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Thesis approved in public session to obtain the PhD Degree in

Mechanical Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Paulo Manuel Salgado Tavares de Castro
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Multiaxial Fatigue

Damage analysis of complex loading paths

Vitor Manuel Rodrigues Anes

Abstract

This thesis proposes a new set of models to improve multiaxial fatigue characterization.

The research main objective was to create physical based methodologies to characterize

multiaxial fatigue damage under random loading conditions, which is one of the

greatest challenges in multiaxial fatigue life assessment. To achieve this goal, five

interconnected criteria were developed in this work, namely a cyclic elastic-plastic model,

a non-proportional sensitivity parameter, a new equivalent shear stress, a new multiaxial

cycle counting method, and a fatigue crack initiation model. Series of fatigue tests were

performed to characterize two different materials, i.e. an high-strength steel (42CrMo4)

and a magnesium alloy (AZ31B-F), in order to scrutinize their multiaxial fatigue

behaviour, including crack initiation planes under proportional and non-proportional

loading conditions. Regarding other types of loading such as asynchronous, sequential,

variable amplitude, mean stress, and stress gradients, it was used a third-party fatigue

data collected from literature. The methods developed here were correlated with

state-of-the-art criteria and with experimental data. Based on the achieved results it can

be concluded that the proposed methods are easy to implement, easy to understand, and

have improved results comparatively to the state-of-the-art criteria.

Keywords: Multiaxial random fatigue, Fatigue damage, Fatigue life assessment,

Multiaxial cycle counting, Loading paths, Equivalent shear stress, Non-proportionality,

Cyclic plasticity, Multiaxial elastic-plastic model, Fatigue crack initiation.
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Fadiga Multiaxial

Análise de dano em histórias de carregamento complexas

Vitor Manuel Rodrigues Anes

Resumo

Esta tese propõe um novo conjunto de modelos para melhorar a caracterização e avaliação

do dano em fadiga multiaxial. Ao logo deste trabalho foram criadas metodologias de

modo a caracterizar vários fenómenos presentes em fadiga multiaxial sob condições de

carregamento aleatórios, sendo este um dos actuais desafios em fadiga multiaxial. Para

isso, foram desenvolvidos neste trabalho cinco critérios interligados, nomeadamente um

modelo de plasticidade ćıclica, um parâmetro de sensibilidade não-proporcional, uma nova

tensão equivalente, um novo método de contagem de ciclos em fadiga multiaxial e um

modelo de previsão de iniciação de fissuras por fadiga. Foram realizados testes de fadiga

multiaxial num aço de alta resistência (42CrMo4) e numa liga de magnésio (AZ31B-F) a

fim de caracterizar e avaliar o seu comportamento á fadiga sob cargas ćıclicas assim como

os seus planos de iniciação de fissura sob diferentes condições de carga, nomeadamente

carregamentos proporcionais e não proporcionais. Para outro tipo de carregamentos,

tais como, carregamentos asśıncronos, sequenciais, amplitude variável e carregamentos

com gradiente de tensões e tensão média, os dados experimentais foram obtidos a partir

da literatura. As estimativas dos métodos propostos foram correlacionadas com as dos

modelos usados na literatura e com os dados experimentais. A partir dos resultados

obtidos pode-se concluir que os métodos propostos são fáceis de implementar, fáceis de

entender e têm melhor estimativas de vida á fadiga, comparativamente ao desempenho

encontrado nos critérios dispońıveis na literatura.

Palavras chave: Fadiga multiaxial aleatória, Dano por fadiga, Avaliação de vida a fadiga,

Contagem multiaxial de ciclos, Histórias de carregamento, Tensão equivalente de corte,

Não-proporcionalidade, Plasticidade ćıclica, Modelo multiaxial elastoplástico.
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Portugal 2011.

15. L. Reis, V. Anes, B. Li and M. Freitas. ”Characterizing the mechanical behaviour of

extruded AZ31 magnesium alloy”. VI International Materials Symposium MATERIAIS
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Chapter 1

Introduction

Structural health monitoring (SHM) is a discipline of science that aims to monitor

structural integrity of structures and mechanical components in order to avoid unexpected

failures. This is a very important subject, because it allows preventing the loss of

human lives, invested money in structures, and also prevents assurance payments due

to collateral damages from accidents; therefore SHM has social and economic impacts in

society. Structures and/or mechanical components may fail during service due to several

reasons such as fabrication defects, assembly defects, impacts, and cyclic incremental

effects. Fabrication and assembly defects can be monitored during the quality inspection

but loading effects do not, however, these effects can be monitored in to two ways: first,

at design stages, it is taken into account a representative loading pattern that structures

or/and mechanical components are usually subjected to. Next, with the right design

criteria and the aforementioned loading patterns, structures and mechanical components

are designed for reliability. The second way is the monitoring of accumulated damage in

structures/components in order to make maintenance decisions; structural components can

be replaced or maintained based in the damage accumulation information gathered with

SHM techniques. Both ways are complement to each other, one to be used in structures

design and the other to evaluate structural damage accumulation taking into account the

usage regimen in the field. Damage evaluation in the field is very important because

the usage regime can be quite different from the one considered in design stages. In

both approaches, mechanical design and SHM, it is required reliable methods to evaluate

structural damage and integrity. Essentially, these methods aims to monitor/estimate the

loading pattern influence in the material strength. Load level and load type are two loading

factors that have great influence in the structures strength. They cause different damage

regimes, especially under multiaxial loading conditions, which is the most common stress

state in the usage field. Figure 1.1 shows the Eschede train disaster occurred on June 1998

in Germany, the train derailed due to a fatigue crack in one wheel. It remains the worst

high speed rail disaster until now. After the accident, the Deutsche Bahn (German railway
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company, the second-largest transport company in the world) stated that it paid more than

30 million U.S. dollars to the victims families and survivors. Due to this accident all wheels

with similar design where replaced by another model, the German railway company had

large costs with this unexpected preventive action.

Figure 1.1: Train disaster in 1998, Eschede, Germany, 101 deaths and 88 injuries [1].

Figure 1.2 shows a Trent 900 Rolls-Royce aircraft turbine, commonly used in the airbus

A380, completely destroyed due to a fatigue crack in an oil feed-pipe.

Figure 1.2: Rolls-Royce Trent 900 engine failure, Singapore, Changi Airport in 2010 [2].

Contrary to what has happened in the Eschede disaster, there were no fatalities neither

injuries. After the accident Airbus sought to be compensated from Rolls-Royce due to

the disruption of the Quantas airline service, and pondered to not sign new contracts

for new engines. In 2011, Quantas announced that had agreed to be compensated

with 100 million U.S. dollars; the repair cost was estimated in 145 million. Many

accidents like the aforementioned ones can be avoided with an effective monitoring of

structural integrity. Materials multiaxial fatigue characterization plays an important role

2



Multiaxial Fatigue

in structural monitoring being one SHM keystone among others. Multiaxial fatigue is a

scientific field that has captured, during decades, the attention of the scientific community.

The scientific concern regarding this subject starts in the beginning of the last century

where due to mechanical failures in the field, engineers started to investigate the materials

fatigue phenomena. But, it was in the mid-70s that occurred the fatigue zenith being one

of the most important scientific fields in materials characterization at that time. Since

then, many efforts have been made in order to achieve a multiaxial fatigue criterion that

be able to capture all fatigue damage mechanisms in all kinds of materials and loading

conditions. The pursuit of such criterion has been a hard task, with some highs and

downs during the last decades. The estimates inconsistency of multiaxial fatigue criteria

have been a screenplay that registers the scientific struggle to solve the multiaxial fatigue

problem. Some multiaxial fatigue models have good results for one kind of material, but

for other ones their results are not satisfactory. This evidence creates a lack of confidence

in multiaxial fatigue criteria because their ability to accurately estimate materials fatigue

strength, without making specific fatigue tests, is very low. Therefore, it is required specific

experimental tests to perform a fine tuning of such criteria. This inaccuracy led to their

segmentation, where multiaxial fatigue models are classified according to their performance

for each kind of material, and loading conditions. Thus, the main problems in multiaxial

fatigue characterization remains nowadays unsolved due to several constraints.

One reason to have such difficult problem is the different fatigue responses (or fatigue

damage responses) obtained in different kind of materials under the same loading

conditions. Also, for the same material, different loading conditions lead to different

damage regimes. These damage regimes are a result of many factors, such as material

lattice (micro-structure), surface finishing, mechanical cyclic properties, among others. It

is well known that materials change their cyclic properties during cyclic loadings in the field

[3], thus knowing their cyclic mechanical behaviour is of utmost importance to estimate

local stress states. Furthermore, the materials cyclic properties may change under different

environments, for instance, high or/and low temperatures, oxidation, abrasion or even

corrosion have huge influence in the materials monotonic and cyclic mechanical properties.

However, some multiaxial fatigue models are unable to account for material cyclic evolution

(material hardening/softening) to perform fatigue life assessment. Nowadays, there is

no multiaxial fatigue criterion that be able to update the materials cyclic properties to

evaluate multiaxial fatigue damage on the fly, which is very important feature in SHM.

Despite that, one reason that has been delayed solid achievements in multiaxial fatigue

characterization is the difficulties found in the local stress/strain measurements due to

technical limitations. An accurate record of the materials stress state is very important

because all reasoning around multiaxial fatigue criteria is based on those measurements.

In the last decade some improvements were made in strain/stress measurements, for

instance 3D video extensometers begin to be used in order to measure multiaxial stress
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gradients and their time evolution during cyclic loadings, and fatigue crack initiation

and growth processes. Until few years ago, stress/strains measurements were mainly

performed in a single material point due to the limitations of conventional extensometers,

which are unable to measure stress/strain gradients. On the other hand, the video

extensometer solution can monitor stress/strain gradients, but due to resolution problems

and applicability issues in conventional fatigue specimens, this measurement tool proved

to be a costly solution and difficult to manage in order to obtain accurate data. Besides

those measurement difficulties, the spot identification of the crack initiation process in

smooth samples is also difficult to achieve, because it is not known the location of

the crack initiation spot in order to focus the record video camera, especially in crack

nucleation regimens where fatigue cracks are too small to be seen with naked eye. This

constraint had brought difficulties in the interpretation of the crack initiation process in

smooth specimens under multiaxial loading conditions, to overcome this problem has been

made small notches at the specimen throat to fix the initiation spot, but this solution

has some shortcomings related to local hardening resulted from the machining process

that influences the crack growth results. Due to these reasons and other ones, it can

be concluded that a recipe for all materials fatigue response remains in pursuit until

today. Thus, the unachieved goals across years of pursuit may be the cause of the lack of

motivation and innovation in multiaxial fatigue research at the end of the last century, the

lack of innovative experimental tests published in multiaxial fatigue journals justifies this

observation. Meantime, a new era of new materials arrived to the scientific community

and high-tech industry; smart materials, and materials subject to tremendous loads in new

harsh environments, had led to pushing up the motivation of the scientific community to

a new level in multiaxial fatigue characterization.

Smart materials are nowadays used in mechanical actuators; they change their mechanical

properties by changing their micro-structure through mechanical deformation and heating.

This micro-structure change leads to different mechanical responses and therefore also

leads to different multiaxial fatigue behaviours and damage accumulation regimens.

Moreover, the materials used in spacecraft are subjected to severe operating conditions,

i.e. to enter into the atmosphere they are subjected to intense loads and heat. In this

materials the allowed number of loading cycles is much reduced compared to the ones found

in conventional applications. To assure reliability in such operative regimes, structural

components must be inspected and replaced regularly despite being very expensive. Thus,

it is necessary to have a decision tool to help in replacement decisions, like a damage

accumulation criterion, for instance. In the near future it is envisioned de use of spacecraft

on a regular bases which will require an accurate characterization of the materials strength

variation under such adverse operative conditions. Another example is the high speed

railways, in this case the high velocities leads to spend the material cyclic strength in a

few years. Nanotechnology developments have allowed the fabrication of nano components,
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but multiaxial fatigue nano-characterization practically does not exist yet. Several works

have been presented in this matter [4], but they are very basic with huge constraints.

New materials and their inherent technologies bring always with them new challenges in

materials characterization, which cannot be ignored.

In contemporary times, a strong trend has emerged in order to replace some structural

components traditionally made of metal by composites. With this rising trend, the

multiaxial fatigue in composites is emphasized, being one major structural concern.

Structural fatigue behaviour in composites brings new challenges in multiaxial fatigue

characterization, i.e. new type of tests and new theoretical concepts are required to

capture the physical behaviour of multiaxial damage accumulation processes, which are

quite different from the ones found in metals. Due to feasibility issues, multiaxial fatigue

research has been developed until now based on experiments conducted to analyse the

mechanical behaviour of metals; therefore multiaxial fatigue characterization in composites

is a relatively new subject.

Nowadays, materials research is driven by industrial needs, due to that, it has been

focused on metals and alloys used in specific industrial branches such as power generation,

aerospace, transportation, marine and offshore structures. Essentially, the aforementioned

research is built on the fatigue and crack growth under different load conditions in

high cycle fatigue (HCF) and low cycle fatigue (LCF) regimens. Loading paths effects

in materials cyclic elastic-plastic behaviour, stress level and residual stresses (internal

measurements) are the key research areas driven by industrial activities where the fatigue

damage and crack growth characterization is required. Therefore, reliable methods to

modulate materials fatigue behaviour under analytical, computational, and theoretical

approaches, remains in pursuit by the scientific community. Its purpose is to obtain

reliable tools that allow understanding fatigue mechanisms and to estimate the materials

fatigue strength and their inherent crack initiation and growth processes.

1.1 Motivation

The present research aims to push forward reliable methodologies in multiaxial fatigue

characterization. The main objective is to develop tools that yield reliable multiaxial

fatigue estimates in mechanical design stages and in structural health monitoring

procedures. The solutions found in the industry regarding this subject are very basic

with unsatisfactory results, due to that it is commonly used high safety factors in

mechanical design to deal with uncertainty, which leads to heavier structures, increase

of fuel consumption and CO2 emissions.

The transportation industry has been one of the biggest players in the CO2 emissions

reduction by funding research in light materials. They pursue a combination of high

strength and low-density properties in structural materials; however achieving an optimal
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material remains a paramount goal under pursuit. Nowadays, a 3-litre car is an achievable,

goal but now the newest goal is to achieve a 1-litre car. Under this research dynamics,

the weight saving is of major concern. Despite the improvement in fuel consumption and

inherent vehicle performance being an economical approach and a driving force from the

customer side, the reduction of fuel consumption is also motivated by legislative rules to

reduce primary energy consumption and environmental impact.

In the recent past, the alternative to energy savings was the lower aerodynamic drag

approach having been a path exhaustively explored. However, a new one has been adopted

based on structural weight reduction. Structural weight reduction requires a compromise

between the material properties and the structural components geometry, under this

required equilibrium a fully understanding of cyclic, monotonic, and elastic-plastic

properties is required as well as the fully understanding of the fatigue behaviour under

these loading conditions.

1.2 Research objectives

This research aims to characterize fatigue damage under multiaxial loading conditions

for a wide range of loading types. The ultimate goal is to use the developed methods

in mechanical design and structural health monitoring procedures. This research was

developed having always in mind a final industrial application, it was avoided abstract

and complex solutions (when possible) and it was given always primacy to simple, and

ease to implement methodologies. To characterize random fatigue damage, it is needed to

cover a broad number of concepts related to multiaxial fatigue. As a matter of fact, it is

not possible to deal with random accumulated damage without considering all of them.

Figure 1.3 shows the fatigue pyramid for random fatigue characterization. In this pyramid

each level depends on all levels below and each level has within a wide number of concepts

regarding materials science.

Random multiaxial fatigue damage is a complex subject that has been handled in a

segmented way, i.e. each level of the fatigue pyramid has been studied and analysed

in a separated way without an evident interconnection between them. In literature, it can

be gather information related to each subject inherent to each level of the fatigue pyramid,

but they are usually studied and presented in a separated way. Therefore, subjects like

damage accumulation, damage parameters, cyclic properties, multiaxial cycle counting

methods among others, are concepts that capture partially the fatigue phenomena when

considered separately, however they have not been presented in literature in a synergistic

way. Nevertheless, to analyse and estimate random multiaxial fatigue life it is necessary to

account with all of them. Therefore, in this research, it is explored several key aspects of

multiaxial fatigue damage in order to gather, in a synergistic way, concepts and physical

phenomena to characterize random multiaxial fatigue damage. A key question may arise
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Figure 1.3: Fatigue levels of random fatigue characterization.

about this work, why it is important such task, why it is important to evaluate and

account random multiaxial fatigue damage? In the actual state-of-the-art there is no

such synergistic models that allow the evaluation of random multiaxial fatigue damage

in a reliable way. Moreover, it is of utmost importance to account multiaxial damage

in the field where random loadings show to be the most realistic loading regimen, which

are the cases of car suspensions, wind energy harvest towers, or fighter jets, for instance.

The added value of this research is to bring new models that capture several physical

phenomena related to fatigue and use then to characterize random multiaxial fatigue

damage. Going deeper in the explanation, it can be said that the cornerstone of this

research is based in the fact that in the actual state-of-the-art the loading path effects on

the materials fatigue strength remains to be fully understood. Moreover, cannot be found

in literature any tool that allows to quantify the loading path effects in a reliable way. For

instance, the equivalent stress concept under multiaxial loading conditions is independent

from the loading path type, i.e. it can be reached the same equivalent stress with

different combinations of normal, and shear stresses, for the same stress level. However,

experimental results show that the fatigue strength varies with different combinations of

normal and shear stress amplitudes, even for the same equivalent stress amplitude. Thus,

fatigue life estimates of equivalent stress criteria under multiaxial loading conditions give

inconsistent results. Moreover, the same conclusion can be extrapolated for any other

multiaxial damage parameter, such as critical plane or invariant criteria. In the present

author opinion, this is the main problem that has hindered the fully characterization of

multiaxial random fatigue in the last years. In the base of the fatigue pyramid shown in

Figure 1.3, one can find the level 1, here it is studied the loading effect on the material cyclic

response. For level 1, the thesis objective is to develop an elastic-plastic cyclic model, and

a non-proportional sensitivity parameter; this two contributions will allow to update the
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cyclic material response in level 2 (damage parameter criteria). Next up, level 2, covers the

damage parameter concept, other research objective of this thesis is to reach a multiaxial

fatigue damage parameter capable to account for multiaxial damage effects resulting from

several loading path types such as: sequential, proportional, non-proportional, and stress

gradient effects among others. Next, at level 3, a cycle counting technique is developed

to account for variable amplitude and loading block damage using the damage parameter

developed in level 2. In level 4, it is studied damage accumulation rules for random

loadings damage characterization. This synergistic way to account with each pyramid

level is an important feature because under random multiaxial loading conditions all of

these pyramid levels may be activated in a sequential or simultaneous way.

Another research objective is to achieve a crack initiation model capable to estimate critical

planes, i.e. the direction of the crack initiation plane, having into account the random

loading conditions, and being sensitive to the loading path trajectory. This feature is

also important because it will allow to help the identification of crack initiation planes in

failure analysis. Another question may be raised regarding the research objectives: it can

be found in literature any models or techniques for the four levels of the pyramid? The

answer is yes, there are plenty of models published in literature; however all of them do not

have into account the path trajectory type as is considered in this research, which is one

of the contributions of this thesis, among others. Figure 1.4, summarizes the synergistic

process of evaluating random multiaxial fatigue proposed here.

Figure 1.4: Fatigue estimates process under random loading conditions.

1.3 Research conceptual framework

The thesis statements are presented in the next paragraphs; these statements are the

foundations that support all research work presented here.
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1.3.1 Fatigue characterization

A fatigue model must have into account all aspects inherent to the material fatigue damage

process. Must be able, in a synergistic way, to account for cyclic damage factors when they

are acting isolated or simultaneously. Only in this way, it is possible characterize random

fatigue. Therefore, a fatigue model must be able to estimate fatigue lives under constant,

variable and random amplitudes, and under uniaxial and multiaxial loading conditions.

Here it is stated that a fatigue model should comprises a set of criteria for fatigue. Due to

that, in this research it is pursued models for each one of the fatigue pyramid level present

in Figure 1.3.

1.3.2 Fatigue fracture

A fatigue fracture surface is an important record of the fatigue process where several

physical phenomena occur at nucleation and crack growth. In several materials, fatigue

crack nucleation takes most of the fatigue life-time; during this process the material cyclic

plasticity has a major influence in the material fatigue strength. Therefore, it is expected

that the stress time evolution at nucleation spot be quite different from the nominal one.

Thus, it is hypothesized here, that the loading path type has a huge influence on the

cyclic plastic mechanism and therefore on the crack initiation plane. With this in mind,

the influence of the loading path type on the direction of the crack initiation plane is

analysed here. Moreover, the stress time histories used to estimate fatigue lives must be

updated with a cyclic kt.

1.3.3 Damage parameter

Damage parameter is a fatigue quantity/measure based in physical principles that aims

to capture an unitary damage to be processed in cycle counting methods and/or damage

accumulation criteria. This parameter concept is the cornerstone to all fatigue branches

found in literature. If this parameter do not capture the unitary damage, it will be

very difficult to obtain coherent results in cycle counting and damage accumulation

methodologies. The most used and appreciated type is the equivalent stress, which reduces

a multiaxial stress state (usually represented by a stress tensor) to a scalar, however

under multiaxial loading conditions equivalent stress approaches have some shortcomings.

Despite their popularity, equivalent stresses do not capture the loading path influence

on the materials fatigue strength. This shortcoming results from the equivalent stress

concept, where it is only considered the maximum value obtained within the loading

path. Moreover, the loading signal loss verified in equivalent stress criteria also negatively

influences the estimates of these criteria. Furthermore, the state-of-the-art of equivalent

stress criteria under multiaxial loading conditions considers that the stress scale factor,

which reduces the normal and shear damages to the same damage scale is a constant
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parameter. These are some reasons among others for their poor performance to capture

fatigue damage in multiaxial loading conditions. It is stated here that the stress scale factor

concept (SSF) is not captured by a constant and is strongly dependent of the loading path

type, stress level and material type.

1.3.4 Non-proportionality evaluation

Materials have different cyclic responses under different loading paths and stress levels;

they may harden, soft or have a mix of both cyclic responses. In literature, the material

non-proportionality is evaluated under high plastic strains. However, experimental

observations lead to conclude that the material non-proportional response is a cyclic

property that is intrinsic to the material type, and must be determined considering their

S-N curves. Here, it is stated that a new material property, the material non-proportional

sensitivity can be measured considering the material S-N curves under proportional and

non-proportional loading conditions. Moreover, the aforementioned non-proportional

sensitivity can be used to update fatigue damage parameters.

1.3.5 Cycle counting methodology

Cycle counting is an important technique to interpret fatigue damage accumulation and

a hard topic to deal with. As a matter of fact, there are very few cycle counting methods

for multiaxial loading conditions, and the ones that can be found in literature are based

in the Rainflow method, which in turn is based in uniaxial hysteresis loops. By definition,

hysteresis loops are based in the stress/strain relation, therefore under multiaxial loading

conditions it will be required the use of an equivalent stress and an equivalent strain to

perform such analysis. However, it is well-known that the actual equivalent stress/strain

concept for multiaxial damage assessment do not capture the damage physical behaviour

as mentioned in sub-Section 1.3.3. Therefore, cycle counting methods based in this concept

and based in the Rainflow cycle counting method do not showed so far very good results.

Here, it is stated that, contrary to what is found in literature, it is possible to deal with

complex loading paths by using a non-Rainflow cycle counting method in synergy with an

damage parameter time evolution.

1.3.6 Damage accumulation

Damage accumulation rules are important procedures to estimate fatigue strength under

complex loading paths. Usually, they compute the unitary damage captured by the

damage parameter in association with a cycle counting method. It is stated here that

if the damage parameter and cycle counting method really capture the unitary damage,

thus the damage accumulation rule should be linear. It is found in literature some

examples of non-linear damage accumulation rules, but in the present author opinion,
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those approaches aim to capture the damage accumulation without having into account

the physical damage mechanisms within the material. Therefore, it is hypothesised here

that the Palmgren-Miner linear damage rule can be used to capture fatigue damage

accumulation under random loading conditions.

1.3.7 Random loadings

In the field, many structures and mechanical components are subjected to constant,

variable and random amplitudes. These loading conditions lead to different degrees of

complexity in damage characterization, but a fatigue criterion must be able to capture

fatigue damage in those regimens. Also, multiaxial fatigue criteria must be able to capture

fatigue damage on the fly and not be only used as fatigue life estimators in design stages.

Here, is stated that the aforementioned fatigue tools presented in the previous sub-Sections

can be synergistic arranged to evaluate fatigue damage in constant, variable and random

amplitude loading conditions. Moreover, it is also possible to reach a fatigue model that

be able, in real time, to capture the material damage accumulation in order to be used in

maintenance and replacement decisions (structural health monitoring).

1.3.8 Cyclic elastic-plastic model

Cyclic plasticity is quite different from the quasi-static one. This type of plasticity is the

one that results from cyclic loadings with stress amplitudes much lower than the materials

yield stress. Therefore stress states considered in design stages may change during service

without notice. In some materials that change may result in the materials hardening

but in other ones may result in the materials softening which may reduce the material

strength. However, some materials also show a mixed behaviour that is dependent of the

stress level involved in the cyclic loading process. Thus, in literature cannot be found cyclic

elastic-plastic criteria that are able to fully capture the mechanical properties variation due

to cyclic loadings. Thus, here is stated that it is possible to reach a elastic-plastic model

for multiaxial loading conditions that be able to capture the material cyclic behaviour

variation, and can be used to update the material stress state.

1.4 Scholarly and practical significance

The research theme present here is a topic of current international research; the outcomes

of this research are important for the scientific community as well as for the industry, with

them it becomes possible to evaluate more efficiently fatigue damage accumulation taking

into account loading paths effects. Every year a countless number of conferences are held

worldwide regarding each level of the fatigue pyramid shown in Figure 1.3, which is an

indicator of the research dynamics in this subject. Nevertheless, the major novelty of this

research is based in the use of an equivalent stress to capture the loading effects in the
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materials damage. This research adds to the present state-of-the-art new methodologies

and new concepts for evaluating materials damage accumulation. Moreover, this research

improves the understanding of multiaxial fatigue by making a critical literature review,

explaining the new concepts proposed here, and connecting them with the ones found in

literature. Also, it is envisioned the use of the outcomes of this research in the industry,

where it is increased the structures/components safety by using the techniques developed

here. This means that people such as faculty members and industry employees will use

the set of fatigue tools developed here, as well as continue to develop it.

1.5 Research methodology

This research was carried out within a framework of approaches using scientific methods

to achieve unbiased and objective results. It was collected, analysed and interpreted

information to answer the research questions. The type of research is a pure research type

where it is performed systematic studies towards the understanding of fundamental aspects

of phenomenological results in multiaxial fatigue, which may or may not have practical

application, however at the end the objective is to transfer the acquired knowledge to

practical applications with an industrial partner. This is a correlational and explanatory

research where is sought clarify the relationships between several phenomenological aspects

of materials science. The inquire mode was a mix of structured and unstructured

approaches, where a quantitative research is used to define the main guidelines, and a

qualitative research is adopted to have flexibility in all aspects of the research process.

1.5.1 Research questions

This research aims to find a new set of models to improve the fatigue damage accumulation

characterization and evaluation under multiaxial and random loading conditions. In the

following is presented the research question of this research.

1. Does the random multiaxial fatigue models, which can be found in literature, have

the required mechanisms to have into account the loading path effects in fatigue

damage accumulation?

2. Does the random multiaxial fatigue models be able to estimate the direction of the

crack initiation plane? These models have into account the local stress state variation

due to cyclic plasticity?

3. Is there an equivalent stress damage parameter that has into account the loading

type? Does the equivalent stress damage approach a reliable way to be used in

random damage accumulation?

4. In literature, non-proportionality is commonly evaluated using an equivalent stress,

however in this way the stress level is increased under non-proportional loadings,
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comparatively to the proportional ones, which is an inaccurate way to evaluate the

material non-proportionally. Is it possible to evaluate non-proportionality without

making this error?

5. Is it possible to create a non-Rainflow cycle counting method for multiaxial loading

conditions? Will it have better results? Will it be easier to implement?

6. Does the Palmgren-Miner rule an adequate damage accumulation rule to be used in

random accumulated damage evaluation? The damage accumulation under random

conditions is linear?

7. Typically, in literature each of the aforementioned topics are studied separately like

independent subjects. Will it be possible to create a unified fatigue model that has

into account all the aforementioned fatigue subjects?

8. will it be possible to implement a random multiaxial fatigue model that has into

account the stress states updated through a cyclic plasticity model?

1.5.2 Literature review

A literature review in specialized journals and conference proceedings was carried

out. This stage was very important because it allowed to understand the maturity

of the state-of-the-art of the subjects focused in this thesis. Moreover, it allowed the

understanding and learning of the scientific language commonly used by the scientific

community. This task proved to be very important because research is strongly based in

communication. Materials science have many concepts and definitions that are used to

define new ones, therefore getting a right and good communication is a fundamental task

when we start in a research field. Although being a first step, the literature review must

be always updated during the research project. This continuous update will allow the

comparison between the developed work and the new research proposed by peers. Also,

new research outcomes gathered from literature can somehow help the improvement of the

developed work. A continuous literature review brings clarity and focus to the research,

also it supports the developed methodologies and contextualises the research findings.

1.5.3 Collecting data

In this research, it was performed several multiaxial fatigue tests using the multiaxial

fatigue testing machine of the department of the mechanical engineering (DEM) of the

Instituto Superior Técnico (IST) at Universidade of Lisbon (UL). In these experiments two

materials were analysed, namely: the high strength steel 42CrMo4, and the magnesium

alloy AZ31B-F. Moreover, it was gathered and analysed a legacy of 20 years of experiments

made by the research group lead by Professor Manuel Freitas at DEM-IST. The collected

data was the results of multiaxial fatigue tests performed using three materials, the
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42CrMo4, Ck45, and AISI 303. Additionally, it was gathered complementary experimental

fatigue data from literature; in this case, the materials were the structural steels Ck45,

C40, and the aluminium alloy 2024-T4. All experiments were documented in order to

allow peers to perform the same experimental tests performed here. By doing this, it is

clarified the achieved results and experimental procedures.

1.5.4 Data Analysis

The purpose of this analysis is to validate the achieved models and inherent methodologies

for a broad number of materials and loading conditions described above. After having

the fatigue data, a reflexive period was considered to analyse the results and identify

physical patterns that justifies the studied physical phenomena. In this research a

fundamental premise was adopted, i.e. all conclusions, models and methodologies must be

validated using experimental data. Also, all hypothesized ideas that were not validated by

experiments were identified; in these cases, it was explicitly referred the need of validation

by experiments.

1.5.5 Correlation and interpretation

To check the added value of this research to the scientific knowledge, it was performed a

performance comparison between the most used models in literature and the methodologies

achieved in this research.

1.5.6 Preparation of the final report

The research outcomes have been published in specialized journals and presented in

conferences; with this, the results obtained during the investigation were being shown to

the scientific community. This procedure proved to be very rewarding, because opinions

and ideas were received during the research period. Moreover, the achieved experimental

and theoretical results were scrutinized by peers. Also a final document was produced

(this PhD thesis) to gather together all research information and outcomes.

1.6 Research Plan

In order to achieve the research objective several milestones were defined as follows:

1. Attain an elastic-plastic cyclic criterion that can be able to capture the materials

cyclic behaviour under uniaxial and multiaxial loading conditions. This model must

estimate for each stress level and loading path type the local stress/strain relation in

order to update stress/strain time histories. Under uniaxial loading conditions, the

stress/strain relation can be analysed using an hysteresis loop, but under multiaxial

loads such concept does not exist. In this task a new concept to characterize

multiaxial stress/strain states must be attained.
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2. Attain a criterion that be able to capture the loading paths effects in the materials

fatigue strength, namely the non-proportional effect. The equivalent stress, pointed

out in the next point, must be able to be updated with the results of this task.

3. Attain an equivalent stress criterion sensitive to the material and loading path type.

The equivalent stress must be able to be updated with the materials cyclic behaviour.

4. Attain a cycle counting method able to capture uniaxial and multiaxial loading

cycles. Preferable this criterion should be a non-Rainflow based methodology.

Rainflow based cycle counting methods use hysteresis loops, but under multiaxial

conditions does not exist. In literature can be found multiaxial cycle counting

methods based in the Rainflow methodologies. However, in such concept, usually

it is separated the normal and shear stresses time histories to reduce a multiaxial

loading into two uniaxial ones, and then it is applied the Rainflow cycle counting

method to such stress time histories. Under such procedure, the combined damage

effect of normal and shear loadings is missing. Therefore, a multiaxial cycle counting

method that has into account the aforementioned combined damage is required.

5. Attain a damage accumulation criterion that is able to account with uniaxial and

multiaxial damage under any loading type.

6. Attain a variable amplitude fatigue life criterion based in the achieved equivalent

stress and cycle counting method.

7. Attain a random fatigue life criterion based in the achieved variable amplitude fatigue

life criterion.

8. Being a stress based fatigue criterion closely related to crack nucleation, attain at

yearly crack stages (micro notches) the kt variation with the loading path type and

the inherent effect on the local stress states.

9. Being the fatigue crack topography an important record of the fatigue process, attain

a relation between the direction of the crack initiation plane (critical plane) and the

loading type taking into account the material’s cyclic behaviour.

1.7 Research report outline

The research report (PhD thesis) is structured in 9 chapters as follows:

• Chapter 1 starts with an overview regarding the fatigue research evolution over

time. It is presented some drawbacks and future trends in research and industrial

environments regarding materials fatigue characterization. It is also presented the

most important problems that had created some difficulties to the progress of fatigue

characterization. In addition, it is identified the problems to be solved in this work

and presented the research objectives, next up it is presented the thesis statements
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that are the research cornerstones from which all research work is based, finally it is

presented the thesis outline.

• Chapter 2, in this chapter, it is performed a reviewing of the state-of-the-art in

several aspects of multiaxial fatigue. The most important information regarding

the topics mentioned in the research objectives are gathered together in order to

identified the available tools in multiaxial fatigue characterization. The objective

is to identify their drawbacks and inconsistencies in order to perform a benchmark

between the state-of-the-art and the research results obtained here.

• Chapter 3, presents the research contribution to level 1 depicted in Figure 1.3. Here,

it is presented and discussed the thesis proposals regarding a cyclic elastic-plastic

model and a new way to account cyclic non-proportionality. It is presented and

demonstrated all formulae and physical principles behind each model.

• Chapter 4, presents a new damage parameter, which is an equivalent shear stress,

this new equivalent stress is the research contribution to the pyramid level 2. In this

chapter it is explained the physical foundation of this parameter and it is performed a

comparison between the state-of-the-art criteria and the developed equivalent stress

performance.

• Chapter 5, presents the research contribution to level 3. This contribution is a new

cycle counting method, named as virtual cycle counting (vvc), which is based in

the equivalent shear stress proposed in Chapter 4. The vcc method performance is

compared with two multiaxial cycle counting methods for a wide number of loading

paths. The fatigue data used here were obtained from the in house experiments

(42CrMo4) and from a third party data (Ck45, and C40).

• Chapter 6, presents the level 4 research contribution. Here, the outcomes from level

1, 2 and 3 were joined together to estimate variable amplitude damage accumulation.

Moreover, a new method to deal with random loading conditions is presented. In this

chapter, it was performed fatigue life correlations for the aluminium alloy 2024-T4

using a third party fatigue data.

• Chapter 7, presents a thesis sub-objective where it is investigated an alternative

way to obtain a fundamental parameter (the SSF damage map) of the proposed

equivalent shear stress. Here, it is investigated the possibility to obtain fatigue

parameters using modal analysis, i.e. using the material damping values.

• Chapter 8, presents the research contribution to level 5. Here it is proposed

methodologies and new criteria that relates loading histories with the direction

of crack initiation plane. Also, here it is presented the experimental fractography

results, which were correlated with the estimates of the state-of-the-art, and with

the estimates of the proposed models.
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• Chapter 9, in this chapter it is registered the overall conclusions and pointed out

some ideas for future works.

1.8 Final comments

This chapter aims to line up a set of reasoning, which in the present author opinion, will

lead to achieve a set of tools to be used in the characterization of damage accumulation

under multiaxial and random loading conditions. These tools are very important under

the scope of structural health monitoring procedures and mechanical design, especially in

the transportation industry; this is so, because the available solutions have unsatisfactory

correlations with the results obtained in the field. This research will contribute to the

improvement of the mechanical design and maintenance of metal structures/components

in order to increase their reliability. Moreover, the structural reliability increase will also

increase the final users confidence, which is an important factor of sustainability in the

transportation industry.
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Chapter 2

Literature review

2.1 Introduction

In this chapter, it is performed a literature review regarding the materials

phenomenological behaviour under the scope of multiaxial fatigue. Moreover, it is focused

on several criteria and their methodologies that are commonly used in the scientific

community to characterize multiaxial fatigue damage. As discussed in the previous

chapter, to deal with this subject it is needed to cover a broad number of concepts

usually tackled in a separated way in literature. One of the novelties of this work

is to gather all these concepts in one approach as a multiaxial fatigue package for

random loading conditions. This chapter presents the state-of-the-art regarding these

concepts, at first sight it may seem to be fragment concepts but in reality, under random

loading conditions, they are always needed and interconnected. Recalling Figure 1.3 from

Chapter 1, the fatigue pyramid is divided by four levels or four major themes, namely:

the material constitutive behaviour, damage parameter, cycle counting techniques, and

damage accumulation rules. Usually, each level is studied and developed horizontally,

however each level has bridges in the vertical direction that interconnect those levels,

where the upper level needs information from the lower ones.

Analysing these levels and their interconnections, we have the material constitutive

behaviour which is the base level of the pyramid in which it is covered the quantitative

and phenomenological behaviours in material due cyclic loads. For instance, the material

hardening and softening are concepts that aim to characterize the material hardness

variation due to cyclic loadings. In these cases, the cyclic yield stress may increase or

decrease accordingly to the material type. These cyclic variations are very important and

must be taken into account, because the stress states depend on the actual capability of

response of the material to external loads.

