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Resumo

O agarre robusto de objectos é ainda um problema por resolver na robótica. Informação global

3D acerca do objecto pode ser obtida através de informação já conhecida (e.g., modelos precisos de

objectos conhecidos ou modelos aproximados de objectos que nos são familiares) ou sensores em

tempo-real (e.g., nuvens de pontos parciais de objectos desconhecidos) e pode ser usada para iden-

tificar potenciais bons agarres. Contudo, devido a imprecisões de modelação e limitações sensoriais,

a exploração local é normalmente necessária para complementar os tais agarres e aplicá-los a objec-

tos no mundo real. Nomeadamente, a técnica de optimização Bayesiana ”unscented”, recentemente

proposta, é capaz de tornar essa exploração mais segura por favorecer a escolha de agarres que são

robustos à incerteza no espaço de entrada (e.g., imprecisões na execução do agarre).

Extendendo o trabalho prévio feito para a optimização em 2D, nesta dissertação propomos uma es-

tratégia de exploração táctil 3D que combina optimização unscented Bayesiana com uma nova heurı́stica.

Esta penaliza colisões inesperadas entre a mão e objecto durante a exploração, para encontrar agarres

mais seguros em 3D de forma muito eficiente. Ao expandir o espaço de exploração de 2D para 3D so-

mos capazes de encontrar melhores agarres e a introdução da penalização de colisões permite fazê-lo

sem ter de aumentar o número de explorações, portanto ajudando a combater o desafio do aumento

de dimensões.

Palavras-chave: Agarre robótico, Optimização Bayesiana, Exploração táctil, Penalização de

colisão, Optimização Bayesiana ”unscented”, iCub.
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Abstract

Robust grasping of arbitrary objects is a major, and still unsolved problem in robotics. Global 3D

information about the object can be obtained from previous knowledge (e.g., accurate models of known

objects or approximate models of familiar objects) or real-time sensing (e.g., partial point clouds of un-

known objects) and can be used to identify good potential grasps; however, due to modeling inaccuracies

and sensing limitations, local exploration is often needed to refine such grasps and to successfully apply

them to the objects in the real world. Notably, the recently proposed unscented Bayesian optimization

technique can make such exploration safer by favoring the selection of grasps that are robust to uncer-

tainty in the input space (e.g., inaccuracies in the execution of the grasp). By finding a safer grasp, we

assure that a slight error in grasp position due to execution noise won’t cause a dramatic decrease of

the grasp quality.

Extending the previous work done on 2D optimization, in this thesis we propose a 3D haptic explo-

ration strategy that combines unscented Bayesian optimization with a novel collision penalty heuristic to

find safe 3D grasps in a very efficient way. By expanding the search-space from 2D to 3D we are able

to find better grasps and the introduction of the collision penalty heuristic allows to do so without having

to increase the number of exploration steps, therefore battling the curse of dimensionality.

Keywords: Robotic Grasp, Bayesian optimization, Haptic exploration, Collision Penalty, Un-

scented Bayesian Optimization, iCub.
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n ), Right:

Variability of the outcome std
(

ymc(xubopt
n )

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 Glass: 2D vs 3D (UBO CP). Left: expected outcome of current optimum ȳmc(xubopt
n ),

Right: Variability of the outcome std
(

ymc(xubopt
n )

)
. . . . . . . . . . . . . . . . . . . . . . . 33

xvii



4.8 Bottle: 2D vs 3D (UBO CP). Left: expected outcome of current optimum ȳmc(xubopt
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1.1 Motivation

Robotic grasping is a very important research area in robotics that has been around for many years

now [1, 2, 3, 4]. Its early applications were designed for the industrial level, where usually robots are part

of assembly lines and perform grasping tasks like moving components, lifting objects or simply hold tools

to perform an action. These robots have typically 6 degrees of freedom and perform repetitive tasks,

therefore the problem is well formulated and accurately modelled, from the perspective of the object that

is being grasped but also relative to the robot kinematics.

In parallel, humanoid robots are also an extensive field of application. These robots present a more

complex problem when it comes to grasping, since mostly they use anthropomorphic hands, which

have more degrees of freedom than typical industrial manipulators [5, 6]. Fine manipulation tasks, like

grasping an object with precision or pushing small buttons with dexterity, are quite simple for humans,

who deal with these activities on a daily basis, but complex and challenging for autonomous robots.

To obtain similar dexterity with robotic hands, the robot has to be able to deal with uncertainty and

Figure 1.1: Examples of objects to perform grasp optimization on simulation. Initial pose for each test
object

incrementally incorporate knowledge from previous grasp trials to adapt to different environments and

tasks. Meanwhile, the human hand naturally provides sensory feedback (sensing slip, object weight,

object stability, etc.) and intuitively weights the importance of all these parameters to decide on what is a

safe grasp. Robots on the other hand are equipped with a limited number of sensors that try to capture

as much information as possible, yet they are subjected to limitations that increase the difficulty of the

grasping problem. The robot can not blindly accept sensory information as deterministic, otherwise it

will incur in errors. It must account and deal with the uncertainty of sensor data to make its decisions.

Overall, the robust grasping of arbitrary objects is still an open problem.

Naturally, an approach inspired by human learning, is for the robot to learn how to grasp by teaching

how to mimic human behaviour. Thus, there are several approaches which rely on learning by human

demonstration [7, 8]. An equally interesting approach is to let the robot learn independently, learning

from several trials and correcting its on behaviour to be able to complete a task [9, 10, 11]. This approach

is known as active learning, a technique for online machine learning, where both prior data and samples

acquired during the task execution are used to learn a certain objective. The objective is set so that

the robot learns, for arbitrary objects, the function that relates a certain end-effector configuration to its
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grasp quality. In this case, the objective function is a black-box function, i.e., we do not have access

to its mathematical expression, only to the input-output pair. Therefore, the only way to learn it, it is

by querying a certain input and obtaining a noisy output. When we query a certain position, the grasp

quality is calculated based on tactile forces resultant from the contacts between the hand and the object.

Thus, the goal is to learn and optimize the function to find the configuration that maximizes the grasp

quality.

Bayesian optimization (BO) is a technique used for the efficient optimization of expensive black-box

functions. BO works by fitting a model to black-box function data and then using the model’s predictions

to decide where to collect data next, so that the optimization problem can be solved using only a small

number of function evaluations. It is characterized by its high sample-efficiency when compared to alter-

native black-box optimization algorithms, enabling us to find the solution of new challenging problems.

1.2 Objectives

This dissertation aims to tackle the problem of grasping optimization for an anthropomorphic hand.

Starting with some knowledge about an arbitrary object, our intention is to allow the robot to find the

best pose that can grasp that object. We propose to follow a trial-and-error approach based on contact

information, while using a BO framework to find such grasps by an efficient exploration that will minimize

the number of required explorative actions.

In the end, we expect to have a method that can lead the robot to grasp arbitrary objects safely, i.e.,

find a grasp configuration that is robust to execution noise and sensory limitations; with just a small set

of exploration trials.

1.3 State-of-the-Art

The optimum grasping pose, which is the end-effector pose that yields the best grasp quality, is

usually based on the available information about the target object. According to Bohg et al [4], the object

can be inserted into one of three categories: known, familiar or unknown object. On the first category,

accurate models of the object are available and can be exploited transforming a grasping problem into a

pose estimation one [12, 13, 14], since the optimum grasp could be learned a priori and retrieved from

a database of possible grasping poses.

