gaps. One direction for the literature review 

is the analysis of the performance of different algorithms and methods, which use signals from 

multiple sources to detect OSA. In addition to this, recent publications show accuracy 

improvements using deep networks over shallow networks. To provide in-depth knowledge 

about the applicability of deep learning in the detection of sleep apnea, a second analysis of such 

works, assessing the performance of the presented methods, is undertaken. 

2. Selection and creation of features for handcrafted feature-based methods: namely, for 

handcrafted feature-based methods to create and choose features to obtain a good 

performance. Therefore, different types of features will be created and tested to increase the 

performance.  

3. Design of automatic feature-based methods for OSA detection: Implementing automatic 

feature-based methods presents significant challenges by itself. The structure and/or 

hyperparameters of the network are typically selected through an experimental search. Such 

methods require a significant amount of time as well as experience and expert knowledge for 

the creation of a handcrafted network structure and hyperparameters. Thus, one of the 

objectives of this thesis is to develop an independent algorithm capable of choosing the 

featureless network structure and hyperparameters without any human intervention. 

4. Comparison of handcrafted and automatic feature methods: A comparison between 

handcrafted and automatic methods will be performed to discover the advantages and 

disadvantages of each method. 

5. Comparison of SpO2, HRV and SpO2 with the HRV based methods: One of this thesis’s 

hypotheses is that adding the HRV will increase the system performance. Thus, a comparison 

between SpO2 and SpO2 with HRV will be carried out. 

6. Comparison of different input sizes of the signals: In some published works, authors 

discovered that longer inputs give better results. This phenomenon will be researched in detail.  

7. Building a prototype in order to use the solutions developed throughout the thesis. 

   

1.5. Research Contribution  

In this section the research contributions of this work are described. 

• Two systematic reviews were performed to analyze the performance of different algorithms 

and methods for feature based and featureless methods. These works were published in 

journals named ‘IEEE Journal of Biomedical and Health Informatics’ and ‘Sensors’. 

• Three works were conducted to find better features for handcrafted feature-based methods 

with SpO2. Two works were published in a journal named ‘Neural Computing and 
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Applications’ and the other one in a conference named ‘International Conference on 

Information, Communication and Automation Technologies’. 

• Two works were carried out with SpO2 and automated feature-based methods. These works 

were published in journals named ‘IEEE Access’ and ‘Computer Methods and Programs in 

Biomedicine’ 

• A handcrafted feature-based work with SpO2 and the HRV was carried out and compared 

with SpO2 performance. For example, the handcrafted feature-based automated feature-

based method with SpO2 and HRV is carried out and compared with the SpO2 

performance. 

• The global accuracy of the best work developed from the handcrafted feature-based 

methods and automated feature-based methods, for SpO2, HR, and SpO2+HR, was 

assessed. 

• The attained epoch based, and global accuracy are higher than in any reported work in the 

current literature. 

• A generic application (mobile application) was developed to be used with any of the 

methods proposed in this work. 
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1.6. Document Structure 

The present document is organized into eight chapters, following the simplified block diagram 

presented in Figure 1, according to the outline: 

 

Figure 1 : Simplified block diagram of the chapters. 
 

✓ Chapter 2 – A brief introduction on apnea, Polysomnography, and different definitions, and 

protocols related to apnea are discussed.  
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✓ Chapter 3 –The databases, the classifiers and the performance parameters are discussed. 

✓ Chapter 4 – Related work/Literature Review (Systematic review) of the past work is 

presented. 

✓ Chapter 5 – Some of the proposed research ideas with handcrafted features are presented, 

and an analysis is provided. 

✓ Chapter 6 – Some of the proposed research ideas with automated features-based methods 

are presented, and an analysis is provided. 

✓ Chapter 7 – One generic prototype implementing previously proposed work is presented. 

✓ Chapter 8 –The conclusion and future proposals are presented in this chapter. 
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Chapter 2 

2. Obstructive Sleep Apnea 

Detection 
This chapter covers the definitions and basic concepts of Apnea, Polysomnography and the different 

protocols related to Obstructive Sleep apnea. 
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2.1. Sleep Apnea 

Sleep apnea (also known as sleep apnoea), is a type of sleep disorder characterized by periods of 

shallow breathing or pauses in breathing during sleep. There are three types of sleep apnea: 

Obstructive (OSA), Central, and Complex. OSA occurs when the throat muscles intermittently relax 

and block the airway during sleep, as presented in Figure 2. Central sleep apnea occurs when the brain 

does not send the proper signals to the muscles that control breathing. Complex sleep apnea is present 

if both OSA and central sleep apnea occur in a subject.  

A noticeable sign of obstructive sleep apnea could be snoring. The first modern advances of 

defining apnea were done in 1965 in Pickwickian syndrome where the upper airway obstruction was 

defined as a major pathogenetic mechanism. A brief summary of major advances is shown in Table 1. 

Obstructive Sleep Apnea can be characterized by two types of breathing interruption one is apnea, and 

the other one is hypopnea. 

 

 
Figure 2 : No airway obstruction and airway obstruction during sleep [27] [28]. 

 

 

Table 1 : Brief advances of OSA according to Allan I. Pack [29]. 
Year  Milestones 

1818, 1854 Cheyne (1818) [30] and Stokes (1854)[31] of Cheyne-Stokes' respiration was described. 

1956 Alveolar Hypoventilation in obesity (Pickwickian syndrome) [32] was described. 

1960, 1962 In patients with Pickwickian Periodic cessation of respiration was recognized [33][34]. 

1965 Airway obstruction in sleep (i.e., OSA) was recognized as the cause of cessation of respiration [35]. 

1971, 1974 The effectiveness of tracheostomy in patients with OSA case reports published [36][37]. 

1976 Pediatric sleep apnea case series [38] 

1978 Unifying concept pathogenesis of OSA was described [39]. 

1981 Nasal CPAP[40]; specific surgery for OSA[41] were described. 

1983 CO2-dependent apnea threshold during sleep[42] was identified. 

1988 Hypopneas have the same consequences as apneas [43] was found. 

1992 Identification of neuromuscular compensation[44]; intermittent repetitive hypoxia leads to hypertension[45]. 

1993 High prevalence of OSA [1] was found in a study with robust epidemiologic methods. 

1995 Family aggregation was shown: Cleveland Family Study[46], in Israel [47], and in relatively nonobese Scots[48]. 

1997 Hypertension was linked to induced obstructive apneas in dogs [49]. 

1998 A link with poor academic performance and high prevalence of OSA  in school children was found and 

improvement was done using surgical treatment [50]. 

1999 Nasal Continuous Positive Airway Pressure’s (NCPAP) efficiency in sleep apnea syndrome was identified [51].  

2002 Identified that  NCPAP reduces blood pressure in a randomized, placebo-controlled trial [52]. 
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2.2. Polysomnography 

PSG (Figure 3) is the gold standard for OSA diagnosis measuring multiple sensors to record the 

airflow, respiratory movement, SpO2, EEG, EOG, EMG, ECG, and body position [53]. It can measure 

sleep stages, airflow, respiratory effort, oxygen saturation, electrocardiogram, and body position, and 

optional measures such as limb movement, vocalization, and carbon-dioxide level. If the cessation of 

airflow occurs with a concomitant respiratory muscle effort, it is called OSA, and the disorder severity 

is determined by the Apnea-Hypopnea Index (AHI). OSA is diagnosed if the patient has reported the 

indicated symptoms and presents five or more obstructive respiratory events per hour of sleep during a 

PSG recording[54] as defined by the American Academy of Sleep Medicine (AASM). A brief 

description of the signals or sensors used by PSG is given below. 

 

Figure 3 : Polysomnography for adult [55] and children [56] . 

 
Airflow: Oronasal airflow is one of the most direct indicators of breathing disorders to detect OSA. 

Respiratory movement: In the human being, contraction of the muscle of the diaphragm and the 

intercostal muscles between the ribs helps to raise the ribs and expand the lungs to draw air through 

the inspiration process. In the expiration process the opposite happens. These movements can be used 

as a detecting factor of the airflow. Thus, it can be used in OSA detection. 

Oxygen saturation (SpO2): This signal measures the level of oxygen in the blood. This measurement 

is commonly performed using a pulse oximeter that calculates the difference between the absorption of 

infrared and red lights to estimate the oxygen level. 

Electroencephalogram (EEG): This signal registers the electrical activity of the brain and in the PSG 

test, it is useful to detect the sleep stages. 

Electrooculogram (EOG): Electrooculography or EOG records eye movements. It helps to detect 

rapid eye movement (REM) sleep. 
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EMG: Electromyogram (EMG) measures the muscle tension in the body, and it allows one to  

monitor the number of leg movements during sleep. 

Electrocardiogram (ECG/EKG): This signal measures the electrical activity of the heart. It is used to 

monitor heart activity and detect pathologies allowing calculation of the HRV. 

 

2.3. Apnea Criteria According to AASM  

Apnea is a total blockage of the airway lasting for 10 seconds or more. According to the American 

Academy of Sleep Medicine (AASM) 2012 [57] the scoring of apneas follows these rules:  

“1. Score a respiratory event as an apnea when both of the following criteria are 

met: N1, N2, N3, 

 a. There is a drop in the peak signal excursion by ≥90% of pre-event baseline using an oronasal 

thermal sensor (diagnostic study), PAP device flow (titration study) or an alternative apnea sensor 

(diagnostic study). 

b. The duration of the ≥90% drop in sensor signal is ≥10 seconds. 

2. Score an apnea as obstructive if it meets apnea criteria and is associated with continued or 

increased inspiratory effort throughout the entire period of absent airflow.  

3. Score an apnea as central if it meets apnea criteria and is associated with absent inspiratory 

effort throughout the entire period of absent airflow. 

4. Score an apnea as mixed if it meets apnea criteria and is associated with absent inspiratory 

effort in the initial portion of the event, followed by resumption of inspiratory effort in the 

second portion of the event. N5. 

Note 1. Identification of an apnea does not require a minimum desaturation criterion. 

Note 2. If a portion of a respiratory event that would otherwise meet criteria for a hypopnea meets 

criteria for apnea, the entire event should be scored as an apnea. 

Note 3. If the apnea or hypopnea event begins or ends during an epoch that is scored as sleep, then 

the corresponding respiratory event can be scored and included in the computation of the apnea 

hypopnea index (AHI). This situation usually occurs when an individual has a high AHI with events 

occurring so frequently that sleep is severely disrupted and epochs may end up being scored as wake 

even though <15 seconds of sleep is present during the epoch containing that portion of the 

respiratory event. However, if the apnea or hypopnea occurs entirely during an epoch scored as wake, 

it should not be scored or counted towards the apnea hypopnea index because of the difficulty of 

defining a denominator in this situation. If these occurrences are a prominent feature of the 

polysomnogram and/or interfere with sleep onset, their presence should be mentioned in the narrative 

summary of the study. 

Note 4. For alternative apnea sensors see Technical Specifications for adults A.2. 

Note 5. There is not sufficient evidence to support a specific duration of the central and obstructive 
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components of a mixed apnea; thus, specific durations of these components are not recommended.” 

AASM 2012 [57] also define the scoring of Hypopneas as 

“1. Score a respiratory event as a hypopnea if ALL of the following criteria are met: N1, N2, N3.” 

“a. The peak signal excursions drop by ≥30% of pre-event baseline using nasal pressure (diagnostic 

study), PAP device flow (titration study), or an alternative hypopnea sensor (diagnostic study). 

b. The duration of the ≥30% drop in signal excursion is ≥10 seconds. 

c. There is a ≥3% oxygen desaturation from pre-event baseline or the event is associated with an 

arousal. 

2. If electing to score obstructive hypopneas, score a hypopnea as obstructive if ANY of the following 

criteria are met:  

a. Snoring during the event. 

b. Increased inspiratory flattening of the nasal pressure or PAP device flow signal compared to 

baseline breathing.  

c. Associated thoracoabdominal paradox occurs during the event but not during pre-event breathing 

3. If electing to score central hypopneas, score a hypopnea as central if NONE of the following 

criteria are met: 

a. Snoring during the event. 

b. Increased inspiratory flattening of the nasal pressure or PAP device flow signal compared to 

baseline breathing. 

c. Associated thoracoabdominal paradox occurs during the event but not during pre-event 

breathing. 

Note 1. If necessary, the number of hypopneas using a definition requiring a ≥30% drop in flow for 

≥10 seconds that is associated with ≥4% desaturation may additionally be reported to qualify a 

patient for PAP reimbursement (eg. Medicaid or Medicare patients).  

Note 2. For alternative hypopnea sensors see Technical Specifications for adults A.4. 

Note 3. Supplemental oxygen may blunt desaturation. There are currently no scoring guidelines for 

when a patient is on supplemental oxygen and no desaturation is noted. If the diagnostic study is 

performed while the subject is on supplemental oxygen, its presence should be mentioned in the 

narrative summary of the study.” [57] 

2.4. AHI Index 

AHI is the number of apnea hypopnea events per hour of sleep. This index is used for the 

categorization of apnea patients. For adults, an AHI lower than five is considered normal. OSA 

severity can be defined as mild (5 ≤ AHI < 15 events/hour), moderate (15 ≤ AHI < 30 events/hour) or 

severe (AHI ≥ 30 events/hour). A brief description of the signals is given below [57].  
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2.5. Type of Test or Device  

A portable monitor (PM) has been used as an alternative to in-laboratory PSG since it is less 

expensive and easy to deploy. The type of sleep apnea detection devices can be divided into four 

groups. Sometimes these groups are also defined as ‘Level’.  

Type I: monitored standard polysomnography with a minimum of seven channels, including EEG 

(C4-Al or C3- A2), EOG, chin EMG, ECG, airflow, respiratory effort, and oxygen saturation.  

Type II: portable PSG is, with a minimum of seven channels, similar to Type I test except without 

an attendant.  

Type III: modified portable sleep apnea testing, which uses a minimum of sensors: including two 

channels of respiratory movement, or respiratory movement and air flow, HR or ECG, and oxygen 

saturation.  

Type IV: contains  single or dual-bio parameter recording, typically including oxygen saturation or 

airflow [58][59]. 

2.6. Summary  

The OSA events are defined by breathing problems caused by blocking the airways. There are four 

different stages, according to the AHI index.  

The gold standard for apnea detection is PSG. However, according to the sensor used and 

implemented condition, the devices for the tests can be divided into four categories. Because of the 

lower number of sensors, self-assembly facility, price, and simplicity, a Type IV device is chosen for 

this work.  
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Chapter 3 

3. Materials for Research 
This chapter focuses on databases, parameters, and classifiers used in this work. The main goal is to 

give brief details on several concepts and information which are used in this work repeatedly.
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3.1. Databases 

Three databases were used in this work. Two of them were collected from Physionet and are freely 

available: the Physionet apnea ECG database (AED) [60], [61] and the St. Vincent's University 

Hospital / University College Dublin Sleep Apnea Database (UCD) [62]. A third database was 

collected in Hospital Universitario de Gran Canaria, Dr. Negrín. These databases are annotated with 

hypopnea (HYP) and central (C), obstructive (O) and mixed (M) apnea. For this work, all of the 

events are treated as apnea events. 

The database details are as follows: 

• AED has 70 recordings but only has eight SpO2 signals available. These eight recordings 

range from 7 to 10 hours with minute-by-minute annotation [60], [61]. The sampling 

frequency is 50Hz. Like HuGCDN2008, a 3% desaturation index was used to annotate the 

dataset. In some sections, this database is indicated as the Physionet dataset. 

• UDB [62] has 25 referred (suspected to have OSA) subjects (21 males and 4 females). This 

database is continuously annotated. The sampling rate of the SpO2 signal was 8 Hz. In some 

sections, this database is indicated as the UCDDB dataset. Alternatively to the previous 

datasets, the annotation in this dataset is continuous. A minute by minute apnea annotation 

was created by considering five seconds or more continuous apnea event in the annotated 

minute. 

• The dataset from the Sleep Unit of Dr. Negrín was collected in Gran Canaria University 

Hospital and has 70 referred (suspected to have sleep apnea) patients (51 males and 19 

females, ranging from 18 to 82 years old) which will be referred to as the HuGCDN2008 

database. The subjects do not have any arrhythmia and the SpO2 signal was sampled at 50 Hz 

and 16 bits resolution. The ECG digitized at 200 Hz and 16 bits resolution. The annotations 

were made in 30 s epochs [10]. Data were collected using the VIASYS Healthcare Inc. 

(Wilmington, MA, USA) device and a desaturation level of 3% with AASM 2007 [63] 

criterion was used for labelling the data. 

3.2. Classifier and Classifier Parameters  

The classification system plays a big role in biomedical signal processing and decision making. Due 

to its strengths and limitations, a single classification method is not suitable for all real-world 

problems. Most of the recent studies use experimental approaches to compare classifiers [64]. A brief 

description of the classifiers used in this work is presented in Table 2. These classifiers were chosen 

because they were reported as being suitable for OSA diagnosis in previous research works [2] [10] 

[22]. 
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Table 2 : Classifiers used in the work. 
Classifier Brief Description 

Artificial neural 

network (ANN) 

A ANN is inspired by biological neurons. Though at the beginning it was closer to human the brain over 

time deviations from biology happed due to solving specific task. Like neurons, the node in ANN receives 

information and processes it by weight and bias. The theory based on the interpretation of the Kolmogorov’s 

superposition theorem of continuous functions as an ANN [65] does not have this dependency on the 

training set. If the input layer consists of 𝑛𝑖 inputs where 𝑛𝑖 ≥ 2, the numbers of neurons in the hidden layer 

should be 2𝑛𝑖 + 1 [66]. Though the theory is applicable to 𝑛𝑖 ≥ 2, for consistency in point of view, it is also 

used for  𝑛𝑖 = 1. 

Support Vector 

Machine (SVM) 

Vapnik proposed a supervised based (SVM) in 1992 [67], [68], [69], [70]. Apnea detection is a binary 

classification problem. The SVM treats apnea and normal events as two distinct classes (𝑦𝑖 ∈ {−1,1}) 

k Nearest Neighbor 

(KNN) 

The KNN makes use of the majority vote of an object’s neighbors. The votes are from its k nearest 

neighbors (where k is a positive integer) [71]. The value of 𝑘, chosen for the best performance is dependent 

on data. Previous work have considered different values (k=27 [72] (ECG) or k=5(SpO2 ,ECG) [73]). For 

evaluation purposes in this thesis, different values of k were chosen in different works. 

Linear Discriminant 

Analysis (LDA) 

An LDA is a parametric modeling technique where the model parameters are calculated from the features 

needed to optimize the performance taking into account the output [74]. 

Naive Bayes classifier 

(NB) 

The NB is based on Bayes theorem with an assumption of conditional independence among the features 

[75], [76]. In addition to that, though it conditional independence is assumed, the classifier can still work 

when there are dependencies among the attributes [77], [75]. 

Convolution Neural 

Network (CNN) 

A CNN commonly comprises different types of layers. In this work the CNN has an input layer, convolution 

layers, nonlinear layers, fully connected layers, batch normalization layers, softmax layer and a class output 

layer. 

The input layer is the first layer of the network and receives the raw data. Thus, the size of the input layer is 

the same as the input data, thus, three input layers were tested.  

Different convolution kernels of the convolution layer, or filters, slide over the input providing a diversity of 

features that captures different local information [78]. The learning algorithm chooses the values of the 

filters during the training process [79]. The feature map size depends on the number of filters (sometimes 

referred to as depth), filter size (for 1D only the width is considered), stride (which is the number of sample 

points the filters slide in each step) and padding (adding zeros at the end of the data input so that filters can 

run on the bordering elements).  

 

 

3.3. Performance Evaluation Parameters 

For the performance evaluation, three parameters are used for different features and classifiers: 

Accuracy (𝐴𝑐𝑐), Sensitivity (𝑆𝑒) and Specificity (𝑆𝑝). These parameters are calculated from true 

Positive (𝑇𝑃), False Positive (𝐹𝑃), True Negative (𝑇𝑁), False Negative (𝐹𝑁) which refer to apnea 

correctly identified as apnea, not apnea incorrectly identified as apnea, not apnea correctly identified 

as not apnea and apnea incorrectly identified as not apnea, respectively.    

Acc=
TP+TN

TP+TN+FP+FN
×100                                                                                                                       (1) 

𝑆𝑒(𝑆𝑒𝑛) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                                                                                       (2) 

𝑆𝑝(𝑆𝑝𝑐) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100                                                                                          (3) 

CO=
1

3
× (𝐴𝑐𝑐 + 𝑆𝑒 + 𝑆𝑝)                                                                                                                      (4) 

https://en.wikipedia.org/wiki/Biology
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3.4. Summary  

Different databases are used for comparing the results present in different documents which 

are present in the literature and understanding the versatility of developed classifiers. 

Multiple classifiers are studied to develop and test a variety of solutions. 
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Chapter 4 

4. Literature Review 
This chapter focuses on previously published works and analyzes them to understand the 

knowledge gap and future trends. 
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4.1. Introduction  

The four main tasks for automatic recording and analysis of sleep were identified in a review 

performed by Penzel and Conradt [80] in 2000. A review of computer-aided approaches for OSA 

diagnosis was presented by Alvarez-Estevez and Moret-Bonillo [81] covering papers from 1999 to 

2013. The review analyzes sleep apnea-hypopnea syndrome screening approaches, apnea event 

detection and classification methods, comprehensive diagnostic systems, and commercial approaches. 

However, the inclusion criteria restricted the analysis to papers that used, at least, a subset of the PSG 

signals proposed in the AASM manual for the scoring of sleep and associated events at the time of 

publication, excluding the nonstandard biomedical signals for the OSA diagnosis such as ECG or 

pulse wave analysis. Multiple reviews have been performed with a focus on devices for home 

detection [82] [83] [84] and some papers focused completely on smartphone applications, for example 

[85][86].  

Two systematic literature reviews were performed and are presented in this chapter since most of 

the state of the art reviews available are outdated and have a different focus than the goal of this 

research. The first review is about the different algorithms for OSA detection by evaluating multiple 

source sensors (Section 4.2 which was published in ‘IEEE Journal of Biomedical and Health 

Informatics’ [87]). The second is more focused on deep learning based classifiers  (Section 4.3 which 

was published in ‘Sensors’ journal [88]). 

 

4.2. Obstructive Sleep Apnea Detection Approaches 

4.2.1. Introduction  

There was no reference found in the cutting-edge reviews of a global survey of algorithms for OSA 

detection by evaluating multiple source sensors. Therefore, the focus of this review is the analysis of 

the performance of different algorithms and methods, that use signals from multiple source sensors 

but have not been implemented in hardware, to detect OSA. A literature review was conducted to 

suggest future implementations, without performing an in-depth review indicating every published 

paper in each field.  

Flemons et al. [84] reviewed papers before 2003.  As a result, a literature review covering papers 

published between 2003 and 2017 was undertaken. The search was conducted using the Web of 

Science, IEEE explorer, PubMed, and the cited literature in the included articles and various journals. 

The keywords employed in the search were “algorithm AND sleep apnea”, “oximetry AND apnea”, 

“ECG AND apnea”, “Respiration analysis AND apnea”, “snoring AND apnea”, “sound AND apnea” 

and “apnea AND deep”. The inclusion criterion was the presentation of an algorithm that had not been 
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implemented in hardware but had been verified by at least one investigation, focusing on the 

performance of obstructive sleep apnea classification, with data extracted from a PSG performed in a 

hospital or available in a database. An exclusion criterion was the absence of all the diagnostic 

elements analyzed in this review. Even though hundreds of papers met this criterion, a total of 84 

original research articles that had the potential to be promising diagnostic tools were selected to cover 

multiple solutions, selecting papers with the highest results when the same method was used.  

 

 

Figure 4 : Flow of Sleep Apnea Detection Review Approaches [87]. 

 
The analyzed algorithms were divided into five categories depending on the source sensor: pulse 

oximetry, ECG, respiration, sound, and combined approaches. A final general analysis was performed 

to determine the most suitable algorithms. The data were acquired directly from the papers, and the 

analyzed diagnostic elements were Accuracy, Sensitivity, Specificity and Area Under the Receiver 

Operating Characteristic Curve. Two groups of diagnostic elements were used according to the 

applied methodology: Subject-Based, classifying globally every subject, and Epoch-Based, 

classifying individually every epoch for all subjects. The Global classification specifies the accuracy 

of the analyzed algorithm classifying the subject. 

The population used for validating the system is indicated for each paper, and the data acquisition 

location has been added, whether it was a hospital or a database. The databases referenced are 

PhysioNet apnea-ECG [61]; University College Dublin Sleep Apnea [60]; Sleep Heart Health Study 

[89]; MIT-BIH polysomnography database [90]; and Scaling Up Scientific Discovery in Sleep[91]. 

The time window used to classify the data are also presented. 

Different approaches have been followed with the aim of detecting OSA. Evaluation of the reported 

results of the algorithms is presented in Table 3. The table is divided in five categories, corresponding 
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to the approaches analyzed, and each category is ordered by the year of publication. For articles that 

were published in the same year, the order is according to the reported global classification or EB 

accuracy. Taking into account the difficulties faced in drawing comparisons between methods due to 

the different application conditions and databases used for the experiments, a first approximation of 

results was performed. 

4.2.2. Based on pulse oximetry 

Classical oximetry analysis includes the oxygen desaturation index (ODI), cumulative time spent 

below a defined saturation threshold (e.g. time below 90% referred to as T90), and number of drops  

in the SpO2 value below the defined baseline and signal variability (usually the delta index). A 

threshold approach was presented by Jung et al. [92] taking three points into consideration. Álvarez et 

al. [93] applied two non-linear methods to determine which would be better to improve the OSA 

detection capability further: the central tendency measure (CTM), and Lempel-Ziv complexity (LZC), 

which provides a complexity measure. It was determined that the CTM produces the best results.  

A pattern classification approach was used by Marcos et al. [94], using a three stage algorithm. Four 

statistical pattern recognition techniques were analyzed by Marcos et al. [95], namely, the k-nearest 

neighbor (KNN), quadratic discriminant analysis (QDA), LDA, and logistic regression (LR). The best 

result was obtained using the LDA with spectral features, performed on the 0.01 to 0.033 Hz band, 

extracting the area enclosed in the band, the peak amplitude in the band, and the total area of the PSD. 

A comparison between a support vector machine (SVM) and a KNN was performed by Morales et al. 

[96]. The best results were provided by a KNN with five neighbors. A genetic algorithm approach 

was applied by Álvarez et al. [97] at the feature selection stage. The selected features were further fed 

into an LR classifier. 

A probabilistic ANN was used by Morillo and Gross [98], with five neurons on the input layer 

analyzing the AHI. A three-layered (input, output, and hidden) feed-forward ANN was used as a 

classifier by Almazaydeh et al.  [99]. It uses an ODI, a delta index and CTM as inputs. The purelin 

linear transfer function was used as the activation function of the output layer during the training 

phase of the ANN. An ANN was also proposed by Álvarez et al. [100], where LZC, CTM, sample 

entropy, statistical moments in the time domain, spectral entropy, and the relative power in the apnea-

related frequency band were used as inputs of the ANN. The same kind of ANN classifier was used 

by Marcos et al. [101], where normalized features were extracted from the SpO2 data, using 

approximate entropy, CTM, and LZC.  

Time, frequency, and time-frequency based features were analyzed by Mostafa et al. [102]. A 

genetic algorithm was applied for feature selection and the classification was performed by a ANN. 
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A combination of features was extracted from time and frequency domain statistics, the spectral 

characteristics were driven by PSD, and nonlinear measures were analyzed by Álvarez et al. [103]. 

The photoplethysmogram (PPG) signal, obtained from a pulse oximeter, was used by Lázaro et al. 

[104]. The algorithm looks for decreases in the amplitude fluctuations of the PPG signal, and an LDA 

classifies the data, using features based on the pulse rate variability (PRV). A combination of 

characteristics in time and frequency domains obtained from PRV and SpO2 signals were employed 

by Garde et al. [105], with OSA classification performed using the LDA.  

 An unsupervised feature learning model based on a three-layer deep auto encoder network was 

implemented by Mostafa et al.  [106]. The first two layers were restricted Boltzmann machines, 

composed by an autoencoder, and the last was a soft-max layer. A Long Short-Term Memory - 

Recurrent Neural Network (LSTM-RNN) was employed by Pathinarupothi et al. [107] with 60 

neurons in the input layer (the oximetry signal has 60 samples, each corresponding to a second of 

data) and 32 memory blocks, with one cell each, in the hidden layer. 

4.2.3. Based on ECG 

The analysis of ECG waveforms and ECG-derived heart rate are commonly used to detect sleep-

related breathing disorders. Lin et al. [108] separated the ECG signal into four spectral components 

that were used as the training input for a four-layer ANN, implemented with simple neural computing 

elements.  

A discrete wavelet transform, Symlet wavelet with order 3, was used by Khandoker et al. [22] to 

decompose the ECG signal into 8 levels of detailed coefficients used by a ANN for classification. 

Wavelet decomposition was applied by Rachim et al. [109], using the Debauches 4 wavelet, to obtain 

statistical features, and the Principal Component Analysis (PCA) was also performed. Then an SVM 

with a Gaussian radial basis function kernel was used to classify the data. The Tunable-Q factor 

wavelet transform was applied by Hassan [110]. The scale and feature factors from this model were 

then fed into the Adaptive Boosting (AdaBoost) classifier. The same kind of wavelet transform was 

used by Hassan and Haque [111] to decompose the EEG signal, analyzing the variance, kurtosis and 

skewness of the decomposition to feed as features for the Random Under Sampling Boosting 

(RUSBoost) classifier.  

Variational mode decomposition was used by Smruthy and Suchetha [112] to decompose the ECG 

signal into multiple variational mode functions and the selected functions were then added together to 

generate the reconstructed signal. The standard deviation of the peak to peak distance and mean 

energy, calculated using the Teager Energy Operator (TEO), was determined from the reconstructed 

signal used to feed an SVM classifier. Hassan [113] used Empirical Mode Decomposition (EMD) to 
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generate localized time-frequency estimation, from the ECG signal. Then the mean, variance, 

skewness, and kurtosis were determined and used on an extreme learning machine, with a sigmoidal 

activation function, for a single hidden layer feed-forward ANN which classifies the data. 

From the ECG-derived HR it is possible to analyze the HRV and the inter-beat (RR) interval that 

can be defined as the interval between successive QRS points. Quiceno-Manrique et al. [114] 

employed an analysis based on the HRV. The classification was performed using a KNN. Time-

frequency based stochastic features were used by Martínez-Vargas et al. [115] to analyze the HRV 

employing linear frequency Cepstral coefficients. The highest accuracy was produced using linear 

label-conditioned correlation as a supervised measure of relevance, selecting seven frequency bands 

as features for the KNN.  

An algorithm based on the analysis of cyclical variations of the HR for detection of sleep-

disordered breathing, was presented by Kesper et al. [116]. The algorithm analyzes the correlation of 

a reference pattern, which represents a decrease in HR, with the beat-to-beat HR curve. Ravelo-García 

et al. [117] employed a non-linear HRV analysis using a symbolic dynamics method applied to the 

RR series, transforming it into a sequence of symbols. These symbols were defined through a set of 

rules that considered the use of three chosen thresholds. Then the classification was performed using 

an LR model that integrates clinical and physical variables. Zywietz et al. [118] used an LDA for 

classification with features based on information of four frequency bands: ULF, VLF, LF, and HF. 

Time and frequency domain entropies were used by Gutiérrez-Tobal et al. [119]. This information 

was used as features for an LR classifier. The HRV was used by Roche et al. [120], where the wavelet 

transform was used to decompose the signal and the classification was performed using the 

Classification And Regression Trees (CART) method.  

Two classifiers, LDA and QDA, were tested by Ravelo-Garcia et al. [121] and were fed with 

cepstrum features obtained from the RR series. The best results were obtained using a QDA.  The RR 

interval and QRS area were derived from a single lead of the ECG signal by Mendez et al. [122]. RR 

intervals were also employed by Cheng et al. [123] to reconstruct a nonlinear state space. OSA 

classification was performed by regularized LR.  

Chen and Zhang’s [124] approach was to map the individual long-term RR intervals into a disease 

state space. A severity index was produced to represent the severity of the disease, based on the state 

change points, and was calculated with a general formula. This index is used as the feature for three 

classifiers, specifically, LDA, SVM, and LR. The last classifier produced the best results. Three 

classifiers were analyzed by Yılmaz et al. [125] where the RR series was obtained from a single lead 

of the ECG signal using an R-peak detection technique, where the R waves were differentiated by 
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studying the curvature and the amplitude of the ECG signal. The classifiers studied were a KNN, a 

QDA, and an SVM. The best accuracy was obtained using the SVM. An SVM was also used by 

Almazaydeh et al. [53] where the RR interval was derived from the ECG signal using an R-peak 

detection technique. The selected features used to feed the SVM were proposed by Chazal et al. [126] 

and Yılmaz et al. [125] who used a linear kernel function to map the training data into a kernel space. 

Additionally, the RR series was the base of the detection algorithm presented by Ravelo et al. [127]. 

The best results were obtained using the SVM among tested Gaussian Mixture Models (GMM) and 

the SVM. This classifier was also used by Travieso et al. [128], applying a kernel based on a Hidden 

Markov Model (HMM) over the Cepstral coefficients obtained from the RR series. 

A classifier combination approach was presented by Nguyen et al. [129]. Two binary classifiers 

were used, an SVM and a 10 neuron hidden layer ANN. These classifiers use features from HRV and 

recurrence quantification analysis of the HRV. The classifier outputs were combined using a soft 

decision fusion rule that performs a weighted sum of the output scores. Chen et al. [130] applied the 

RR intervals to the signal segmentation using an iterated cumulative sum of squares algorithm that 

searches for the small variation changes in the time series due to OSA, and the SVM was used to 

classify the data. LSTM-RNN was used by Cheng et al. [131] to classify the RR intervals. The 

network architecture has four recurrent layers, each followed by a normalization layer, and a softmax 

classifier. HRV, in the form of instantaneous HR with a constant number of beats (beat window), was 

used by Pathinarupothi et al. [132] to feed a 2-layer stacked LSTM-RNN with two memory blocks in 

each layer. It was verified that a beat window of 60 beats provides the best results. 

The combination of the analyses of HR and morphology of the ECG can be used to reliably detect 

the sleep disordered breathing, as analyzed by Penzel et al. [133] using the cardiopulmonary coupling.   

EDR and RR interval signals were used by Chazal et al. [126] to obtain features for an LDA 

classifier that generates a discriminant value. This value was compared to a threshold to detect OSA. 

RR intervals and EDR signals were also used by Mendez et al.  [72] with the PSD of the RR intervals 

series being evaluated by a bivariate autoregressive model. The features calculated from the signals 

were then used by the KNN classifier to categorize apnea events on a minute by minute basis. The 

same signals were used by Song et al. [134] to produce features that were considered to be subject-

independent, implementing a learning and prediction procedure based on a discriminative HMM. 

OSA detection was performed using the Baum-Welch algorithm to estimate the Markov states. 

A different approach was presented by Maier et al. [135], using an index based on cross-correlation, 

with a combination of multi-source information. It was verified that including the HR does not 

improve the detection accuracy. Three techniques were used by Ravelo-García et al. [136] to obtain 

features. In the first, the RR series was encoded into sequences of symbols, and permutation entropy 
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was used to distinguish different HRV patterns. The second was cepstrum analysis, obtaining 

cepstrum coefficients. PSD of EDR was the third, using a filter bank with equally spaced filters. 

These features were then used by the two tested classifiers, LR and the QDA. Both classifiers 

achieved similar performance, however, the QDA provided the best results. Cepstrum Coefficients, a 

filter bank with 34 filters (to analyze the very low, low, and high frequencies), and detrended 

fluctuation analysis were employed by Martín-González et al. [137] to feed the three tested classifiers: 

LDA, QDA, and LR. These features were obtained from the HRV. The best results were reported 

using the QDA. 

Khandoker et al. [138] used 14 levels of Daubechies wavelets to decompose the RR and EDR 

signals. The result was used as the input to an SVM that classifies the OSA events. Features extracted 

from wavelet decomposition of HRV and EDR signals were used by Khandoker et al. [139] as inputs 

to the SVM classifier. The LDA classifier was also analyzed, providing similar results. HRV and 

EDR signals were used by Yildiz et al. [140] using 64 points of PSD (1 to 32 derived from HRV and 

33 to 64 from EDR). Three SVM kernels were tested, specifically, Linear (L), Polynomial (P), and 

Radial Basis Function (RBF). The highest accuracy was produced by RBF using points 2, 3, 45, and 

46 (selected by a hill climbing algorithm.).  

4.2.4. Based on respiration 

Oronasal airflow is one of the most direct indicators of breathing disorders and was used by Koley 

and Dey [141] to detect OSA. The features calculated from signals were then used by three binary 

SVM arranged in a one-against-all strategy to classify the data. The oronasal airflow, after being 

filtered and segmented, was also used by Koley and Dey [142], to extract time and frequency 

domains, as well as the nonlinear analysis features from each segment. The classification was 

performed in two steps using two binary SVM classifiers where the first was used to detect sleep 

disorders, and the second analyzed the segments marked as disorders and classified them as either 

apnea or hypopnea.  

The Hilbert-Huang transform was applied to the nasal airway pressure signal by Caseiro et al. 

[143]. The LR was used as a classifier by Gutiérrez-Tobal et al. [144], using features from both 

airflow and respiratory rate variability (RRV) signals. Selvaraj and Narasimhan [145] analyzed the 

amplitude of the respiratory signal, the low pass filtered envelope of the respiratory signal (cut-off at 

0.01 Hz), and the statistical dispersion of the envelope signal. Possible OSA events, determined by 

thresholds applied to the signals, were classified using two conditions based on the thresholds. 

Daubechies wavelet was used by Minu and Amithab [146] to decompose the airflow signal, and 

statistical features were extracted to feed the classifying stage. Two classifiers were tested, the 
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AdaBoost and the Adaptive Neuro Fuzzy Inference System (ANFIS), which combines the advantages 

of both the neural and fuzzy classifiers. The ANFIS achieved the best performance. The same family 

of wavelets was employed by Avci and Akbas [147] to decompose the airflow signal. Three 

classifiers based on ensemble learning, namely random forest, AdaBoost, Random subspace were 

tested. The best results were produced by the first classifier. The airflow signal was also used by 

Ozdemir et al. [148] being segmented, and the energy on each segment was calculated using the TEO. 

Statistical features were extracted, and three classifiers were tested, the SVM, the KNN, and the linear 

regression, with the best performance being achieved by the SVM. The airflow signal with a sample 

dimensionality of 960 (30 s by 32 Hz) was fed to a deep learning classifier, specifically a CNN, by 

Haidar et al. [149]. The CNN architecture consists of three one-dimension convolutional layers, with 

each layer followed by a max-pooling layer, and, in the end, one fully connected layer with a soft-max 

activation function. 

A different approach was presented by Thommandram et al. [150] where the respiratory effort 

signal (also called the RI signal) was obtained and was fed into a KNN to classify the data. Airflow 

and thoracic and abdominal respiratory movements were used by Maali and Al-Jumaily [151]. 

Wavelet decomposition was applied to the signals that were further segmented, and statistical 

measures were computed to produce the features that feed an SVM with a polynomial kernel. A 

selection of the best features subset and training data were performed interactively by a genetic 

algorithm. 

4.2.5. Based on sound 

The breathing process produces characteristic sounds that can be used to detect the presence of 

disorders. This principle was used by Rosenwein et al. [152]. Six features were calculated from the 

suspected period and were used as inputs in a binary-random forest classifier. The produced output 

was classified by an adaptive threshold produced for each subject’s score distribution. Breathing 

sounds were also the base of the algorithm presented by Almazaydeh et al. [153] where Voice 

Activity Detection (VAD) was used to classify respiratory signals. The FFT segments of sounds were 

further analyzed by the VAD algorithm which compared them against the threshold, that was 

determined by comparing the signal value against noise. The output identifies whether the segment 

was a normal breath or a breathing cessation (silence). A second threshold was then used to classify 

the silence as either apnea or normal. Recorded respiratory sounds were used to extract spectrum 

features, using the FFT, by Praydas et al. [154]. The sounds were filtered and distinguished using the 

K-means clustering algorithm, and an SVM was employed to classify the data. Ng et al. [155] used 

linear predictive coding to model snore signals, and formant frequencies were extracted from the 

linear predictive coding spectrum. A threshold value was used to differentiate apneic and normal 
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snorers. A higher order statistics-based algorithm for snore sound analysis was presented by 

Karunajeewa et al. [156]. The pitch and total airway response waveforms were extracted from the 

sound signal, and features were extracted from these waveforms to feed an LR classifier. 