In the pyramid’s second level, damage parameters need accurate stress states obtained in

level 1. This input is also important because it allows the damage parameter criterion
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to capture unitary damages based on physical phenomena interpretations. The output

from level 2 is the input of level 3, in level 3 it is used unitary damages within the cycle

counting techniques, therefore pyramid’s level 3 needs the damage reference from level

2. Finally, accumulated damage estimates for complex loadings are computed at level 4.

In this level, it is accounted the cycle counting techniques output in order to be used in

damage accumulation rules.

In level 4, it is performed the decision of replace or not to replace a mechanical component

or structure, which is based on damage accumulation estimates. The scope of level 4 is

mainly related to the field loading regimens, in other hand mechanical design usually goes

only to the pyramid level 3. Therefore, this Chapter is divided in four sections, one for

each pyramid level presented in Figure 1.3.

This review is focused on the most important models, criteria and concepts commonly

found in literature, however in some cases the author may go further in the research deep.

Nevertheless, one more topic was added to the literature review, which is related to the

estimates of the crack initiation plane. Fatigue is always related to crack initiation and

crack growth process. Therefore fatigue crack is an evidence of the fatigue phenomena.

Moreover, the loading path type deeply influences the direction of the crack initiation

plane. In this sense, the relation between the crack initiation plane and the loading path

type was also covered here.

2.2 Level 1 - Phenomenological cyclic behaviour

2.2.1 Loading paths

In the lab, a loading path is a loading trajectory performed by a fatigue testing machine

that loads the testing sample. This trajectory results from the combination of normal

and shear stresses, which may load the material in many different ways. Materials have

different responses accordingly to the load trajectory even for the same stress level, due

to that multiaxial fatigue strength is strongly related with the loading path shape.

Essentially, there are two types of loadings from which all loadings can be set, i.e. the

proportional and non-proportional loadings. The main characteristic that differentiates

both loading types is the variation or not of the principal directions. Non-proportional

loadings have their principal directions changing along the loading period, but in

proportional loadings they remain fixed. Regarding the loading effect on the material,

these two loading types cause different fatigue damages.

In proportional loadings, the material is loaded in one particular plane (direction) given

by the stress amplitude ratio. On the other hand, non-proportional loadings activate

more than one loading plane in the material, due to that non-proportional loadings causes

additional phenomenological effects such as non-proportional hardening [5].
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Figure 2.1 shows an example of proportional and non-proportional loading paths typically

considered in literature to evaluate materials fatigue strength under multiaxial loading

conditions. Figure 2.2 shows the variation of the normal and shear stresses across their

loading period.

Figure 2.1: Three-dimensional time variation of a) Proportional loading, and b) Non-Proportional

loading [6].

Figure 2.2: a) Proportional loading time variation, and b) Non-Proportional loading time

variation.

One way to represent multiaxial loading paths is to use the von Mises stress space. Figure

2.3 shows the normal and shear stresses time evolution for a loading period depicted in the

von Mises stress space; the loading path trajectory is obtained by removing the time axis

and projecting the amplitudes of the normal and shear stresses into the plane tau-sigma

(axis of shear and normal stresses). Usually, stress spaces have different scales in each

axis, in the case of von Mises stress space, the tau axis used to represent the shear stress,

has a scale given by the constant
√

3 constant. Therefore, the shear stress time variation

of a loading path is multiplied by this constant to be represented in the von Mises stress

space. The reasoning of the stress space scale is based in the experimental evidence in

which different damage mechanisms can be obtained under uniaxial loading conditions

(axial and shear).
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This way to represent loading paths is very straightforward and gives a quick overview

about the loading path shape. Moreover, the loading path representation in a stress

space allows the direct identification of the loading path type i.e. proportional or

non-proportional. Some multiaxial fatigue criteria are based in the loading path shape

depicted in the von Mises stress space, which is the cases of the MCE [7], and MCC [8]

criteria for biaxial loading conditions.

Figure 2.3: a) Proportional and b) non-proportional loading paths depicted in the von Mises

stress space.

The loading paths shown in Figure 2.3 are a combination of normal and shear stresses

with a sinusoidal variation in time. These type of loadings are periodical and it is very

easy to identify their loading period, i.e. their loading cycle. However, in some loading

paths the loading cycle identification is much more difficult, which is the cases of loading

blocks or loading spectra. Loading blocks are loading trajectories in which it can be

identified proportional and non-proportional branches; it is possible to create other loading

cycles (loading blocks) based in proportional and non-proportional loading types [9], for

example the sequential loading effect has been analysed in literature by a combination of

proportional loadings as presented in Figure 2.4.

Figure 2.4: Non-proportional loading block with proportional loading branches.

Figure 2.4 shows a combination of proportional loadings with different stress amplitude

ratios, this loading block is established using eight proportional loading branches. In an
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overall point of view this loading block is a non-proportional loading with its principal

directions changing during the loading period, but each loading branch is a proportional

loading. Asynchronous loadings are other type of loading paths in which the frequency of

a multiaxial loading component (normal stress or shear stress) is different from the other

one, please see Fig.(s) 2.5 to 2.7 .

Figure 2.5: Asynchronous loading with shear stress frequency two times higher than the normal

stress frequency a) Loading path depicted in the von Mises stress space b) Stress time evolution.

Figure 2.6: Asynchronous loading with normal stress frequency two times higher than the shear

stress frequency a) Loading path depicted in the von Mises stress space b) Stress time evolution.

Fig.(s) 2.5 and 2.7 show asynchronous loading paths in which the loading frequency of

the shear stress component of the multiaxial loading is higher than the normal one. In

these cases, the shear stress has more loading cycles than the normal stress, this feature

brings some challenges to the loading cycle interpretation. For instance in Figure 2.7 b),

it is depicted five loading cycles for the shear stress and only one for the normal stress.

In this case how many cycles can be accounted within the loading path? Five from the

shear stress time evolution? or one from the normal stress? or none of these two options?

These types of loadings are non-proportional and with them it is possible to have normal

and shear damages in different proportions, within a non-proportional loading.
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Figure 2.7: Asynchronous loading with shear stress frequency five times higher than the normal

stress frequency a) Loading path depicted in the von Mises stress space b) Stress time evolution.

Other type of loading can be achieved by entering with mean stress in proportional and

non-proportional loadings. Mean stress is very important and can change substantially the

fatigue damage pattern [10]. Figure 2.8 presents a proportional a) and non-proportional

b) loading with mean stress, where tensile mean stresses usually decreases the material

cyclic strength and the compression ones increase that strength [11]. This is so because,

compressive mean stresses promote the fatigue crack closing and the tensile ones facilitate

the crack growth. Regarding steady shear stresses, their damage effect is not so obvious,

but some authors stated that the shear mean stress also influences the materials fatigue

strength accordingly to the stress level [12].

Figure 2.8: Multiaxial loading paths with mean stress a) Normal stress with steady shear stress

b) Non-proportional loading path with mean normal stress in compression.

2.2.2 Cyclic hardening

Material hardening is the material phenomenological response to external loads, being

particular sensitive to the load level, and load type. Essentially, the internal micro

plasticity, due to cyclic loadings, changes the material strength, their fatigue behaviour,

and crack initiation patterns. Therefore, materials at first loading cycles search for a
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stable response, which is a stress-strain relation set out accordingly to the external load

type. After the material cyclic accommodation to the first loading cycles the stress state

is maintained during the remaining time of the loading period, if the loading pattern is

not changed meantime. Under strain control loading conditions, the material hardening

leads to the increase of the required stress values to maintain the same strain amplitude

i.e. the cyclic elongation is maintained during the loading period if the load level is

increased. On the other hand, under a stress control loading conditions, a constant stress

amplitude results in the decrease of the strain amplitude due to the material hardening.

This subject is very important because the material accommodation (or response to the

loading) will influence the stress states, therefore the relation between stresses and strains

becomes non-linear under elastic cyclic loadings. Constitutive cyclic plasticity models

have hardening rules to account with this phenomenon. Figure 2.9 presents the hardening

effect in the stress amplitude values for a constant strain amplitude, here it can be seen the

increase of the stress amplitude required to maintain a constant strain amplitude under

cyclic loadings.

Figure 2.9: Uniaxial hysteresis loops in cyclic hardening: a) constant strain amplitude, and b)

constant stress amplitude[13].

The material hardening behaviour is strongly dependent on the loading type; some works in

literature focus this subject especially under non-proportional loading conditions [14, 15].

Figure 2.10 depicts a non-proportional hardening evolution under strain control. As it can

be seen in Figure 2.10 b) the strain limits are maintained constant, but the normal and

shear stresses increase until reach stable values, please see Figure 2.10 a).

2.2.3 Cyclic softening

Material softening, due to cyclic loadings, is the opposite phenomenon described for the

cyclic hardening concept. In this case, the material strength is cyclically reduced, please

see Figure 2.11. On the left side of Figure 2.11, one can find the cyclic strain variation
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Figure 2.10: Non-proportional hardening under strain control, a) Stress evolution, b) Strain

evolution [16].

in time, their amplitude is maintained across the loading period. However, in the right

side, is depicted the stress-strain variation where the stress a amplitude decreases under

constant strain limits, as seen in Figure 2.11. Therefore, from a stress control point of view,

constant stress amplitudes will increase the inherent strain amplitude in materials that

cyclically soften, which may lead to higher plasticity. Moreover, higher strains increase the

crack initiation potential; thus, this type of materials is much more susceptible to failure

than the ones that cyclically harden. Nevertheless, structural materials typically harden;

therefore this subject is not so focused in literature as is the cyclic hardening phenomenon.

Figure 2.11: Material softening under strain control [17].

2.2.4 Non-proportional cyclic effect

Analysing the state-of-the-art in non-proportional cyclic effects, one can conclude

that the generalized way to deal with non-proportionality is to find a factor that

in some way corrects a damage parameter criterion. None of the multiaxial fatigue

criteria found in literature deal with non-proportional cyclic effects by default; their
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fatigue life estimates without any correction shows unsatisfactory results in fatigue life

correlation for non-proportional loadings. There are several physical phenomena within

non-proportional loadings, which increases their phenomenon complexity. Moreover, the

non-proportional physical concept remains under study because there are different types

of non-proportionality, which is the cases of non-proportionality under mean and steady

stresses, for instance. Therefore, the appreciated concept of one damage parameter to

capture the additional damage due non-proportionality remains a difficult task to be

accomplished. Non-proportionality is strongly related to the loading path type, therefore,

it has been evaluated in literature based in loading path shapes. Multiaxial fatigue

criteria are generally insensitive to non-proportionality, i.e. the criteria procedures do

not distinguish between proportional and non-proportional loadings conditions. However,

non-proportionality induces a different fatigue damage than the one achieved under

proportional loading conditions [16], thus it is required further investigations in this

matter.

Under proportional loading conditions fatigue damage occurs on a specific loading plane,

because the principal stress directions remain fixed during the loading period, thus the

highest fatigue damage occurs mainly on a specific plane of the material. However,

under non-proportional loading regimens, fatigue damage occurs in different directions

of the material, due to the principal directions variation along the loading path. The

principal directions variation results from the fact that under non-proportional loading

conditions, the maximum stresses, from the biaxial loading components, do not occur

at same time instant, during the loading period. This time lag between the maximum

values of the normal and shear stresses is a result of the so called non-proportional phase

shift. Non-proportional loadings can activate the entire material slip, where by local cyclic

plasticity, the mechanical properties are cyclic changed. This phenomena is the so called

non-proportional cyclic hardening.

The materials non-proportionality is usually characterized based on the material

non-proportional cyclic hardening coefficient [16, 18]. This coefficient is usually determined

considering two specific multiaxial loading cases, namely: the non-proportional loading

with a 90o of phase shift and the typical proportional loading, both with SAR = 45o. For

each total equivalent strain within a predefined strain range, it is inspected the equivalent

stress values under proportional and non-proportional loading conditions. These values

are obtained when, at each total strain, a cyclic stable behaviour is reached. With these

values, it is measured the material non-proportional response to non-proportional loadings.

From the above discussion, it can be concluded that the equivalent strain-stress concept

used to characterize non-proportional cyclic hardening has within a fixed damage scale

between normal and shear strains.

This is so, because the aforementioned damage scale is within the equivalent concept used
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to evaluate the non-proportional cyclic hardening coefficient, for instance in the von Mises

equivalent stress the shear stresses are multiplied by
√

3, which means that the shear

stresses cause a damage
√

3 times greater than the normal stresses.

Thus, the stress space damage scale used in the equivalent stress concept affects the

non-proportional interpretation and their characterization. The fixed damage scale in

the stress space, as in the case of the von Mises stress space, estimates in the same way

the proportional and non-proportional damage, moreover also considers the same damage

scale for any kind of materials, which is a quite inaccurate approach.

Considering the aforementioned and described reasoning, one question may be raised:

how to avoid inaccurate interpretations resulted from the analysis process of the

non-proportionality effect in the material strength, since the stress space concept have

some shortcomings such as fixed damage scale for all type of loadings and load levels?

For instance, and considering the von Mises stress space, it is usual to consider the same

equivalent stress/strain under proportional and non-proportional loadings to inspect their

different fatigue damages.

This procedure to evaluate non-proportionality increases the stress level of the multiaxial

components in the non-proportional loading case. However, if it is maintained the

proportional shear and normal stress levels and adding a phase angle between normal

and shear stresses time evolution (phase shift), the maximum equivalent stress under

these conditions will be less than the one found in the proportional loading case. Thus,

for the same normal and shear stress levels the introduction of and phase angle will reduce

the equivalent stress value.

But, if it is compared proportional and non-proportional damages for the same value of

equivalent stress and strain, as seen in non-proportional cyclic hardening concept, part of

non-proportional damage have nothing to do with the non-proportionality effect, but with

the increase of the stress level required in the non-proportional loading case in order to

reach the proportional equivalent stress/strain. Thus, the material non-proportional cyclic

hardening determined as mentioned above is a biased attempt to measure the material

non-proportional capability and has been considered a material cyclic parameter.

The material non-proportional cyclic hardening is considered in literature as a

non-proportional reference to deal with non-proportional loadings being updated

accordingly to the loading path non-proportional level. In order to evaluate

non-proportionality, some coefficients were proposed in literature, the non-proportional

hardening coefficient α is one example of that [16]. This coefficient attempts to capture

the maximum non-proportional effect through the ratio of the 90o out of phase equivalent

stress to the proportional equivalent stress obtained at stabilized stress-strain curves. In

Figure 2.12 a) is depicted the way in which the α parameter is determined. In order

to generalize the α parameter for any kind of non-proportional loading cases Socie and
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Marquis [16] conceived the idea that the entire loading path trajectory, depicted in a

stress space, can be enclosed by an ellipse. Then, the ratio of the minor to major axis of

the ellipse that encloses the loading path history is the so called non-proportional factor,

F . This factor has been used to quantify the non-proportionality level within a loading

path, which has been used to correlate the material non-proportional cyclic hardening

behaviour. Figure 2.12 b) presents the F factor concept.

Figure 2.12: a) Non-proportional cyclic hardening parameter, α b) Non-proportional factor

concept, F .

Under proportional loadings, the aforementioned ellipse ratio, please see Figure 2.12 b),

is undetermined thus the F parameter is equal to 0. For the highest non-proportionality

level, i.e. phase shift equal to 90o, the F parameter is equal to 1. This non-proportional

concept, considers that all other non-proportional loadings (different from the 90o out of

phase loading case) has a non-proportional factor ranging between 0 and 1.

Regarding the α parameter concept, it can be concluded that this parameter is insensitive

to the non-proportionality within a generic loading path because it is only based on two

specific loading cases [16]. In this sense, the F parameter is a step forward in the evaluation

of non-proportionality. The F factor can be used to update an equivalent stress, σ as

follows in Eq. 2.1.

σ = K´ (1 + α · F ) (εp )n
´

(2.1)

where α is the non-proportional hardening coefficient, εp is the plastic strain, F is

the non-proportionality factor, the K´ and n´ are the coefficient and exponent of the

stress-strain curve equation.

Kanazawa et al. [19] proposed another non-proportional factor that has into account
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the non-proportionality from phase shift and stress amplitude ratios. The idea of this

concept is to capture the slip damage mechanisms in all different loaded planes obtained

under non-proportional loading conditions. In order to do that, the authors correlated the

proportional shear strain with the non-proportional one. Eq. 2.2 presents the Kanazawa

rotation factor to characterize the additional non-proportional damage, considering the

proportional damage as reference. This rotation factor is defined as the ratio of the shear

strain at 45o in the maximum shear strain range direction to the maximum shear strain

range.

F 2 =
λ2 + (1 + ν)2 −

√(
(1 + ν)2 − λ2

)2
+ (2λ (1 + ν) cos (φ))2

λ2 + (1 + ν)2 +

√(
(1 + ν)2 − λ2

)2
+ (2λ (1 + ν) cos (φ))2

(2.2)

Where, λ represents the strain amplitude ratio γa/εa , ν is the Poisson’s ratio and φ

is the phase angle. Figure 2.13 shows two types of non-proportional loading histories

evaluated by the Kanazawa rotation factor in the Tresca stress space. Figure 2.13 a)

shows loading histories with the same stress amplitude ratio and with different phase

angles, and Figure 2.13 b) and c) depicts several non-proportional loading histories with

different stress amplitude ratios and with 90o as phase shift angle.

Figure 2.13: Different non-proportional loading paths a) Fixed SAR with phase angle variation,

b) SAR variation with fixed phase angle c) SAR variation with fixed phase angle and fixed normal

stress amplitude.

Some observations can be made about these two criteria, based in the reasoning discussed

about the non-proportionality assessment. Firstly, both criteria are defined under a stress

space concept; in particular the Socie and Marquis criterion is defined under the von Mises

stress space, and the Kanazawa rotation factor is defined in the Tresca stress space. It can

be concluded that the damage scale that enables to reduce both normal and shear stresses

to the same stress space, is a constant factor under proportional and non-proportional

loading damage characterization; moreover, that damage scale is equal for every material.
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Thus, the stress space damage scale between normal and shear damages is independent

from the loading and material type. Another shortcoming associated to the Socie and

Marquis’s non-proportional concept is related to the non-univocal behaviour of the F

factor. The F factor concept yields the same value for different non-proportional damages

mechanisms. For example, in Figure 2.13 b) and c) it is possible to obtain the same F

value under different stress amplitude ratios. However, it is well-known that the damage

obtained under different stress amplitude ratios is quite different, since the material slip

system is activated in different ways in such loading conditions [20]. Thus, the F factor

concept does not capture in full the non-proportional damage inherent to a generic loading

path. Moreover, the non-proportional hardening coefficient, the α parameter, is defined as

the ratio between the equivalent stress at 90o out of phase and the proportional equivalent

stress for the same equivalent strain. The following relation gives the non-proportional

hardening coefficient:

α =
σeq,OP
σeq,PP

− 1 (2.3)

As aforementioned, the non-proportional hardening coefficient, α, obtained in expression

2.3 does not capture the material non-proportional response under several levels of

non-proportionality. Moreover, in order to have the same equivalent strain under

non-proportional and proportional loading conditions, it is necessary to increase the stress

level under non-proportional loadings. Therefore, the α coefficient does not quantify

uniquely the material response due to non-proportionality, but also takes into account

the stress amplitude increase, which adds an additional damage to the non-proportional

one. Despite the above drawbacks α coefficient has been widely used as reference to the

material response under the most severe non-proportional loading conditions. From here it

can be concluded that the non-proportionality characterization using α and F coefficients

has some shortcomings resulted from the stress space paradigm and its damage scale

because these coefficients are strongly related to the stress damage scale between shear and

normal stresses. Therefore, it can be concluded that it is required a new way to evaluate

the non-proportionality found in multiaxial loading paths by avoiding the shortcomings

identified here.

2.3 Level 1 - Plasticity

2.3.1 Cyclic plasticity models

In general, plasticity models take into account 3 dynamic mechanisms to follow the

material response under cyclic plastic deformation [21]. One of those mechanisms is

the yield function that estimates the material yield behaviour. Before the material yield

occurs, the linear relation between strains and stresses is given by the Young’s modulus, i.e.
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the Hook’s law governs the stress-strain relation. However, this law is not sensitive to the

material response under plastic strains, therefore a yield function is used to determine when

the material yielding occurs, and to cyclically update stress-strain relations. The most

common yield function derives from the von Mises equivalent stress, where a combination

of principal stresses on the octahedral plane establishes the yield stress boundary. The

second mechanism found in plasticity models is the flow rule; this conceptual rule is

established based on constitutive equations where stresses and strains are computed in

incremental plasticity procedures, where the next plastic deformation is dependent on

the prior value. This rule is generally based on the Drucker’s postulate [22–24], where the

plastic strain increments are normal to the yield surface defined by the yield function. The

last mechanism is the hardening rule, which establishes the changes on the yield surface

during the plastic deformation [21, 25].

2.3.1.1 Chaboche

The Chaboche plasticity model [26] is a non-linear kinematic hardening model, where the

yield function, F , is given through the following equation, Eq. 2.4.

F =

√
3

2
(s− α) : (s− α)− k = 0 (2.4)

Where s is the deviatoric stress, α is the back stress, and k is the yield stress [25, 27]. In

this plasticity model the kinematic hardening is governed through the back stress tensor,

which in turn is related to the yield surface translation. The back stress tensor equations

are present in Eq.(s) 2.5 and 2.6.

{α} =
n∑
i=1

{αi} (2.5)

{∆α}i =
2

3
Ci

{
∆εpl

}
− γi {αi}∆ε̂pl +

1

Ci

dCi
dθ

∆θ {α} (2.6)

where ∆εpl is the accumulated plastic strain, θ is the temperature, and Ci and γi are

the Chaboche material parameters. In Eq. 2.6 the hardening modulus and back stress

variation (recall term) are represented by the first and second terms respectively. The third

term is related with the temperature variation. In the commercial software, Ansys, the

Chaboche plasticity model allows to use various kinematic models and material constants,

where the C1 and γ1 are inputs for one kinematic model, however extra sets of C and γ can

be added. The C1 and γ1 parameters aim to capture the material cyclic behaviour, and

can be determined through stress-strain tests under stabilized hysteresis loops (usually

under uniaxial loading conditions). With the plastic strain values and the inherent recall
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term, which is the difference between the stress amplitude and the material cyclic yield

stress defined by the total strain of a given load, the relation between C1 and γ1 can be

obtained by making a fitting of experimental data using Eq. 2.7.

∆σ

2
− k =

C1

γ1
tanh

(
γ1

∆εpl

2

)
(2.7)

The fitting procedures allows to determine the unknown variables of Eq. 2.7, including

the constants C1 and γ1 .

2.3.1.2 Jiang and Sehitoglu

The Jiang & Sehitoglu plasticity model [21, 28, 29] is also a non-linear kinematic

hardening model that incorporates an Armstrong-Frederick type hardening rule, in order

to capture the Bauschinger effect on the cyclic plastic deformation. This model was firstly

implemented with the purpose of capture the cyclic ratcheting phenomena, which is a

progressive and directional plastic deformation when a material is subjected to asymmetric

loadings under stress-controlled regimens, which makes this model a good candidate to

modelling elastic-plastic behaviour of magnesium alloys, please see Figure 2.14.

Figure 2.14: Normal strain ratcheting response under uniaxial loading conditions with mean

stress and stress control [30].

One peculiarity associated to this model is the inclusion of a non-proportional hardening

parameter (similar to the ones discussed in the previous section, i.e. α and F ),

to capture the additional resistance due to the non-proportional hardening found in

materials subjected to non-proportional loading and plastic strains. This non-proportional

hardening parameter is very similar to the α parameter described in Eq. 2.3. Also, it is

introduced the memory concept on the material behaviour simulation in order to describe

the strain range dependency from the plastic cyclic hardening. The Jiang & Sehitoglu
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plasticity model also considers several others physical based mechanisms to capture cyclic

phenomena, such as: a yield function, which considers a combinations of stresses that will

lead to plastic deformations; a flow rule, that model a relationship between the stresses

and plastic strains during plastic deformation;a hardening rule, which defines the yield

criterion changes under plastic straining, stress relaxation and load redistribution in the

stressed volume. The model key equations are presented in Eq.(s) 2.8 to Eq. 2.11. The

yield function, F is expressed as follows:

F =
(
S̃ − α̃

)
:
(
S̃ − α̃

)
− 2k2 = 0(1) (2.8)

Where S̃ is the deviatoric stress tensor, α̃ is the back stress and k is the yield stress. The

flow rule is given in Eq. 2.9.

dε̃p = H
〈
dS̃ : ñ

〉
ñ(2) (2.9)

Where ε̃p is the exterior normal unit. The hardening rule is presented in Eq. 2.10

α̃ =

M∑
i=1

α̃i(3) (2.10)

Material memory contained in the back stress terms is given by the plastic modulus

function presented in Eq. 2.11.

H =
M∑
i=1

ciri

1−
∣∣α̃i∣∣Xi+1

ri
L̃i : ñ

+
√

2
dk

dp
(2.11)

where ci, ri, and Xi are non-negative scalar functions, dp is the equivalent plastic strain

increment, ñ is the exterior unit normal to the yield surface, α̃i is the material memory,

L̃i is a function based on the α̃i values, and dk is the yield stress variation.

2.4 Level 2 - Damage parameters

2.4.1 Introduction

In mechanical design, the concept of equivalent stress is greatly appreciated because it

allows, in an easy way, to interpret a three-dimensional stress state. The von Mises

equivalent stress is one example of that, being widely used in static fail-safe design and

many times is also used as a base for multiaxial loading paths interpretation. The major

characteristic of this equivalent stress is the stress scale factor (SSF) between normal and
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shear stresses [31, 32], namely in a simplified relation
√

3τ = σ. This relationship is

corroborated by the fact that experimentally, and for most materials, the value of the

shear stress required to cause the material yield is smaller than the value of the normal

stress [33]. In multiaxial fatigue analysis, the von Mises stress scale factor was adopted by

several models; the ASME code is one example [34]. The ASME criterion is similar to the

von Mises equivalent stress with the difference of using stress amplitudes instead of using

instantaneous values [3].

A key point in the multiaxial fatigue damage interpretation is to find out the relationship

between the fatigue damage caused by the normal and shear stress components of a

multiaxial loading. The combined effect quantification of those stress components is

very important to capture multiaxial fatigue damage, which is very different from the

uniaxial one [8, 16, 35, 36]. The majority of multiaxial fatigue models somehow seek to

establish this damage relationship between normal and shear stress components [37–44].

For example, in the Crossland [39] and Sines [45, 46] invariant criteria, the combined

damage effect from multiaxial load components is quantified through the summation of

the maximum amplitude of the second deviatoric invariant, with the hydrostatic stress.

The hydrostatic stress in both criteria is corrected based on the fatigue limits obtained

under pure shear and tension-compression loading conditions, aiming to perform a stress

scale between normal and shear stress components by reducing both damages to the same

damage scale.

The concept of damage stress scale, firstly, used in the von Mises yield criterion through

the ratio of the normal to shear stresses under static failure conditions, is adopted in the

multiaxial fatigue criteria by using the ratio of axial to shear fatigue limits. The use of

this approach is quite common in the multiaxial fatigue field; multiaxial fatigue models

such as Dang Van [47, 48], McDiarmid [49, 50], Papadopoulos [8], Matake [51], Carpinteri

& Spagnoli [52, 53] among others, are some examples of the generalization of the damage

scale concept in the combined damage formulations of normal and shear stresses. Some

critical plane criteria also use the damage scale concept to account for the combined effect

between normal and shear strains; for example the Fatemi-Socie model corrects on the

critical plane the maximum shear strain amplitude through the ratio of the maximum

normal stress to the material yield strength [54].

The Brown and Miller [55] criterion also defines its damage parameter by adding the

amplitudes of shear and normal strains calculated in the critical plane, where it is corrected

the normal strains amplitude through the S parameter obtained for each type of material

under a low cycle fatigue regime. To determine the critical plane in these models (critical

plane models) a search of the plane direction where the damage parameter reaches its

maximum value is performed. This search is mainly based on the Mohr’s circle projections

of the stress tensor in various directions, being a pure mathematical exercise; therefore
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it is not taking into account the material fatigue properties in the critical plane search

[16]. Due to that, in some cases, the experimental direction of the crack initiation plane

has been different from the critical plane models estimates, as reported in literature [3].

However, some critical plane models such as Carpinteri & Spagnoli criterion [52, 53], takes

in consideration a fatigue anisotropy approach and includes material properties in the

critical plane search methodology. In this criterion, the critical plane is firstly determined

using a specific formulation to capture fatigue anisotropy and then it is performed the

projection of the normal and shear stress amplitudes on that plane to compute the damage

parameter.

Previous studies clearly show that the loading path trajectory has a strong influence in

the materials fatigue life, leading to conclude that the stress amplitudes by itself cannot

justify the damage process [20, 33, 34, 56–58]. Furthermore, the material properties

generally used, namely yield stress ratio or fatigue limit ratio f−1/τ−1 are not sensitive

to the physical damage process inherent to the loading path shape. This properties are

determined under uniaxial conditions, and are used for all kinds of loading paths, uniaxial

and multiaxial [54]. Therefore, the damage scale effect between shear and normal stresses

along the loading path trajectory is missing.

Other approach, where it is taken into account the loading path effect, can be found in

fracture mechanics, the analysis of fatigue crack growth is related to the stress intensity

factor (SIF) variation. In a multiaxial approach, the equivalent stress intensity factor is

usually obtained by adding the SIF factors inherent to the activated fatigue crack modes

along the loading period [59, 60]. However, these factors are not directly added, they

are also corrected in order to capture the combined effect in a multiaxial fatigue crack

growth process. The combined effect of stress intensity factors also remains unclear and

it is difficult to quantify the physical damage behaviour under a three-dimensional fatigue

crack process.

The materials ability to resist a multiaxial cyclic loading is deeply related to the loading

path trajectory, and not only related to the normal and shear stress amplitudes. This

directional capability to cyclically resist to a cyclic loading is a material property that

cannot be ignored and must be quantified.

2.4.2 Equivalent stress

The scientific community research in the multiaxial fatigue field remains under pursuit of

an optimal criteria to estimate fatigue life under multiaxial loading conditions. Several

criteria have been developed and proposed in the literature [16], however, some of them are

difficult to implement and have many constraints. Due to that, and due to the difficulties

found in the verification and validation of these criteria their use has being limited to

their authors. Moreover, many models proposed in the literature are validated by the
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own author data and usually are not corroborated with other authors lab work. In this

context, a simple multiaxial fatigue method is of prime importance to create a more general

methodology to be validated and used by other researchers and engineers in an easy way.

There are about three main categories in multiaxial fatigue characterization, i.e. critical

plane, stress invariants and integral approaches [61]. The most common equivalent

stress approaches are based in the yield criteria to evaluate fatigue damage. These

approaches are the maximum principal stress, maximum shear stress (Tresca), and the

octahedral stress commonly known as the von Mises equivalent stress. The performance

of these equivalent stresses have some limitations regarding their capability to capture

fatigue damage, however they are very appreciated and used due to their straightforward

usability. Moreover, for few materials and loading paths these approaches have acceptable

correlations. Nevertheless, their use in non-proportional loading conditions is not advised.

Under such loading conditions the principal axes directions vary during the loading period,

however, equivalent stress approaches do not have mechanisms to account this feature.

One reason for this shortcoming is settled in the yield criteria formulations used to define

equivalent stresses, which were developed for static loading conditions and later adopted

to be used to assess multiaxial fatigue. Essentially, the only difference between the

yield criteria (static equivalent stresses) and equivalent stress approaches for fatigue is

the loading pattern. Usually, they are used accordingly to the material ductility, for

instance the von Mises equivalent stress are used to evaluate ductile materials and the

maximum principal stress to evaluate materials with a fragile fatigue crack behaviour

such as cast iron. Principal stresses used in these equivalent stresses are determined based

in a referential rotation (or elemental cube rotation) in such way that the rotated stress

tensor has only normal stresses. This rotation eliminates the shear stress components and

defines the principal axes directions. These normal stresses (principal stresses) are ordered

accordingly to their decreasing value as follows in expression 2.12:

σ1 > σ2 > σ3 (2.12)

Therefore for two-dimensional stress state the principal stresses are calculated as follows

in Eq.(s) 2.13 and 2.14.

σ1 =
σx + σy

2
+

√(
σx − σy

2

)2

+ τxy2 (2.13)

σ2 =
σx + σy

2
−

√(
σx − σy

2

)2

+ τxy2 (2.14)
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The principal directions are given by Eq. 2.15.

tan (2θp) =
2τxy

σx − σy
(2.15)

where θp is the rotation of the stress tensor axes in order to eliminate any shear stresses.

2.4.2.1 Maximum principal stress theory

The idea behind this theory is that failure occurs when the maximum principal stress

reaches the value of the material tensile yield stress. Therefore, for a given stress state,

the principal stresses are calculated and compared with the material yield stress. Under

cyclic loading conditions the maximum principal stress within a loading cycle is the

equivalent stress used to estimate fatigue damage. Eq. 2.16 presents the formulation

for this equivalent stress.

∆σeq = ∆σ1 (2.16)

In this way, a multiaxial stress state is reduced to a uniaxial one by considering the highest

principal stress time variation.

2.4.2.2 Maximum shear stress theory

Similarly to the maximum principal stress theory, the maximum shear stress theory uses

the principal stress time variation to estimate fatigue damage. In this criterion, it is

considered that the fatigue damage results only from shear stresses (Tresca hypothesis).

Eq. 2.17 presents the equivalent stress from this criterion.

∆τ13 =
∆σeq

2
=

∆σ1 −∆σ3

2
(2.17)

2.4.2.3 Boiler and pressure vessel code

The ASME Boiler and Pressure Vessel code Procedure [62] is based on the von Mises

hypothesis, but employs the stress difference between to two arbitrary instants t1 and t2

within the loading period:

∆σeq =
1

2
√

2

√
(∆σx −∆σy)2 + (∆σy −∆σz)

2 + (∆σz −∆σx)2 + 6 (∆τxy2 + ∆τyz2 + ∆τxz2) (2.18)

where the equivalent stress range ∆σeq is maximized with respect to time. In some

non-proportional loadings Eq. 2.18 yields lower equivalent stress ranges comparatively
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to in-phase loadings with same stress level, this feature increases the fatigue life estimates

for non-proportional loadings, which is in contradiction with experimental results.

2.4.2.4 Maximum octahedral shear stress

This criterion is also based in the principal stresses time variation. In this case, it is

considered a plane equally inclined to the principal axis. Next up, the norm resulted

from the three principal stresses is projected into this plane, the octahedral plane. Under

cyclic loadings, this projection forms a trajectory from which it is measured the maximum

octahedral shear stress amplitude in time. Eq. 2.19 presents the formulation for this

equivalent stress.

∆σeq =
1√
2

√
(∆σ1 −∆σ2)2 + (∆σ2 −∆σ3)2 + (∆σ3 −∆σ1)2 = ∆τoct

3√
2

(2.19)

This equivalent stress is unsuitable to be used under non-proportional loading conditions,

because the shear stress amplitude is calculated in the octahedral plane, and under

non-proportional loadings the direction of this plane changes in time, therefore the

octahedral shear stress values time variation are within several octahedral planes. Due to

this fact, it is not possible measure the octahedral shear stress amplitude in one octahedral

plane. Therefore, under non-proportional loading conditions, Eq. 2.19 gives ambiguous

results.

2.4.2.5 Effective equivalent stress hypothesis (EESH)

Sonsino [63, 64] proposed a hypothesis for ductile materials under multiaxial loading

conditions where fatigue damage is estimated by an equivalent stress. This equivalent

stress is a modification of the von Mises equivalent stress in order to account the size

effects and their different stress gradients. Eq. 2.20 presents the EESH formulation for

proportional loadings.

σeq (δxy = 0o) =
√
σ2
xa + σ2

ya + f3τ2
xya (2.20)

Where f is a parameter that has into account the gradient effect from bending and torsion

loading conditions, the f parameter is determined as follows in Eq. 2.21.

f =

√
σ2
xa + σ2

ya − σxaσya
√

3τxya
(2.21)
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2.4.2.6 von Mises

The von Mises yield criterion is based on the assumption that only shear stress cause

plastic flow and hydrostatic stress cause no effect on the yield process [65]. Under this

approach, the shear stress is measured through the second deviatoric stress invariant,

generally represent as J2. This equivalent stress, despite being a yield criterion, has been

widely used as a simple and feasible multiaxial fatigue model. Moreover, its graphic

representation of its variation during the load period is very representative of the loading

path type, where it is possible to measure an equivalent stress amplitude, which can be used

as a multiaxial fatigue parameter. This approach has known shortcomings, particularly

in out-of-phase loading cases. Considering a general stress tensor given in Eq. 2.22,

the deviatoric stress tensor is computed by removing the equivalent hydrostatic pressure

component from the stress tensor as follows in Eq.(s) 2.23 to 2.25.

Sij =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (2.22)

Dij = Sij − I ·
tr (Sij)

3
(2.23)

Thus, the second deviatoric stress tensor invariant is given by:

J2 =
1

2
Dij ·Dji (2.24)

In terms of principal stresses:

J2 =
1

2

(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

)
(2.25)

Considering the uniaxial case, were σ1 = σ0 and σ2 = σ3 = 0, it is obtained the following

expression:

J2 =
1

3
(σ0)2

√
J2 =

σ0√
3

(2.26)

Through this expression, it is obtained, for a specific loading case i.e. pure axial, one

relation between normal and shear stresses. Considering this result, the material yielding

will occur when
√
J2 exceeds the yield stress in pure shear conditions i.e.

√
J2 = k, thus

Eq. 2.27 is valid.
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√
3k = σ0 (2.27)

Therefore, the von Mises damage stress scale is given by 1√
3
, indicating that the shear stress

necessary to cause yielding is 1.73 times lower than the normal stress. This is a purely

theoretical result, being independent of the material monotonic and cyclic properties,

however, it has good results fro quasi-static loading conditions.

2.4.3 Invariant stress

The invariant criteria are based on the premise that a generic stress tensor can be split

into two other stress tensors, i.e. the deviatoric and the hydrostatic tensors. Another

premise adopted in these models, is the assumption of the crack nucleation process results

mainly from the shear stress/strain contribution in the HCF regimen. Moreover, it is also

assumed that the hydrostatic stress has a secondary role during the fatigue process. Under

this paradigm, the shear stress amplitude assessment is of prime importance and is usually

determined based in the deviatoric stress tensor. The invariant approaches evaluate the

shear stress amplitude in the π plane, which can be updated with the hydrostatic stress

contribution as seen in some multiaxial criteria, such as Sines [66] , Crossland [39], or

Dang Van [47], for instance.