On the second case, the object shares some features (e.g., visual or 3D features) with previous

known objects and it can fall back on the previous learned models adjusting the final target pose with

online learning methods [15]. Finally, when grasping unknown objects we should resort to real-time

sensing (e.g., partial point clouds) using exploration for retrieving the optimum grasp pose. However,

and even in the case of known objects, it is not always possible to achieve a robust grasp since small

errors on the pose estimation algorithm or during motor execution may turn optimal grasps into bad

grasps. Indeed, many object grasping controllers rely on a complete open-loop approach to achieve the

pre-computed optimal grasp [16, 17, 18, 19, 20], where the robot looks once to the scene, computes the

3



pose of the object, and then drives the arm to the grasping pose without using any sensory feedback

during the whole process. However, due to modeling inaccuracies and sensing limitations, such open-

loop approach might not permit robust grasping performance. As a matter of fact, according to Bohg et

al. [4], very few grasping pipelines exploit tactile or visual feedback to achieve a robust grasp execution.

The robustness consists in: i) accuracy, i.e., how far is the selected grasp from the optimal grasp for an

object and ii) precision or repeatability, i.e., how precisely a desired grasp can be executed; the latter

can be seen as uncertainty in the input space of the robotic platform.

In general, some form of local adjustment or exploration is often needed to refine the desired grasps

and to successfully apply them to the objects in the real world. For instance, the task-space placement

errors can be mitigated by means of visual servoing [21], by closing the control-loop exploiting force and

torque sensors [22] or by learning the optimum grasping position with a trial-and-error approach [23].

BO has been employed before to guide haptic exploration in robot grasping [10, 11]. The unscented

Bayesian optimization (UBO) algorithm introduced in [11], is a variation of the classical BO, which finds

a safe optimum. This approach was tested to search for safe robot grasps in a 2D search-space. The

concept of a safe grasp was defined as a grasp where the presence of noise during the execution of

a task won’t result in a dramatic decrease in its quality. Thus, this approach assures that our selected

optimal grasp can be once more executed and yield a similar grasp quality.

When evaluating the grasp stability there are several metrics that have been presented [24]. Namely,

the Largest minimum Resisted Wrench (LRW) metric is widely implemented [25] and computes the

magnitude of the largest disturbance that can be resisted by a grasp in any direction. More recently

the Bimodal Wrench Space Analysis Metric [10] was introduced, this metric provides information about

stable grasps but also provides information about non-stable grasps. It combines two evaluation modes:

the first assesses the quality of stable grasps using LRW; the second calculates how close to being

stable the grasp is.

During the optimization there are instances where the function can not be evaluated because of

collisions. These can be interpreted as hidden constraints which are not part of the problem specifica-

tion/formulation, and their manifestation comes in the form of some indication that the objective function

could not be evaluated [26]. The introduction of a penalty function is a simpler approach that makes the

problem unconstrained but forces the optimization to the feasible region. This approach has explored

for a long time and a complete review can be found in [27]. These functions assume the constraints are

known a priori and add a penalization according to the severity of the constraint violation. There has

been some work with black-box function constraints (i.e. unknown constraints) in Bayesian optimization

[28], using surrogate models to represent them. However, this approach can be very time consuming

during the optimization of the acquisition function [29].

1.4 Contributions

This dissertation provides the following contributions:

• Generalization to a 3D search-space optimization problem : following the work done by Nogueira
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et al. [11], we scale the previously introduced UBO in 2D search-space to a 3D grasping problem.

We prove that better optimum grasps can be found compared to the 2D case, confirming also the

better performance of the UBO against the BO.

• Introduction of the collision penalty : we consider that the problem is in fact a constrained op-

timization problem because of the existence of hidden constraints unspecified in the problem for-

mulation, i.e., the collisions during exploration, which significantly hinder the convergence speed

of the optimization. The introduction of a Collision penalty (CP) helps tackling that problem, in-

creasing the convergence speed and proves to be vital for the superior outcome of the 3D UBO.

This different approach to deal with occurring collisions during the exploration is to our knowledge

a novel approach to the BO problem in the grasping domain.

• Paper accepted for the IROS conference: the work developed in this dissertation also led to the

acceptance of an article for the 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems.

• Implementation of UBO in the BayesOpt library : the code from the UBO implementation was

integrated in the Bayesian optimization framework BayesOpt.

1.5 Thesis Outline

The remainder of the dissertation aims to give the reader a background overview of the grasping op-

timization problem, how it was implemented and present the results and conclusions of the experiences

performed. Thus, the document is structured as follows:

• Chapter 2, introduces the fundamentals of robotic grasping, presenting the contact model em-

ployed in this work and how of grasp quality metric is calculated from these contacts;

• Chapter 3, introduces the BO framework, the UBO variation and the CP heuristic;

• Chapter ??, describes the experimental setup of our experiences;

• Chapter 4, presents and analyses our experimental results on grasping simulations of test objects;

• Chapter 5, we draw our conclusions and sketch future work.
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2.1 Wrenches

A grasp is commonly defined as a set of contacts on the surface of the object, with the purpose to

constrain the potential movements of the object in the event of external disturbances. Each of these

contacts exerts a linear system of forces, which can be replaced by a single force applied along a line,

f , combined with a torque about that same line, τ . Such a force is referred to as a wrench [30].

w =

f
τ

 f ∈ R3

τ ∈ R3
(2.1)

The values of the wrench vector w ∈ R6 depend on the coordinate frame in which the force and

moment are represented. If B is a coordinate frame attached to a rigid body, then we writewb = (f b, τ b)

for a wrench applied at the origin of B, with f b and τ b specified with respect to the B coordinate frame.

If there are multiple contacts acting on an object, the total set of wrenches wo that can be transmitted to

the object through the nc contacts is the linear combination of all individual wrenches:

wo =

nc∑
i=1

wi (2.2)

However, this only makes sense if every individual wrench is written in respect to the same coordinate

frame, therefore all wrenches must be rewritten to a single coordinate frame before their sum. If B and

A are two different coordinate frames, the transformation of a wrench wb applied at the origin of B to the

equivalent wa applied at the origin of A is given by

wa =

 Rab 0

[pba]× Rab Rab

wb (2.3)

where Rab is the rotation matrix from coordinate frame B to frame A. The position vector pba ∈ R3

represents the position of the origin of frame B seen from the origin of frame A and its screw-symmetric

matrix [pba]× is defined by

[pba]× =


0 −p3 p2

p3 0 −p1
−p2 p1 0

 (2.4)

where p1, p2 and p3 are the components of vector pba. This transformation of frames includes an addi-

tional torque of the form pba × f b which is the torque generated by applying a force f b at pba.

2.2 Contact Model

The question now arises, how can we mathematically describe a contact using wrenches as building

blocks. We need a model that maps the forces exerted by the finger at each contact point to the resultant

wrenches at some reference point in the object.

This mapping is determined by the geometry of the contacting surfaces and the material properties

8



Figure 2.1: Contacts and friction cones

of the objects, which dictate friction and possible contact deformation [30]. As the object’s reference

point we use its center of mass, O. The forces at the contacts and on the object are represented in terms

of a set of coordinate frames, Ci, attached to each contact location pci . It is assumed that the location

of the contact point on the object is fixed. The coordinate frame Ci is chosen such that its z-axis points

in the direction of the surface normal at the point of contact. The force applied by a contact is modeled

as a wrench wci applied at the origin of the contact frame, Ci.