A different approach was presented by Elisha et al. [157] where OSA was detected by analyzing 

particular speech signal properties. Seven GMM-based classifiers were used to classify the data. The 

GMM was also used by Pozo et al. [158]  where the speech signals were parameterized using the Mel 

Frequency Cepstral Coefficient (MFCC). Benavides et al. [159] analyzed the subject’s voice 

classifying OSA using an LDA feed with eight features. The use of tracheal sounds was analyzed by 

Penzel and Sabil [160], being verified that when recorded with an appropriate sensor, combining 

acoustic and suprasternal pressure sensors. It is possible to detect snoring, breathing and intrathoracic 

pressure variations. Specifically, OSA can affect the resonance produced by the upper airway, 

generating specific tracheal sounds. Kalkbrenner et al. [161] also analyzed the tracheal sounds, 

recorded by a microphone on the subject’s neck.  

4.2.6. Based on combined approaches 

Usually, the pulse oximeter provides both the SpO2 and HR signals, but it is also common for only 

SpO2 to be considered in the OSA detection algorithm. A different approach was presented by 

Zamarrón et al. [162] where a combination of these two signals was used. The algorithm looks for 

peaks on the apnea-related frequency band of both signals to classify OSA. An algorithm that uses 

both EEG and oximetry was presented by Álvarez et al. [163].  

A combination of oximetry and ECG was presented by Xie and Minn [73]. The features were fed to 

the three individual classifiers that collaborated in the final decision using a majority voting 

combination scheme (the chosen output class was the one on which the majority of the classifiers 

agree). The chosen classifiers were bagging with a Reduced-Error Pruning Tree (REPTree), AdaBoost 

with decision stump, and a KNN. Both SpO2 and HR variations were analyzed by the algorithm 

developed by Poupard et al. [164], using the wavelet-aggregation to quantify these variations. A 

multi-modal approach that performs a feature-level fusion of ECG and SpO2 signals was employed 

by Memis and Sert [165]. The produced signal was tested by three classifiers, specifically the Naïve 

Bayes, a KNN, and an SVM. The best results were achieved using the SVM with an RBF kernel. 

An algorithm based on oximetry and ECG was also used by Ravelo-García et al. [10]. A 

combination of oxygen saturation and RR series features was used. An LDA was used to classify 

segments, on a minute by minute basis, as either normal or apnea. PPG-derived respiration and EDR 

signals were obtained by Madhav et al. [166] using EMD. OSA detection was performed by fitting an 

autoregressive model of the order 15 to each windowed signal.  
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A time delay ANN was used by Tian and Liu [167] to distinguish hypopnea and apnea from normal 

breathing, using the filtered airflow signal area, standard deviation, and SpO2 desaturation level as 

features. The combination of oximetry and tracheal sound signals was implemented by Yadollahi et 

al. [168]. The contribution of each calculated feature was weighted, added together, and compared 

with a threshold for classification. 

To detect apnea Al-Angari and Sahakian [169] combined oximetry, thoracic, and abdominal 

respiratory effort signals with ECG signals. The data were classified using an SVM with a polynomial 

kernel. A combination of nasal airflow and PPG signals was used by Sommermeyer et al. [170]. The 

algorithm developed was capable of detecting arousals and produced the apnea hypopnea index 

(searching for a 90% drop in the airflow amplitude when compared to baseline for more than 10 s) 

and the respiratory disturbance index (searching for SpO2 drop greater than 4% or greater than 3% 

with arousal). The AHI, arousals index, the minimum value of SpO2 during rapid eye movement 

sleep, and percentage of time with SpO2 higher than 89% were used as features by Polat et al. [171] 

to test four classifiers, specifically, a C4.5 decision tree, a ANN, adaptive neuro-fuzzy inference 

system, and an artificial immune recognition system. The best results were produced by the C4.5 

decision tree.  

The use of both voice and facial features was presented by Espinoza-Cuadros et al.[172]. The 

MFCC was used for automatic speaker recognition with a GMM classifier. The sound and image 

features were used as inputs for a support vector regression classifier that estimates the AHI. 

 
Table 3 : Evaluation of the Analyzed Algorithms [87]. 
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[93]  187 sub Hospital - - - - 87 92 90 83 120 

[101]  83 sub Hospital - - - - 86 91 91 79 - 

[95]  113 sub Hospital - - - - 88 93 91 83 - 

[94]  129 sub Hospital - - - - 93 95 97 79 120 

[103]  148 sub Hospital - - - - 90 97 92 85 30 

[97]  144 sub Hospital - - - - 87 - 92 77 - 

[99]  8 rec Database* 93 - 88 100 - - - - - 

[104]  21 sub Hospital 70 78 82 69 87 - 100 71 40 

[98]  115 sub Hospital - - - - 94 96 92 96 60 

[105]  36 sub Hospital - - - - 85 88 88 84 120 

[100]  127 sub Hospital - - - - 90 - 94 70 - 

[106]  25 rec Database+ 85 - 60 92 - - - - 60 

[96]  79 sub Hospital - - - - 94 - 97 79 - 

[107]  8 rec Database* 96 98 - - - - - - 60 
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[92]  92 sub Hospital 91 - 83 89 97 99 98 95 60 

[102]  8 rec Database* 98 - 97 99 - - - - 60 
E

C
G

 

[120]  147 sub - - - - - 91 - 92 90 - 

[118]  35 rec Database* - - 92 95 - - - - 60 

[126]  35 rec Database* 90 - 89 91 89 - - - 60 

[127]  35 rec Database* 84 - 79 87 - - - - 60 

[108]  5 rec Database# - - - - - - 70 44 30 

[72]  25 rec Database* 86 - 84 89 - - - - 420 

[122]  25 rec - - - - - 88 - 89 86 60 

[114]  35 rec Database* 93 - - - - - - - 180 

[22]  16 sub Hospital - - - - 95 - - - 60 

[138]  42 sub - - - - - 93 - - - - 

[139]  30 rec Database* 93 - 90 100 100 - - - 60 

[125]  17 sub Hospital - - - - 87 - - - 30 

[115]  35 rec Database* 76 - - - - - - - 60 

[140] 60 rec Database* - - - - 100 - 100 100 60 

[116]  35 rec Database* 81 - - - - - 100 83 - 

[53] 32 rec Database* - - - - 97 - 93 100 15 

[121]  35 rec Database* - 89 74 86 93 - - - 60 

[128]  35 rec Database* 99 - - - - - - - - 

[117]  97 sub Hospital - - - - - 94 89 83 30 

[135]  69 rec Database* - - - - - 93 87 88 60 

[129]  35 rec Database* 85 - 86 83 - - - - 60 

[109]  35 rec Database* 94 - 95 93 94 - - - 60 

[119]  188 sub Hospital - - - - 72 89 80 59 - 

[113]  35 rec Database* 84 - - - - - - - 60 

[136]  35 rec Database* 85 92 75 91 - - - - 60 

[130]  70 rec Database* - - - - 93 - 97 99 60 

[123]  35 rec Database* 85 91 83 82 - - - - 60 

[110]  35 rec Database* 87 - 82 91 - - - - 60 

[134]  35 rec Database* 86 94 83 88 97 100 96 100 60 

[111]  35 rec Database* 89 - 88 91 - - - - 60 

[112]  9 rec Database+ - - - - 95 - 100 80 - 

[137]  35 rec Database* 85 92 82 87 97 - - - 60 

[124]  69 rec Database* - - - - 98 - 98 100 - 

[131] 10 rec Database* - - - - 98 - - - - 

[132] 17 rec Database* 100 - - - - - - - 60 
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[143]  41 sub Hospital - - - - - 88 81 95 300 

[151]  12 sub - 89 - 87 90 - - - - 30 

[144]  148 sub Hospital - - - - 82 90 88 71 - 

[141]  14 rec Database# - - - - 93 - - - 60 

[145]  100 rec Database^ - - - - - - 84 - 60 

[150]  70 rec Database* 91 96 88 96 - - - - 60 

[142]  4 sub Hospital 82 - 86 81 96 - - - - 

[147]  8 rec Database* 99 - - - - - - - 60 

[148]  6 sub - 88 - 91 77 - - - - 40 

[146]  8 rec Database* 99 - - - - - - - - 

[149]  100 rec Database~ 75 - - - - - - - 30 
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[155]  40 sub Hospital - - 88 82 - - - - - 
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[158] 80 sub Hospital - - - - 81 - 78 85 - 

[157] 87 sub - - - - - - - 81 83 60 

[156] 41 sub Hospital - - - - 90 97 89 92 - 

[153] 50 sub - 97 - - - - - - - - 

[159] 40 sub Hospital - - - - - - 85 75 - 

[152] 186 sub Hospital - - - - 86 - - - - 

[154] 33 sub Hospital - - - - 76 - - - - 

[161] 10 sub - - - - - - - 93 100 - 
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[162] 120 sub Hospital - - - - 89 - 94 82 - 

[167] 15 sub - - - 91 86 - - - - - 

[171] 83 sub - - - - - 95 97 92 97 - 

[163] 148 sub Hospital - - - - 89 - 91 83 - 

[168] 66 sub Hospital - - - - - 95 83 91 - 

[164] 106 sub Hospital - - - - - - 81 98 - 

[170] 66 sub Hospital - - - - - 96 90 86 - 

[73] 25 rec Database+ 82 - 84 81 - - - - 60 

[169] 100 sub Database^ 82 - 70 91 95 - 92 98 60 

[172] 285 sub Hospital - - - - 72 73 73 65 - 

[10] 70 sub Hospital 87 92 73 92 100 - - - 300 

[166] 8 rec Database* - - - - - - 97 - 15 

[165] 35 rec Database* - - - - 97 - - - - 

 

* PhysioNet apnea-ECG Database 

# MIT-BIH polysomnography Database 

+ University college of Dublin sleep apnea Database 

^ Sleep Heart Health Study Database 

~ Scaling Up Scientific Discovery in Sleep Database 

4.2.7. Summary  

Of the algorithms analyzed, the highest EB accuracy was reported by Pathinarupothi et al. [132] 

with algorithms based on ECG analysis by a deep network.  

The maximum global classification was achieved by Ravelo-García et al. [10], Khandoker et al. 

[139], and Yildiz et al. [140]. All are based on ECG, however, the first also used oximetry analysis.  

Mostafa et al. [102] reported the maximum EB sensitivity using an oximetry analysis and the 

maximum SB sensitivity was obtained by Lázaro et al. [104], using oximetry analysis, Kesper et al. 

[116] and Smruthy and Suchetha [112] , with an ECG signal analysis,.  

The highest EB specificity was reported by Almazaydeh et al. [99] and Khandoker et al. [139]. The 

first algorithm was based on an oximetry analysis and the second on an ECG. For the SB approach, 

the maximum values were presented by Almazaydeh et al. [53], Song et al. [134], Chen et al. [124], 

who also use the ECG signal analysis, and by Kalkbrenner et al. [161] with sound analysis. Yildiz et 

al. [140] reported the best SB results with 100% global classification, sensitivity, and specificity using 

the ECG analysis.  
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By analyzing the algorithms based on a single source sensor it is possible to determine that ECG 

signals provided the highest global classification by studied population ratio. However, the majority 

of ECG algorithms were tested in public databases with signals that have a low level of noise 

contamination, which could contribute to improving the diagnostic capability of the algorithm.  

Respiration based algorithms have the third highest value of this ratio and algorithms based on 

sound have the lowest value. Although OSA is directly related to respiration and oximetry, the 

algorithms based on the first sensor did not achieve as good results as those produced by the second. 

This is likely caused by the higher noise involved in the respiration signals. However, the algorithms 

based on sound are even more susceptible to noise (specifically cardiac sounds and environmental 

noise), and this could be the reason why they have the lowest results regarding the global 

classification by studied population ratio. 

The combination of source sensors did not contribute to a relevant improvement of the 

classification capability. This could be an indicator that one of the sensors is dominating the analysis, 

although it could be desirable that more effort be devoted to studying the effects of the underlying 

physiological processes that could be quantified with different sensors. In any case, algorithms based 

on a single source sensor could be preferable due to their simplicity in hardware implementation. The 

majority of the works detect OSA employing machine learning algorithms and that an SVM, a KNN, 

and a ANN were the most frequently used classifiers. The domination of supervised learning could be 

due to the fact that OSA is a disorder with a well-established pattern that facilitates the training of the 

algorithms. Some methods provide an optimal performance but with a high degree of complexity 

which is particularly important if a hardware device is to be designed.  

One key aspect has to do with the goal of obtaining a useful method with a good performance-

complexity ratio. With this objective in mind, a method with a reduced number of sensors and 

complexity is typically of special interest.  

From the overall analysis of this review it can be recognized as future directions for the research 

include: producing more robust OSA diagnosis tools by implementation of the presented algorithm in 

efficient hardware, producing more research with deep learning classifiers, capable of self-learning 

the features, and validating the achieved results of the algorithms by independent research groups 

using publicly available databases, so that the results can be reproduced. This is of a special interest in 

home diagnostic devices since they could be used as a first OSA diagnosis tool, leading to a 

considerable reduction in the diagnostics cost and waiting time for access to a sleep study. However, 

these devices are more susceptible to data errors caused by factors not controlled in the home of the 

subject. Therefore, an adaptation of the proposed algorithms to a real world environment in efficient 

hardware is the major challenge identified. The main gaps in the current state of the art are related to 
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the use of algorithms capable of self-learning the features. 

4.3. Detecting Sleep Apnea using Deep Learning 

4.3.1. Introduction  

Although previous reviews have been performed in the field of sleep apnea detection, such as 

analyzing devices for home detection of obstructive sleep apnea (OSA) [21], classification methods 

based on respiratory and oximetry signals [26], different detection approaches [87], and detection and 

treatment methods [173], no review was previously performed to assess the current development of 

methods for detecting sleep apnea using a deep learning. In addition to that, recent publications show 

an accuracy improvement using deep network over shallow networks. Therefore, the main focus of 

this review is the analysis of such works, assessing the performance of the presented methods to 

provide in-depth knowledge of the applicability of deep learning in the detection of sleep apnea. 

The review was performed considering the timeline between 2008 and 2018, based on the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) style. A systematic search 

was conducted on Web of Science, IEEE explorer, PubMed, ScienceDirect, and arXiv. The selected 

search keywords were (“sleep apnea” OR “sleep apnoea”), due to the different spellings of the word 

apnea, along with the AND operation and: “unsupervised feature learning”; “semi-supervised 

learning”; “deep belief net”; “CNN”; “convolution neural network”; “autoencoder”; “deep learning”; 

“recurrent neural network”; “RNN”; “long short-term memory”; and “LSTM”. A total of 255 articles 

were found, specifically: 93 on the Web of Science; 77 on PubMed; 51 on IEEE Xplorer; 25 on 

ScienceDirect; and 9 on arXiv. A total of 116 duplicate articles were removed from the list. 

The title and abstract of each article were analyzed, and 19 were selected as relevant to the topic. 

The inclusion criteria analyzed the keywords apnea and deep network. The main exclusion criterion 

was non-English articles. Works that were not explicitly developed for sleep apnea detection, but 

could be adapted for that purpose, were also excluded. Two papers were added due to their relevance 

though they did not appear in the search, and two were removed despite their appearance in the 

search. A relevant article, found by analyzing the references of the already selected articles, was 

included despite not appearing in the search engines. Therefore, a total of 21 articles were selected for 

this review. The flow chart of the search strategy is presented in Figure 5, with n indicating the 

number of articles. 
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Figure 5 : Flow chart of the process for article selection using PRISMA reporting style. 

 

The last decade was chosen for this work since most of the articles (20 articles) were published in 

2017 (5 articles) and 2018 (15 articles). Only one was published in 2008. Therefore, within one year, 

the number of published articles was three times higher, highlighting the importance of this topic and 

the need for a review to consolidate the developed approaches and to point out new research lines.  

There are deep networks with the final structure resembling classical neural networks with more 

than one hidden layer. However, sometimes, these classifiers’ training strategy and layer construction 

are different than from classical one. These types of classifiers are mentioned in this work as Deep 

Vanilla Neural Network (DVNN). In addition to that, the layers between the input and output layers 

are named hidden layers. A typical example of a deep learning model is the feedforward deep 

network, or multilayer perceptron [78]. A feedforward neural network with more than one hidden 

layer can be considered as a deep network. In this work, a classical neural network with multiple 

hidden layers is indicated as a Multiple Hidden Layers Neural Network (MHLNN). 

4.3.2.  Automatic feature learning using DVNN 

A hidden Markov model with autoencoder was used by Li at el. [174] using automatic feature 

learning. The implementation used 100 points of the RR series, selected by the Pan-Tompkins 

algorithm [175] which were passed through a median filter [130] as an input. An SAE was used for 
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classification and the data were divided into 50% training set (35 subjects) and test set (35 subjects). 

The training process was based on the mixture of unsupervised learning with fine-tuning at the end. 

First, a single hidden layer SAE unsupervised training was done for primary feature extraction then it 

was fine-tuned by using a logistic regression layer. After that, these extracted features were used as 

the corresponding observation vector (𝑂𝑡) of a Markov model [134] which belong to two Markov 

states 𝑆 = {𝑆𝑁, 𝑆𝐴}where 𝑆𝑁 is the normal and 𝑆𝐴 the apnea state. Then a soft decision fusion of two 

separate classifiers (ANN, SVM) was done based on the confidence score maximization strategy that 

considered the classifier quality information [129]. Two deep network structures were analyzed and 

the highest accuracy (83.8%) was achieved using 100 neurons on the first Hidden Layer (HL) and the 

second HL with 10 neurons.  

A autoencoder with two HL was analyzed by Mostafa et al. [106] using the SpO2 signal resampled 

at 1Hz with tenfold cross validation. It was verified that the selected number of neurons has a 

significant impact on the results. Therefore, a grid search approach was employed, varying the 

number of neurons from 30 to 180, with intervals of 30 neurons, in two hidden layer DBN. The 

optimum number of hidden neurons (90 in the first HL and 60 in the second HL) was found by 

maximizing the CO. The achieved accuracy for the UCD [62] and AED [61] databases were85.26% 

and 97.64%, respectively.  

4.3.3. Human crafted feature learning using DVNN 

Breathing sounds during sleep were analyzed by Kim et al. [176] using an  MHLNN with two 

hidden layers (the first with 50 and the second with 25 nodes) and two dropout layers with 4 classes 

(normal, mild, moderate and severe). Using tenfold cross validation, windows of 2.5, 5, 7.5, and 10 

seconds were tested. The 5 second window achieved the best performance. A patient wise 

classification was performed, with an average global accuracy of around 75%, by the MHLNN, which 

is slightly less than the performance attained by both an SVM and a logistics classifier.  

 Lakhan et al. [177] produced 17 features from an AF signal and a fully-connected neural network 

with layers size of 1024, 512, 256, 128, 64, 32, 16, 8, and 4 hidden nodes with a softmax function at 

the end. An average Acc of 83.46%, 85.39%, and 92.69 % were achieved using tenfold cross 

validation for three cutoff points of the AHI (5, 16, and 30) respectively.  

Falco et al. [178] used Evolutionary Algorithms (EAs) with a data subsampling technique (training 

set consisting of 60% and test set consisting of 40% of the data) to reduce the simulation time to find 

the best hyperparameter of the MHLNN. The HRV was calculated from the twelve typical parameters 

(features) of HRV related to the frequency domain, the time domain, and the non-linear domain, 

which were extracted from the 1-minute segment. It was verified that 2 HLs with 23 and 24 hidden 
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units using ReLU as an activation function produced the highest accuracy (68.37%). 

4.3.4. Convolutional Neural Network (CNN) 

A CNN was mainly developed to classify images. However, some authors 

[179][180][181][182][149] adapted the concept by employing a one dimensional CNN (CNN1D) 

network for signal classification. Haider et al. [183] used 3 one dimensional signals hence producing a 

CNN1D with three channel inputs. Other authors [184] [185] converted the 1 dimensional signal to a 

2 dimensional input to employ the two dimensional CNN (CNN2D) network directly. An analysis of 

both CNN1D and CNN2D was performed by McCloskey et al. [184] to assess their performance. 

The signal from a single-lead ECG was analyzed by Urtnasan et al. [180] using a CNN1D with a 

hold-out method (the training had 63 subjects, while the test had 19 subjects). The signal was 

segmented into 10 second intervals, unlike the 1 minute segment used by other authors [174][106], 

each having 2000 sample points. The network was composed of different sizes of convolution, 

activation, and pooling layers, followed by dropout. The input signal was normalized by batch 

normalization and a REctified Linear Unit (ReLU) was employed as an activation function. Following 

the batch normalization and the ReLU layer, a set of convolution and pooling layers was repeated. In 

the end, a dropout layer followed by a fully connected layer, and a softmax activation function was 

used for binary classification. In between the final layer and the batch normalization layer, the set of 

layers was repeated. Seven CNN models with a number of layers varying from 3 to 9, with a 1-layer 

increment, were studied. The highest accuracy (96%) was achieved using a CNN with six layers 

implementing the 𝐹1 score as a defining parameter. 

Urtnasan et al. [179] also used the CNN1D for multiclass classification (normal, apnea and 

hyperpnea). The input of the network was 10 seconds long and contained 2000 samples.  A hold-out 

method was used to test the model similar to what was done in a previous work [180]. The network 

architecture included Batch Normalization (batchnorm), convolution (conv1D), Maximum Pooling 

(maxpool), dropout and fully connected layers. The first layer was batchnorm followed by conv1D 

(20@[50 × 1]) and maxpool ([2 × 1]). Afterward, a set of variously sized conv1D, maxpool, and 

dropout (𝑝 = 0.25) was repeated and stacked, one after another, up until the final softmax layer. The 

6-layer CNN achieved 90.8% mean accuracy among the classes. 

Dey et al. [181] also employed a CNN1D to analyze one minute segments of a single lead ECG 

signal, each with 6000 samples. Unlike other implementations, it uses only convolution and fully 

connected layers.  The pooling was performed using convolutional pooling. The authors tested the 

model with a different training: test dataset, from 50:50 to 20:80 with having 50:50 having the best 

average accuracy of 98.91%.  
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Binary classification (either apnea or normal) based on the nasal airflow analysis was performed by 

Haidar et al. [149] with a CNN1D classifier and a balanced dataset. The network consisted of three 

convolutional layers, each having 30 filters with [5 × 1] kernel size, 5 strides, and each followed by a 

max pooling layer with [2 × 1], and one fully connected layer with a soft-max activation function. It 

had two output nodes for each class (normal or abnormal). The activation function ReLU was chosen 

because of the its best accuracy and fastest training time [149] by evaluating other activation 

functions. The model achieved an average accuracy of 75%.  

The signal from a single-channel nasal pressure was analyzed with a CNN by Choi et al. [182] to 

detect 1 second apnea events. The database was divided into training (50 subjects), validation (25 

subjects), and testing (104 subjects). It was tested using the class balance hold-out method.  

Overlapping windows with length ranging from 5 to 10 seconds were tested and multiple 

configurations of the network were analyzed, changing the number of convolution layers (1 to 3), the 

number of convolution filters (5, 15, 30), the kernel sizes for convolutions (4, 8, 16, 32) the strides for 

convolutions (1, 2, 4, 8, 16) and the strides for pooling (1, 2). It was verified that a 10 second window 

with three convolution layers, two maxpooling layers, and two fully connected layers achieved the 

highest accuracy (96.6%). 

A CNN1D with three input signals was tested by Haider et al. [183], analyzing the nasal flow, the 

abdominal and thoracic plethysmography signals using hold-out methods with a 75% training and a 

25% test dataset. Two back to back convolution layers with a subsampling layer (conv-conv-

maxpooling) in a three cascading state with a final layer of a fully connected layer were studied. It 

was verified that the performance of the model with three channels was better than any single or 

double channels model, with an average accuracy of 83.5%. 

McCloskey et al. [184] have also performed a multiclass classification(normal, apnea and 

hyperpnea), by analyzing the nasal airflow signal, normalized with 30 second epochs, with an input 

size of 960 samples. Three sets of conv-conv-maxpooling layers, followed by 1 fully connected layer, 

made the CNN1D. The first convolution layer in the set had 32 filters with a kernel size of [3 × 1], a 

stride of 3 and a ReLU as an activation function. The second convolution layer also had ReLU as an 

activation function with a kernel size of [2 × 1], and a stride of 2. The maxpooling layer kernel was 

[2 × 1] with a stride of 2. The output had three nodes representing 3 classes. The CNN1D achieved an 

average accuracy of 77.6%. 

The spectrogram of the nasal airflow signal, calculated by using a continuous wavelet transform 

(CWT) with the analytical Morlet wavelet, was fed to a CNN2D by S. McCloskey et al. [184]. The 

network had two convolutional layers with ReLU activation layers afterward and one 2-D max 

pooling layer followed by a fully connected layer and a softmax layer with three output, each nodes 
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representing the three classes (normal, apnea and hyperpnea). The model achieved an average 

accuracy of 79.8%.  

Chen et al. [185] used a CNN2D with leave one out cross validation, which has three input signals 

(blood oxygen saturation, oronasal airflow, and ribcage and abdomen movements) with one second 

annotation. A two-dimensional matrix with zero padding was created as an input to the network that 

consists of two convolution layers, two subsampling layers, and a fully connected layer connected to 

the output layer with three nodes. The multiclass classification overall accuracy was 79.61%.  

4.3.5. Recurrent Neural Network (RNN) 

SpO2 and IHR signals were tested by Pathinarupothi et al. [107] as an input to LSTM. The dataset 

was divided into 50% for training, 40% for testing, and 10% for validation. With only the SpO2 

signal, the single layer, 32-memory block, LSTM, and the 32-memory block stacked LSTM achieved 

an AUC of 0.98. With only the IHR signal, the 32-memory block stacked LSTM achieved a 0.99 

AUC for a severity detection (apnea or non-apnea). Combining both signals provided a 0.99 AUC in 

both single layers and stacked LSTM.  

The same authors [107] also used IHR for apnea and arrhythmia classifications, with higher 

accuracy and F1 score of 1 [132] using a fivefold cross-validation technique. Both a single-layer and 

stacked layers LSTM (2 layers) were tested, and it was verified that better results were attained by the 

two-layer stacked LSTM. However, the single layer and 32 memory cells worked better than 2-layer 

stacked LSTM-RNN model. 

To capture temporal information and accurately model the data Steenkiste et al.[186] used an 

LSTM [187] neural network. Balanced bootstrapping was employed to balance the dataset, where the 

entire minority class was used each time with an equal size of the majority class. These balanced 

datasets were used for each LSTM model, which had one LSTM layer with 3 dropout layers and with 

an output layer at the end. In the end, the probability of the LSTM models was aggregated into a 

single probability prediction per epoch by averaging. An averaged probability greater or equal to 50% 

was used to determine the presence of apnea. The authors also used the same LSTM network structure 

with a human-engineered time-domain and the frequency-domain features instead of raw respiratory 

signals [186]. Because it used features with LSTM, it is denoted as F-LSTM. A performance 

valuation was also done with three respiratory signals (abdores, thorres, and EDR) with non-temporal 

models and with temporal models. Both temporal models (F-LSTM, LSTM) did better than the non-

temporal models (ANN, LR, RF). Among the temporal models, LSTM did better than F-LSTM in all 

three signals (Table 5). Although authors in the original paper detect apnea severity, in this review it 

was not included due to the presentation of severity being different when compared with other work 
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(for severity please check the Fig. 7, Fig. 8 and Fig. 9 of original work [186]; also, it is quite difficult 

to calculate the exact values from the figures). 

A three-layered F-LSTM was used by Novak et al. [188] to calculate apnea events using HRV with 

features as the input. The hidden layers of the network contained five blocks, each consisting of seven 

memory cells, thus achieving an average accuracy of 82.1%.  

Cheng et al. [131] employed a four layered LSTM to detect OSA using 20 subjects for training and 

10 subjects for test and the RR-ECG signal. The network consisted of a recurrent layer and a data 

normalization layer, repeated four times, followed by a softmax layer, achieving an average accuracy 

of 97.80%. 

Urtnasan et al. [189] used the normalized ECG signal with 74 subjects for training and 18 subjects 

for testing and six RNN layers were used to form an LSTM and a GRU. The 𝐹𝑤 score of the LSTM 

and GRU were, 98.0% and 99.0%, respectively. 

4.3.6. Combination of multiple deep networks 

A combined deep recurrent and convolutional neural networks (RCNN) was evaluated by Biswal et 

al. [190], using airflow, SaO2, chest and abdomen, and belts signals to determine the AHI. A hold-out 

method with 90% of data for training and 10% of data for testing was used. Both waveform 

representation and spectrogram representation were employed as input signals for a CNN and a 

combination of CNN and RNN (RCNN). The RCNN with a spectrogram representation achieved the 

highest accuracy (88.2%in MGH and 80.2% in SHHS). 

A different approach was presented by Banluesombatkul et al. [191], achieving 79.45% of global 

accuracy (detecting extremely severe OSA subjects from normal subjects) by combining CNN1D, 

LSTMs and MHLNN (in original work it was defined as a deep neural network (DNN)) to detect 

sleep apnea from a 15 second window using a tenfold cross validation method. This structure was 

used for automatic extraction of the features using the CNN1D with 256, 128, and 64 units, where 

each convolution layer was followed by a batch normalization layer and ReLU was used as an 

activation function. Then a LSTM, with 128, 128, and 64 units, respectively, and a recurrent dropout 

of 0.4, was then stacked to extract temporal information. At the end of the network, an MHLNN (with 

fully connected layers) was stacked with layers of size 128, 64, 32, 16, 8, and 4 hidden nodes 

followed by a softmax function for the classification.  
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Table 4 : Summary of the database information: The database, year of publication, number of 

subjects, used signals, window size and type of classifiers(A=apnea, H= hypopnea, N=Normal, S= 

Severity, O=obstructive, G=Global or OSA Severity) used by selected papers (According to year). 

Paper Year Database Recordings Sensors/ Signals 
Window size 

(seconds) 
Classification Type 

[188] 2008 AED [61] 70 [HRV-ECG] 60 A/N 

[149] 2017 MESA 100  [Nasal airflow] 30 OA/N 

[106] 2017 AED [61]  8  [SpO2] 60 OA/N 

  UCD[62] 25 [SpO2] 60 A/N 

[132] 2017 AED [61]  35 [IHR-ECG] 60 G  

[107] 2017 AED [61] 35 [IHR-ECG] 60 OA/N,G 

  AED [61] 8 [SpO2] 60 OA/N,G 

[131] 2017 AED [61] 35 [RR-ECG] - OA/N  

[181] 2018 AED [61] 35 [ECG] 60 OA/N  

[184] 2018 MESA[91] 1,507 [Nasal airflow]  30 A/H/N 
[176] 2018 SNUBH [176] 120 [Breathing sounds] 5 G 

[180] 2018 SCSMC82[180] 82 [ECG] 10 OA/N 

[185] 2018 UCD[62] 23  
[SpO2, oronasal airflow, and ribcage 

and abdomen movements] 
1 OAH/N 

[183] 2018 MESA[91] 1,507  
[Nasal airflow, Abdominal and 

thoracic plethysmography] 
30 OA/H/N 

[178] 2018 AED [61] 35 [HRV ECG]  60 OA/N 

[182] 2018 SNUH [182],  179 [Nasal pressure] 10  AH/N, G 

  MESA[91] 50 [Nasal pressure] 10  AH/N, G 

[191] 2018 MrOS (Visit 1)[192] 545  [ECG] 15          G 

[177] 2018 MrOS (Visit 2)[192] 520 [Airflow] - G 

[190]  2018 MGH 10 000 
[Airflow, respiration (chest and 

abdomen belts), SpO2] 
1 G 

  SHHS [193] 5804  
[Airflow, respiration (chest and 

abdomen belts), SpO2] 
1 G 

[186] 2018 SHHS-1[89] 2100  
[Respiratory signals (chest and 

abdomen belts), EDR)] 

 

30  
 

A/N 

[179] 2018 SCSMC86[179] 86  [ECG] 10 OA/H/N 

[189]  2018 SCSMC92 92 [ECG] 10 A/H/N, AH/N 

[174] 2018 AED [61] 70 [RR – ECG] 60 OAH/N,G 

 

Table 5 :Performance of the different works. 

Paper Classifier Type Sen/Recall (%) Spc (%) Acc (%) Others 

[177] MHLNN (AHI 5) 80.47(G) 86.35(G) 83.46(G) - 

 MHLNN (AHI 15) 85.56(G) 86.96(G) 85.39(G) - 

 MHLNN (AHI 30) 93.06(G) 90.23(G) 92.69(G) - 

[178] MHLNN - - 68.37 - 

[176] MHLNN - - 75(G) - 

[174] SAE 88.9 88.4 83.8 AUC 0.86.9  

 SAE 100(G) 100(G) 100(G)  

[106] DAE(UCD) 60.36  91.71 85.26 CO 79.1 

 DAE(AED) 78.75 95.89 97.64 - 

[179]* CNN1D 87 87 90.8 PPV 87%,𝐹1𝑤  

[180]* CNN1D 96 96 96 𝐹1𝑤 0.96 

[181] CNN1D 97.82 99.20 98.91 PPV 99.06%, NPV 98.14% 

[182] CNN1D 81.1 98.5 96.6 PPV 87%, NPV 97.7% 

 CNN1D (AHI 5) 100(G) 84.6(G) 96.2(G) PPV 95.1%, NPV 100%, 𝐹1 
0.98(G) 

 CNN1D (AHI 15) 98.1(G) 86.5(G) 92.3(G) PPV 87.9%, NPV 97.8%, 𝐹1 
0.93(G) 

 CNN1D (AHI 30) 96.2(G) 96.2(G) 96.2(G) PPV 89.3%, NPV 98.7%, 𝐹1 
0.93(G) 

[149] CNN1D 74.70 - 74.70 PPV 74.50% 

[183] CNN1D-3ch 83.4 - 83.5 PPV 83.4%, 𝐹1 83.4 

[184] CNN1D 77.6 - 77.6 PPV 77.4%, 𝐹1 77.5 

 CNN2D 79.7 - 79.8 PPV 79.8%, 𝐹1 79.7 
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[185] CNN2D  - 79.6 - 

[107] LSTM(SpO2) 92.9 - 95.5 AUC 0.98, PPV 99.2% 

 LSTM(IHR) 99.4 - 89.0  AUC 0.99%, PPV 82.4% 

 LSTM(SpO2+IHR) 84.7 - 92.1 AUC 0.99%, PPV 99.5% 

 LSTM(IHR) 99.4(G)    

[132] LSTM(IHR) - - 100(G) 𝐹1 1(G) 

[131] LSTM - - 97.08 - 

[188] fLSTM 85.5 80.1 82.1 - 

[186] fLSTM(abdores) 57.9  73.9 71.1 AUC 71.5, PPV 33.0% 

 LSTM (abdores) 62.3 80.3 77.2 AUC 77.5, PPV 39.9% 

 fLSTM (thorres) 62.9 77.2 74.7 AUC 76.9, PPV 36.8% 

 LSTM(thorres) 67.8  76.5 75 AUC 79.7, PPV 37.7% 

 fLSTM(EDR) 48.8 60.8 58.7 AUC 57.6, PPV 21.1% 

 LSTM(EDR) 52.1  61.8 60.1 AUC 58.8, PPV 22.1% 

[189]  LSTM 98 98 98.5 𝐹1𝑤 98.0 

 GRU 99 99 99.0 𝐹1𝑤 99.0 

[190] RCNN(MGH) - - 88.2(G) - 

[191] CNN1D-LSTM- 
MHLNN 

77.60(G) 80.10(G) 79.45(G) 𝐹1 79.09(G) 

* The authors used alternative definition of true positive (detection of normal events) compare with the definition provided by Baratloo et al. 

[194]. So, in this table for binary classifier comparing with other authors their Sen could be treated as Spc and vice versa. If nothing is 

indicated in the paper, then an assumption was made that the authors did use the definition provided in Baratloo et al. [194].  

4.3.7. Summary 

The systematic literature review synthesized and summarized the published deep classification 

methods for sleep apnea detection. From the selected 21 studies, the main findings are as follows: 

It was verified that a significant number of papers were published in the last two years, indicating a 

strong interest in the research community with regards to this topic. The comparison between the deep 

networks and parameter choice of the deep network is still part of ongoing research and a very 

relevent topic. In addition to that, which sensor or signal is most suitable for apnea detection is still 

being questioned.  

The ECG sensor based signal was the most commonly used, which could be justified as indicated 

by Mendonça et al. [87], that for a single source sensor, ECG signals provided the highest global 

classification. However, sleep apnea is directly related to respiration. Thus, this higher accuracy with 

ECG signals could happen due to the use of public datasets that are less affected by noise [87]. For the 

works based on a single sensor, Pathinarupothi et al. [107] achieved the best results using the SpO2 

signal comparing IHR calculated from ECG. Thus, the universality of better ECG signals performance 

is not true. However, a direct performance comparison between the works is not fair for this review 

because of the use of different classifiers and different databases.  

It was verified that using more than one signal from the sensors improves the predictive capability 

of the models, as reported by Haidar et al. [183]. This is understandable because the gold standard of 

sleep apnea tests uses several signals. However, the main research goal of most of the works is to 

achieve a respectable result using fewer sensors.  
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Most works with deep networks outperformed the shallow networks except for T. Kim et al.’s [176] 

work. In their work, the deep network performs slightly worse than the shallow network. However, 

they use a deep network with human engineered features. Similar kinds of work where authors [177] 

used features with the deep network, MHLNN, outperformed classical machine learning techniques. 

So for T. Kim et al.’s [176] work, it may be a feature selection process or hyperparameter choice of 

the deep network.  

 The CNN was the most commonly used classifier and approaches based on both CNN1D and 

CNN2D were presented. However, it was not possible to indicate which are the most suitable 

classifiers since the testing conditions were different in all the works. Even so, McCloskey et al. [184] 

compared both and verified that 2-D spectrogram images of the nasal airflow performed better than 

raw 1-D signal with a CNN. A similar conclusion was attained by Biswal et al. [190] where the 

RCNN with spectrogram representation achieved a higher accuracy. Analyzing the three works from 

Urtnasan et al. using CNN1D [179] [180] RNN [189] where they have collected the data from the 

same hospital it was possible to verify that the RNN outperforms the CNN. However, more research 

is needed to reach a definitive conclusion. The same type of conclusion can be achieved by analyzing 

the works that have employed the LSTM and the GRU.  

Hyperparameters optimization is also a problem in deep network implementation. Some works 

[106] [179][180] [106] have verified that just blindly increasing the number of layers or neurons in 

the hidden layers did not increase the performance. Most of the works chose their hyperparameters 

with an educated guess or by trial and error methods. Others used a predefined search space and 

attempted to find the best solution [179][180][106]. A possible alternative solution was presented by 

Falco et al. [178], where an evolutionary algorithm was used to choose the hyperparameters.    

For performance purposes, the dominating methodologies were hold-out and cross-validation 

methods. Hold-out does not test all the datasets. It is understandable that due to the long simulation 

time and the assumption of having the same effect due to a significant number of examples, many 

authors do not choose the cross-validation method when using deep learning. On the other hand, 

cross-validation of event-based apnea detection techniques is frequently used without ensuring subject 

independency (or this information was not mentioned specifically in the paper), which is essential to 

assess the generalization capability of the model. Some authors used dataset balancing methods or 

specific parameters to solve the class imbalance problem. It was also not clear for some of the works 

presented if the test dataset was balanced or not, which should not be done since it will change the 

natural distribution of data and, consequently, derail the generalization of the model. To have an 

unbiased test, a form of cross-validation with subject independence could be suggested as an optimal 

choice for future research. 

There are two main classification strategies, the event-by-event or epoch by epoch approach and 
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global classification. Most of the works concentrated on event-by-event classification and eight works 

used global classification considering the OSA severity classification. However, it is possible to do a 

global classification from event-by-event classification methods by using a threshold approach as 

indicated by Pathinarupothi et al. [107]. This observation is considered extremely relevant for further 

research since it will allow the methods to be used for clinical diagnosis. 