Conventionally, the shear stress amplitude is usually evaluated by the Longest Projection

(LP) approach or by the Minimum Circunscribed Circle (MCC) computed in the von

Mises shear stress space in which the equivalence τ = σ/
√

3 or the Tresca equivalence

τ = σ/2 are used under multiaxial loading conditions to reduce both normal and shear

damages to the same damage scale [67]. Based on experiments it was found out that the

damage scale between shear and the normal stresses may vary significantly depending on

the material type.

For example, the ratio of the torsion fatigue limit to the bending fatigue limit varies from

0.5 for mild metals to 1 for brittle metals [16]. However, invariant models do not have this

physical evidence in to account and use a damage scale independent from the material

type.

Every second rank tensor can be decomposed into a deviatoric and a hydrostatic

component as follows:

σij = sij + pδij (2.28)

Where sij = σij − pδij is the deviatoric tensor, p = 1
3σkk is the hydrostatic one, and δij is

the kronecker delta. Therefore, the deviatoric invariants are calculated as follows:
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J1 = skk = 0 (2.29)

J2 =
1

2
sijsji (2.30)

J3 = det (sij) (2.31)

The tensor invariants are calculated as follows:

I1 = σkk (2.32)

I2 =
1

2
(σiiσjj − σijσji) (2.33)

I3 = det (σij) (2.34)

2.4.3.1 Crossland criterion

In the Crossland criterion [39], the shear stress amplitude is obtained through the second

invariant of the deviatoric stress tensor, contrary to the observed in the von Mises yield

criterion, this one considers that the fatigue damage results from the shear stress amplitude

and from the maximum value of the hydrostatic stress computed during the loading

period. The damage parameter is determined through the addition of both deviatoric

and hydrostatic stresses using a stress scale factor (SSF) to reduce the hydrostatic stress

to the shear stress space (reduce normal stress damage to the shear damage scale). The

failure is expected to occur when the damage parameter exceeds the material fatigue limit

in pure shear loading conditions. The Crossland criterion formulation is given in Eq.(s)

2.35 to 2.37.

√
J2a +

β

α
· σH,max ≤

f−1

α
(2.35)

α =
f−1

t−1
;β = 3−

√
3
f−1

t−1
(2.36)
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√
J2a +

(
3
t−1

f−1
−
√

3

)
σH,max ≤ t−1 (2.37)

In this criterion, the stress scale factor is given by 3 t−1

f−1
−
√

3, which is a constant value

defined through the uniaxial fatigue stress limits in tension and shear.

2.4.3.2 Sines criterion

The Sines criterion [46] is very similar to the Crossland criterion; here the damage

parameter is defined through the summation of the shear stress amplitude and the mean

hydrostatic stress. The shear stress amplitude is computed by the square root of the

amplitude of the deviatoric’s second invariant. In this criterion the hydrostatic stress is

also reduced to the shear stress space using a stress scale factor. The damage parameter

is given by the following Eq.(s):

√
J2a +

β

α
· σH,m ≤

f−1

α
(2.38)

α =
f−1

t−1
;β = 6

f−1

f0
−
√

3
f−1

t−1
(2.39)

The original formulation of the Sines criterion uses the axial fatigue limit in repeated

bending, which is a seldom parameter difficult to obtain in literature which can be a

shortcoming to implement this model. However, it can be used the modified Goodmann

line to estimate the repeated bending limit. Figure 2.15 shows a repeated bending loading

where it can be identified the loading amplitude and its mean stress.

Figure 2.15: Illustration of a repeated bending loading with its stress amplitude and mean stress

[68].

The Goodman line is as follows in Eq. 2.40 [68].

σa
f−1

+
σm
σut

= 1 (2.40)
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Replacing σa and σm by f0 in Eq. 2.40 it yields:

f0

f−1
+

f0

σut
= 1 (2.41)

Solving for f0 Eq. 2.41 it yields Eq. 2.42,

f0 =
1

1
f−1

+ 1
σut

(2.42)

Multiplying the right side of Eq. 2.42 by f−1 it is obtained Eq. 2.43 from which it is

estimated f0.

f0 =
f−1

1 + f−1

σut

(2.43)

where σut is the material ultimate tensile strength. Eq. 2.44 shows the Sines criterion

adapted to the most common materials properties. In this model the fatigue failure is

expected to occur when the damage parameter exceeds the uniaxial shear fatigue limit.

This criterion is unsuitable to be used as equivalent stress because their SSF is only

dependent on the tension compression fatigue limit; being usually used as a on-off fatigue

model to estimate failure or no failure conditions for infinite life. Therefore, this criterion

is unsuitable to be used in finite fatigue life estimates.

√
J2a +

(√
3
f−1

σut

)
σH,m ≤ t−1 (2.44)

In this criterion, the stress scale factor is given by:
√

3f−1

σut
.

2.4.3.3 Vu criterion

Vu et al. [69] proposed an invariant equivalent stress for the high cycle fatigue regime (more

than 104 cycles). The central piece of their model is the introduction of the mean value

of the second invariant of the deviatoric tensor, J2mean. As stated by the authors, with

the introduction of this parameter it is possible to capture several loading effects such as

non-proportionality, effect of mean normal stresses, and fatigue damage from asynchronous

loadings. The authors divided this criterion accordingly to the material ultimate tensile

strength, σut. Eq.(s) 2.45 and 2.46 presents the formulation for this criterion.

For σut < 750MPa; γ1 = 0.65; γ2 = 0.8636, the equivalent stress takes the following

shape:
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f =

√
γ1J

′
2(t)2 + γ2J2

2,mean + γ3

(
I1,a + I1,m

)
< β (2.45)

For σut > 750MPa; γ1 = 0.3; γ2 = 1.7272, the Vu equivalent stress is as follows:

f =

√
γ1J

′
2(t)2 + γ2J2

2,mean + γ3

(
I1,a +

f−1

t−1
I1,m

)
< β (2.46)

Where γ1, γ2, γ3 and β are material parameters determined by experiments; J
′
2 (t) and

J2,mean aims to account the phase shift effect within non-proportional loadings, and shear

stress effects. I1,a and I1,m aims to account the effects of the hydrostatic stress such as

amplitude level and mean values.

2.4.3.4 Kakuno-Kawada criterion

Kakuno and Kawada [70] developed an invariant criterion taking into account the

hydrostatic amplitude and their mean value. The criterion formulation is as follows:

√
J2,a + kσH,a + λσH,m ≤ µ (2.47)

Where k = (3t−1)
f−1

−
√

3 , λ = (3t−1)
f0
−
√

3 , and µ = t−1. t−1 is the fatigue limit under

fully reversed torsion, f−1 is the fatigue limit under fully reversed bending, and fo is the

fatigue limit under repeated bending (zero to tension).

2.4.3.5 Minimum circumscribed ellipse (MCE)

The minimum circumscribed ellipse approach (MCE) [7, 71] was proposed to compute the

effective shear stress amplitude taking into account the non-proportional loading effects.

The MCE concept is based on a minimum circumscribed ellipse construction around the

loading path trajectory represented on the deviatoric stress space, usually the von Mises

stress space. The MCE shear stress amplitude is given by:

√
J2,a =

√
R2
a +R2

b (2.48)

where Ra and Rb are the lengths of the major and minor semi-axis of the minimum

circumscribed ellipse, respectively. The MCE approach proposed in [7, 71] gives very good

prediction for sinusoidal stress wave forms and so on, but may be very conservative for

some special multiaxial loading paths. For example, for the triangular shear stress paths

shown in Figure 2.16, the original procedure of the MCE approach had the drawback in
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which it is obtained the same “minimum ellipse” for both stress paths A and B, even when

the length δ of the stress path B becomes very small as shown in Figure 2.16 a). This

drawback leads to the same measure of shear stress amplitude in the two different paths

A and B, which gives very conservative results in loading path B.

Figure 2.16: a) Drawback of the original MCE procedure proposed by Freitas et al., b)

Circumscribing ellipsoid [72] .

In order to overcome the described drawback in the original MCE approach, a modified

procedure was proposed in [71]. In this modification, the Minimum Circumscribed Circle

(MCC) is firstly found and the major semi-axis Ra is determined as shown in Figure 2.17,

then it is calculated the maximum normal distance to the major semi-axis, Ra , in the

circumscribed loading. This distance was named as Rb and is defined as depicted in Figure

2.17.

Figure 2.17: Modified procedure of the MCE approach for determining Ra and Rb [71].

This modified procedure of the MCE approach introduces the “minimum circumscribed

rectangle” (MCR) approach to overcome the drawback depicted in Figure 2.16 a). Figure

2.18 shows that different Ra and Rb values can be evaluated for the same rectangle loading

path by two approaches. The MCR approach gives Ra values much more sensitive to the

loading path shape than the MCE approach. Therefore, the modified procedure of the

MCE approach (The MCR approach) is able to give more accurate results.
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Figure 2.18: (a) Illustration of the differences between the evaluated Ra and Rb values by the

minimum circumscribed rectangle approach (MCR) and (b) by the modified procedure of the MCE

approach, for the same rectangle loading path shown [71].

The shear stress amplitude determined using the MCE approach can be used in invariant

criteria such as Sines or Crossland as follows in Eq. 2.49.

√
J2,a + α · σH ≤ β (2.49)

where α is the stress scale factor that reduces the fatigue damage from normal stresses

to the shear damage scale, σH is the hydrostatic stress, which is set according to the

multiaxial criterion to be used, i.e. the Sines criterion uses the mean hydrostatic stress,

and the Crossland uses the maximum hydrostatic stress. The β parameter is the material

fatigue strength in pure shear. The stress scale factor represented here by the α parameter

is selected accordingly to the models Sines or Crossland.

2.4.4 Critical plane damage parameter

The critical plane approach had great popularity in the last years due to the simple

physical concept involved around their methodology, which ease to understand and ease

to implement in numeric simulations. It is common to find in the literature multiaxial

energy models based on critical plane formulations [73, 74] or even integral ones [61, 75, 76].

Integral approaches are based in mean stresses within a elementary volume, where the

fatigue damage is accounted in all possible material planes [8, 61]. The main methodology

in critical plane approaches is to find the critical plane where the damage parameter reach

their maximum value.

Basically, the multiaxial loading components, normal and shear stresses, are projected in

each plane using the Mohr’s circle, then the damage parameter is computed accordingly

to each criterion.

Also, in critical plane models it is used the damage stress scale concept i.e. on each plane,

the shear component of a given critical plane damage parameter is updated with the normal
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component previously reduced to the shear damage scale using a stress scale factor, this

procedure can be found in critical plane criteria such as Findley [77], Fatemi-Socie [54, 73],

among others. Despite the popularity achieved by this approach, critical plane criteria

have some shortcomings. In some loading cases, the same stress amplitude can be obtained

for different planes, indicating several critical planes, i.e. several directions for the crack

initiation plane. However, fractographic examinations of samples tested in such loading

conditions generally indicate only one crack initiation spot. The critical plane is identified

by an angle (direction), usually represented as θ, please see Figure 2.19. The search of

this angle is usually performed within the range [0, π]. Moreover, the stresses and strains

in each plane θ are determined using the Mohr’s circle as follows in Eq.(s) 2.50 to 2.53.

σθ =
σx + σy

2
+
σx − σy

2
cos (2θ) + τxy sin (2θ) (2.50)

τθ =
σx − σy

2
sin (2θ)− τxy cos (2θ) (2.51)

εθ =
εx + εy

2
+
εx − εy

2
cos (2θ) +

γxy
2

sin (2θ) (2.52)

γθ
2

=
εx − εy

2
sin (2θ)− γxy

2
cos (2θ) (2.53)

Figure 2.19: Plane stress loading of a plate [16].

2.4.4.1 Critical plane criteria - Stress based models

Findley

Findley [77, 78] proposed a critical plane criterion to estimate the orientation of the fatigue

crack initiation plane the material’s fatigue strength under multiaxial loading conditions.
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The critical plane is identified by determining the plane with the maximum damage

parameter, which formulation is given in Eq. 2.54.

max
θ

(τa + kσa,max) (2.54)

Where τa is the shear stress amplitude determined on a plane θ, σn,max, is the maximum

normal stress on that plane and k is a stress scale factor. The fatigue life can be estimated

using the maximum Findley parameter which is an equivalent shear stress computed in

the critical plane. Fatigue life estimates for this criterion are obtained using Eq.(s) 2.55

and 2.56.

τa + kσa,max = τ∗(Nf )b (2.55)

τ∗ =
√

1 + k2τ
′

(2.56)

Where τ
′

is the torsional fatigue strength coefficient, and the
√

1 + k2 is correction factor

typically equal to 1.04.

In this criterion, the update of the normal stress to the shear damage scale is computed

through the k parameter, which is determined by experiments accordingly to the material

fatigue strength ratio given by σa,R=−1/τa,R=−1 . The k parameter is determined as follows

in Eq. 2.57:

σa,R=−1

τa,R=−1
=

2

1 + k√
1+k2

(2.57)

Typically, the k parameter varies between 0.2 and 0.3 for ductile materials.

Matake criterion

This criterion [51] is a typical critical plane model, it considers the maximum shear

stress amplitude added to the maximum normal stress updated through a stress scale

factor. The critical plane is identified through the plane in which the maximum damage

parameter occurs. Comparing this criterion with the invariant methods, the deviatoric

second invariant amplitude is replaced by the critical plane shear stress amplitude, and

the hydrostatic stress is replaced by the maximum normal stress on a given plane. The

criterion takes the following form:
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α · Ca + β ·Nmax ≤ f−1 (2.58)

α =
f−1

t−1
;β = 2− f−1

t−1
(2.59)

where:

β

α
= 2 · t−1

f−1
− 1 (2.60)

The Matake criterion in the shear stress space is as follows in Eq. 2.61:

Ca +

(
2 · t−1

f−1
− 1

)
Nmax ≤ t−1 (2.61)

In this case the SSF parameter is given by: 2 · t−1

f−1
− 1.

McDiarmid criterion

The McDiamid criterion [49, 50] is also based on the critical plane approach, having the

particularity to consider two crack propagation modes, case A and case B. In case A, the

crack propagation occurs along the surface, and in case B, the propagation occurs from the

outside surface towards their inside. The criterion formulation is presented in Eq. 2.62:

τa
τA,B

+
σn,max

2 · σut
= 1 (2.62)

where τA is the shear fatigue strength of case A crack growth, τB is for case B, and σut

is the material ultimate tensile strength. Eq. 2.63 presents the McDiamid criterion to

estimate fatigue lives under multiaxial loading conditions.

τa +

(
τA,B

2 · σut

)
σn,max = τA,B (2.63)

where the stress scale factor is given by:
τA,B
2·σut
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Dang Van criterion

Dan Van [47, 48] proposed a mesoscopic criterion considering the volume approach, which

was posteriorly simplified through a mix of invariant and critical plane type criteria. In

this model, it is performed a critical plane search based in the maximum value of the shear

stress amplitude. Then, the normal stress component is computed in the critical plane

through the hydrostatic stress assessment, which due to their physical definition can be

considered as equal in all planes. This model is computed as follows in Eq.(s) 2.64 and

2.65.

Ca +
β

α
· σH,max ≤ t−1 (2.64)

α =
f−1

t−1
;β = 3

(
1− f−1

2 · t−1

)
(2.65)

Here, the stress scale factor is based in the material fatigue limits, and is given by:

3
(
τ−1

f−1
− 1

2

)
.

Carpinteri-Spagnoli criterion

Carpintery et al. [52, 53] proposed a critical plane criterion with atypical mechanism for

the critical plane search. In this model, the critical plane is defined through a particular

formula based on material properties, then the shear and normal stress amplitudes are

calculated in this plane. The normal stress amplitude is determined based on a weight

function with the possibility to account for mean stress values through the Goodman

diagram procedures. In this model, the normal stress is considered as an equivalent normal

stress. Moreover, in this model it is performed a linkage between the material properties

and the critical plane search, which is a special feature that cannot be found in typical

critical plane models. Furthermore, the damage parameter is obtained by considering the

root mean square of the biaxial loading components, contrary to that is seen in previous

models where the equivalent damage parameter results from adding shear and normal

stresses updated to the shear stress space. Eq. 2.66 presents the Carpintery-Spagnoli

criterion.

(
Ca
t−1

)2

+

(
Na,eq

f−1

)2

= 1 (2.66)

Reduced to the shear stress space, the criterion takes the form:
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Ca
2 +

(
t−1

f−1
Na,eq

)2

= (t−1)2 (2.67)

In this case the stress scale factor is given by: t−1

f−1
.

2.4.4.2 Critical plane criteria - Strain based models

Fatemi-Socie

Fatemi and Socie [54] proposed a strain based model based in the critical plane concept.

Here, the shear strain amplitude and maximum normal stress is determined in each plane,

then the shear stress amplitude is multiplied by the ratio of the maximum normal stress to

the material yield stress, as shown in Eq. 2.68. The critical plane orientation is estimated

with the maximum Fatemi-Socie damage parameter.

[
∆γ

2

(
1 + kF−S

σn,max

σy

)]
max
θ

(2.68)

where ∆γ/2 is the maximum shear strain amplitude on plane θ, σn,max is the maximum

normal stress on that plane, σy is the material monotonic yield strength and k is the

sensitivity factor that depends on the stress level. Some authors of strain based models

show some sensibility to the fact that the stress scale factor is not constant, which is the

cases of Fatemi-Socie and Brown-Miller criteria. However, they only cover the stress level

influence on the stress scale factor variation. In the Fatemi-Socie model that variation is

given by the sensitivity factor, k, which formulation is presented in Eq. 2.69

k =

 τ
′
f

G (2Nf )bγ + γ
′
f (2Nf )cγ

1.3
σ
′
f

E (2Nf )b + 1.5ε
′
f (2Nf )c

− 1

 K ′(0.002)n
′

σ
′
f (2Nf )b

(2.69)

where one can see that k is not constant and vary with fatigue life. For finite fatigue live

estimates, the authors suggests k = 0.3, however k = 1 has also been used [3].

Brown and Miller

Brown and Miller performed a deep review in multiaxial fatigue criteria and concluded that

the octahedral shear strain and maximum shear strain criteria do not describe effectively

the low-cycle fatigue behaviour.To better understand this matter, the authors conducted

combined tension and torsion tests and concluded that it is needed two strain parameters

accordingly to the type of fatigue crack nucleation and growth. Brown and Miller [55]

proposed two criteria for each type of fatigue crack, given in Eq.(s) 2.70 and 2.71.
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For A type cracks:

(
∆γ

g

)j
+
(εn
h

)j
= 1 (2.70)

For B type cracks:

∆γ

2
= const. (2.71)

Where g, h and j are material parameters. The j parameter is set according to the material

ductility, i.e. for brittle materials j is equal to 1, and for ductile materials j is equal to 2.

Figure 2.20 presents each crack type and inherent loading.

Figure 2.20: a) Case A crack mode; b) Case B crack mode [16].

The authors simplified the formulation of the case A crack initiation mode and proposed

the equivalent shear strain criterion shown in Eq. 2.72.

∆
ˆ
γ

2
=

∆γmax

2
+ S∆εn (2.72)

Where the S parameter is the normal strain effect coefficient, being calculated using Eq.

2.73 for a given material. This parameter is dependent on the temperature.

S =
τ f
′

G (2Nf)
bγ + γ

′
f(2Nf)

cγ − (1 + υe)
σ
′
f

E (2Nf)
b − (1 + υp) ε

′
f(2Nf)

c

(1 + υe)
σ
′
f

E (2Nf)
b + (1 + υp) ε

′
f(2Nf)

c
(2.73)

In this model, fatigue life is estimate using Eq. 2.74.

∆γmax

2
+ S∆ε

n
= A

σ
′
f

E
(2Nf )b +Bε

′
f (2Nf )c (2.74)

Where A = 1.3 + 0.7S and B = 1.5 + 0.5S.
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Lohr & Ellison

Lohr and Ellison [79] proposed a critical plane model based in shear and normal strains

calculated on a specific plane, the π/4 plane to surface. Contrary to the procedures found

in a typical critical plane, where it is pursuit the plane with highest damage parameter, here

the equivalent strain is computed in the plane of maximum shear strain. This equivalent

strain criterion is given in Eq. 2.75.

γ∗ + kε∗n = C (2.75)

Where k, and C are material constants, ε∗n is the strain normal to plane of γ∗, and γ∗

is the maximum shear strain on the plane π/4 to surface. The authors by experimental

tests concluded that k = 0.2 for high strength steels.

2.4.4.3 Combined models (Critical Plane plus Energy models)

SWT criterion

Smith et al. [80] proposed a model, known as SWT, to account the mean stress effect under

uniaxial loadings. Later on, this model was extended to multiaxial loading conditions by

Dr. Darrell Socie by evaluating the SWT parameter under multiaxial loading conditions

using a critical plane approach [16]. The critical plane version of the SWT criterion is

based on the principal strain range, and on the maximum normal stress evaluated on the

plane of the principal strain range, please see Eq. 2.76.

max
θ

(σn)
∆ε1

2
(2.76)

where σn is the normal stress on a plane θ, and ∆ε1 is the principal strain range calculated

in that plane. This model do not have any stress scale factor, since only considers the

normal stress contribution to the fatigue damage process.

Liu criterion

Liu [81] proposed an energy method to estimate fatigue life based on the virtual strain

energy (VSE) concept. This model considers two approaches for two different types of

fatigue crack modes, namely: a tensile failure mode (mode I), ∆WI , and a shear failure

mode (mode II), ∆WII . In this criterion, failure is expected to occur in a given plane θ

where it is computed the maximum VSE quantity. Accordingly to the fracture mode I,

the parameter, ∆WI is given by Eq. 2.77.
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∆WI = max
θ

(∆σn∆εn) + ∆τ∆γ (2.77)

For mode II, the parameter, ∆WII is given by Eq. 2.78

∆WII = ∆σn∆εn + max
θ

(∆τ∆γ) (2.78)

where ∆τ and ∆γ are the shear stress range and shear strain range, respectively. ∆σn

and ∆εn are the normal stress range and normal strain range, respectively. Also here, it

is not used any damage scale between normal and shear loadings. Therefore, the normal

and shear energies are added directly, in this way the Liu damage parameter has a damage

scale different from the uniaxial damage curves.

Glinka

Based on the Brown Miller damage parameter paradigm [55], Glinka [82, 83] proposed an

energy parameter expressed by normal and shear strains evaluated on the critical plane.

The Glinka’s damage parameter is as follows in Eq. 2.79.

∆W ∗ =
∆τ

2

∆γ

2
+
σn
2

∆εn
2

(2.79)

In order to account with mean stress effects, authors modified Eq. 2.79 as follows:

∆W ∗ =
∆τ

2

∆γ

2

(
σ
′
f

σ
′
f − σn,max

+
τ
′
f

τ
′
f − τn,max

)
(2.80)

This modification results from the experimental observation of the normal stresses effect

in the fatigue crack process, where compressive normal stresses difficult the crack growth

and normal stresses in tension promotes the crack growth process.

Pan criterion

Pan et al. [84] proposed an update to the Glinka’s damage parameter [82] in order to add

the fatigue damage contribution of the normal strain energy. The authors concluded that

the strain energy in the shear direction cannot be directly added to the normal one. For

this reason they conducted experimental tests and achieved two coefficients to correct the

normal strain energy contribution to the overall fatigue damage. Eq. 2.80 presents the

formulation for the Pan criterion.
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∆W ∗ =
∆τ∆γ

4
+ k1k2

σn∆εn
4

(2.81)

where k1 = σ
′
f/τ

′
f , and k2 = ε

′
f/γ

′
f .

Varhani-Farahani

Varhani-Farahani [85] proposed an energy fatigue damage parameter taking into account

the summation of strain energy ranges calculated in the critical plane. Here, the critical

plane is the one with maximum shear strain amplitude determined using the Mohr’s circle.

Next up, the damage parameter calculation is performed in that plane using the maximum

stress and strains amplitudes, which are also determined using the Mohr’s circle during

the loading cycle. This model has the drawback of be only valid for plane stress states.

W =
∆σn∆εn

σ
′
fε
′
f

+

1 +
σn,m

σ
′
f

τ
′
fγ
′
f

∆τmax∆
(γmax

2

)
(2.82)

2.4.5 Integral criteria

2.4.5.1 Papadopoulos criterion

This model [8] is also a mesoscopic criterion based in the volume damage at mesoscopic

scale, as seen in the Dang Van criterion. In this approach, the shear stress amplitude is

determined by the mean shear stress amplitude obtained in the mesoscopic volume. The

fatigue damage of normal stresses is accounted in this criterion through the maximum

hydrostatic stress. Eq. 2.83 presents the criterion formulation.

α
√
〈T 2

a〉+ β · σH,max ≤ f−1 (2.83)

where

α =
f−1

t−1
;β = 3−

√
3

(
f−1

t−1

)
(2.84)

Eq. 2.85 shows the Papadopoulos criterion based in the von Mises shear stress space.

√
〈T 2

a〉+

(
3
t−1

f−1
−
√

3

)
σH,max ≤ τ−1 (2.85)

The shear stress amplitude assessment, under biaxial loading conditions, is simplified by

considering the maximum value of the von Mises equivalent stress during the loading
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period depicted in the von Mises shear stress space. The maximum hydrostatic stress is

determined through the maximum trace of the stress tensor obtained along the loading

period. For biaxial loading conditions the criterion is as follows in Eq. 2.86:

√
σa2

3
+ τa2 +

(
3
t−1

f−1
−
√

3

)
·max

(
I1

3

)
≤ τ−1 (2.86)

Where the stress scale factor between normal and shear stresses is given by: 3 t−1

f−1
−
√

3.

2.4.5.2 Shear stress intensity hypothesis (SIH)

Zenner et al. [61, 86] developed the so called shear stress intensity hypothesis, being an

integral damage approach. This approach is a high cycle fatigue criterion and aims to

estimate fatigue limit for certain loading conditions. The foundations of this approach

were settled in the works of Novoshilov [87] where the von Mises equivalent stress was

modified. This equivalent stress is determined by considering the mean square of the

shear stresses in all planes, Figure 2.21 depicts the definition of the angles used in the

integration process.

√√√√√
 1

4π

π∫
γ=0

2π∫
ϕ=0

τ2
γϕ sin (γ) dγdϕ

 ∼= σMises (2.87)

This approach was further developed to their most known form, please see Eq. 2.88.

σeq.a =

√√√√√ 15

8π

π∫
γ=0

2π∫
ϕ=0

[
m1τ2

γϕ

(
1 +m2τ2

γϕm

)
+m3σ2

γϕ

(
1 +m4σ2

γϕm

)]
sin (γ) dγdϕ (2.88)

Where the coefficients m1 and m3 are determined using the fatigue strength ratio (axial

and shear) and m2, m4 are coefficients that have into account the material sensitivity to

normal and shear mean stresses. The equivalent stress is thereby determined for each

integration plane given by γϕ.
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Figure 2.21: a) stress components in the intersection plane γϕ; b) surface representing all

intersection planes in volume element [86].

2.5 Level 3 - Cycle counting

2.5.1 Introduction

Random fatigue damage is the ultimate challenge in materials damage characterization,

especially under multiaxial loading conditions. Contrary to variable amplitude fatigue

tests usually performed in the lab, in the field it is not possible to define in advance a

loading block, because instantaneously the loading spectra are unknown. However, loading

histories recorded in the field can be stored and interpreted as several loading blocks, where

the inherit damage contribution to the final fatigue failure can be accounted. For each

loading block extracted from a loading spectra, fatigue damage can be determined in order

to update a total accumulated damage value, which can be updated during the service

time. When the accumulated damager reaches a critical value the structure or machine

component must be inspected and replaced. Under this paradigm, random fatigue damage

is updated under service, however in design stages the field loading spectra may be not

available. Nevertheless, it is possible to get a typical loading spectrum in order to estimate

random fatigue damage in design stages. Therefore, random fatigue characterization can

be decomposed into two main approaches, namely: damage accumulation from loading

blocks and block extraction from loading spectra.

Generally speaking, cycle counting methods are usually related to block damage

characterization. Very few multiaxial cycle counting methods can be found in the

literature, and they are mainly based in the Rainflow cycle counting methodology or based

in max-min procedures computed over a time variation of a multiaxial loading components

(normal and shear stresses/strains), or even over an equivalent stress. In order to estimate

the material fatigue strength the use of an equivalent stress is very appreciated due to the

simplicity involved in their assessment, however this approach has some shortcomings

related to loading block fatigue damage accumulation.

For multiaxial loading paths, the equivalent stress approaches establishes a stress value
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representative of loading path damage, usually the maximum value [88]. This procedure

leads to a “blind” approach which does not consider what happens along all loading

period. For simple loading cases, the cycle definition is quite prompt where the damage

reference can be captured using the maximum equivalent stress occurrence along the

loading period. However, for more complex loading histories the fatigue life estimates

under this approach are unsatisfactory. Therefore, the maximum equivalent stress damage

reference is unsuitable to be used in loading blocks damage characterization, leading to

non-conservative fatigue lives i.e. the block damage is greater than the one estimated by

the maximum equivalent stress computed on the loading block. Thus, the block damage

characterization must consider what happens during all loading trajectory. A loading

block by definition is a complex loading composed by simple loading regions, this regions

contribute to the overall damage under a damage accumulation point of view, thus only

considering the maximum damage parameter within a loading block will not capture the

overall damage. To handle with multiaxial cumulative damage it is usually used the

Palmgren-Miner’s rule or a similar rule, as is used in uniaxial loading conditions. Under

multiaxial loading conditions, fatigue damage accumulation is evaluated by analysing

the damage parameter evolution within the loading block from where it is extracted the

inherent number of reversals verified on the loading block [16]. Thus, the critical aspect

in the loading block cumulative damage assessment is centred in the equivalent stress or

damage parameter used and in the cycle counting methodology, which in turn is related

to the loading cycle definition.

Damage parameters must capture the material fatigue damage phenomena, this feature

will allow to compute loading block fatigue damage as a summation of different type of

damages identified within a loading block as given by the Miner’s rule hypothesis. This

is a important requirement because small variations of a damage parameter has huge

influence in the fatigue life estimates, this is so because in S-N curves, a small variation in

the damage parameter (stress level of the equivalent stress criteria) it is obtained a huge

variation in the fatigue life estimates. However, cycle counting methodologies, found in

literature, show to be independent from the magnitude of the damage parameter, being

mainly based on the loading trajectory, which in turn yields equal results for all stress

levels. But, experimentally it is observed that the damage inherent to each loading cycle

is different under different stress levels, thus the damage of each loading cycle is not only

dependent on the cycle definition but also on the stress level. For simple loadings where

the loading cycle is easily identified, the stress level effect is captured by the damage

parameter maximum value, but in the loading block cases is not.

Under low cycle fatigue assessment it is recommended the use of a strain based damage

parameters to estimate loading block fatigue damage. In these cases, the computed strains

can be updated with the material plasticity behaviour [89], where the loading trajectory

is somehow corrected based on the load level. Therefore, for high levels of cyclic plasticity,
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the cycle counting criteria yields different cycle counting results, because the damage

parameter pattern changes accordingly to the cyclic plasticity model. However, in high

cycle fatigue regime the cyclic plasticity involved in the fatigue process is negligible and

due to that the shape of the loading trajectory is not significantly changed, therefore in

high cycle fatigue regime, it is missing the cyclic plasticity contribution to overcome the

stress level insensitivity found in cycle counting methodologies.

Usually, in fatigue testing machines, the cycle counting is performed by a block summation,

the machine input establishes the loading trajectory which is repeated until the specimen

test is totally separated or other testing condition. This is a quite prompt cycle counting

methodology, where it is considered the loading block as one cycle even for different types

of loading blocks, but the damage unit of those loading blocks can be quite different, even

for the same stress level. Thus if the stress level is the same in both loading blocks and

their fatigue life is quite different, then the cycle counting definition regarding loading

blocks and random loadings must be re-analysed.

During years, cycle counting methods have not been a very studied issue, especially in

multiaxial fatigue. The most known in this field have several years being the Rainflow cycle

counting methodology, and it countless variants, the most used ones. These methodologies

have acceptable results for the uniaxial loading cases (normal and shear), but under

multiaxial loading conditions their results are questionable, however, new approaches and

techniques to perform cycle counting under multiaxial loading are very few, specially

multiaxial loading blocks [52, 90–92]. Some of them are critical plane based approaches

where the Rainflow methodology is used to evaluate the stress/strains time evolution

projected on each plane.

One example of the aforementioned cycle counting methodologies is the Bannantine and

Socie methodology [93]. This method extracts the number of cycles of a loading path in the

critical plane through a Rainflow routine, and a damage parameter time evolution usually

the SWT or the Fatemi-Socie criteria are used for normal or shear dominant loadings,

respectively. Under this approach some other works were developed in order to improve

this multiaxial cycle counting methodology [91].

Multiaxial cycle counting methods based in critical plane approaches have some

shortcomings associated with the fact that the normal and shear stresses contribution to

the overall damage are analysed separately, which means that the time relation between

shear and normal stresses is missing, i.e. these methods do not capture the combined effect

always found in multiaxial loading conditions. Thus, the peak of each normal and shear

stress reversals may occur in different instants within the loading period, which is the case

of non-proportional loadings, but the overall damage is computed, using this procedures,

as if they occur at the same time. The equivalent damage parameter approaches(equivalent

stress/strain approaches) preserves the time relation between load components, but have
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other shortcoming which is the sign lost, because an equivalent damage parameter is

always positive. This is an important issue because a material damage reference (usually

uniaxial S-N curves) is established based on a positive and negative reversals, which have

different damage contributions to the overall damage found within a loading cycle, thus the

loading sign lost may affect the Rainflow cycle counting results [90, 91]. Also, in normal

stresses, negative signs are connected with compression and positive ones with tension

identifying different damage mechanisms on material, moreover, positive or negative sign

in shear loading doesn’t lead to a different damage mechanisms. In order to overcome these

issues Wang and Brown proposed a cycle counting method based in the Rainflow cycle

counting methodology where it is used the von Mises relative equivalent strains in order

to identify in the loading path history the inherent block reversals. This criterion also

has some shortcomings which is the possibility to lose the maximum stress range during

the loading time history [94, 95]. Meggiolaro et al. [90, 91] proposed a modification

to the Wang and Brown criterion to overcome this issue and expands this methodology

to the five-dimensional Euclidean space in order to guarantee that the highest relative

strain amplitude is always accounted. Also Wei and Dong [96], proposed another cycle

counting methodology based in the equivalent stress concept by performing a mapping

of the equivalent stress time evolution in the space in order to overcome the missing

path-dependency effect on fatigue damage assessment verified in the Wang and Brown

criterion [94, 95, 97]. However, the cycle damage dependence on the stress level remains

to be accounted on the loading block cycles extraction.

2.5.2 Multiaxial cycle counting

Uniaxial cycle counting is a well understood issue, the hysteresis loops interpretation to

identify a load cycle is a method which had proved to be reliable in uniaxial fatigue damage

characterization, however under multiaxial loading conditions such prompt method doesn’t

exist nowadays. However, some efforts were made in order to adapt the uniaxial cycle

counting methodology such as the Rainflow algorithm to the multiaxial loading histories

[98–100]. Bannantine and Socie and the Wang and Brown cycle counting methodologies

are an example of that, despite being methodologies completely different they use the

Rainflow concept to extract the number of cycles within a multiaxial loading history.

2.5.3 Bananntine and Socie

Bannantine and Socie [93] proposed a multiaxial cumulative damage model which is a mix

of critical plane damage approach, a Rainflow cycle counting methodology [97, 101] and

Miner’s rule [88]. The main concept behind this criterion is based on the experimental

evidence that some materials are more sensitive to normal strains than to shear ones and

vice versa. The authors concluded that the normal and shear strains have different damage

levels within the same material. Under this paradigm, the authors proposed to evaluate a
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block damage under multiaxial loading conditions by considering normal strains or shear

strains depending on the material damage sensitivity. Which is a attempt to eliminate

the issue regarding the loss of the time dependence already discussed in previous sections.

Thus, a multiaxial loading is projected into each plane of the critical plane search, and

then the in-plane (shear) and normal strains are separately evaluated in each plane with

a Rainflow based methodology. In this way it becomes possible to apply the uniaxial

Rainflow cycle counting method to determine the number of reversals in each plane, and

then evaluate the damage associated to them, in order to quantify the overall damage and

critical plane direction. With this approach, the Rainflow cycle counting method can be

associated with the strains time evolution, from where it can be identified the physical

behaviour in the material, i.e. the Rainflow cycle counting on each plane can be fairly

associate with the material hysteresis loops in that plane which it is the original main

concept behind the Rainflow cycle counting methodology [36, 102, 103].

Regarding the damage accumulation from each block’s reversal it can be accounted through

any cumulative damage model. The most known and used is the Miner’s rule, where it is

performed a linear summation of each reversal contribution. For each set of reversals with

same amplitude, can be computed their contribution to the overall damage by dividing

the number of those reversals by the fatigue life estimate obtained through the damage

parameter associated to those reversals amplitude.

Additional accumulative damage approaches based on the Miner’s rule can be found in the

literature [16, 101], which are mainly non-linear versions of the original version. However,

that non-linearity, in the author’s opinion, should be left to the damage parameter

formulations, since S-N curves are already non-linear, and fatigue life estimates are always

obtained from the relation between the damage parameter and the material S-N curve.

As aforementioned, in the Bananntine and Socie model the damage parameter associated

to the reversals extracted with the Rainflow methodology in the candidate plane, is

determined using a specific critical plane criterion.

For instance, if the number of reversals is determined based in the normal strain time

evolution evaluated in the candidate plane to critical plane, then a critical plane model

based in normal strains must be considered. Likewise, if the in-plane strains are used to

determine the number of reversal in the candidate plane, then a damage parameter based

in shear strains should be used. For example, the reversals’ damage can be estimated using

the critical plane models present in Eq.(s) 2.89, and 2.90 [104], where Eq. 2.89 represents

the Fatemi-Socie critical plane model, which is a shear strain-based model, and Eq. 2.90

represents the SWT, which is a normal strain-based critical plane model.

max
θ

{
∆γmax

2
·
(

1 + k · σn,max

σy

)}
=
τf´

G
(2Nf )bγ + γf (́2Nf )cγ (2.89)
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max
θ

{
σn,max ·

∆ε1

2

}
=
σ´2
f

E
(2Nf )2b + σ´2

f έ (2Nf )b+c (2.90)

Socie et al. [16, 104] proposed evaluate the damage associated to a loading block by

adding at each candidate plane the estimated damage from the normal and shear strains.