The simplest representation is the frictionless point contact model, which considers that the finger

can only transmit forces along the normal of the object’s surface at the contact point. Thus, the applied

wrench is defined as

wci =



0

0

1

0

0

0


fci , fci ≥ 0 (2.5)

where fci ∈ R is the magnitude of the applied normal force. This model admits no deformations are

allowed between the two rigid bodies, therefore the contact force results from the constraints of incom-

pressibility and impenetrability. These assumptions are suitable for a situation where the contact patch

is very small and the surfaces of the hand and object are slippery. Even though the frictionless point

contact model might look like an attractive option because of its simplicity, it is a very basic assess-

ment of reality. In most practical cases, friction is of significant importance, ignoring it will lead to a

misrepresentation of reality.

A point contact with friction admits there can be forces in both normal and tangential directions to

the object’s surface. It is able to describe how much force a contact can apply in the tangent directions

to a surface as a function of the applied normal force. However, it assumes that the contact patch is

too small for a friction moment to exist about the normal direction. The classical friction model is the

Coulomb model, it asserts that the allowed tangential force, ft, is proportional to the applied normal
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force, fn, by

|ft| ≤ µf |fn| (2.6)

where µf is the static coefficient of friction between the two contacting materials. This implies that in

case this condition is not respected, where the tangential forces are actually larger, then there will be

slippage. The geometric interpretation of this condition is that any applied force has to lie inside a cone,

called friction cone, centered about the surface normal at the point of contact, Fig. 2.1. Using this friction

model, the derived wrench at the contact point is

wci =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

Bci

f ci , f ci ∈ FCci (2.7)

where the friction cone FCci is

FCci = {f ci ∈ R3 :
√
f21 + f22 ≤ µff3, f3 ≥ 0}. (2.8)

The components f1,f2 and f3 are the force components along the x, y and z coordinate axis respectively.

The matrix Bci is often described as the wrench basis. Even though there are other more complex con-

tact models as described in [30], this is the model implemented in our simulator, thus the one employed

during our experiments.

In practice the friction cone is discretized to a k-sided pyramid, so it can be described by a finite set

of vectors. One other hypothesis that is often assumed is that the individual finger force f c has a unit

upper bound [25]. Thus, every contact force f ci applied by the hand is in the friction cone and it can

be expressed as a positive linear combination of forces f cij , j = 1, ..., k (usually called primitive forces)

along the pyramid edges, equally spaced around the boundary of the cone, as displayed in Fig. 2.2. This

means f ci can be rewritten as

f ci =

k∑
j=1

αijf cij (2.9)

where αij ≥ 0,
∑k
j=1 αij ≤ 1.

Similarly, the wrench of each contact is actually the combination of k so-called primitive wrenches,

which can be transformed from the force vectors by

wci =

k∑
i=1

αij

 f cij

(dci × f cij )


=

k∑
i=1

αijwcij

(2.10)
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Figure 2.2: Friction cone approximation

where wcij is one of the boundary wrenches of contact point pci and dci is the distance vector from the

center of mass of the object (O) to contact point pci .

2.3 Grasp Representation

Depending on the number of contacts nc, there is the equivalent number of set of wrenches which are

represented in order to the correspondent contact reference frame Ci. Before we can add them to get

the total wrench applied on the object, they all need to be transformed to the object’s reference frame,

set to its center of mass and previously defined as O. Hence, we define the partial grasp map, which

linearly maps the contact forces from each contact ci with respect to the Bci , to the object’s reference

frame O, as

Gi =

 Rci 0

[pci ]× Rci

Bci , i ∈ [1, ..nc] (2.11)

where Rci is the rotation matrix from the contact reference frame to the the object’s reference frame.

After all wrenches are transformed to the object reference frame, the object net wrench can be

defined as a linear combination of the partial grasps for each of the nc contact points. The total object

wrench is given by

wo = [G1, . . . ,Gnc
]


f c1

...

f cnc

 , f ci ∈ FCci .

= Gf c

(2.12)

where G is the map between the contact forces and the total object force, which is called the grasp map.

Thus, a grasp can simply be described by its grasp map G and its friction cone FC, even though the

latter is omitted most of the time.
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2.4 Grasp stability

To assess the stability of grasps it is often considered how it behaves under exterior disturbances,

thus most quality metrics are based around the grasp resistance to exterior forces. Force-closure pro-

vides a binary qualitative analysis of grasp safety, where a grasp is said to be in force-closure if the

fingers can apply, with their set of contacts, arbitrary wrenches on the object, assuring that any motion

of the object is resisted by the contact forces [31]. From the previously described definition force-closure

is mathematically described as

Gf c = −we (2.13)

where we ∈ R6 represents an external wrench.

A simple way to evaluate if a grasp G is force-closure is through the analysis of the Grasp Wrench

Space (GWS). The GWS is the minimum convex region spanned by G in the wrench space W . It can

be constructed by generating a convex hull of the Minkowski sum of all the primitive wrenches wcij at all

contact points as

Wgws = ConvexHull

(
nc⊕
i=1

{wi1, . . . wik}

)
(2.14)

In order for the grasp to be force-closure, the origin of the wrench space W has to be inside the

convex hull Wgws. Knowing if a grasp is force-closure provides a qualitative measure of stability, yet in

order to analyze the quality of a stable grasp, we need a quantitative quality metric.

Figure 2.3: On the left, the convex hull of the grasp wrenches known as the GWS (simplified example).
On the right, the Largest minimum Resisted Wrench metric.

2.5 Grasp Quality Metric

There are several grasp quality metrics related to the position of contact points on the object, some

are solely based on the algebraic properties of the grasp map G, others on geometrical relations, but

the in our case we are interested in the ones that analyze the GWS [24]. By analyzing Wgws they get a

quantitative quality measure Q.
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The LRW or epsilon-quality, is widely implemented and defines the quality as the largest perturbation

wrench that the grasp can resist in any direction i.e., the distance to the nearest facet of the convex hull

from the origin [25]. It is given by

QLRW = min
w∈∂Wgws

‖w‖ (2.15)

where ∂Wgws denotes the boundary of Wgws. Geometrically, it can be interpreted as the largest radius

sphere centered on the origin of W that is fully contained in the convex hull Wgws, as seen in Figure 2.3.
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3.1 Bayesian optimization

Our objective is to find the grasp position with the best quality. However, we have no previous knowl-

edge on our objective function f(), which relates a position to its grasp quality, and we can not observe

f() directly. This description fits the case of a global optimization problem where our objective function

is a black box function, i.e., we do not have its expression and we do not know its derivatives [32].

Therefore, the only way to evaluate the function is by querying a position and obtaining an noisy obser-

vation. We employ BO to guide the haptic exploration, so that after each evaluation we can decrease

the distance between our estimated global maximum and the true global maximum. The Bayesian ap-

proach uses the memory of all previous observations to decide on the next point to sample, which allows

for a more efficient search strategy that requires a lower number of iterations when compared to other

nonlinear optimization algorithms.

The Bayesian optimization algorithm consists of two stages. First, the update of the probabilistic

surrogate model, a distribution over the family of functions P (f), where the target function f() belongs.

A very popular choice for this model is a Gaussian Process (GP). The GP captures our updated beliefs

about the unknown target function and is built incrementally sampling over the input-space, therefore

providing a better estimation of f(). Second, a Bayesian decision process, where an acquisition function

uses the information gathered in the GP to decide on the best point (i.e., a sample) to query next. The

goal is to guide the search to the optimum, while balancing the trade-off: exploration vs exploitation.