4.4. Summary and Choice of Work Done in This Thesis 

In this chapter two literature reviews were done to understand the trend and knowledge gap of sleep 

apnea. The former one (Section 4.2) focused on different algorithms and methods, which use signals 

from multiple source sensors but have not been implemented in hardware, to detect OSA. Papers were 

selected between 2003 and 2017 and a total of 84 original research articles were analyzed after the 

inclusion and exclusion criteria. The highest EB accuracy was based on an ECG analysis by a deep 

network where in the case of global accuracy the same trend also followed with some solution using 

SpO2 or combination of SpO2 and ECG heart rate. The reported maximum EB sensitivity was 

achieved with both oximetry analysis and ECG analysis. The single source works with ECG signal 

were tested in public databases provided the highest global classification. The public databases with 

signals might be successful due to a low level of noise contamination. Though OSA is directly related 

to respiration, oximetry achieved better results than respiration. The probable cause is the higher noise 

involved with the respiration signals. A multiple source sensors combination did not improve the 

system relevance which could be an indicator of a dominating sensor. The majority of the works 

detect OSA by employing supervised machine learning algorithms. 

The second literature review (Section 4.3) focused on the deep learning-based classification of OSA 

performed between 2008 and 2018. A high concentration of recent publication shows a strong interest 

in deep learning. Like pervious reviews (Section 4.2) ECG signals provided the highest global 

classification for a single source sensor. However, the main research goal of most of the works is to 

achieve a respectable result using fewer sensors. More than one signal from the sensors improves the 

predictive capability of some models. Most works with deep networks outperformed the shallow 

networks. Among deep classifiers, the CNN was the most commonly used classifier.  

One key aspect of a relevant method is one with a good performance-complexity ratio. Therefore, a 

method with a reduced number of sensors and complexity is typically of special interest. Both 

literature reviews showed an optimistic result using oximetry or SpO2. Comparing to complexity, 

price and ease of use oximetry performed better than other sensors. However, the highest accuracy 

was achieved by ECG signal-based methods or heart rates derived from an ECG signal. That is why a 

SpO2 signal will be used as primary signal where the different methods will be tested (Section 5.2, 

Section 5.3, Section 5.4, Section 6.2 and , Section 6.3). After reaching the decision of the best 
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methods, an ECG derived heart rate will also be tested to understand the effectiveness of the ECG 

signal (Section 5.5, Section 6.4). When it comes to the classification feature creation and selection are 

problems for classical shallow networks. Therefore, different feature creation and selection methods 

with different classifiers will be tested in this work (Section 5.2, Section 5.3, Section 5.4). From the 

research published before one could notice the real promise of deep classifiers in the field of apnea 

classification (Section 4.3). That is why this work will test a deep learning for apnea detection side by 

side with classic classification methods (Chapter 6). One of the problems of deep learning classifier is 

the problem of systematic structure hypermeter searching, which will be also investigated (Section 

6.2, and Section 6.3). Along with these, effects of more than one signal will be tested. The combined 

effects of signals will be tested using the SpO2 and heard rate derived from an ECG (Section 5.5 and 

Section 6.4). For clinical diagnosis, global accuracy is important. Therefore, a threshold based global 

accuracy will be implemented on successful solutions (Section 5.5.5 and Section 6.4.5).  At the end a 

general implementation will be done to accommodate any solutions tested in this thesis (Chapter 7). 

 

 

 



 

47 

 

Chapter 5 

5. Handcrafted Feature Based 

Method 

 

This chapter develops and analyzes different handcrafted features as well as classifiers. A combined 

approach of features and classifier combination is also proposed in this chapter. 
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5.1. Introduction 

This chapter analyzes the performance of different handcrafted features and feature based 

classifiers. For classifying apnea events a vast pool of suitable features was developed by different 

researchers. The learning process with all the available features could have a negative effect on the 

performance generalization, particularly when irrelevant or redundant features are present. One of the 

solutions could be the combination of the best features of all the previous works. However, combining 

two or more independent best features cannot guarantee a better feature set [11]. Therefore, it is 

important to find a subset of dominant and optimum features to achieve the best classification. To 

address these issues, different feature section techniques and classifications were indicated and tested 

besides proposing new features. The tested features, classification selection techniques and a proposed 

technique were first tested on SpO2 signals (Section 5.2, Section 5.3, and Section 5.4). After choosing 

the best methods, the HR and the combination of SpO2 and HR (SpO2+HR) were tested (Section 

5.5). Finally, the global classification performance was also checked (Section 0). 

 Section 5.2 was published in “Neural Computing and Applications” [195] and compares different 

features with different methods and classifiers. Section 5.3 was published in the “2017 XXVI 

International Conference on Information, Communication and Automation Technologies (ICAT)” 

[102] and presents the same features used in Section 5.2 with a different feature selection technique. 

The performance of the classification combination technique was also checked in Section 5.4, 

published in “Neural Computing and Applications” [196]. 

5.2. Comparison of SFS and mRMR for Oximetry Feature 

Selection 

5.2.1. Introduction 

A popular signal is SpO2, measured by pulse oximetry which has some added advantages over 

other sensors. It is more portable [8] and can be used in hypopneas, where the drop in oxygen 

saturation is caused by a reduction in the airflow due to apnea event (Figure 6). Different features can 

be created using SpO2. However, a different feature set provides a difference in performance in the 

classification process. A high-dimensional feature space creates problems for the classifier called the 

curse of dimensionality. Fortunately, a feature selection process can solve this problem. Feature 

selection is the process of selecting a subset of prominent features for the use in the classification 

model construction. Feature selection techniques can simplify the models to make them easier to 

interpret by researchers or users, shorten training times, and enhance generalization by reducing 

overfitting problems. In this work, minimum Redundancy Maximum Relevance (mRMR) and 
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Sequential Forward Search (SFS) feature selection algorithms are used to find proper features and 

apnea classification. These two feature selection processes are chosen because mRMR and SFS have 

different ways of choosing features: one uses mutual information without considering the classifiers 

(mRMR); the other one uses the wrapper methods (SFS) which consider the classifiers. 

 
 
Figure 6: Oxygen saturation (SpO2) in a 5 minute segment. 

5.2.2. Oximetry feature selection 

The proposed work is focused on choosing the best feature set for different classifiers (ANN, 

SVM_L, SVM_P, SVM_RBF, NB, LDA, and KNN) using two different feature selection methods. 

These feature selection methods are SFS and mRMR and the general flowchart of the implemented 

model is presented in Figure 7. One of the focuses of this work is to compare the performance of these 

two feature selection methods for obstructive sleep apnea classification using the SpO2 signal. The 

advantages and disadvantages of the implementation of both algorithms are also discussed.  

Data are collected from two well-known databases (the Physionet Database and the Ucddb 

Database). The first step is the pre-processing and data preparation (Figure 7 Dataset to node 1) which 

includes segmentation, unwanted data removal, annotation linking with segmented SpO2 signals, and 

the performance of feature extraction (Table 6). After the features are extracted, the variables are 

chosen with two different feature selection methods, mRMR (Figure 7 dashed line) and SFS (Figure 7 
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dotted line). For both feature selection techniques and for all the classifiers, datasets were divided into 

two parts, one for training and one for testing. To make the system independent from the effect of the 

subject the training subjects and test subjects are different. This is done by random sub-sampling 

choosing the test subjects and training subjects fifty times randomly (𝑟 = 50), and by making an 

average of the accuracies in the different iterations. The average results are used to select the best 

features for each classifier and method (Figure 7 node 3 to node 4). In the flowchart, the logical 1 and 

0 indicate true and false, respectively. The 𝑗𝑚𝑎𝑥 is the  𝑗𝑡ℎ  feature for which the feature set has 

maximum accuracy, 𝑁  is the total number of features, and 𝑟  is the repetition number. A brief 

description of each step is given below. 

 

 

Figure 7 : General pipeline for finding the best feature sub-set from the SpO2 for sleep apnea 

detection. 

 
Preprocessing: The Ucddb and the PhysioNet datasets sampling frequencies are 8 Hz and 50 Hz, 

respectively. For a uniform test, the Physionet sampling frequency is resampled to 8 Hz. This type of 

resampling is common in apnea detection [2], [106]. 

The Physionet dataset is annotated every minute by the physician whereas the Ucddb database is 

annotated according to the presence of the events in a continuous way. For feature extraction and 

classification, the continuous SpO2 data are segmented into one-minute intervals and linked with the 
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annotations of normal or apnea events. According to the definition of OSA, an apnea event should last 

at least ten seconds [63]. In the case of the continuously annotated Ucddb, an apnea event with, for 

example, 10 seconds could be divided into two adjacent minutes each having a fewer amount of apnea 

event time than what is needed to be identified as an apnea minute. To solve this problem, in the 

presence of five or more consecutive seconds of apnea or hypopnea, the minutes are treated as apnea 

[73],[106]. 

Any segmented minute with SpO2 values of less than 50% are considered as artifacts and hence 

removed from the analysis [73],[106].  

SpO2 Features: Features are the distinctive attributes of the signal that are used by the classifier to 

identify the classes. A total of 61 features were studied in this work, due to their reported successful 

performance in the classification of apnea events [102] [195]. These features can be broadly divided 

into three categories: Time Domain (TD) (13 features); Frequency Domain (FD) (20 features); and 

time-frequency domain (28 features), where a Daubechies 3 wavelet of decomposition level of six 

was used for the Time Frequency Domain (TFD) analysis. The TF details coefficients 

(𝐶𝐷1(𝑛), 𝐶𝐷2(𝑛), … , 𝐶𝐷6(𝑛))  and the approximations coefficients 𝐶𝐴6(𝑛) , which were used to 

extract features. A description of the features is listed in Table 6. 

Table 6: List of SpO2 features. 
Type Feature 

Number 

Feature Details about Features 

TD 1 Mean (𝐴𝑣𝑔) 𝐴𝑣𝑔 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1   where 𝑛 is the number of data points of the 

signal 𝑥. 

TD 2 Variance (𝑉𝑎𝑟) 𝑉𝑎𝑟 =
1

𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

2𝑛
𝑖=1    

TD 3 Coefficient of Variation (𝐶𝑜𝑉) 
𝐶𝑜𝑉 = √

𝑉𝑎𝑟

𝐴𝑣𝑔
      

TD 4 Skewness (𝑆𝑘) 

𝑆𝑘 =

1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

3𝑛
𝑖=1

(√
1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)
𝑛
𝑖=1 )

3 

TD 5 Kurtosis (𝐾𝑢𝑟𝑡) 

𝐾𝑢𝑟𝑡 =

1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

4𝑛
𝑖=1

(
1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

2𝑛
𝑖=1 )

2 

TD 6 Root Mean Square (𝑅𝑀𝑆) 

𝑅𝑀𝑆 = √
1

𝑛
∑(𝑥𝑖)

2

𝑛

𝑖=

 

TD 7 Maximum (𝑀𝑎𝑥) 𝑀𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑥) 
TD 8 Minimum (𝑀𝑖𝑛) 𝑀𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑥) 
TD 9 Shannon Entropy (𝑆𝐸𝑛) 𝑆𝐸𝑛 = −∑ 𝑝(𝑖)𝑙𝑛(𝑝(𝑖))𝑛

𝑖=1    

Where 𝑝(𝑖) is the probability of a specific event occurrence.  

TD 10 Renyi Entropy (𝑅𝐸𝑛) 𝑅𝐸𝑛 =
1

1−𝑞
𝑙𝑛(∑ 𝑝(𝑖)𝑞𝑛

𝑖=1 )    

FD 11 Twenty equally spaced filters to form a Filter Bank (𝐹𝑏) 
[10] [197] where, the ∆𝑚 is the bandwidth of the  𝑚𝑡ℎ 

filter with a window 𝑈 and center frequency 𝑏𝑚 , and 𝑁 

is a number of samples. For the first filter bank 

(𝐹𝑏1) 𝑚 = 1.  

𝐹𝑏1 =
∑ |

1

𝑁
∑ 𝑥(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

0 |

2

𝑈∆1 
𝑏1+∆1
𝑘=𝑏1−∆1

∑ |
1

𝑁
∑ 𝑥(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

𝑛=0 |
𝑁
2−1

𝑘=0

2   
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FD 12 Second filter bank (𝐹𝑏2) 

𝐹𝑏2 =
∑ |

1
𝑁
∑ 𝑥(𝑛)𝑒−

𝑗2𝜋𝑘
𝑁𝑁−1

0 |
2

𝑈∆2 
𝑏2+∆2
𝑘=𝑏2−∆2

∑ |
1
𝑁
∑ 𝑥(𝑛)𝑒−

𝑗2𝜋𝑘
𝑁𝑁−1

𝑛=0 |
𝑁
2
−1

𝑘=0

2  

FD ……. …. …. 

FD 30 Twentieth filter bank (𝐹𝑏20) 

𝐹𝑏20 =
∑ |

1

𝑁
∑ 𝑥(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

0 |

2

𝑈∆20 
𝑏20+∆20
𝑘=𝑏20−∆20

∑ |
1

𝑁
∑ 𝑥(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

𝑛=0 |
𝑁
2−1

𝑘=0

2   

TFD 31 Entropy of the level 6 approximation of wavelet 

(𝑇𝐹𝑆𝐸𝑛𝐶𝐴6) 
𝑇𝐹𝑆𝐸𝑛𝐶𝐴6 = 𝑆𝐸𝑛(𝐶𝐴6) 

TFD 32 Variance of the level 6 approximation of wavelet 

(𝑇𝐹𝑉𝑎𝑟𝐶𝐴6) 𝑇𝐹𝑉𝑎𝑟𝐶𝐴6 =
1

𝑛
∑(𝐶𝐷6𝑖 − 𝐴𝑣𝑔(𝐶𝐴6))

2

𝑛

𝑖=1

 

TFD 33 Standard deviation of the level 6 approximation of 

wavelet (𝑇𝐹𝑆𝑑𝐶𝐴6) 𝑇𝐹𝑆𝑑𝐶𝐴6 = √
∑ (𝐶𝐴6𝑖 − 𝐴𝑣𝑔(𝐶𝐷6))
𝑁
𝑖=1

𝑁 − 1
 

TFD 34 Median absolute deviation of the level 6 approximation 

of wavelet (𝑇𝐹𝑀𝑎𝑑𝐶𝐴6) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐴6 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐴6) 

TFD 35 Entropy of the level 6 details of wavelet (𝑇𝐹𝑆𝐸𝑛𝐶𝐷6) 𝑇𝐹𝑆𝐸𝑛𝐶𝐷6 = 𝑆𝐸𝑛(𝐶𝐷6) 
TFD 34 Variance of the level 6 details of wavelet (𝑇𝐹𝑉𝑎𝑟𝐶𝐷6) 

𝑇𝐹𝑉𝑎𝑟𝐶𝐷6 =
1

𝑛
∑(𝐶𝐷6𝑖 − 𝐴𝑣𝑔(𝐶𝐷6))

2

𝑛

𝑖=1

 

TFD 37 Standard deviation of the level 6 details of wavelet 

(𝑇𝐹𝑆𝑑𝐶𝐷6) 𝑇𝐹𝑆𝑑𝐶𝐷6 = √
∑ (𝐶𝐷6𝑖 − 𝐴𝑣𝑔(𝐶𝐷6))
𝑁
𝑖=1

𝑁 − 1
 

TFD 38 Median absolute deviation of the level 6 details of 

wavelet (𝑇𝐹𝑀𝑎𝑑 𝐶𝐷6) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐷6 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐷6) 

TFD 44 Entropy of the level 5 details of wavelet (𝑇𝐹𝑆𝐸𝑛𝐶𝐷5) 𝑇𝐹𝑆𝐸𝑛𝐶𝐷5 = 𝑆𝐸𝑛(𝐶𝐷2) 
TFD 45 Variance of the level 5 details of wavelet (𝑇𝐹𝑉𝑎𝑟𝐶𝐷5) 

𝑇𝐹𝑉𝑎𝑟𝐶𝐷5 =
1

𝑛
∑(𝐶𝐷2𝑖 − 𝐴𝑣𝑔(𝐶𝐷2))

2

𝑛

𝑖=1

 

TFD 46 Standard deviation of the level 5 details of wavelet 

(𝑇𝐹𝑆𝑑𝐶𝐷5) 𝑇𝐹𝑆𝑑𝐶𝐷5 = √
∑ (𝐶𝐷2𝑖 − 𝐴𝑣𝑔(𝐶𝐷2))
𝑁
𝑖=1

𝑁 − 1
 

TFD 47 Median absolute deviation of the level 5 details of 

wavelet (𝑇𝐹𝑀𝑎𝑑 𝐶𝐷5) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐷5 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐷2) 

TFD ….. …. …. 

TFD 55 Entropy of the level 1 details of wavelet (𝑇𝐹𝑆𝐸𝑛𝐶𝐷1) 𝑇𝐹𝑆𝐸𝑛𝐶𝐷1 = 𝑆𝐸𝑛(𝐶𝐷1) 
TFD 56 Variance of the level 1 details of wavelet (𝑇𝐹𝑉𝑎𝑟𝐶𝐷1) 

𝑇𝐹𝑉𝑎𝑟𝐶𝐷1 =
1

𝑛
∑(𝐶𝐷1𝑖 − 𝐴𝑣𝑔(𝐶𝐷1))

2

𝑛

𝑖=1

 

TFD 57 Standard deviation of the level 1 details of wavelet 

(𝑇𝐹𝑆𝑑𝐶𝐷1) 𝑇𝐹𝑆𝑑𝐶𝐷1 = √
∑ (𝐶𝐷1𝑖 − 𝐴𝑣𝑔(𝐶𝐷1))
𝑁
𝑖=1

𝑁 − 1
 

TFD 58 Median absolute deviation of the level 1 details of 

wavelet (𝑇𝐹𝑀𝑎𝑑 𝐶𝐷1) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐷1 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐷1) 

TF 59 Central Tendency Measure (𝐶𝑇𝑀50)  [93] where 𝑟 =
0.58 is selected from previous research [93]. 

𝐶𝑇𝑀 =
∑ 𝜕𝑑𝑖
𝑛−2
𝑖=1

𝑛−2
     

𝜕(𝑑𝑖) = {
1 𝑖𝑓 [(𝑥𝑖+2 − 𝑥𝑖+1)

2 + (𝑥𝑖+1 − 𝑥𝑖)
2]0.5 < 0.58 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

TF 60 Delta Index (𝐷𝐼𝑛𝑑𝑒𝑥) [198] [199] 𝐷𝐼𝑛𝑑𝑒𝑥 =
1

𝑛
∑ |

𝜕(𝑆𝑝𝑂2)

𝜕𝑡
| (12 𝑠𝑒𝑐𝑜𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)1

𝑛    

𝜕 𝑖𝑠 the change in SpO2; n=number of intervals; and t=time. 

TF 61 Oxygen saturation Index (𝑂𝐷𝐼3) [93] [200] 𝑂𝐷𝐼3 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑙𝑠 < ((.03 ∗
(𝐴𝑣𝑔 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 3 𝑚𝑖𝑛𝑢𝑡𝑒𝑠))    

 

 

5.2.3. Performance of the mRMR method 

Physionet dataset: For the Physionet dataset with the mRMR method, the highest accuracy is 

achieved by the SVM classifier with a linear kernel (SVM-L) (Table 7). However, the best sensitivity 

is achieved by SVM-RBF and the best specificity is achieved by the LD classifier. The lowest number 

of features is achieved by the ANN and NB classifiers.  
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There are no significant differences in performance between the different classifiers. The NB and 

ANN classifiers with the lowest number of features are 1.72% and 1.56% less accurate than the SVM-

L classifier, which uses 25 times more features. Though the SVM-L achieved the highest accuracy 

with 50 features, from a practical point of view it is not necessary to use this high number of 

variables. With 16 features the same classifier presents an accuracy of 96.76% and with 3 features 

95.16% is achieved. Thus, 3.33 times more features are used to increase 0.13% accuracy, and 16.67 

times more features are used to increase 1.73%  accuracy (Figure 8).  

The accuracy rises for the KNN classifier at the beginning of the process of the addition of features 

(2 features). The accuracy remains stable until 12 features are added and then a sudden drop is 

observed among all the KNN classifiers. These first two features are the most effective and this trend 

of sharp accuracy rises by just adding two features is common in all the classifiers (Figure 8).  The 

sensitivity and specificity are showed in Figure 9 and Figure 10. 

UCDDB database: The performances in Acc, Se, and Sp achieved with Ucddb are poorer than 

with the Physionet database (Figure 11, Figure 12, and Figure 13). The highest accuracy is achieved 

by an ANN with the lowest number of features. SVM-RBF, KNN1, and KNN3 perform poorly 

compared to other classifiers. However, these classifiers need a lower number of features. The highest 

specificity (Sp) of 98.33% is presented by an NB, which obtains an accuracy of 80.39 % which is not 

too distant from the highest achieved accuracy of 81.95% by a ANN with poor sensitivity. On the 

other hand, with poor accuracy (Acc), the SVM-RBF presents the highest sensitivity. 
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Figure 8 : Accuracy of the Physionet mRMR method. 

 

Figure 9 : Sensitivity of the Physionet mRMR method. 
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Figure 10 : Specificity of the Physionet mRMR method. 

 

Figure 11: Accuracy of the Ucddb mRMR method. 
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Figure 12 : Sensitivity of the Ucddb mRMR method. 

 

Figure 13 : Specificity of the Ucddb mRMR method. 
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Table 7 : Comparison of the selected features for both databases using the mRMR method (best 

values are marked in bold). 
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Performance [%] 

Se Sp Acc 

P
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 D
at
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e 

 

ANN 2 81.41 95.11 95.33 

LD 14 83.68 97.19 96.75 

NB 2 81.26 94.73 95.17 

KNN1 4 84.11 94.27 94.00 

KNN3 8 85.28 96.16 95.65 

KNN5 10 85.87 96.40 95.95 

SVM-L 50 83.76 97.03 96.89 

SVM-RBF 4 95.69 95.02 95.99 

U
cd

d
b
  

D
at

ab
as

e 

ANN 2 43.31 95.03 81.95 

LD 9 31.39 96.93 80.10 

NB 4 27.17 98.33 80.39 

KNN1 9 51.60 83.43 74.96 

KNN3 2 47.70 89.25 78.56 

KNN5 2 47.51 91.76 80.42 

SVM-L 4 34.32 97.04 81.04 

SVM-RBF 2 58.57 91.37 71.83 

 

5.2.4. Performance of Sequential Forward Search 

Compared to the mRMR method, the SFS presents a much smoother training and test curve (Figure 

8 to Figure 13 vs. Figure 14 to Figure 19) The highest accuracy of 97.38% is achieved in the 

Physionet database using a SFS method by the SVM-L classifier with 20 features. A ANN with 10 

features and an NB with 14 features present the highest sensitivity and specificity, respectively (Table 

8). 

 In case of the Ucddb database, the highest accuracy, sensitivity, and specificity are achieved by the 

LD (Acc 83.27%) with 9 features, the SVM-RBF (Se 74.06%) with 10 features, and the KNN3 

(Sp=94.45) with 9 features, respectively (Table 8, Figure 17, Figure 18, and Figure 19). 

Table 8 : Comparison of selected features for both databases using the sequential forward search 

method (desired values are marked in bold). 
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ANN 10 84.71 96.17 96.13 

LD 21 84.28 97.73 97.19 

NB 14 84.71 94.91 96.48 

KNN1 18 82.58 94.94 95.29 

KNN3 43 82.07 96.35 96.19 
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KNN5 5 83.02 96.76 96.53 

SVM-L 20 84.57 97.28 97.38 

SVM-RBF 32 84.59 96.50 96.83 

U
cd

d
b
  

D
at

ab
as

e 

ANN 3 44.30 95.39 82.40 

LD 9 61.78 91.03 83.27 

NB 9 59.83 91.58 83.18 

KNN1 33 59.06 81.10 75.11 

KNN3 9 42.11 94.45 81.24 

KNN5 6 40.67 95.74 81.81 

SVM-L 11 49.57 93.54 82.35 

SVM-RBF 10 74.06 81.39 78.86 

 

Figure 14: Accuracy of the Physionet SFS method. 
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Figure 15 : Sensitivity of the Physionet SFS method.  

 

Figure 16 : Specificity of the Physionet SFS method. 
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Figure 17: Accuracy of the Ucddb SFS method. 

 

 

Figure 18 : Sensitivity of the Ucddb SFS method. 
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Figure 19 : Specificity of the Ucddb SFS method. 

 

5.2.5. Comparison between mRMR and SFS 

The comparison between the two methods is carried out in terms of time requirement, performance 

parameters, and the number of features required. 

Time performance: The time to calculate the performance of one specific feature set is the sum of 

the Training Time (𝑇𝑅𝑡) and Test Time (𝑇𝐸𝑡) multiplied by the number of folds or the number of 

Repetitions (𝑅𝑓) the classifier is trained and tested by. The total search time of the feature set is the 

multiplication of the number of feature sets by the sum of the training and testing times plus the pre-

training and testing times. If there are 𝐹𝑛 number of features, then for SFS we have  𝐹𝑛(𝐹𝑛 + 1)/2 

numbers of feature sets and mRMR has 𝐹𝑛 number of feature sets. Though the SFS does not imply 

have preprocessing steps, the mRMR method has feature ranking steps. If that takes 𝐹𝑅𝑡 time, then 

the time ratio between the two methods is  

SFSt
mRMRt

=
Rf×(TRt+TEt)×

Fn(Fn+1)

2

FRt+(Rf×(TRt+TEt)×Fn)
≈
Fn+1

2
          (5) 

The training and testing of each set take most of the time in the search for the best set of features. 

Thus, if this condition 𝐹𝑅𝑡 ≪ (𝑅𝑓 × (𝑇𝑅𝑡 + 𝑇𝐸𝑡) × 𝐹𝑛) is applied to the ratio, it can be seen that SFS 

is approximately (𝐹𝑛 + 1)/2 times more time-consuming.  

In addition to that, if parallel processing is considered, the two methods act differently. In both 

cases, the repetition of the training and testing process is susceptible to be parallelized. However, in 
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the search phase, the SFS cannot be parallelized because of its sequential nature in which its current 

state depends on the previous state. On the other hand, after the ranking sequence of the feature set, it 

is possible to parallelize the training and test portion of the mRMR method, which is the most time-

consuming part. If we consider that all the feature sets take the same time to training and test and the 

user provides infinite parallel resources to run, then the mRMR method can have  𝐹𝑛  parallel 

computations. If the time ratio of the previous calculation is considered, then the mRMR method can 

have a theoretical speed 𝐹𝑛 × (𝐹𝑛 + 1)/2 times faster than the SFS. However, in practice, it is a 

shorter time, because the feature sets take different amounts of time to finish and the parallel system 

depends on the maximum time instead of the average time. In addition to that, deploying and 

gathering information and communication between the parallel processes require time.  

For the mRMR method, a feature ranking is needed though the time consumption is small. To sum 

it up, if the user has access to parallel resources, the mRMR method is a great choice. Even in the 

scenario that the user does not have access to parallel processing, from the time consumption point of 

view, the mRMR method is better than the SFS.  

Performance parameters: Performance of Acc, Se, and Sp are presented in Figure 20 for all the 

feature selection methods and datasets. It can be seen that, for the Physionet database, the median 

sensitivity of the mRMR method is 83.94% while median sensitivity of the SFS is 84.43%. In addition 

to this, the maximum and minimum of the mRMR is 10.98% higher and 0.81% lower compared to the 

SFS. The mRMR method presents lower median specificity (Sp) (95.64%) than median specificity 

(95.4%) gain by the SFS. The accuracy (median value: SFS 96.51% mRMR 95.37%) also follows a 

similar trend. In the case of the Ucddb database, SFS presents a higher median Se (SFS: 54.31%, 

mRMR: 45.41%) and median Acc (SFS: 82.08%, mRMR: 80.25%) than the mRMR method. On the 

other hand, with a 93.4% median Sp mRMR method has higher Sp than that of the SFS. 

Required number of features: Regarding the number of features and considering both databases, 

the mRMR method presents a median of 4 features while the SFS presents 10. The high number of 

features for the SFS is required for Physionet with a median of 19, and a median of 9 features is 

required for the Ucddb dataset. On the other hand, mRMR presents 6 features with Physionet and 3 

features with Ucddb (Figure 21).  Details of the selected features and the rank of the features are listed 

in Table 9 to Table 12. 
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Figure 20 : Overall performance for all the classifiers using mRMR and SFS algorithms in both 

databases.  

 

Figure 21 : Overall selected number of features for all the classifiers using mRMR and SFS 

algorithms in both databases.  

Table 9 : mRMR feature rank for the Physionet database.  
Rank 1 2 3 4 5 6 7 
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Feature Number 35 47 1 2 39 43 3 

Rank 8 9 10 11 12 13 14 

Feature Number 5 6 7 8 9 10 11 

Rank 15 16 17 18 19 20 21 

Feature Number 12 13 14 15 16 17 18 

Rank 22 23 24 25 26 27 28 

Feature Number 19 20 21 22 23 24 25 

Rank 29 30 31 32 33 34 35 

Feature Number 26 4 27 28 29 30 31 

Rank 36 37 38 39 40 41 42 

Feature Number 32 33 34 36 37 38 40 

Rank 43 44 45 46 47 48 49 

Feature Number 41 42 44 45 46 48 49 

Rank 50 51 52 53 54 55 56 

Feature Number 50 51 52 53 54 55 56 

Rank 57 58 59 60 61   

Feature Number 57 58 59 60 61   

 

 

Table 10 : mRMR feature rank for the Ucddb database.  
Rank 1 2 3 4 5 6 7 

Feature Number 43 4 47 35 51 1 55 

Rank 8 9 10 11 12 13 14 

Feature Number 39 2 3 5 6 7 8 

Rank 15 16 17 18 19 20 21 

Feature Number 9 10 11 12 13 14 15 

Rank 22 23 24 25 26 27 28 

Feature Number 16 17 18 19 20 21 22 

Rank 29 30 31 32 33 34 35 

Feature Number 23 24 25 26 27 28 29 

Rank 36 37 38 39 40 41 42 

Feature Number 30 31 32 33 34 36 37 

Rank 43 44 45 46 47 48 49 

Feature Number 38 40 41 42 44 45 46 

Rank 50 51 52 53 54 55 56 

Feature Number 48 49 50 52 53 54 56 

Rank 57 58 59 60 61   

Feature Number 57 58 59 60 61   

 

Table 11 : SFS feature sequence for the Physionet database.  
Sequence 

Rank 

Classifiers 

ANN KNN1 KNN3 KNN5 LD NB SVM-L SVM-RBF 

1 52 3 53 53 53 53 53 52 

2 53 59 56 54 3 49 23 61 

3 5 56 52 61 49 2 58 39 

4 41 53 59 11 43 52 2 40 

5 57 49 57 38 38 57 43 37 

6 40 52 48 48 5 48 50 53 
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7 59 48 45 52 4 50 49 36 

8 4 58 58 56 36 54 16 32 

9 43 54 54 3 59 44 24 47 

10 51 57 50 23 61 14 22 7 

11 56 50 44 57 41 43 32 58 

12 39 44 46 58 39 55 19 55 

13 35 46 38 50 52 58 21 51 

14 55 45 3 13 48 46 5 11 

15 36 2 2 46 54 56 56 10 

16 47 11 11 44 11 51 25 1 

17 58 38 49 24 40 7 30 35 

18 42 17 37 12 58 4 59 3 

19 38 37 13 15 51 32 12 49 

20 61 20 17 22 8 47 4 48 

21 37 42 15 14 47 3 14 41 

22 50 41 22 59 57 61 18 54 

23 48 24 20 25 50 45 13 42 

24 45 12 12 16 45 27 48 57 

25 44 15 16 17 44 42 45 6 

26 49 26 28 21 46 37 55 38 

27 9 13 18 18 56 38 57 8 

28 6 18 41 19 55 33 54 9 

29 31 16 42 20 35 8 27 31 

30 1 21 40 26 42 34 26 50 

31 54 22 19 40 37 41 47 34 

32 10 19 21 60 7 16 29 59 

33 8 25 24 45 33 59 51 46 

34 32 40 14 49 13 13 28 2 

35 46 29 7 41 34 40 44 45 

36 2 30 61 9 9 10 52 56 

37 7 55 23 42 1 5 46 43 

38 11 27 25 27 31 23 8 44 

39 16 14 9 28 17 25 15 33 

40 33 28 26 29 10 12 20 60 

41 13 23 27 30 2 19 17 5 

42 34 9 29 37 6 21 11 16 

43 23 60 30 36 32 28 33 4 

44 14 47 60 43 60 24 3 24 

45 15 32 36 55 14 26 38 19 

46 60 36 4 51 16 22 34 29 

47 24 61 5 47 21 29 42 13 

48 17 33 43 4 22 30 41 17 

49 22 51 51 7 19 18 61 28 

50 28 43 35 5 24 17 1 12 

51 3 34 47 8 29 20 7 26 

52 27 4 39 1 26 15 9 30 

53 30 5 55 2 28 9 6 15 

54 25 7 6 6 30 1 31 22 
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55 18 8 1 35 23 6 10 18 

56 26 1 8 39 12 31 37 14 

57 12 6 34 34 15 36 35 27 

58 20 39 33 33 27 39 40 25 

59 29 35 32 32 20 35 36 21 

60 19 10 10 10 18 11 39 23 

61 21 31 31 31 25 60 60 20 

 

Table 12 : SFS feature sequence for the Ucddb database.  
Sequence 

Rank 

Classifiers 

ANN KNN1 KNN3 KNN5 LD NB SVM-L SVM-RBF 

1 43 11 43 43 61 3 11 2 

2 59 12 8 31 50 43 46 35 

3 5 13 58 59 49 59 50 61 

4 35 14 59 9 3 35 42 36 

5 39 15 47 7 53 5 61 33 

6 4 16 9 10 5 4 5 32 

7 47 17 1 6 41 47 44 43 

8 50 18 31 1 38 50 48 34 

9 40 19 5 57 45 2 58 39 

10 46 20 10 8 4 32 56 3 

11 51 21 35 47 58 36 36 38 

12 56 22 6 28 34 60 4 37 

13 54 23 39 58 59 61 40 40 

14 33 24 23 5 37 39 52 50 

15 55 25 29 30 46 48 59 41 

16 49 26 7 4 54 44 41 52 

17 2 27 26 35 60 33 39 48 

18 36 28 25 39 57 52 54 46 

19 34 29 22 32 42 46 49 44 

20 48 30 30 29 33 40 32 42 

21 53 59 32 23 39 34 57 56 

22 37 60 4 17 40 38 38 47 

23 32 7 36 26 47 56 35 53 

24 61 43 27 19 48 37 37 49 

25 52 2 17 22 55 49 2 54 

26 44 4 60 20 36 45 45 45 

27 45 5 2 27 35 53 53 57 

28 38 32 55 50 44 42 60 5 

29 57 8 28 55 43 54 47 60 

30 41 35 24 60 51 41 55 55 

31 42 9 20 2 32 57 51 4 

32 3 39 50 18 31 55 43 58 

33 58 61 38 25 56 58 34 51 

34 8 47 19 24 2 51 33 59 

35 60 36 21 21 52 31 3 16 

36 31 37 56 15 10 10 10 1 

37 10 40 18 41 7 6 7 12 
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38 6 1 16 40 8 1 1 15 

39 1 38 15 14 11 7 6 9 

40 7 50 13 16 28 8 8 6 

41 9 41 14 42 12 9 31 8 

42 11 42 12 13 23 11 28 19 

43 28 48 52 12 22 12 26 18 

44 20 56 40 36 21 27 25 31 

45 17 46 42 56 16 24 27 11 

46 12 55 41 61 26 15 30 7 

47 29 44 11 11 18 21 15 10 

48 14 57 48 48 13 13 16 21 

49 22 51 46 52 14 18 29 17 

50 19 52 37 38 19 19 24 20 

51 21 58 57 46 29 14 13 14 

52 16 53 51 37 24 17 22 26 

53 15 6 44 51 6 16 18 22 

54 25 33 49 49 1 20 20 24 

55 18 49 61 53 27 30 23 27 

56 23 10 33 44 30 23 19 25 

57 13 3 53 54 15 25 17 13 

58 27 54 34 33 20 22 21 23 

59 24 34 3 34 17 26 14 28 

60 26 45 45 45 25 28 12 29 

61 30 31 54 3 9 29 9 30 

 

 
Comparison of the chosen features: In the case of the Physionet dataset, features 35 and 47 are 

ranked first with a frequency of 8 (Table 13) and both are ranked second on the Ucddb database. In 

the Ucddb database, the features 4 and 43 ranked as first with the same frequency (Table 13) and 

ranked third and sixth in the Physionet database. Overall, the best independent features which ranked 

number one with the frequency of 12 are 35, 43, and 47 (Table 13).  

Table 13 : Features’ importance by frequency (number of times the features are chosen) for the 

mRMR methods. 
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2 6 1, 2 4 35, 47 9 4 

3 4 3, 5, 39, 43 2 1, 2, 39, 

51, 55 

8 1, 2 

4 3 6, 7   6 39 

5 2 8-11   4 3, 5 

6 1 4, 12-34, 36-38, 40-46, 48-50   3 6, 7 

7     2 8-11, 51, 55 

8     1 12-34, 36-38, 40-42, 44-46, 48-

50 

 

Compared to the mRMR method, the SFS classifier has more control in the feature choosing so 

there is more variety of features chosen by different classifiers than with the mRMR method. Feature 

53 ranks first in the Physionet database, whereas features 43 and 5 rank first in Ucddb database. This 

contributed to ranking second position feature number 43 in the database independent list (Table 14). 

This trend is also true for number one ranked feature 59 in these databases.  

Regardless of the database classifiers or methods, the top ten features are 43, 35, 47, 2, 4, 5, 3, 59, 1 

and 39. It is interesting to note that on the one hand time-frequency features perform well, while on 

the other hand, some simple time features also have a great impact. However, this ranking is general. 

Table 14 : Features importance by frequency (number of times feature are chosen) for SFS methods. 
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2 6 49, 52, 54, 58, 59 5 59 10 43 

3 5 11, 38, 48, 50, 57 4 61 9 5, 53 

4 4 2, 3, 40, 41, 43, 61 3 2, 3, 9, 35, 50 8 50, 58, 61 

5 3 4, 5, 44, 46, 51, 56 2 4, 7, 8, 11, 31, 32, 

36, 39, 47, 58 

7 2, 3, 11, 49 
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6 2 7-9, 12, 14, 16,17, 19, 

21-25, 30, 32, 36, 37, 

39, 42, 45, 47, 55 

1 1, 10, 12-30, 33, 34, 

38, 41, 42, 44-46, 

48, 49, 53, 56, 60 

6 38, 48, 52, 54 

7 1 1, 6, 10, 13, 15, 18, 20, 

26-29, 31, 34, 35 

  5 4, 9, 41, 57 

8     4 7, 8, 32, 35, 36, 

39, 40, 44, 46, 47, 

57 

9     3 12, 14, 16, 17, 19, 

21-25, 30, 31, 42, 

45, 51 

10     2 1, 10, 13, 15, 18, 

20, 26-29, 34, 37, 

55  

11     1 6, 33, 60 

 

 

5.2.6. Comparison with other methods 

A comparison between the proposed method and others proposed in the literature was carried out 

with some limitations due to the lack of common features and datasets (Table 15). Sensitivity, 

specificity, and accuracy are converted to percentages for a common comparison. Some previous 

works present a similar or smaller number of features [2], [99], [10], [73]. However, the accuracy was 

lower compared to the method proposed in this work. Xie et al. [73] used a ANN and the PhysioNet 

database with the same type of features and with similar results. A automated features based work 

carried out with the deep auto encoder network [106] obtaining an accuracy higher than the 

investigated classifiers. However, in that study of features creation was not carried out and the 

difference is irrelevant when compared with the SFS LD classifier for Ucddb (1.99%) and with the 

SFS LD classifier for Physionet (0.26%). 
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Table 15 : Comparison of sleep apnea detection approaches with SpO2. 
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[2] SpO2 SVM Own 7   90 

[99] SpO2  ANN [61] 3 87.5 100 93.3 

[10] SpO2 LDA Own 19 75.6 91 86.5 

[73] SpO2  Combined 

Classifier 

[62] 39 83.55 81.25 81.81 

[106]  SpO2 DAE [62] NA 60.36 91.71 85.26 

SpO2 DAE [61] NA 78.75 95.89 97.64 

mRMR SpO2 SVM-L [61] 50 83.76 97.03     96.89 

SFS SpO2 SVM-L [61] 20 84.57 97.28 97.38 

mRMR SpO2 ANN [62] 2 43.31 95.03 81.95 

SFS SpO2 LD [62] 9 61.78 91.03 83.27 

 

5.2.7. Summary 

This work provides improvements to most of the existing methods with the SpO2 signal used for 

the classification of apnea events. The performances of 61 individual SpO2 features were obtained. 