This concept has two conceptual problems, the first one is the already discussed loss of

time dependency between normal and shear stresses, the second one is the possibility of

consider twice the same damage contribution to the overall damage.

For example, if the block damage at the candidate plane to critical plane, is evaluated for

the in-plane load projections using the Fatemi-Socie criterion, and the SWT criterion

is used for the perpendicular ones as suggested in [16, 104], then the normal stress

contribution to the overall damage is double counted, because the normal damage

contribution is accounted in both criteria as can be seen in Eq.(s) 2.89 and 2.90.

Despite the aforementioned conceptual problems, these models give a step forward by

characterizing block damage by identifying the critical plane with the highest accumulated

damage, determined by damage parameters based on shear and normal strains. The

greatest difference between the highest damage parameter and the highest accumulated

damage parameter is based on the fact that the highest damage parameter considers only

the reversal with the highest amplitude in the loading block at a specific plane, in this

case the damage of the remaining reversals are not considered. On the other hand, in the

accumulated damage parameter concept, the damage from all reversals in a specific plane

are accounted.

Figure 2.22 illustrates the Bannantine and Socie methodology used in to estimate fatigue

life under multiaxial block loading conditions using a critical plane criteria.

Figure 2.22: Bannantine and Socie framework to estimate block fatigue life.
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2.5.4 Wang and Brown

Another concept used in multiaxial cycle counting techniques was proposed by Wang

and Brown [98, 105, 106], where the loading cycles within a loading block are extracted

through the von Mises equivalent strain time evolution. Contrary to the Bananntine

and Socie methodology where the output gives the number of reversals and respective

amplitudes, the Wang and Brown cycle counting method only identifies the region in the

loading path trajectory (in the von Mises stress space) that belongs to each reversal. The

damage parameter is then calculated to each extracted reversal. The use of an equivalent

parameter as the von Mises equivalent strain have associated with it the loss of the loading

sign, i.e. the equivalent strain is always positive regardless the compression, tension or

shear stress direction, therefore several damage mechanisms are hidden by using this type

of equivalent damager parameter. Regarding the fatigue damage interpretation, this is an

important issue because the reading of the damage parameter time evolution can lead to

wrong interpretations.

For example, the von Mises equivalent stress transforms a fully reversed load into a zero

to maximum loading path, creating in such way a virtual mean stress that physically

does not exist. In order to avoid this shortcoming Wang and Brown have proposed to

make a Rainflow counting to the relative von Mises equivalent strains. Therefore, the von

Mises equivalent strain time variation is computed to extract the loading cycles within

a multiaxial loading block, then it is identified the maximum equivalent strain location

in order to translate the origin of the time referential to that same location. This is the

starting point to perform the Wang and Brown cycle counting methodology; the relative

equivalent strain time variation is then calculated at each time by computing the norm

between the instantaneous equivalent strain and the maximum equivalent strain value.

After that, a Rainflow cycle counting is performed using the relative equivalent strain

time variation, the cycle is extracted and then the relative equivalent strain is updated by

removing from the loading history the information inherent to the extracted cycle. The

remaining branches of the loading history are computed in the same way until there is no

loading branch to compute.

With this method, it is obtained a kind of map that divides the normal and shear stress

time evolution in loading regions, i.e. loading reversals. For each reversal it is used its

normal and shear stress time evolution to performed a critical plane search to determine

the maximum damage parameter of the reversal. Eq. 2.91 shows the Wang and Brown

equation to estimate fatigue life. The left side of Eq. 2.91 represents the Wang and Brown

critical plane damage parameter, the right side represents the material S-N curve.

ε ≡ 0.5 (∆γmax) + S (δεn)

1 + ν´ + (1− ν )́S
=
σ f́ − 2σn,mean

E
(2Nf )b + έ f (2Nf )c (2.91)
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Where ∆γmax, and δεn are the shear strain range and the normal strain excursion between

two turning points of the shear strain evolution on the plane of maximum shear, the

parameter S represents the influence of the normal strain to overall damage, the other

parameters are the uniaxial strain lifetime equation constants. The parameter S near the

material fatigue limit is about 0.3, for half fatigue life the S parameter takes the value

0.74 [16]. Afterwards, a cumulative damage rule must be considered in order to estimate

the block damage, and the overall damage accumulation [107]. Figure 2.23 shows an

illustrative example of the Wang and Brown cycle counting technique to determine the

reversals region within a loading block. In Figure 2.23 a) it is presented the normal and

shear loading components time variation; next up it is determined the von Mises strain

time-variation as can be seen in Figure 2.23 b). The next step is to find the first maximum

value of the von Mises equivalent strain time variation and translate the graph origin to

that point, in Figure 2.23 c) it is shown the referential translation for the first maximum

of the von Mises equivalent strain time evolution, named as point A.

Figure 2.23: Illustrative example of the Wang and Brown reversals extraction procedure.
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From here, it is determined the relative von Mises time-history, which is given by the

following reasoning: The maximum value of the von Mises time evolution (point A) has

two components, i.e. the normal and shear strains of point A. Now, consider the normal

and shear strains time variation defined in the loading block, next up, subtract to the

normal and shear strains time evolution the normal and shear strain values of point A.

Next up, perform again the von Mises time-history using the new normal and shear strains

time evolution. The result of this step can be seen in Figure 2.23 d), as expected, point A

is now at the referential origin with normal and shear strains equal to zero, which yields

a relative von Mises equivalent strain equal to zero. Next up, the reversal is extracted

by removing from the normal and shear strain time evolution the values inherent to the

reversal. Next the procedure to determine the relative von Mises time history starts from

the beginner with the normal and shear stresses time variation updated. The relative von

Mises time histories always starts at referential origin with relative strains equal to zero,

because their calculation always starts at maximum values (points A, B, C, E depicted in

Figure 2.23), in Eq. 2.92 it is shown the numeric methodology to determine the von Mises

relative time-history.

σi,relative (t) =

√
(σi (t)− σmax)2 + 3 · (τi (t)− τmax)2 (2.92)

In order to extract a reversal from the relative von Mises time history, it is selected the

time history branch that starts from zero towards the closest peak, if the time-history

begins to decrease the reversal extraction goes on the horizontal until the time history

begins to increase again. If the horizontal extraction does not find any increasing time

history segment, then the reversal ends at the exact point when the extraction initiates

to become horizontal.

In Figure 2.23 d), it is shown the first reversal extraction, which is represented in red

by the line AB; at this stage, there is no greater point than point B, thus the reversal

was found, and the loading path must be updated i.e. must be removed from the loading

block (normal and shear strains time variation) the normal and shear components time

variation inherent to the reversal extracted. Then, the process starts again with the

updated normal and shear strains time evolution; only one reversal is extracted for each

relative time history.

Figure 2.23 e) shows the new relative minimum, the point B; the next reversal extraction

reaches the point C; at this stage the von Mises time history decreases, therefore the red

dot line goes horizontally to find point C’, thus the reversal extraction continues to the

end of the relative von Mises time history, which yields the second reversal through the

points BCC’D. Next, the normal and shear strains time evolution must be updated again,

the new relative minimum is now point C which grows until reach point E, being extracted
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the 3rd reversal CE, please see Figure 2.23 f). Next up, the normal and shear strains time

evolution is again updated by removing from the previous time evolution the normal and

shear time evolution inherent to the reversal CE, then it is calculated the new relative

von Mises time evolution, please see Figure 2.23 g). Next, the reversal extraction starts

at point E and go towards point F. At this stage all loading path was covered and it was

found all reversals within the loading block. In this example the loading block was split

in four reversals.

2.5.4.1 Wang and Brown fatigue life estimates of loading blocks

In order to estimate fatigue damage inherent to multiaxial loading blocks, the Wang

and Brown cycle counting method identifies regions on the normal and shear strains

time evolution that are representative of loading reversals. These regions are a kind of

sub-loading paths inherent to each reversal. Each one of the archived sub-loading path

must be considered as if it is a independent loading path, then for each one of these reversals

the damage criteria is calculated. The Miner’s rule is used to determine the loading block

damage accumulation and consequently the block fatigue life can be estimated, as seen in

Eq.(s) 2.93 and 2.94.

Dblock =

#reversals∑
i=1

1

Ni
(2.93)

Thus the block fatigue life can be estimated as follows:

Nblock =
1

Dblock
(2.94)

2.6 Level 4 - Damage accumulation rules

The damage accumulation concept aims to capture fatigue damage from different loading

paths, and stress levels. Although damage accumulation is always present even in

simple loading paths, with constant amplitude, the complexity increases when the loading

amplitude levels varies during a loading pattern. For instance, in constant amplitude and

for simple loading paths, fatigue life can be directly estimated using a S-N curve, which

is made for a specific loading type with a specific stress range, usually this range depends

on the material type. However, if during the loading pattern the stress level changes or

even the loading type, thus it is not possible to estimate fatigue life using directly the S-N

curves with acceptable correlations. Thus, it is necessary to account the damage variation

within a loading pattern and then compute the accumulated damage.

The first attempt to deal with this subject was made by Palmgren in 1924 [108] where

he proposed a simple damage concept defined by the ratio between the number of cycles
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loaded and the number of cycles to failure, estimated using the load level of the loaded

cycles. Later on, in 1945 Miner [109] adopted this approach in their studies, becoming

this approach known as the Palmgren-Miner rule. In this rule, it is considered that fatigue

damage can be added linearly, however, soon it was published in literature several works

reporting the inconsistency of the linear concept and their incorrect estimates in damage

accumulation assessment. The linear damage rule (Palmgren-Miners’s rule) is given in Eq.

2.95.

Di =
ni
Nfi

(2.95)

where, ni is the number of loaded cycles with the ith loading level, and Nfi is the fatigue

life until failure for the ith load level. In this type of damage accumulation rules, it

is estimate the failure occurrence when the summation of the damage fractions, Di,

computed at different loading levels equals one. Despite of its questionable performance,

the Palmgren-Miner’s rule has been widely used due to their simplicity and straightforward

application. To improve their performance, many proposals based in the Palmgren-Miner

rule modification have been proposed in literature.

Fatemi and Yang [110] made a exhaustive literature review in 1998 regarding this subject

by covering about 50 fatigue damage accumulation models proposed between the Palmgren

pioneer works in 1924 and the end of the 1990s. They found out, that before 1970, the

damage accumulation models were mainly phenomenological in which the formulations

were mainly based on empirical observations and experiments, after that period they

become semi-analytical because the material damage mechanisms started to be considered

to explain the damage accumulation phenomena. In their work Fatemi and Yang concluded

that the damage accumulation models developed to improve the Palmgren-Miner rule

can be divided into 6 categories, namely the linear and non-linear damage approaches,

S-N curves modification, crack growth concept, continuum damage mechanics and energy

models.

In 1953, Henry [111] proposed the first non-linear damage accumulation concept by

changing the material endurance limit accordingly to the loading stress level. This

approach was based in the experimental evidence in which the material properties change

as the load level increases, therefore the author proposed to capture this variation by enter

with the endurance limit in their formulations. Henry used their hypotheses to capture

the sequential damage effect under a damage accumulation approach. One year after, in

1954, it was proposed the first non linear damage accumulation rule by Marco and Starkey

[112] in order to capture the effect of the stress level in damage accumulation, Eq. 2.96

shows this rule.
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D =

(
ni
Nfi

)xi
(2.96)

where xi is a value related to the ith loading level obtained by experiments. Figure 2.24

depicts the Marco–Starkey non-linear theory regarding different values of the exponent xi.

Figure 2.24: Nonlinear damage curves for the Marco–Starkey non-linear damage accumulation

rule [112].

Next, in 1960 starts to appear the two stages damage concept with the works of Grover

[113] where he uses one linear damage rule for crack initiation and other for crack

propagation. In 1966, Manson [114] proposed the double linear damage rule which was

based in the works of Grover. Figure 2.25 shows the Manson’s approach to evaluate

sequential damage accumulation.

Subramanyan [116] presented in 1976 the knee point-based approach, where the S-N slope

is modified near the material endurance limit, this approach assumes that the endurance

limit do not change during the damage accumulation process. In this approach, the S-N

slope variation updates the remaining fatigue life after each stress level, however, in this

rule the loading spectrum may have only two stress levels. In 1988, Kutt and Bienek [117],

presents a review regarding damage accumulation rules based in statistical approaches. In

1990, Ben-Amoz [118] considers that fatigue is a statistical phenomenon, and uses the

Subramanyan’s approach by adopting the two scatter limits approach. These limits, a

upper and lower bound, were created using the linear damage rule by making a upper and

lower limit parallel to the S-N curve being updated with the Subramanyan approach. This

approach was also implemented using non-linear fatigue life curves, having into account
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Figure 2.25: Manson’s approach for two-step loading, a) High-Low b) Low-High[115].

crack initiation and crack propagation stages. Also here, the Ben-Amoz approach only

covers damage accumulation for two stress levels as seen in the Subramanyan approach.

The use of a continuum damage approach to characterize damage accumulation was firstly

emphasized by Chaboche [119] in 1988. This approach was based in the Chaboche’s

success to modelling creep damage using the continuum damage mechanics, which was

later extended by the author to other damage regimes. Many other authors follow the

continuum damage approach to cover damage accumulation such as Lemaitre and Plumtree

[120], and Li et al. [121] among others. These models were designed based in the uniaxial

damage characterization; however, these models extension to multiaxial fatigue damage

accumulation have not had the same success verified under uniaxial loading conditions.

Recent works, continue to pursue the improvement of the Palmgren-Miner rule. For

example, in 2007 Xue et al. [122] presents a damage plasticity model for ductile material

based in experimental tests, containing a damage-related weakening factor to describe the

material deterioration evolution due to cyclic loadings. In this approach, fatigue damage

accumulation is accounted as a measure of deformability loss, having into account the

load level, Lode angle, and a power law damage rule. This model estimates the failure

occurrence when the damage accumulation equals 1. Also in 2008, Seweryn et al. [123]

presents a damage accumulation rule that captures non-proportional damages, this rule

is based in energy concepts and is updated with the material monotonic work-hardening

curve, where the stress and strain tensor is determined using the hardening rule proposed

by Mróz [118]. Here, the damage increment is updated having into account the energy

dissipation increment and the first invariant of the stress tensor. The authors claim that

their model requires a relatively small number of material parameters, which was stated

as an advantage regarding other models found in literature.

In 2011, Casciati et al. [124] presented a pioneer work where is studied the fatigue damage

accumulation in smart materials, with super elastic behaviour at positive temperatures.
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In this study a Cu based shape memory alloy was cyclically loaded in order to create

micro plasticity with residual strains. The author reported a loss of specific properties

during each cycle. The authors correlated this loss with a non-linear damage accumulation

approach based in the energy dissipation concept. In the same year, Yong Huang et al.

[125] studied the damage accumulation in a carbon-manganese steel, the A42, which is

commonly used in pipe components. The idea was to study damage accumulation in low

cycle fatigue and gigacycle fatigue. To do that, the material was loaded under low cycle

fatigue and then loaded with a gigacycle fatigue regime, being a typical loading regime in

damage accumulation with two stress levels (two steps). It was reported that, the material

fatigue life is increased by firstly perform a load at high stress levels and then change to

lower levels. The author uses the continuum damage mechanics approach based in the

Chaboche model to characterize the damage accumulation. The author also reported that

the Chaboche damage model can describe the damage behaviour in LCF and VHCF.

In 2011, Rathore et al. [126] proposed a new methodology to model the probabilistic

distribution of damage accumulation to improve the fatigue life estimates of structures

and mechanical components. In this approach the damage accumulation is evaluated as a

linear phenomenon. The authors underlined the possibility of their model to be extended

to log-normal and Weibull distributions. In 2012, Zarrin-Ghalami et al. [127] studied

the combination of Rainflow cycle counting, maximum principal strain, and Miner’s linear

cumulative damage rule to evaluate damage accumulation in a automotive cradle mount.

The authors reported good results, with satisfactory predictions under variable amplitude

loading tests.

Almost a century after the publication of the Palmgren-Miner’s rule and after hundreds

of published damage accumulation models, the simple Palmgren-Miner’s rule continues

to be used to characterize damage accumulation. Also in 2012, Huffman and Beckman

[128], presents a new phenomenological technique to estimate fatigue life under variable

amplitude loading. The authors use constant amplitude data to set-up their model and

claim that there is no need of using a big amount of experimental data in their model

set-up. They also reported (as seen in other authors) that overloads at the beginning of a

loading history have more impact in fatigue lifetime than overloads at the end.

In 2013, El Aghoury and Gala [129], proposed a new concept to deal with damage

accumulation under variable amplitude loading conditions, the VTCs (virtual life target

curves). Their method is based in illustrative techniques and introduces a time dimension

to the S-N curves. This method takes into account overloading effects and the authors

claim that the method is able to deal with any loading pattern. This model needs to

be calibrated with the material mechanical properties being pointed out good fatigue life

estimates. Also in 2013, Taheri et al. [130], discuss the limitations of the linear damage

accumulation rules, concluding that these rules yield non-conservative fatigue life estimates
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for stainless steels. The reason found by the authors was based in the need of using a

elastic-plastic law to capture the cyclic hardening found in austenitic steels. To overcome

these issues the authors proposed a conservative model to account damage accumulation

using the material cyclic strain-stress curve, they claim that in this way, it is not need a

constitutive law to characterize the material cyclic plasticity. Despite the shortcomings

pointed out by the authors regarding the linear damage accumulation approach, they end

up using the Miner’s rule to account damage accumulation. Hilgendorff et al. in 2013 [131]

developed a damage accumulation approach based in microstructural damage mechanisms

under resonant fatigue tests. They studied damage accumulation in a austenitic stainless

steel (AISI 304) and correlated the fatigue damage with slip mechanisms of plastic

deformation under very high cycle fatigue (HCF) loading conditions. They created

a numerical model to simulate these microstructural mechanisms, which needs to be

set-up by experimental tests. This model have into account slip mechanisms such as:

sliding, slip irreversibility and cyclic hardening. The authors reported good agreement

between estimates and experimental data. Wang and Yao [132] conducted experimental

tests in the aluminium alloy LY12CZ under non-proportional loading conditions with

different phase angles and two stress levels (two step loadings). To account damage

accumulation under non-proportional loading conditions they propose a non-linear damage

accumulation rule with a parameter (α) that tunes the model accordingly to the phase

shift level. The authors reported predictions within a scatter band with a life factor of

two. Gao et al. [133] proposed a non-linear damage accumulation rule to account with

the load interaction under variable amplitude loading conditions. The authors identify

the limitations of the Palmgren-Miner’s rule to capture those interactions. Based in the

experimental data of two metallic materials, the authors validate their model and then

correlated the results with other models estimates. Xia and Yao [134] goes further and

evaluates state-of-the-art models in damage accumulation under variable amplitude and

random loading conditions. To do that, they used sixteen loading paths with different

loading effects such as: proportional, non-proportional, and stress level variation. The

authors created a interesting methodology to implement random loadings in lab, by

combining randomly the aforementioned sixteen loading paths. This is a unique work

where for the first time it is studied fatigue damage accumulation under random loading

conditions. In the past, many authors started to use wrongly the random concept to refer

variable amplitude loading. Therefore, many works with titles referring to random loading

conditions are in reality studies about variable amplitude loadings.

2.6.1 Final comments

During decades it has been pursued a damage accumulation model that be able do

deal with damage accumulation. Many authors presented their way to deal with this

subject but a consensual model remains in pursuit. However, many works continue to

72



Multiaxial Fatigue

use the Palmgren-Miner’s rule to characterize damage accumulation despite their known

shortcomings. In the present author opinion, this shortcomings are erroneously attributed

to the linear damage accumulation approach because the non-linearity that characterizes

fatigue damage must be captured through a damage parameter, and cycle counting

techniques. Many authors try to capture non-linear damage behaviour using non-linear

damage accumulation rules, but in fact they are fitting their experimental results for a

particular loading conditions. Actually, the discussion around the Palmgren-Miner’s rule

shortcomings are usually focused on their non-conservative results, because it has been

obtained damage accumulation estimates lower than 1 at failure. However, this can be

explained by the scatter always found in fatigue life experiments. Therefore, if a damage

parameter gives estimates within a scatter band with a life factor of two or even three

(which is a very acceptable performance), it is logic that the estimated fatigue life,Nfi ,

used to calculate the damage ratio, ni

Nfi
, also varies accordingly to the aforementioned

scatter bands. Thus, the Palmgren-Miner ratio is also influenced by a probabilistic factor

always present in fatigue damage evaluation.

2.7 Level 5 Crack initiation plane

2.7.1 Introduction

Fatigue crack studies (fractography analysis) are very important because they allow to

correlate stress levels and loading types with crack initiation planes and crack growth

patterns. The crack initiation type and inherent growth may change accordingly to the

stress level, and loading type. One example of that can be found in the experimental

direction of the fatigue crack initiation obtained under proportional and non-proportional

loading conditions. Typically, non-proportional loadings with 90o phase shift, yields a

experimental fatigue crack initiation at 0o degrees, and in proportional loadings, the results

may range between 12o and 25o degrees depending on the material type. This subject is of

utmost importance in assurance inspections of structures or mechanical components after

their fail. Performing a fractography analysis will allow to interpret what happened by

inspecting the crack surface, which will allow to distinguish crack initiation and growth

patterns from defects, impacts or the occurrence of high stress levels, among other causes.

Figure 2.26 depicts different fracture planes accordingly to the loading type for fragile

materials, as can be seen the fracture plane direction varies significantly for each uniaxial

loading type.

Figure 2.27 shows a fatigue crack under pure shear loading conditions performed in the

lab. Figure 2.27 a) shows the crack grow path evolution and Figure 2.27 b) shows the

fast fracture instant. Also under multiaxial loadings several fatigue crack initiations and

growth patterns can be obtained by combination of the multiaxial loading components

(normal and shear stress).

73



Multiaxial Fatigue

Figure 2.26: The four basic loads (forces) and the fracture planes that result from them [135].

Figure 2.27: Fatigue crack under pure shear loading, 42CrMo4 material.

Figure 2.28 shows two different fracture surfaces of two proportional loadings obtained with

hourglass samples. In Figure 2.28 a) the specimen test was loaded with a stress amplitude

ratio equal to 30o, where the normal stress amplitude is higher that the shear one, in this

case the normal stress fatigue damage has a higher contribution to the overall damage.

Figure 2.28 b) shows the fracture surface resulted from a 60o stress amplitude ratio,

where the shear damage has a higher contribution to the overall damage. Both fracture

surfaces were obtained under proportional loading conditions, with the same equivalent

stress amplitude, but the fracture surface is quite different in both cases.

The fracture topography is a important record of the crack initiation and growth processes

where it is registered the fatigue crack stages. Figure 2.29 depicts an example of these

fatigue crack stages under pure bending loading conditions. Mainly two major zones can be

identified, the fatigue zone (FZ) in which it is included the crack nucleation spot (origin),
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Figure 2.28: 42CrMo4 fracture surfaces under a) proportional loading with SAR=30o, and b)

proportional loading with SAR=60o.

and the instantaneous zone where the specimen separation occurs instantaneously. One

typical characteristic of the fatigue zone is the presence of progression marks, commonly

referred as beach marks, in some materials and loading conditions it is possible to correlate

the beach marks progression with the number of cycles performed before rupture. However,

in some other materials like high strength steels, the beach marks cannot be found and is

quite difficult to make such type of analysis. This brings some difficulties to differentiate

between fractures obtained under high and low stress levels, but in the field fatigue cracks

with rust is a good indicator of a slow crack grow.

Figure 2.29: A view of a basic plane bending fatigue failure [135].

One example of fatigue crack in the field is depicted in Figure 2.30, here the fatigue crack

propagates accordingly to the number of flying hours. In this cases it is possible to make

some crack traps to detain the crack propagation, this traps are holes performed in the

crack front in order to reduce the local stress intensity factor.
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Figure 2.30: Fatigue crack path in a fighter aircraft centre section. In this case, the damage unit

is flying hours instead of loading cycles [136].

2.7.2 Critical plane estimates

There are very few types of criteria to estimate the direction of the crack initiation planes.

Typically, estimates for crack initiation planes are made using critical plane models. These

models projects the stress or strain tensor in each plane and evaluate their damage

parameter on these planes, as already presented in section 2.4.4. In these approaches,

the critical plane is the one that has the maximum damage parameter and it is expected

that the fatigue crack initiates and starts to growth on this plane. No special features or

concepts were added to the critical plane methodology to obtain these estimates, therefore

the critical plane direction estimates is a natural consequence of the critical plane criteria.

Therefore, for each critical plane damage parameter presented in section 2.4.4. it is possible

to estimate the direction of the crack initiation plane by inspecting the damage parameter

evolution within the range of 0o to 180o degrees.

Figure 2.31 shows the damage parameter amplitude evolution for the LIU1 criterion. As

it can be seen, the maximum amplitude value occurs at +25o, thus based in the LIU1

estimate, the fatigue crack will initiate on this plane.

Critical plane criteria have a straightforward way to estimate crack initiation planes, which

can be very useful in finite element simulations. However, commercial finite element
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Figure 2.31: Critical plane estimate of the Liu criterion for a proportional loading.

packages do not have this type of models by default, thus, it is required external routines

to implement these models within a FEM modulation. Also, they do not have cyclic

elastic-plastic models to account with the cyclic variation of the material properties, which

is a drawback to the critical plane calculations in finite element analysis. Although,

FEM packages may have into account the material stress strain curve determined under

monotonic loading conditions, the critical planes estimates requires cyclic stress-strain

curves, which are obtained at stress levels much lower than the ones used in monotonic

plasticity. Moreover, the plasticity models incorporated in FEM packages do not have

into account special cyclic plasticity behaviours like the ones found in magnesium alloys

or even in smart materials such as the nitinol, for instance.
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Chapter 3

Contributions to Level 1

3.1 Introduction

This chapter presents the thesis contribution to level 1. It is developed a new cyclic

elastic-plastic model under a phenomenological approach to capture the cyclic behaviour

of magnesium alloys, which have a non-standard mechanical behaviour. This cyclic

elastic-plastic model can be used to update stress-strain variations due to multiaxial

cyclic loadings in design stages or in the field fatigue damage evaluation. Moreover, it

is developed a new concept to characterize the materials non-proportional behaviour.

Figure 3.1 shows the position of level 1 regarding the sequential work developed in this

research.

Figure 3.1: Multiaxial fatigue level 1.

3.2 Cyclic plasticity

3.2.1 Introduction

Nowadays, industry in general is following with great attention the scientific research in

magnesium alloys. The positive results achieved by the scientific community have created

expectations to improve existing magnesium (Mg) products and create new ones. From

the 1950s until now, the auto industry has been one of the greatest players in the Mg

alloys’ research field. Materials with high strength and low density combination are very
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appreciated in the transportation industry, however the search of the optimal material

with these qualities remains a paramount goal that continues under pursuit. Until now,

magnesium alloys are the structural metallic materials that better fulfil this goal. Despite

the improvements in fuel consumption and vehicle performance be an economic approach

and a driving force from the customer side, the reduction of fuel consumption is also

motivated by legislative rules to reduce primary energy consumption, and environmental

impact. Thus, approaches to reduce fuel consumption such as aerodynamics drag

reduction, engine efficiency, and structural weight reduction are of prime importance in the

transportation industry. The weight reduction requires a balance between the material

properties and the geometry of mechanical components, under this equilibrium a fully

understanding of cyclic, monotonic, and elastic-plastic properties are needed, as well as,

the materials fatigue behaviour understanding in all loading regimens.

Cyclic plasticity is quite different from the quasi-static one, the material subjected to

cyclic loads tends to change their mechanical properties, and due to that, stress states in

the field can be different from the ones used in design stages [137]. Therefore, reliable

cyclic elastic-plastic models are required in mechanical design. In the field, components

and structures are subjected to multiaxial loadings, and in some cases, they are subjected

to variable amplitude loadings or even random loadings [138]. Under multiaxial loading

conditions, the stress-strain relation is very different from the uniaxial monotonic curve,

which is usually used in constitutive plasticity models [139, 140]. Moreover, cyclic

properties of structural materials are much more complex than the monotonic ones

and they vary across the loading period. For instance, cyclic yield stress may change

cyclically and is usually different from the monotonic yield stress, their variation depends

on the material lattice, their constituents, and heat treatment. Some materials can

cyclic softening, cyclic hardening, or even have a mixed cyclic behaviour (hardening

and softening), which depends on the load level [141, 142]. Cyclic softening occurs

when the cyclic yield stress decreases with the increase number of the loading cycles.

In contrast, a material hardening occurs when cyclic loadings leads to the cyclic yield

stress increase. Magnesium alloys tend to have a cyclic hardening behaviour, i.e. it is

required a escalating stress level to cyclically maintain a constant strain amplitude. This

cyclic behaviour is highly dependent on the material properties such as grain refinement,

purity, microstructure, intrinsic deformation properties like twinning, de-twinning, and

slipping or even mechanical transformation processes like lamination, extrusion or forging

[23, 139, 143–147]. Thus, the cyclic behaviour modulation in magnesium alloys is of prime

importance to estimate accurately their local stress states under cyclic loading conditions.

To underline the importance of this need, it is scrutinized in the following, two types

of inaccurate results usually obtained when the monotonic curve is used as stress-strain

reference in cyclic numeric simulations or to perform fatigue experiments. First, the

softening cyclic process under strain control leads to local stress levels lower than the ones
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predicted by the monotonic curve. On the other hand, the strain amplitude increases under

a stress control approach, which means that the strain amplitude predictions based in the

material monotonic curve are smaller than they should be. Second, the cyclic hardening

process is a mechanical behaviour opposite to the one found in the material softening,

where the local stress amplitudes under strain control are greater than the ones predicted

by the material monotonic curve, and the strain amplitudes under a stress control are

lower due to the material hardening.

Figure 3.2 shows the monotonic and cyclic behaviour of the AZ31B-F magnesium alloy

under uniaxial loading conditions, as one can see, the beginning of the cyclic hardening

starts at 0.6% of axial total strain under strain control. Also, the AZ31B-F magnesium

cyclic response shows different yield stresses in tension and compression for different total

strain amplitudes. The yield stresses in compression have a value near the monotonic

value, however, in the tensile branch, the cyclic yield stress is about 26% greater than the

monotonic yield stress.

Figure 3.2: AZ31B-F monotonic and cyclic behaviour.

The monotonic curve depicted in Figure 3.2 is usually used in commercial finite element

software as input to their plasticity codes. The cyclic curve can also be used as input,

but it is not possible to enter with the relation between the degree of cyclic plasticity

and the number of loaded cycles. Moreover, these two curves represent the material cyclic

behaviour under uniaxial loading conditions, which is one loading case among many others

- such as multiaxial loadings - that cause different stress-strain states. Thus, elastic-plastic

models tuned with these curves to modulate multiaxial cyclic plasticity yield inaccurate

estimates. This is so, because in these models, it is used an equivalent stress to transform

a multiaxial stress state into a yield parameter - usually it is used the von Mises equivalent

stress - in which the axial stress is transformed into a shear stress or vice versa by using a

constant, in the von Mises equivalent stress this constant is
√

3. Although, this constant
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yields good estimates in quasi-static plasticity assessment, in which the material plasticity

level is high, for cyclic plasticity the constant approach do not capture the directional

cyclic plasticity resulted from multiaxial loadings and the material cyclic anisotropy that

is dependent on the material lattice and other mechanical properties.

Plasticity models have intrinsic functions to estimate the stress-strain relation for any

kind of quasi-static loading type. These tools are set-up based in one reference loading

case, which is the monotonic stress-strain curve. Thus, their yield function, hardening

and flow rules are set-up based in the material uniaxial response, which means that

their stress-strain estimates for multiaxial loading conditions are not experimentally

based. Also, materials with non-standard mechanical behaviour such as magnesium alloys,

are not well modulated with conventional plasticity models (standard models found in

commercial finite element software) because they were formulated to estimate plasticity

under quasi-static loading conditions.

Albinmusa [138, 148, 149] stated that it is need anisotropic plasticity models to cover the

cyclic behaviour of magnesium alloys, under that statement a question can be raised up: it

will be possible characterize the material anisotropy based only in one loading reference as

found in typical constitutive models? From experiments, it was found out that magnesium

alloys have a non-linear cyclic behaviour, which is dependent of many factors such as strain

rate, micro-structure deformation mechanisms and loading type [137]. Thus, instead of

using an uniaxial stress-strain curve in numerical simulations, why not using a function

that set up a dynamic stress-strain curve accordingly to the material anisotropic response,

load level, and load type? In this way, it becomes possible to enter with the material

elastic-plastic cyclic behaviour in numerical simulations.

There are few works in literature regarding the subject of multiaxial stress-strain cyclic

behaviour in magnesium alloys [28, 145, 146, 149, 150], but all of them report the

peculiarity of the magnesium alloys cyclic behaviour, which is quite different from the

one found in steels or even in aluminium alloys, in these studies it is also underlined the

needed to go further in this subject. One reason that supports this suggestion is based

in the hysteresis loop asymmetry found in magnesium alloys, where the yield stress in

compression is quite different from the one in tension, also their rate of change is different

in both hysteresis loop branches (tension and compression)[147, 151]. Therefore, it is quite

inaccurate account these experimental evidences using only the monotonic stress-strain

curve.

Commercial finite element packages such as Ansys or Abaqus do not have mechanisms to

modulate unsymmetrical stress-strain curves. In these packages, the yield stress in tension

and compression are assumed to be equal in absolute value, which is true for steels and

aluminium alloys but not for magnesium alloys, also it is assumed that the plastic strains

in tension and compression are equal, which is also not true in magnesium alloys. All these
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assumptions are based in the well-known mechanical behaviour of steels and aluminium

alloys, thus the tensile monotonic stress-strain curve is enough to modulate the tension and

compression behaviour of these materials under a quasi-static loading condition. However,

all these assumptions fail in magnesium alloys [138]. Moreover, the magnesium tensile

and compressive back stresses are also different, thus it is required a new approach to

modulate the mechanical behaviour of these alloys [151]. The problem complexity increases

under multiaxial loading conditions, where yield stresses, hardening and flow rules vary

accordingly to the loading type (proportional, non-proportional, sequential, etc.) and load

level [149].

One way do deal with multiaxial stress states is to use an equivalent stress, which in

turn is used in the yield functions formulations. However, in literature, it can be found

studies reporting that equivalent stress approaches lose the loading direction dependence,

therefore it is possible to obtain the same equivalent stress in all loading directions. Thus,

the yield function ”will not know” if the equivalent stress is from tension or compression

and assumes an isotropic yielding [146], which can be found in steels but not in magnesium

alloys. Cyclic elastic-plastic models must have a yield function, hardening and flow rules

that capture the material anisotropy in order to be able to model the magnesium alloys

cyclic behaviour. One way to do that, is performing an experimental mapping of the

material cyclic response.

3.2.2 HYS phenomenological elastic-plastic model

3.2.2.1 Introduction

In this section, it is proposed and discussed a phenomenological cyclic elastic-plastic model

to estimate cyclic plasticity found in magnesium alloys. This model is deeply based in the

hysteresis loop concept, due to that it was named as HYS, which comes from hysteresis.

Phenomenological approaches are suitable to model cyclic behaviour of complex materials

such as magnesium alloys. These materials exhibits a peculiar mechanical behaviour which

has several cyclic effects already discussed in the previous section, thus phenomenological

approaches are the most suitable option to modulate complex cyclic behaviours in

materials. This model is based in stress-strain measurements (hysteresis loops) under

a wide range of cyclic total strain amplitudes and loading conditions found in uniaxial and

multiaxial loadings. The objective is to obtain a function/model that estimates the several

physical mechanisms found in the magnesium elastic-plastic behaviour under uniaxial

and multiaxial loading conditions. In order to validate the cyclic elastic-plastic model

proposed here, it is performed a correlation between its estimates and the experimental

data. Moreover, it is performed a comparison between the developed model and the Jiang

& Sehitoglu plasticity model, already presented in Chapter 2, in order to evaluate the

performance of the proposed model.
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Typically, there are two ways to modelling cyclic plasticity, one way is the constitutive

approach, and the other one is the phenomenological approach. Constitutive models

are based in solid mechanics theories and do not require any especial experimental

tests, the standard material mechanical properties are enough to set-up this kind of

models [148]. Due to that, these models cover a wide range of materials, but regarding

anisotropic materials they fail to capture their cyclic behaviour, for these materials the

phenomenological cyclic models are advised. Phenomenological models are mainly based

in experimental results, and cover the basic premises of constitutive models such as yield

function, hardening and flow rules. Both approaches try to estimate the same cyclic

behaviour, but following different paths. A phenomenological model like the one developed

here, can be implemented in an external routine linked to a finite element package, in

this way, this external routine can cyclic update the material cyclic behaviour across the

numerical simulation. In order to develop the phenomenological model presented here

(HYS model), it was adopted two strategies, the first one was to set-up the HYS model

based in uniaxial hysteresis loops (axial and shear), and the second one considers axial

and shear hysteresis loops resulted from proportional loadings.

3.2.2.2 HYS model based in uniaxial hysteresis loops

In order to cover all cyclic phenomena discussed in previous sections, it is used here the

AZ31B-F uniaxial hysteresis loops (axial and shear) performed under cyclic strain control

in order to map the material cyclic behaviour. In this section, the objective is to implement

a numeric model, based in uniaxial hysteresis loops, capable to estimate the stress-strain

relation in uniaxial and multiaxial loading conditions under a predefined strain amplitude

range.

Phenomenological models are deeply dependent on experiments, therefore their estimates

reliability for strain amplitudes outside of the experimental envelope is not guaranteed,

thus the HYS numeric model will be tested with strain amplitudes within the experimental

envelope. Nevertheless, the total strain amplitude used in experiments ranges from elastic

strains to total strains amplitude with high plasticity resulting in the specimen collapse

at very few loading cycles. Thus, the total strain amplitude range used in experiments

covers a cyclic stress-strain relation that is normally used in standard design stages.

From experiments, it was found that the magnesium alloy hysteresis loop branches (upper

and lower branches) can be fairly approximated by a third degree polynomial function

for any value of total strain, please see Figure 3.3. The constants of these polynomials

are obtained based in the six points (P points) of the hysteresis loop depicted in Figure

3.3. Moreover, these P points are dependent of the total strain amplitudes and can be

estimated by using functions obtained by regression analysis of the experimental P points,

these functions were named as P functions. The upper hysteresis branch is defined by the
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P points 4, 5, 6 and 1, and the lower hysteresis branch is defined by the P points 1, 2, 3,

4. This definition was used in both axial and shear hysteresis loops.

Figure 3.3: Third degree polynomial interpolation reference points, in tension and compression

loading directions for two consecutive hysteresis loops.