In the following sections, we follow the Bayesian optimization notation presented in [11, 32, 33].

3.1.1 Gaussian Process

A GP provides a way to represent known information and updates our current knowledge with every

new observation. In the case of robot grasping, the robot is trying to learn how to grasp through a black-

box function. The GP can be used as a surrogate model in a BO framework to provide an estimation of

the objective function, by representing this function based on its uncertainty and known values.

GPs are a state-of-the-art probabilistic non-parametric regression method [33]. A Gaussian is used

as a means to describe a distribution over functions. As a more formal definition, a GP is a collection of

random variables, any finite number of which have a joint Gaussian distribution. It is completely defined

by a mean and covariance function pair where

µ(x) = E[f(x)] (3.1)

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] (3.2)

therefore we can denote that our unknown function f(x) can be approximately represent by

f(x) ∼ GP(µ(x), k(x, x′)) (3.3)

It is more intuitive to think of a GP as analogous to a function but instead of returning a scalar f(x)

15



Figure 3.1: Five one-dimensional functions randomly sampled from a GP prior with kernel kM52

for an arbitrary x, it returns the mean and variance of a normal distribution over the possible values of f

at x [32].

In our context the random values represent values from the grasp quality metric function QLRW that

the robot wishes to learn. Also, the mean function is initially considered as a zero function, since there

is no relevant information at the start of the process.

The covariance function provides a measure of similarity or proximity between two points in the input

parameter space. A pair of points close to each other must have a high covariance seeing as they

have a larger influence on each other or are more similar. On the other hand, a low covariance is

associated with unrelated points. There are various kernel functions that can be employed, thus it must

be careful selected according to the problem in hands, since an ill chosen kernel can seriously hinder the

performance of the BO algorithm. In this work, the chosen kernel function was the Automatic Relevance

Determination (ARD) Matérn 5/2 [33], which uses independent parameters for every dimension of the

problem. Its expression is given as follows

kM52(x,x′) = θ0

(
1 +

√
5r2(x,x′) +

5

3
r2(x,x′)

)
exp

{
−
√

5r2(x,x′)
}

(3.4)

where,

r2(x,x′) =

d∑
i=1

(xi − x′i)
2

li
2 (3.5)

Also, θ = (θ0, li) are the so called hyperparameters. This kernel has d+ 1 hyperparameters in d dimen-

sions: an overall amplitude θ0 and one characteristic length scale l1:d per dimension.

The covariance function is what implies the definition of distribution over functions. Therefore, with

a GP prior one can draw several randomly generated sample functions at a number of test points. A

demo result can be seen in Fig. 3.1, this is not conditioned on data and therefore represents our prior

assumption of the function space from which the data may be generated. These random functions do

not provide any insight to the objective without having observations.
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One advantage of using GPs as a prior is that new observations of the target function (xi, yi) can be

easily used to update the distribution over functions. Furthermore, the posterior distribution, conditioned

on previous observations is also a GP, whose mean function will provide a much better approximation

of f().

3.1.2 Learning hyperparameters

The kernel described above in Equation (3.4) has hyperparameters θ. These hyperparameters

greatly affect the behaviour of the GP, for instance, if the length scales are too large, then the GP

prior will overlook the higher frequency variations in the true function; on the other hand, if the length

scales are too small, the GP will fail to generalize across meaningful distances [33].

One way of choosing these hyperparameters is by fixing them a priori and keeping them unchanged

as more data is acquired. However, this approach can lead to a very poor performance if the hyperpa-

rameters aren’t suitable to the data. A more interesting approach is to learn the kernel hyperparameters

from the data. This can be achieved by maximizing the marginal likelihood of the GP given the kernel

hyperparameters. One can then perform maximum likelihood estimation by maximizing this quantity with

respect to the hyperparameters θ. It is possible to analytically compute the gradient of the log-likelihood

and perform gradient descent optimization to get to find its maximum.

An even more sophisticated approach is a fully Bayesian treatment of the kernel hyperparameters.

This is achieved by placing a prior on these hyperparameters and marginalizing them out. This marginal-

ization can be performed using Markov chain Monte Carlo (MCMC) methods such as slice sampling [34].

The slice sampling algorithm unlike other MCMC algorithms like the Hamiltonian Monte Carlo [35], is

not dependent on other parameters. It does have a step size parameter but even a bad step size choice

can be compensated by the algorithm at the cost of some extra computations. By using slice sampling

on the posterior distribution of θ given the data, we acquire a set of m different hyperparameters,

Θ ∼ p(θ|X,y). (3.6)

3.1.3 Surrogate model estimations

Formally, the problem is based around finding the optimum (maximum) of an unknown real valued

function f : X → R, where X is a compact space, X ⊂ Rd, and d ≥ 1 its dimension, with a maximum

budget of N evaluations of the target function f(). The Gaussian process GP(x|µ, σ2,θ) has inputs

x ∈ X , scalar outputs y ∈ R and an associated kernel function k(·, ·) with hyperparameters θ (as in

Sec. 3.1.1). The hyperparameters are also optimized during the process (as in Sec. 3.1.2), resulting in

m samples Θ = [θi]
m
i=1.

From the GP we can get an estimate, ŷ(), of our target function f() based on known values. This can

be achieved by a simple matter of conditioning distribution over functions to what is already known.

Assuming our optimization is at a step n, where we have a dataset of observations Dn = (X,y),

represented by all the queries until that step, X = (x1:n), and their respective outcomes, y = (y1:n),

then the prediction, yn+1 = ŷ(xn+1), at an arbitrary new query point xn+1, with kernel ki conditioned on
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the i-th hyperparameter sample ki = k(·, ·|θi), is normally distributed and given by:

ŷ(xn+1) ∼ 1

m

m∑
i=1

N (µi(xn+1), σ2
i (xn+1)) (3.7)

where

µi(xn+1) = kTi K−1i y

σ2
i (xn+1) = ki(xn+1,xn+1)− kTi K−1i ki.

(3.8)

The vector ki is one of the sample kernels evaluated at the arbitrary query point xn+1 with respect to

the dataset X,

ki =
[
ki(xn+1,x1) ki(xn+1,x2) · · · ki(xn+1,xn)

]
(3.9)

and Ki is the Gram matrix corresponding to the self-correlation of dataset X, with noise variance σ2
n.

Ki =


ki(x1,x1) · · · ki(x1,xn)

...
. . .

...

ki(xn,x1) · · · ki(xn,xn)

+ I · σ2
n (3.10)

Note that, because we use a sampling distribution of θ, the predictive distribution at any point x is a

mixture of Gaussians [33]. As we can observe in Fig. 3.2, conditioning the GP by the acquired observa-

tions allows to obtain better random samples from the GP posterior, thus the GP surrogate mean also

provides a better good estimation of the objective function.

Figure 3.2: On the left, five one-dimensional functions randomly sampled from a GP posterior. On the
right, the predictive approximation which is the GP posterior mean (solid blue line), given by Equation
(3.8). The shaded area represents the pointwise mean plus and minus two times the standard deviation
for each input value. In both plots, the real objective function is displayed with the dotted line and the
stars are the observations already acquired.
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3.1.4 Decision using acquisition function

To select the next query point at each iteration, we use the expected improvement criterion as the

acquisition function. This function takes into consideration the predictive distribution for each point in X ,

whose mean and variance are stated in equation (3.8), to decide the next query point. The expected

improvement enables us to balance between exploration and exploitation. This dilemma is based around

whether we should look to obtain a new sample in regions of the input-space where the surrogate

mean is high, i.e., exploiting known information about that region, or explore unknown regions where no

previous evaluations where done and the surrogate variance is high [32].