From the results, the use of a subset of features improved the performance when compared to a set 

with all the features combined. Most of the features chosen by the classifiers are defined in the time-

frequency domain which supports previous research [21]. In addition to that, some basic features such 

as the variance have a strong influence over all the classifiers and methods.  

In the test, the SVF-L has better accuracy in the Physionet database. On the other hand, the ANN 

and the LD did better in the Ucddb database. KNN classifiers show an overfitting problem, so in the 

feature selection process, it is advised to use KNN with caution, especially with a low number of 

neighbors.  

Clearly, the feature selection process is not independent, but is rather an algorithm, database and 

classifier dependent problem.  

The databases used are also annotated differently. Physionet was annotated by apnea minutes, 

whereas the Ucddb was continuously annotated. Due to the different hypothesis of different 

classifiers, this results in different importance of the features.      

In an attempt to compare the mRMR and the SFS, it can be concluded that in terms of computation, 

the mRMR is the most suitable option. The SFS uses a higher number of features in most of the cases. 

The accuracy differences between both algorithms are not significant. Both methods suffer from low 
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sensitivity due to the prevalence of normal segments compared to apnea events. This problem could 

be solved by using a multi-objective approach [106] or penalization [73]. 

The performance can also be increased by the combination of classifiers [73] [201]. Adding more 

signals such as an ECG [201] can also increase the performance of the system. Different types of 

feature selection methods such as the Floating Forward Feature Selection Genetic Algorithm and, the 

Hill Climbing Algorithm [202] can be tested for performance assessment. 

 

5.3. Genetic Algorithm for Feature Selection 

5.3.1. Introduction 

Inspired by natural selection, Genetic Algorithms (GA) can be used in optimization techniques. In 

the GA the population changes over time to maximize or minimize a parameter according to specific 

rules [203], [204]. In this case, the GA is trying to minimize the classification error. The classification 

systems play a big role in biomedical signal processing and decision making. Because of their 

learning capabilities and their successful use in the literature, Artificial neural networks (ANN) are 

used for classification. The same feature created in Section 5.2 is used to benchmark the results. 

5.3.2. GA based feature selection method 

Data were collected from the PhysioNet web site [205]. For this research, the Apnea-ECG database 

is used. After pre-processing, features are extracted from the dataset. These features are used along 

with an ANN for optimization of the system. The general pipeline of the methods is shown in Figure 

22. 

 
Figure 22: The general pipeline of optimization of the sleep apnea detection classifier. 

Preprocessing: The dataset is annotated every minute by the physician and the annotation file is 

available with the recordings. For classification and feature extraction purposes, the continuous SpO2 

data were segmented in a one-minute interval and linked with annotated Apnea or non-Apnea events. 



 

72 

The minutes in which a blood saturation level was lower than fifty percent were removed from the 

analysis because they are considered as artifacts [73]. 

GA steps: GA run an iterative loop that repeats the steps in Figure 23, considering that the 

individual population is a binary string and measuring the fitness and stopping criteria.  

1) Initialize Population: The GA starts with a randomly generated initial population in which each 

individual solution is represented by a chromosome. 

2) Evaluation: Each chromosome of the population is evaluated according to the pre-defined fitness 

function. 

3) Stop Condition: The stopping criteria are checked to end the algorithm. If the criteria are not met, 

then the algorithm proceeds to the next step, or else it stops there.  

4) Elitism: Elitism is applied to bypass high fitness valued individual’s chromosomes to the next 

generation without alteration. This is done so that solutions do not degrade over the generation. 

5) Parents Selection: Parents are selected according to a binary tournament selection process. 

6) Crossover: It exchanges parts of the parent’s chromosome information to their children or 

offspring.  

7) Mutation: After the application of crossover, mutation is done to prevent premature convergence 

to local optima. 

8) New population: The children created from the previous steps, form a new population. This new 

population is evaluated against the fitness function.  

As shown in Table 6, the system primarily has 61 features. The challenge is to achieve good 

accuracy with a minimum error optimization. All the features are used to make chromosomes. A 

population with random features is generated. Using a binary GA, its evolution selection, crossover 

and mutation are carried out as presented in Figure 23. 

The fitness function is defined by the ANN Misclassification Error (MCE=(100-Acc)/100). The GA 

has to minimize the MCE. The stopping condition used in this work is 100 generations and the 

population size was 50. The mutation and crossover rate were 0.1 and 0.8 respectively. The number of 

elites was two. 



 

73 

 

Figure 23 : Flow chart of GA. 

 

5.3.3.  Optimization result 

The optimization of the system is done using a GA and a ANN. The system primarily has 61 

features. To achieve good accuracy with a minimum error optimization is the challenge. All the 

features are used as chromosomes. In the beginning, a population with random features is generated. 

Using binary GA evolution optimization is achieved through the selection, crossover and mutation are 

as presented in Figure 23.  

The GA is able to optimize the number of features and also to decrease the MCE. The best solution 

found by the GA was with seven features. The final structure of the optimized system is shown in 

Figure 24 and the training and testing results are shown in Figure 25. 

The dataset has 1457 apnea events and 2278 non apnea events. All the events are randomly divided 

into three sections (70% for training, 15 % for validation, and 15 % for testing). In Figure 25, it can be 

seen that among 1009 apnea events 968 were correctly recognized in the training session. In the case 

of validation and testing, it was 210 among 219 and 221 among 229, respectively. The sensitivity and 

specificity of the system are high in all the cases. In the test, the specificity is 2% higher than the 

sensitivity. In the training and the test, it is 1.5% and 3.5% respectively. The total accuracy of the 

system is 97.2%, where the test accuracy is 97.7%, the training accuracy is 96.9% and the validation 

accuracy is 98.0%. The ANN with GA feature selection process result is compared with those of 

existing works (Table 16). The GA with a ANN is not only able to optimize the number of features 

but is also able to increase the accuracy (97.7%) when compared to other methods. The Genetic 

algorithm (GA) proposed this section [102] obtained an improvement of 0.32% accuracy compared to 

an SFS SVM-L with fewer features (For details please look into section 5.2). In the same work, the 
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authors have a 0.49% accuracy improvement compared with the mRMR SVM-L. However, the ANN 

with GA was not implemented with subject independency [102]. 

 

Figure 24 : Optimize structure of the system classifier using the GA and a ANN. 

 

 

Figure 25  : Confusion matrix of a ANN with seven optimized features optimized using the GA over 

100 generations. 

 

Table 16 : Comparison of sleep apnea detection approaches. 

R
ef

. 

A
p

p
ro

ac
h
 

C
la

ss
if

ie
r 

 

D
at

ab
as

e 

N
o

 o
f 

fe
at

u
re

s 

Performance [%] 

Se Sp Acc 

[114] ECG KNN3 

 

[61] 30 NA NA 92.67 

[163] SaO2+EEG  LR 

 

Own 5 91 83.3 88.5 
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[108] EEG  ANN 

 

[90] 12 69.64 44.44 NA 

[206] HRV  

 

LDA Physionet 

Database 

 

30 90.8 92.7 88.31 

[72] HRV KNN27 

 

 

[61] 4 83.90 88.50  85 

[73] SpO2 and 

ECG 

KNN5 

 

[62] 39 79.75 85.89 84.80 

[99] SpO2 signal ANN 

 

[61] 3 87.5 100 90.3 

[126] Respiration LD 

 

[61] 13 NA NA  91 

[125] RR-interval  KNN5  

 

Own  

 

3 NA NA 89.4 

QAD 3 NA NA 94.5 

SVM 3 NA NA 94.5 

[53] ECG signal SVM-L 

 

[205] 10 92.9 100 96.5 

[2] SpO2 SVM  Own 7 NA NA 90 

[117] ECG Additive logistic 

regression 

Own  88.71 82.86  

[10] SpO2 LDA Own 19 75.6 91 86.5 

mRMR[195] 

(Section 5.2) 

SpO2 SVM-L [61] 50 83.76 97.03 96.89 

SFS[195] 

(Section 5.2) 

SpO2 SVM-L [61] 20 84.57 97.28 97.38 

Proposed[102]  SpO2 ANN [61] 7 96.5 98.5 97.7 

 

The features selected are Variance (F1), Root mean square (F2), 'filter20' (F3), Daubechies 3 

wavelet’s Shannon entropy of approximation coefficients level 6 (CA6) (F4), Standard deviation 

detail coefficients of level 6 (CD6) (F5), variances and standard deviation detail coefficients level 3 

(CD3) (F6, F7). The variance and 'filter20' are quite dominating features and these were also selected 

using 50 repeated random sub-sampling validations methods with a linear discriminant analysis 

(LDA) classifier and a different database[10]. Other features that are implemented in this work and 

selected by the GA algorithm are the wavelet base. In wavelet transform, the signal or the 

approximation coefficients at each level are filtered and create approximation coefficients and detail 

coefficients. The sampling frequency of 50 Hz is so that the highest frequency of the original SpO2 

signal can be 25 Hz. Keeping that in mind, the selected scales have frequency band of 0 Hz-0.3907 Hz 

(CA6), 0.3907 Hz-0.7813 Hz (CD6) and 3.125 Hz-6.25 Hz (CD3). From Figure 26, it can be seen that 

all the features chosen by the GA have a significance difference between apnea and non-apnea events.    
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Figure 26 : Non-apnea (Normal) and apnea minute with the wavelet scale coefficients chosen by a 

GA ANN classifier. 

5.3.4. Summary 

In this section, a successful optimization of sleep Apnea detection is carried out. It was shown that 

the accuracy achieved by combining the ANN with the GA is good. The features selected by the GA 

algorithm are mostly time-frequency (four among seven). Only two time features and one frequency 

feature are selected. From this selection procedure, it is understandable that apnea events have most of 

the information in time-frequency space. Compared to previous work it improves the accuracy. In the 

future, this work can be tested on different databases and classifiers.  

A limitation of the methods used here is that the structure of the selected MLP is calculated using a 

rule of thumb and experimental search which can be replaced, for example, by a GA. Furthermore, the 

experiment is not subject independent. These ideas are to be held under consideration in future work.  

5.4. Self-Configuring Classifier Combination (SC3) 

5.4.1. Introduction 

The conventional approach for event classification is based on a single classifier, such as an SVM 

[2] [195], a ANN [99], and an LDA [10]. However, Xie et. al. [73] verified that a combination of 

classifiers can enhance the performance of the model when compared to the performance of 

individual classifiers. Therefore, a classification combination technique was proposed and employed 
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in this work to address the issue of OSA detection from a single signal, addressing the classical issues 

associated with this approach, specifically the selection of the most relevant classifiers and the 

features for each classifier. Hence, an automated algorithm to choose the feature and construct a 

combined classifier without human intervention was developed for this work.  

The classification was performed with the combination of different classifiers outputs to create a 

single output. Considering the classifiers used in the state of the art [87], seven classifiers were tested: 

a ANN (the number of neurons in the hidden layer was selected to be 2𝑛𝑖 + 1 [66] [195] [102], where 

𝑛𝑖 is the number of inputs); an SVM with a linear kernel (SVM-L); an SVM with a Gaussian Radial 

Basis Function kernel (SVM-RBF); an SVM with a polynomial kernel (SVM-P); a k-Nearest 

Neighbor (KNN); an LDA; and a Naive Bayes Classifier (NB).  

Two combination strategies were tested. The first one was Maximum Voting (MaxV), and the other 

was a weighted method. The first combination strategy employed three classifiers since three is the 

lowest number needed to break a tie in a majority voting. The same number of classifiers was also 

used in the weighted method for a fair comparison. 

5.4.2. Self-Configuring Classifier Combination method 

 A parallel combination method was employed as a combination strategy where each classifier was 

generated and trained in parallel. Also, there are homogeneous learners (using only one type of 

classifier) selected by the GA, providing a greater margin for optimization, and heterogeneous 

learners (using multiple types of classifiers). Though the system is designed for heterogeneous 

learners, the algorithm does not prohibit homogeneous learners, however. A block diagram of the 

Self-Configuring Classifier Combination (SC3, can be read as ‘S’ triple ‘C’) system is shown in 

Figure 27. 

Two input features selection strategies were implemented. The first one was classifier dependent, 

where each classifier was allowed to choose its own feature set independently (shown using the 

dashed line in Figure 27).   The second one, shared features among classifiers (𝐹𝑛 = 𝐹𝑎) (shown 

using the dotted line in Figure 27). Since a set of 61 individual features was used in this work, the 

Shared Feature (SF) selection methods have to choose from 61 features. Conversely, the Independent 

Feature (IF) selection method can select 61 features (Table 6) for each classifier (the method 

employed 3 classifiers in each configuration), allowing 183 (61×3) possible choices. 

A GA was employed to solve the optimization problem. Each chromosome had 61 or 183 bits for 

feature selection depending, on the feature selection method. A total of 7 classifiers were tested and 

they were represented by 3 bits variables. For the weighted method, three sets of 7 bits were used for 
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the weight of each classifier. Therefore, a MaxV SF needs 70 (61+3×3) bits and the MaxV IF needs 

192 (61×3+3×3) bits to represent the problem space. On the other hand, a weighted linear 

combination (WLC) SF classifier method needs 91 (61+3×3+7×3) bits, and the WLC IF one needs 

213 (61×3+3×3+7×3) bits.  

 

Figure 27 : Block diagram of the self-configuring classifier combination (SC3) technique. 

  The objective of the SC3 was to design a classification process by reducing the Cost Function 

(𝐶𝐹). This model flowchart considers: 

1. Initial population: The GA started with an initial population with random chromosomes. 

For the first-generation, the initial population was treated as a new population. The 

population of each implementation was equal to the number of problem space bit size 

(chromosome size). 

2. New population: For the first generation the new population was equal to the initial 

population. For other generations, the new population was the combination of the elite and 

the new children.     

3. Fitness evaluation: The outputs of the classifiers are combined using two combination 

strategies: Majority Voting and Weighted Method independently described below.  

Majority Voting: MaxV reaches a decision using a voting method. If the majority of the 

classifiers vote for one output the system chooses that output to be the system output. 

MaxV combines the classifiers by  
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Out= {1 if 
∑ Oi(x)
M
i=1 ≥ ⌊M/2⌋+1 

0 else
        (6) 

    

where 𝑥  is the input, and 𝑂𝑢𝑡𝑖 ∈ {0,1} is the crisp output of 𝑖𝑡ℎ  classifier. This method 

provides an accurate class label when at least ⌊𝑀/2⌋+ 1  classifiers give correct 

classifications. For this work 𝑀 was selected to be 3 [207]. 

Weighted Method: Fumera et al. [208] showed that a linear combination of the weighted 

averaging of classifier’s output outperforms a conventional averaging process. Therefore, a 

WLC was also used to combine the classifiers [209]. However, finding the optimal weights 

for each classifier is still an open problem [208] [210]. In this work, the optimal weights for 

each classifier were found by making the weights as a part of the problem variables that 

were optimized by the GA. The final output of WLC is 

Out = {
1 if ∑

wi
∑ wj
M
j=1

 Oi(x)≥0.5
M
i=1

0 else
          (7) 

     

where 𝑤𝑖 is the weight value of the 𝑖𝑡ℎ classifier, ranging between 0 to 127 assuming that 

these numbers were enough for the weight resolution and that these numbers could be 

translated to 7 bits. The algorithm has 𝑀 = 3 classifiers. Therefore, each classifier needs its 

own 7 bits to represent the weights which results in 21 more bits to represent the 

optimization problem in the GA compared to MaxV. 

The output of the combined classifiers was used for performance and the fitness evolution. 

Due to the previous success of the combination objective (𝐶𝑂) in the case of unbalance 

datasets [106] [211] a 𝐶𝑂 was used for the fitness evaluation where 𝐶𝑂 is the average of the 

accuracy (Acc), sensitivity (Sen ) and specificity (Spc). 

CO=
1

3
(Acc+Sen+Spc)                        (8) 

Therefore, the cost function (𝐶𝐹) was derived from 𝐶𝑂. The 𝐶𝐹 used in this work was 

CF=100-CO             (9) 

The fitness evaluation was responsible for training and testing the designed classifier. The 

data were divided into two sets for a two-fold method. For the fitness evaluation, the 

average of the two-fold 𝐶𝐹 was used. 

4. Stopping condition: If 4 or more consecutive generations of random children were created 

according to step 6 or the maximum number of generations (100) was reached, the 

algorithm stops.  

5. Elite: The best performing chromosomes who were elites in the previous generation were 

passed on to the next generation without mutation or crossover. For this work, the two best 

members of the population compose the elite. 

6. Random children condition: If the average evaluation parameter of the generation and best 

evaluation parameter had a difference less than or equal to 0.1 percent, then instead of 
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crossover or mutation, a set of random children was created. Therefore, diversity was 

introduced in the generation.  

7. Parent selection: A tournament selection process was used to select both parents. In this 

work, a tournament size of 10 was used. 

8. Crossover: Crossover, sometimes called recombination, was used to produce children. A 

single point crossover was used for this work with a probability of 0.9. 

9. Mutation: The genetic diversity of the chromosomes was created by a mutation which alters 

the values of the chromosomes.  The probability of the mutation used in this work was 0.1. 

10. Random Children: Random children generation was similar to the initial population where 

the chromosomes were created randomly. 

11. End: When one of the termination conditions occurs, the algorithm stops. 

5.4.3. Performance of SC3 

To understand the effectiveness of the classifier combination, a commonly used single classifier 

(LDA) [87] with a GA based feature selection is estimated using the HuGCDN2008 database. The 

Acc, Sen, and Spc of each generation are presented in Figure 28, while the optimized cost function 

and the number of the features are shown in Figure 29. For the LDA, the best 𝐶𝐹 at the termination 

(after 21 generations) was 18.06%, 18.22%, and 19.17% for, 1 minute, 3 minute and 5 minute, 

respectively. Both 1 minute and 5 minute solutions have 37 features, and their Acc (85.58% for 1 

minute, 85.34% for 3 minute), Sen (68.91% for 1 minute, 68.99% for 3 minute) and Spc (91.35% for 

1 minute, 91.02% for 3 minute) are similar. On the other hand, the 5 minute solution has 34 features 

with increased Spc (92.46%), decreased Sen (64.74%) and similar Acc (85.29%). From these results it 

is possible to conclude that the increased input size does not have a significant positive impact on the 

results. The best 𝐶𝐹 of the LDA based solution was 18.06% with a 1 minute input size. 

The SC3 technique was implemented using the HuGCDN2008 database. A subject independent 

two-fold method was applied to avoid bias. Two strategies, MaxV and WLC, were tested with IF for 

each classifier and SF among the classifiers. The effect of the input size (signal length) was studied 

for three scenarios, specifically, the same features with 1 minute (3000 samples), 3 minutes (9000 

samples), and 5 minutes (15000 samples). The self-configuring classifier combination technique 

reached the stopping criteria at 21 generations (Figure 30, Figure 28) and the final results are 

summarized in Table 17. From the HuGCDN2008 dataset, each combined classifier has two trained 

classifiers because of the two-fold method. These two classifiers were tested on the AED dataset, and 

the average results are presented in Table 18. Every solution of the proposed self-configuring 

classifier combination is better than the LDA respect to 𝐶𝐹. The self-configuring classifier technique 

achieved a similar Acc when compared with the single classifier system; however, the SC3 results are 
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more balanced. The main achievement of the SC3 is increased sensitivity (apnea events) without 

sacrificing the accuracy of the system, thus providing a relevant model for clinical analysis.  

 

Figure 28 : Accuracy (Acc), Sensitivity (Sen), and Specificity (Spc) of 1 minute, 3 minute and 5 

minute LDA over the generations for the best performance objective. 

 

 Figure 29 : a) Cost and b) Number of features of 1 minute, 3 minute and 5 minute LDA over the 

generations for the best performance objective. 

 



 

82 

 

Figure 30 : Accuracy (Acc), Sensitivity (Sen), and Specificity (Spc) of 1 minute, 3 minute and 5 

minute MaxV and WLC over the generations for the best performance objective. 

 

Table 17 : Self configuring classifier combination results for the HuGCDN2008 database using two 

fold cross validation for different inputs. 

Classifier 
Input size 

(Seconds) 

No of 

features 
Sen Spc Acc CF 

MaxVSF1 60 34 83.51 85.30 84.77 15.47 

MaxVSF3 180 27 79.86 87.08 85.22 15.95 

MaxVSF5 300 34 81.49 85.28 84.3 16.31 

MaxVIF1 60 98 82.48 86.28 85.30 15.31 
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MaxVIF3 180 90 81.79 86.14 84.99 15.69 

MaxVIF5 300 89 80.54 85.74 84.46 16.42 

WLCSF1  60 34 81.91 86.31 85.15 15.54 

WLCSF3 180 29 83.49 84.71 84.37 15.81 

WLCSF5 300 30 80.07 86.07 84.52 16.45 

WLCIF1  60 96 83.19 85.52 84.85 15.48 

WLCIF3 180 99 81.18 86.22 84.88 15.91 

WLCIF5 300 89 86.33 79.91 84.72 16.35 

LDA 60 37 68.91 91.35 85.58 18.06 

LDA 180 37 68.99 91.02 85.34 18.22 

LDA 300 34 64.74 92.46 85.29 19.17 

 

Table 18 : Self configuring classifier combination results for cross database (trained with 

HuGCDN2008 and tested with AED) comparison for different inputs. 

Classifier 
Input size 

(Seconds) 

No of 

features 
Sen Spc Acc CF 

MaxVSF1 60 34 98.11 86.98 91.33 7.86 

MaxVSF3 180 27 96.83 86.94 90.92 8.44 

MaxVSF5 300 34 97.58 68.31 80.09 18 

MaxVIF1 60 98 95.02 88.35 90.95 8.56 

MaxVIF3 180 90 95.41 84.66 88.99 10.31 

MaxVIF5 300 89 79.56 86.17 83.51 16.92 

WLCSF1  60 34 97.39 86.50 90.75 8.45 

WLCSF3 180 29 97.31 83.08 88.81 10.27 

WLCSF5 300 30 96.71 87.35 91.12 8.27 

WLCIF1  60 96 96.71 87.73 91.23 8.11 

WLCIF3 180 99 94.23 84.56 88.45 10.92 

WLCIF5 300 89 92.27 87.88 89.65 10.07 

5.4.4. Comparison of SF and IF for MaxV SC3 

 The MaxV classification technique considers the maximum number of outputs of the classifiers. 

Thus, if two or more classifiers agree on an output, it produces that output as the final output. All of 

the simulations terminate in the 21st generation because of the stopping condition for the 

HuGCDN2008 database (Figure 30).  

Among the six variations of the developed self-configuring classifier combination, the 1 minute IF 

had the lowest 𝐶𝐹 of 15.31%, whereas 5 minute IF had the highest CF of 16.42% (Figure 31 a). The 

MaxV SF (MaxVSF) with three different inputs produced three different classifier combinations for 1 

minute (SVM_L, KNN, and SVM_P), 3 minute (SVM_L, NB, and LD) and 5 minute (SVM_L, 

SVM_P, and LD) (Table 19). The MaxVSF 1 minute (MaxVSF1), the MaxVSF 3 minute (MaxVSF3) 

and the MaxVSF 5 minute (MaxVSF5) stopped in 21 generations with a 𝐶𝐹 of 15.47%, 15.95% and 

16.31%, respectively. All MaxVSF have an SVM_L classifier. Following the same naming rule as 

MaxVSF1, MaxVIF1 (SVM_L, LD, and SVM_P), MaxVIF3 (SVM_P, SVM_L, and LD), and 

MaxVIF5 (SVM_RBF, KNN, and LD) achieved the goal with a 𝐶𝐹 of 15.31%, 15.69%,and 16.42%, 

respectively. The Acc, Sen, and Spc of each SC3 is shown in Figure 30. 

Figure 31 shows the cost function of the best solution for each generation of the MaxV 

implementation. By analyzing the figure, it is noticeable that both the shared and independent features 

with 1 minute achieved the best performance, followed by the 3 minute and 5 minute performance. In 
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the beginning, the best 𝐶𝐹 for 1 min was 15.77% for IF and 16% for SF. In the case of 3 minute, the 

starting difference was 0.25% where IF was 16.25% and SF was 16.5%. For 5 minute the starting 

difference was almost the same, namely 16.8% (for IF) and 16.84% (for SF).  

Through all of the simulations, the SC3 was able to keep the cost function stable or reduce it in each 

generation. This stability was possible by the elites where the two best solutions from the previous 

generation were carried onto the next generation without any modification. In the case of the three 

minute window, the IF solution was always better than the shared one. On the other hand, for 1 

minute window, the role of the best cost function switched between the IF and the SF. However, in 

the end, the IF performed better than the SF but this observation was not true for the 5 minute. After 

generation 5, the IF was never able to surpass SF. This result contradicts the theory that the best 

performance was obtained by combining different feature sets with different individual classifiers 

[212] [210]. Theoretically, it is simple to understand that the SF system is a subset of the IF system. 

There is always a solution in the IF system which can mirror the SF solution. These results might 

occur due to the number of generations that were used by the models since the IF system has more 

variables to decide the solution which makes the problem more challenging to solve.  

 

Figure 31 : a) Cost and b) Number of features of 1 minute, 3 minute and 5 minute MaxV Independent 

Feature (IF) and Shared Feature (SF) classification combination over the generations for the best 

performance objective. 

Figure 31 b) shows the number of features used by each variation of the SC3. The figure indicates 

the total number of features. The IF solutions have more features than the SF ones. The lowest 

number of features (27 features) was selected by the 3 minute SF while both the 1 minute and 5 

minute SF used 34 features to achieve their 𝐶𝐹 . On the other hand, all of the IF solutions have almost 

3 times more features than the SF. 1 minute, 3 minute, and 5 minute IF solutions, the SC3 used 98, 90 

and 89 features, respectively. 
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5.4.5. Comparison of SF and IF for WLC SC3 

 Instead of counting the outputs of the classifiers directly, the WLC multiplies the crisp output of 

each classifier by a weight, and if the weighted sum of the output favors one output over the others 

then that output is chosen. For WLCSF1, the combination of classifiers was SVM_P, LD, and 

SVM_L; for WLCSF3 the combination of classifiers was NB, SVM_L, and KNN and for WLCSF5 

the combination of classifiers was SVM_L, LD, and SVM_P. In comparison to these WLCIF1 used 

LD, SVM_L, and SVM_P as classifiers; WLCIF3 used LD, SVM_L, and SVM_L as classifiers; and 

WLCIF5 used LD, SVM_L, and SVM_P as classifiers to create the final classification combination. 

The Acc, Sen, and Spc are presented for the respective SC3.  

As can be seen in Figure 32, except for the 5 minutes WLC, the other four SC3 start the generation 

between 16.07% and 16.25% 𝐶𝐹. In the end, the 1 minute WLCIF had the lowest 𝐶𝐹 of 15.48% 

(best), followed by 15.81% of the 3 minute WLCSF in second place.  The WLCIF methods achieved 

a better solution than the WLCSF for the 1 minute and 5 minute cases. However, for the 3 minute 

window the WLCSF attained the best results (Figure 32 a).   

 

Figure 32 : a) Cost b) Number of features of 1 minute, 3 minute and 5 minute WLCSF and WLCIF 

classification combination over the generations for the best performance objective. 

 

The WLCIF had a higher number of features in all generations (Figure 32 b). The lowest number of 

features (29) was used by the 3 minute WLCSF while the highest number of features (99) was used by 

the 3 minute WLCIF. The WLCSF5 used 30 features while the 1 minute window used 34. The 

WLCIF with the 5 minute’ window used 89 features and the 1 minute window used 96 features.  
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5.4.6. Comparison Between MaxV and WLC 

The number of bits needed for the WLC was always higher when compared to the MaxV in the 

SC3. The weight of each classifier is responsible for the extra bits in the WLC. In this work, three 

classifiers were used with 7 bits to represent the weights. Thus, for a similar problem, the WLC had 

21 more bits for each chromosome than the MaxV. 

The best 𝐶𝐹  (15.31%) was accomplished by MaxVIF1, which also attained the highest Acc 

(85.30%) even though it does not have the highest Sen (86.33%) or Spc (87.08%) which were attained 

by WLCIF5 and MaxVSF3, respectively. MaxVIF1 has a balanced performance, with 82.48% Sen 

and 86.28% Spc. For the SF, MaxVSF1 achieved the best 𝐶𝐹 , and in the case of IF, MaxVIF1 has the 

best 𝐶𝐹 . The lowest number of features and SF was achieved by MaxVSF3, while for IF, both 

MaxVIF5 and WLCIF5 (used 89 features each, please refer to Table 19).  

Table 19: Selected Features and Classifiers for Different SC3. 
Strategy 

(Num of 

Features) 

Classifiers 

(Num of 

Features) 

Features 

 SVM_L Avg, Var, CoV, Sk, Kurt, Min, REp, Fb1, Fb3, Fb5, Fb7, Fb8, Fb10, Fb11, Fb12, Fb14, Fb15, 

Fb16, TFVarCA6, TFMadCA6, TFVarCD6, TFSdCD6, TFMadCD6, TFSdCD5, TFSEnCD4, 
TFVarCD4, TFVarCD3, TFMadCD3, TFSdCd2, TFSEnCD1, TFVaeCD1, TFSdCD1, CTM50, 

ODI3 

MaxVSF1 

(34) 

KNN 

SVM_P 

 SVM_L Var, Kurt, RMS, Min, SEn, Fb9, Fb12, Fb15, Fb17, Fb18, TFSEnCA6, TFVaeCA6, 
TFMadCA6, TFMadCD6, TFVarCD5, TFSenCD4, TFVarCD4, TFSdCD4, TFMadCD4, 

TFSEnCD3, TFVarCD3, TFMadCD3, TFSdCD2, TFMadCD2, TFVarCD1, TFMadCD1, ODI3 
MaxVSF3 

(27) 
NB 

LD 

 SVM_L Avg, Var, Kurt, RMS, Max, SEn, Fb2, Fb3, Fb4, Fb8, Fb9, Fb10, Fb12, Fb13, Fb14, Fb17, 

Fb18, Fb19, TFSEnCA6, TFVarCA6, TFSdCA6, TFVarCD6, TFSdCD5, TFSEnCD5, 

TFMadCD4, TFVarCD3, TFSdCD3, TFMadCD3, TFSEnCD2, TFVarCD2, TFSdCD2, 
TFSEnCD1, CTM50, DIndex 

MaxVSF5 

(34) 

SVM_P 

LD 

 SVM_P Var, CoV, Kurt, RMS, REn, SEn, Fb1, Fb3, Fb6, Fb7, Fb10, Fb14, Fb15, Fb17, Fb18, Fb19, 

TFSEnCD6, TFVarCA6, TFMadCA6, TFSdCD6, TFMadCD6, TFSEnCD5, TFSdCD5, 
TFSEnCD4, TFVarCD4, TFSdCD44, TFSEnCD3, TFVarCD3, TFMadCD3, TFVarCD2, 

TFSdCD2, TFSEnCD1, TFVarCD1, DIndex 

WLCSF1 

(34) 

LD 

SVM_L 

 NB Kurt, RMS, Fb1, Fb2, Fb4, Fb5, Fb6, Fb7, Fb8, Fb10, Fb11, Fb12, TFVarCA6, TFSdCA6, 

TFMadCA6, TFSEnCD6, TFVarCD6, TFMadCD6, TFSEnCD5, TFMadCD5, TFSdCD4, 
TFSdCD3, TFMadCD3, TFSEnCD2, TFVarCD2, TFCVarD1, CTM50, ODI3, DIndex 

WLCSF3 
(29) 

SVM_L 

KNN 

 SVM_L Var, Kurt, RMS, Min, Ren, Fb2, Fb3, Fb7, Fb10, Fb11, Fb12, Fb20, TFSEnCA6, TFVarCA6, 

TFSdCD6, TFSEnCD5, TFSdCD5, TFSEnCD4, TFVarCD4, TFSdCD4, TFSEnCD3, 

TFVarCD3, TFMadCD3, TFSEnCD2, TFVarCD2, TFMadCD2, TFVarCD1, TFMadCD1, 
CTM50, DIndex 

WLCSF5 

(30) 

NB 

ANN 

 SVM_L (39) Avg, Sk, Kurt, RMS, Max, REn, Fb1, Fb2, Fb3, Fb4, Fb5, Fb6, Fb7, Fb9, Fb10, Fb11, Fb12, 

Fb13, Fb14, F18, Fb19, Fb20, TFSEnCA6, TFVarCA6, TFMadCA6, TFSEnCD6, TFMadCD6, 
TFMadCD5, TFSEnCD3, TFVarCD3, TFSdCD3, TFSEnCD2, TFVarCD2, TFSdCD2,  

TFSdCD1, TFMadCD1, CTM50, ODI3, DIndex 

MaxVIF1 

(98) 

LD (25) Var, CoV, RMS, Max, Min, REn, SEn, Fb3, Fb7, Fb10, Fb11, Fb13, Fb16, Fb17, Fb20, 

TFVarCA6, TFSdCD6, TFMadCD5, TFVarCD4, TFMadCD4, TFSEnCD3, TFVarCD3, 
TFSdCD3, TFSEnCD2, TFSdCD1 

 SVM_P (34) Avg, Kurt, RMS, Max, Min, REn, Fb1, Fb4, Fb10, Fb12, Fb13, Fb14, Fb16, Fb19, Fb20, 

SEnCA6, TFCA6, TFSdCA6, TFVarCD6, TFSDCD6, TFSEnCD5, TFVarCD5, TFSdCD5, 
TFMadCD5, TFVarCD4, TFMadCD4, TFSEnCD3, TFVarCD3, TFSdCD3, TFMadCD3, 

TFSEnCD2, TFVarCD1, TFSdCD1, DIndex 

 SVM_P (32) Kurt, RMS, Min, REn, SEn, Fb1, Fb5, Fb6, Fb7, Fb8, Fb12, Fb13, Fb15, Fb16, Fb17, Fb18, 

Fb19, TFSEnCA6, TFVarCA6, TFSEnCD6, TFVarCD6, TFSEnCA5, TFSdCA5, TFMadCA5, 
TFSdCD4, TFMadCD4, TFSEnCA3, TFVarCD3, TFSdCD2, TFSEnCD1, TFSdCD1, ODI3 

MaxVIF3 

(90) 

SVM_L (27) Var, Kurt, REn, SEn, Fb2, Fb8, Fb9, Fb11, Fb12, Fb16, Fb19, TFSdCA6, TFSEnCD6, 

TFVarCD6, TFSdCD6, TFMadCD6, TFVarCA5, TFMadCA5, TFVarCD4, TFSdCD4, 
TFSEnCA3, TFSEnCD2, TFSdCD2, TFVarCD1, TFSdCD1, ODI3, DIndex, 

 LD (31) Var, CoV, Sk, Kurt, Max, Min, REn, SEn, Fb4, Fb5, Fb7, Fb8, TFSEnCA6, TFVarCA6, 

TFSdCA6, TFMadCA6, TFSdCD6, TFVarCA5, TFMadCA5, TFVarCD4, TFSdCD4, 

TFMadCD4, TFSdCD3, TFVarCD2, TFSdCD2, TFMadCD2, TFSEnCD1, TFVarCD1, 
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TFSdCD1, ODI3, DIndex 

 SVM_RBF 
(29) 

Avg, Var, CoV, RMS, Max, REn, SEn, Fb1, Fb4, Fb5, Fb7, Fb9, TFSEnCA6, TFVarCA6, 
TFMadCA6, TFSEnCD6, TFVarCD6, TFVarCD4, TFSdCD4, TFMadCD4, TFSEnCA3, 

TFSdCD3, TFMadCD3, TFSEnCD2, TFVarCD1, TFSdCD1, TFMadCD1, CTM50, DIndex 

MaxVIF5 
(89) 

KNN (31) Kurt, RMS, Min, Fb1, Fb2, Fb3, Fb5, Fb6, Fb, Fb10, Fb15, Fb16, Fb17, Fb19, Fb20, TFSdCA6, 
TFMadCA6, TFSEnCD6, TFVarCD6, TFMadCD6, TFSEnCA5, TFMadCA5, TFSEnCD4, 

TFMadCD4, TFSEnCA3, TFVarCD3, TFSdCD3, TFSEnCD2, TFMadCD2, TFVarCD1, 

TFSdCD1 

 LD (29) Avg, Var, Kurt, Max, Min, REn, SEn, Fb1, Fb7, Fb8, Fb9, Fb11, Fb12, Fb13, Fb17, Fb19, 
TFSEnCA6, TFSdCD6, TFMadCD6, TFSEnCA5, TFSdCA5, TFMadCA5, TFSdCD3, 

TFMadCD3, TFMadCD2, TFSEnCD1, TFVarCD1, CTM50, DIndex 

 LD (36) Var, CoV, RMS, REn, SEn, Fb1, Fb6, Fb7, Fb8, Fb9, Fb10, Fb13, Fb14, Fb16, Fb17, Fb18, 
Fb19, TFSEnCA6, TFVarCA6, TFVarCD6, TFSdCD6, TFMadCD6, TFSEnCA5, TFVarCA5, 

TFSdCA5, TFMadCA5, TFVarCD4, TFSdCD4, TFMadCD4, TFSdCD3, TFSEnCD2, 

TFVarCD2, TFVarCD1, TFSdCD1, CTM50, DIndex 

WLCIF1 
(96) 

SVM_L (30) Avg, Sk, Kurt, RMS, Max, REn, Fb2, Fb4, Fb6, Fb10, Fb11, Fb13, Fb16, Fb19, TFVarCA6, 
TFSdCA6, TFSEnCD6, TFVarCD6, TFSdCD6, TFMadCD6, TFSEnCA5, TFVarCA5, 

TFSdCA5, TFVarCD4, TFSdCD4, TFMadCD4, TFMadCD3, TFSdCD2, CTM50, ODI3 

 SVM_P (30) Avg, CoV, RMS, Fb1, Fb4, Fb5, Fb8, Fb13, Fb14, Fb15, Fb16, Fb17, Fb20, TFSEnCA6, 
TFVarCA6, TFMadCA6, TFSdCD6, TFMadCD6, TFSEnCA5, TFVarCA5, TFSdCA5, 

TFVarCD4, TFVarCD3, TFSdCD3, TFMadCD3, TFSEnCD2, TFVarCD1, TFSdCD1, 

TFMadCD1, ODI3 

 LD (31) Avg, CoV, Sk, SEn, Fb1, Fb4, Fb5, Fb6, Fb7, Fb12, Fb16, Fb19, Fb20, TFSEnCA6, TFSdCA6, 
TFMadCA6, TFSEnCD6, TFVarCD6, TFMadCD6, TFSEnCA5, TFSdCA5, TFVarCD4, 

TFMadCD4, TFSEnCA3, TFSdCD3, TFMadCD3, TFSEnCD2, TFVarCD2, TFSEnCD1, ODI3, 
DIndex 

WLCIF3 

(99) 

SVM_L (32) Avg, CoV, Kurt, RMS, Max, REn, SEn, Fb1, Fb3, Fb7, Fb8, Fb10, Fb11, Fb16, Fb19, Fb20, 

TFSEnCA6, TFVarCA6, TFSEnCD6, TFSdCD6, TFMadCD6, TFSEnCA5, TFMadCA5, 

TFSEnCD4, TFVarCD4, TFSdCD4, TFSEnCA3, TFVarCD3, TFVarCD2, TFMadCD1, ODI3, 
DIndex 

 SVM_L (36) Var, CoV, Sk, RMS, Max, Min, SEn, Fb2, Fb3, Fb5, Fb9, Fb10, Fb11, Fb12, Fb13, Fb14, Fb15, 

Fb19, Fb20, TFVarCA6, TFSEnCD6, TFMadCD6, TFSEnCA5, TFSdCA5, TFSEnCD4, 
TFSdCD4, TFVarCD3, TFSdCD3, TFMadCD3, TFSEnCD2, TFVarCD2, TFSdCD2, 

TFMadCD2, TFMadCD1, CTM50, DIndex 

 LD (29) Avg, Var, RMS, Max, REn, SEn, Fb2, Fb3, Fb5, Fb6, Fb12, Fb14, Fb17, Fb18, Fb20, 

TFSEnCA6, TFMadCA6, TFSEnCD6, TFVarCD6, TFSdCD6, TFSEnCA5, TFSdCA5, 

TFMadCA5, TFSEnCD4, TFSEnCA3, TFMadCD3, TFMadCD2, CTM50, Dindex 

WLCIF5 

(89) 

SVM_L (27) Var, Kurt, Max, Min, Fb2, Fb6, Fb10, Fb12, Fb17, Fb18, TFSEnCA6, TFSdCA6, TFMadCA6, 

TFVarCD6, TFSdCD6, TFSEnCA5, TFVarCA5, TFVarCD4, TFSdCD4, TFMadCD4, 
TFSEnCA3, TFSdCD3, TFSEnCD2, TFMadCD2, TFVarCD1, CTM50, DIndex 

 SVM_P (33) Var, Sk, Kurt, Min, SEn, Fb2, Fb3, Fb6, Fb7, Fb8, Fb9, Fb10, Fb11, Fb13, Fb16, Fb18, Fb20, 

TFSEnCD6, TFVarCD6, TFMadCD6, TFSEnCD4, TFVarCD4, TFSdCD4, TFSEnCA3, 

TFVarCD3, TFSdCD3, TFVarCD2, TFSdCD2, TFVarCD1, TFSdCD1, TFMadCD1, CTM50, 
DIndex 

 

Regarding the number of chosen features, SF 1 minute and IF 5 minute (the WLC and the MaxV) 

selected a similar number of features. On the other input sizes, the difference is small. The WLC has a 

higher accuracy in a SF 1 minute, a SF 5 minute and an IF 5 minute. The maximum difference 

between the two methods regarding the Acc is lower than 0.5% (for the IF) and 0.9% (for the SF). For 

the Spc, a maximum of 5.83% and 2.3% difference occurred in the IF and the SF, respectively. For 

the Sen, the values are 5.79% and 3.63%, respectively.  