Figure 3.4 depicts the reasoning steps behind the HYS model regarding the lower branch of

a hysteresis loop, for the upper branch the reasoning is similar thus this explanation is only

focused in one hysteresis branch. First, for a given total strain amplitude, it is obtained

the P points at positions 1 to 4 through the P functions, these values are the input of the

polyfit Matlab function. Second, the polyfit output (aεt , bεt , cεt , dεt) are the constants of

the third degree polynomial for a given total strain amplitude. Third, the third degree

polynomial is set up for the given total strain amplitude. Fourth, the stress-strain relation

can be obtained within the range −εtotal ≤ ε ≤ εtotal.

Figure 3.4: Reasoning description of the HYS phenomenological model developed in this work.

Points 1 and 4, shown in Figure 3.3, can be considered as values of an experimental yield

function, where point 1 belongs to the upper hysteresis branch and point 4 belong to the

lower. Moreover, points 2 and 5 are the plastic strains, which can be directly related

85



Multiaxial Fatigue

to the typical isotropic/kinematic hardening models found in constitutive plastic models.

Points 3 and 6 can be related to the back-stress concept which is the stress needed to

reduce plastic strains to zero. Thus, if it is known the variation of these points (1 to 6)

in respect to the total strain amplitude variation, it is possible to obtain the hysteresis

loop shape for any total strain amplitude. With these hysteresis loops it is possible to

capture the magnesium elastic-plastic mechanisms such as twinning, de-twinning, and slip

effects at each total strain amplitude. The hysteresis loop equations at each total strain

amplitude, within the experimental strain amplitude envelope, is given by Eq.(s) 3.1 and

3.2 regarding the lower and upper side of the hysteresis loop.

σ(ε)lower = aεtε
3 + bεtε

2 + cεtε+ dεt (3.1)

σ(ε)upper = eεtε
3 + fεtε

2 + gεtε+ hεt (3.2)

The values aεt to hεt of Eq.(s) 3.1 and 3.2 are dependent of the total strain amplitude of

a hysteresis loop and are obtained as depicted in Figure 3.4. From here, the problem is

reduced to the search of the polynomial constants (aεt to hεt) in respect to the total strain

amplitudes of the experimental range envelope. In order to do that, the polyfit Matlab

routine is used to obtain these values. This routine has as input the stress-strain values

found at points 1, 2, 3 and 4 for the lower branch of the hysteresis loop, and points 4, 5,

6 and 1 for the upper branch, as shown in Figure 3.3. Eq.(s) 3.3 and 3.4 shows the input

and output variables of the polyfit Matlab function for the lower and upper branches of

the hysteresis loop, respectively.

[aεt , bεt , cεt , dεt ] = polyfit (P1` (εt) , P2` (εt) , P3` (εt) , P4 (εt)) (3.3)

[eεt , fεt , gεt , hεt ] = polyfit (P4 (εt) , P5` (εt) , P6` (εt) , P1 (εt)) (3.4)

Where the P functions have the following coordinates as output:

(σ1, εtotal) = P1 (εtotal) (3.5)

(0, εplastic) = P2 (εtotal) (3.6)

(σ3, 0) = P3 (εtotal) (3.7)
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(σ4,−εtotal) = P4 (εtotal) (3.8)

(0,−εtotal) = P5 (εtotal) (3.9)

(σ6, 0) = P6 (εtotal) (3.10)

The P functions are obtained by interpolation of the experimental P points, these functions

allow to estimate P points for any total strain amplitude even for the ones not considered

in experiments. The functions P1 (εtotal) and P4 (εtotal) estimate the stresses of maximum

total strain. The functions P2 (εtotal) and P5 (εtotal) estimate the plastic strains inherent

to the maximum total strain, and functions P3 (εtotal) and P6 (εtotal) estimate the back

stresses.

The methodology described in this section can be used in both axial and shear hysteresis

loops of uniaxial loadings. Thus, the cyclic elastic-plastic behaviour of a biaxial loading

can be roughly estimated with this approach by considering each load component of

the biaxial loading (axial and shear) as a uniaxial loading without accounting with the

combined effect from axial and shear loadings. Likewise to the Jiang & Sehitoglu plasticity

model, the proposed elastic-plastic model is also related to an elemental cube; therefore,

all conclusions made here are related to an infinitesimal material point.

3.2.2.3 HYS multiaxial cyclic elastic-plastic model

In the previous section, the developed model estimate the biaxial elastic-plastic behaviour

by considering separately the biaxial loading components (axial and shear strains), which

it is a simplification of reality, however in the absence of biaxial stress-strain experiments

it can be an useful model. With this simplification, it is assumed that the axial stress and

shear stresses do not contribute to each other in terms of cyclic plasticity, which is not

true.

In this section,it is performed an upgrade to the conceptual idea of the developed

elastic-plastic model presented in the previous section in order to cover the combined

effect of multiaxial loading components in the material elastic-plastic cyclic behaviour.

To do that, the functions P1 to P6 were modified in order to have into account the SAR

(strain amplitude ratio λ ) variation and loading level. Thus, the upgraded P functions

have here two inputs instead of one, the total strain amplitude is replaced by the loading

SAR and by a new identity defined in this study: the Hypo-strain. Thus, the P functions

have the following inputs:

P1to6 (εhs, λ) (3.11)
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The Hypo-strain is an equivalent strain that was developed in this work and is obtained

based in the hypotenuse concept, being directly calculated with axial and shear strain

components of a biaxial loading. In this concept neither the axial strain neither the shear

strain is corrected with any factor such as the
√

3 used in the von Mises equivalent strain,

for instance. The Hypo-strain aims to quantify the strain resulted from the contribution

of two perpendicular strains, (axial and shear strains of an biaxial loading). This is an

important concept, because geometrically the strain obtained in this way, is equal to the

one found in the SAR direction.

In this study, the SAR (λ ) nomenclature indicates the strain amplitude ratio, which is the

same concept used under stress control experiments, usually named as stress amplitude

ratio. SAR is a useful concept that establishes loading directions of loading paths and is

defined by the ratio of shear strain to axial strain (SAR strain version). In this way, it is

possible to get the loading direction, which is a loss information when it is used equivalent

strain or equivalent stress concepts. Furthermore, SAR is also the angle between the

Hypo-strain and the axial strain component, which is presented here in degrees.

Eq.(s) 3.12 and 3.13 presents the upgraded P functions for the axial and shear components

of a biaxial loadings, this equations were obtained based in the best fit of axial and shear

hysteresis loops of a biaxial loading in the AZ31B-F magnesium alloy. Also, here the

upgraded P functions are only valid within the experimental strain amplitude used in

experiments. The i and j indices vary between 1 and 6 where the hysteresis lower branch

is cover by indices 1 to 4, and the upper hysteresis branch is cover by indices 4, 5, 6, and

1.

Paxial,i (εhs, λ) = ai + biεhs + ciλ+ diε
2
hs + eiλ

2 + fiεhsλ+ giε
3
hs + hiλ

3 + iiεhsλ
2 + jiε

2
hsλ (3.12)

Pshear,j (εhs, λ) = aj + bjεhs + cjλ+ djε
2
hs + ejλ

2 + fjεhsλ+ gjε
3
hs + hjλ

3 + ijεhsλ
2 + jjε

2
hsλ (3.13)

The input of Eq.(s) 3.3 and 3.4 is update with Eq.(s) 3.12 and 3.13 as follows in Eq.(s)

3.14 and 3.15.

[aεt , bεt , cεt , dεt ] = polyfit (P1 (εhs, λ) , P2 (εhs, λ) , P3 (εhs, λ) , P4 (εhs, λ)) (3.14)

[eεt , fεt , gεt , hεt ] = polyfit (P4 (εhs, λ) , P5 (εhs, λ) , P6 (εhs, λ) , P1 (εhs, λ)) (3.15)
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3.2.2.4 Experimental data

The AZ31B-F cyclic elastic-plastic behaviour was mapped with the 6 biaxial loading paths

depicted in Figure 3.5. Figure 3.6 shows the sample used in this experiments (geometry

and its dimensions). The first loading case, Case 1, is a pure uniaxial tension test, Case PT.

The second one, Case 2, is a pure shear loading, named as Case PS (pure torsion). Cases

3, 4, and 5 are proportional loadings with SAR equal to 30o, 45o, and 60o, respectively.

Finally, Case 6 is a non-proportional loading case, with a SAR equal to 45o and a phase

shift equal to 90o.

Figure 3.5: Loading paths under strain control: a) Case 1 PT, b) Case 2, PS, c) Case 3, PP30,

d) Case 4, PP45, e) Case 5, PP60 and, f) Case 6, OP45.

Figure 3.6: Sample geometry and its dimensions used in the strain control experiments performed

in this study.

For each loading case several strain amplitudes were considered to obtain the experimental

P points of the axial and shear hysteresis loops, which are used to obtain the axial and

shear P functions. These functions will allow to estimate the hysteresis loops shape for

strain amplitudes different from the ones used in experiments to map the magnesium alloy

cyclic behaviour. All these loading paths, Cases 1 to 6, were carried out in experiments

and implemented in numerical analysis. The experimental tests were performed at room

temperature and ended up at 50% of load drop under strain control.

Figure 3.7 presents the uniaxial results for the hysteresis loops in pure axial and pure
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shear loading conditions, i.e. Case 1 (PT) and Case 2 (PS). Figure 3.7 a) depicts the

experimental results of Case 1, where unsymmetrical hysteresis loops with different plastic

strains in tension and compression were found. Moreover, in these loops can be found

different stress amplitudes in tension and compression for a given absolute total strain

amplitude. Also, the plastic strains and stresses in tension and compression vary in a

non-linear way. The experimental hysteresis loops show that the six P points inherent to

the hysteresis loops are independent from each other, being required six P functions to

estimate the P points dependence of the Hypo-strain variation.

Figure 3.7 b) shows the experimental hysteresis loops for the AZ31B-F magnesium alloy

in pure torsion, being quite symmetric, which is a cyclic behaviour very different from

the one found in the axial loadings, i.e. the shear stresses (right and left) have the same

absolute value for a given shear strain amplitude (under strain control loading conditions).

Moreover, the shear plastic strains are also very similar in both loading directions (lower

and upper), the slight difference that can be seen in Figure 3.7 b) resulted from the loading

direction of the first loading cycle.

Figure 3.7: Experimental hysteresis loops for: a) Case 1 and b) Case 2.

Figure 3.8 presents the experimental hysteresis loops obtained in Cases 3 and 4. Figure 3.8

a), and 3.8 b) depict the axial and shear hysteresis loops of Case 3 where the proportional

loading has a SAR equal to 30o (axial strain component higher than the shear one). In Case

3, the axial total strains and inherent plastic strains governs the deformation behaviour.

Fig.(s) 3.8 c) and 3.8 d) depict the experimental results of Case 4. Here, the biaxial

loading has a SAR equal to 45o, which indicates that the maximum amplitude of the axial

and shear strains are equal. Despite the shear and axial strains amplitudes be equal their

stresses are quite different. For instance, a shear strain of 0.5% yields a 50 [MPa], but the

axial strain with the same strain value yields 160 [MPa], please see Figure 3.8 c) and 3.8

d). Moreover, the axial stress is quite different in compression and tension, even for the
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Figure 3.8: Experimental hysteresis loops for loading Cases 3 and 4: a) Case 3 axial stress-strain,

b) Case 3 shear stress-strain, c) Case 4 axial stress-strain, and d) Case 4 shear stress-strain.

same axial strain amplitude in tension and compression. The shear strain hysteresis loops

depicted in Figure 3.8 d), continues to show a symmetric pattern as seen in the pure shear

loading case. This result shows that the hysteresis loop shape is not strongly affected

by the biaxial loading condition, i.e. the presence of an axial strain amplitude do not

affect the shear hysteresis symmetry. Regarding the results of Case 3 and 4 (proportional

loadings with SAR equal to 30o and 45o) it can be concluded that the SAR increase

leads to the reduction of the axial plastic strain and to the increase of the shear plastic

strain, thus the SAR variation is a indicator of the axial/shear predominance effect in the

material cyclic behaviour. Fig.(s) 3.9 a) and 3.9 b) present the experimental results for

the proportional loading with SAR equal to 60o and named as Case 5. In this results, it

is quite evident that the shear hysteresis loops have greater plastic strains than the axial

ones, therefore, the deformation mechanisms and inherent stresses changes accordingly to

each SAR. Thus, the typical equivalent stress concept, such as the von Mises equivalent

stress/strain, is not suitable to capture this type of deformation effects, because they are
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independent of the loading direction. For example, it can be obtained the same von Mises

equivalent stress for all possible SARs (all loading directions), but each SAR has different

deformation and cyclic behaviours as depicted in Fig(s) 3.7 to 3.9 as discussed in previous

and proved here by experiments. Fig.(s) 3.9 c) and d) presents the Case 6 hysteresis loops

(axial and shear), this loading case is a non-proportional loading path with SAR equal

to 45o, the same used in Case 4. The cyclic results of Case 6 are different from the ones

depicted in Fig.(s) 3.8 c) and d) regarding the Case 4 experimental results. Both loading

cases have the same SAR (45o) but different cyclic behaviours were obtained regarding

the axial and shear hysteresis loops. For instance, the shear plastic strain clearly increases

with non-proportionality, also the back stresses changed their pattern by adding a phase

angle to Case 4. These two parameters, cyclic plastic strains and back stresses, are an

indicator of the loading type effect on the material cyclic behaviour. Thus, it can be

concluded that non-proportional loadings create different cyclic patterns in the material

cyclic behaviour comparatively to proportional loadings, even for the same SAR and load

level.

Figure 3.9: Experimental hysteresis loops for loading Cases 5 and 6: a) Case 5 axial stress-strain,

b) Case 5 shear stress-strain, c) Case 6 axial stress-strain, and d) Case 6 shear stress-strain.
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3.2.2.5 Experimental P points

Figure 3.10 shows the P points dependence on the total strain amplitude in the pure axial

loading case, Case 1. Figure 3.10 a) presents the maximum stress amplitudes inherent

to each maximum strain amplitude. In graphs depicted in sub-figures 3.10 a) and b),

the abscissa axis represents the axial strain amplitude of the cyclic loading, which in

experiments takes negative and positive values. Therefore, tensile stresses have positive

strains and compressive strains have negatives stresses. However, to better interpret and

correlate the results of the compression and tension loads, it is considered here that

the compressive strains and inherent stresses have positive values. In this way, it is

facilitated the comparison between stress-strain relations in tension and compression. For

instance, using this way to represent stress-strain data, it can be concluded that the axial

stress-strain in tension and compression depicted in Figure 3.10 a) is almost equal in the

interval below 0.4% of total strain, but, beyond that value, the physical elastic-plastic

behaviour of the AZ31B-F magnesium alloy is quite different in tension and compression.

Figure 3.10 b) shows that the plastic strains in compression and tension have similar values

until bellow 0.4% of total strain, after this value, plastic strains in compression and tension

have completely different values. Each curve depicted in Figures 3.10 to 3.17 represents

the variation of the P points in respect to the total strain amplitude, the equations of

these curves are the P functions obtained by regression procedures. With these functions

it becomes possible to estimate any hysteresis loop of the axial and shear components of

a biaxial loading in the AZ31B-F magnesium alloy.

Figure 3.10: P points variation with axial total strain variation for Case 1

Figure 3.11 presents the P results obtained in Case 2, (the pure shear loading case),

contrary to what is seen in Case 1 (the tension-compression loading case) where for low

axial strain amplitudes the P1 and P2 functions are coincident, the shear stresses at points

P1 and P4 are always different across the shear strain amplitude range, even for elastic

shear strain amplitudes. The same pattern can be seen in the back stress evolution (P3 and
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P6) as well as in the plastic strains evolution (P2 and P5). This results can be explained

by the first loading direction of the total shear strain, where the first loading direction

influences the overall elastic-plastic deformation pattern.

Figure 3.11: P points variation with total strain variation for Case 2.

Figure 3.12, presents the P results obtained for the loading Case 3 depicted in Figure 3.5,

being a proportional loading path with SAR equal to 30o. Fig.(s) 3.12 a) and c) shows the

P results in respect to the axial strain component of the proportional loading and Fig.(s)

3.12 b) and d) show the P results for the shear strain component. The axial elastic-plastic

stresses of Case 3 (P1 and P4) are quite similar for total axial strains lower than 0.4%, as

seen in Case 1. Surprisingly, the shear stresses evolution (P1 and P4) have the same stress

values in both loading directions, the same can be said for the plastic strains, in this case

the first loading direction (torque) did not affected the shear hysteresis position. Thus,

it can be concluded that the hysteresis loops of the shear component of the proportional

loading path, Case 3, are in fact symmetric for all total strain levels. This symmetry can

be explained by the low cyclic plasticity resulted from the shear strain amplitude of Case

3, which is much lower than the axial one.

Figure 3.13 shows the magnesium alloy AZ3B-F cyclic behaviour under the proportional

loading path with SAR equal to 45o, i.e. Case 4. The same cyclic pattern that was found

in Case 3 can be seen in the results of Case 4, where the tension and compression stresses

(P1 and P4) begin to have different values beyond 0.4% of total axial strain amplitude.

The shear hysteresis loops also have a symmetric trend, as seen in Cases 2 and 3. In

this loading path the axial and shear strains have the same amplitude, but the stresses

inherent to these amplitudes are quite different. For instance, for 0.4% of axial and shear

total strain, the axial yield stress is about 140 [MPa] (P1 in axial) and the shear yield

stress is about 50 [MPa] (P1 in shear). Figure 3.14 shows the results obtained regarding

Case 5, which is a proportional loading with SAR equal to 60o. In this case the shear

strain component is greater than the axial one. The axial cyclic pattern in Case 5 is more
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Figure 3.12: P points variation is respect to the strain amplitude variation obtained in Case 3.

or less similar to the ones found in Cases 1 to 4, but the shear cyclic pattern has a higher

cyclic plasticity, which is an expected result because the shear strain amplitude is much

higher than the axial one.

Figure 3.14 b) shows the same cyclic pattern obtained in Case 2, please see Figure 3.11,

where the two strain-stress curves (P1 and P4) are not coincident, in this case the first

loading direction (right or left) influences the position of the shear hysteresis loop creating

a translation across the shear strain axis.

Figure 3.15 shows the results obtained in Case 6, these results are lightly different from the

ones obtained in Case 4. Cases 4 and 6 have the same SAR, thus the difference between

these two cases comes from the non-proportionality of Case 6. The non-proportional cyclic

deformation has a huge influence in the hysteresis loop shape, but the differences found

in the back stresses and plastic strains are not so evident.

Figure 3.16 shows the variation of P1 and P2 in respect to the axial and shear total strain

amplitudes for all proportional loading cases considered here i.e. Cases 1 to 5, (P1 is the
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Figure 3.13: P points variation is respect to the strain amplitude variation obtained in Case 4.

maximum stress of the hysteresis lower branch and P2 is their plastic strain). The results

show that the fitting curves of points P1 in all loading paths are not coincident across the

strain amplitude range, thus it can be concluded that the SAR variation have influence in

the hysteresis loops and in the inherent cyclic elastic-plastic behaviour. Moreover, the P1

curves are quite similar for total strains less than 0.4%, and the P2 curves are only similar

for total strain amplitudes less than 0.2%.

Figure 3.17 shows the P3 and P4 variation in respect to total strain. The P3 curves of

the shear component of a biaxial loading are different in all loading paths with no evident

pattern, please see Figure 3.17 b). Regarding the P3 curves of the axial loading component,

they have a similar pattern for total strain amplitudes lower than 0.4% has seen in the P1

curves. The P4 curves have also a similar pattern for total strains less than 0.4% in both

axial and shear components of a biaxial loading, please see Figures 14 c) and d).

Figure 3.18 presents the experimental results obtained for points P5 and P6, which belong

to the hysteresis upper branch, the P5 and P6 are the curves of the plastic strain and

back stress, respectively. As seen in other curves, i.e. P1 to P4, these curves (P5 and
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Figure 3.14: P points variation is respect to the strain amplitude variation obtained in Case 5.

P6) can be fairly merged in one curve for total strains lower than 0.4%, but beyond this

value, they present patterns completely different, for each loading case. These results

shown that the magnesium hysteresis loops can be fairly estimated using the uniaxial P

functions as presented in section ”HYS model based in uniaxial hysteresis loops” if the

shear and axial total strain amplitudes are below the upper limit of 0.4%, for greater total

strain amplitudes the model must be upgraded as presented in section 3.2.2.3. Figure 3.19

presents a comparison between proportional and non-proportional P curves of loading

Cases 4 and 6. Both loading cases have a SAR equal to 45o, thus it is possible to

compare the proportional and non-proportional P curves in respect to the same total

strain amplitude. The P points of the shear loading components, have a pattern very

similar in both loadings, however, the results of the axial loading components have great

differences, especially in the curves P3, P4, P5, and P6. Therefore, based in the results

depicted in Figure 3.19 it can be concluded that for the AZ31B-F magnesium alloy under

non-proportional loading path, the SAR effect in the cyclic deformation only influences

the axial component.
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Figure 3.15: P points variation with strain variation for the Case 6.

Figure 3.20 presents de SAR (stress amplitude ratio) variation with the Hypo-strain

variation, for the three proportional loading paths,i.e Cases 3 to 5. In the graph’s

abscissa it is presented the Hypo-strain and in ordinate is presented the SAR values

(stress amplitude ratio version), which is the ratio of shear stress to axial stress obtained

from the material response to the axial and shear strains. For each proportional loading

path (Case 3 to 5), it is obtained different SAR values in tension and compression

because the AZ31B-F magnesium alloy have different mechanical behaviours in tension

and compression. Also, the shear component hysteresis loop is not always symmetric;

therefore it will be obtained, in some cases, different stresses for each torsion direction,

especially when the shear component is greater than the axial one. The results depicted in

Figure 3.20 show that SAR depends on the strain amplitude level and also on the loading

direction. This evidence enforces the idea that will be discussed and presented in Chapter

4, in which the SSF value is not constant and depends on the loading path type and stress

level. Note that, the Hypo-strain in Figure 3.20 indicates the strain level, thus for each

strain level and for a SAR (strain amplitude ratio), it is obtained different stress amplitude
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Figure 3.16: P1 and P2 variation with SAR and strain variation in all proportional loading paths.

ratios SAR (stress version) as seen in Figure 3.20. Tables 3.1 and 3.2 present the results

for the polynomial constants introduced in Eq.(s) 3.12 and 3.13.

Table 3.1: Polynomial constants for the P functions for multiaxial loadings - Axial component.

Axial

P1 P2 P3 P4 P5 P6

a -0.03408 0.003106 -0.1717 -2.35533 0.008663 0.932681

b 481.6159 -0.12443 -40.4912 523.3197 -0.07452 -8.05794

c -0.0783 0.000192 0.163393 -1.38413 0.003737 1.102192

d -206.819 0.23118 134.2617 -379.461 0.406281 155.8362

e -0.00448 1.86E-05 0.005408 0.0718 -0.00021 -0.05726

f -0.80869 0.001098 -0.38309 -3.55155 0.007819 1.267397

g -90.706 0.433687 57.93164 100.9811 -0.13097 -119.972

h 0.000124 -4.6E-07 -0.00016 -0.00084 2.57E-06 0.000676

i -0.07011 6.69E-05 0.025193 0.003224 -0.00016 -0.03934

j 3.931702 -0.01128 -2.8987 1.435313 0.000804 1.018756
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Figure 3.17: P3 and P4 variation with SAR and strain variation.

Table 3.2: Polynomial constants of the P functions for multiaxial loadings - Shear component.

Shear

P1 P2 P3 P4 P5 P6

a 2.177984 0.038377 4.57375 -25.3663 0.210432 25.51458

b 59.35201 -0.17544 -17.7933 70.0056 -0.23946 -10.164

c -0.4713 -0.00154 -0.2192 1.262069 -0.01213 -1.59249

d -147.976 0.374491 59.83082 -106.496 0.200226 12.43844

e 0.013494 1.92E-05 0.00359 -0.01797 0.000207 0.028779

f 2.867768 0.003991 0.417744 1.686582 0.010154 0.953978

g 86.14576 -0.141 -35.9188 40.76676 0.008696 -1.96378

h -9.4E-05 -6.1E-08 -1.8E-05 7.46E-05 -1.1E-06 -0.00016

i -0.01049 -5E-05 -0.00508 -0.00596 -6.3E-05 -0.00441

j -1.05301 0.004585 0.349309 -0.32904 0.000738 -0.1774
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Figure 3.18: P5 and P6 variation with SAR in respect to total strain.
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Figure 3.19: P points variation in Case 4, and Case 6.

Figure 3.20: SAR (stress version) variations with Hypo-strain variation (strain level and load

direction).
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3.2.3 Correlation between HYS estimates and experimental data

3.2.3.1 Introduction

In this section, it is validated the developed elastic-plastic model (HYS) by comparing

their stress-strain estimates with the experimental data and with a well known cyclic

elastic-plastic model, the Jiang & Sehitoglu model. Two approaches are used, first is

is analysed the HYS estimates for multiaxial hysteresis loops by using the uniaxial P

functions (P functions from Cases 1 and 2). In this approach, the cyclic behaviour of

axial and shear components of a multiaxial loading are estimated without considering the

combined effect of the axial and shear loading components. In the second approach, it is

used the P functions obtained from the uniaxial and multiaxial loadings (Cases 1 to 5) to

estimate the cyclic behaviour of proportional and non-proportional loadings in order to

take into account the combined effect of the axial and shear components of a multiaxial

loading.

3.2.3.2 HYS estimates based in the uniaxial P functions

Figure 3.21 shows the experimental and numerical hysteresis loops estimated by the HYS

model for the uniaxial loading cases i.e. Cases 1 and 2.

The pure axial results (Case 1) are depicted in Fig.(s) 3.21 a) and b) for several total

strains, and the pure shear results (Case 2) are shown in Fig.(s) 3.21 c ) and d ). The

total strain amplitudes selected to perform the numerical analyses were the same used

in the experimental tests, in order to analyse the estimates accuracy yield by the HYS

model. This numeric model was developed based on the experimental hysteresis loops,

thus it is expected that the experimental and numeric results be quite similar, if the

assumptions made on the numeric model definition are true. Nevertheless, the estimates

shown in Figure 3.21 are quite acceptable for the uniaxial loading cases, which confirms

the hypothesis in which the hysteresis loops in pure axial and pure shear loading conditions

can be approximated by a third degree polynomial function.

In order to avoid any confusion regarding the graphs interpretation, it was only plotted

numeric hysteresis loops with total strain amplitudes equal to the experimental ones.

However, the numerical model can estimate any hysteresis loop within the range [0%,

1.4%] of total strain amplitude under uniaxial loading conditions. The hysteresis loops

depicted in Figure 3.21 show asymmetry in the axial hysteresis loops, which results from

the different mechanical behaviours found in tension and compression. Moreover, the

shear hysteresis loops are quasi-symmetric. Figure 3.22 a) and b) shows the numeric

results obtained with a total axial strain amplitude equal to 0.4% and a total shear strain

amplitude equal to 0.23%.

Figure 3.22 a) shows the HYS and Jiang plasticity model estimates obtained in Case 1,

(pure axial loading). Based on these results, it can be concluded that the Jiang hysteresis
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Figure 3.21: AZ31B-F experimental and numeric cyclic behaviour a) Axial experimental

stress/strain evolution b) Numeric results for axial stress/strain hysteresis loops c) Shear

experimental stress/strain evolution d) Numeric estimation for shear stress/strain hysteresis loops.

loop is more open than the experimental one, which indicates the existence of an additional

plastic strain and back stresses that in reality does not exist. Moreover, the stresses

estimated by the Jiang model, at the maximum total strain amplitude, please see Figure

3.22 b), are lower than the ones obtained with the numerical model. Regarding the pure

shear results (Case 2), shown in Figure 3.22 b), it is observed that the Jiang model

continues to estimate lower stresses than it should be at the maximum total shear strain

amplitudes, as seen in Case 1. The estimates regarding the biaxial loading cases (Cases 4

and 6) are shown in Fig.(s) 3.22 c) and d). Based on the numeric estimates of Case 4, it

can be concluded that the slope of the hysteresis loops (orientation) are different in both

numeric models. This difference resulted from the scale factor used in the Jiang model to

account the combined effect of axial and shear strains.

The HYS model based in the uniaxial P functions considers the axial and shear components

of a biaxial loading as two independent loadings in order to estimate the multiaxial
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Figure 3.22: Numeric cyclic behaviour comparison between the numeric model developed and

the Jiang & Sehitoglu plasticity model for 0.4% as axial strain reference a) Case 1, b) Case 2, c)

Case 4 and d) Case 6.

mechanical behaviour, then the axial and shear results are joined as if the axial and

shear components had been loaded together. This simplification leads to assume that

a given strain amplitude has equal stress values under uniaxial and multiaxial loading

conditions, for example in the HYS version discussed in this section, it is assumed that an

axial strain amplitude has the same stress value in the uniaxial loading case and in the

axial stress component of a multiaxial loading, which is not true because there is always

a combined effect between axial and shear strains in a multiaxial loading. This combined

effect can only be found by performing biaxial stress-strain tests under elastic-plastic

loading conditions. Figure 3.22 d) shows the results for the fully out-of-phase loading

case, Case 6; in this case, the estimates of both numerical models are quite similar in

shape. The Jiang model estimates for the axial-shear stress loading path are within the

HYS results, because the Jiang model yields lower stresses than the HYS model under

the same total strain amplitude. Figure 3.23 shows the numeric results a total strain

amplitude equal to 0.8%.
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Figure 3.23: Numeric cyclic behaviour comparison between the numeric model developed and

the Jiang & Sehitoglu plasticity model model for 0.8% as axial strain reference a) Case 1, b) Case

2, c) Case 4 and d) Case 6.

The uniaxial results presented in Fig.(s) 3.23 a) and b) show that the Jiang’s model

continues to estimate lower stresses at maximum total strain amplitudes in the compression

region, but in tension, the inherent stresses are similar to the numerical model estimates.

The dashed line depicted in Figure 3.23 shows the first hysteresis loop. The results of

Case 1 show that the compressive plastic strain and back-stresses are quite similar in

both models; however the plastic strains in the tension direction branch (upper hysteresis

branch) are very different. Jiang’s model gives values higher than the experimental results,

please see Figure 3.23 a) and d). In Case 2, the Jiang’s model has a hysteresis loop tighter

than the experimental results, which were estimated here by the HYS results. The Jiang’s

model estimates regarding the shear stresses inherent to the shear total strains at the

right and left loading directions (torque direction) are very similar to the HYS estimates.

Moreover, the pure axial hysteresis loop is estimated as symmetric by the Jiang model,

which is not true. In Case 4, please see Figure 3.23 c), the Jiang model also gives a

symmetrical hysteresis loop.
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Figure 3.24: Numeric cyclic behaviour comparison between the numeric model developed and

the Jiang & Sehitoglu plasticity model for 1.2% as axial strain reference: a) Case 1, b) Case 2, c)

Case 4 and d) Case 6.

The numerical model displays asymmetrical hysteresis loop for the axial loading. The

results of the out-of-phase loading case, Case 6, Figure 3.23 d), shows a distorted

circle(loading path) in both models; however, the distortion pattern has different

directions. Figure 3.24 shows the numerical estimates for 1.2% of total strain. Due to

the high values of plastic strains involved in this simulation (total strain equal to 1.2%) it

can be seen that the first hysteresis loop is quite different from the other ones (developed

stress-strain hysteresis loops). This result indicates an adjustment of the material to the

total strain level.

The Jiang model continues to estimate the hysteresis loops inherent to 1.2% of total

strain as symmetric in all loading cases considered here, although the biaxial loading

experiments have not been considered in this section, it is expected that the experimental

biaxial hysteresis loops be asymmetric and not symmetric as reported by the Jiang’s

model, since the axial hysteresis loops under uniaxial loading conditions are always
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asymmetrical. In the Jiang’s model, the total strain amplitude increase leads always to

the increase of their inherent maximum stresses. This indicates that the Jiang’s model

does not capture the total strain level effect in magnesium alloys, especially their cyclic

softening. In this case, total strain equal to 1.2%, the two numerical estimates regarding

Case 2 (the pure shear loading case) are very similar having plastic strains and back

stress values much alike. The numeric results for Cases 4 and 6 depicted in Fig.(s) 3.24

c) and d), show the first loading cycle with similar results in both models, but diverging

in the subsequent loading cycles. Figure 3.25 presents the HYS numeric results for a

total strain amplitude equal to 1.4%, this is a very high strain level, which leads to the

sample collapse in a few loading cycles. It can be seen that the Jiang’s hysteresis loops

remain symmetric in all loading cases. Under an extreme cyclic total strain amplitude,

the Jiang’s model presents equal plastic strain and back stress values in tension and

compression. Which is a result very different from the experimental data where loads

in compression direction (lower branch) induces high plastic strains and back stresses,

moreover the plastic strain in tension is very small comparatively to the one found in

compression.

Figure 3.25 b), depicts the experimental hysteresis loop of Case 2, results shows different

values for back stresses and plastic strains, which is a pattern not seen in lower total shear

strains. Figure 3.25 a), shows the results of Case 1, where it can be seen that the yield

stress in compression is much higher than the one in tension, for the same total strain in

tension and compression, which confirms the softening behaviour in tension and a little

hardening in compression for this total strain level. Also, it can be concluded that the

Jiang’s model is able to estimate well the material hardening but unable to deal with its

softening. From here, it can be reinforced the idea which suggests that an numerical model

based in experiments is needed to establish the different physical phenomena encountered

in materials with an hexagonal close packed micro-structure (HCP), such as the one found

in magnesium alloys.

3.2.3.3 HYS based in multiaxial stress-strain curves

Figures 3.26 and 3.27 show the correlation between the elastic-plastic models already

presented (the Jiang & Sehitoglu and the HYS model) and the biaxial experimental

results. It was selected three values for the Hypo-strain in order to compare the models

performance under three levels of cyclic plasticity. To perform this correlation, it is

presented the results using the stress space concept, where the axial stress vs shear stress

are depicted, here neither the shear stress neither the axial stress are affected by any factor

as seen in the von Mises stress space, for instance. Based on the results presented in Fig.(s)

3.26 and 3.27, it can be concluded that the developed model follows well the proportional

loading paths obtained by experiments, only in Case 3 and 5 at 1% of Hypo-strain it was
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Figure 3.25: Numeric cyclic behaviour comparison between the numeric model developed and

the Jiang & Sehitoglu plasticity model for 1.4% as axial strain reference: a) Case 1, b) Case 2, c)

Case 4 and d) Case 6.

found a slight deviation from the experimental results, please see Figure 3.26 e) and 3.27 e).

The advantage of the developed model comparatively to the Jiang & Sehitoglu model, is the

possibility to simulate the SAR effect in the material cyclic behaviour, having into account

cyclic effects such as twinning and de-twinning effects which are very relevant under higher

Hypo-strain values. Regarding the Jiang & Sehitoglu model, it can be seen that their

estimates fail to capture the shear stress limits, being higher than they should be. These

results indicate that the yield function estimate higher equivalent stresses than it should,

moreover the achieved stress amplitude ratios are quite different from the ones found

in experiments. These results can be explained by the defective estimates yield by the

hardening and flow rules, which indicates that the hardening rule embedded in the Jiang

& Sehitoglu do not follows the magnesium hardening behaviour. Also this deviation of

the experimental results may influence the estimates for crack initiation planes. The Jiang

& Sehitoglu estimates for the axial stress limits are also different from the experimental

results, however, this difference is not so pronounced as the one found in the shear stresses.
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The highest deviation from experiments can be found in tension where magnesium has a

particular hardening behaviour.

Figure 3.26: Correlation between estimations and experiments for cases: a) Case 3 - 0.3%

Hypo-strain, c) Case 3 - 0.6% Hypo-strain, e) Case 3 - 1% Hypo-strain, and b) Case 4 - 0.3%

Hypo-strain, d) Case 4 - 0.6% Hypo-strain, f) Case 4 - 1% Hypo-strain.
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Figure 3.27: Correlation between estimations and experiments for cases: a) Case 5 - 0.3%

Hypo-strain, c) Case 5 - 0.6% Hypo-strain, e) Case 5 - 1% Hypo-strain, and b) Case 6 - 0.3%

Hypo-strain, d) Case 6 - 0.6% Hypo-strain, f) Case 6 - 1% Hypo-strain.
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Under proportional loadings, the Jiang & Sehitoglu estimates for tension stresses are

lower than they should, which indicates that the hardening rule do not captures the

magnesium hardening in tension, however at compression the estimates are very similar

to the experimental results. This is so because the magnesium hardening in compression

is very low. It can be found in the Jiang & Sehitoglu results the loading path symmetry

depicted in the stress space, i.e. shear and axial stresses amplitudes have the same absolute

value in both loading directions. This result confirms the incapability of this constitutive

model to estimate cyclic anisotropy. Figure 3.27 a), c), and e) presents the results for

the Case 5, which have a SAR equal to 60o, in this case the shear strain amplitude is

higher than the axial one. Also here the Jiang & Sehitoglu model over estimates the

shear stress limits, surprisingly for 1% of total strain, the axial stress estimates are very

similar to the experimental ones, please see Figure 3.27 e). At this Hypo-strain level,

the developed model (HYS) also has a slight deviation as seen in Case 3. Regarding the

non-proportional loading case, i.e. Case 6, both methods fail to follow the experimental

results, only for a Hypo-strain equal to 0.3% it was obtained acceptable estimates, despite

that, the developed model is the one that is closest to the experimental data, for instance

in Figure 3.27 d) the HYS estimates almost follows the experimental results failing in the

tensile region where it occurs a pronounced hardening. For 1.14% of total strain, Figure

3.27 f), the estimates of the developed model are within of the experimental results, in

this case the stress values are lower than they should be indicating that the HYS model

do not capture the magnesium non-proportional hardening, this evidence becomes more

obvious greater Hypo-strain values.