The expected improvement is the expectation of the improvement function I(x) = max(0, ŷ(x)−ybopt
n ),

where the incumbent is

ybopt
n = max(y1:n) (3.11)

the best outcome found until now (iteration n). In other words, if the prediction for an input point is higher

than the incumbent, then I(x) gets a positive score, corresponding to the amount by which one expects

to improve over the function value at the current best solution. Then, the optimum value corresponds to

its associated query on the dataset and is denoted as xbopt
n .

Taking the expectation over the mixture of Gaussians of the predictive distribution [33], the expected

improvement can be computed as

EI(x) = E(ŷ|Dn,θ,x)[max(0, ŷ(x)− ybopt
n )]

=


∑m
i=1[(µi(x)− ybopt

n − ξ)Φ(zi) + σi(x)φ(zi)], if σi(x) > 0

0, if σi(x) = 0

(3.12)

where φ corresponds to the Gaussian probability density function (PDF), Φ to the cumulative density

function (CDF) and

zi =


µi(x)−ybopt

n −ξ
σi(x)

, if σi(x) > 0

0, if σi(x) = 0

(3.13)

The parameter ξ ≥ 0 is what allows to regulate between exploration and exploitation. According to

literature [32], if set to ξ = 0.01 we can get a good performance in most cases. Also, the pair (µi, σ
2
i )

are the predictions computed in equation (3.8). Then, the new query point is selected by maximizing the

expected improvement

xn+1 = argmax
x∈X

EI(x). (3.14)

Lastly, in order to reduce initialization bias and improve global optimality, we rely on an initial design

of p points based on Latin Hypercube Sampling (LHS).
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3.2 Unscented Bayesian optimization

When determining the most interesting point to query at each iteration, acquisition functions, like the

expected improvement criterion, make that selection assuming the query is deterministic [11]. However,

when considering input noise our query is in fact a probability distribution, so the acquisition function

should, for each specific query, also account for its uncertainty. Indeed, if taken into consideration the

query’s vicinity in input space, a better notion and estimation of the expected outcome can be achieved.

The size of vicinity to be considered depends on the input noise estimation.

Thus, instead of analyzing the outcome of the expected improvement criterion to select the next

query, we are going to analyze the posterior distribution that results from propagating the query distribu-

tion through the acquisition function.

The unscented transformation is a method used to propagate probability distributions through nonlin-

ear functions with a trade-off between computational cost and accuracy [36]. The unscented transform

uses selected samples from the input distribution designated sigma points, x(i), and calculates the value

of the nonlinear function g() at each of these points. Subsequently, the transformed distribution is com-

puted based on the weighted combination of the transformed sigma points.

For a d-dimensional input space, the unscented transformation only requires a set of 2d + 1 sigma

points. If the the input distribution is a Gaussian, then the transformed distribution is simply

x′ ∼ N

(
2d∑
i=0

w(i)g(x(i)),Σ′x

)
(3.15)

where w(i) is the weight corresponding to the i-sigma point.

The unscented transformation provides mean and covariance estimates of the new distribution that

are accurate to the third order of the Taylor series expansions of g() provided that the original distribution

is a Gaussian prior. Another advantage of the unscented transformation is its computational cost. The

2d + 1 sigma points make the computational cost almost negligible compared to other alternatives to

distribution approximation.

3.2.1 Unscented expected improvement

Considering that our prior distribution is a Gaussian distribution x ∼ N (x̄, Iσx), then the set of 2d+ 1

sigma points of the unscented transform are computed as

x0 = x̄

x
(i)
+ = x̄ +

(√
(d+ k) σx

)
i

∀i = 1...d

x
(i)
− = x̄−

(√
(d+ k) σx

)
i

∀i = 1...d,

(3.16)

where (
√

(·))i is the i-th row or column of the corresponding matrix square root. In this case, k is a free

parameter that can be used to tune the scale of the sigma points. For more information on choosing the
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optimal values for k, refer to [36]. For these sigma points, the corresponding weights are

w0 =
k

d+ k

w
(i)
+ =

1

2(d+ k)
∀i = 1...d

w
(i)
− =

1

2(d+ k)
∀i = 1...d

(3.17)

If we consider the expected improvement criterion as the nonlinear function g(), then we are making a

decision on the next query considering that there is input noise. This new decision can be interpreted as

a new acquisition function, the unscented expected improvement (UEI). It corresponds to the expected

value of the transformed distribution and is defined by

UEI(x) =

2d∑
i=0

w(i)EI(x(i)), x ∈ X . (3.18)

This strategy, by also evaluating the sigma points around the query, reduces the chance that the next

query point is located in an unsafe region, i.e., where a small change on the input (induced by noise)

implies a bad outcome.

3.2.2 Unscented optimal incumbent

By employing the UEI we are driving the search towards safe regions, yet in BO the final decision

for what we consider the optimum still does not depend on the acquisition function. We defined the in-

cumbent for BO in Equation (3.11), as the best observation outcome until the current iteration. However,

when using the UEI each query point is evaluated considering its small vicinity, so as we incrementally

obtain more observations and get a better GP fit, we might observe that our optimum is actually inserted

in a unsafe region. Therefore, based on the UEI criterion, the current incumbent would no longer be

resistant to input noise and should be changed.

Thus, instead of considering the best observation outcome as the incumbent, we also apply the un-

scented transformation to select incumbent at each iteration, based on the outcome at the sigma points

of each query that belongs to the dataset of observations (Dn) . Obviously, we do not want to perform

any additional evaluations of f() because that would defeat the purpose of Bayesian optimization. Al-

ternatively, we evaluate the sigma points with our estimation ŷ(), which is the GP surrogate average

prediction µ(). Therefore, we define the unscented outcome as:

u(x) =

2d∑
i=0

w(i)
m∑
j=1

µj(x
(i)), x ∈ X (3.19)

where
∑m
j=1 µj(x

(i)) is the prediction of the GP according to equation (3.8) integrated over the kernel

hyperparameters and at sigma points of equation (3.16). Under these conditions, the incumbent for the

UBO is defined as:
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yubopt
n = u(xubopt

n ), (3.20)

where xubopt
n = argmaxxi∈x1:n

u(xi) is the optimal query until that iteration according to the unscented

outcome. For further information on the performance of the UBO on synthetic functions, refer to [11].

3.3 DIRECT algorithm

The maximization of the Expected Improvement presented in Equation (3.14) is performed using

the global optimization algorithm DIRECT [37, 38]. This is a derivative free method that represents

an alternative to the usual gradient descent method. DIRECT works by iteratively dividing the search

domain into hyper-rectangles and evaluating the unknown function at particular locations within the

hyper-rectangles. It uses a small number of initial predictions to decide how to DIvide the feasible space

into smaller RECTangles. The end result is a high discretization of the target function near the function

minimum and a low discretization elsewhere.