For further analysis, a side by side comparison of the subtracted performance parameter between 

the MaxV, and the WLC is presented in Figure 33. The negative values in the figure indicate that the 

WLC has a higher parametric value, while positive values indicate that the MaxV has a higher 

parametric value. There are 4 parametric values of three different input sizes; therefore, a total of 

twelve parametric values for SF and IF were compared. Among them, the MaxV has a better 

parametric value, in case SF 5 parameters and in case of IF 6 parameters are better, where in both 

cases 1 parameter is equal to both the SF and the IF. So overall, the MaxV performs better than the 
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WLC.  

 

Figure 33 : A subtraction of the performance parameters between the MaxV and the WLC (MaxV-

WLC) for the HuGCDN2008 database (Num indicates number). 

5.4.7. Comparison with other work 

The SC3 algorithm was implemented in the HuGCDN2008 database to find an optimized combined 

classifier without human intervention. Due to the unbalanced dataset, the cost function was chosen to 

balance the Acc, Sen and Spc. The best cost function value was achieved by MaxVIF1, which has an 

accuracy of 85.30%. This is higher than most of the performances reported in most of the works 

presented in the literature [185] [106] [195] [73] [190].  

A comparison with other works is shown in Table 20. Two works presented in the literature, [2] 

[190], attained a better accuracy than MaxVIF1. Zhang et al. [2] used an SVM with seven features 

and it was tested on 40 patients conducted in a hospital in East Asia. Biswal et al. [190] used a 

combination of deep recurrent and convolutional neural networks in the Massachusetts General 

Hospital (MGH) dataset having better accuracy than the proposed system. Biswal et al. [190] worked 

in the Sleep Heart Health Study (SHHS) database, having a lower accuracy than the proposed system 



 

89 

and thus indicating a possible data dependency of the classification system. Other deep network 

implementations include a Deep Auto Encoder (DAE) [106] and  a CNN with a two dimensional 

input (CNN2D) [185], which present lower accuracy than the proposed system. However, their works 

were implemented in the UCD database [62]. All of the classifiers using the AED [61] dataset 

presented a better accuracy than the proposed system which was tested on the HuGCDN2008 

database (Table 20), thus supporting the database independency of the proposed method.  

If a direct comparison is carried out then only one work is available in the literature using  the 

HuGCDN2008 database with a SpO2 [10], reporting an average Acc of 86.5%. Using the SpO2 and 

the HRV, Acc was 86.9%. These results are 1.2% and 1.6% higher than MaxVIF1, respectively. 

However, the main accomplishment of the SC3 algorithm was the balanced results of MaxVIF1 where 

the Sen was 81.91% while the reported Sen by Ravelo-García et al. [10] was 75.6% (SpO2) and 

73.4% (SpO2 and HRV). 

The best value for the 𝐶𝐹 (8.56%) when considering the HuGCDN2008 dataset was achieved by 

MaxVIF1. For the AED dataset the best 𝐶𝐹 was 7.86% and it was achieved by MaxVSF1. It is also 

relevant to note that MaxVSF1 achieved an average Acc, Spc and Sen of 91.33%, 86.98% and 

98.11%, respectively. Some works have employed deep learning techniques, such as LSTM [107] and  

DAE [106], which present the risk of overfitting the classifier due to the lower number of subjects in 

the AED database. On the contrary, shallow classifiers, such as SVM-L [195], are able to achieve a 

97.38% accuracy. The best matching technique was used by Mostafa et al. [102] where the authors 

used the GA to find the best features having an accuracy of 97.7% which is the highest among the 

literature using the AED database. However, their implementation was not subject independent. This 

proposed implementation is not only subject independent but also database independent, as the AED 

database was an unseen dataset for the classifiers.  

Table 20 : Comparison with other works. 

Ref. Signal Classifier Database 
Recordings 

or Patients 

Input size 

(Seconds) 

No of 

features 
Sen Spc Acc 

[99] SpO2  ANN AED [61] 8 60 3 87.5 100 90.3 

[195] 

(Section 5.2) 

SpO2 SVM-L AED [61] 8 60 50 83.76 97.03 96.89 

[195] 

(Section 5.2) 

SpO2 SVM-L AED [61] 8 60 20 84.57 97.28 97.38 

[102] 
(Section 5.3) 

SpO2 ANN AED [61] 8 60 7 96.5 98.5 97.7 

[106] SpO2 DAE AED [61] 8 60 - 78.75 95.89 97.64 

[107] SpO2 + IHR LSTM AED [61] 8 60 - 84.7 - 92.1 

[107] SpO2 LSTM AED [61] 8 60 - 92.9 - 95.5 

[2] SpO2 SVM  Own 40 150 7 - - 90 

[190] SpO2 + airflow 

+ respiration 

RCNN MGH 10000 1 - - - 88.2 

[190] SpO2 + airflow 
+ respiration 

RCNN SHHS 5804 1 - - - 80.2 

[73] SpO2 + ECG Bagging.RepTree UCD [62] 25 60 39 79.75 85.89 84.80 

[73] SpO2  Bagging.RepTree UCD [62] 25 60 39 78.23 84.25 82.79 

[195] 

(Section 5.2) 

SpO2 ANN UCD [62] 25 60 2 43.31 95.03 81.95 

[195] SpO2 LD UCD [62] 25 60 9 61.78 91.03 83.27 
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(Section 5.2) 

[106] SpO2 DBN UCD [62] 25 60 - 60.36  91.71 85.26 

[185] SpO2 + 
oronasal airflow 

+ ribcage and 

abdomen 
movements 

CNN2D UCD[62] 23 1 -   79.6 

[10] Spo2 LDA HuGCDN2008 70 60,300 19 75.6 91.00 86.5 

[10] Spo2 + HRV LDA HuGCDN2008 70 60,300 33 73.4 92.3 86.9 
p SpO2 MaxVIF1 HuGCDN2008 70 60 98 82.48 86.28 85.30 

p SpO2 MaxVSF1 AED [61] 8 60 34 98.11 86.98 91.33 

 

5.4.8. Summary 

The model proposed in this work employs a self-configuring classification combination method, 

which was able to choose the most relevant features and classifier structure automatically. Two well 

established methods, specifically the maximum voting and the positive weighting methods were used 

for classifier combination. The methods were tested in the models with shared features, for all 

classifiers, and independent features, for each classifier. It was verified that the maximum voting 

method with independent features for each classifier attained the best performance and all self-

configuring classification combination models outperform the LDA based on a single classifier. The 

model was also able to achieve significant and well-balanced results, despite the unbalanced dataset, 

advocating the potential application in clinical diagnosis.  

 Another relevant fact is that the results were attained using both subject and database 

independence. The trained classifiers were able to detect the apnea event of different subjects (subject 

independence) from dissimilar datasets (database independence). The proposed system achieved 

similar performance on the two datasets that were analyzed, and it was verified that a longer input 

size, or data length, does not always improve the results (the best performance was achieved by using 

a 1 minute input). It was also verified that the difference between independent and share features is 

significant, however, the independent feature based self-configuring classification combination 

requires more bits to define the problem, hence increasing the complexity of the system. 

A possible improvement in the results could be attained by changing the stopping criteria to run the 

simulation for a longer period to perceive if any improved solutions could be possible. Another 

alternative is to add another signal, such as HRV, to the models which is put into consideration for the 

future work along with the testing of different types of fusion and classifier ensembles (Section 5.5). 

It was verified that the combined methods can perform better than a common classifier with a small 

increase in complexity. Conversely, the complexity of the combined classifiers is lower than a deep 

network and, unlike these networks, it does not require a large amount of data to train the model. This 

is especially relevant in domains where the data are scarce. 
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5.5. Combination of SpO2 and HR using SC3 

5.5.1. Introduction 

The obstruction or reduction of airflow normally decreases the blood oxygen saturation level which 

can be used as a marker for apnea detection. On the other hand, due to respiratory sinus arrhythmia 

[213] which is the modulation of the HR in respiration, the HR can be used for apnea detection 

(Figure 34). Additionally, in some cases, a noticeable reduction in the partial oxygen pressure does 

not occur. Investigations of obstructive sleep apnea showed that apnea events have progressive 

bradycardia, followed by abrupt tachycardia on the resumption of breathing. So, heart rate variability 

is a good complement to the oxygen saturation signal. Some works in the literature used HR and 

SpO2+HR for apnea detection (for more details please refer to Section 4.2.3 and Section 4.2.6). 

Therefore, using the HR or both SpO2 and HR may improve the diagnosis of OSA in patients at little 

additional cost. To test this idea, the performance of the combination of SpO2 and HR is tested in this 

section. Because of the success of the proposed SC3 methods mentioned previously (Section 5.4), the 

MaxVIF classification technique of the SC3 method is used in this section. 

 

Figure 34 : SpO2 and HR with apnea annotation for five-minute data. 
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5.5.2. HR features 

From the ECG-derived HR, it is possible to analyze the HRV and the inter-beat (RR) interval that 

can be defined as the interval between successive QRS points. Chen and Zhang [124] mapped the 

individual long-term RR intervals into a disease state space. A set of 72 recurrence quantification 

analysis features from the HRV was used by Nguyen et al. [129]. Chen et al. [130] applied the RR 

intervals for signal segmentation using an iterated cumulative sum of squares algorithm that searches 

for the small variation changes in time series due to OSA. The combination of the analyses of the HR 

and the morphology of the ECG can be used to reliably detect sleep disordered breathing, as analyzed 

by Penzel et al. [133] using the cardiopulmonary coupling.   

Almazaydeh et al. [53] derived the RR interval from the ECG signal using an R-peak detection 

technique and used different time based features from the RR-interval such as the mean, standard 

deviation, NN50 among others. These are common types of features and are used by almost all of the 

works presented, such as by Chazal et al. [126]. Yılmaz et al. [125] used a linear kernel function to 

map the training data into kernel space using 6 features from the RR. Additionally, the RR series was 

the base of the detection algorithm presented by Ravelo et al. [127].  

Three techniques were used by Ravelo-García et al. [136] to obtain the HRV features. First of all, 

the RR series was encoded into sequences of symbols, and the permutation entropy and symbolic 

dynamics [117] were used to distinguish different HRV patterns. The second was the cepstrum 

analysis, thus obtaining cepstrum coefficients. Besides this work  the authors [136] used Cepstral 

coefficients in another work [121]. Besides them, Martínez-Vargas et al. [115] and Travieso et al. 

[128]  used Cepstral from the RR series. The PSD of the EDR was the third technique, using a filter 

bank with equally spaced filters [136]. These features were then used by the two tested classifiers, an 

LR and a QDA. Both classifiers achieved similar performance, however, the QDA provided the best 

results. Cepstrum Coefficients, a filter bank with 34 filters (to analyze the very low, low and high 

frequency), and detrended fluctuation analysis were employed by Martín-González et al. [137] with 

LDA, QDA, and LR classifiers reporting that the QDA as better. Quiceno-Manrique et al. [114] 

employed an analysis based on HRV using KNN with 30 dynamic features based on ten linearly 

distributed filters. When it comes to frequency based features besides Cepstrum Coefficients and  

filter bank, Zywietz et al. [118] used four frequency bands: the ULF, the VLF, the LF, the HF with an 

LDA classifier. The quotient of different frequency bands was used by Kesper et al. [116]. 

The wavelet transform of the HRV was used by Roche et al. [120]. Time and frequency domain 

entropies were used by Gutiérrez-Tobal et al. [119]. Khandoker et al. [138] used 14 levels of 

Daubechies wavelets to decompose the RR and the EDR signals. The result was used as an input to an 

SVM that classifies the OSA events. Features extracted from the wavelet decomposition of the HRV 
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and the EDR signals were used by Khandoker et al. [139] as inputs to the SVM classifier. The LDA 

classifier was also analyzed, providing similar results. The HRV and EDR signals were used by Yildiz 

et al. [140] using 64 points of the PSD (1 to 32 derived from the HRV and 33 to 64 from the EDR). 

Three SVM kernels were tested, specifically, the linear, the polynomial, and the Radial Basis 

Function (RBF). The highest accuracy was produced by the RBF using points 2, 3, 45, and 46 

(selected by a hill climbing algorithm.).   

The thesis aims is to develop a simple and accurate classification. Therefore, only ECG derived HR 

is used instead of ECG specific features. A list of features from the literature and an idea calculated 

from the RR series are tested in this section (Table 21). The variance of the HRV changes with the 

signal length. The suggested length was five minutes from Task Force of The European Society of 

Cardiology and The North American Society of Pacing and Electrophysiology [214]. Because of this, 

a five minute signal length is used for the HR analysis. 

Table 21: List of HR features. 
 Feature Details about Features 

1 Minimum (𝑀𝑖𝑛) 𝑀𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑥) 
2 Skewness (𝑆𝑘) 

𝑆𝑘 =

1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

3𝑛
𝑖=1

(√
1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)
𝑛
𝑖=1 )

3 

3 Mean (𝐴𝑣𝑔) [53] 𝐴𝑣𝑔 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1   where 𝑛 is the number of data points of the 

signal 𝑥. 

4 Coefficient of Variation (𝐶𝑜𝑉) 
𝐶𝑜𝑉 = √

𝑉𝑎𝑟

𝐴𝑣𝑔
      

5 Kurtosis (𝐾𝑢𝑟𝑡) 

𝐾𝑢𝑟𝑡 =

1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

4𝑛
𝑖=1

(
1
𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

2𝑛
𝑖=1 )

2 

6 Maximum (𝑀𝑎𝑥) 𝑀𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑥) 
7 Shannon Entropy (𝑆𝐸𝑛) 𝑆𝐸𝑛 = −∑ 𝑝(𝑖)𝑙𝑛(𝑝(𝑖))𝑛

𝑖=1    

Where 𝑝(𝑖) is the probability of a specific event occurrence.  

8 Renyi Entropy (𝑅𝐸𝑛) 𝑅𝐸𝑛 =
1

1−𝑞
𝑙𝑛(∑ 𝑝(𝑖)𝑞𝑛

𝑖=1 )    

9 Variance (𝑉𝑎𝑟) 𝑉𝑎𝑟 =
1

𝑛
∑ (𝑥𝑖 − 𝐴𝑣𝑔)

2𝑛
𝑖=1    

10 Root mean square (𝑅𝑀𝑆) 

𝑅𝑀𝑆 = √
1

𝑛
∑(𝑥𝑖)

2

𝑛

𝑖=

 

11 Twenty equally spaced filters to form a Filter bank (𝐹𝑏) 
[10] [140] [197] where, the ∆𝑚 is the bandwidth of 𝑚𝑡ℎ 

filter with a window 𝑈 and center frequency 𝑏𝑚 and 𝑁 is 

a number of samples. For the first filter bank (𝐹𝑏1) 𝑚 =
1.  

𝐹𝑏1 =
∑ |

1

𝑁
∑ 𝑆𝑎𝑡(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

0 |

2

𝑈∆1 
𝑏1+∆1
𝑘=𝑏1−∆1

∑ |
1

𝑁
∑ 𝑆𝑎𝑡(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

𝑛=0 |
𝑁
2−1

𝑘=0

2   

 

12 Second filter bank (𝐹𝑏2) 

𝐹𝑏2 =
∑ |

1
𝑁
∑ 𝑆𝑎𝑡(𝑛)𝑒−

𝑗2𝜋𝑘
𝑁𝑁−1

0 |
2

𝑈∆2 
𝑏2+∆2
𝑘=𝑏2−∆2

∑ |
1
𝑁
∑ 𝑆𝑎𝑡(𝑛)𝑒−

𝑗2𝜋𝑘
𝑁𝑁−1

𝑛=0 |
𝑁
2−1

𝑘=0

2  

….. …. …. 

32 Twentieth filter bank (𝐹𝑏20) 

𝐹𝑏20 =
∑ |

1

𝑁
∑ 𝑆𝑎𝑡(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

0 |

2

𝑈∆20 
𝑏20+∆20
𝑘=𝑏20−∆20

∑ |
1

𝑁
∑ 𝑆𝑎𝑡(𝑛)𝑒

−
𝑗2𝜋𝑘
𝑁𝑁−1

𝑛=0 |
𝑁
2−1

𝑘=0

2   

34 filter is used [137] 

31 Entropy of level 11 approximation of wavelet 

(𝑇𝐹𝑆𝐸𝑛𝐶𝐴11) 
𝑇𝐹𝑆𝐸𝑛𝐶𝐴6 = 𝑆𝐸𝑛(𝐶𝐴6) 
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33 Variance of level 11 approximation of wavelet 

(𝑇𝐹𝑉𝑎𝑟𝐶𝐴11) 𝑇𝐹𝑉𝑎𝑟𝐶𝐴6 =
1

𝑛
∑(𝐶𝐷6𝑖 − 𝐴𝑣𝑔(𝐶𝐴6))

2

𝑛

𝑖=1

 

34 Standard deviation of level 11 approximation of wavelet 

(𝑇𝐹𝑆𝑑𝐶𝐴11) 𝑇𝐹𝑆𝑑𝐶𝐴6 = √
∑ (𝐶𝐴6𝑖 − 𝐴𝑣𝑔(𝐶𝐷6))
𝑁
𝑖=1

𝑁 − 1
 

35 Median absolute deviation of level 11 approximation of 

wavelet (𝑇𝐹𝑀𝑎𝑑𝐶𝐴11) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐴6 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐴6) 

36 Entropy of level 1 details of wavelet (𝑇𝐹𝑆𝐸𝑛𝐶𝐷1) 𝑇𝐹𝑆𝐸𝑛𝐶𝐷1 = 𝑆𝐸𝑛(𝐶𝐷1) 
37 Variance of level 1 details of wavelet (𝑇𝐹𝑉𝑎𝑟𝐶𝐷1) 

𝑇𝐹𝑉𝑎𝑟𝐶𝐷1 =
1

𝑛
∑(𝐶𝐷1𝑖 − 𝐴𝑣𝑔(𝐶𝐷1))

2

𝑛

𝑖=1

 

38 Standard deviation of level 1 details of wavelet 

(𝑇𝐹𝑆𝑑𝐶𝐷1) 𝑇𝐹𝑆𝑑𝐶𝐷1 = √
∑ (𝐶𝐷1𝑖 − 𝐴𝑣𝑔(𝐶𝐷1))
𝑁
𝑖=1

𝑁 − 1
 

39 Median absolute deviation of level 1 details of wavelet 

(𝑇𝐹𝑀𝑎𝑑 𝐶𝐷1) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐷1 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐷1) 

40 Entropy of level 2 details of wavelet (𝑇𝐹𝑆𝐸𝑛𝐶𝐷2) 𝑇𝐹𝑆𝐸𝑛𝐶𝐷2 = 𝑆𝐸𝑛(𝐶𝐷2) 
41 Variance of level 2 details of wavelet (𝑇𝐹𝑉𝑎𝑟𝐶𝐷2) 

𝑇𝐹𝑉𝑎𝑟𝐶𝐷2 =
1

𝑛
∑(𝐶𝐷2𝑖 − 𝐴𝑣𝑔(𝐶𝐷2))

2

𝑛

𝑖=1

 

42 Standard deviation of level 2 details of wavelet 

(𝑇𝐹𝑆𝑑𝐶𝐷2) 𝑇𝐹𝑆𝑑𝐶𝐷2 = √
∑ (𝐶𝐷2𝑖 − 𝐴𝑣𝑔(𝐶𝐷2))
𝑁
𝑖=1

𝑁 − 1
 

43 Median absolute deviation of level 2 details of wavelet 

(𝑇𝐹𝑀𝑎𝑑 𝐶𝐷2) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐷2 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐷2) 

…. …. …. 

75 Entropy of level 11 details of wavelet (𝑇𝐹𝑆𝐸𝑛𝐶𝐷11) 𝑇𝐹𝑆𝐸𝑛𝐶𝐷6 = 𝑆𝐸𝑛(𝐶𝐷6) 
76 Variance of level 11 details of wavelet (𝑇𝐹𝑉𝑎𝑟𝐶𝐷11) 

𝑇𝐹𝑉𝑎𝑟𝐶𝐷6 =
1

𝑛
∑(𝐶𝐷6𝑖 − 𝐴𝑣𝑔(𝐶𝐷6))

2

𝑛

𝑖=1

 

77 Standard deviation of level 11 details of wavelet 

(𝑇𝐹𝑆𝑑𝐶𝐷11) 𝑇𝐹𝑆𝑑𝐶𝐷6 = √
∑ (𝐶𝐷6𝑖 − 𝐴𝑣𝑔(𝐶𝐷6))
𝑁
𝑖=1

𝑁 − 1
 

78 Median absolute deviation of level 11 details of wavelet 

(𝑇𝐹𝑀𝑎𝑑 𝐶𝐷11) 
𝑇𝐹𝑀𝑎𝑑𝐶𝐷6 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐶𝐷6) 

79-108 30 Cepstrum Coefficient (CC) [137]. 𝑐(𝜏) = 𝑟𝑒𝑎𝑙(𝐹−1(log (𝐹(𝑥)))) . Triangular 50% 

overlapping filter is used to calculate CC. 

109 Ratio between power in frequency band [0.026Hz, 0.06 

Hz] and power in frequency band [0.06Hz, 0.25 Hz]) in 
RR series[215]. 

dvi_pow= (between power in frequency band [0.026Hz, 

0.06 Hz]) / (power in frequency band [0.06Hz, 0.25 Hz]). 

110 Power in the frequency band from 0 Hz up to 0.0033 Hz 

[10]. 

ULF 

111 Power in the frequency band from 0.0033 Hz up to 0.04 
Hz [10] [216] [217]. 

VLF. 

112 Power in the frequency band from 0.04 Hz up to 0.15 Hz 

[10] [217]. 

LF. 

113 Power in the frequency band from 0.15 Hz up to 0.4 Hz 
[10] [217]. 

HF. 

114 Ratio of LF and HF [10] [217]. LF_HF=LF/HF. 

115 Ratio between LF and total power (pTot) [10]. LF_P=LF/ pTot. 

116 Ratio of HF and total power (pTot) [10]. HF_P=HF/ pTot. 

117 Ratio between VLF and total power (pTot) [10]. VLF_P=VLF/ pTot. 

118 ULF/P: ratio between ULF and total power (pTot) [10]. ULF_P=ULF/pTot. 

119 Ratio of sum of ULF ,VLF and total power (pTot) [10]. ULFVLF_P= (ULF + VLF)/pTot. 

120  Ratio of sum of ULF , VLF, LF and total power (pTot) 

[10].   

ULFVLFLF_P= (ULF + VLF + LF)/pTot. 

121 LF in normalized units, LF/(P − VLF) × 100 [10]. LFn=LF. /(pTot-VLF). * 100. 

122 HF in normalized units, HF/(P − VLF) × 100 [10]. HFn=HF./(pTot-VLF). *100. 

123 Percentage of RR-interval differences greater than 10 ms 

[216].  

pNN10 

124 Percentage of RR-interval differences greater than 20 ms 
[10] [216]. 

pNN20 

125 Percentage of RR-interval differences greater than 50 ms 

[10] [216]. 

pNN50 

126 Percentage of RR-interval differences greater than 100 
ms [10]. 

pNN100 

127 Percentage of RR-interval differences greater than 120 

ms [10]. 

pNN120 

128 Percentage of RR-interval differences greater than 150 

ms[10]. 

pNN150 

129 First the RR intervals are divided into 4 four codes Sn WPSUM13 
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{0,1,2,3}. 

𝑆𝑛 =

{
 

 
0 𝑖𝑓 𝑥𝑟𝑟 > 𝐴𝑣𝑔𝑟𝑟 𝑎𝑛𝑑 𝑥𝑟𝑟 ≤ (1 + 𝑎)𝐴𝑣𝑔𝑟𝑟 

1 𝑖𝑓 𝑥𝑟𝑟 > (1 + 𝑎)𝐴𝑣𝑔𝑟𝑟
2 𝑖𝑓 𝑥𝑟𝑟 > (1 − 𝑎)𝐴𝑣𝑔𝑟𝑟  𝑎𝑛𝑑 𝑥𝑟𝑟 ≤  𝐴𝑣𝑔𝑟𝑟

3 𝑖𝑓 𝑥𝑟𝑟 ≤ (1 − 𝑎)𝐴𝑣𝑔𝑟𝑟

 

Then words are formed using 3 symbols. The percentage 

of these words containing the symbols “1” and “3” is 

indicated as WPSUM13 [117] [10]. 

130 Same process as 129 features. The percentage of words 

contains code ‘0’ and ‘2’ [10]. 

WPSUM02 

131 Forbidden words (low probability less than 0.001) of 

length 3 [10].  

FORBWORDS 

132 Shannon entropy of the words [10]. FWSHANNON 

133 Renyi entropy (using q = 0.25) for the words [10]. FWRENYI0_25 

134 Renyi entropy (using q = 4) for the words [10]. FWRENYI4 

135 Variability (standard deviation) of the time series 
calculated from the transformed sequence of words [10]. 

The transformation is 𝑆𝑇  where 𝑛13  is the number of 

symbols corresponding to 1 or 3 in the word and 

𝑆13(𝜔𝑖) represents the word having either ‘1’ or ‘3’  in 

the first symbol for 𝑖 = 1,2,3…… ... 

𝑆𝑇(𝜔𝑖) =

{
 
 
 

 
 
 
3 𝑖𝑓 𝑛13(𝜔𝑖) = 3 𝑎𝑛𝑑 𝑆13(𝜔𝑖) = ′1′

2 𝑖𝑓 𝑛13(𝜔𝑖) = 2 𝑎𝑛𝑑 𝑆13(𝜔𝑖) = ′1′

1𝑖𝑓 𝑛13(𝜔𝑖) = 1 𝑎𝑛𝑑 𝑆13(𝜔𝑖) = ′1′

0 𝑛13(𝜔𝑖) = 0

−1 𝑖𝑓 𝑛13(𝜔𝑖) = 1 𝑎𝑛𝑑 𝑆13(𝜔𝑖) = ′3′

−2𝑖𝑓 𝑛13(𝜔𝑖) = 2 𝑎𝑛𝑑 𝑆13(𝜔𝑖) = ′3′

−3𝑖𝑓 𝑛13(𝜔𝑖) = 3 𝑎𝑛𝑑 𝑆13(𝜔𝑖) = ′3′

 

𝑊𝑆𝐷𝑉𝐴𝑅 = √(
∑ (𝑆𝑇(𝜔𝑖) −

1
𝑁
∑ 𝑆𝑇(𝜔𝑖)
𝑁
𝑖=1 )

2
𝑁
𝑖=1

𝑁 − 1
) 

136 Probability that the word “000000” occurs for a specific 

thresholding code 𝑆𝑡ℎ used with a threshold 𝑡ℎ of 5 ms. 

𝑆𝑡ℎ,𝑖 = {
′0′𝑖𝑓 |𝑅𝑅𝑖 − 𝑅𝑅𝑖−1| < 𝑡ℎ

′1′𝑖𝑓 |𝑅𝑅𝑖 − 𝑅𝑅𝑖−1| ≥ 𝑡ℎ
 

POLVAR5 

137 Probability that the word “000000” occurs for a specific 

thresholding code 𝑆𝑡ℎ used with a threshold 𝑡ℎ of 10 ms. 

POLVAR10 

138 Probability that the word “000000” occurs for a specific 

thresholding code 𝑆𝑡ℎ used with a threshold 𝑡ℎ of 20 ms. 

POLVAR20 

139 Probability that the word “111111” occurs for a specific 

thresholding code 𝑆𝑡ℎ used with a threshold 𝑡ℎ of 5 ms. 

PHVAR5 

140 Probability that the word “111111” occurs for a specific 

thresholding code 𝑆𝑡ℎ used with a threshold 𝑡ℎ of 10 ms. 

PHVAR10 

141 Probability that the word “111111” occurs for a specific 

thresholding code 𝑆𝑡ℎ used with a threshold 𝑡ℎ of 20 ms. 

PHVAR20 

 

5.5.3. SpO2 and combination of SpO2 HRV features 

To have an equal input for both signals the HR signal five-minute features of SpO2 signal are used. 

SpO2 and SpO2+HR are carried out by combining features of the SpO2 (Table 6) and the HR (Table 

21). 

5.5.4. Results of epochs based classification 

The MaxVIF classification technique of the SC3 (Section 5.4) was considered since it previously 

attained significant results. A continuous improvement of the cost function over the generation is 
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visible for both HR, and HR+SpO2 (Figure 35) and the simulations terminate in the 21st generation 

for the HuGCDN2008 database because of the stopping condition. The optimum solution for the HR 

signal is with the combination of a ANN with two SVM_RBF. During these generations, the accuracy 

is improved from 73.21% to 75.25% for the HR (Figure 36). In the case of Sen, it was improved from 

69.26% to 72.81%, while for Spc, it was improved from 74.75% to 76.17% (Figure 36). The 

improvement of the cost function as well as of Acc, Sen and Spc also happened with SpO2+HR. The 

Acc, Sen and Spc improvements over these 21 generations from were 84.27% to 85.09%, from 

77.98% to 78.90%, and from 86.50% to 87.21%, respectively (Figure 36).  

From Figure 37, it can be that the number of total features for the best solution for each generation 

fluctuates over the generations. The total number of features changes between 198 to 241 for the HR 

signal and between 277 to 308 for the SpO2+HR signals (Figure 37).  The optimum number of 

features for the HR signal was 222 which were distributed between a ANN and two SVM_RBF 

classifiers 72, 77, and 73 respectively (Table 22). In the case of SpO2+HR, the total number of 

features of the optimum solution was 290, where 93 features were used from the SpO2 signal and 197 

from the HR signal (Table 22). Among the classifiers, the ANN used 105 features and the two 

SVM_L used 93 and 92 features. The selected features for the HR and the SpO2+HR signals are 

shown in Table 22. 

 
 

Figure 35 : Cost of the 5-minute MaxVIF classification combination over the generations for the best 

performance objective. 
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Figure 36 : Accuracy (Acc), Sensitivity (Sen), and Specificity (Spc) of 5 minute MaxVIF over the 

generations for the best performance objective for the HR and HR+SpO2 signals. 

 
 

 
 

Figure 37 : Number of features of the 5-minute MaxVIF classification combination over the 

generations for the best performance objective. 

 

Table 22 : Selected features for HR and SpO2+HR using S3C. 

S
ig

n
al

s Classifiers Nub of Features Features 

H
R

 

ANN 72 mean, variance, CoV, kurtosis, max, renyi v2, shannon entropy, filter1, filter2, filter5, 
filter6, filter8, filter9, filter14, filter15, filter17, filter18, filter19, MAD_CA11, 

SD_CD1, Var_CD2, SD_CD2, MAD_CD2, Var_CD3, SEn_CD4, Var_CD4, 

MAD_CD4, SD_CD5, MAD_CD5, Var_CD7, MAD_CD7, SEn_CD8, Var_CD8, 
SD_CD8,MAD_CD8, SEn_CD9, MAD_CD9, Var_CD10, MAD_CD10, Var_CD11, 

SD_C11, Rcc2, Rcc3, Rcc7, Rcc8, Rcc9, Rcc10, Rcc15, Rcc16, Rcc18, Rcc23, Rcc24, 

Rcc25, Rcc28, Rcc30, dvi_pow, VLF, HF, LF_P, VLF_P, ULFVLF_P, LFn, pNN20, 
pNN50,    pNN120, WPSUM13, WPSUM02, FWRENYI0_25, FWRENYI4, 

WSDVAR, POLVAR5, POLVAR20  

SVM_RBF 77 mean, kurtosis, rms, min, renyi v2, shannon entropy, filter1, filter4, filter8, filter9, 
filter11, filter15, filter16, filter17, filter18, filter19, Var_CA11, MAD_CA11, 

Var_CD1, MAD_CD1, SEn_CD2, MAD_CD2, MAD_CD3, SEn_CD4, SEn_CD5, 

SD_CD5, SD_CD6, MAD_CD6, Var_CD7,SD_CD7,SEn_CD8, 
Var_CD8,MAD_CD8, SEn_CD9, Var_CD9, SD_CD9, MAD_CD9, SEn_CD10, 

Var_CD10, MAD_CD10, SEn_CD11, SD_CD11, MAD_CD11, Rcc1, Rcc5, Rcc6, 



 

98 

Rcc7, Rcc8, Rcc10, Rcc11, Rcc12, Rcc13, Rcc15, Rcc19, Rcc20, Rcc23, Rcc24, 
Rcc25, Rcc26, Rcc28, dvi_pow, ULF, LF_HF, LF_P, HF_P, ULF_P, LFn, pNN20, 

pNN150, WPSUM13, WPSUM02, FWSHANNON, FWRENYI4, WSDVAR, 

POLVAR10, PHVAR5, PHVAR20.  

SVM_RBF 73 mean, skewness, kurtosis, max, min, renyi v2, shannon entropy, filter3, filter6, filter7, 
filter10, filter11, SEn_CA11, Var_CA11, SD_CA11, MAD_CA11, SEn_CD1, 

SD_CD1, SEn_CD2, SD_CD2, SEn_CD3, SEn_CD4, SD_CD4, MAD_CD4, 

SEn_CD5, Var_CD5, MAD_CD5, SD_CD7, SEn_CD8, Var_CD8, SEn_CD9, 
Var_CD9, SD_CD9, Sen_CD10, MAD_CD10, Var_CD11, SD_CD11, MAD_CD11, 

filter15, filter16, filter18, Rcc1, Rcc3, Rcc8, Rcc9,     Rcc10, Rcc11, Rcc13, Rcc16, 

Rcc17, Rcc19, Rcc22,     Rcc23, Rcc27, dvi_pow, LF, HF, LF_P, HF_P, VLF_P, 
ULF_P, ULFVLF_P, pNN10, pNN20, pNN100, WPSUM02, FWSHANNON, 

FWRENYI0_25, POLVAR5, POLVAR20, PHVAR5, PHVAR10, PHVAR20  

S
p

O
2

+
H

R
 

ANN 105 SpO2(33) CoV, kurtosis, max, min, filter2, filter3, filter5, filter8, filter9, filter12, 
filter15, filter17, filter20, SEn_CA6, Var_CA6, SD_CA6, 

MAD_CA6,SEn_CD6, Var_CD6, MAD_CD6, SEn_CD5, Var_CD5, 

MAD_CD4, Var_CD3, SD_CD3, MAD_CD3, SEn_CD2, Var_CD2, 
MAD_CD2, Var_CD1, MAD_CD1, CTM50, DIndex. 

HR (72) CoV, kurtosis, rms, min, renyi v2, shannon entropy, filter7, filter13, 

filter16, filter18, filter19, filter20, MAD_CA11, SEn_CD1, Var_CD1, 

MAD_CD1, Var_CD2, MAD_CD2, Var_CD3, SD_CD3, SD_CD4, 
MAD_CD4, SEn_CD6, SD_CD6, SEn_CD7, Var_CD7, SD_CD7, 

SEn_CD8, Var_CD8, SD_CD8, MAD_CD8, Var_CD9, MAD_CD9, 

SEn_CD10, Var_CD10, SD_CD10, SEn_CD11, MAD_CD11, Rcc1, 
Rcc4, Rcc7, Rcc8, Rcc9, Rcc10, Rcc11, Rcc12, Rcc14, Rcc16, Rcc17, 

Rcc22, Rcc23, Rcc24, Rcc25, Rcc30, VLF, HF, LF_P, HF_P, ULF_P, 
ULFVLF_P, ULFVLFLF_P, HFn, pNN20, pNN150, WPSUM13, 

FWSHANNON, FWRENYI4, WSDVAR, POLVAR10, POLVAR20, 

PHVAR5, PHVAR10. 

SVM_L 93 SpO2(29) variance, skewness , kurtosis , rms , renyi v2 , filter1,filter2 , filter5 , 
filter9 , filter11 , filter12 , filter14,filter17 , filter18 , filter19 , SEn_CA6 , 

Var_CD6, MAD_CD6 , SEn_CD5 , SEn_CD4 , Var_CD4, SD_CD4 , 

MAD_CD4 , SEn_CD2 , Var_CD2, SD_CD2, SEn_CD1, MAD_CD1, 
DIndex. 

HR (64) mean, max , min , filter3 , filter4 , filter5 , filter6 , filter7,filter8 , filter9 , 

filter13 , filter15, filter16 , filter17, filter19 , filter20 , MAD_CA11, 

SEn_CD1, Var_CD1, Var_CD2, SD_CD2, MAD_CD2,SEn_CD3, 

Var_CD3, SD_CD3, MAD_CD3, MAD_CD4, Var_CD5, SD_CD5, 

MAD_CD6, SEn_CD7, MAD_CD8, SEn_CD10, Var_CD10, SD_CD10, 
SEn_CD11, MAD_11, Rcc4, Rcc9, Rcc11 , Rcc13 , Rcc14 , Rcc16 , 

Rcc18 , Rcc22 , Rcc24, Rcc28, Rcc30, HF , LF_HF , VLF_P , ULF_P 

,ULFVLF_P, ULFVLFLF_P , pNN20 , pNN100 , pNN120 , pNN150 , 
WPSUM13 , WPSUM02, FORBWORDS , FWSHANNON , 

POLVAR5, POLVAR10. 

SVM_L 92 SpO2(31) variance, kurtosis, rms, min, renyi v2, filter1, filter3, filter6, filter8, 

filter11, filter16, filter17, SEn_CA6, Var_CA6, MAD_CA6, SD_CD6, 
MAD_CD6, SD_CD5, MAD_CD5, SEn_CD4, Var_CD4, SD_CD4, 

Var_CD3, SD_CD3, MAD_CD3, SD_CD2, SEn_CD1, Var_CD1, 

SD_CD1,  CTM50, DIndex. 