3.2.4 Final comments

In this section, it was studied the elastic-plastic behaviour of a magnesium alloy under

uniaxial and multiaxial loading conditions. Several proportional and non-proportional

loading paths were carried out under strain control in order to acquire the relation between

the biaxial stress components as well as the plastic strains and back stresses. The idea was

to analyse the SARε effect in the elastic-plastic properties under proportional loadings

and also analyse the non-proportional effect in these properties under a fixed SARε.

The experimental results were correlated with two elastic-plastic models, the well-known

Jiang & Sehitoglu model and the HYS model, a numerical model developed here. The

HYS Matlab code can be found in Appendix B at the end of this document. Results

show that the experimental hysteresis loops are also asymmetric under multiaxial loading

conditions, especially the ones from the axial loading components; the asymmetry found

in the shear loading components came from the first loading direction, which is more

pronounced at high strain amplitude levels. The Jiang & Sehitoglu model have poor

estimates in proportional and non-proportional loadings, this poor performance can be

explained by the inability to following the magnesium hardening behaviour, this conclusion
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was corroborated by the symmetry found in the axial estimates. The model developed

here have limitations that need to be overcome, i.e. it is required further investigations in

order to incorporate the non-proportional hardening behaviour in the HYS model. Despite

this limitation, the developed model shows good agreement with the experimental data

under proportional loadings, the model captures very well the plastic strains, and back

stresses for a wide range of total strains.

3.3 Cyclic non-proportionality

3.3.1 Non-proportional sensitivity parameter, Y

In this section, it is developed a new parameter that measures the material

non-proportional sensitivity, the Y parameter. As seen in the previous sections,

proportional and non-proportional loadings cause different cyclic effects, thus here it is

performed a comparison between proportional and non-proportional loadings in order to

evaluate the Y parameter in three different materials. The Y parameter aims to account

the additional fatigue damage when it is added a phase shift to a proportional loading,

thus in this study, proportional and non-proportional loadings have both a stress amplitude

ratio equal to 1/
√

3 . In order to evaluate the Y parameter, a new approach to represent

S-N curves is adopted. In this approach, the axial and shear stress components of a

multiaxial loading are depicted in the S-N chart as independent stresses instead of using

a equivalent stress. Thus, here the S-N chart of a multiaxial loading has two curves, one

for the axial stress component and other for the shear one.

Based on experiments, it was found out that the axial and shear S-N curves of proportional

and non-proportional loadings are almost parallel to each other in the case of a stress

amplitude ratio equal to 1/
√

3 . This result lead to the conclusion that the relative

position between axial and shear S-N curves of both proportional and non-proportional

loadings is a outcome of the non-proportional contribution to the overall fatigue damage.

Moreover, the relative damage between proportional and non-proportional loadings can

be considered constant and independent from fatigue life-time, because both proportional

and non-proportional S-N curves are parallel to each other. The reasoning that supports

the physical meaning of the relative damage between proportional and non-proportional

loadings histories is as follows: If the S-N curves of the axial and shear components

of a non-proportional loading are above of their homologous proportional curves, then

for a given fatigue life-time, it is necessary to increase the stress amplitude level of

the non-proportional axial and shear stress components to obtain the same fatigue

life-time. Therefore in this scenario, the non-proportional loading will have a greater

fatigue life-time compared to the proportional loading case, for the same axial and shear

stress amplitudes in both proportional and non-proportional loadings. In this scenario,

the non-proportional loading is less damaging than the proportional one, indicating that
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the material is less sensitive to non-proportionality. On the other hand, if the axial

and shear S-N curves of a non-proportional loading are bellow of their homologous

proportional curves, thus for a given fatigue life-time, the energy to be spent on the

fatigue damage process is less in non-proportional than in proportional loading conditions.

In this case, the non-proportional loading is more damaging than the proportional one,

indicating that the material is more sensitive to non-proportionality. To quantify the

materials non-proportional sensitivity, it was conceived here a new factor concept for

non-proportionality, the Y parameter, which correlates proportional and non-proportional

loading amplitudes, where the non-proportional S-N curves (axial and shear) can be

estimated based in the proportional ones. Figure 3.28 shows in which way the Y parameter

is defined in order to quantify the material sensitivity to non-proportionality.

Figure 3.28: Non-proportional sensitive parameter definition, Y parameter.

The Y parameter interpretation is as follows: If the Y parameter has a value less than

1, thus the material is less sensitive to non-proportionality than it is to proportionality.

If the Y parameter is equal to 1, thus proportional and non-proportional loadings have

the same influence on the material fatigue strength. If the Y parameter is greater than

1, it can be considered that the material is very sensitive to the non-proportional loading

conditions. In this case, for a given fatigue life-time, non-proportional loadings have lower

stress amplitudes than the proportional ones.

3.3.2 Y parameter experimental evaluation

To evaluate the methodology of getting the material sensitivity to non-proportional

loadings it was selected from literature non-proportional fatigue data of three materials

[3], namely the high strength steel 42CrMo4, the Ck45, and the stainless steel AISI 303.

Further information regarding the mechanical properties and industrial applications of

these materials is given in Appendix A. Table 3.3 shows the fatigue data for these materials
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and loading paths depicted in Figure 3.29. These experiments were made under stress

control with a loading frequency between 5 Hz to 6 Hz at room temperature. The samples

geometry and dimensions is shown in Figure 3.30.

Figure 3.29: Proportional and non-proportional loading paths used to evaluate non-proportional

sensitivity.

Figure 3.30: Sample geometry and its dimensions.

Figure 3.29 shows the loading paths considered in this section. Case 1 is a proportional

loading path, the other loading cases, Cases 2 to 5, are non-proportional loadings with

different non-proportional effects.

Fig.(s) 3.31 and 3.32 show the Ck45 experimental data for the selected multiaxial loading

paths. For each non-proportional loading case, it was made a comparison between the

proportional loading case, Case 1 depicted in Figure 3.29, and the other non-proportional

loading cases (Cases 2 to 5 depicted in Figure 3.29). This comparison was made by

representing in the same graph the axial and shear S-N curves of both the reference case

(proportional) and non-proportional loading case, in order to inspect the relative damage

between proportional and non-proportional curves.
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Figure 3.31: Ck45 fatigue life results and relative damage between Case 1 (reference case) and:

a) Case 2, b) Case 3.

Figure 3.32: Ck45 fatigue life results and relative damage between the reference case, Case 1,

and a) Case 4, b) Case 5.
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Table 3.4 shows the Ck45 results regarding the Y values for each non-proportional

loading considered here, these Y values match the axial and shear non-proportional

curves with the proportional ones (multiplying the axial and shear S-N curves by Y it

is obtained the proportional curves). Based on experimental results, it was found that

the Y parameters that relates proportional and non-proportional shear S-N curves and Y

parameters that relates proportional and non-proportional axial S-N curves are similar,

thus the Y parameter mentioned hereinafter refers to both axial and shear S-N curves of

a non-proportional loading.

Table 3.4: Ck45 Y values for Cases 2 to 5.

Y Case 2 Case 3 Case 4 Case 5

Ck45 0.83 0.96 0.84 0.96

Figure 3.31 a) shows the Ck45 relative damage between Case 1 and Case 2, where the

axial and shear non-proportional S-N curves are above of the proportional ones. This

result indicates that the Ck45 is less sensitive to non-proportional loading conditions

than it is to proportional ones, i.e. the Y parameter is less than 1 for Ck45. Thus,

to obtain the same fatigue life-time in both loading types it is required higher stress

amplitudes in the non-proportional loading case, this pattern is observed more or less in

the Ck45 fatigue behaviour regarding the other loading cases, Cases 3 to 5. Based on

this results, it can be concluded that non-proportional loading paths don’t aggravate the

damage process comparatively to the proportional loadings in this material, if it is used

the same stress level in both loading types (proportional and non-proportional). However,

comparing the Y values obtained in Cases 3 and 5 and depicted in Figures 3.31 b) and

3.32 b) respectively, it can be concluded that steady stress increases the Y value which

means that the non-proportionality in this cases is more damaging than the one verified

in Case 2. In Case 4, Figure 3.32 a), the steady stress in compression do not affect

significantly the Y values comparatively to the Y values obtained in Case 2, also the Y

values in Cases 3 and 5 are equal, which indicates that steady stress in compression do

not contribute significantly to the damage process, but steady stresses in tension increases

the non-proportional damage. In this case, the additional damage from steady stresses

almost equals non-proportional damage to the proportional one, i.e. Y parameter close to

1. Table 3.5, and Fig.(s) 3.33, 3.34 show the experimental results for the stainless steel

AISI 303.

Table 3.5: AISI 303 Y values

Y Case 2 Case 3 Case 4 Case 5

AISI 303 0.81 0.83 0.77 0.85
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Figure 3.33: AISI 303 fatigue life results and relative damage between the reference case, Case

1, and a) Case 2, b) Case 3.

Figure 3.34: AISI 303 fatigue life results and relative damage between the reference case, Case

1, and a) Case 4, b) Case 5.

In the AISI 303 material, all non-proportional loading cases have Y values less than one,

thus non-proportionality is less damaging than the proportional one regarding the same

stress level. From Table 3.5 it can be concluded that Cases 2, 3 and 5 have a Y value

very similar, however some conclusions can be draw. The Y parameter in Case 4, see

Figure 3.29, is the lowest of all, i.e. the steady stress in compression some how decreases

the non-proportional damage. The highest Y value was obtained in Case 5, being the

non-proportional loading most damaging; this is explained by the steady stress in tension

found in this case. Moreover, Case 3 has a Y value slightly lower than the one found in

Case 5, this result indicates that the steady stress in compression compensates in some way

the damage caused by the steady stress in tension, i.e. the steady stress in compression has

119



Multiaxial Fatigue

a mitigation action on the damage caused by the steady stress in compression. However,

this damage reduction do not totally compensate the damage increment resulted from

the steady stress in tension. The Y results in Case 4 corroborates the aforementioned

conclusions, i.e. the Y value in Case 4 less than the one found in Case 2, which indicates

that steady stress in compression reduces the non-proportional damage in this material.

The 42CrMo4 results are shown in Figures 3.35, 3.36, and Table 3.6. Regarding this

material, the Y values for Cases 2, 4 and 5 are very close to 1, indicating that proportional

and non-proportional fatigue strength is very alike regarding the same fatigue life. In this

material, the most damaging loading path is the Case 3, please see Figure 3.35 b), where

the fatigue damage increases, due to steady stress in tension and compression. This

statement is corroborated with the fact that Y values for Cases 4 and 5, please see Figure

3.36 a) and b), are greater than the one obtained in the Case 2, Figure 3.35 a), indicating

that both steady stress increases the non-proportional damage. Based on this results, it

can be concluded that the 42CrMo4 material is slightly insensitive to non-proportional

loadings, Y=0.95. However, it can be found higher Y values due to steady stresses in

tension/compression, in this material the compression steady stress causes more damage

than the tension one, this can be seen in Table 3.6 where the Y value calculated in loading

Case 4 is greater than the one calculated in Case 5.

Figure 3.35: 42CrMo4 fatigue life results and relative damage between the reference case, Case

1, and a) Case 2, b) Case 3.

Table 3.6: 42CrMo4 Y values.

Y Case 2 Case 3 Case 4 Case 5

42CrMo4 0.95 1.19 1.08 1
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Figure 3.36: 42CrMo4 fatigue life results and relative damage between the reference case, Case

1, and a) Case 4, b) Case 5.

3.3.2.1 Y comparison between materials

Table 3.7 summarizes the results regarding the three materials and the selected

non-proportional loading cases.

Table 3.7: Y values comparison for the selected materials and loading paths.

Y Case 2 Case 3 Case 4 Case 5

Ck45 0.83 0.96 0.84 0.96

AISI 303 0.81 0.83 0.77 0.85

42CrMo4 0.95 1.19 1.08 1

It can be concluded that for the same material the less damaging non-proportional loading

path is the Case 2, i.e. the fully out of phase loading case, excepting on the AISI 303

material where the lowest Y value was obtained in the loading Case 4. The material most

sensitive to non-proportionality among the three materials selected in this study was the

42CrMo4 for the experimental loading cases considered here, this statement is supported

by the 42CrMo4 Y values which are the biggest ones among the selected materials.

Comparing the Ck45 and AISI 303 results, all Y values are less than 1, however the Ck45

Y values are greater which indicates that Ck45 is more sensitive to non-proportionality

than AISI 303, but less than 42CrMo4. Analysing the loading Case 4 in all materials,

it was observed that the Y value of the loading Case 4 on AISI 303 is less than the one

obtained in the Case 2, this behaviour do not occur in the Ck45 and 42CrMo4 materials,

despite the AISI 303 microstructure (fcc) be different from the Ck45 and 42Crmo4 (bcc)

in all other cases the AISI 303 follows the same pattern, i.e. the Y values in loading Cases
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3 and 5 are greater than in loading Case 2. From here, it can be concluded that fatigue

behaviour varies with material type and depend on the material response to the cyclic

loading type. Moreover, equivalent stresses or damage parameters determined based on a

fixed stress space, i.e. based on a constant value for the relation between the damage of

the axial and shear stress components can lead to erroneous conclusions.

3.3.3 Final comments

The relative damage between non-proportional and proportional loading paths was

analysed here for three different materials. In order to evaluate and quantify that

damage it was proposed a Y parameter which relates the axial and shear S-N curves

of a non-proportional loading to their homologous proportional curves. Regarding the

Ck45 material, the non-proportionality parameters such as phase angle variation, shear

and axial steady stress components do not lead to a greater damage than the proportional

one, i.e. the average Y values are less than 1. The AISI 303 has a non-proportional damage

behaviour very similar to the Ck45 material, however one difference was found in Case

4 regarding the steady stress in compression, where the Y non-proportional parameter is

less than the one found in Case 2, this result was only observed in this material. Finally,

the 42CrMo4 is the material most sensitive to non-proportional damage. Some remarks

can be drawn from this analysis, three different materials were tested in multiaxial fatigue

loading conditions; it was observed different non-proportional damage behaviours in the

selected materials subject to loading paths with different degrees of non-proportionality.

The non-proportionality influence is not equal for all materials, it changes accordingly to

the material, and a constitutive parameter must be used to account with the additional

non-proportional damage.
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Chapter 4

Contributions to Level 2

4.1 Introduction

In this chapter, it is presented the thesis contribution to the state-of-the-art regarding the

level 2 depicted in Figure 4.1.

Figure 4.1: Multiaxial fatigue level focused in this chapter.

This contribution is a new equivalent shear stress for uniaxial and multiaxial loading

conditions. The objective here, is to achieve a multiaxial fatigue criterion capable to deal

with all types of loadings including multiaxial random loadings. In order to do that, it

is developed a methodology to map a new multiaxial fatigue constitutive parameter that

relates two physical quantities i.e. the fatigue damage from shear and normal stresses,

which are always present under multiaxial loading conditions. This new constitutive

parameter, the SSF damage map, is the cornerstone of the multiaxial fatigue criterion

presented here, and later on used in the next two chapters.

4.2 Material constitutive behaviour

Material constitutive behaviour under the scope of fatigue damage assessment is the

material physical response (loss of mechanical properties) to an external stimuli. This

stimuli results from cyclic loadings that may be distributed or local forces. The idea behind

the constitutive concept is to perform a correlation, using mathematical formulations,

between the material physical behaviour and the physical variables involved in the fatigue
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damage process. From this correlation it is obtained mathematical functions that can be

used to estimate the material behaviour in the field, which is very useful in mechanical

design procedures. For example, the Hook’s law is a constitutive equation that estimate

the physical relation between stresses and its inherent strains. In this case the constitutive

parameter is the Young’s modulus, which is a material property. In some cases constitutive

parameters are not a constant value due to the non-linear material response, where the

material physical behaviour is dependent of the external stimulus type. For instance, in

anisotropic materials such as composites, the Young’s modulus is a directional dependent

constitutive parameter. In this case, the Young’s modulus is a generalized tensor in

order to capture the Young’s modulus directional dependence that is typically found in

composites.

In multiaxial fatigue, the material ability to resist to cyclic loadings can be also estimated

using a constitutive relation. The external cyclic loadings and the inherent material fatigue

response can be correlated using a cyclic constitutive parameter. This parameter must be

capable to capture the fatigue damage process resulted from different multiaxial loading

conditions and stress levels. From experiments it was proved the existence of different

damage patterns resulted from different combinations of normal and shear stresses, even

for the same stress level [16]. Despite that, this experimental evidence has been somehow

overlooked in the multiaxial fatigue criteria found in literature. One example of this

fact is the von Mises equivalent stress. In this equivalent stress the constant
√

3 is used

to reduce the fatigue damage of shear stresses to the damage scale of normal stresses,

however, this constant do not capture the different damages scales obtained under different

combinations of normal and shear stresses. These damage scales are corroborated with

different experimental deformation patterns found in pure axial, pure shear, and multiaxial

loading conditions. These different patterns are illustrated in Figure 4.2 to clarify this

matter.

Figure 4.2 a) depicts a grid at rest without any load. Now, consider Figure 4.2 b), in

this case the grid is loaded with a normal loading with an elongation pattern in the axial

direction. Figure 4.2 c) presents the same grid but now with a multiaxial shear loading

causing a distortion deformation. As it can be seen, the deformation pattern is quite

different in both loading conditions.

Now, consider the grain structure of a given material loaded with the conditions shown

in Figure 4.2. Under these loading conditions, the grain structure will have different

deformation patterns like the ones depicted in Figure 4.2 b), c) and d) for pure axial,

pure shear, and biaxial loading conditions. Due to the different deformation patterns, the

material strength (including fatigue strength) will be different for each load condition.

Now, consider a biaxial loading having simultaneously two types of deformation patterns

(normal and shear) as depicted in Figure 4.2 d).
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Figure 4.2: Illustration of different deformation patterns from different loading types: a) At rest,

b) Uniaxial normal loading c) Uniaxial shear loading and d) Biaxial loading.

In this case, the deformation pattern is a mixture of normal deformation and shear

distortion. To compute the fatigue damage of a biaxial loading it is required evaluate

the contribution of each damage pattern (normal and shear) to the overall damage, to

do that it is required evaluate both normal and shear damages in the same damage scale.

Therefore, it is necessary reduce both normal and shear damages to the same damage scale

because the normal and shear deformations cause different types of damage mechanisms

in the material grain structure yielding different damage scales. However, in the von

Mises equivalent stress criterion, in which the constant
√

3 is defined under uniaxial static

loading conditions, it is not possible to capture the relation between normal and shear

deformations under different stress amplitude ratios.

The assumption of a constant value to reduce both normal and shear damages has been

widely used in multiaxial fatigue criteria. Nevertheless, from experiments it was found that

the predominance of a normal damage over the shear one or vice versa causes different

cyclic damage rates in the material cyclic response. Moreover, the aforementioned damage

rates obtained under different stress amplitude ratios can be experimentally analysed by

inspecting the material failure mode (crack separation mode), which is also dependent on

the stress level and load type.

In order to scrutinize the fatigue damage behaviour under different multiaxial loading

conditions and stress levels, it is performed in the following paragraphs a fatigue crack

analysis over experimental results. The objective is to show the experimental evidence

about the effect of the stress amplitude ratio in the fatigue damage process by focusing

crack grow paths.

Fig.(s) 4.3 and 4.4 show for different loading paths the experimental crack growth as

consequence of different damage mechanisms. This study was performed on a 2A12–T4

aluminum alloy [20] with two loading path variables, e.g. the stress amplitude ratio, which

is the ratio between the multiaxial loading components, τ/σ , and the phase angle between

the normal and shear loading components (non-proportional loading paths). It can be seen

in Figure 4.3 that the stress amplitude ratio variation leads to different crack initiation
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planes and crack growth patterns, which indicates different damage mechanisms. Figure

4.4 shows the phase angle effect on the fatigue crack initiation and growth, here the stress

amplitude ratio is maintained fixed during the loading period. From these results, it can

be concluded that the phase angle variation also induces different crack initiation planes

and growth paths which in turn indicate different fatigue damage mechanisms.

Figure 4.3: In-phase fatigue crack results under different stress amplitude ratios [20].

Figure 4.4: Out-of-phase fatigue crack results for a fixed stress amplitude ratio [20].

Furthermore, the fatigue damage mechanism is also dependent on the stress level. Figure

4.5 depicts different failure modes achieved under pure torsion loading conditions.

Figure 4.5: Failure modes in torsion [16].

For the uniaxial torsion loading case, different surface fractures can be achieved by

changing the shear stress level involved in the damage process, please see Figure 4.6.

In this case, for lower shear stress amplitudes it is achieved spiral cracks, for average shear

stress amplitudes it is achieved longitudinal cracks and for higher shear stress levels it is

achieved transverse cracks [16]. Thus, it can be concluded that for the same loading path

it can be seen different crack initiation planes under different stress levels.

Based on the different fatigue crack behaviour discussed above, it can be concluded that

the direction of the crack initiation plane varies according to the loading path type and
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Figure 4.6: Map of macroscopic fracture mechanisms [16].

stress amplitude level. Therefore, the material ability to resist to multiaxial cyclic loadings

has an anisotropic behaviour with non-linear patterns. Moreover, this ability to cyclic

resist to external loads is therefore a material property and is strongly dependent on

its micro-structure. It seems that the stress amplitude ratio (λ) and the stress level

are two variables qualified to account the combined fatigue damage of multiaxial loading

components. Thus, these variables are good candidates to be used in constitutive equations

of multiaxial constitutive parameters, which must be representative of the loading path

and stress level effects on the material fatigue strength.

4.3 Multiaxial fatigue constitutive parameter

The key to achieve the multiaxial fatigue constitutive parameter, described in previous

sections, is on the interpretation of the combined fatigue damage from shear and normal

stresses. Experimentally, it has been proven that the stress level needed to cause fatigue

failure in pure shear is lower than the axial one for a wide range of materials. This fact

has led to consider a stress scale factor (SSF) between shear and normal stresses in order

to reduce different stresses in nature to the same stress space, i.e. to the same damage

scale.

Most of the multiaxial fatigue models found in literature correctly consider the normal

and shear stresses contribution to the material strength variation, and somehow a stress

scale factor have been always defined. The stress scale factors of the multiaxial fatigue

criteria presented and discussed in Chapter 2, are determined based on the materials

fatigue strength under pure axial and pure shear loading conditions (uniaxial loading

paths). Some of these criteria has been used to estimate fatigue strength in the finite

life region under the assumption that the slopes of the pure shear and pure axial S-N

curves are maintained equal in all fatigue life range. Due to this assumption, these criteria

have been considered as an equivalent damage parameter, because their SSF formulation

remains valid (according to their assumption) for finite and infinite fatigue life estimates.

However, the slopes of the uniaxial S-N curves (axial and shear) varies across the fatigue
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life range due to the stress level effect on each type of deformation (axial and shear), which

results in the SSF variation with the stress level variation. Thus, in these criteria, the

assumption of a constant SSF do not take into account the stress level effect in the fatigue

damage process.

Considerable efforts were made to quantify the effective shear and normal stress amplitudes

under three-dimensional stress states. However, the combined damage from these

amplitudes have been estimated based in a constant value. In some criteria, mostly

equivalent stress criteria, the constant value approach proved to be inadequate. For

example, this approach has led to compute damage parameters with equal amplitude

for different loading paths with different experimental fatigue lives.

4.3.1 The stress space damage paradigm

In continuum mechanics, the so called stress space or Haigh-Westergaard stress space is

defined based in the principal stress directions of a generic stress tensor. These directions

define the rotation and inherent direction of a Cartesian reference system (principal axes

directions). In each principal axis, it is accordingly represented its principal stresses time

evolution.

Principal stress functions can be also represented in this stress space, the von Mises yield

function is one example of that. When a stress state has three principal stresses, this

yield function becomes a cylindrical yield surface. However, when the stress tensor can be

simplified into two principal stresses, the yield surface has circular shape in the π plane

(plane equally inclined to each principal axis). Under this reasoning, biaxial loading paths

are usually represented in the π plane with two principal axes. In one principal axis it is

represented the normal stress amplitude and in the other one it is represented the shear

stress amplitude multiplied by
√

3, which comes from the von Mises yield function.

Moreover, the von Mises equivalent stress is given by the vectorial norm of these principal

stresses depicted in the π plane. Based in this facts, it can be concluded that the von

Mises stress space is a yield stress space that has been used to estimate multiaxial fatigue

strength. For example, the ASME Boiler and Pressure Vessel code [3] evaluates its damage

parameter in the von Mises stress space among others.

One characteristic of this stress space is the constant stress scale factor in the shear

stress axis, which comes from the von Mises yield criterion. Therefore, the
√

3 constant

results uniquely from a mathematical exercise and is not based on experimental evidences.

Moreover, the von Mises damage scale is independent from the stress level, loading path,

and material type. This is a crucial flaw, because fatigue damage is strongly dependent

of the loading conditions and material type, thus the von Mises stress space paradigm is

inappropriate to evaluate fatigue damage parameters. Despite that, the von Mises yield

stress space has been used to estimate fatigue lives which is the cases of the invariant
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criteria, for instance. In the following sections, it will be proved that the aforementioned

fatigue damage scale (which has been represented by a constant) varies according to the

material type and loading conditions. Therefore, if the fatigue damage scale varies due to

the loading nature, thus the stress space damage scale must also vary, i.e. the stress space

paradigm must be updated according to the material cyclic response.

4.4 Multiaxial SSF concept

In this section, a new stress scale factor concept (SSF) is proposed. The objective is to

perform a experimental correlation between the material fatigue strength and the loading

type to obtain a constitutive function i.e. the SSF function. The physical meaning of the

proposed constitutive function is a multiaxial fatigue damage scale that adjusts its scale

according to the multiaxial loading type and stress level. This new function will allow

to add shear and normal damages having into account the loading type, stress level, and

material type, which a feature that cannot be found in literature. In fact, the innovation in

this approach is based on a paradigm change, where a constant damage scale is replaced

by a two variable function. In this way, it becomes possible to capture the material

fatigue damage anisotropy, which has been experientially verified under multiaxial loading

conditions.

In order to obtain the SSF function, it was performed a series of specific experimental

fatigue tests. In these tests, proportional loading paths with different stress amplitude

ratios (SAR), and stress levels were used to characterize the fatigue damage anisotropy.

The selected loading paths were chosen in order to avoid other type of influences on the

experimental results, such as non-proportionality or mean stress effects in order to avoid

biased interpretations. These effects can be later accounted trough dedicated parameters

such as the Y parameter proposed in Chapter 3.

In the following, it is presented the reasoning behind the SSF function. For each stress

amplitude ratio and stress level of the aforementioned proportional loadings used in

experiments, the following reasoning is considered: In Figure 4.7 it can be found a S-N

graph where it is represented the fatigue life-time evolution of two loadings. One is a

proportional loading, which is represented by its two stress components (shear and normal)

versus fatigue life, Nf .

This is a unconventional representation of a S-N curve, usually it is used a damage

parameter computed with the two stress components of a loading path (shear and normal

stresses) versus fatigue life. However, the aforementioned unconventional representation

is adopted here to avoid any biased influence in the fatigue damage interpretation. The

second load depicted on Figure 4.7 is the pure shear S-N curve that will be used as

fatigue damage reference in order to correlate uniaxial and multiaxial loadings. The SSF

function, as designed here, will reduce fatigue damage from normal stresses to the shear
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damage scale. However, the reasoning behind this design can be also used to reduce shear

damage from shear stresses to the damage scale of normal stresses, but in this case the S-N

curve (reference damage curve) to be used in fatigue life estimates must be the axial one.

Recalling Figure 4.7, the stress amplitude ratio of the multiaxial loading is calculated by

dividing the shear stress amplitude AB by the normal stress amplitude AD, i.e. AB/AD ;

which is maintained constant across all S-N graph.

Figure 4.7: Illustrative case of a multiaxial and an uniaxial S-N curve.

Experimentally, it is observed that the slope of the lines represented in Figure 4.7 are not

parallel to each other. This leads to the conclusion that the distance BC and CD does

change with the fatigue life variation, indicating a non-linear effect on fatigue damage due

to the stress level variation. Moreover, the stress amplitude ratio variation will also vary

the distances BC and CD, reflecting different fatigue strengths according to the combined

effect of the normal and shear stresses. Now, the key concept behind the SSF damage

map is the following:

Here, as an example, the SSF mapping concept is explained at 1E5 cycles (fatigue life),

however, to obtain the SSF damage function (based on the SSF damage mapping) the

reasoning explained in the following is performed for the entire fatigue life range obtained

in the experiments. Fatigue failure at 1E5 can be achieved using the two loading paths

depicted in Figure 4.7, for that it will be required the stress amplitude AC in pure shear,

and the stress amplitudes AB (shear) plus AD (normal) in the proportional loading.

Since the fatigue failure occurs at the same fatigue life-time in both loading paths i.e. 1E5

cycles, it can be considered that both fatigue damages (AC and AB+AD) are equivalent,

because they cause the same final result. Now, imagine that, it is removed the normal

component of the proportional loading, i.e. the stress amplitude AD is removed being left

the shear stress component AB. Under this circumstances, it is not possible to obtain a
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fatigue failure at 1E5 cycles, the AB amplitude must be increased with the increment BC

to cause such a failure.

Therefore, the additional damage caused by the increment BC is equal to the one caused

by the normal stress amplitude, depicted in Figure 4.7 by AD. This is so because, the

same life-time is obtained using the two following combinations: shear amplitude AB plus

the shear increment BC, or shear amplitude AB plus the normal stress amplitude AD.

Thus, the AD normal stress amplitude has the BC amplitude in the shear damage scale.

To reduce the fatigue damage of normal stresses to the shear damage scale, the AD

normal stress amplitude must be multiplied by the respective SSF, which is given by

SSF = BC/AD . The SSF varies with the stress amplitude ratio and also with the stress

level that is a dependent variable of the normal stress amplitude, thus the SSF damage

map can be defined through a two variable function and used to obtain an shear equivalent

stress as follows in Eq. 4.1.

ssf (σa, λ) =
BC (σa, λ)

AD (σa, λ)
(4.1)

Where σa is the normal stress of a given multiaxial loading and the λ variable is its stress

amplitude ratio, presented in Eq. 4.2.

λ =
τa
σa

(4.2)

4.4.1 Particular case of the uniaxial loading conditions

The SSF concept applied to the uniaxial loading cases, i.e. pure normal and pure shear

loadings, is illustrated in Figure 4.8. The SSF concept applied to the uniaxial loading

cases which transforms the normal and shear damages to the same damage scale, is given

by the ratio between the shear stress amplitude and the normal stress amplitude for the

same fatigue strength, as shown in Figure 4.8 and Eq. 4.3.

ssf =
τa uniaxial
σa uniaxial

∣∣∣∣
Nf

(4.3)
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Figure 4.8: Illustrative case of uniaxial damage correlation using the SSF concept.

4.4.2 Additional non-proportional damage

Non-proportional loading cases are generally identified by the principal directions variation

during the loading period. However, it is important to have in mind that the concept of

the principal directions variation is insufficient to fully characterize the non-proportional

damage of a given non-proportional loading. Non-proportionality may result from a

wide range of loading types which creates also a variety of damage mechanisms. These

mechanisms result essentially from the way in which the material micro-structure is

loaded, which is very different from the one verified on proportional loading paths.

Non-proportional loadings may activate all material slip systems which increase the loading

effect on the material micro-structure (additional cyclic hardening or softening). In this

way, non-proportionality is much more than a phase angle between normal and shear

stresses or a variation of the principal directions. Figure 4.9 shows four non-proportional

loading paths with different damage mechanisms. Although, these non-proportional

loadings have their principal directions rotating during the loading period, they load the

material micro-structure in different ways. Therefore, it can be concluded that the damage

scale involved in each one of the presented loading paths are quite different.

In Figure 4.9, the out-of-phase loading path depicted in the upper left corner, have

normal and shear strains with a sinusoidal shape and a phase shift equal to 90o. The

diamond loading is similar to the out-of-phase loading case, the only difference is in the

shape of the normal and shear strains time evolution, which have a sawtooth shape.

The square loading path has a steady normal and shear strains during the loading

period. Finally, the cross loading path is composed by two proportional loadings combined

sequentially, here the non-proportionality occur by changing the loading direction. This

type of non-proportionality, the one depicted in the cross case, is captured by the SSF

damage map presented in the previous sections, however for the other ones, it is required
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Figure 4.9: Out-of-phase, diamond, square and cross loading histories [16].

additional procedures. In Chapter 3, it was found that the steady stresses can increase

or decrease the material fatigue strength, depending on the material and loading type.

Moreover, the occurrence of simultaneous maximum stress amplitudes (normal and shear)

during a non-proportional loading also creates a greater damage. Considering that, the

principal directions variation can be associated with other fatigue phenomena such as

steady stresses or mean stresses, this observation cannot be ignored when non-proportional

damage is studied. In order to capture the non-proportional effect on the material’s

fatigue strength it was proposed in the previous chapter a non-proportional parameter,

the non-proportional sensitivity factor Y, which translates the relative damage between

proportional and non-proportional loading paths. The Y parameter will be used here to

overcome the SSF limitations under non-proportional loadings.

4.4.3 Multiaxial fatigue damage criterion

All multiaxial fatigue criteria have the same purpose, which is to estimate the fatigue

life under multiaxial loading conditions. Some of them have the additional possibility

to estimate the orientation of the crack initiation plane, which is the case of the critical

plane criteria. Surprisingly, the most used criteria are the easiest ones and not the most

accurate. Typically, criteria that are the simple and easiest to implement are the ones

chosen to correlate fatigue data. Complex criteria are hard to implement and difficult

to understand which can turn them unpopular. However, there are some characteristics

which every multiaxial fatigue criterion most have. A multiaxial fatigue criterion must

be physically based in order to translate the real damage process in the material, which

means, all criterion formulations must be physically justified. Also, a good multiaxial

criterion must be robust and be able to capture all kinds of damage inherent to complex

multiaxial loadings.
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4.4.4 New equivalent shear stress proposal

In this section, it is proposed a shear equivalent stress based on the SSF concept presented

in the previous sections. In Figure 4.10 it is sketched the S-N curve of the uniaxial shear

stress for a given material. From Figure 4.10 it can be concluded that the shear stress

amplitude (shear stress level) is directly related to the fatigue damage. The shear stress

amplitudes in the points 1, 2, and 3 shown in Figure 4.10, are associated to different fatigue

life times, i.e. different number of loading cycles at rupture time. Thus, the shear stress

level is directly proportional to the material fatigue life. Considering, now a multiaxial

loading with shear and normal loading components they can be added if they have the

same damage scale.

Figure 4.10: S-N curve of the uniaxial shear stress for a given material.

In Figure 4.10, the D4 depicts a fatigue damage from a multiaxial loading where the

shear stress amplitude τ4 have a magnitude insufficient to cause failure at 1E6 cycles, the

contribution that is needed to cause the failure comes from the normal stress component

reduced to the shear damage scale. The normal stress contribution to the overall damage

can be evaluated by ssf · σ. In this way, it can be used a uniaxial S-N curve (in

shear) to account the fatigue damage associated to a multiaxial loading. The damage

parameter proposed here is an equivalent shear stress, named as SSF equivalent shear

stress, that depends on the multiaxial loading components time evolution, which means

that the equivalent shear stress damage scale and its amplitude will vary during a loading

period. The uniaxial shear S-N curve (damage reference curve) is typically computed

by experiments in respect to the maximum shear stress amplitude of a sinusoidal shear

loading. Thus, the SSF equivalent shear stress, for fatigue life estimates, is also determined

by its maximum value found during the loading period. Eq. 4.4 shows the expression for

the SSF equivalent shear stress proposed here.
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τeqv = max (τa + ssf(λ, σa) · σa) (4.4)

4.4.5 Proposal of the damage sign time evolution

One drawback related to the equivalent stress criteria is the negative signal lost, which can

lead to a misunderstood conclusions. As a matter of fact, one of the critical plane criteria

advantages over the equivalent stress/strain criteria, is their preservation of the load sign.

This advantage has been stressed by critical plane developers and users. The typical

square root found in the equivalent stress/strain criteria must have positive arguments

to yield real results (square root of negative numbers yields complex numbers), thus it

is not possible to obtain negative values in a typical equivalent stress/strain criterion.

Moreover, in the invariant type criteria, the load components (normal and shear) are all

to the power of 2, therefore all load components become positive, thus the compression and

tension stages can not be identified in this approach. Actually, this is a important subject

because the load sign is experimentally associated to different fatigue damage mechanisms.

Moreover, it is not possible to use cycle counting methods considering a equivalent stress

time evolution in a direct way, the widely used Rainflow cycle counting method is one

example of that. This is so because, typical equivalent stress/strain approaches do not

capture the physical damage behaviour during its time evolution.

Other question regarding the load sign subject, occurs in equivalent stress criteria that do

not use square roots in their formulation. For instance, equivalent stress criteria in which

the instantaneous values of a load components (normal and shear) are directly added, it

may occur that the normal and shear stresses have the same amplitudes but different load

signs. In this case, the equivalent stress is zero which indicates no fatigue damage, which

is not right. Thus, the load sign may affect erroneously the damage characterization.

To illustrate this issue, please consider the following expression in Eq. 4.5, for a given

multiaxial load instant.

−τ + ssf · σ (4.5)

From Eq. 4.5 it can be concluded that, adding a negative shear stress and a positive

normal stress, the resulting equivalent stress amplitude will be smaller than the one found

in the negative shear stress. This result leads to the wrong conclusion where a multiaxial

loading (with normal and shear components) causes less damage than the one obtained

uniquely from their shear stress component. In order to overcome this drawback, here it is

proposed a new concept to update the load sign accordingly to the physical damage time

evolution.
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The reasoning of this proposal is as follows: The sign of normal stresses indicate different

damage mechanisms, i.e. positive (tension) and negative (compression) normal stresses

cause two different types of damage. On the other hand, the shear stress sign is not

related to different damage mechanisms, i.e. the fatigue damage from negative or positive

shear stresses is equal, thus the load sign is independent of the damage mechanism in

shear loadings. Based on these two experimental evidences, the sign of the shear stress

component of a given multiaxial loading takes the sign of the normal stress component,

thus the instantaneous value of the SSF equivalent stress is given as follows in Eq. 4.6

τeqv = sign (σ) · abs (τ) + ssf · σ (4.6)

4.4.6 Capturing additional non-proportional damage

The SSF equivalent shear stress captures partially the non-proportional loading effect on

the material fatigue damage. In this criterion, it is only covered the non-proportionality

resulted from the SAR variation along proportional loading paths or proportional loading

branches. Thus, in the SSF equivalent stress criterion it is missing the non-proportionality

from out-of-phase loading conditions. The Y parameter concept presented in Chapter 3

aims to overcome this drawback in order to fulfil the SSF criterion capability to capture

the non-proportional damage. The Y parameter captures the relative damage between

proportional and non-proportional loading paths by updating the shear and normal stress

levels. The SSF criterion under out-of-phase non-proportional loadings is given in Eq. 4.7.