The DIRECT algorithm starts by normalizing the function domain into a unit hyper-cube with center

c1. Thefore, the domain is

Ω̄ = {x ∈ Rd : 0 ≤ xi ≤ 1, i = 1, ..., d}. (3.21)

After evaluating the function at f(c1) it makes the first division of the hyper-cube. The cube is divided

into three smaller parts centered at c1 ± δei, i = 1, ..., d, where δ is one third of the cube length and ei is

the i-th unit vector. DIRECT chooses to leave the best function values in the largest space. As such the

first dimension to be divided is chosen by means of

wi = min(f(ci + δei), f(ci − δei)), 1 ≤ i ≤ d. (3.22)

The dimension with the smallest wi is divided into thirds and the process is repeated for all dimen-

sions on the resulting center hyper-rectangles, evaluating the function at all the resulting center points.

At this stage the initialization is concluded.

Afterwards, we need to identify which of those hyper-rectangles are potentially optimal. In order to

do that, the following conditions are tested:

• if hyper-rectangle i is potentially optimal, then f(ci) ≤ f(cj) for all hyper-rectangles that are of the

same size as i (i.e., di = dj);

• if hyper-rectangle i has the largest dimension (i.e., di ≥ dk,∀k), and f(ci) ≤ f(cj) for all hyper-

rectangles such that di = dj , then i is potentially optimal;

• if hyper-rectangle i has the smallest dimension (i.e., di ≤ dk,∀k), and i is potentially optimal, then

the current minimum is f(ci) = fmin.

At each iteration, the function is evaluated at the set of potentially optimal values, i.e., the center

of the resulting hyper-rectangles, thus updating fmin and converging to a solution. From the previous
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conditions, we conclude that the hyper-rectangles are divided further if they are deemed likely to contain

the solution, or if they are large as stated by the second condition. These criteria allow the method to

perform both local and global search.

The algorithm continues repeats the test until it can not find any more potentially optimal hyper-

rectangles, i.e. until there are no more divisions of interest, or the optimization budget is complete. At

the end, fmin is the global function minimum.

3.4 Grasp position optimization problem

In the grasping optimization context, the target function f() is relates a given hand pose to its quality

metric (as exemplified in Fig. 3.3), which should be maximized to achieve the optimal grasp.

Figure 3.3: Finding the best quality grasp requires the maximization of an black-box function using a
limited number of evaluations. The goal is to optimize the hand Cartesian position so that it maximizes
the quality of the grasp.

In our work, as mentioned in Sec. 2.5, f(x) is the LRW metric achieved according to Equation (2.15)

when, starting the hand with an initial pose x (as in Fig.1.1), the fingers are closed until touching the

object.

Thus, the knowledge of the black-box target function is incrementally built by querying different po-

sitions around the object and updating the GP according to the new observations. The process of the

grasp optimization framework, as previously described, is presented in Fig. 3.4.

Figure 3.4: Grasp optimization process
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3.4.1 Collision Penalty

We assume that the exploration is limited to a region next to the object, and we are therefore limiting

the input space (X ) of our function f(). In practical applications, we may assume that approximate

information about the object size and location is available, and such information can be used to limit the

exploration space.

However, there are exploration queries that result in unfeasible grasps where the target pose of the

robot’s hand collides with the object, even before attempting to close the hand (one can see such exam-

ples in Fig. 3.5). This indicates that the problem has constraints. Although there has been some recent

Figure 3.5: Collision examples

work on Bayesian optimization with constraints [39, 28], we opted for the simpler approach of adding a

penalty as described in [29]. This approach means that the input space remains unconstrained, improv-

ing the performance of the acquisition function’s optimization. Additionally, due to kernel smoothing, we

also get a safety area around the collision query where the function is only partly penalized.

Figure 3.6: Influence of parameter λ on the Collision Penalty function

Other research works on robotic grasping optimization had different approaches to deal with colli-

sions. Some would skip the collision query (e.g., [40]) and others would give it a grasp quality of zero

(e.g., [11]). In the first case, by ignoring the query we are losing information about the target function,
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hence not reducing uncertainty. In the second case, although uncertainty is reduced (i.e., the query

is incorporated in the function estimation), the zero value is usually associated to a position where the

hand does not touch the object at all. Therefore, by modelling a collision in a similar way (with a zero

value), one does not incorporate useful information for further queries since there is an arguably differ-

ence between the two situations. Moreover, collisions can throw down the object, changing its pose and

damaging it, and can also harm robot’s parts, thus these configurations should be avoided. In an ulti-

mate analysis, the approaches presented so far slow down convergence to the optimum value, meaning

that a larger budget for the optimization is needed.

Instead, we propose using an heuristic to improve the optimization convergence, which is based on

the information retrieved from the collision. The heuristic indicates a regret or a penalization according to

the level of penetration of the hand in the object. The penalization factor will drive the search away from

collision locations, ensuing a reduction of explored area and consequently leading to faster convergence.

The CP is calculated by finding the number of joints in the robot’s hand that collide with the object,

nj ∈ N, which indicates a measure of penetration in the object. Therefore, we define the CP as follows:

CP(nj) = 1− e−λnj , (3.23)

where λ is a tuning parameter used to smooth the penalty as shown in Fig. 3.6. As the value of λ

increases, we get closer to a static penalty, losing the ability of penalizing a collision according to its

penetration level. The penalty function was designed so that it’s value is limited by 1, since the grasp

quality is also normalized.

The CP is an heuristic used only to improve the convergence speed, therefore during the optimization

we redefine the target function as f ′ = f − CP , however on the evaluation process we resort to the

original f .
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4.1 Experimental Setup

4.1.1 Simox Simulator

All the results were obtained from simulations using the Simox simulation toolbox [41, 42]. This

toolbox allows to simulate the iCub’s hand in a grasping task performed on arbitrary objects as seen

in Fig. 4.1. By setting an initial pose for the hand and a motion trajectory for the finger joints, we can

simulate a grasp movement. In particular, at the beginning of each optimization procedure, the left hand

of the iCub is placed in an initial pose parallel to one of the object’s facets with the thumb aligned with one

of the neighbour facets. The facets where the hand is placed are chosen at the start of the simulation.

This defines uniquely the pose of the hand with respect to the object. At each optimization step (i.e.

each grasping attempt) the new hand pose is then defined with respect to the initial pose by incremental

translations: (δx, δy, δz).

In these simulations we perform the optimization in either 2D or 3D search-space, only focusing on

translation parameters; all other parameters (e.g. hand orientation, finger joints trajectories) are set in

the initial pose and remain the same throughout the optimization. In 2D, we optimize (δx, δy), while δz is

kept fixed. In 3D, we optimize (δx, δy, δz). For dimensions x and y, the exploration bounds are set to the

object’s dimensions, as for z, which is the approach direction, the bounds extend from the surface of the

object’s facet to the plane where the hand is no longer able to touch the object when it closes.

At each exploration (i.e., optimization) step, the hand is placed in a new pose, and the fingers joints

will move following predefined motion trajectories; the trajectories are set so that the hand performs a

power grasp on the object, in which all fingers closed at the same time, following a movement synergy

that has been defined in previous work [43]. Each finger stops when a local contact with the object is felt.

Figure 4.1: Simox simulation window

The robot in the simulator is equipped with 15 force sensors, 3 for each finger, meaning each phalanx is
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equipped with a sensor. When the fingers motion is finished, the quality of the grasp is calculated based

on the LRW defined in Sec. 2.5. However, if a collision between the hand (either palm or fingers) and

the object is detected when positioning the hand to the new pose, the CP is applied, and the grasping

motion will not be executed.