HR (61) mean, CoV, kurtosis, renyi v2, filter2, filter3, filter6, filter8, filter9, 

filter10, filter13,filter14, filter16, SEn_CD1, Var_CD1, SD_CD1, 

SEn_CD2, SD_CD2, SD_CD3, SD_CD4, MAD_CD4, SEn_CD5, 
Var_CD5, MAD_CD5, SEn_CD6, SD_CD6, SD_CD7, MAD_CD8, 

Var_CD9, MAD_CD9, SEn_CD10, Var_CD10, MAD_CD10, 

Var_CD11, MAD_CD11, Rcc4, Rcc5, Rcc8, Rcc9, Rcc11, Rcc14, 
Rcc17, Rcc23,Rcc24, Rcc28, Rcc29, dvi_pow, HF, LF_P, 

VLF_P,ULFVLFLF_P, pNN20, pNN50, pNN120, pNN150, 

WPSUM02,FORBWORDS, FWRENYI4, POLVAR10, PHVAR5. 

 
 

Table 23 : Compared to other works. 

Ref. Signal Classifier Database 
Recordings 

or Patients 

Input size 

(Seconds) 

No of 

features 
Sen Spc Acc 

[99] SpO2  ANN AED [61] 8 60 3 87.5 100 90.3 

[195] 

(Section 5.2) 

SpO2 SVM-L AED [61] 8 60 50 83.76 97.03 96.89 

[195] 

(Section 5.2) 

SpO2 SVM-L AED [61] 8 60 20 84.57 97.28 97.38 

[102] 
(Section 5.3) 

SpO2 ANN AED [61] 8 60 7 96.5 98.5 97.7 

[196] 

(Section 5.4) 

SpO2 MaxVSF1 AED [61] 8 60 34 98.11 86.98 91.33 

[106] SpO2 DAE AED [61] 8 60 - 78.75 95.89 97.64 
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[107] SpO2 + IHR LSTM AED [61] 8 60 - 84.7 - 92.1 

[107] SpO2 LSTM AED [61] 8 60 - 92.9 - 95.5 

[2] SpO2 SVM  Own 40 150 7 - - 90 

[190] SpO2 + airflow 

+ respiration 

RCNN MGH 10000 1 - - - 88.2 

[190] SpO2 + airflow 

+ respiration 

RCNN SHHS 5804 1 - - - 80.2 

[73] SpO2 + ECG Bagging.RepTree UCD [62] 25 60 39 79.75 85.89 84.80 

[73] SpO2  Bagging.RepTree UCD [62] 25 60 39 78.23 84.25 82.79 

[195] 
(Section 5.2) 

SpO2 ANN UCD [62] 25 60 2 43.31 95.03 81.95 

[195] 

(Section 5.2) 

SpO2 LD UCD [62] 25 60 9 61.78 91.03 83.27 

[106] SpO2 DBN UCD [62] 25 60 - 60.36  91.71 85.26 
[185] SpO2 + 

oronasal airflow 

+ ribcage and 
abdomen 

movements 

CNN2D UCD[62] 23 1 -   79.6 

[10] Spo2 LDA HuGCDN2008 70 60,300 19 75.6 91.00 86.5 
[10] Spo2 + HRV LDA HuGCDN2008 70 60,300 33 73.4 92.3 86.9 

[196] 

(Section 5.4) 

SpO2 MaxVIF1 HuGCDN2008 70 300 89 80.54 85.74 84.46 

P HR MaxVSF5 HuGCDN2008 70 300 222 72.81 75.25 76.17  

P SpO2+HR MaxVSF5 HuGCDN2008 70 300 290 78.90 87.21 85.08 

 

5.5.5. Global classification 

The true definition of the AHI is the number of apnea and hypopnea events per hour of sleep. 

However, window based, or epoch-based apnea and hypopnea classifiers might not be able to detect 

the true AHI; instead, they detect the number of apnea and hypopnea in the window. Therefore, the 

window based method is limited to the window size. In this work, a 1-minute annotation with a 

sliding window is used. This restriction is also posed because of the data set annotation. Thus, instead 

of events, an apnea hypopnea minute per hour in bed (AHI TiB) is implemented to detect apnea 

patients. This technique is applied in the literature for apnea patients detection otherwise called the 

global classification [10][169]. The accuracy of the global classification (GAcc) is varies from 

96.67% to 100% in different databases and techniques. 

The HRV based work performed by Martín-González et al. [137] used 30 subjects from the AED 

database (achieved Acc of 96.67%) and 39 subjects from the HuGCDN2014 database (achieved 

87.18% of Acc). To achieve these results, the borderline subjects were removed. This Exclusion of the 

Borderline Subjects (EBLS) is also followed by other researchers in order to improve the GAcc such 

as the work of Ravelo-García et al. [10] which achieved 81.8% of GAcc using the HRV. In the same 

work other results of GAcc were achieved 71% using the HRV without the EBLS; 94.3% and 97% 

using the SpO2 without the EBLS and with the EBLS, respectively; 91.4% and 100% using the 

combination of SpO2 and HRV without the EBLS and with the EBLS, respectively. In another work, 

using 66 subjects, the results are: 91.89% for the SpO2, 91.89% for the HRV and  100% for 

SpO2+HRV [197]. Al-Angari et al. [197] have achieved a GAcc of 95% (SpO2), 78% (HRV), 87% 

(respiratory), and 95% (SpO2+ HRV+ respiratory) using SVM and 100 subjects from the SHHS 

database. Biswal et al. [190] achieved 80.2%, and 88.2% of GAcc with RCNN classifier using the 
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SHHS database and the MGH database, respectively. In case of a minute-by-minute apnea detection, 

an AHI index of more than 60 is theoretically impossible. Therefore, there are works that excluded 

subjects with 𝐴𝐻𝐼 ≥ 60 when the GAcc is calculated [169]. 

This work presents the comparison between the AHI calculated by the medical professional (AHI G 

MP) of the database and the AHI TiB calculated from the output of the classifiers (AHI C TiB) 

(Figure 38). Since the current standard of the AHI index for detecting apnea patients is 5, AHI TiB = 

5 without any removal of subjects (EBLS) is used in this work. In the case of the HuGCDN2008 

database this applies to all of the seventy subjects. The SpO2 signal achieves 97.14% (with 𝑅2(𝑅2) =

0.8956 ), the HR method achieves 84.29% (with 𝑅2(𝑅2) = 0.7621 ) and SpO2+HR achieves 97.14% 

(with 𝑅2(𝑅2) = 0.8956 )  for 5Min using the HuGCDN2008 database. The closest work found in the 

literature compared with this work was carried out by Ravelo-García et al. [10], which uses the same 

HuGCDN2008 database with 35 test subjects. Without the EBLS and using the SpO2 signal, Ravelo-

García et al.’s [10] work achieved a GAcc of  91.4% compared to our 97.14%; for HR 71.4% 

compared to our 84.29% and for SpO2+HR 94.3% compared to our 97.14%. Therefore, a better 

global accuracy is achieved compared with similar database.  

 
 

Figure 38: Comparison of the global accuracy of HuGCDN2008 dataset with AHI calculated by 

medical physician (AHI G MP) and the by the CNN classifiers’ AHI time in bed (AHI C TiB) for 

SpO2, HRV and SpO2+HRV of 1 Min input. (+) symbol is used for normal subjects (AHI<=5) and 

(*) is used for apnea patients. 

 

5.5.6. Summary 

As was previously verified, the maximum voting with independent features for each classifier 

attained the best performance of all self-configuring classification combination models. This model 

was used in this section to test the HR and SpO2+HR performance. Although they either outperform 

similar kinds of work or achieved almost the same performance, the results of the proposed methods 
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are more balanced. A well-balanced classifier is preferable in certain cases to an extremely sensitive 

one to apnea or normal events. 

In the case of global classification, the performance of the SpO2 signal is better than that of the HR 

and SpO2+HR.  The result is better than in similar kinds of work in the literature.  

5.6.  Summary of Handcrafted Feature Based Method 

This chapter mainly focused on feature creation, selection and choosing of shallow classifiers. 

Initially, first filter methods (mRMR) of classification with a wrapper method (SFS) were tested. A 

subset of features improved the performance when compared to a set with all the features combined. 

Most of the features chosen by the classifiers are defined in the time-frequency domain. In terms of 

computation, the mRMR is the most suitable option. An SFS uses a higher number of features in most 

of the cases. The accuracy difference between both algorithms are not significant. Both methods 

suffer from low sensitivity due to the prevalence of normal segments compared to apnea events. Due 

to the different hypotheses of different classifiers, they result in different importance for the features. 

To increase the sensitivity of GA method, a ANN was tested and achieved a better solution. Like 

previous solutions the time-frequency feature did better.  The combination of classifiers can also 

increase performance. Through the combination of feature selection with combination of classifiers, a 

selection process was developed named the self-configuring classification combination method. When 

compared with a single classifier with the feature selection method, the SC3 performs better. Two 

voting methods the MaxV and the WLC, with two feature selection techniques were tested using SC3. 

For SpO2, it was verified that maximum voting with independent features for each classifier attained 

the best performance. SC3 classifiers were able to achieve subject independence and database 

independence with a balanced performance. Some research suggested adding more signals such as an 

ECG can increase the performance of the system. Therefore, performance of the HR derived from the 

ECG and SpO2+HR (HR derived from ECG) were tested using SC3 technique. However, the HR and 

SpO2+HR were not able to outperform the SpO2 signals performance. A similar trend of results also 

follows for global classification. 
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Chapter 6 

6. Automated Feature-Based 

Methods 
This chapter describes automated feature-based methods. Two hyperparameter optimization 

methods for CNN classifiers is proposed and tested with different signals. 
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6.1. Introduction  

This chapter describes the automated feature-based methods applied in this work. The problem of 

building a reliable system using any sensor is mainly two-fold, firstly, in finding the best features that 

describe the apnea events, secondly, in using these features to detect the apnea accurately. Multiple 

researchers have analyzed different time domain [9] and frequency domain characteristics [10], thus, 

creating a vast pool of suitable features. The creation of handcrafted features that achieve good 

performance requires significant domain knowledge. Furthermore, it is becoming significantly more 

challenging to find a new set of features that can achieve higher performance, since combining two or 

more features does not guarantee an improvement in performance [11]. Therefore, a large number of 

features needed to be sorted according to relevance in order to increase accuracy. Various techniques 

were employed in this work to address this problem (minimum Redundancy Maximum Relevance 

(mRMR), Sequential Forward Search (SFS) [195] and Genetic Algorithms (GA) [102]). However, 

these techniques most of the time, do not guarantee that the best features have been selected. 

Additionally, to that, the best features are sometimes dependent upon the classifiers used. Deep 

learning has the ability to automatically learn features from raw data [23]. Thus, by using deep 

network these problems can be solved. 

A deep CNN is one of the most successful deep networks that are inspired by the vision system. 

Traditionally, a CNN is designed for two-dimensional (2D) images as input with different channels 

[218]. However, it can also be used for one-dimensional (1D) signals with a single-channel [219] 

[180]. In most of the cases, automated detection of obstructive sleep apnea events using a CNN 

performs better when compared with shallow classifiers [177]. Some authors used nasal airflow [184] 

or a combination of SpO2, oronasal airflow, and ribcage and abdomen movements [185], and then 

converted these one dimensional signals into a two dimensional input to employ the two dimensional 

CNN (CNN2D) directly for apnea detection. A one-dimensional CNN (CNN1D) is a good alternative 

requiring far less preprocessing (does not need to convert 1D to 2D) for 1D signals. 

Electrocardiogram (ECG) [179][180][181] and nasal pressure or airflow [182][149] signals have been 

used with a CNN1D for OSA classification. Haider et al. [183] employed three one dimensional 

signals (nasal airflow, abdominal and thoracic plethysmography) to feed a CNN1D with three channel 

inputs for OSA detection. Following this line of research, the SpO2 signal which is 1D in nature was 

selected to be directly fed to a CNN1D without any dimension transformation stage. For details about 

automated feature-based apnea detection and the use of CNN in the literature please refer to Section 

4.3. 

Implementing a CNN, however, presents significant changes. The structure and/or hyperparameters 

of the network are typically selected through an experimental search. Such methods requires a 
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significant amount of time as well as experience and expert knowledge for the creation of a 

handcrafted network structure and hyperparameters [220]. A possible alternative is to use 

evolutionary algorithms, such as a GA, to solve the structural optimization problem. The algorithm 

starts with a random individual generation and uses mutation and crossover over a defined number of 

generations to achieve the optimized solution by optimizing the fitness function. Zhining et al. [221] 

designed a genetic convolutional neural network model based on a random sample and found it has a 

better performance than a CNN in the MNIST data set. Evolutionary algorithms also achieved 

significant success in the configuration of topologies [222] and in the connection of convolution 

layers [223]. Regarding the selection of the network hyperparameters, an asynchronous evolutionary 

approach was successfully used on a Titan supercomputer [224]. Furthermore, a neuro-evolution was 

able to construct large, accurate networks from trivial initial conditions while searching through a 

large space without experimenter participation [222]. By combining Dynamic Structured Grammatical 

Evolution (DSGE) with GA Assuncao et al. [225] were able to achieve better results without resorting 

to prior knowledge. Grammatical Evolution (GE) was also used for handwritten digit recognition 

[226] as well as human activity recognition [227]. A DNN with a GA to optimize the predictive 

accuracy, named EvoDeep, was developed by Martin et al. [228]. This concept of using GA for 

choosing the best network was also successfully extended to transfer learning [229].  

Unbalanced data are also a common issue in sleep apnea detection, having an insufficiency of one 

class (apnea) level and prevalence of another class (normal) level.  Thus, a single objective technique 

(which was applied in the previously mentioned applications) commonly tries to maximize the 

accuracy (either directly or indirectly), leading to a biased classifier, since an increase in accuracy can 

sacrifice the sensitivity (apnea events detection) that is related to the less prevalent class. To solve this 

problem, a multi-objective method (Section 6.2) and a combined approach (Section 6.3) are used for a 

different test. 

Therefore, the primary objectives of this chapter are:  

-To design an automatic feature-based sleep apnea events detection algorithm using a CNN for a 

SpO2 signal, an HR signal and HR+SpO2;  

-To develop independent algorithms capable of choosing the CNN structure and hyperparameters 

without any human intervention, using balanced optimization. 

-To analyze the effects of input sizes, database dependencies, and the layer size in the classification. 

To achieve the desired objectives different algorithms were developed for the automatic creation 

and architectural hyper-parameterization of the CNN. The first one is a multi-objective optimization 

(Section 6.2) with three input sizes. Afterward, another faster algorithm is developed (Section 6.3) to 

reduce the optimization time. Finally (in Section 6.4), the HR. SpO2+HR as well as effectiveness of 

adding an extra fully connected layer, and a dropout layer, are tested. 
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6.2.  Multi-Objective Architectural Hyperparameter 

Optimization of CNN  

6.2.1. Introduction 

Because of the successful implementation of Evolutionary Algorithms (EAs) to optimize the 

hyperparameters of a deep network for sleep apnea detection with HRV by Falco et al. [178], a GA 

was employed in this work for hyperparameter optimization of the CNN. 

To solve unbalanced data, the designed model addresses this issue by simultaneously considering 

the Acc, Sen, and Spc in a multi-objective problem. The Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) [230] was selected for this work due to the large success it has in other areas, such as filter 

design [231], and water distribution systems [232]. The proposed system used a CNN with NSGA-II 

algorithms to solve the multi-objective problem by choosing a suitable structure which can achieve 

the goal (a balanced result). Three different databases were used to create and test the system. Due to 

the non-uniformity between the datasets, such as sampling frequency and annotation methods, a 

normalization preprocess was performed. To have all of the databases at the same sample rate the 

UDB [62] was resampled at 50Hz. In this work, apnea events were detected with one minute epochs 

(as employed by AED [61]). Therefore, the annotation for the HuGCDN2008 database was produced 

by labeling the minute as apnea minute if any or both of its 30 second windows were annotated as an 

apnea by the physician. For the UDB [62] if 10 or more seconds, in a minute, were annotated as apnea 

by the physician then the one minute epoch was labeled as apnea. The input sizes of 1 minute, 3 

minutes (with 2 overlapping minutes), and 5 minutes (with four overlapping minutes) were created 

considering the central minute as the one that defines the label. Therefore, taking into consideration 

the selected sampling frequency the 1 minute (60 seconds), 3 minute (180 seconds), and 5 minute 

(300 seconds) windows had 3000, 9000 and 15000 sampling points, respectively. 

In brief, to achieve the desired objectives an algorithm was developed for the automatic creation 

and architectural hyper parameterization of the CNN using one database with three input sizes. Later 

another two databases (for a total of three) with three input sizes were tested in two different settings: 

direct implementation and transfer learning implementation, and the results were analyzed. Therefore, 

the primary objectives of this work are:  

-To design an automatic sleep apnea events detection algorithm using a CNN and a SpO2 signal.  

-To develop an independent algorithm capable of choosing the CNN structure and the 

hyperparameters without any human intervention, using the multi-objective optimization. 

-To analyze the effects of the input sizes, the database dependencies and the layer size on the 
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classification. 

 

6.2.2. Optimization of CNN hyperparameters using GA 

The CNN’s hyperparameters were optimized using a multi-objective genetic algorithm named 

NSGA-II [230][233]. The multi-objective technique was used in order to have an equally better 

performance in all the objectives, contrary to what is present in the single-objective optimization 

method [231]. A Multi-objective optimization technique optimizes a vector (𝑂) of objective functions 

(in this work Acc, Sen, and Spc) and the optimization consists of finding 𝑉  (in this case, the 

hyperparameters) which maximizes 𝑂(𝑣) represented as 

O(v)=(O1, O2(v),…Ok(v))                         (10) 

subject to: y(v)=(y1(v),y2(v),…yj(v))                                                                (11) 

vi
L≤vi≤vi

U                        (12) 

where 𝑣 is the vector of design variables in 𝑉 parameter space with 𝑁 elements with upper bound 

𝑣𝑖
𝑈 and lower bound 𝑣𝑖

𝐿 , 𝑦(𝑣) is the objective space and 𝑂(𝑣) is the vector representation of the 

objective functions that has to be maximized [234]. 

A simplified representation of the implementation strategy is presented in Figure 39 where all 

inputs of layers are represented as 𝑥  and the outputs as 𝑦 . For every generation (Gen) the 

chromosomes of each population (Pop) (𝑃𝑡) were generated using mutation and crossover with the 

information needed to create a CNN. Then, it was translated to the CNN structure and parameters 

using the decoding methods indicated in Table 24. After twofold training and testing, the next 

generation population (𝑃𝑡+1) was chosen according to the Pareto fronts and the crowding distance 

using Acc, Sen, and Spc of the two-fold test. 

The implemented NSGA-II [230] technique can be described in 11 steps: 

Step 1: A parent population 𝑃0 with the size of 𝑁 is randomly generated. 

Step 2: The system converts the chromosome to a CNN. A fixed input (3000 neurons for 1 minute, 

9000 neurons for 3 minutes and 15000 neurons for 5 minutes) layer and output layer (fully connected 

(FC) layer with 2 outputs, a softmax layer and a class output) are always present (fixed), regardless of 

the structure chosen by the GA algorithm. The GA algorithm was only allowed to choose the number 

of the layers between fixed layers, the type of layers, the size of kernels, the pooling sizes, the stride 

and the number of neurons of a fully connected layer. A real coded chromosome that ranges from 0 to 

1 was used in this work. However, different types of parameters for the CNN had different ranges, 

thus proper decoding was done according to Table 24. First the generated chromosomes were scaled 

between the defined ranges and then a ceiling function was used to obtain natural numbers. To reduce 

the number of possible solutions, hence reducing the simulation time, two different types of layer 
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combinations were used. The first was a convolution layer with a ReLU layer and a batch 

normalization defining it as ConvX. The second one was maximum pooling, indicated by MaxP. The 

ConvX layer has three cascaded functions, performing convolution with the input and a defined kernel 

(𝑘) then a batch normalization, and finally a ReLU, indicated together by 𝑓𝑏𝑑 in the Figure 39. To 

prevent losing too much information in each layer, a back to back MaxP layer (cascaded MaxP layer) 

was replaced by a ConvX layer. 

 

 

Figure 39 : Simplified representation of the CNN hyperparameters optimization strategy using 

NSGA-II [230]. 
 

Table 24 : Chromosome decoding techniques and ranges for the CNN. 

Type Number of Position Quantity Range 

1 1 Number of layers 1-10 

2 Number of max flexible layers Type of each layer 0-1(ConvX)-(MaxP) 

3 Number of highest 

parameters*Number of max layers 

Each layer parameter    

3.1 1 Number of filters 1-15 (ConvX) 

3.2 1 Filter size (Width) 3-9(ConvX), 2-5 (MaxP) 

3.3 1 Stride  1- filter size 

4 1 FC neuron number 20-200 

 

Step 3: After generating the CNN structure (hypermeters), the network was trained using the 

ADAM  algorithm [235] with two fold methods. The HuGCDN2008 database has 70 subjects which 
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were divided into 35 subjects in for the training and test set. Subject independence between the 

training and test sets was ensured by not mixing the subjects data between the sets. An initial learning 

rate of 0.03 was employed during the training and for every 10 epochs the learning rate drop factor 

was 0.1. The batch size was 1024 and the data were shuffled in every epoch. An average of the Acc, 

Sen, and Spc was calculated to be used as objective parameters. 

Step 4: Using the objective parameters a non-dominant sorting was performed for sorting the parent 

population, where 𝑃 = 𝑃0 [230]. 

 

FIRST NON-DOMINATED SORT (P) 

for each 𝑝 ∈ 𝑃 

𝑆𝑝 = ∅, 𝑛𝑝 = 0  

for each 𝑞 ∈ 𝑃 

if p dominates q (𝑝 ≺ 𝑞) then 

𝑆𝑝 = 𝑆𝑝 ∪ {𝑞}  

else if  (𝑞 ≺ 𝑝) then  

𝑛𝑝 = 𝑛𝑝+ 1  

if 𝑛𝑝 = 0 then 𝑝𝑟𝑎𝑛𝑘 = 1  

ℱ = ℱ1 ∪ {𝑞}  

𝑖 = 1  

while ℱ𝑖 ≠ ∅  

𝑄 = ∅  

for each 𝑝 ∈ ℱ𝑖 

for each 𝑞 ∈ 𝑆𝑝  

𝑛𝑞 = 𝑛𝑞 − 1  

if 𝑛𝑞 = 0 then 

𝑞𝑟𝑎𝑛𝑘 = 𝑖 + 1  

𝑄 = 𝑄 ∪ {𝑞}  

𝑖 = 𝑖 + 1  

ℱ𝑖 = 𝑄  

where domination count is 𝑛𝑝, 𝑆𝑝 is the set of p dominating solutions, 𝑞 is the member of 𝑆𝑝 , and 𝑄 

is the list of zero dominated 𝑞. 

Step 5: Simulated binary crossover [236] and polynomial mutation were used to create new 

offspring population (𝑄) of size 𝑁. 

Step 6: A combined population of 𝑅𝑡 was created using the offspring 𝑄𝑡 and the parent population 

𝑃t. Thus, the size of 𝑅𝑡 becomes 2𝑁. 

Step 7: Fast non-dominated sort was used to sort the entire population in the same was as in Step 4. 
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Step 8: Calculate the crowding distance using the method  defined by Deb et al. [230]. 

CROWDING DISTANCE ASSIGNMENT (𝒯) 

𝑙 = |𝒯|  

for each 𝑖, 𝑠𝑒𝑡 𝒯[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0  

𝒯 = 𝑠𝑜𝑟𝑡(𝒯,𝑚)  

𝒯[1]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝒯[𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒=∞  

For 𝑖 = 2 𝑡𝑜 (𝑙 − 1)  

𝒯[𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝒯[𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝒯[𝑖 + 1].𝑚 − 𝒯[𝑖 − 1].𝑚)/(𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛)  

where 𝒯 is a non-dominated set, 𝒯[𝑖]. 𝑚 is the mth objective function value of the ith individual in 

the set 𝒯, 𝑓𝑚
𝑚𝑎𝑥

 and 𝑓𝑚
𝑚𝑖𝑛

 are the maximum and minimum of mth objective function. 

 

Step 9: The combined population, 𝑄𝑡, was sorted according to a non-dominant sort and crowding 

distance. If the population size (from first 𝐹1 to last 𝐹𝑙 front) was greater than 𝑁 then a crowded-

comparison operator, ≺𝑛, was used in descending order to populate the population size until 𝑁 from 

𝐹𝑙 and others(𝐹>𝑙) are discarded. The partial order ≺𝑛 was given by 

𝑖 ≺𝑛 𝑗 𝑖𝑓 (𝑖𝑟𝑎𝑛𝑘 < 𝑗𝑟𝑎𝑛𝑘)𝑜𝑟 ((𝑖𝑟𝑎𝑛𝑘 == 𝑗𝑟𝑎𝑛𝑘)𝑎𝑛𝑑(𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)) 

Step 10: Keep the number of elements (𝑁) from the sorted list and increased the number of 

generations. 

Step 11: Repeat Step 5 onwards until the termination condition (50 generations were produced) was 

met. 

6.2.3.  Performance of the hyperparameter optimization 

The algorithm was implemented in MATLAB and run on a computer with Intel Core (TM) i7-

8700k processor, 64 GB RAM, and two NVIDIA GeForce GTX 1080 Ti GPUs. Two-fold runs were 

processed in parallel in the two GPUs and the average of the obtained results of the objective 

functions was computed. The optimizations were carried out with three different input sizes, with the 

termination condition of producing 50 generations with population size of 50, which leads to 

(50(𝐺𝑒𝑛) ∗ 50(𝑃𝑜𝑝 = offspring population = N)) 2500 different networks and 5000 networks to 

train for each input size (because a twofold method was employed).  

The computation took 587.83926 hours (≈ 24.49 𝑑𝑎𝑦𝑠), 832.04399 hours (≈ 34.67 𝑑𝑎𝑦𝑠)  and 

911.226716 hours (≈ 37.97 𝑑𝑎𝑦𝑠) , respectively, for 1 minute, 3 minute and 5 minute input to finish 

the simulations. The original networks, trained with the HuGCDN2008 dataset, have two solutions for 

each network structure where hyperparameter optimization was done. These solutions are indicated in 

Table 25 by _F1 and _F2 for the fold one and the fold two dataset. Different input sizes are indicated 

as _1, _3 and _5 for 1 minute, 3 minute, and 5 minute respectively.  
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Table 25 : The results of both CNNs trained using the HuGCDN2008 database in two-fold. 

Symbol Test Database Sen Spc Acc 

CNN1DF1_1 HuGCDN2008 71.50 95.30 88.50 

CNN1DF2_1 HuGCDN2008 73.60 93.10 88.60 

CNN1DF1_3 HuGCDN2008 73.70 95.10 88.90 

CNN1DF2_3 HuGCDN2008 74.40 94.10 89.50 

CNN1DF1_5 HuGCDN2008 75.10 94.90 89.20 

CNN1DF2_5 HuGCDN2008 74.40 93.90 89.40 

CNN1DF1_1 AED [61] 91.64 93.36 92.65 

CNN1DF2_1 AED [61] 87.89 92.54 90.63 

CNN1DF1_3 AED [61] 83.77 93.62 89.58 

CNN1DF2_3 AED [61] 85.64 93.36 90.20 

CNN1DF1_5 AED [61] 79.03 93.62 87.64 

CNN1DF2_5 AED [61] 88.58 93.67 91.58 

CNN1DF1_1 UCD[62] 56.72 93.32 84.55 

CNN1DF2_1 UCD[62] 64.12 90.69 84.33 

CNN1DF1_3 UCD[62] 67.35 90.51 84.96 

CNN1DF2_3 UCD[62] 82.51 76.30 77.79 

CNN1DF1_5 UCD[62] 66.57 90.19 84.53 

CNN1DF2_5 UCD[62] 85.37 60.94 66.79 

 

In the first step, the algorithm generates a random population to ensure the diversity of the 

population and ranks them according to the multi objectives optimization (Acc, Sen, and Spc) [231]. 

Over each generation, using mutation and crossover, the algorithm was able to reach better solutions. 

Almost all the solutions of the 50th generation were better than the 1st Gen (Figure 40, Figure 41, 

Figure 42, and Figure 43). From the 50th Gen solutions, among three different inputs, it is noticeable 

that the 3 minute and 5 minute inputs have better results compared to 1-minute solutions. However, 

both of them are in a similar range (Figure 44). 

 
Figure 40 : The multi objective problem space in percentage for the 1st and the 50th generation for a) 

1 minute b) 3 minute, and c) 5 minute inputs for the HuGCDN2008 database. 
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Figure 41 : The changes of the multi objectives in percentage, a) Acc, b) Sen, and c) Spc, over the 

generations (Gen) of the populations (Pop) for 1 minute input for the HuGCDN2008 database.  

 

 
 

Figure 42 : The changes of the multi objectives in percentage, a)Acc, b)Sen, and c)Spc, over the 

generations (Gen) of the populations (Pop) for 3 minutes input for the HuGCDN2008 database.  

 

 
 
Figure 43 : The changes of the multi objectives in percentage, a)Acc, b)Sen, and c)Spc over the 

generations (Gen) of the populations (Pop) for 5 minutes input for the HuGCDN2008 database. 

 
Figure 44 : Comparison of the three inputs in the 50th generation in 3D (Acc, Sen, and Spc) problem 

space. 
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The NSGA-II algorithm ranked the outputted solution according to Pareto front numbers. All the 

solutions on the first Pareto front are valid solutions as NSGA II does not generate a single solution 

but a set of Pareto non-dominated solutions. One way of assessing the classifiers’ performance is the 

receiver Operating Characteristic (ROC) curve (Sen vs 1- Spc). Since the algorithm uses a three 

dimensional problem space (Figure 40 and Figure 44) a modified version of the ROC curve (with 2 

dimensions), where all of the first Pareto front solutions are shown in Figure 46 and Figure 46. At the 

50th generation, it was assessed that 5 minute has the best solution followed by a 3 minute and a 1 

minute CNN (Figure 44 and Figure 46). 

 
Figure 45 : 1st Pareto front of the solutions for the HuGCDN2008. The first (1st ) and last (50) 

generation of a a) 1 minute b) 3 minute c) 5 minute Spo2 signal. The solution of the first generation is 

marked with star and the 50th is marked with box.  

 

Figure 46 : Comparison of three inputs in the 50th generation in 2D (Sen and 1-Spc) problem space. 

 
Although the algorithm was trying to solve a multi-objective optimization, NSGA-II treated the 

optimization variables (Acc, Sen and Spc) equally, due to a restriction with the problem space and 

constraints such as overlap of apnea and normal events (where the Sen and Spc are dependent and 

Acc is dependent on Sen and Spc). The solutions do not have equal Sen Spc and Acc. Therefore, the 

final solution was chosen with the highest Acc (structure in Table 26) among all the valid solutions 

which will also help in the comparison with the other methods presented in the literature. By using 

Acc as a criteria of choosing one solution over others, three solutions for a 1 minute, 3 minutes, and 5 
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minute inputs produced an Acc of 88.2%, 89.24% and 89.32%, a Sen of 72.55%, 74.05% and 74.75% 

and aSpc of 94.21%, 94.60% and 94.44% respectively (Table 28). These solutions are marked with a 

black dot and the values are indicated in a box in Figure 44 and Figure 46. 

Table 26 : Chosen CNN’s layers and hyperparameters (layer parameters such as the input size, size of 

the filter, number of the filters represented as a form of [number of filter]@ [vertical width of filter]x 

[horizontal width of filter]x [number of Channels of filter]_ [vertical width of stride]x[horizontal 

width of stride]). 
 1 minute (60 seconds) 3 minutes (180 seconds) 5 minutes (300 seconds) 

No. Layer Layer Parameters Layer Layer Parameters Layer Layer Parameters 

L1 Input 1x3000x1 Input 1x9000x1 Input 1x15000x1 

L2 Conv_1 15@1x9x1_1x5 Conv_1 15@1x9x1_1x 5 Conv 6@1x7x1_1x3  

L3 Batchnorm_1    15 channels Batchnorm_1    15 channels Batchnorm_1    6 channels 

L4 ReLU_1  ReLU_1  ReLU_1  

L5 MaxP_1        1x5_1x5 MaxP_1        1x5_1x5 MaxP_1        1x3_1x3 

L6 Conv_2         8@1x8x12_1x3 Conv_2'         12@1x8x15_1x3 Conv_2         14@1x9x6_1x9 

L7 Batchnorm_2    8 channels Batchnorm_2    12 channels Batchnorm_2    14 channels 

L8 ReLU_2           ReLU_2    ReLU2       

L9 Conv_3         8@1x8x12_1x3 Conv_3         9@1x8x12_1x3 MaxP_2             1x3_1x2 

L10 Batchnorm_3    8 channels Batchnorm_3    9 channels Conv_3         12@1x7x14_1x1 

L11 ReLU3                      ReLU3                      Batchnorm_3    12 channels 

L12 Conv_4         13@1x4x8_1x2 Conv_4         14@1x4x9_1x2 ReLU_3                      

L13 Batchnorm_4    13 channels Batchnorm_4    14 channels MaxP_3             1x3_1x 2 

L14 ReLU_4                     ReLU4                     Conv_4         15@1x5x12_1x3 

L15 FC1 117 FCL FC1 124 FCL Batchnorm_4    15 channels 

L16 ReLU_5  ReLU_5  ReLU_4                     

L17 FC2 2 FC2 FC2 2 FC2 FC1 99 FCL 

L18 Softmax  Softmax  ReLU_5  

L19 Classoutput  Classoutput  FC2 2 FC2 

L20     Softmax  

L21     Classoutput  

 

The Numbers of Flexible Layers (NoFL) were 5, 5 and 7 (Figure 47) resulting in 19, 19 and 21 

layers for 1 minute, 3 minute, and 5 minute CNN networks, respectively (Table 26). The layer 

sequence in 1 minute and 3 minute CNNs is also similar where first Conv layer (L2) and Batchnorm 

(L3) are the same for both. However, the remaining layers have more kernels or channels. The five 

minute CNN has two more flexible layers and the actual layers are in the form of Maximum pooling 

(L9, L13). It has the same number of conv, ReLU and Batchnorm layers as the 1 minute and 3 minute 

CNNs, except that the number of kernels and channels in the first layer is higher. 
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Figure 47 : The solutions for the first (1st ) and the last (50) generation of a) 1 minute b) 3 minute, 

and c) 5 minute SpO2 signal. The solution of first generation is marked with a star and 50th is marked 

with a box. d) comparison of all of the inputs in 50th generation. 

6.2.4. External database performance 

To check the universality of the system, the trained (in the HuGCDN2008 database) CNNs were 

tested in the AED [61] and UCD [62] databases. The results are presented in Table 28. The 

performance of all three best networks with the UCD [62] database were lower than the originally 

trained database but were higher in the AED [61].  The highest accuracy, 92.65%, was achieved with 

1 minute input in  the AED [61] database. For the HuGCDN2008 and the UCD [62] databases, the 

main difficulty lay in the detection of short apnea events. This could be related to the fact that some 

respiratory pauses do not produce a clear pattern in the oximetry signal. This could be the related the 

hemoglobin dissociation curve where short events would not be able to decrease the SpO2 percentage 

because a marked reduction in the partial oxygen pressure did not occur. Additionally, pH, 

temperature and the 2,3-diphosphoglycerate (2,3-DPG) levels, which are specific to each person, can 

displace the hemoglobin dissociation curve [10]. 

6.2.5. Effect of input size 

With an increase of the input size (from 1 to 5 minutes), the performance of the HuGCDN2008 

dataset was improved slightly in Acc, from 88.52% to 89.28% and 89.32%. However, between 3 

minute and 5 minute, the results were almost the same. The Sen (apnea events) was affected by the 

input size with an improvement of more than 2% when compared with the 1 minute and 5 minute 

inputs. The Spc (normal events) remains almost the same. By increasing the Sen and keeping the Spc 

stable, the classifiers were able to increase the Acc. A possible reason to justify why longer inputs 

achieve better Sen could be related to the fact that an apnea event could be present in different 

minutes; thus, having the information of longer apnea events increases the detection capabilities. 

Another reason could be, as indicated in other works [10], higher (five) minutes allow the spectral 

features to show more relevance. However, in other datasets (AED [61] and UCD [62]) this trend was 

not consistent. For the AED [61] dataset the highest Acc, of 92.65%, and Sen, of 91.64%, were 
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achieved by the 1 minute input and for the UCD [62] the best results, Acc of 84.96% and Sen of 

67.35%, were achieved by the 3 minute input. Occasionally, one network of higher input size 

performs worse than one of lower input size. Therefore, the performance parameters are more 

dependent on the data and the training weight, than on the input size. 

6.2.6. Effect of layers 

Due to the success of big (deeper) networks one can assume that an increase in the number of layers 

can provide better results in the case of deep learning. However, this assumption is not always valid. 

The number of chosen layers for each solution can be seen in Figure 47. By analyzing the figures, it is 

possible to assess that the algorithm attempted different layer sizes to solve the problem and a better 

solution did not have the highest number of layers (NoFL). A similar conclusion was presented by 

Urtnasan et al. [180] [179] which has an occurrence of an optimum six layered CNN while testing 

from 3 to 9 layers. 

6.2.7. Transfer learning performance 

Transfer learning could be useful by using the information learned from one problem and 

implementing it on others. This work mainly focused on OSA detection, thus the transfer learning 

performance was analyzed with  the AED [61] and UCD [62] databases while the main network was 

trained using the HuGCDN2008 database.  

For transfer learning, the last three layers (L 17-19 for 1 minute, and 3 minute, L 19-21 for 5 

minute, as indicated in Table 26) were removed and replaced with similar types of layers. Afterwards, 

they were retrained with the leave one out method (due to their low number of subjects). There were 

two different weighted networks for each CNN input network (generated using two-fold methods 

implemented in the HuGCDN2008 dataset). Because the actual training data for these transfer 

learning networks were coming from different dataset, there is no need to find the average of the two 

networks’ results (as with the two-fold methods in the HuGCDN2008 dataset). Therefore, only the 

best networks of the HuGCDN2008 dataset (Table 25) were chosen for transfer learning.  

It was verified that, in all of the cases, the transfer learned networks had better accuracy (Table 25 

vs Table 27). However, there were database dependencies. In some of the cases, it was not the same 

original network trained with the HuGCDN2008 dataset (e.g. the CNN1DF2_1 second fold network 

for 1 minute in Table 25 which performed the best; however after transform learning  CNN1DF1_1 

did best in Table 27 for the AED dataset).  
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Table 27 : Transfer learning (TL).  

Symbol Database Sen Spc Acc 

CNN1DF1_1 AED [61] 92.04 95.78 94.24 

CNN1DF2_1 AED [61] 89.25 94.65 92.42 

CNN1DF1_3 AED [61] 92.79 94.56 93.83 

CNN1DF2_3 AED [61] 89.87 96.78 93.93 

CNN1DF1_5 AED [61] 91.49 95.52 93.86 

CNN1DF2_5 AED [61] 87.76 96.61 92.96 

CNN1DF1_1 UCD[62] 54.39 94.14 84.52 

CNN1DF2_1 UCD[62] 58.32 93.32 84.85 

CNN1DF1_3 UCD[62] 60.02 93.93 85.73 

CNN1DF2_3 UCD[62] 60.38 93.90 85.79 

CNN1DF1_5 UCD[62] 60.42 93.43 85.44 

CNN1DF2_5 UCD[62] 60.34 93.54 85.51 

 

6.2.8. Comparison with the state of the art works 

The closest match for a comparison with this work was developed by Ravelo-García et al. [10] 

where the same database, HuGCDN2008, was used. A shallow classifier, linear discriminant analysis 

(LDA), was employed with an SpO2 signal and combination of SpO2 and HRV. The proposed work 

achieved 89.32% Acc with only the SpO2 5 minute’s window compared to 86.5% and 86.9% with 

mix of 1 minute and 5 minute windows using the SpO2, and SpO2+HRV signals. The proposed 

implementation was also able to keep the same performance level with a 3 minute window and not 

sacrificing any parameters. Even the one-minute window has better Acc and Sen compared to the 

other works in Table 28. Our feature based approach, SC3 (Section 5.4 and Section 5.5), also used the 

HuGCDN2008 database. The accuracy and specificity of a multi-objectively optimized CNN is better.  

For the AED [61] dataset the proposed optimized CNN achieved 92.65% Acc, 93.36 % Spc and 

91.64% Sen.  Though the Acc was not the best among the other implementations, it has one of the 

best Sen, only surpassed by an LSTM [107] and ANN [102]. However, neither of these works, 

[102][107], were subject independent. For the UCD [62], the transfer learning approach achieved the 

highest accuracy compared to the other works except the DAE [106] likewise was not subject 

independent. In both databases, transfer learning increases the performance parameters. 