τeqv = max
block

(Yshear · τ + ssf · Ynormal · σ) (4.7)

Where Yshear gives the relation between proportional and non-proportional shear damages

and the Ynormal gives the relation between proportional and non-proportional normal stress

damages. If Y parameter is equal in the shear and normal loading components, thus the

Y is a constant value. In Eq. 4.8, it is presented the SSF equivalent shear stress updated

to non-proportional conditions, where Y is the SSF non-proportional parameter and P

indicates the loading period.

τeqv = Y ·max
P

(τ + ssf · σ) (4.8)

4.4.7 Multiaxial fatigue life estimation

In order to estimate multiaxial fatigue life-time using the SSF equivalent shear stress, it

is used the uniaxial S-N curve obtained under pure torsion loading conditions. This S-N

curve can be obtained by performing a curve fitting to the uniaxial fatigue data. Usually,
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the best trend line for this type of fatigue data is a power law equation, in which the

number of loading cycles is the trend-line argument and the output is the shear stress,

please see Eq. 4.9.

τ = A(Nf )b (4.9)

where A and b are the S-N trend-line parameters, Nf is the fatigue life and τ is the inherent

stress amplitude value. The SSF equivalent stress is a shear stress, thus the following Eq.

4.10 is valid.

τssf = max
p

(τ + ssf · σ) = A(Nf )b (4.10)

Thus, fatigue life estimates can be performed using the SSF equivalent stress by arranging

Eq. 4.10 as follows in Eq. 4.11.

Nf =
(τssf
A

) 1
b

(4.11)

4.4.8 Generalization of the SSF damage map

To determine the SSF function it is required a considerable amount of fatigue tests, at least

25 successful tests, which can take a lot of time to perform and costs. Therefore, it makes

sense to get some alternative ways to reduce the amount of these tests. Nevertheless, the

present author wants to stress that it is advised to perform experimental tests to obtain

the SSF damage map for each material in order to achieve better results.

However, within a structural steels family it can be assumed that the damage map (SSF

funtion) has a similar pattern. Thus, by testing one material from a material family to

obtain its SSF damage map it becomes possible to use that damage map within the same

family. In order to use the SSF damage map in materials different from the tested one,

the SSF can be corrected through the ultimate tensile strength of the untested material

as presented in Eq. 4.12.

τeq = τ +

(
σut,untested
σut,tested

)
· ssf(σ, λ) · σ (4.12)

where σut,untested/σut,tested is the ratio between the ultimate tensile strength of the

untested material (the one with unknown SSF function) and the ultimate tensile strength

of the tested material (material with known SSF function).
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4.4.9 SSF and stress gradient update

The SSF function must be also updated to account with stress gradient effects. This must

be done in cases where the normal stress has a stress gradient different from the one used

to obtain the SSF function. For instance, it is well known that under rotating bending

the required stress level is higher than in tension-compression to obtain the same fatigue

life-time in both loading conditions. For this reason, it is usual to adopt a constant to

correlate both S-N curves, usually 0.8, that adapts the rotating bending S-N curve to the

tension-compression loading conditions [68]. On the other hand, the S-N curve obtained

in tension-compression can be also adapted to the rotating bending loading condition

by using the constant 1.25 (which comes from 1/0.8). This approach assumes that axial

bending stresses must be 20% higher than the normal stresses, for the same fatigue damage

[68, 152].

Due to this assumptions, here it is assumed that the SSF damage function should be

also updated according to the normal stress gradient. If the SSF equivalent stress has

a SSF function obtained for normal stresses under tension-compression stress gradients,

thus under bending conditions, the SSF equivalent stress must be computed as follows in

Eq. 4.13.

τeq = τ + 0.8 ·
(

σut
σut,42CrMo4

)
.ssf(σ, λ) · σ (4.13)

where the constant 0.8 reduces the magnitude of the SSF damage map in about 20%

and transforms the SSF damage map obtained under tension-compression to the rotating

bending condition, however the SSF damage map pattern is maintained.

4.5 SSF damage map

In this section, it is presented the methodology designed to determine the SSF damage

map, which is mapped from the experimental data shown in Table 4.1. Thus, the following

results are totally based in fatigue life experiments performed using hourglass specimens,

at room temperature with loading frequencies between 5-6 Hz, please see Figure 3.30.

Moreover, the experiments were carried out under stress control using the loading paths

depicted in Figure 4.11, the failure criterion considered here was the specimen total

separation. The experiments were performed using the high strength steel 42CrMo4,

its monotonic, cyclic, and chemical properties are presented in Tables A.1 and A.2,

respectively [3]. A brief description regarding the 42CrMo4 industrial applications is also

performed in Appendix A. Figure 4.11 shows the loading paths considered to determine the

SSF function. The loading Case 1 and 2 are the two multiaxial loading cases, in tension

and torsion, respectively. Case 3, 4 and 5 are three proportional loading paths with
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different stress amplitude ratios, namely 30o, 45o, and 60o. Case 6, is a non-proportional

loading path with 90o phase shift. Table 4.1 presents the fatigue data for the loading paths

depicted in Figure 4.11.

Figure 4.11: Loading paths considered in this section to determine the SSF map.

Table 4.1: 42CrMo4 fatigue data used in the SSF mapping.

Case 1 Case 2 Case 3

Sigma Tau 2Nf Sigma Tau 2Nf Sigma Tau 2Nf

700 0 6040 0 374 1100000 545 182 44610

600 0 19951 0 545 2088 533 178 42182

500 0 215910 0 484 11302 515 172 185465

485 0 269178 0 440 70610 507 169 154590

445 0 2368959 0 402 159854 494 165 172703

455 0 247953 0 395 315668 481 160 322588

560 0 53752

550 0 56929

450 0 3263000

470 0 338170

480 0 284348

Case 4 Case 5 Case 6

Sigma Tau 2Nf Sigma Tau 2Nf Sigma Tau 2Nf

425 245 1000000 350 350 59784 450 260 1000000

435 251 564088 310 310 62809 465 269 618128

440 254 311401 300 300 130984 475 274 316712

445 257 239600 290 290 204933 485 280 197548

465 269 109087 261 261 246926 490 283 107374

470 271 97366 244 244 512872 495 286 97548

495 286 48740 292 292 105595 510 294 56411

520 300 27204

610 352 4114
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4.5.1 Evaluating the stress scale factor

The SSF parameter discussed, for each criterion, in the state-of-the-art presented in

Chapter 2, is generally obtained through the fatigue limits of the uniaxial loadings, usually

in tension-compression and pure shear loading conditions [8]. This approach allows, in a

easy way, to estimate fatigue lives using both tension-compression or torsion-torsion S-N

curves accordingly to the criterion damage scale, which can be easily changed. Therefore,

multiaxial fatigue life estimates can be obtained using the uniaxial S-N curves, in pure

shear or pure axial loading conditions. One main requirement to a multiaxial model is to

capture the fatigue damage under uniaxial loading conditions, many multiaxial criteria fail

in this subject. To scrutinize this subject and others ones, several multiaxial criteria were

selected from Chapter 2 to be analysed here, the objective is to evaluate the performance

of the SSF constant approach in the 42CrMo4 material. Excepting the Sines, and the

McDiarmid models, all the selected criteria can be considered as an equivalent stress,

because their SSF is defined based in the ratio between shear and axial fatigue limits.

Table 4.2 shows the SSF constants for each selected criteria. The fatigue limits in

tension-compression and pure shear (torsion-torsion) were obtained from the literature

[8, 153]. In these criteria the SSF factor is defined in the shear domain, i.e. the SSF

constant transforms the damage from normal stresses into the shear damage scale.

Table 4.2: Stress scale factors for the selected multiaxial fatigue criteria and 42CrMo4 material.

Model SSF

f−1(MPa) = 398

t−1(MPa) = 260

σu(MPa) = 1025

von Mises 1√
3

0.577

Crossland 3 t−1

f−1
−
√

3 0.228

Sines
√

3f−1

σu
0.673

Matake 2 t−1

f−1
− 1 0.307

McDiarmid
τA,B
2·σu 0.127

Dang Van 3
(
τ−1

f−1
− 1

2

)
0.46

Papadopoulos 3 t−1

f−1
−
√

3 0.228

Carpinteri-Spagnoli
τaf,−1

σaf,−1
0.653

Results show that the Crossland and the Papadopoulos criteria have the same SSF, also

the maximum SSF value was obtained in the Sines and Carpinteri & Spagnoli criteria, this

means that, these two models give greater importance to the normal stress contribution

to the overall damage than the other ones. In contrast, the Crossland, Papadopoulos and

McDiarmid criteria have the lower SSF values, indicating that these models somehow give
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low importance to the normal stress contribution to the overall damage process. The Dang

Van criterion has a SSF in the middle range.

All SSF values are less than 1, being in concordance with the static results, where for the

same damage result (material yield), the required shear stress is lower than the axial one.

Another interesting observation is that, in the the Sines and Carpinteri & Spagnoli criteria,

the obtained SSF constant is greater than the one found in the von Mises equivalent stress.

4.5.2 S-N results

Figure 4.12 shows the 42CrMo4 fatigue life results for the loading Cases 1 and 2, i.e the

uniaxial loading cases (normal and shear). In order to analyse and compute the fatigue

data, a trend-line approach was adopted to characterize the multiaxial and multiaxial stress

components inherent to each loading case; the uniaxial shear trend line was depicted in the

graphs as dashed lines. Despite the normal and shear fatigue stresses have different damage

mechanisms, the uniaxial loading cases (normal and shear) can be directly compared.

However, in biaxial loading conditions, in which the fatigue loading has two components

(normal and shear stresses), the relation to the reference curve, i.e. uniaxial shear trend

line, is not direct. In these loading cases that relation is entirely different from the one

verified between Cases 1 and 2, please see Figure 4.12.

Fatigue data of these two loading cases are represented in the same graph, but it is

known that the stress nature in both cases are quite different. With this in mind, Figure

4.12 depicts a fatigue failure condition for tensile-compression and pure shear loading

conditions.

Observing Figure 4.12, one can conclude that different stress amplitudes in normal and

shear loading conditions can lead to the same fatigue life-time. Thus, it is possible to

achieve the same fatigue life-time under different stress natures, i.e. normal and shear,

so they are in some way equivalent because the final result is the same (same number of

cycles at failure). Determining that relation between stresses by establishing a stress scale

factor to transform normal stress nature to shear one or vice versa allows to use a unique

uni axial S-N curve to estimate multiaxial fatigue live.

Figures 4.13 to 4.15 show the fatigue data results for loading Cases 3, 4 and 5, respectively.

In each loading case the biaxial loading is represented through two trend lines, one

representing the normal stress component and the other the shear stress. In addition,

it is considered the pure shear trend line, loading Case 2, as the reference case. In this

study, the pure shear case (pure shear trend line) is considered as damage reference in

order to quantify the stress scale factor between normal and shear stresses and also to

perform fatigue life estimates, i.e. the equivalent damage parameter is the pure shear

trend line argument.
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Figure 4.12: S-N results (42CrMo4) for Case 1 and Case 2.

Figure 4.13: S-N results (42CrMo4) for loading Case 3.

From the plotted results in Figures 4.13 to 4.15, it can be seen that the shear stress

amplitudes in each biaxial loading are clearly insufficient to create a fatigue failure because

the trend lines of the shear component in Cases 3, 4 and 5 are clearly below the reference

S-N curve, Case 2. Therefore, the missing damage contribution is carried out through the

normal stress component. Also, the trend lines of the normal stress components in Cases

3 and 4, are above the Case, the reference S-N, thus using the same reasoning used for the

shear components, the fatigue life estimates based only in the axial components, without

any damage scale, will lead to fatigue life estimates shorter than the experimental results.

In Case 5, the opposite is observed, the axial trend line of the biaxial loading is below the

reference case. In Cases 1 to 5, the amplitude of the axial stress component decreases, and

the shear stress component increases, with the SAR increase, this stress amplitude relation
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inherent to each loading case can be easily represented through the stress amplitude ratio

variation.

Figure 4.14: Loading Case 4, S-N experimental results (42CrMo4).

Figure 4.15: Loading Case 5, S-N experimental results (42CrMo4).

Table 4.3 shows the trend line equations of each multiaxial stress components (normal

and shear) obtained from experiments for each loading case considered here and inherent

fatigue life. For each loading case, it is correlated the normal and shear stress amplitudes

with the experimental fatigue data by determining two trend lines per each multiaxial

loading case. The trend lines have a power-law format, which typically fits well the

material fatigue behaviour, with acceptable R2.
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Table 4.3: Axial and shear fatigue trend lines from S-N results for each loading case.

Case λ = τ
σ Trend line R2

1 0
σa = 1034.4(Nf )−0.059

τa = 0
0.83

2 ∞
σa = 0

τa = 864.78(Nf )−0.061
0.99

3 0.33
σa = 938.81(Nf )−0.052

τa = 312.94(Nf )−0.052
0.85

4 0.58
σa = 1025.7(Nf )−0.066

τa = 592.3(Nf )−0.066
0.96

5 1
σa = 1132.5(Nf )−0.116

τa = 1132.5(Nf )−0.116
0.86

4.5.3 Experimental stress scale factor (SSF)

In order to determine the experimental stress factor, it was used the S-N trend lines

presented in Table 4.3. The results achieved for the selected proportional loading cases

are shown in Tables 4.4 to 4.7. In these tables, the first column is filled with a specific

fatigue life-time range, from 1E3 to 1E7, equally spaced in order to estimate the necessary

stress amplitudes from loading Cases 1 to 5, through the use of the trend lines inherent

to each case. In the second column, it was determined the pure shear amplitude for the

selected fatigue life range; on the third and fourth column is computed the shear and

axial stress amplitude from the multiaxial loading. In the fifth column, it is calculated

the shear stress increment necessary to be added to the shear stress amplitude to cause

fatigue failure, which will be related with the axial stress amplitude through the SSF value

defined on the last column.

Table 4.4: Case 1, values in [MPa].

Nf

AC

Pure Shear

Amplitude

AB

Shear

Amplitude

AD

Normal

Amplitude

BC

Shear

Increment

ssf = τ
σ

1.00E+03 567 0 688 0 0.82

1.00E+04 493 0 601 0 0.82

1.00E+05 428 0 524 0 0.82

1.00E+06 372 0 458 0 0.81

1.00E+07 324 0 400 0 0.81
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Table 4.5: Case 3, values in [MPa].

Nf

AC

Pure Shear

Amplitude

AB

Shear

Amplitude

AD

Normal

Amplitude

BC

Shear

Increment

ssf = BC
AD

1.00E+03 567 219 656 349 0.53

1.00E+04 493 194 582 299 0.51

1.00E+05 428 172 516 256 0.5

1.00E+06 372 153 458 220 0.48

1.00E+07 324 135 406 188 0.46

Table 4.6: Case 4, values in [MPa].

Nf

AC

Pure Shear

Amplitude

AB

Shear

Amplitude

AD

Axial

Amplitude

BC

Shear

Increment

ssf = BC
AD

1.00E+04 493 323 558 171 0.31

1.00E+05 428 277 480 151 0.32

1.00E+06 372 238 412 134 0.33

1.00E+07 324 204 354 119 0.34

Table 4.7: Case 5, values in [MPa].

Nf

AC

Pure Shear

Amplitude

AB

Shear

Amplitude

AD

Axial

Amplitude

BC

Shear

Increment

ssf = BC
AD

1.00E+03 567 508 508 59 0.12

1.00E+04 493 389 389 104 0.27

1.00E+05 428 298 298 131 0.44

1.00E+06 372 228 228 144 0.63

1.00E+07 324 175 175 149 0.85
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Figure 4.16 depicts for each loading case, the normal stress amplitude versus its shear

stress equivalence, here it is represented the normal stress amplitude in the shear stress

space accordingly to the methodology previously discussed in this chapter. Considering

the results for loading Cases 1 and 3, the curve slopes for both cases are similar, which is

acceptable because the amplitudes of the normal loading components are also very alike

in these two cases. Moreover, the shear stress amplitude on Case 3 is much smaller than

the normal one, which indicates a axial damage predominance in this loading path as seen

in the loading Case 1.

In loading Case 4, the slope of the depicted data is much less steep than the one found in

Cases 1 and 3, as a result, the normal stress represented in the shear stress space by an

equivalent shear stress has a stress range lower than the ones observed in the Cases 1 and

3, indicating a shear stress dominance in the fatigue damage process.

In Case 5, the normal stress reduction to the shear stress space has a completely different

behaviour, i.e. with the stress level increment, the normal stress increment in the shear

stress space decreases, which is behaviour in opposition to the one verified in the other

cases. The stress amplitude ratio is maintained equal for all stress levels, thus in loading

Case 5, the shear stress component is much bigger than the normal one, where the shear

damage contribution to the overall damage is greater, in this sense the normal stress

contribution to the overall damage process strongly decreases with the stress level decrease.

From here, it can be concluded that the normal stress reduction to shear stress space is

strongly dependent on the loading path stress amplitude ratio.

Figure 4.16: Normal stress reduction to the shear stress space for each loading case considered

here and for the 42CrMo4 material.

Figure 4.17 shows the SSF parameter evolution for each loading case, this parameter is

obtained by dividing the shear stress increment (required to cause fatigue failure) by the

normal stress amplitude. In loading Cases 1 and 4, the SSF parameter decreases with a
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SSF rate of change relatively similar. In Case 5, the SSF rate of change is much more

pronounced but has always the same sign.

The Case 3 mapping has a opposite behaviour regarding the other cases, i.e. the SSF rate

of change changed its sign; as the normal stress amplitude increases the corresponding

SSF parameter also increases. For loading Cases 4 and 5, the SSF value increases as the

normal stress amplitude decreases, which leads to conclude that the shear and normal

stress amplitudes in HCF have different damage mechanisms comparatively to the ones

verified in LCF, the same conclusion can be made in respect to loading Case 3. These

results corroborates the premise in which the SSF damage scale cannot be a constant

value.

Figure 4.17: Experimental SSF for each loading case vs SSF from the state-of-the art criteria

(horizontal lines).

Based on experimental results, it can be concluded that the concept of having a constant

SSF for all kind of normal stress amplitudes levels and stress amplitude ratios do not

reflect the physical damage behaviour that can be found in materials subjected to cyclic

loadings. As one can see in Figure 4.17, the constant values determined for the selected

multiaxial fatigue models are independent of the axial stress amplitude and insensitive to

the loading path. Eventually, some models may have good results in some cases, which is

the example of the Matake model, where in loading Case 4, the Matake’s SSF constant

parameter is very close to the SSF experimental results, however, the use of a constant

SSF is not advised. In the McDiarmid criterion, the constant SSF is the lower one, as

a consequence the inherit fatigue life estimates are very non-conservative because it is

computed shorter equivalent stresses.

Considering the experimental SSF values of loading Case 5, which crosses all constant

SSF values of the selected criteria, some models could be conservative in HCF and non

conservative in LCF. Regarding the pure tension case, all models are non conservative
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because their SSF constants are lower than the experimental SSF range. One may argue

that these models were defined to establish fatigue strength for infinite life, because their

constant SSF is determined based on the uniaxial fatigue limits. Moreover, one may also

argue that if the S-N curves are well determined, thus the ratio of uniaxial stress amplitudes

remains the same in the finite and infinite fatigue life regions. However, observing Figure

4.17 it can be easily detected that the SSF parameter is not constant on infinite fatigue

life. The normal stress amplitude decrease will increase the fatigue life; with that in mind,

the loading Cases 5, 1 and 4 have their SSF increasing as the normal stress amplitude

decreases. Loading Case 3, has the opposite behaviour, the SSF is decreasing as the load

decreases. This results lead to conclude that even in the infinite life region the SSF is

not constant for all kinds of loading paths. Due to the material asymptotic fatigue life

behaviour in the infinite region (more than 106 cycles), a small variation of the equivalent

stress amplitude may result in an unacceptable fatigue life estimate, thus a SSF function

is essential to deal with loading path effects on the infinite life region.

The increase of fatigue life in Cases 1, 4 and 5, in which the normal stress contribution

to the overall damage decreases from Cases 1 to 5, is linked to the SSF increase, because

the shear stress amplitude on each case (Cases 1, 4, and 5) have trend lines with a slope

different from the one verified in Case 2, i.e. the reference damage case. This slope

variation is representative of the combined effect of the normal and shear stresses in the

fatigue damage mechanism. If this effect does not exist it would be expected that these

slopes would be equal to the slope of the S-N reference, and then the SSF would be

independent from the stress amplitude level, which is not true.

This fact can be seen in Figures 4.13 to 4.15, where normal and shear trend lines are not

parallel to the reference case, however, this difference also varies case to case. In loading

Case 5, the trend line tends to approach the reference case at LCF region and tends to

move away from it on the HCF region. For loading Cases 1, 3 and 4 occurs the opposite,

the trend lines tend to converge with the reference case in the HCF region and diverge in

the LCF region.

4.5.4 Stress scale factor damage function

Regarding the proportional loading cases considered in this study, the SSF experimental

values were determined. However, it is not feasible to determine these values for all

possible stress amplitude ratios and stress levels through experimental tests. The selected

loading cases were chosen in order to be representative of the material fatigue strength

under specific stress amplitude ratios in order to performing a SSF mapping. Table 4.8

shows the data collected to perform the SSF mapping by regression. In the first column is

registered the normal stress amplitude for each case, at second column it is displayed the

arc tangent of the stress amplitude ratio, and lastly in the third column, it is shown the

SSF results for each loading case. Due to the stress amplitude ratio definition an infinite
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value is obtained for the uniaxial tension-compression case. In order to avoid undefined

values for the stress amplitude ratios and consequent information loss, it was performed a

variable transformation using the arctangent function. This transformation does not affect

the physical meaning of the stress amplitude ratio and helps in the regression procedures.

Table 4.8: Experimental data used in the regression methodology.

σa λ = tan−1 (τ/σ) ssf

688 0 0.82

601 0 0.82

524 0 0.82

458 0 0.81

400 0 0.81

656 0.32 0.53

582 0.32 0.51

516 0.32 0.5

458 0.32 0.48

406 0.32 0.46

650 0.52 0.3

558 0.52 0.31

480 0.52 0.32

412 0.52 0.33

354 0.52 0.34

508 0.79 0.12

389 0.79 0.27

298 0.79 0.44

228 0.79 0.63

175 0.79 0.85

0 1.57 0.38

0 1.57 0.39

0 1.57 0.4

0 1.57 0.41

0 1.57 0.42

The regression result i.e. the SSF damage map, is shown in Eq. 4.14, from which it is

possible to estimate the SSF values for the 42CrMo4 material under all stress amplitude

ratios and allowed stress levels.

ssf (σa, λ) = a+ b · σa + c · σa2 + d · σa3 + f · λ2 + g · λ3 + h · λ4 + i · λ5 (4.14)
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This equation is a 5th degree polynomials with two arguments. The goodness of the fit

that lead to the 5th polynomial is R2 =0.98, which is acceptable since R2 =1 is obtained

when a regression fits utterly the experimental data. The experimental constants of Eq.

4.14 for the 42CrMo4 material are the following:

a=2.69; b=−9.90E−03; c=1.69E−05; d=−9.52E−09; f=−5.99; g=11.72; h=−8.04; i=1.63

The variable λ from Eq. 4.14 is obtained as follows in Eq. 4.15.

λ = tan−1
( τ
σ

)
(4.15)

Figure 4.18 depicts the SSF function plotting, where the SSF variation with the stress

amplitude ratio and the normal stress amplitude is given by Eq. 4.14.

Figure 4.18: SSF surface regression (42CrMo4).

4.5.5 SSF under non-proportional loading conditions

Essentially, there are two kinds of loading paths, the proportional and non-proportional

ones. An attribute commonly used to identify the loading type is the principal directions

variation; which can be somewhat abstract and difficult to be interpreted. However, the

stress amplitude ratio can be a successful parameter to easily identify the loading type

(proportional and non-proportional) and also to distinguish the loading paths damage

level between proportional ones (for example, loading Cases 3 to 5 in Figure 4.11).

As an example, the loading Cases 3, 4 and 5 are proportional loadings with steady

principal directions, which is a characteristic of proportional loadings. In these loading
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cases, the stress amplitude ratios are also constant during the loading period, being

a straightforward procedure to mathematically distinguish between proportional and

non-proportional loadings. Moreover, the stress amplitude ratio is different between

proportional cases, being this variable very useful to differentiate proportional loading

paths. The SSF concept is also applicable to non-proportional loading cases in which

the stress amplitude ratio varies during the loading period. The SSF function allows to

determine any kind of combinations between stress amplitude ratios and stress amplitude

levels.

Figure 4.19 shows the variation of the SSF input variables under the selected

non-proportional loading case, Case 6. For each time instant, the SSF is determined

based in the instantaneous normal and shear stresses. Thus, the time evolution of the

non-proportional stress components are computed in the SSF function as if they were

proportional, which yields a instantaneous time variation for the SSF value.

Figure 4.19: SSF input variable variation under non-proportional loading conditions, Case 6

(42CrMo4).

Figure 4.20 shows the stress amplitude ratio and the instantaneous SSF variation along

the selected non-proportional loading period, Case 6. This time variation can be easily

connected to the concept of the principal directions variation usually used to identify

non-proportional loadings.

The SAR concept leads to improve the loading path characterization, mathematically it

is possible to determine, in an easy way, the load nature and it fatigue damage regimen.

Also, the SSF function has as argument the stress amplitude ratio; this turns the SSF

sensitive to the loading path under proportional and non-proportional loading conditions.

Figure 4.20 shows the SSF variation along the period time for loading Case 6, which is

in conformity with the stress amplitude ratio variation discussed above. The multiaxial

models selected in this study considers that the SSF parameter is always constant and
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less than 1, also in Figure 4.20 the instantaneous and maximum values of the SSF under

a non-proportional loading case, Case 6, are also less than 1. One of these SSF maximum

values is related to the maximum SSF equivalent stress achieved within the loading period.

Figure 4.20: SSF and λ = tan−1
(
τ
σ

)
variation during the non-proportional loading period

(42CrMo4).

Figure 4.21 shows the normal stress transformation to the shear stress space under

non-proportional loading conditions with the following multiaxial stress components

amplitudes: 510 [MPa] as normal stress, and 294 [MPa] as shear stress, the SSF equivalent

stress computed was 434 [MPa].

Figure 4.21: Corrected normal stress vs shear stress and equivalent shear stress (42CrMo4).

As one can see, the normal stress amplitude is modified during the loading period. The

SSF function is a kind of experimental weight function, which corrects the instantaneous
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normal stress amplitude according to the instantaneous and directional damage inherent

to the loading path nature, thus the SSF equivalent stress time evolution ceases to be a

perfect sinusoid (as verified in proportional loadings) to take an irregular cyclic shape.

The SSF equivalent stress is given trough the maximum value found within the loading

period, which is obtained from the summation between the instantaneous shear stress and

the corrected instantaneous normal stress.

In the SSF equivalent stress time evolution depicted in Figure 4.20, the maximum

value occurs through the instantaneous combination of both multiaxial stress components

(normal and shear); in this way, the SSF equivalent stress has a multiaxial nature under

non-proportional loading conditions, because the the SSF function is sensitive to the

loading path type through the SAR variable.

The fatigue life results for Cases 1, 3, 4, and 5 using the SSF equivalent stress are shown

in Figure 4.22, for each loading case the equivalent stress estimates are obtained based on

the trend line of the uniaxial shear fatigue data (uniaxial S-N curve) i.e. they are based

on the Case 2 trend line. Regarding the loading Cases 1, 3, 4 and 5 the results are good as

expected, because the SSF damage map was determined based on the experimental values

of these loading paths. The scatter found in this correlation is explained through the use of

the trend line approach to compute fatigue life estimates in each loading path, and due to

the residuals of the stress scale factor regression. In loading Case 6, the SSF values found

within the loading period are completely independent from the data used to determine the

SSF function, i.e. the experimental S-N results for loading Case 6 were not used in the SSF

function assessment. Moreover, the fatigue life estimates of the SSF equivalent stress for

the loading Case 6 yields a reasonable correlation with the experimental data, leading to

conclude that the SSF equivalent stress is sensitive to proportional and non-proportional

loading conditions. Another feature that should be underlined is the possibility to use the

SSF equivalent stress to estimate uniaxial fatigue lives, which is a basic requirement in

multiaxial fatigue criteria.

The correlation between fatigue life estimates and the experimental fatigue data was

performed using the multiaxial shear trend line, Case2. Moreover, a fatigue life factor

of 3 was considered to characterize the equivalent stress goodness, please see Figure

4.23. Most of the correlation results are within the fatigue life boundaries; only 1 point

from Case 1 is outside of the boundary lines. The majority of the proportional results

are on the non-conservative side, above the middle reference line. This result indicates

that the SSF equivalence stress is smaller than it should be under proportional loading

conditions. On the other hand, for loading Case 6, the results are near the middle line,

despite the probabilistic effect always present in experimental fatigue data [154]; this is a

positive result regarding non-proportional fatigue life estimates using the SSF equivalent

stress. This means that the SSF function is sensitive to the normal stress contribution
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Figure 4.22: SSF equivalent shear stress for each loading path and stress level (42CrMo4).

to the overall damage under non-proportional loadings. However, it is necessary

additional studies to apply the equivalent stress to other non-proportional loading paths

in order to analyse in full the SSF equivalent stress sensitivity to non-proportional damage.

Figure 4.23: Estimated vs experimental fatigue life (42CrMo4).

4.6 SSF estimates and fatigue data

4.6.1 42CrMo4 fatigue life evaluation

In order to evaluate the performance of the SSF criterion it was correlated its estimates

with experimental data and with the fatigue life estimates from other multiaxial fatigue

criteria. In this correlation, it was considered the fatigue data of the hight strength
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steel 42CrMo4 in respect to the loading paths shown in Figure 4.24. The fatigue data

of these loading paths was already presented in Table 3.3. Only in the SSF criterion it

was used a non-proportional factor correction. In the other multiaxial fatigue criteria,

it was used their original formulations to estimate fatigue lives under non-proportional

loading conditions. Figure 4.25 a) shows the von Mises equivalent stress correlation with

experimental data for the loading cases presented in Figure 4.24, it can be seen a weak

correlation as a result of a von Mises equivalent stress too high. These results supports

the idea in which an equivalent stress based on stress space norms, such as von Mises,

yields equivalent stresses higher than it should be.

Figure 4.24: Non-proportional loading paths.

Figure 4.25: Fatigue life correlation a) von Mises criterion b) Findley criterion.
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Figure 4.25 b) shows the fatigue life correlation for the Findley’s criterion, which has

very acceptable results; only the results of Case 4 are out of the fatigue life boundaries.

However, the correlation between experiments and estimates remains not centred, being

the Findley’s parameter lightly higher than it should be. Figure 4.26 a) shows the fatigue

life correlation for the Crossland criterion, as one can see the fatigue life correlation is very

weak.

The Crossland’s parameter tends to be smaller than it should be, leading to

non-conservative fatigue life estimates. Only the results of the proportional loading case,

Case 1, are inside of the fatigue life boundaries (scatter bands). Figure 4.26 b) shows the

results for the Papadopoulos criterion; this criterion is the only one with an undefined

trend on the fatigue life estimates. In some loading cases, the damage parameter is too

high but in other ones is too low.

Figure 4.26: Fatigue life correlation a) Crossland’s criterion b) Papadopoulos’s criterion.

Figure 4.27 presents the results for the SSF criterion. Figure 4.27 a) shows the SSF fatigue

life estimates without non-proportional correction (without using the Y parameter), in this

correlation only Case 3 is out of the fatigue life boundaries. From here it can be concluded

that the SSF criterion without an additional non-proportional correction can deal fairly

well with non-proportionality.

In Figure 4.27 b) the SSF fatigue life correlation, with non-proportionality correction, is

presented. It can be concluded from teh results depicted in Figure 4.27 that the overall

fatigue life correlation was improved by using the Y parameter.

From the fatigue life correlation of the state-of-the-art fatigue life criteria, it can be

concluded that a fixed damage scale, i.e. a damage scale independent from the loading

path, stress level, and material, provides weak fatigue life correlations. In some cases, a

156



Multiaxial Fatigue

constant SSF value may eventually match the damage scale associated with the material

and loading type, which was the case of the Findley criterion; however changing the

loading conditions will lead to inconsistent results.

Figure 4.27: Fatigue life correlation a) SSF criterion b) SSF criterion updated with the Y

parameter.

4.6.2 Ck45 & C40 fatigue life evaluation

In this section, it is analysed the SSF, and the MCE criteria regarding their (please see

Chapter 2 for MCE deep detail) performance to predict fatigue lives for the Ck45, and

the C40 materials [155]. The chemical composition, monotonic and cyclic properties for

these two materials, the Ck45 and the C40, can be found in Table.(s) A.1 and A.2.

The sample geometry and its dimensions for the selected materials are shown in Fig.(s)

4.28, and 4.29. The loading paths of these experiments are depicted in Figure 4.30.

Figure 4.28: Ck45 specimen test used in experiments of Table 4.9, [155].
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Figure 4.29: C40 specimen test used in experiments of Table 4.10.

Figure 4.30: Loading paths performed in the Ck45 and C40 materials.

The two sets of fatigue data used in this section, were performed by two different research

groups. The first set was carried out by Simburger [156] at Fraunhofer Institute for

Structural Durability LBF in Darmstadt, Germany, and the second set was performed by

Aztori et al. [157] in Berlin, Germany. In both experimental programs were used notched

specimens. Simburger tested notched specimens with mild notch under bending/torsion

and Aztori et al. tested specimens with a sharp notch under tension/torsion.

The Simburger’s specimens were made of Ck45 steel and the Aztori’s specimens were

made of C40 steel, both steels were quenched and tempered. These fatigue data, have

been widely used in the validation of some multiaxial fatigue criteria in literature.

Since both criteria, MCE and SSF, are equivalent shear stresses, it was used here the S-N

equations from the uniaxial shear trend lines experientially obtained for each material,

in order to estimate fatigue lives. Thus, to correlate the Simburger’s experimental work

(Ck45 steel) with the estimates of the equivalent stress criteria selected for this section,

it was used the pure shear S-N curve obtained using bending/torsion specimens presented

in Figure 4.28, whereas in the Atzori correlation, the pure shear S-N curve was obtained

using the tension-compression/torsion specimens, please see Figure 4.29.

Here, the idea is to relate the multiaxial fatigue damage, obtained through loading Cases

3 and 4 (Cases c) and d) from Figure 4.30) with the uniaxial reference loading (Case 2 -

Case b) from Figure 4.30) under the same geometric and loading conditions. The objective

is to have a shear S-N curve that takes into account the notch effect in the fatigue damage

process. The fatigue data for the Ck45 and C40 and loading paths depicted in Figure

4.30, is presented in Tables 4.9 and 4.10, respectively.
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Table 4.9: Fatigue data obtained by Simburger for the Ck45 material [155, 156].

Case 1( Pure bending) Case 2 (Pure shear)

Sigma Shear Nf Sigma Shear Nf

490 0 46600 0 296 24900

490 0 51100 0 296 34300

490 0 54700 0 296 36500

490 0 60600 0 296 37700

490 0 66600 0 296 42300

490 0 71600 0 296 42900

490 0 79000 0 296 46500

490 0 86200 0 296 54500

442 0 95200 0 255 124000

442 0 117000 0 255 204000

442 0 132000 0 255 239000

442 0 136000 0 255 347000

442 0 145000 0 255 373000

442 0 148000 0 255 430000

442 0 161000 0 255 574000

442 0 190000

Case 3 (Comb. in-phase) Case 4 (Comb. out-phase)

Sigma Shear Nf Sigma Shear Nf

442 254 7600 392 225 13200

442 254 11200 392 225 13900

442 254 11800 392 225 16000

442 254 13200 392 225 16900

442 254 16400 392 225 17400

442 254 17480 392 225 17800

442 254 21800 392 225 20200

442 254 25200 392 225 27500

343 197 94600 343 197 42700

343 197 138000 343 197 48300

343 197 144000 343 197 50900

343 197 179000 343 197 59800

343 197 186000 343 197 66000

343 197 204000 343 197 68100

343 197 229000 343 197 95700

343 197 258000 343 197 98800

285 164 926000 285 164 258000

285 164 1000000 285 164 271000

285 164 1580000 285 164 289000

285 164 1080000
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Table 4.10: Fatigue testing results obtained by Atzori et al. for the C40 material with local

stresses with SAR=0.59, Kta = 3.68 and Ktt = 1.95.

Case 1( Pure bending) Case 2 (Pure shear)

Sigma Shear Nf Sigma Shear Nf

1144 0 25220 0 474 26810

1144 0 35200 0 476 41070

953 0 48750 0 415 145420

957 0 58050 0 415 242230

762 0 94220 0 359 211200

762 0 100400 0 359 412820

666 0 164250 0 312 608770

666 0 325140 0 312 2239000

622 0 293250 0 312 2453280

570 0 566820 0 271 2607400

570 0 638520 0 273 2967800

526 0 1061360 0 291 5757000

526 0 1336200

Case 3 (Comb. in-phase) Case 4 (Comb. out-phase)

Sigma Shear Nf Sigma Shear Nf

810 429 12530 736 390 11500

736 390 27280 662 351 14600

589 312 73040 662 351 18000

515 273 155500 515 273 19700

478 254 185300 589 312 42150

662 351 194000 589 312 47270

662 351 229500 478 254 118100

442 234 445800 515 273 286350

478 254 638200 478 254 699400

405 215 840100 442 234 942000

442 234 1682550 405 215 1114200

442 234 1802200 368 195 1433400

4.6.2.1 Non-proportional sensitivity parameter

During a non-proportional loading, several slip plans are loaded with the maximum stress

within the non-proportional loading path. Under proportional loading conditions only

some of those slip planes are activated, thus the material response is different in each

kind of loading path. However, it is possible to relate proportional and non-proportional

damages using the Y parameter proposed in Chapter 3 where the relative damage between

proportional and non-proportional loadings is taken into account.
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Figure 4.31 presents the results for the non-proportional sensitivity parameter for the Ck45

and C40 materials, respectively. As one can see, Figure 4.31 a) shows parallelism between

non-proportional and proportional S-N curves for the Ck45 results. However, the S-N

curves are not parallel in the C40’s results, please see Figure 4.31 b). The Ck45 results

are in accordance with the premise adopted in the Y parameter definition, where the Y

parameter is independent from the stress level, but in the C40’s experimental results it is

found a contrary behaviour. One reason that can explain this result is that the C40 results

have insufficient number of experimental tests because it was only performed, for each

stress level, one or two experiments (the good practices indicates at least 5 experiments

for each stress level). Therefore, the trend lines shown in Figure 4.31 b) may be a biased

S-N curves. Moreover, the C40 experiments have a higher level of plasticity due to local

stress concentrations at notch root, the notch severity in the C40 samples is much higher

than the one found in the Ck45. This may be a reason for the non-parallelism between

proportional and non-proportional S-N curves found in the C40 material. To overcome

this question and obtain the Y non-proportional sensitivity factor for the C40, it was

considered here the determination of the Y parameter at 106 cycles, where the stress level

variation causes a slight effect on the Y parameter value. Figure 4.31 presents the Y

parameter results for Ck45 (Y=1.09) and C40 (Y=1.07), both are higher than one, which

suggests that the non-proportional loading causes a greater damage than the proportional

ones.