4.1.2 BayesOpt

The BayesOpt library [44] is used as the framework to perform both methods of Bayesian optimiza-

tion (i.e., both BO and UBO). It performs the rather well in terms of efficiency when compared to other

popular Bayesian optimization software like SMAC or Spearmint [34], reducing the computation time.

Additionally, it is very flexible allowing the user to easily tweak parameters, like surrogate models, ker-

nels, acquisition functions, etc. It takes advantage of the structure of the Bayesian algorithm, where

new information arrives sequentially to implement a more efficient calculation of matrix K from Equation

(3.10) and its inverse K−1, which is a big reason behind the more efficient implementation. For the inner

optimization tasks, like the maximization of the Expected improvement it uses the nonlinear optimization

library NLopt [45].

Because this framework by default performs a minimization of the target function f(), we modified

the problem formulation accordingly to solve our maximization problem; still, the results presented in

Chapter 4 are consistent with a maximization problem.

4.1.3 Experimental Design

To reproduce the effect of the input noise, we obtain Monte Carlo samples at the optimum in each

iteration, ymc(xopt
n ), according to the input noise distributionN (0, Iσx). Remember that, xopt

n corresponds

to xbopt
n when performing BO, and to xubopt

n for the UBO strategy. By analyzing the outcome of the

samples we can estimate the expected outcome from the current optimum ȳmc(xopt
n ), and the variability

of the outcomes std
(

ymc(xopt
n )
)

. These metrics allow us to assess if the optimum belongs to a safe

region. Indeed, if ȳmc(xopt
n ) decreases over time/iterations (something which cannot occur in classical

BO) it should be correlated with the fact that the optimum (xbopt
n ) is inside an unsafe area and is not a

robust grasp.

The input noise at each query point is assumed to be white Gaussian, N (0, Iσx), with σx = 0.03

(note that the input space was normalized in advance to the unit hypercube [0, 1]d). We assume the

grasp quality metric to be stochastic, due to small simulation errors and inconsistencies, thus we set

σn = 10−4.

For each experiment, we performed 20 runs of the robotic grasp simulation for all test objects. The

robot hand posture for each object is initialized as shown in Fig. 1.1. Every time a new optimum is found

we collect 10 Monte Carlo samples at its location to get ymc(xopt
n ). Each run starts with 20 initial iterations

using LHS, followed by 140 iterations of optimization. The shaded region in each plot represents a 95%

confidence interval. All the quantitative results from each experience, at its last iteration, are presented

in Table 4.1.
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Figure 4.2: Flowchart of the program. The boxes in blue correspond to stages that are not necessary
for the functioning of the system, since they only take part for its evaluation.

The flowchart of the program is displayed in Fig. 4.2.

4.2 Experimental Results

In this section, we start by tuning the CP so it produces the best possible results (Sec. 4.2.1). Then,

we describe the experiments performed to evaluate the benefits of adding the CP into the optimization

process (Sec. 4.2.2). Subsequently, we present the results of the UBO generalization to a 3D search-

space and compare them to those obtained in the 2D case scenario (Sec. 4.2.3). Lastly, we investigate

and corroborate the results achieved in [11] but on a 3D search-space, i.e., we prove the UBO outper-

forms the classical BO in finding a safer grasp also in a higher dimension (Sec. 4.2.4).

4.2.1 Collision Penalty tuning

As introduced in Sec. 3.4.1, the collision penalty depends on a tuning parameter λ. A higher value

for λ will result in a more aggressive penalty, while a lower one allows for a milder penalization. Even

though we might intuitively assume that a more aggressive penalty will be more beneficial to reduce the

search-space, that notion wasn’t confirmed with the empirical results obtained.
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The results displayed in Fig. 4.3, correspond to three different experiments on the mug with different

λ values while adopting a 3D unscented Bayesian optimization with collision penalty (3D UBO CP)

strategy. The experiment with λ = 0.1, managed to find the safest grasp and the results deteriorated as

the value of λ increased. This is a consequence of the best grasps being most likely really close to the

Figure 4.3: Performance of the 3D UBO CP on the Mug with different with different tuning parameters λ.
Left: expected outcome of current optimum ȳmc(xubopt

n ), Right: Variability of the outcome std
(

ymc(xubopt
n )

)
boundary of the unfeasible region, i.e., there is a collision configuration in the immediate vicinity of the

best grasp. Hence, the higher penalization and sharp cliffs in the predictive function drove the search

excessively away from the boundary region, consequently away from the best grasp location.

Based on these results, for the remaining experiments the tuning parameter will take the value of

λ = 0.1.

4.2.2 Benefits of the Collision Penalty

To assess the benefits of CP, we performed two types of experiences for each object, a 3D UBO

with and without CP. As we can see in Fig. 4.4 and 4.5, the addition of CP to the optimization process

provides a boost in convergence speed for both the glass and the bottle. Also, by penalizing collisions

we are reducing the regions that are worth exploring, meaning the robot is actually able to find a better

grasp at the end, both in terms of mean and variance.

The mug is the most challenging object to learn a good grasp, since the optimization is performed

on the mug’s facet that includes the handle. In 3D, the handle is inside the search-space, leading to

a large number of configurations that result in collisions, consequently undermining the convergence

to the optimum. This is a situation where the CP really thrives. By penalizing these collisions, we are

driving our search away from the inside of the handle and finding a safer grasp outside the handle. The

results in Fig. 4.6 show how dramatic the improvement is, obtaining at the end of the process results

with CP that are 50% better in terms of mean and also achieving those higher mean values with great

confidence level (i.e., a smaller shaded region).
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Figure 4.4: Glass: CP vs CP (UBO 3D). Left: expected outcome of current optimum ȳmc(xubopt
n ), Right:

Variability of the outcome std
(

ymc(xubopt
n )

)

Figure 4.5: Bottle: CP vs CP (UBO 3D). Left: expected outcome of current optimum ȳmc(xubopt
n ), Right:

Variability of the outcome std
(

ymc(xubopt
n )

)

4.2.3 Generalization to 3D

We performed UBO with CP in both 2D and 3D to provide evidence that UBO generalizes well into

a higher dimension space, i.e., in 3D we only need a few extra evaluations to reach the same results

obtained in 2D.

In Fig. 4.7, we observe that for the glass, even though 2D reaches better mean values right after

the learning starts (iteration 20), 3D is able to reach the same level around iteration 40 and proceeds

to surpass it achieving better results. As for the bottle, in Fig. 4.8, the mean value of the 3D case trails
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Figure 4.6: Mug: CP vs CP (UBO 3D). Left: expected outcome of current optimum ȳmc(xubopt
n ), Right:

Variability of the outcome std
(

ymc(xubopt
n )

)

almost the whole process only edging out the 2D results close to the end of the budget.

For the mug, Fig. 4.9, the 3D optimization only manages to reach similar mean values at around

iteration 65. As explained in Sec. 4.2.2, this is due to the high amount of queries that result in collisions

when we are optimizing in a 3D search-space. Still, it comes to show how the boost in convergence

speed provided by the CP makes it possible to generalize the optimization to 3D, since without it the

3D exploration wouldn’t even reach the 2D values within the budget, as we can conclude from the

quantitative values in Table 4.1.