If the comparison only includes deep learning, the proposed networks achieved the best accuracy 

among all the subject independent implementations. This is the case even when they are compared to 

some implementation where more signals were employed, such as a combination of SpO2, airflow 

and respiration [190] or the combination of SpO2, oronasal airflow and movements (ribcage and 

abdomen) [185].  



 

118 

Table 28 : Comparison with the literature (P is for proposed networks optimized by a GA and trained 

using the HuGCDN2008 database. TL indicates transfer learning where the proposed networks were 

retrained using the respective database. aBetween two networks the best one is showed.). 

Ref. Signal Classifier Database 
Recordings 

or Patients 

Input size 

(Seconds) 

No of 

features 
Sen Spc Acc 

[2] SpO2 SVM  Own 40 150 7 - - 90 

[73] SpO2 +ECG Bagging.RepTree UCD [62] 25 60 39 79.75 85.89 84.80 

[73] SpO2  Bagging.RepTree UCD [62] 25 60 39 78.23 84.25 82.79 

[99] SpO2  ANN AED [61] 8 60 3 87.5 100 90.3 

[10] SpO2 LDA HuGCDN2008 70 60,300 19 75.6 91.00 86.5 

[10] SpO2+HRV LDA HuGCDN2008 70 60,300 33 73.4 92.3 86.9 

[195] 

(Section 5.2) 

SpO2 SVM-L AED [61] 8 60 50 83.76 97.03 96.89 

[195] 

(Section 5.2) 

SpO2 SVM-L AED [61] 8 60 20 84.57 97.28 97.38 

[195] 

(Section 5.2) 

SpO2 ANN UCD [62] 25 60 2 43.31 95.03 81.95 

[195] 

(Section 5.2) 

SpO2 LD UCD [62] 25 60 9 61.78 91.03 83.27 

[102] 

(Section 5.3) 

SpO2 ANN AED [61] 8 60 7 96.5 98.5 97.7 

[196] 

(Section 5.4) 

SpO2 MaxVSF1 AED [61] 8 60 34 98.11 86.98 91.33 

[106] SpO2 DAE AED [61] 8 60 - 78.75 95.89 97.64 

[106] SpO2 DAE UCD [62] 25 60 - 60.36  91.71 85.26 

[107] SpO2+IHR LSTM AED [61] 8 60 - 84.7 - 92.1 

[107] SpO2 LSTM AED [61] 8 60 - 92.9 - 95.5 

[185] SpO2+oronasal 

airflow+ribcage 

and abdomen 

movements. 

CNN2D UCD[62] 23 1 -   79.6 

[190] SpO2+airflow+ 

respiration. 

RCNN MGH 10000 1 -   88.2 

[190] SpO2+airflow+ 

respiration.  

RCNN SHHS 5804 1 -   80.2 

[196] 

(Section 5.4) 

SpO2 MaxVIF1 HuGCDN2008 70 60 98 82.48 86.28 85.30 

[196] 

(Section 5.4) 

SpO2 MaxVIF1 HuGCDN2008 70 300 89 80.54 85.74 84.46 

(Section 5.5) HR MaxVSF5 HuGCDN2008 70 300 222 72.81 75.25 76.17  

(Section 5.5) SpO2+HR MaxVSF5 HuGCDN2008 70 300 290 78.90 87.21 85.08 

P SpO2 CNN1D HuGCDN2008 70 60 - 72.55 94.21 88.52 

P SpO2 CNN1D HuGCDN2008 70 180 - 74.05 94.60 89.24 

P SpO2 CNN1D HuGCDN2008 70 300 - 74.75 94.44 89.32 

Pa SpO2 CNN1D AED [61] 8 60 - 91.64 93.36 92.65 

Pa SpO2 CNN1D AED [61] 8 180 - 85.64 93.36 90.20 

Pa SpO2 CNN1D AED [61] 8 300 - 88.58 93.67 91.58 

Pa SpO2 CNN1D UCD[62] 25 60 - 56.72 93.32 84.55 

Pa SpO2 CNN1D UCD[62] 25 180 - 67.35 90.51 84.96 

Pa SpO2 CNN1D UCD[62] 25 300 - 66.57 90.19 84.53 

TLa SpO2 CNN1D AED [61] 8 60 - 92.04 95.78 94.24 
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TLa SpO2 CNN1D AED [61] 8 180 - 89.87 96.78 93.93 

TLa SpO2 CNN1D AED [61] 8 300 - 87.76 96.61 92.96 

TLa SpO2 CNN1D UCD[62] 25 60 - 58.32 93.32 84.85 

TLa SpO2 CNN1D UCD[62] 25 180 - 60.38 93.90 85.79 

TLa SpO2 CNN1D UCD[62] 25 300 - 60.34 93.54 85.51 

 

6.2.9. Summary 

The goal of this work was to develop and test a novel fully automated hyperparameters 

optimization algorithm for a CNN. Consequently, significant results were attained.  

Three different window sizes were also tested and it was verified that there is almost no difference 

between 3 minute and 5 minutes window sizes. In some cases, the 1 minute outperformed the 3 

minute and 5 minute inputs. Compared to shallow networks, the developed CNNs were able to 

achieve a better performance with a smaller input size and without the need for hand crafted feature 

extraction.  

It was also verified that the performance of the models with almost similar structure networks was 

more sensitive to training and data than the hyperparameters choice. Also, it was verified that transfer 

leaning has a strong potential for implementation in similar domains. 

One of the limitations of this work is the fact that multi objective optimization was only applied to 

hyperparameter optimization and not used for the training. Thus, when the transfer learning concept 

was implemented, the network was sacrificing Sen to achieve a better Acc. The second limitation is 

the population number, of only 50, which cannot ensure that the network had a strong diversity to start 

with. However, this issue was mitigated by the use of mutation. This work was not designed to be 

optimized for the layer size. Thus, even in the 50th generation, the Pop has a substantial different 

sized network. One way of solving this issue would be to run for more generations until stable 

solutions were found. Another way of achieving this could be involve an NoFL, which is one of the 

objectives which are under consideration for future research. It was verified in the literature, that 

increasing the number of signals [183] or selecting an RNN [189] could improve the results  [179] 

[180]. Therefore, this could be investigated in the future. 

6.3. Greedy Based Optimization (GBO) of CNN 

The optimization technique developed for CNNs in Section 6.2 is to a certain extent time-

consuming. Therefore, a faster technique is investigated in this section. 
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6.3.1. Introduction  

A deep network classifier, capable of automatically extracting features, was used. There are 

different types of deep networks used to detect OSA: CNNs [179][180][181][182], DNNs [177], 

LSTMs [107][132][131], the Gated Recurrent Unit (GRU) [189], among others. The literature has 

shown encouraging results by using a CNN as a deep network classifier [179][180][181][182]. For 

that reason, in this work, a CNN is used for detecting apnea from the SpO2 signal. Since the input of 

the CNN has just one dimension, the proposed deep network classifier is called CNN1D and is used 

by different works in the literature [179][219][180]. The optimal CNN structural hyperparameters for 

a suitable classifier are one of the most challenging topics, which need time and knowledge. Different 

authors used different techniques such as an evolutionary algorithm [237][238][239], a Bayesian 

optimization [240], an efficient framework for hyperparameters [220] and a sequentially structured 

search [241] [242]. To solve this limitation, in this work it is also proposed that a fast searching 

mechanism for optimizing hyperparameters for CNN1D be used.  

Two databases were preprocessed to test the performance and the idea behind this work. A scalable 

structure was designed with modular cluster layers. The classifier is scaled with added cluster layers 

by using the proposed algorithms. 

6.3.2. Classifier structure 

The CNN topology proposed to detect apnea is schematically presented in Figure 48. This topology 

is composed of two different layers: a Clustered-layer (CL) and an Output Layer (OL). The OL is 

applied for the classification phase and it is composed of the following sub-layers sequentially 

connected: Fully Connected (FC), softmax and class output. The proposed CL is applied to extract 

local features at high resolutions and reduces the dimensionality of the complex features. 

The CL is constituted of a set of layers methodologically arranged in order to detect, extract, and 

decrease the variation of layers and to facilitate the training process. In the first layer of the CL, 

convolution operations (ConV) are used to extract features. Convolution preserves the spatial 

relationship between inputs by learning features using trainable kernels. By nature, CNN systems 

have several layers that are sensitive to initial trainable kernels and configurations of the training 

algorithm. One possible reason for this sensitiveness is the distribution of the inputs between the deep 

layers, which may change after each mini-batch when the trainable parameters are updated. 

Consequently, the learning algorithm will chase a moving target. This phenomenon is technically 

called the internal covariate shift and it can be solved through batch normalization [243][244]. Batch 

normalization normalizes each input channel across a mini-batch. By using the Batch Normalization 

(BatchN) between convolution operations and nonlinearities (ReLU), the CNN training speeds up and 
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its sensitivity towards initial trainable parameters is reduced. Then, MAX-Pooling (MaxP) is applied 

for down-sampling feature maps, reducing sharp variations and the number of connections to the 

between layers [245].  

 
Figure 48 : Clustered-layer (CL) base scalable CNN1D structure. 

6.3.3. Hyper-parameters optimization based on Greedy Algorithm  

To find the best CNN hyper-parameters for a problem, expert knowledge and an enormous amount 

of research time are needed. In this work, a Greedy Based Optimization (GBO) algorithm with 

variants of topology transfers is proposed. Therefore, the objective is to minimize the searching time 

and to introduce reproducible procedures for a well-structured searching optimization.  

The inspiration for the proposed algorithm is based on deep belief nets (DBN) developed by GE 

Hinton et al. [23]. As presented in DBNs, the proposed GBO algorithm optimizes the network layer 

by layer. While the DBN uses unsupervised learning for trainable parameters without optimizing the 

layers’ hyper-parameters, the developed GBO algorithm uses a supervised learning with the 

advantage of hyper-parameters optimization for each added CL. After running the GBO algorithm, it 

is possible to find the optimum number of CLs. The proposed GBO algorithm is divided mainly into 

two different methods: The Topology Transfer (TT) method and the Weighted-Topology Transfer 

(WTT) method. The main methodology of both methods remains the same. However, some details 

about how they are trained are different from one another. The TT method saves just the topology and 

its weights need to be re-trained when a new CL is added. The WTT method could be divided into 

two sub-methods. The first sub-method, called Rough Estimation (RE), consists of saving the 
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topology and weights, and then, training just the new CL when it is added. The second method, called 

Fine Tuning (FT), consists of fine tuning by retraining only the best networks obtained by the RE.  

If a CNN is composed of a sequence of CL 𝑙 = 1,2…𝑁𝐿  and, at the end, an output layer (𝑂𝐿𝑙).  

The optimized number of CL and its parameters need to be found. The ideal procedure is an 

Exhaustive Search (ES) , where all possible combinations are developed to find the best CNN. The 

following equation gives all these combinations of the ES. 

∑ Al
NL
l=1                                                                                             (13) 

where 𝑁𝐿 is the maximum number of CL and 𝐴 = 𝑆𝑘 ∗ 𝑁𝑘. 𝑁𝑘 is the number of kernels of the user 

defined set 𝑘𝑁𝑜 and 𝑆𝑘 is the quantity of different kernels sizes of the user defined set 𝑘𝑆𝑖𝑧𝑒. For a 

specific kernel number and size, 𝑛 and 𝑚 are used (like 𝑚𝑡ℎ and 𝑛𝑡ℎ).  

The proposed method assembles layers based on the GBO algorithm. It is a technique to decrease 

the time to search for the best number of CLs and to optimize the parameters of each CL.  

Firstly, CNNs with just one CL and OL are trained for 𝑁𝑘 different kernels sizes and 𝑆𝑘 different 

kernel numbers. Then, the structure with the best performance is saved. From the previously found 

structure, a new 𝐶𝐿𝑙 is added between the previous 𝐶𝐿𝑙−1 and the 𝑂𝐿𝑙. The new structure of the added 

CL is searched in a similar way to that previously described. This procedure is carried out for 𝑁𝐿 

clustered layers given the number of combinations when the proposed method is used.  

NL*A                                                      (14) 

In contrast to the ES method, the proposed GBO method allows reducing the number of 

combinations for finding the best CNN and, consequently, the time for searching the best CNN. The 

gain over all simulated networks is quantified by 

𝐺ES/GBO =
∑ 𝐴𝑙
𝑁𝐿
𝑙=1

𝑁𝐿∗𝐴
=

𝐴∑ 𝐴𝑙
𝑁𝐿−1

𝑙=0

𝑁𝐿∗𝐴
=

𝐴𝑁𝐿−1+1−1

𝐴−1

𝑁𝐿
=

𝐴𝑁𝐿−1

𝑁𝐿(𝐴−1)
                      (15) 

Assuming that 𝐴𝑁𝐿 ≫ 1 and 𝑁𝐿 > 1 since it is a deep learning structure, the above can be simplified 

to  

𝐺ES/GBO   ≈
𝐴𝑁𝐿

𝑁𝐿(𝐴−1)
=

(𝑆𝑘∗𝑁𝑘)
𝑁𝐿

𝑁𝐿(𝑆𝑘∗𝑁𝑘−1)
                           (16) 

The TT and WTT methods take 𝐷𝑎𝑡𝑎 = {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙 , 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡}  as input, where 

𝑋𝑡𝑟𝑎𝑖𝑛 and  𝑌𝑡𝑟𝑎𝑖𝑛 are the training data and the training annotation, 𝑋𝑣𝑎𝑙 𝑎nd 𝑌𝑣𝑎𝑙  are the validation 

data and the validation annotation and 𝑋𝑡𝑒𝑠𝑡 and 𝑌𝑡𝑒𝑠𝑡 are the test data and the test annotation. For both 

methods 𝑆𝑘 = 𝑛(𝑘𝑆𝑖𝑧𝑒) and 𝑁𝑘 = 𝑛(𝑘𝑁𝑜) which are the cardinality of the user specified 𝑘𝑆𝑖𝑧𝑒 and 

𝑘𝑁𝑜 set. For all the combination of 𝑆𝑘  and 𝑁𝑘, 𝐴, the TT and WTT methods perform their specific 

steps. For the first CL (𝑙 = 1), the TT and WTT do not have any difference. From the second added 

CL, the difference is in the network creation and the training process. 
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The TT method has six stages executed sequentially (Figure 49): layer creation, layer 

concatenation, the training process and the testing process:  

Figure 49 : Side by side comparison of the TT and WTT greedy methods. 

i) Layer creation:  A partial network, 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

 is created from the previous best network by 

𝑻𝑻 (𝐷𝑎𝑡𝑎, 𝑁𝐿 , 𝑘𝑆𝑖𝑧𝑒, 𝑘𝑁𝑜) 
𝑆𝑘 = 𝑛(𝑘𝑆𝑖𝑧𝑒)𝑎𝑛𝑑 𝑁𝑘 = 𝑛(𝑘𝑁𝑜)  
𝑓𝑜𝑟 𝑙 = 1 𝑡𝑜 𝑁𝐿 

     𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑆𝑘 

          𝑓𝑜𝑟 𝑛 = 1 𝑡𝑜 𝑁𝑘 

               //Layer Creation: 

               𝐼𝑓 𝑙 > 1 

                     𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

←

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 (𝐵𝑁𝑒𝑡𝑙−1] − [𝐵𝑂𝐿𝑙−1) 
                     𝑁𝑒𝑡𝑙,𝑚,𝑛

𝐶𝐿 ← 𝐶𝐿𝑙,𝑚,𝑛[+]𝑂𝐿𝑙 

               𝐸𝑙𝑠𝑒 

                     𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

← 𝐼𝐿 

                     𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿 ← 𝐶𝐿𝑙,𝑚,𝑛[+]𝑂𝐿𝑙 

                𝑒𝑛𝑑 

               //Layer Concatenation:  

               𝑁𝑒𝑡𝑙,𝑚,𝑛 ← 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

[+]𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿  

               //Training Process: 

               𝑁𝑒𝑡𝑙,𝑚,𝑛 ←

𝑡𝑟𝑎𝑖𝑛(𝑁𝑒𝑡𝑙,𝑚,𝑛, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙) 
               //Testing Process: 

               𝑃𝑙 ← 𝑡𝑒𝑠𝑡(𝑁𝑒𝑡𝑙,𝑚,𝑛, 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡) 

         𝑒𝑛𝑑 

    𝑒𝑛𝑑 

    𝐵𝑁𝑒𝑡𝑙 ← 𝐵𝑒𝑠𝑡(𝑁𝑒𝑡𝑙) 
𝑒𝑛𝑑 

//Best Network Selection: 

𝑁𝑒𝑡𝐵𝑒𝑠𝑡 ← 𝐵𝑒𝑠𝑡(𝐵𝑁𝑒𝑡) 
𝑅𝑒𝑡𝑢𝑟𝑛 𝑁𝑒𝑡𝐵𝑒𝑠𝑡 
 

 

𝑾𝑻𝑻 (𝐷𝑎𝑡𝑎, 𝑁𝐿 , 𝑘𝑆𝑖𝑧𝑒, 𝑘𝑁𝑜, 𝑇𝑦𝑝𝑒) 
𝑆𝑘 = 𝑛(𝑘𝑆𝑖𝑧𝑒)𝑎𝑛𝑑 𝑁𝑘 = 𝑛(𝑘𝑁𝑜)  
𝑓𝑜𝑟 𝑙 = 1 𝑡𝑜 𝑁𝐿 

     𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑆𝑘 

          𝑓𝑜𝑟 𝑛 = 1 𝑡𝑜 𝑁𝑘 

            //Layer Creation: 

            𝐼𝑓 𝑙 > 1 

                  𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

←

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 & 𝑤𝑒𝑖𝑔ℎ𝑡 (𝐵𝑁𝑒𝑡𝑙−1] − [𝐵𝑂𝐿𝑙−1) 
                  𝑁𝑒𝑡𝑙,𝑚,𝑛

𝐶𝐿 ← 𝐶𝐿𝑙,𝑚,𝑛[+]𝑂𝐿𝑙 

            𝐸𝑙𝑠𝑒 

                  𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

← 𝐼𝐿 

                  𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿 ← 𝐶𝐿𝑙,𝑚,𝑛[+]𝑂𝐿𝑙 

           𝑒𝑛𝑑 

           //Training Process: 

           𝑋𝑡𝑟𝑎𝑖𝑛
𝑓

← 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓 (𝑋𝑡𝑟𝑎𝑖𝑛) // feature 

extraction 

           𝑋𝑣𝑎𝑙
𝑓
← 𝑁𝑒𝑡𝑙,𝑚,𝑛

𝑓 ( 𝑋𝑣𝑎𝑙) // feature extraction 

           𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿 ←

𝑡𝑟𝑎𝑖𝑛(𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿 , 𝑋𝑡𝑟𝑎𝑖𝑛

𝑓
, 𝑌𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙

𝑓
, 𝑌𝑣𝑎𝑙) 

           //Layer Concatenation:  

           𝑁𝑒𝑡𝑙,𝑚,𝑛 ← 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

[+]𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿  

           //Testing Process: 

            𝑃𝑙 ← 𝑡𝑒𝑠𝑡(𝑁𝑒𝑡𝑙,𝑚,𝑛 , 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡) 
         𝑒𝑛𝑑 

    𝑒𝑛𝑑 

    𝐵𝑁𝑒𝑡𝑙 ← 𝐵𝑒𝑠𝑡(𝑁𝑒𝑡𝑙) 
𝑒𝑛𝑑 

𝐼𝑓 𝑇𝑦𝑝𝑒 == ′𝑅𝐸′ 
    //Best Network Selection 

    𝑁𝑒𝑡𝐵𝑒𝑠𝑡 ← 𝐵𝑒𝑠𝑡(𝐵𝑁𝑒𝑡) 
𝐸𝑙𝑠𝑒𝐼𝑓 𝑇𝑦𝑝𝑒 == ′𝐹𝑇′ 
    𝑓𝑜𝑟 𝑙 = 1 𝑡𝑜 𝑁𝐿 

        //Re Training Process 

        𝐵𝑁𝑒𝑡𝑙
𝑟 ← 𝑟𝑒𝑡𝑟𝑎𝑖𝑛(𝐵𝑁𝑒𝑡𝑙 , 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) 

        //Testing Process 

        𝑃𝑙
𝑟 ← 𝑡𝑒𝑠𝑡(𝐵𝑁𝑒𝑡𝑙

𝑟, 𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡) 
    𝑒𝑛𝑑 

   //Best Network Selection 

   𝑁𝑒𝑡𝐵𝑒𝑠𝑡 ← 𝐵𝑒𝑠𝑡(𝐵𝑁𝑒𝑡𝑟) 
𝑒𝑛𝑑 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑁𝑒𝑡𝐵𝑒𝑠𝑡 
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removing the output layer, 𝑂𝐿𝑙−1. Furthermore, in this stage, the partial network 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿

 is created by 

the concatenation of a new 𝐶𝐿𝑙,𝑚,𝑛 and a new 𝑂𝐿𝑙. In the algorithms the ‘[+]’ symbol is used for 

concatenate and the ‘]-[’ symbol is used for reverse concatenate.  

ii) Layer concatenation: A network 𝑁𝑒𝑡𝑙,𝑚,𝑛  is created by the concatenation of 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

  

and 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿 .  

iii) Training process: 𝑁𝑒𝑡𝑙,𝑚,𝑛 is trained with training data 𝑋𝑡𝑟𝑎𝑖𝑛,  and its annotation, 𝑌𝑡𝑟𝑎𝑖𝑛 , and is 

validated with validation data 𝑋𝑣𝑎𝑙, and its annotation 𝑌𝑣𝑎𝑙. In this process, the training is done for  𝑁𝑘 

different kernels with 𝑆𝑘 different size kernels. In total, 𝑆𝑘 ∗ 𝑁𝑘 different networks are trained in this 

stage.  

iv) Testing process: the 𝑆𝑘 ∗ 𝑁𝑘 different networks are tested.  

v) The procedures described above are repeated 𝑁𝐿 times. vi) In the end, the best network is chosen 

from 𝑁𝐿 different networks.  

As mentioned before, the WTT method has two sub-methods (Figure 49): the RE and the 

FT(𝑡𝑦𝑝𝑒 = {′𝑅𝐸′, ′𝐹𝑇′}).  

i) Layer creation:  A partial network 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

 is created from the previous best network by removing 

the output layer, 𝑂𝐿𝑙−1. Also, in this stage the partial network 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿

 is created by the concatenation 

of a new 𝐶𝐿𝑙,𝑚,𝑛 and a new 𝑂𝐿𝑙.  

ii) Training process: only the partial network 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿

 is trained in this stage. Firstly, the feature 

map 𝑋𝑡𝑟𝑎𝑖𝑛
𝑓

 and 𝑋𝑣𝑎𝑙
𝑓

 are obtained from the simulation of the partial network 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

. Then, 𝑋𝑡𝑟𝑎𝑖𝑛
𝑓

 

along with 𝑌𝑡𝑟𝑎𝑖𝑛  and 𝑋𝑣𝑎𝑙
𝑓

 along with 𝑌𝑣𝑎𝑙 are used for training the partial network 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿

. In total, 

𝑆𝑘 ∗ 𝑁𝑘 different networks are trained in this stage.  

iii) Layer concatenation: the network 𝑁𝑒𝑡𝑙,𝑚,𝑛  is created by the concatenation between 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝑓

  

and 𝑁𝑒𝑡𝑙,𝑚,𝑛
𝐶𝐿

.  

iv) Testing process: the 𝑆𝑘 ∗ 𝑁𝑘 different networks are tested.   

v) The procedures described above are repeated 𝑁𝐿 times.  

vi) if the 𝑡𝑦𝑝𝑒 == ′𝑅𝐸′ then the best network is chosen from 𝑁𝐿 different networks. Elseif 𝑡𝑦𝑝𝑒 =

= ′𝐹𝑇′ then  
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vi.a) all  𝑁𝐿 best networks from RE, 𝐵𝑁𝑒𝑡𝑙
 
 are re-trained.  

vi.b) all 𝑁𝐿 re-trained networks are tested.  

vi.c) The best network is chosen from all the resulting networks. 

 
In case of the TT method, CNNs with just one CL and one OL are trained which takes a time, T, 

defined by  

T=A*t                                    (17) 

where, 𝑡 is the average time to train each CL. Taking into account that the TT method keeps the 

topology, its weights need to be re-trained when a new CL is added. If it is assumed that there is a 

linear relationship between cluster number (𝑙) and the training time, then the total time to execute the 

TT method for 𝑁𝐿 clustered layers is given by  

TTT=T+2T+3T+…+NLT=T∑ l=T(
NL(NL+1)

2
)

NL
l=1                                                        (18) 

  On the other hand, the calculation of the time to perform RE ( 𝑇𝑊𝑇𝑇,𝑅𝐸) is the sum of the training 

time of the latest CL , (𝑇)  because the weights of previous layer are kept. The expression for 

computing the 𝑇𝑊𝑇𝑇,𝑅𝐸 value is given by  

𝑇𝑊𝑇𝑇,𝑅𝐸 = 𝑁𝐿 ∗ 𝑇                                                                         (19) 

The time to execute the FT (𝑇𝑊𝑇𝑇,𝐹𝑇) is given by the addition of the time taken to perform RE and 

retraining the best networks resulting from the RE.  

TWTT,  FT=TWTT,RE+Tfine                                                     (20) 

where 𝑇𝑓𝑖𝑛𝑒 is the time to perform the additional steps of the FT. Since the fine tuning’s steps consists 

on retaining only the best networks from one to 𝑁𝐿 CL, the 𝑇𝑓𝑖𝑛𝑒 calculation is given by  

𝑇𝑓𝑖𝑛𝑒 = 𝑡𝐹𝑇 + 2𝑡𝐹𝑇 + 3𝑡𝐹𝑇 +⋯+𝑁𝐿𝑡𝐹𝑇 = 𝑡𝐹𝑇 ∑ 𝑙
𝑁𝐿
𝑙=1 = 𝑡𝐹𝑇 (

𝑁𝐿(𝑁𝐿+1)

2
)               (21) 

Taking into account the 𝑇𝑊𝑇𝑇,𝐹𝑇 and 𝑇𝑓𝑖𝑛𝑒, 𝑇𝑊𝑇𝑇,𝐹𝑇 can be simplified to  

𝑇𝑊𝑇𝑇,𝐹𝑇 = 𝑁𝐿 ∗ 𝑇 + 𝑡𝐹𝑇 (
𝑁𝐿(𝑁𝐿+1)

2
)                   (22) 

From  𝑇𝑊𝑇𝑇,𝐹𝑇 and 𝑇𝑇𝑇, it is possible to presume that the 𝑇𝑊𝑇𝑇,𝐹𝑇 and 𝑇𝑊𝑇𝑇,𝑅𝐸 are lower than the 

𝑇𝑇𝑇 .The time gain 𝐺𝑇𝑇/𝐹𝑇  and  𝐺𝑇𝑇/𝑅𝐸 are  

𝐺𝑇𝑇/𝐹𝑇 =
𝑇𝑇𝑇

𝑇𝑊𝑇𝑇,𝐹𝑇
=

𝑇(
𝑁𝐿(𝑁𝐿+1)

2
)

𝑁𝐿∗𝑇+𝑡𝐹𝑇(
𝑁𝐿(𝑁𝐿+1)

2
)
=

𝑆𝐾∗𝑁𝐾∗𝑡(
𝑁𝐿(𝑁𝐿+1)

2
)

𝑆𝐾∗𝑁𝐾∗𝑡+𝑡𝐹𝑇(
𝑁𝐿(𝑁𝐿+1)

2
)
=

𝑆𝐾∗𝑁𝐾(𝑁𝐿+1)

2𝑆𝐾∗𝑁𝐾+𝑁𝐿+1
|𝑡𝐹𝑇 = 𝑡           (23) 

GTT/RE=
TTT

TWTT,RE
=
T(
NL(NL+1)

2
)

NL*T
=
(NL+1)

2
                                           (24) 

6.3.4. General result of Greedy Algorithms  

The algorithm was tested using MATLAB running on a windows 10 operating system with an Intel 

Corei7-8700K CPU, with 32 GB of RAM and two NVIDIA TITAN Xp GPUs. For training the 

networks, the Adam learning algorithm with 512 mini batch size and 400 maximum epochs were 
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used. Each training fold ran in a separate GPU. The other parameters of the training algorithm are 200 

validation frequency, 0.1 learning rate drop factor, and 10 epochs learn rate drop period. In each 

epoch, the data were shuffled. For TT and RE, the initial learning rate is 0.001 and, for FT the initial 

learning rate is 0.00001. 

To find an optimal solution and structure of the CNN for each added CL, the Kernel Size (kSize) is 

varied from 3 to 9 with a step size of 2 and Kernel Number (kNo) is varied from 5 to 55 with a step 

size 10. For each CL, the kSize and kNo are chosen from the best CO which is the average of Acc, 

Sen and Spc. An example using the RE method and 1-minute as input at the first CL, in which the 

kSize and the kNo are selected as 7 and 35, respectively to get a CO of 77.23%, which is the 

maximum value (Figure 50). This step is repeated until the maximum CLs size of 10 is reached. 

 
 

Figure 50 : Best validation (Val) CO solution for the first layer WTTRE. 

At first, the TT and the WTT (RE and FT) of the GMO methods were tested for a one minute input. 

After comparing the performance vs optimization time, only the WTT was tested for the effects of the 

input size. The details are discussed in section 6.3.5 and section 6.3.6. 

The final optimized (Opt) classification using the HuGCDN2008 dataset for greedy methods and 

the multi-objective method are shown in Table 29. If the absolute performance of the multi-objective 

and GBO is compared, then the multi-objective method did better than the GMO. Even though multi-

objective method was not developed to use CO it performs better on that parameter compared to the 

GMO. A difference occurs because the GBO starts with finding the structure with the best 

performance for just one CL. Then a new CL is added, and its best structure is searched. This 

framework does not produce the best optimal structure with the combination (which can be achieved 

by an extensive search with the cost of the simulation time). It has high a chance of producing local a 

optimal solution. However, the difference between the two methods’ performance parameters is not 

that high. The main motivation behind the GBO methods was in reducing the searching time for 

optimization. If a 1 minute input is considered, compared to the multi objective method, the GBO TT 

method is 16.68 times faster, the GBO WTTRE is 72.39 times faster, and the WTTFT is 47.6 times 
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faster. Whereas GBO take half or one third of a day the multi-objective methods take almost a month. 

If amount of the data are increased, the optimization time will increase also. Therefore, it depends on 

the user which algorithm is most suitable for his or her task.   

Table 29 : Comparison of the results between the muti-objective method and two greedy based 

optimization (GBO) methods,  the WTT and the TT optimized (Opt) classification using the 

HuGCDN2008 database, Cross Database(CD), and Transfer Learning (TL) . 

Type 

TEST DATABASE INPUT SIZE 

(IN 

MINUTE) 

OPT 

CL 

TIME (IN 

HOURS) 

SEN SPC ACC CO 

Muti-objective 

(Section 6.2) 

HuGCDN2008 1 - 587.84 72.55 94.21 88.52 85.09 

Muti-objective 

(Section 6.2) 

HuGCDN2008 3 - 832.04 74.05 94.60 89.24 85.96 

Muti-objective 

(Section 6.2) 

HuGCDN2008 5 - 911.23 74.75 94.44 89.32 86.17 

Muti-objective (CD) 

(Section 6.2) 

AED 1 - - 91.64 93.36 92.65 92.55 

Muti-objective (CD) 

(Section 6.2) 

AED 3 - - 85.64 93.36 90.20 89.73 

Muti-objective (CD) 

(Section 6.2) 

AED 5 - - 88.58 93.67 91.58 91.28 

Muti-objective (TL) 
(Section 6.2) 

AED 1 - - 92.04 95.78 94.24 94.02 

Muti-objective (TL) 

(Section 6.2) 

AED 3 - - 89.87 96.78 93.93 93.53 

Muti-objective (TL) 
(Section 6.2) 

AED 5 - - 87.76 96.61 92.96 92.44 

GBO (TT) HuGCDN2008 1 9 29.87 69.51 94.90 88.24 84.22 

GBO (WTTRE) HuGCDN2008 1 8 8.12 70.09 93.98 87.71 83.93 

GBO (WTTRE) HuGCDN2008 3 9 11.78 71.71 93.93 88.13 84.59 

GBO (WTTRE) HuGCDN2008 5 9 21.06 73.64 93.80 88.49 85.31 

GBO (WTTFT) HuGCDN2008 1 8 12.34 69.68 94.22 87.78 83.89 

GBO (WTTFT) HuGCDN2008 3 9 25.18 71.47 94.07 88.17 84.57 

GBO (WTTFT) HuGCDN2008 5 10 34.27 73.27 93.57 88.23 85.02 
GBO (WTTRE, CD) AED 1 8 - 83.84 89.51 87.18 86.84 

GBO (WTTRE, CD) AED 3 9 - 88.94 90.38 89.79 89.70 

GBO (WTTRE, CD) AED 5 9 - 75.51 94.95 86.95 85.80 

GBO (WTTRE, TL) AED 1 8 - 87.45 96.30 92.65 92.13 

GBO (WTTRE, TL) AED 3 9 - 92.36 97.08 95.14 94.86 

GBO (WTTRE, TL) AED 5 9 - 87.63 95.17 92.07 91.62 

 

6.3.5. Comparison between different Greedy Algorithms  

Considering the HuGCDN2008 dataset, the best performance of the CO for 10 CLs and a 1-minute 

input is achieved (Table 30 and Table 31): in the ninth CL for the TT method (CO for validation 

89.40%; CO for testing 84.22%), in the eighth layer for the RE (CO for validation 88.48%; CO for 

testing 83.92%), and in the eighth layer for the FT (CO for validation 88.67%; CO for testing 83.89 

%). 
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Table 30 : Chosen CNN’s layers and hyperparameters by WTT (RE and FT). 
 1 minute (RE, FT) 3 minutes (RE, FT) 5 minutes (RE) 

No. Layer Layer Parameters Layer Layer Parameters Layer Layer Parameters 

L1 Input 1x3000x1 Input 1x9000x1 Input 1x15000x1 

L2 Conv_1 35@1x7x1_1x1 Conv_1 15@1x5x1_1x1 Conv_1 25@1x9x1_1x1 

L3 BatchN_1    35 channels BatchN_1    15 channels BatchN_1    25 channels 

L4 ReLU_1  ReLU_1  ReLU_1  

L5 MaxP_1        1x2_1x2 MaxP_1        1x2_1x2 MaxP_1        1x2_1x2 

L6 Conv_2 55@1x9x35_1x2 Conv_2 15@1x7x15_1x1 Conv_2 25@1x7x25_1x1 

L7 BatchN_2    55 channels BatchN_2    15 channels BatchN_2    25 channels 

L8 ReLU_2  ReLU_2  ReLU_2  

L9 MaxP_2        1x2_1x2 MaxP_2        1x2_1x2 MaxP_2        1x2_1x2 

L10 Conv_3 15@1x7x55_1x1 Conv_3 35@1x9x15_1x1 Conv_3 5@1x5x25_1x1 

L11 BatchN_3    15 channels BatchN_3    35 channels BatchN_3    5 channels 

L12 ReLU_3  ReLU_3  ReLU_3  

L13 MaxP_3        1x2_1x2 MaxP_3        1x2_1x2 MaxP_3        1x2_1x2 

L14 Conv_4 5@1x7x15_1x1 Conv_4 25@1x3x35_1x1 Conv_4 5@1x3x5_1x1 

L15 BatchN_4    5 channels BatchN_4    25 channels BatchN_4    5 channels 

L16 ReLU_4  ReLU_4  ReLU_4  

L17 MaxP_4        1x2_1x2 MaxP_4        1x2_1x2 MaxP_4        1x2_1x2 

L18 Conv_5 5@1x9x5_1x1 Conv_5 15@1x3x25_1x1 Conv_5 5@1x9x5_1x1 

L19 BatchN_5    5 channels BatchN_5    15 channels BatchN_5    5 channels 

L20 ReLU_5  ReLU_5  ReLU_5  

L21 MaxP_5        1x2_1x2 MaxP_5        1x2_1x2 MaxP_5        1x2_1x2 

L22 Conv_6 45@1x9x5_1x1 Conv_6 5@1x5x15_1x1 Conv_6 15@1x9x5_1x1 

L23 BatchN_6    45 channels BatchN_6    5 channels BatchN_6    15 channels 

L24 ReLU_6  ReLU_6  ReLU_6  

L25 MaxP_6        1x2_1x2 MaxP_6        1x2_1x2 MaxP_6        1x2_1x2 

L26 Conv_7 5@1x7x45_1x1 Conv_7 25@1x3x5_1x1 Conv_7 35@1x7x15_1x1 

L27 BatchN_7    5 channels BatchN_7    25 channels BatchN_7    35 channels 

L28 ReLU_7  ReLU_7  ReLU_7  

L29 MaxP_7        1x2_1x2 MaxP_7        1x2_1x2 MaxP_7        1x2_1x2 

L30 Conv_8 5@1x3x5_1x1 Conv_8 15@1x7x25_1x1 Conv_8 45@1x9x35_1x1 

L31 BatchN_8    5 channels BatchN_8    15 channels BatchN_8    45 channels 

L32 ReLU_8  ReLU_8  ReLU_8  

L33 MaxP_8        1x2_1x2 MaxP_8        1x2_1x2 MaxP_8        1x2_1x2 

L34 FC 2  Conv_9 35@1x3x15_1x1 Conv_9 5@1x5x45_1x1 
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L35 Softmax  BatchN_9    35 channels BatchN_9    5 channels 

L36 Classoutput  ReLU_9  ReLU_9  

L37   MaxP_9        1x2_1x2 MaxP_9        1x2_1x2 

L38   FC 2 FC 2 

L39   Softmax  Softmax  

L40   Classoutput  Classoutput  

 

Table 31: Chosen CNN’s layers and hyperparameters by TT 1 minute and 5 minutes WTT, FT. 
 1 minute (TT) 5 minutes (WTT, FT) 

No. Layer Layer Parameters Layer Layer Parameters 

L1 Input 1x3000x1 Input 1x15000x1 

L2 Conv_1 55@1x9x1_1x1 Conv_1 25@1x9x1_1x1 

L3 BatchN_1    55 channels BatchN_1    25 channels 

L4 ReLU_1  ReLU_1  

L5 MaxP_1        1x2_1x2 MaxP_1        1x2_1x2 

L6 Conv_2 45@1x7x55_1x2 Conv_2 25@1x7x25_1x1 

L7 BatchN_2    45 channels BatchN_2    25 channels 

L8 ReLU_2  ReLU_2  

L9 MaxP_2        1x2_1x2 MaxP_2        1x2_1x2 

L10 Conv_3 25@1x3x45_1x1 Conv_3 5@1x5x25_1x1 

L11 BatchN_3    25 channels BatchN_3    5 channels 

L12 ReLU_3  ReLU_3  

L13 MaxP_3        1x2_1x2 MaxP_3        1x2_1x2 

L14 Conv_4 45@1x9x25_1x1 Conv_4 5@1x3x5_1x1 

L15 BatchN_4    45 channels BatchN_4    5 channels 

L16 ReLU_4  ReLU_4  

L17 MaxP_4        1x2_1x2 MaxP_4        1x2_1x2 

L18 Conv_5 5@1x5x45_1x1 Conv_5 5@1x9x5_1x1 

L19 BatchN_5    5 channels BatchN_5    5 channels 

L20 ReLU_5  ReLU_5  

L21 MaxP_5        1x2_1x2 MaxP_5        1x2_1x2 

L22 Conv_6 45@1x7x5_1x1 Conv_6 15@1x9x5_1x1 

L23 BatchN_6    45 channels BatchN_6    15 channels 

L24 ReLU_6  ReLU_6  

L25 MaxP_6        1x2_1x2 MaxP_6        1x2_1x2 

L26 Conv_7 15@1x9x45_1x1 Conv_7 35@1x7x15_1x1 

L27 BatchN_7    15 channels BatchN_7    35 channels 
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L28 ReLU_7  ReLU_7  

L29 MaxP_7        1x2_1x2 MaxP_7        1x2_1x2 

L30 Conv_8 35@1x3x15_1x1 Conv_8 45@1x9x35_1x1 

L31 BatchN_8    35 channels BatchN_8    45 channels 

L32 ReLU_8  ReLU_8  

L33 MaxP_8        1x2_1x2 MaxP_8        1x2_1x2 

L34 Conv_9 45@1x5x35_1x1 Conv_9 5@1x5x45_1x1 

L35 BatchN_9    45 channels BatchN_9    5 channels 

L36 ReLU_9  ReLU_9  

L37 MaxP_9        1x2_1x2 MaxP_9        1x2_1x2 

L38 FC 2 Conv_10 5@1x7x5_1x1 

L39 Softmax  BatchN_10    5 channels 

L40 Classoutput  ReLU_10  

L41   MaxP_10        1x2_1x2 

L42   FC 2 

L43   Softmax  

L44   Classoutput  

 

The CO difference between these three methods is less than 1% (0.35). As we can see in Table 29 

and Figure 51, the same is true for Acc, Sen, and Spc. The time to finish the different solutions is also 

presented in Figure 51 and Table 29 .  

To optimize the CNN, 29.87 hours were needed if the TT method is used, 8.12 hours were needed if 

the 𝑊𝑇𝑇𝑅𝐸 method is used, and 12.34 hours were needed if the 𝑊𝑇𝑇𝐹𝑇 method is used (Table 29). 

The time needed for executing the TT method is triple the time needed for executing the 𝑊𝑇𝑇𝐹𝑇 

method (~ 3.68 times). The time for executing the 𝑊𝑇𝑇𝐹𝑇 method is 1.52 times more than the time for 

executing the 𝑊𝑇𝑇𝑅𝐸 method. However, in both cases, the performance gain is low compared with 

the execution time.  

There is some difference between the practical gain and the gain deduced theoretically. These 

differences occur due to i) the assumed that the time of each added CL is incremented linearly, while 

this behavior is not linear as can be seen in Figure 51 ; and ii) the previous theoretical calculation only 

considered the time of training. The practical time calculation is the sum of the time needed to create 

networks, save networks, load the data, extract features, save the relevant results.  
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Figure 51 : Best (according to validation) test CO solution for each layer ((a), (c), (e)) and total 

simulation time (in hours((b), (d), (f))) for TT, RE (WTT) and FT(WTT).  

6.3.6. Effect of input size 

To understand the effect of different input sizes, three inputs are tested: a 1-minute, a 3-minute, and 

a 5-minute input. These input sizes are used because of the previous success in the literature [87]. 

Even though the TT method takes more time than the WTT, there is no significant difference in 

performance between them (Table 29). Thus, only the 𝑊𝑇𝑇𝑅𝐸  and the 𝑊𝑇𝑇𝐹𝑇  methods are tested 

further.  

From Table 29 , the test CO for the best solution using the 𝑊𝑇𝑇𝐹𝑇 and the 𝑊𝑇𝑇𝑅𝐸 are: 83.89% and 

83.93% for 1-minute, 84.57% and 84.59% for 3-minute and 85.02% and 85.31% for 5-minute inputs, 

respectively, in case of the HuGCDN2008 database. The validation CO for the best solution using the 

𝑊𝑇𝑇𝐹𝑇 , and the 𝑊𝑇𝑇𝑅𝐸 are: 88.67% and 88.48% for 1-minute, 87.99% and 88.09% for 3-minute and 
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87.66% and 87.49% for 5-minute inputs, respectively. The performance difference between the test 

and validation is due to the training and test data.  

Furthermore, for the HuGCDN2008 database Table 29 shows that the optimal CNN of 5-minute 

input size is achieved with 10 CLs for the 𝑊𝑇𝑇𝐹𝑇 and 9 CLs in the case of the  𝑊𝑇𝑇𝑅𝐸 methods. In 

the case of 1-minute and 3-minute input sizes, the corresponding number of CLs are 8 and 9, 

respectively. The difference between the CO, Acc, Sen, and Spc is less than 1% for the 𝑊𝑇𝑇𝐹𝑇 and 

the 𝑊𝑇𝑇𝑅𝐸 methods.  

6.3.7. Responsiveness of the kSize and kNo  

For each CL, the kSize and kNo parameters are changed. The responsiveness of the parameters is 

analyzed for these parameters. The responsiveness of a parameter is defined by the objective function 

responses due to the changes in the parameter. Consider the variations of the objective CO by 

changing the kSize defined by 

𝐶𝑘𝑆𝑖𝑧𝑒
𝐶𝑜 =

𝑑𝐶𝑂

𝑑𝑘𝑆𝑖𝑧𝑒
                                                                       (25) 

To understand the effect of one parameter on another parameter (𝑘𝑁𝑜) is kept constant. However, 

for each added CL there are several solutions. That means, for a positive or negative variation of the 

CO a similar variation in 𝐶𝑘𝑆𝑖𝑧𝑒
𝐶𝑜

 arises. The total amount of responsiveness for kSize (𝑀𝐴𝐶𝑘𝑆𝑖𝑧𝑒
𝐶𝑂

) is 

given by  

𝑀𝐴𝐶𝑘𝑆𝑖𝑧𝑒
𝐶𝑂 =

1

𝑁𝐿
∑

1

𝑀𝑘𝑆𝑖𝑧𝑒
∑ 𝑎𝑏𝑠(𝐶𝑘𝑆𝑖𝑧𝑒

𝐶𝑜𝑀𝑘𝑆𝑖𝑧𝑒
𝑚=1 ) 

𝑁𝐿
𝑙=1                              (26) 

where kNo is a constant, and 𝑀𝑘𝑆𝑖𝑧𝑒 is the number of 𝐶𝑘𝑆𝑖𝑧𝑒
𝐶𝑜  values for each added CL. Similarly, the 

total amount of responsiveness for kNo (𝑀𝐴𝐶𝑘𝑁𝑜
𝐶𝑂

) is given by (where kSize is constant): 

𝑀𝐴𝐶𝑘𝑁𝑜
𝐶𝑂 =

1

𝑁𝐿
∑

1

𝑀𝑘𝑁𝑜
∑ 𝑎𝑏𝑠(𝐶𝑘𝑁𝑜

𝐶𝑜𝑀𝑘𝑁𝑜
𝑚=1 )

𝑁𝐿
𝑙=1                                    (27) 

A similar approach to 𝑀𝐴𝐶𝑘𝑆𝑖𝑧𝑒
𝐶𝑂  and 𝑀𝐴𝐶𝑘𝑁𝑜

𝐶𝑂  is implemented and plotted in Figure 52 for Acc, Sen 

and Spc. From Figure 52, it can be seen that every input size and every objective are more sensitive to 

kSize than to kNo. These results allow one to justify the reason that a short step and range is used for 

kSize (range from 3 to 9 and step 2) and a big step and range is used for kNo (range from 5 to 55 and 

step 10).  
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Figure 52 : Total Mean Absolute Changes (MAC) of different objectives (in validation) with respect 

to unit parameter (kSize and kNo) change for 1-minute (1 Min), 3-minute (3 Min) and 5-minute (5 

Min) inputs. 

6.3.8. Effect of the added CL 

After optimizing each CL with the best kSize and kNo, a new CL is added to obtain the best 

number of CLs. Figure 53 shows the effect of adding CLs on different performance parameters in the 

case of the 𝑊𝑇𝑇𝑅𝐸. The performance parameters variations are computed by subtracting the current 

layer performance from the previous one. The addition of the second CL has the highest CO increase: 

8.57% for 1-minute, 9.58% for 3-minute and for 6.22% 5-minute. However, adding more layers does 

not always increase performance. For example, it can be seen that for all inputs sizes the performance 

is reduced by adding the tenth CL. 
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Figure 53 : Best (according to validation) training and validation (Val) CO for each layer 𝑊𝑇𝑇𝑅𝐸 

method.  

6.3.9. Comparison with literature 

Among the tested greedy based methods (𝑇𝑇, 𝑊𝑇𝑇𝑅𝐸  , and 𝑊𝑇𝑇𝐹𝑇 ) the attained performance is 

similar. However, the execution time between them is different. The  𝑊𝑇𝑇𝑅𝐸 method is the best if the 

execution time vs performance is considered. Therefore, the CNN structures found by the 𝑊𝑇𝑇𝑅𝐸 

method are tested on a different dataset named AED [61] because it is an available and commonly 

used dataset in  the literature. The HuGCDN2008 dataset is used for determining the best CNN 

structure.  

A two-fold validation technique is used to determine the best CNN structure resulting in two 

classifiers with the same structure but different trainable parameters. In this work the first-fold 

classifiers are chosen for comparison.  

The classifiers are tested in two different methods using the AED dataset. The first method, called 

the Cross Database (CD), consists of feeding the new data from the AED dataset into the optimized. 

𝑊𝑇𝑇𝑅𝐸 classifiers (Table 29). The second method, called Transfer Learning (TL), consists of deleting 
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the last layers of the classifiers and re-training the classifier with the new AED dataset. This last 

method is performed using the leave-one-out method with 50% for training and validation data and 

with the same training parameters as the 𝑊𝑇𝑇𝑅𝐸.  

Different techniques are proposed in the literature to detect apnea events. Xie et al. [73] use 

Bagging RepTree to detect an apnea minute using SpO2 and a combination of SpO2 with an ECG for 

1-minute input size. An Acc of 82.79% with SpO2 and 84.80% with SpO2+ECG is reached using the 

UCD database [62]. Other researchers using only SpO2 signal from the UCD database achieved an 

Acc of 81.95% with a ANN [195], 83.27% with an LD[195] and 85.26% with a DAE [106]. Some of 

these solutions have low sensitivity rates, such as 43.31% [195].  

Another study using SVM classifiers and 100 subjects from the SHHS database reaches an Acc of 

80.1% and a Sen of 60.9% with SpO2 and an Acc of 82.4% and a Sen of 69.9% with respiratory 

signals+ECG+SpO2 [169]. Several classifiers using the AED database can be found in the literature, 

such as: an ANN achieving an Acc of 90.3% [99], a DAE achieving an Acc of 97.64% [106] and 

linear SVM(SVM-L) achieving an Acc of 96.89% and 97.38% [195]. Using the CNN and the SpO2 

signal for children, Vaquerizo-Villar et al. achieved 93.6% Acc, 56.5% Sen, and 96.7% Spc [246]. An 

accuracy of 90.8% was achieved by ECG and CNN [179]. 

Three databases from the University Hospital of Gran Canaria Dr. Negrin, are available in the 

literature: HuGCDN2014 (77 subjects) [137], HuGCDN2004 (66 subjects) [197], and HuGCDN2008 

(70 subjects) [10]. LDA classifiers and an HRV signal (or RR series) achieve an Acc of 81.96% 

(HuGCDN2014), 81.18% (HuGCDN2004) [197] and 79.4% (HuGCDN2008), respectively. Using the 

same classifier with SpO2 signal instead, the Acc reaches 76.88% (HuGCDN2004) [197], and 86.5%  

(HuGCDN2008) [10]. The combination of  the SpO2 and the HRV gives an Acc of 82.68% 

(HuGCDN2004) [197] and 86.9% (HuGCDN2008) [10]. 

In this work, CNN1D classifiers optimized with the 𝑊𝑇𝑇𝑅𝐸  method are proposed as a novelty. 

Classifiers optimized through this method using the HuGCDN2008 database achieve an Acc of 

87.71% for a 1-minute input (1Min), 88.13% for 3-minute (3Min) and 88.49% for 5-minute (5Min) 

input (Figure 51, and Table 29). These results show an improvement in performance over the work 

carried out by Ravelo-García et al. [10]. Testing the same CNN1D classifiers with the TL using the 

AED dataset, an Acc of 92.65% for 1-Min, 95.14% for 3-Min and 92.07% for 5-Min are obtained. 

Using the same dataset in the literature, 95.5%  is obtained with an LSTM[107], 97.64% is obtained 

with a DAE [106] and 97.38% is obtained with a linear SVM [195]. Comparing this work’s with the 

literature, the highest difference is 2.5%. This difference is justified by the inexistence of a subject 

independent test in the DAE [106] and the LSTM [107]  classifiers and the low Sen in the SVM-L 

[195]. 
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The reasons behind the low sensitivity might be related to the definition of OSA. It is known that 

OSA events are not always accompanied by desaturation. The main definition is associated with a 

certain decrease in airflow regardless of the presence or absence of hemoglobin desaturation [247]. In 

addition to that, the HuGCDN2008 dataset has patients with other diseases that can cause a decrease 

in the SpO2 during sleep without apnea occurring such as asthma, chronic obstructive pulmonary 

disease, fibrosis among others, which can contribute to a false positive.  

6.3.10. Summary 

The main novelty of this work is to detect sleep apnea using a CNN1D optimized through the 

greedy based optimization method. The CNN1D developed and optimized with the greedy based 

optimization method presents better performance than the similar works found in the literature. 

Within the greedy based optimization algorithm, three different variants are presented: TT, 

𝑊𝑇𝑇𝑅𝐸  and 𝑊𝑇𝑇𝐹𝑇 . Considering the balance between the result of the execution time and the 

performance gain of the three variants, the 𝑊𝑇𝑇𝑅𝐸   method is the best.  

The greedy based optimization method consists of searching for the best number of CL and its 

parameters. In the beginning, the added CL has the tendency of improving the performance 

significantly. At a certain point, this insertion has a marginal increase. On the other hand, each CL is 

optimized through the kNo and kSize parameters. During this optimization, it has been concluded that 

kSize presents more responsiveness than kNo.  

Different input sizes are tested to understand the effects. The best performance is obtained using 

5Min input size for the HuGCDN2008 dataset with the 𝑊𝑇𝑇𝑅𝐸  method. For the AED dataset with the 

𝑊𝑇𝑇𝑅𝐸  method, the best performance is obtained using a 3 Min input size. In general, there is a 

relationship between the input size and performance. To verify this relationship, more research with 

several databases needs to be done in the future. 

As future work, an improvement of the proposed approach could be obtained by adding more 

signals. 

 

6.4. Combination of SpO2 and HRV with CNN 

6.4.1. Introduction  

In some of the literature discussed before (in Section 4.2.6 and Section 5.5.1) a combination of two 

or more signals can improve the performance. Therefore, the main purpose of the work that resulted 
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in this section is to reevaluate the HR or the HRV signal and the SpO2+HR signals. The effect of fully 

connected layers and a drop out layer on the CNN are also investigated. 

 

6.4.2. Combination of SpO2 and HR 

It is possible to have an HR with oxygen saturation using the SpO2 sensor without any extra or at 

most a little cost. Both signals are tested. However, the HuGCDN2008 database does not have the HR 

from the SpO2 sensor. In the literature, it is possible to find a high correlation between the PPG-HRV, 

and the ECG-HRV [248]. To check the performance, the RR interval calculated from the ECG was 

used. Thereafter, the RR interval is converted to calculate HRV. Nevertheless, it should be noted that 

this introduces some uncertainty/error in the signals since the HR is not even collected in the same 

place of the body. 

The HuGCDN2008 database has 70 subjects, which are divided into 35 training and 35 test 

subjects. A two-fold cross validation method is used for validation. For each fold from the training set 

a validation set is created for training and for a stopping criterion for the training. The data are 

prepared with a 1 minute (1 Min), 3 minute (3 Min), and 5 minute (5 Min) window with one minute 

sliding window. Because the HuGCDN2008 database is annotated in 30 seconds, if one or both of the 

30 seconds in the minute is annotated as apnea that minute is annotated as apnea or else it is annotated 

as normal. The middle minute´s annotation considers the annotation of the 3-Min and 5-Min 

windows. 

6.4.3. Transfer learning of classifiers and combination of signals 

The CNN1D classifiers developed in the previous section (Section 6.3) are used for testing the 

performance of the signals. Additionally, to understand the effect of the fully connected layers and the 

drop out layer, the last layers (the FC, the softmax, and the classout) are replaced by two Dropout 

Layers (DO), two fully connected layers (FC), a softmax, and a classout. The parameters of these two 

layers are found out using an extensive search (grid search). The DO is varied from 0.1 to 0.8 with an 

increment of 0.1. The number of neurons of the FC layer is varied from 50 to 200 with an increment 

of 50.  

6.4.4. Performance of SpO2, HRV, and SpO2+HRV 

A two-fold method was employed in the HuGCDN2008 database for the SpO2, the HRV, and the 

SpO2+HRV evaluation, considering 1 Min, 3 Min and 5 Min inputs. The developed networks were 
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trained and tested varying the DO and the FC. Since there are 32 combinations for each classifier, the 

selection was based on the maximum validation 𝐶𝑂 of the two-fold.   

When the SpO2 signal was used as an input, the maximum validation CO (85.16%) was achieved at 

0.6 DO and 150 FC for 1 Min; 0.2 DO and 150 FC achieved a maximum 86.34% for 3 Min and 0.8 

DO and 200 FC achieved a maximum 85.56% at for 5 minute. From Figure 55, it is visible that the 

maximum CO position in the validation and the test is different. This occurred due to the different 

data and subjects in the validation set and the testing set. The test Acc, Sen, and Spc of the extensive 

search for best DO and FC are showed in Figure 56 (for 1 Min), Figure 57 (for 3 Min), and Figure 58 

(for 5 Min) and the final results are showed in Table 32. 

For the HRV, the maximum validation CO for a 1 Min input is 75.34% and it was achieved with 0.5 

DO and 100 FC; for a 3 Min input this value is 76.5% with 0.3 Do and 150 FC; and for a 5 Min input 

it is 79.86% with 0.2 DO and 150 FC (Figure 59). Unlike the SpO2 signal, the HRV has an 

incremental improvement with respect to the input size. However, because of the same reason as the 

SpO2 signal, the HRV signal also has a different maximization point in the validation and the test 

space (Figure 60). The test Acc, Sen and Spc of the extensive search for the best DO and FC are 

illustrated in Figure 61 (for 1 Min), Figure 62 (for 3 Min), and Figure 63 (for 5 Min) and the final 

results are shown in Table 32. 

By combining the two signals (SpO2+HRV), the maximum validation CO for 1 Min is 86.20% with 

0.3 DO and 200 FC; for 3 Min it is 84.66% with 0.8 DO and 150 FC; and for 5 Min it is 85.93% with 

0.3 DO and 150 FC (Figure 64, Figure 65). The same property is shown in the validation (Figure 64, 

Figure 65) and the test (Figure 65) CO for SpO2+HRV as with the SpO2 and the HRV. The test Acc, 

Sen, and Spc of the extensive search for the best DO and FC are shown in Figure 66 (for 1 Min), 

Figure 67 (for 3 Min), and Figure 68 (for 5 Min) and the final results are revealed in Table 32. 

From Table 32 it is clear that for an epoch based classification the highest accuracy of 85.78% was 

achieved by the 1 Min SpO2 and the 3 Min SpO2+HR. The highest sensitivity was also achieved by 

the 1 Min SpO2. However, the best sensitivity was achieved by the 5 Min SpO2+HR. If the number 

of signals and the size of input are considered and results considered as well then the 1 Min SpO2 

performed quite well as it reaches the highest accuracy and sensitivity with just one signal. 

Adding the DO and the FC layer on top of the classifier developed in the previous section (Section 

6.3) increases the sensitivity of the classifiers. However, the multi-objective objective methods’ 

(Section 6.2)  overall performance was better even after adding the extra layer to the classifier 

optimized using the greedy methods (Section 6.3).  
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Table 32 : Test performance of the HuGCDN2008 database for the SpO2, the HRV and the 

SpO2+HRV for 1 Min, 3 Min and 5 Min inputs. 

Type TEST DATABASE 

INPUT SIZE 

(IN 

MINUTE) 

DO 

 

FC SEN SPC ACC CO GACC R2 

SpO2 HuGCDN2008 1 0.6 150 77.87 88.53 85.78 84.06 92.86 0.9247 

SpO2 HuGCDN2008 3 0.2 150 82.06 86.69 85.47 84.74 97.14 0.91966 

SpO2 HuGCDN2008 5 0.8 200 82.93 86.79 85.76 85.16 97.14 0.91052 

HRV HuGCDN2008 1 0.5 100 63.99 72.63 70.41 69.01 74.29 0.3958 

HRV HuGCDN2008 3 0.3 150 63.89 79.80 75.69 73.13 75.71 0.66898 

HRV HuGCDN2008 5 0.2 150 64.82 80.01 75.80 73.60 80 0.54921 

SpO2+HRV HuGCDN2008 1 0.3 200 79.02 88.01 85.63 84.23 91.43 0.9335 

SpO2+HRV HuGCDN2008 3 0.8 150 83.79 86.42 85.78 85.34 97.14 0.91138 

SpO2+HRV HuGCDN2008 5 0.3 150 84.86 85.68 85.60 85.37 95.71 0.92235 

 

 

 
 

Figure 54 : The validation CO for the SpO2 signal using 1 Min, 3 Min, and 5 Min inputs with respect 

to the DO and the FC variation.  

 
Figure 55 : The test CO for the SpO2 signal using 1 Min, 3 Min, and 5 Min inputs with respect to the 

DO and the FC variation. 

 
Figure 56 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 1 Min input 

of the SpO2. 
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Figure 57 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 3 Min input 

of the SpO2. 
 

 
Figure 58 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 5 Min input 

of the SpO2. 
 

 
 
Figure 59 : The validation CO for the HRV signal using 1 Min, 3 Min, and  5 Min inputs with respect 

to the DO and the FC variation. 
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Figure 60 : The test CO for the HRV signal using 1 Min, 3 Min, and 5 Min inputs with respect to the 

DO and the FC variation. 
  

 
Figure 61 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 1 Min input 

of the HRV. 
 

 

 

 
 

Figure 62 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 3 Min input 

of the HRV. 
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Figure 63 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for 5 Min input 

of the HRV. 

 
Figure 64 : The validation CO for the combined signals (SpO2+ HRV) using the 1 Min, 3 Min, and 5 

Min inputs with respect to the DO and the FC variation. 
 

 
Figure 65 : The test CO for the combined signals (SpO2+HRV) using 1 Min, 3 Min, and 5 Min 

inputs with respect to the DO and the FC variation. 

 

Figure 66 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for a 1 Min input 

of the combined signals (SpO2+HRV). 
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Figure 67 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for a 3 Min input 

of the combined signals (SpO2+HRV). 

 
Figure 68 : The test Acc, Sen, and Spc of the extensive search of the DO and the FC for a 5 Min input 

of the combined signals (SpO2+ HRV). 

 

 

 

6.4.5. Global classification 

A similar work was previously carried out, with a similar dataset (HuGCDN2008), by Ravelo-

García et al. [10] with 35 test subjects without the EBLS. In their work, the model achieved a GAcc of  

91.4% using the SpO2 signal; 71.4% using the HR signal and 94.71% using the SpO2+HR signals 

[10]. This work presents the comparison between the AHI calculated by the medical professional 

(AHI G MP) of the database and the AHI TiB calculated from the output of the classifiers (AHI C 

TiB) (Figure 69, Figure 70, and Figure 71). Without any removal of subjects (EBLS), the current 

standard of the AHI index for detecting apnea patients is 5 (AHI TiB = 5) and is used in this work. In 
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case of the HuGCDN2008 all the seventy subjects were used. The SpO2 signal achieved 92.86% 

(with 𝑅2(𝑅2) = 0.9247 ), the HR method achieves 74.29% (with 𝑅2(𝑅2) = 0.3958 ) and the 

SpO2+HR achieves 91.43% (with 𝑅2(𝑅2) = 0.9335 )  for 1 Min input. The SpO2 signal achieves 

97.14% (with 𝑅2(𝑅2) = 0.9197 ), the HR method achieves 75.71% (with 𝑅2(𝑅2) = 0.6690 ) and 

the SpO2+HR achieves 97.14% (with 𝑅2(𝑅2) = 0.9114) for 3 Min input using HuGCDN2008 

database. The SpO2 signal achieves 97.14% (with 𝑅2(𝑅2) = 0.9105 ), the HR method achieves 80% 

(with 𝑅2(𝑅2) = 0.5492 ) and the SpO2+HR achieves 95.71% (with 𝑅2(𝑅2) = 0.9224 )  for 5 Min 

input using HuGCDN2008 database.  

From the results it is visible that not only the epochs based classification but also the global 

accuracy of the HR signal-based system benefited from using longer input size. For the SpO2, a 3 Min 

input achieved the best result. When it comes to the combination of the SpO2 and the HR, it presents 

a domination of the SpO2 signals performance. Like the epochs-based classification the accuracy is 

mainly dependent on the SpO2 signal. 

If a comparison between this work’s features-based systems (Section 5.5) and automated feature 

based systems is compared, in both cases the highest global accuracy of 97.14% is achieved by only 

the SpO2 signals. In some cases, adding the HR signal with the SpO2 can reduce the accuracy. 

 
Figure 69 : Comparison of the global accuracy of the HuGCDN2008 dataset with the AHI calculated 

by a medical physician (AHI G MP) and by the CNN classifiers’ AHI time in bed (AHI C TiB) for the 

SpO2, the HRV and the SpO2+HRV of 1 Min input. (+) symbol is used for normal subjects (AHI<=5) 

and (*) is used for apnea patients.  
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Figure 70 : Comparison of the global accuracy of the HuGCDN2008 dataset with the AHI calculated 

by a medical physician (AHI G MP) and by the CNN classifiers’ AHI time in bed (AHI C TiB) for the 

SpO2, the HRV and the SpO2+HRV of 3 Min input. (+) symbol is used for normal subjects (AHI<=5) 

and (*) is used for apnea patients. 

 
 

 
Figure 71 : Comparison of the global accuracy of the HuGCDN2008 dataset with the AHI calculated 

by a medical physician (AHI G MP) and by the CNN classifiers’ AHI time in bed (AHI C TiB) for the 

SpO2, the HRV and the SpO2+HRV of 5 Min input. (+) symbol is used for normal subjects (AHI<=5) 

and (*) is used for apnea patients. 

6.4.6. Summary  

The goal of this section was to understand the effectiveness of applying transfer learning to the classifiers 

developed in the previous section. It was concluded that transfer learning is possible, and it was verified that it is 

also possible to use different signals to classify using transfer learning. For the HuGCDN2008 dataset the 

balanced results lay on the roam of the other research. In the case of global accuracy, this work performs better 

than the literature. However, adding an extra layer of the FC layer does not significantly improve the result. The 

system was able to classify the apnea subjects with high accuracy.  
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6.5. Summary of Automated-Feature based Methods 

In this chapter, two structural hyperparameter optimizers were developed. One was based on multi-

objective optimization and the second one was based on greedy methods. The multi-objective method 

achieved the best accuracy among the proposed methods. Compared to shallow networks, the 

developed CNNs were able to achieve better performance with a smaller input size and without the 

need for hand crafted feature extraction.  

The goal of this work was to develop and test a novel fully automated hyperparameters 

optimization algorithm for the CNN and significant results were attained. Three different window 

sizes were also tested, and it was verified that there is almost no difference between the 3 minute and 

the 5 minute window sizes. In some cases, the 1 minute input outperform the 3 minute and 5 minute 

inputs.  

The multi objective method and greedy optimization both have high a cross database and transfer 

learning capabilities. However, the multi objective method performed better than the greedy methods. 

The greedy methods were able to achieve almost similar performance with less optimization time. 

As with handcrafted feature based methods (Section 5.5), the HR and the HR+SpO2 did not perform 

better than the SpO2. Similar trends for global classification also occur between the handcrafted 

feature based methods (Section 5.5.5) and the automatic feature based methods (Section 6.4.5). 
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Chapter 7 

7. Implementation 
This chapter discusses a generic system designed for the physical implementation of the developed 

algorithms. There are two parts of the developed system: the signal acquisition system (hardware part) 

and the classification, the interpretation and the display (software part).  
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7.1. Introduction 

A large amount of customer based home devices were developed using dedicated and, frequently, 

expensive hardware such as a computer, which reduces the accessibility to the general population. 

Smart phone Applications (Apps) can solve this accessibility issue since they are widely available and 

used by the population. The smart phone penetrations in 2018 in top 5 countries were 82.2% in the 

United Kingdom, 79.3% in the Netherlands, 78.8% in the Sweden, 78.8% in the Germany and 77.0% 

in the United States of America [249]. Therefore, an app can serve as a solution to the apnea detection 

problem. The mobile apps are used for prescribing, managing, coding and billing, the diagnosis and 

the treatment of the patients. In recent years, the Food and Drug Administration (FDA) of the United 

States approved apps from different companies such as Pear Therapeutics, Apple. In Germany’s new 

Digitalisation and Innovation Act (Digital Supply Act), apps can be prescribed by the doctor. With this 

trend in mind more countries will open the door for the use of apps in medical fields. 

 An astonishing number of 325,000 mobile health apps were available in 2017 [250]. One research 

work in 2016 found 51 unique sleep apps in both iOS and Google Play stores [251]. Another review 

work found 6 apps that capture data from the phone’s sensors [252]. A common sensor among all of 

the apps is the accelerometer besides that the microphone, and the light sensor are quite commonly 

used for medical apps as well. 

On the other hand, some researchers used the Bluetooth data collection system with a computer 

[253][254], while some used the phone oximeter[105]. Others chose the Bluetooth data collection 

system with a phone-based processing system. In this category, Dipti et al. used a Bluetooth pulse 

oximeter sensor to collect  the SpO2 signal and used the K-means and the random forests algorithm 

for the classification in the phone [9]. Nuria et al. also used an off-the-shelf pulse oximeter with the 

same configuration [255]. For pillow control, a Bluetooth based pulse oximeter with an SVM was 

used by Zhang et al. [2]. 

Mobile phone-based apnea detection gained momentum because of the high performance of mobile 

phones and their availability. A Bluetooth data collection system gives more flexibility and comfort. 

Because of this, in this work a Bluetooth data collection system with a mobile app is developed and 

tested. 

7.2. Implementation 

The implementation of the proposed system was divided into two main components, the wearable 

device and the smartphone application. 
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The system collects the SpO2 and the heartrate values in the main loop of a microcontroller system 

(Arduino system) and forwards the data to whichever Bluetooth device it is connected to. This process 

runs at 50Hz. A simple messaging protocol was developed to identify each message with a message 

ID. This assures that the connected devices can identify out of order or duplicate messages. The 

overall architecture of the proposed system is depicted in Figure 72. In the scope of this chapter, this 

work will refer to all these components as the watch, since it reassembles a common wristwatch. As 

the HR from a PPG and an ECG is almost similar for practical implementation, a PPG is chosen for 

easy assembly and it was possible to calculate the HR with the same sensor designed for the SpO2. 

However, the PPG HR could not be used in case of any specific problems where fingertip PPG 

recording would be impractical (peripheral hyperkinesia or tremor). As a matter of fact, in that kind of 

situation, this work’s finger-based apnea detection methods will also fail. A question might arise as to 

why this work used the HR from the ECG. This is because the ECG HR is the gold standard and this 

work wishes to compare its results with other similar works.  

 

Figure 72 : Overall architecture of the proposed system. 

7.2.1. Wearable device 

A custom watch similar to a wearable device is developed with a SpO2 sensor (MAX 30102 which 

includes internal LEDs,  photodetectors, optical elements, and low-noise electronics with  ambient  

light  rejection, an  integrated  pulse  oximetry  and  a heart-rate  monitor  module) and a 

microprocessor (Bluno Beetle BLE Bluetooth Arduino board) (Figure 73). There are 4 main parts of 

the watch design, these  are marked as 1 (the encloser for the battery), 2 (the encloser for the 
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microprocessor which covers the Bluetooth Arduino board with a custom-made PLC (polylactide) 

case), 3 (the top part of the finger clip), and 4 (the bottom part of the finger clip encloser for the 

sensor) (Figure 73 and Figure 74). In addition to these, there is the watch band to secure the battery 

and microprocessor encloser, wired to connect the sensor and microprocessor. The internal 

configuration is illustrated in Figure 74. A switch and an LED light allow the user to turn the watch 

ON/OFF and to assess its status (Figure 73).  The internal configuration is illustrated in Figure 74. The 

current consumption of the wearable device is 37.20 mA with data transmission. A 400 mAh battery is 

used.  

 

Figure 73 : User with the watch around their wrist, and the SpO2 sensor placed on their index finger. 

 

 

Figure 74 : User with the watch around their wrist, and the SpO2 sensor placed on their index finger. 
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Figure 75 : Encloser for the battery and microprocessor board (main body of the watch).  

 
Figure 76 : Top part of the finger clip.  

 

 
Figure 77 : Bottom part of the finger clip encloser for the sensor. 

The encloser for the battery (Figure 75, marked as 1) is 3D printed. The encloser holds a lithium ion 

battery which is connected to the microcontroller board using a wire (Figure 74). This encloser has 4 

holes for the watch straps’ link pins which are used for connecting the watchstrap to the wearable 

device. The encloser for the microprocessor board (Figure 75, marked as 2) is also 3D printed. It has 
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three holes for the switch, the wire passthrough and the mini USB. 

 The bottom part of the finger clip (Figure 77) houses the sensor board. The encloser has a window 

to measure the signal from the fingertip. It has another hole for the wire passthrough to transfer the 

sensor data to the microprocessor. Both the top (Figure 76) and the bottom part (Figure 77) of the 

finger clip are connected using a locking pin and it clamps the finger using a spring. The jaw of the 

finger clip is made of interlocking friction discs secured with a locking pin. The spring is locked using 

the one holding cylinder in each part of the finger clip. The surface of the clip touching the finger is 

curved for maximum comfort. 

7.2.2. Smartphone application 

The smartphone application (app) is the main point of the interaction with the user. It was developed 

using the android SDK as well as the support libraries for tasks such as displaying charts using the 

data collected from the sensor and implemented algorithms.  

The main goal when building the mobile application was to make sure that the instructions were 

clear. Therefore, it was decided to follow a wizard model with simple instructions along with a picture 

in each step. The user is welcomed with a sign in page (Figure 78 a) where a user ID and password can 

be setup for secure log in. Then the choice between seeing the old recorded data and the new data 

collection is presented to the user (Figure 78 b). If the user wishes to see the old data, a choice among 

the saved data are presented (Figure 79 a) and later the results are shown according to the user’s 

choice (Figure 79 b). However, if the user chooses to collect new data (Figure 78 b) he or she is 

instructed through a proper device wearing process (Figure 80). Afterward, the user is brought to a 

place where the user is asked to allow the searching of the Bluetooth device and connecting of the 

sensor (Figure 81 a). Then the user is asked to fill in the information for the STOP-Bang Questionnaire 

[256] before going to sleep (Figure 81 b and Table 33). Afterward, the user goes to sleep, and the 

application keeps running in the background. Even if the user closes the application, a process will 

keep receiving data from the watch. When the user is awake, he or she can open the application either 

by clicking on the notification or by the clicking on the application button. The user needs to state that 

he or she woke up and the application will present a summary of their sleep, with charts and textual 

information regarding the collected metrics, with a focus on OSA occurrences (Figure 79 b).  
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Figure 78 : a) Sign in page, and b) choice between collecting and viewing data. 

 

 
Figure 79 : a) Recorded data and b) Results of recorded data. 
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Figure 80 : a) Connection of the sensor b) Putting on watch c) Turning on the sensor. 

 

Figure 81 : a) User scan for device connected to the sensor and b) STOP-Bang Questionnaire. 

7.3. Summary 

The watch and the mobile application are made for a general-purpose use so that any algorithm 

developed can be integrated to detect the apnea event and produce the results. The app is also capable 
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of collecting and storing the data. Additionally, a sleep questionnaire is added for more versatility. All 

of the results are shown in a summarized way so that it is easily interpretable for the patients.  In the 

future the implemented designed could be tested against the collected data with the PPG method. 

 

 



 

156 

 

 

 



 

157 

 

Chapter 8 

8. Conclusion and Future Work 
This chapter finalizes this work, summarizing the conclusions and pointing out aspects to be 

developed in future work.  
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8.1. Conclusion  

The main purposes of this work, which is devoted to detecting sleep apnea problems, were 

threefold: to find and analyze suitable literature; to implement and develop different algorithms to 

solve the existing problem; and to improve the current literature by advancing the state of art. 

The review of different literature indicated that the highest accuracy in detecting sleep apnea was 

attained using an ECG. However, the majority of ECG algorithms were tested in public databases with 

potentially cleaner signals, which could contribute to improving the diagnostic capability of the 

algorithm. This corresponds to a trend that signals more susceptible to noise are less discriminatory 

towards the events producing a lower accuracy even if they are clearly connected to the apnea events 

such as respiration signals. Another relevant topic was the use of more sensors and signals. Though in 

some specific cases adding more sensors or signals provides a better accuracy, overall, the 

combination of the source sensors did not always contribute to a relevant improvement of the 

classification capability, indicating that one signal dominated the others. The review of the deep 

networks also observed the domination of the ECG based methods. Though in most of the cases deep 

networks performed better than normal shallow classifiers, this it is not always valid. A gap of 

hyperparameters optimization was also found in the deep network implementation. 

The methods developed in this work attained a performance that was higher than most of the 

existing state of the art methods for the classification of apnea events. From the results it became 

apparent that a subset of related features would perform better than a large number of features. For the 

SpO2 signal, most of the important features are in the frequency or the time frequency domain. 

Additionally, wrapper based methods as well as a combination of classifiers [73] [201] were better for 

sleep apnea detection. It was found that in the literature review there was a lack of the deep classifier 

optimization. Thus, when it comes to automated feature-based methods, two approaches were 

developed. The, first one was a multi-objective method that performed better than the greedy based 

method. However, due to time constraints, the greedy methods were implemented for testing other 

parts of the work. Though the classifiers were developed initially for the SpO2 signal, they worked 

well for the HR and also performed well on other databases (different from the one used for 

developing the model) showing that they have transfer learning capabilities.  

From the results, it was verified (from Section 5.3) that the subject dependent classification strategy 

could improve the performance. However, due to the impracticality of the subject dependent 

classification in real world problems, subject independent tests should be done and were carried out 

through this work, except for Section 5.3. 

In the case of combining the SpO2 and the HR, both automated and handcrafted solutions 
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performed worse than the SpO2 signal alone. This was verified by the initial idea that some of the high 

accuracy from the ECG and the SpO2+HR might be data dependent.  

An AHI index of 5 was considered for the global classification methods. This approach created a 

disadvantage for the developed work when compared with previously published works that considered 

an AHI index of 10 or more. Because of the thresholding technique, the developed methods had to be 

more precise. Additionally, some works removed the borderline patients from their global 

classification, which most likely increased the accuracy of the system. This is due to the fact that when 

a thresholding technique is used, most misclassifications occur for the cases that are near the 

threshold. The global accuracy test was performed without removing any subjects, which created 

another layer of difficulties for the classification technique. Some works present in the literature 

changed the AHI index according to their data thus creating a data dependent classification method. 

To avoid such an occurrence, an AHI index of 5 was used. However, even with all the difficulties 

placed on the classification, the proposed methods performed better than in similar literature.  

For the implementation strategy, a mobile app with the SpO2 and the PPG HR was developed. The 

implementation was generic, so it is possible to implement any classifier developed in this work to run 

on this implementation.  

8.2. Future Work  

This work can be expanded in different directions such as  

• The focus in this work was on the classification accuracy. The features selected for a better 

classification could be used in the future to understand the undermining physiological 

reasons. 

• Signals other than SpO2 and the HR could be tested. 

• The HR for the PPG could be checked with an alternative for the ECG HR. 

• Different types of classifiers and classifier combinations such as LSTM, combination CNN 

LSTM could be tested to verify if a better performance can be achieved. 

• In relation to the implementation, alternative platforms can be tested besides phones such as 

microcomputers for cheaper and easier designs and FPGAs for more dedicated hardware 

designs.  
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Annex A 
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Table 33 : STOP-BANG sleep apnea questionnaire 

STOP 

Do you SNORE loudly (louder than talking 

or loud enough to be heard through closed 

doors)? 

Yes No 

Do you often feel TIRED, fatigued, or 

sleepy during daytime? 

Yes No 

Has anyone OBSERVED you stop breathing 

during your sleep? 

Yes No 

Do you have or are you being treated for 

high blood PRESSURE? 

Yes No 

BANG 

BMI more than 35kg/m2? Yes No 

AGE over 50 years old? Yes No 

NECK circumference > 16inches (40cm)? Yes No 

GENDER: Male? Yes No 

   

TOTAL SCORE   
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