Figure 4.7: Glass: 2D vs 3D (UBO CP). Left: expected outcome of current optimum ȳmc(xubopt
n ), Right:

Variability of the outcome std
(

ymc(xubopt
n )

)
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Figure 4.8: Bottle: 2D vs 3D (UBO CP). Left: expected outcome of current optimum ȳmc(xubopt
n ), Right:

Variability of the outcome std
(

ymc(xubopt
n )

)

Figure 4.9: Mug: 2D vs 3D (UBO CP). Left: expected outcome of current optimum ȳmc(xubopt
n ), Right:

Variability of the outcome std
(

ymc(xubopt
n )

)

We must point out that the z coordinate in the 2D optimization was chosen to ensure a fair comparison

with the 3D, setting it to the parallel plane where the optimal grasp should be. However, the better results

obtained for both glass and mug in 3D indicate that the optimum z was somewhere else, as shown in

Figs. 4.10, 4.11.
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Figure 4.10: Glass: Optimal parameters xubopt
n at the final iteration (n = 160), for each of the 20 runs us-

ing 3D UBO CP strategy (input space normalized to the hypercube [0, 1]3). The solid blue line represents

the value to which coordinate z was fixed in 2D (z = 0.51).

Figure 4.11: Mug: Optimal parameters xubopt
n at the final iteration (n = 160), for each of the 20 runs

in using 3D UBO CP strategy (input space normalized to the hypercube [0, 1]3). The solid blue line

represents the value to which coordinate z was fixed in 2D (z = 0.71).

Then again, we can observe in Fig. 4.12, that the visual difference between the best grasps in 2D

and 3D for the glass isn’t quite noticeable, even though 3D still achieves better results.

On the bottle, as seen in Fig. 4.13, the initial z coordinate for 2D exploration was set closer to the

optimum parameters achieved in 3D. This explains why the 3D results took more evaluations to reach
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Figure 4.12: Quality of best grasp in one of the runs. 2D UBO CP (a) and 3D UBO CP (b) converge
almost to the same grasp

the same kind of results. Also in Fig. 4.13, we observe an outlier run that found a good quality grasp

around z ≈ 0.53. The existence of another region in search-space with good quality grasps is also a

contributing factor to the slower convergence to 2D values.

Overall, the generalization to the 3D search-space is arguably needed since better grasp parameters

were found during the 3D optimization and obviously because it is another step towards the real high-

dimensional problem.

Figure 4.13: Bottle: Optimal parameters xubopt
n at the final iteration (n = 160), for each of the 20 runs us-

ing 3D UBO CP strategy (input space normalized to the hypercube [0, 1]3). The solid blue line represents

the value to which coordinate z was fixed in 2D (z = 0.27).
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4.2.4 Advantages of UBO over BO

Since we already proved that UBO generalizes well to 3D, we will compare BO against UBO in 3D

using CP, to conclude if the advantages described by Nogueira et al. [11] in 2D are still attainable in 3D.

The results collected from both methods show that we are still able to learn safer grasps using UBO.

The advantage is clear for both the glass, Fig. 4.14, and bottle, Fig. 4.15, where the UBO achieves

higher mean values and lower variance for its optimum. In the mug, Fig. 4.16, we get competitive mean

values using BO, but the UBO still finds an optimum with lower variance, i.e., a safer grasp. These

competitive values are due to the very limited amount of grasp configurations that yield a good quality.

The visual comparison between the two optimization strategies (BO and UBO) for the glass is displayed

in Fig. 4.17, where we can observe the best grasps achieved in one of the 20 runs.

Figure 4.14: Glass: BO vs UBO (3D CP). Left: expected outcome of current optimum ȳmc(xopt
n ), Right:

Variability of the outcome std
(

ymc(xopt
n )
)

Glass Bottle Mug

Exp. ȳmc(x
opt
n ) std

(
ymc(x

opt
n )
)

ȳmc(x
opt
n ) std

(
ymc(x

opt
n )
)

ȳmc(x
opt
n ) std

(
ymc(x

opt
n )
)

2D UBO CP 0.4396 0.0536 0.5026 0.0887 0.1205 0.0256

3D UBO 0.4462 0.0761 0.4810 0.0754 0.0979 0.0378

3D UBO CP 0.4867 0.0260 0.5011 0.0725 0.1567 0.0361

3D BO CP 0.4489 0.0805 0.4767 0.1097 0.1551 0.0415

Table 4.1: Results at the last iteration (n = 160) of the optimization process (means over all runs)

37



Figure 4.15: Bottle: BO vs UBO (3D CP). Left: expected outcome of current optimum ȳmc(xopt
n ), Right:

Variability of the outcome std
(

ymc(xopt
n )
)

Figure 4.16: Mug: BO vs UBO (3D CP). Left: expected outcome of current optimum ȳmc(xopt
n ), Right:

Variability of the outcome std
(

ymc(xopt
n )
)
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Figure 4.17: Quality of best grasp in one of the runs. The best grasp achieved by BO is in an unsafe
zone (a). The UBO’s best grasp has a lower observation outcome but it is more robust to input noise (b)
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5Conclusions and Future work
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This work has validated the application of Unscented Bayesian Optimization to 3D grasp optimization.

We confirmed once more that it outperforms the classical Bayesian optimization, being able to find safer

grasps under input noise. Furthermore, it generalizes well from the existing results in 2D search to a

more challenging 3D search, without compromising the optimization budget. The upgrade to 3D allowed

to achieve better grasps and obviously take one step closer towards a reality with many more degrees

of freedom.

The expansion to 3D proved to be difficult as a result of all the queries that would result in collision

configurations. These slowed down the optimization process, since a lot more observations needed to

be performed to reach the same kind of results obtained in 2D. That defeated the main purpose of using

a Bayesian optimization framework that strives for sample efficiency.

We propose a collision penalty function to force the search algorithm away from potential collision

configurations, thus speeding up the convergence of the method. The collision penalty proved to be

very important weapon to fight the curse of dimensionality, thus facilitating the transition from 2D to 3D.

Naturally, as the optimization process continues expanding to further dimensions, the collision penalty

will prove to be even more valuable because the number of potential collision configurations will always

increase.

From here, the future roadmap is very diverse. A natural first step is studying how to extend the

method to the full 6D (translation+rotation) optimization and the application of the method in a real

robotic anthropomorphic hand with 3D force sensors in the finger’s phalanges [46]. The implementation

of the collision penalty in the real robot is also a subject that will require some further adaptations. It must

be decided if the robot should run a background collision simulation with Simox before approaching the

grasping pose, to verify if it the grasp is viable; or should the process be independent from a simulator

and simply use the tactile forces sensors to detect any contact before the robot closes its hand. Also,

the use of other grasp synergies other than the first synergy grasp can be modeled and tested.

Concerning unscented Bayesian optimization, as of right now the unscented expected improvement

criterion is calculated assuming we have a perfect estimation of the input noise. However, in a prac-

tical application we do not have a perfectly accurate estimation, so it would be interesting to see how

it behaves when the input noise under those circumstances and whether it still achieves better results

than the classical approach. Moreover, although we assume input noise and noise corrupted outputs,

we associate our observation to a noiseless input location, i.e., we do not account for uncertain loca-

tion estimates in observations. Therefore, an approach where our observation dataset contains noisy

outcomes and also noisy incomes, can also be a subject of further research.

From a different perspective, the grasping optimization process can also become more autonomous

and improve if visual exploration is incorporated. A suggested first step, would be for the robot to do a

visual pre-screening before initiating the haptic exploration, identifying areas that are potentially better

to explore. Thus, once the exploration started we would be able to initiate our Gaussian process prior

with already some information, therefore we could once again reduce the number of exploration steps.
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