Figure 4.31: Y parameter for the: a) Ck45 steel, b) C40 steel.

4.6.2.2 Procedures in fatigue life estimations

The Ck45 fatigue data was gathered from literature with local normal and shear strains

measured with gauges glued at notch root, thus the local stresses were obtained directly

without the use of any stress concentration factor. Afterwards, the 42CrMo4’s SSF

161



Multiaxial Fatigue

damage map (obtained under tension-compression/torsion) was updated to the Ck45

loading conditions in order to take into account the stress gradient effect in the fatigue

damage assessment, please see Eq. 4.13. In the out-of-phase loading case (Case 4),

the SSF equivalent stress was corrected with the non-proportional sensitivity parameter,

the Y parameter. Regarding the C40 results, the local stresses were computed by using

nominal stresses and Kt values. Afterwards, the time evolution of these stresses were used

to calculate the SSF equivalent stress, where the 42CrMo4 damage map was corrected

for the C40 steel, using the C40’s ultimate tensile strength and the 42CrMo4’s ultimate

tensile strength. Furthermore, the SSF equivalent stress is also corrected with the C40’s

Y parameter to evaluate the out of phase loading path. The S-N curves (trend lines) used

to obtain fatigue life estimates in both materials, are the pure shear S-N curves based in

local stresses (nominal transformed into local).

4.6.2.3 Fatigue life estimates

Fig.(s) 4.32 a) and b) presents the S-N results for the Ck45 and C40 materials using the

SSF and the MCE equivalent shear stresses, respectively. Scatter bands with appertaining

ranges (Tσ = 1 : 1.22) based in the pure shear S-N curve are represented in the S-N

graphs depicted in Figure 4.32. Thus, the upper scatter band considered here, has a

survival probability of 10% and the lower one has 90%. In the present author opinion,

the probability of these scatter bands to enclose all possible uniaxial shear stress trend

lines is very high and it is adequate to these kind of steels (Ck45 and C40).

Figure 4.32: Ck45’s S-N curves using the: a) SSF equivalent stress, b) MCE equivalent stress.

The S-N results obtained for the Ck45 material are best enclosed by the SSF equivalent

stress approach, please see Figure 4.32 a), where only two proportional results (PP –

loading Case 3) are outside of the upper scatter band. In the MCE approach, the results
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of the out-of-phase loading path matches the reference damage curve (Ck45 uniaxial shear

trend line), however the proportional results are above of the upper scatter band for high

stress levels (low cycle fatigue region) indicating that the MCE equivalent stress is greater

than it should be in this region.

Usually, the SSF equivalent stress estimates under non-proportional loadings tends to be

near of the upper band, and under proportional loadings tends to match the damage

reference curve (S-N pure shear curve), which is contrary to the results obtained in

the MCE estimates. Under bending/torsion loading conditions the proportional and

non-proportional S-N curves of the SSF equivalent stress are higher than they should

be, as expected. This is so, because the SSF damage map is determined based on the

axial tension-compression/torsion loading conditions, which has a normal stress gradient

much more damaging than the one found in bending/torsion loadings. Thus, in order to

account for the stress gradient effect in fatigue life estimates, the 42CrMo4 SSF damage

map (SSF function) was multiplied by 0.8 [68].

Figure 4.33 presents the S-N results for the C40 material using the SSF equivalent stress

and the MCE criterion; here the scatter band is also based in the same survive probability

used in the S-N curves of the Ck45 , please see Figure 4.32. The SSF and MCE results

are very similar being mostly within the scatter bands. Regarding the C40 results, there

was no need to correct the SSF damage map as seen in the Ck45 because the fatigue tests

were made in tension-compression/torsion loading conditions, therefore the only correction

made in the SSF criterion it was the SSF damage map update to the C40 material, using

the ratio between the C40 and 42CrMo4 ultimate tensile strengths.

Figure 4.33: C40’s S-N curves using: a) SSF equivalent stress, b) MCE equivalent stress.

Fig.(s) 4.34 and 4.35 show the fatigue life correlation between experiments and estimates

performed by the SSF and MCE criteria, the fatigue life boundaries considered in

correlations have a life factor of 3.
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Figure 4.34: Ck45’s fatigue life correlation using: a) SSF criterion, b) MCE criterion.

Figure 4.35: C40’s fatigue life correlation using a) SSF criterion b) MCE criterion.

From the correlation results, it can be concluded that the SSF and MCE estimates are

mostly within the boundaries in both materials. Regarding the Ck45 material, the SSF

criterion shows a linearisation between estimates and experimental fatigue lives, i.e. the

correlation trend line in both loading paths (Case 3 and 4) is parallel to the boundaries.

However, in the MCE correlation such linearisation was not found, i.e. the correlation

trend lines crosses the fatigue life boundaries. Regarding the C40 results, it can be also

identified a linearisation between the experimental data experimental and the SSF criterion

estimates.

In the MCE results, the trend line of the proportional correlation crosses the fatigue life

boundaries without linearisation, though the non-proportional correlation trend line is
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parallel to the correlation boundaries. The linearisation interpretation allows to analyse

the criterion capability to capture the damage increase due to a stress level increment for

a given loading path (sensitivity to the stress level variation)

4.7 Final comments

Under multiaxial fatigue loading conditions two type of stresses are involved in the fatigue

damage process. These stresses, normal and shear stresses, perform on the material

different damage mechanisms with different damage scales. To quantify the combined

damage, it is necessary to have both stresses on the same stress space i.e. in the same

damage scale. In order to do that, it is commonly used a stress scale factor (SSF).

Generally, multiaxial fatigue models use a constant stress scale factor, however, in this

chapter, it was shown that the SSF is not constant and varies according to the loading path

an stress level. Moreover, it was also shown that the stress scale factor(SSF) is a function

that must be experimentally determined to correctly establish the fatigue damage scale

between normal and shear stresses to compute an effective multiaxial fatigue damage. An

algorithm was designed to easily determine the SSF damage map for all kinds of materials

by experiments. This algorithm is based on the S-N results of specific loading paths defined

in this chapter. As a result, it was obtained a SSF function (a damage map) to reduce the

fatigue damage of normal stresses to the damage scale of shear stresses. This function is a

two variable function which has as arguments the normal stress and the stress amplitude

ratio of a given loading path. Using the new SSF concept, a new equivalent stress was

proposed:

τeqv = max (τ + ssf(λ, σ) · σ)

Non-proportional loading paths have as characteristic the stress amplitude ratio (SAR)

variation within their loading period; in contrast, in proportional loadings their SAR

is maintained constant. It was proved that the SSF equivalent stress is sensitive to

the loading path nature (proportional or non-proportional) due to the SSF function

dependence on the stress amplitude ratio and its stress level. The stress amplitude ratio

is a loading variable which captures very well the loading path nature, and it can be used

mathematically to identify proportional and non-proportional loading paths.
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Chapter 5

Contributions to Level 3

5.1 Introduction

In this chapter, it is presented the thesis contribution to the state-of-the-art regarding the

multiaxial cycle counting subject, which is depicted in Figure 5.1 as level 3. The main

objective is to achieve a correct definition for a loading cycle under multiaxial loading

conditions.

Figure 5.1: Multiaxial fatigue level focused in this chapter.

Multiaxial stress states under cyclic loading conditions are a key issue in several mechanical

components. Their fatigue strength analysis is of utmost importance to avoid unexpected

failures of equipments, vehicles or structures. Among several parameters, a correct

definition of a loading cycle in multiaxial fatigue loading conditions appears to be crucial

regarding fatigue life assessment for complex loadings, such as loading blocks or loading

spectra. Under this context, here it is evaluated the performance of the state-of-the-art

criteria regarding this subject, to do that it is studied 11 different loading blocks using

two different cycle counting methods, the Bannantine and Socie [93] and the Wang and

Brown [98]. Several loading blocks were considered taking into account different loading

effects such as: the sequential loading effect, the proportional and non-proportional loading

effects, and the effect of different frequencies between the axial and the torsional stress

components (asynchronous loading paths). In this chapter, a new loading cycle concept,

and a new cycle counting methodology (the SSF virtual cycle counting method) are

proposed based on the SSF equivalent shear stress time evolution, previously presented

167



Multiaxial Fatigue

in Chapter 4. For each cycle counting method considered here, i.e. the proposed method

and the selected ones from the state-of-the-art, it was performed a fatigue life correlation

between their estimates and the 42CrMo4 experimental fatigue data presented in Table

5.3, in order to evaluate their performance.

5.2 Multiaxial cycle counting

As seen in the typical equivalent stress concept, the SSF equivalent stress only captures the

fatigue damage inherent to its maximum value found within a loading period. However,

in such procedure, the contribution of the intermediate SSF loading history to the overall

damage is missing, i.e. the maximum value of the SSF equivalent stress found within

a loading period do not account with the fatigue damage from local the SSF equivalent

stress reversals that can be found within a loading block. Therefore, fatigue life estimates

based only in the maximum equivalent stress found within a loading block are smaller

than it should be, leading to non-conservative fatigue life results.

5.2.1 Loading spectra and loading block concept definitions

Usually, variable amplitude loadings are transformed into an equivalent spectrum where

each loading block is identified based on the stress amplitude levels found within the

variable amplitude time histories, please see Figure 5.2. Figure 5.2 a) shows a variable

amplitude time history commonly found in the field, and Figure 5.2 b) shows its equivalent

spectrum with constant amplitude steps. This equivalent spectrum approach is suitable to

be used in the damage accumulation assessment under a Miner’s rule type approach, but

this spectrum transformation that transforms a loading time history into an equivalent

load spectrum (Figure 5.2 b)) leads to lose information during the damage monitoring

process. Thus, the stepped spectrum is a simplified way to account the instantaneous

damage performed by the stress time history. In this way, the stepped stress or the

stepped damage parameter approaches will hardly capture the fatigue damage inherent to

the instantaneous normal and shear stresses, specially under multiaxial loading conditions.

The loading block concept can lead to wrong interpretations, because simply loadings only

based in one sinusoidal loading, can be also interpreted as loading blocks too. Therefore,

to avoid this misconception, here a loading path is considered as a loading block when

its fatigue damage cannot be accounted using uniquely the maximum damage parameter

approach. In other words, when a time evolution of a given damage parameter have

reversals with peaks lower than the maximum peak, then that loading path is a loading

block. Figure 5.3 shows two different loadings with the same loading time and maximum

stress level. Though they have the same maximum stress during the load period, the

fatigue damage inherent to each loading path is quite different. However, this is the

approximation performed when it is used an equivalent stress spectrum in which the
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Figure 5.2: Loading spectrum: a) In the field, b) Equivalent loading spectrum.

Figure 5.3: Two different loading paths with same maximum stress.

varying amplitude is reduced to loading steps with constant amplitude as already discussed

and depicted in Figure 5.2. Regarding the block definition adopted here, the loading

depicted in Figure 5.3 a) is not a loading block, because their damage can be directly

related to the loading maximum amplitude. On the other hand, the loading depicted in

Figure 5.3 b) can be treated has a loading block because their fatigue damage is related

to all loading amplitudes performed during the loading period. None of these two loading

paths causes the same fatigue damage, because they have different amplitudes and load
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sequence (Hi-LO, LO-HI). Thus, in order to quantify an unitary damage of a loading block,

to be used in damage accumulation procedures, it is necessary to account with all loading

amplitudes (their reversals) within a loading block. Therefore, the load depicted in Figure

5.3 a) has the unitary damage based in its maximum amplitude, being possible estimate its

fatigue damage based in the maximum stress amplitude found during the loading period.

However, in the loading case depicted in Figure 5.3 b) that it is not possible, the maximum

equivalent stress is only found in one loading peak, all others are below this value, which

means that it is necessary to find the unitary damage inherent to this loading block, which

is not trivial as is in the loading path depicted in Figure 5.3 a).

5.2.2 Unitary damage concept

Unitary damage is a new concept developed here to quantify the fatigue damage inherent to

loading blocks with the objective of being used in damage accumulation rules. Therefore,

the unitary damage concept allows the direct addition of fatigue damage from loading

blocks as if they were simple sinusoidal loading cycles, like the ones used to obtain

the uniaxial SN curves. The unitary damage can be determined by considering two

damages quantities evaluated within a loading block. Firstly, must be computed the

damage captured by the maximum damage parameter found within the loading block,

and secondly, the block relative damage must determined, thus the unitary damage is

computed based in these two damage quantities. As shown in the previous subsections,

the most suitable way to evaluate fatigue damage of a loading path is the use of a maximum

damage parameter found within a loading block. However, this approach does not captures

the overall damage of a loading block, therefore it is required an update to the damage

estimate, this upgrade is given by the relative damage quantity. The relative damage

quantity can be evaluated by determining how many times the experimental block fatigue

life is less than the one estimated by its maximum damage parameter as shown in Eq. 5.1,

where the fatigue life estimate is compared with the experimental result.

RelativeDamage
Block

=
Nfestimate

Nfexp erimental

(5.1)

Eq. 5.1 needs the experimental fatigue life of the loading block to determine the relative

damage, which is a drawback. In order to estimate the relative damage without falling

back on experimental tests it is proposed here the relative damage estimation by using a

cycle counting method. Thus, with a cycle counting method, it is estimated how many

times the fatigue life estimate (using the maximum damage parameter approach) must be

reduced due to the block loading path, please see Eq. 5.2. In this way, it is accounted in

the block damage evaluation (unitary damage assessment) the entire loading history and

not only the maximum damage parameter found within the loading block.
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Nf
block

=
Nfestimate

ncycles
(5.2)

Where, ncycles is the number of cycles found in the loading block using a cycle counting

method, Nfestimated is the number of cycles computed using the maximum damage

parameter, and Nf
block

is the block fatigue life estimate. Thus, the unitary damage is given

by Eq. 5.3.

1

Nblock
=

1
Nfestimated
ncycles

=
ncycles

Nfestimated

(5.3)

5.3 SSF virtual cycle counting (vcc)

Cycle counting methods are used in fatigue life evaluation because the maximum damage

parameter within a loading block does not capture the fatigue damage of loading blocks

as already discussed. Therefore, fatigue life estimates of loading blocks obtained solely

with a maximum damage parameter yields poor results. In order to improve the fatigue

damage assessment of loading bocks, it is proposed here a new way to estimate unitary

fatigue damage inherit to loading blocks, the SSF virtual cycle counting method (vcc).This

new cycle counting method is based in the SSF equivalent stress previously presented in

Chapter 4. In this new approach, it is not analysed hysteresis loops, as seen in the Rainflow

methodology, and due to that the new method presented here was named as virtual cycle

counting. However, this new method is physically based, because it relates the maximum

damage parameter (found within a loading block) with the total damage of a loading

block. In the present author opinion the equivalent stress approaches are much more

suitable than other approaches to account fatigue damage of loading blocks. Equivalent

stress/strain criteria represent in one damage parameter the instantaneous values of normal

and shear damages, avoiding the issue found in the critical plane approaches in which

the stress/strain maximum values are always computed as taking place at the same time

instant, however in some loading paths such as non-proportional loadings such assumption

is not true. The concept and use of the virtual cycle approach is much easier to implement

than other methods usually found in literature to evaluate fatigue damage of loading blocks

and their damage accumulation. The paradigm behind this approach is as follows:

”The experimental fatigue life of a loading block is less than the one estimated by its

maximum damage parameter. Thus, the fatigue life of a loading block can be correctly

estimated if it is known how many times the experimental fatigue life of a loading block is

less than the estimated one.”

Under this paradigm, the key issue is to find how many times the fatigue damage of a

loading block is greater than its damage reference. The damage reference is given by

the maximum damage parameter of a given loading block, which in this study, is the
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maximum SSF equivalent shear stress. The additional damage in respect to the damage

reference is obtained by adding all equivalent stress absolute values at each peak and

valley found between two consecutive zero stress points of the SSF equivalent shear stress

time evolution of a loading block. Then, the summation result is divided by two times

the maximum SSF equivalent stress, in this way it is achieved an estimate for the damage

increase (comparatively to the reference damage) inherent to the loading block. Eq. 5.4

presents this concept. Figure 5.4 shows a graphical description of the SSF virtual cycle

counting method, and how it is estimated the block fatigue life using the virtual cycle

counting method.

Figure 5.4: Virtual cycle counting methodology and procedure to estimate block fatigue lives.

Figure 5.4 a) presents the normal and shear stress components time variation of a

multiaxial loading, which are computed to get the SSF time history depicted in Figure

5.4 b). Next up, in Figure 5.4 c), it is selected from the SSF time history the greatest

SSF value (orange dot) and the SSF stress values at every peak and valley found between

two consecutive SSF zero stress points, depicted in green dots. The greatest SSF value is

the block damage reference to compute the block fatigue life, please see Figure 5.4 d) and

e). Eq. 5.4 shows the virtual cycle counting expression, where the virtual cycle counting

(vcc) is achieved by adding each SSF peak/valley absolute values and divide the result by

the damage reference of the loading block.

vcc =

∑
abs(τ)peak,valley
2 · τmax,Block

(5.4)
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where vcc is the virtual cycle count inherent to a loading block and τ is the SSF equivalent

shear stress at each peak/valley. In cases where the loading block is defined by two SSF

reversals with the same amplitude, i.e. one peak and one valley, the vcc is equal to 1.

Thus, it can be concluded that the SSF virtual cycle counting verifies 1 cycle loading cases

that usually are the reference ones used in fatigue life experiments. The multiaxial cycle

counting method, vcc, is much simpler and easier to implement than other cycle counting

methods found in literature such as BS and WB discussed in Chapter 2.

5.3.1 Block fatigue life estimates

The block fatigue life estimate is achieved by using the block reference damage and the

virtual cycle count as follows in Eq. 5.5.

Nf block =
Nf τ max

vcc
(5.5)

where Nf block is the block fatigue life and Nf taumax is the block damage reference

determined using Eq. 5.6

Nf τ max =
(τmax,Block

A

) 1
b

(5.6)

where A and b, are the power law regression components obtained from pure torsion

fatigue data.

5.3.2 Illustrative example

In this subsection, it is performed a illustrative example where it is used the virtual cycle

counting methodology to estimate the fatigue life of a loading block. Now, consider the

loading block with the shear and axial stress time evolution shown in Figure 5.5.

Figure 5.5: Multiaxial loading block.
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The SSF equivalent stress time evolution for this loading block is depicted in Figure 5.6.

Figure 5.6: SSF equivalent shear stress time evolution for the selected loading block.

Here, the shear stress sign is established through the sign of the normal stress; this

assumption is based on the fact that the fatigue damage of shear stresses is independent

from the loading direction, i.e. negative shear stresses cause the same fatigue damage

than the positive ones. However, the fatigue damage of normal stresses in tension is quite

different from the compression one, thus the SSF approach considers that the shear stress

sign is always equal to the sign of the normal stresses, as stated in Chapter 4. Thus,

the SSF equivalent stress time evolution is divided into several loading branches defined

between two consecutive zero stress points. This becomes possible due to the shear stress

sign convention discussed in the previous lines. In Figure 5.7, one can identify the SSF

loading branches and the location of their maximum stresses for this loading block. Note

that the load branch concept used here is different from the reversal concept, the local

SSF peak/valley value for each branch is found between two consecutive zero stress points

of the SSF time evolution, and not in the points where the stress time evolution changes

direction, as seen in some Rainflow based criteria. The loading block selected to perform

this illustrative example (Figure 5.5) was tested in the high strength steel 42CrMo4. In

one of these fatigue tests, the multiaxial loading components had the following stress level:

520 [MPa] in the normal stress amplitude, and 300 [MPa] in the shear stress amplitude.

For this stress level, it was obtained for each loading branch, the SSF equivalent stress

amplitudes shown in Table 5.1.

Table 5.1: Values for the SSF equivalent shear stress loading branches.

B1 B2 B3 B4 B5 B6 B7 B8

SSF [Mpa] 428 340 300 -352 -422 -354 -330 369
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Figure 5.7: Loading branches identification in the SSF equivalent shear stress time evolution for

the selected loading block.

The maximum equivalent stress, which occurs at loading branch B1, is used to estimate the

block reference damage, which is obtained by applying the equivalent stress value (SSF

equivalent stress at branch B1) into the uniaxial shear trend line equation previously

obtained by experiments for the 42CrMo4 material. Thus, the computed fatigue life

regarding the 428 [MPa] found in B1 was 103097 cycles, which is a fatigue life quite

different from the 36102 cycles obtained in the experiments for this loading block and

stress level.

In fact, this result indicates a block damage greater than the one obtained using a fully

reversed proportional loading with a SSF equivalent shear stress amplitude equal to 428

[MPa]. So, this result confirms the hypothesis in which the experimental fatigue life of

a loading block is less than the one estimated by the maximum SSF equivalent stress

obtained within the loading block.

Considering that, it is necessary to find how much more damaging is the loading block

comparatively to the reference damage given by the load branch that has the maximum

equivalent shear stress. Thus, in order to clarify the virtual cycle counting already

presented in this section the paradigm can be rephrased as follows:

If the maximum equivalent shear stress amplitude verified in the loading block is the damage

reference determined based in the uniaxial SN curve (shear), thus the number of virtual

cycles inherent to the loading block can be determined by finding how many times that

damage reference is reached during the accumulative damage process within the loading

block.

The paradigm formulation is given by adding all SSF stress amplitudes found in the SSF

time evolution of a loading block, then divide that result by the double of the maximum
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equivalent stress verified on the loading block. Recalling the illustrative example, the

virtual cycle counting for this loading block is determined as follows in expression 5.7.

428+340 + 300 + 352+422+354+330 + 369

2× 428
= 3.38 (5.7)

Eq. 5.7 shows that this loading block has a fatigue damage 3.38 times greater than the

reference one, which indicates a 3.38 virtual cycles. In this way, it is determined the

relative damage in respect to the damage reference given throughout the maximum SSF

equivalent stress. The fatigue life estimate of the loading block is determined by dividing

the fatigue life estimate (obtained by the maximum SSF value i.e. the damage reference),

by the achieved virtual cycle counting, as seen in expression 5.8.

Nf block =

(
428

864.78

)
3.38

1
−0.061

= 30463 (5.8)

Thus, the fatigue life estimate for this loading block and stress level is 30463 cycles, which

is a result very close to the 36102 cycles obtained in the experiments.

5.4 Fatigue life estimates correlation with fatigue data

5.4.1 Rainflow cycle counting results

The ASTM E-1049 Rainflow method, developed by Dr. Darrel Socie, and discussed in

[158, 159] was selected here to evaluate the number cycles inherent to each loading block

shown in Figure 5.8. The objective is to inspect its performance under multiaxial loading

conditions and correlate the results with the virtual cycle counting methodology. Despite

the ASTM E-1049 method have been developed based in the stress-strain relation for

uniaxial loading conditions, here it is evaluated its performance by using the time evolution

of the SSF and the von Mises equivalent stresses in respect to the loading blocks depicted

in Figure 5.8. Fig.(s) 5.9, 5.10 and 5.11 show the equivalent stress evolution along each

loading case for the von Mises and SSF approaches regarding the selected loading blocks

present in Figure 5.8. The fatigue data of these loading blocks, i.e. Cases 1, 2, and 3, are

presented in Table 5.3 through Cases 1, 3, and 6, respectively. As it can be seen, the von

Mises equivalent stress time evolution is always positive, in contrast the time evolution of

the SSF equivalent stress has positive and negative values.
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Figure 5.8: Multiaxial loading blocks.

Due to that, the Rainflow cycle counting method extracts from the von Mises stress

evolution 1 cycle for each loading branch of the loading block, therefore to count the

number of Rainflow cycles associated to each loading block, it is just need to count the

number of branches on the von Mises loading path trajectory (stress space) please see

Figure 5.8; however for the SSF equivalent stress time evolution the number of loading

cycles cannot be directly extracted.

Figure 5.9: Equivalent stress time evolution for Case 1: a) von Mises equivalent stress, b) SSF

equivalent stress.

Figure 5.10: Equivalent stress time evolution for Case 2: a) von Mises equivalent stress, b) SSF

equivalent stress.
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Table 5.2 shows the results for the Rainflow cycle counting method in respect to each

loading block selected here (columns 1 and 2) and for each equivalent stress criterion

selected here, i.e. the von Mises and the SSF equivalent stresses. Columns 3 and 4

presents the relative damage calculated using the von Mises, and the SSF equivalent stress,

respectively. These results were computed by dividing the reference damage (fatigue life

estimate based in the maximum value found in the equivalent stress time evolution) by

the experimental fatigue life obtained for each loading case.

Figure 5.11: Equivalent stress time evolution for Case 3: a) von Mises equivalent stress, b) SSF

equivalent stress.

Table 5.2: Rainflow cycle counting and block relative damage for each loading case.

Rainflow Block Damage

v Mises ssf v Mises ssf

Case 1 4 2.5 1.2 1.9

Case 2 4 3 0.1 4.5

Case 3 8 7 1.9 9.1

As expected, the Rainflow results for the von Mises time evolution yields a cycle counting

equal to the number of loading branches encountered on the loading path trajectory

depicted in the stress space as shown in Fig.(s) 5.9 to 5.11. However, for the SSF equivalent

stress time evolution the Rainflow results are different from the number of branches, as it

can be seen in the second column of Table 5.2. In the third and fourth columns of Table

5.2, it is shown for each loading case and equivalent stress approach the block relative

damage in average (several samples were tested for each loading block).

Regarding the von Mises results, the relative block damage in Cases 1, and 3 is greater

than 1 which means that the damage caused by the loading block is greater than the one

estimated by the reference damage. However, in Case 2, the block relative damage is much

smaller than 1, about 0.1, which is in contradiction to the premise in which the damage

caused by a loading block is greater than the one estimated by its maximum equivalent
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stress verified on that same loading block. Therefore, the von Mises equivalent stress is

not suitable to capture block unitary damages because its fatigue life estimates based in

the maximum value approach is much greater than the block experimental fatigue life.

On the other hand, the block relative damage computed using the SSF equivalent stress

is greater than 1 for all loading blocks, being consistent with the premise described above.

Regarding the SSF relative damage results, the loading blocks 1, 2 and 3 are 1.9, 4.5 and

9.1 times more damaging than the respective reference damage.

Now, the relative damage results and the Rainflow counting results obtained for the SSF

equivalent stress can be compared in order to evaluate the performance of the Rainflow

method in respect to the capability to capture the unitary damage inherent to each loading

block selected here. Thus, for the SSF equivalent stress, the Rainflow cycle counting results

are very similar to the computed relative damages, i.e. 2.5 cycles for 1.9 in Case 1, 3 cycles

for 4.5 in Case 2, and 7 cycles for 9.1 in Case 3.

Therefore, the block relative damage can be fairly estimated using the Rainflow cycle

counting technique in association with the SSF equivalent stress, avoiding in such way

the need of experimental fatigue data to compute relative damages. In the von Mises

approach, the Rainflow results yields a number of cycles very different from the relative

block damage results, thus the relative damage cannot be estimated using the von Mises

and the Rainflow method being unsuitable to capture unitary damages from complex

loading paths.

5.4.2 Rainflow fatigue life correlation

Fig.(s) 5.12, 5.13 and 5.14 show the fatigue life correlation for the selected loading cases and

equivalent stress criteria. In each graph a square symbol is used to identify the results of the

fatigue life correlation performed with the maximum equivalent stress (von Mises and SSF)

found within the selected loading blocks. Moreover, the circle symbol was used to represent

the fatigue life correlation in which the fatigue life estimates of the equivalent stress

criteria were updated by the Rainflow results. This update was performed by dividing

the aforementioned estimates by the inherent Rainflow cycle counting values. The loading

block fatigue life correlations using the SSF approach and the Rainflow methodology have

a satisfactory results with few data points outside the fatigue life boundaries with a life

factor equal to 3. However, the results for the the von Mises fatigue life correlation in

Case 2 are totally outside of fatigue life boundaries, please see Figure 5.13 a). Moreover,

the von Mises estimates without a cycle counting update gave the same damage level in

Cases 1 and 3, because it is computed the same maximum equivalent stress value in these

two loading blocks.
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Figure 5.12: Fatigue life correlation for Case: 1 a) von Mises approach, b) SSF equivalent stress

approach.

Figure 5.13: Fatigue life correlation for Case 2: a) von Mises approach, b) SSF equivalent stress

approach.

Figure 5.14: Fatigue life correlation for Case 3: a) von Mises approach, b) SSF equivalent stress

approach.
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5.4.3 Multiaxial cycle counting analysis

In this sub-section it is performed a deep analysis of eleven loading blocks (please see

Figure 5.15) using the developed multiaxial cycle counting method (vcc, virtual cycle

counting method) and the selected ones from literature, i.e. the Wang and Brown (WB),

and the Bannantine and Socie (BS) methods.

The theoretical results to analyse the vcc, WB, and BS multiaxial cycle counting methods

are presented in Fig.(s) 5.16 to 5.26. For each loading block, it is presented in the same

Figure the WB and BS cycle counting results in order to turn easier the comparative

exercise between results.

Table 5.3 present the fatigue life results for the loading blocks depicted in Figure 5.15.

These results were obtained under in experiments stress control with loading frequencies

between 5-6 Hz at room temperature. The failure criterion was the sample total

separation. The test sample geometry and its dimensions are depicted in Figure 3.30.

Figure 5.15: Multiaxial loading blocks considered in this sub-section.
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Table 5.3: 42CrMo4 fatigue life results for the loading blocks depicted in Figure 5.15 [3, 9, 160–

162].

Case Axial Shear Nf Case Sigma Shear Nf

Case 1 610 352 24722 Case 7 194 388 35003

600 346 30058 184 368 47934

570 329 58703 175 350 79496

520 300 176793 160 321 133058

495 286 265955 143 287 1000000 (ro)

480 277 271243 Case 8 520 300 36102

445 257 892629 493 285 76297

420 243 1000000 (ro) 487 281 90993

Case 2 360 416 337186 466 270 117530

345 398 518622 441 255 464214

375 433 121014 Case 9 470 271 38487

305 352 1000000 (ro) 465 269 52836

Case 3 450 260 21485 455 263 86000

440 254 32374 440 254 127693

435 251 41060 430 248 265312

415 240 128000 420 248 803827

405 234 181991 Case 10 510 294 12116

395 228 427877 480 277 41466

Case 4 420 243 34807 460 266 93247

415 240 53246 440 254 200489

410 237 86669 435 251 421814

400 231 115474 430 248 692953

395 228 119252 Case 11 440 254 32350

380 219 231943 425 245 53116

370 214 282332 415 240 96837

Case 5 520 300 26009 410 237 123305

552 318 26509 405 234 158375

540 312 82293 400 231 342411

520 300 461232

490 283 733273

Case 6 479 240 4088

463 232 10719

434 217 37031

399 200 99052

347 173 558219

5.4.3.1 How to read the results

The multiaxial cycle counting methods Wang and Brown, and Bannantine and Socie

have different approaches to evaluate multiaxial cycle counting, therefore their results

are presented in two different ways. However, they have a common variable, which is the

number of cycles found for each loading block. This variable will be used to compare their

performance to capture the unitary damage for each loading block considered here. In the

following, Figure 5.16 will be used to describe the reading process regarding the results
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achieved for the WB and BS methods as well as the SSF equivalent stress time evolution

for each loading block. Sub-figures 5.16 a), b) and c) depicts the results of the Bannantine

and Socie methodology.

The loading path (loading block) is depicted in Figure 5.16 a) using the von Mises stress

space, from where it can be correlated the critical plane orientation identified in Figures

5.16 b) and c) with the loading path shape. In Figure 5.16 a), the σ axis is aligned with

the specimen test longitudinal direction, and the 0o plane orientation is parallel to the τ

axis.

In sub-Figures 5.16 b) and c) it is presented the pattern of the SWT and Fatemi-Socie

fatigue damage parameters at each plane by a full line, the maximum value found in this

line is used to estimate the loading block fatigue life as shown in Chapter 2. Moreover, it

is also depicted a dotted line which presents the number of reversals extracted from the

damage parameter time evolution (SWT and Fatemi-Socie) at each plane.

In addition, the sub-figures 5.16 d) and e) are also related, here the number of reversals

and damage parameter time evolution is shown for the Wang and Brown method. The

WB reversals are time dependent, thus it can be identified the time instant of the most

damaging reversal. Moreover, the most damaging reversal can be identified in the stress

time evolution depicted in sub-figure 5.16 d) through the time instant of the most damaging

reversal. The same reasoning can be made to the SSF equivalent stress time evolution by

comparing sub-figures 5.16 d) and f).

Furthermore, the reversals number in the Bannantine and Socie, and in the Wang ad

Brown methods have different paradigms associated. Thus, the reversals in Bannantine

and Socie results, shown in sub-figures 5.16 b) and c), are the number of the accumulated

reversals on each plane. On the other hand, the reversals of the Wang and Brown method

indicates the reversal number and their time window within the loading block period.

5.4.4 Cycle counting results

Figure 5.16 presents the results for the loading block Case 1, this is a sequential loading

block where a sinusoidal normal load is followed by a sinusoidal shear load, which has

an amplitude
√

3 times lower than the normal one. Regarding the BS results, the SWT

and F-Socie criteria estimate the critical plane at 0o with 4 and 3 reversals, respectively.

The number of reversals must be always kept up with the inherent damage parameter

value in order to conclude about the loading block damage. For instance, in Figure 5.16

b) at −45o it was found the highest number of reversals, about 6, however the damage

parameter associated with it is near zero, moreover the maximum damage parameter was

found at 0o plane where the reversals number is lower, i.e. 4 reversals. Regarding the

WB results, it can be found 4 reversals for this loading block, and the 2nd one is the most

loaded. The second reversal is divided into two time periods within the load period, please
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see Figure 5.16 e). From the WB results, it can be identified the most damaging region of

the block stress-time history depicted in Figure 5.16 d), where the time period of the most

damaging load is in the range of 16 to 33 seconds and 57 to 65 seconds. Thus, based in

the WB methodology, the greatest contribution to the block unitary damage results from

the compressive normal stress and from the last shear loading branch. The SSF equivalent

stress time evolution shown in Figure 5.16 f) is very similar to the stress time evolution

shown in Figure 5.16 d), where the zero stress points occur at same time in both graphs,

the SSF virtual cycle counting methodology extracts 3.4 reversals for this loading block,

and the Rainflow methodology extracts from the SSF time evolution about 5 reversals.

Figure 5.16: Case 1: a) von Mises stress space, b) BS results with SWT, c) BS results with

FSocie, d) Block stress time evolution e) WB results, and f) SSF time evolution.

Figure 5.17 presents the theoretical results for Case 2, this loading block is a sequential

loading similar to the loading Case 1, where the shear stress amplitude is now
√

3 times

greater than the normal one. Within the BS method, the SWT estimates for the critical

plane orientation is±45o where the BS criterion yields 6 and 5 reversals, respectively. Here,

it is reached the same accumulated damage parameter for different number of reversals,

also the estimate of the F-Socie criterion regarding the critical plane is 0o, where the BS

method yields 3 reversals. The WB results are very alike to the ones verified in Case

1, where the maximum damage occurs at the 2nd reversal. The SSF equivalent stress

time evolution and the multiaxial loading components time evolution have in common the

same zero stress points. The SSF criterion extracts about 3.6 reversals and the Rainflow

criterion applied to the SSF time evolution extracts 5 reversals.
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Figure 5.17: Case 2: a) von Mises stress space, b) BS results with SWT, c) BS results with

FSocie, d) Block stress time evolution, e) WB results, and f) SSF time evolution.

Figure 5.18: Case 3: a) von Mises stress space, b) BS results with SWT c) BS results with FSocie

d) Block stress time evolution e) WB results and f) SSF time evolution.

Figure 5.18 shows the results regarding loading Case 3, which is a multiaxial loading path

with four proportional loading branches similar to Case 4, but with a different loading

sequence, please see Figure 5.19 a). The BS method extracts 7 reversals in this loading
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block in both critical plane criteria (SWT and FS). Regarding the BS-SWT approach, the

maximum value of the accumulated damage parameter occurs at ±30o and the F-Socie

estimate for the critical plane was ±16o. In this loading block the experimental crack

initiation plane was about 29o [161].

The SWT and F-Socie critical plane estimates, computed without using the Bannantine

and Socie cycle counting method, were ±25 and ±21;±69, respectively.

In the WB method, the most damaging reversal occurs in the last loading branch and

extracts about 6 reversals for this loading block.

The SSF virtual cycle counting method extracts from this loading block 4.2 reversals, also

here the zero stress points of the SSF equivalent stress, and the stress-time loading history

occurs at same time. Moreover, the Rainflow method extracts 5 reversals from this SSF

equivalent stress time evolution.

Figure 5.19 presents the results for loading Case 4, this loading block is very similar to Case

3, the difference between them is the loading sequence given by the sequential numbering

depicted in the stress space. In this loading case, there is no fully reversed stress time

evolutions as seen in Case 3, please see Figure 5.18 a). The experimental crack initiation

plane for this loading block was 31o [161].

The Bannantine and Socie results are presented in sub-figures 5.19 b) and c). From these

results, the SWT and F-Socie critical plane estimates for the critical plane orientation

are ±29o and ±17, respectively. Moreover, the BS method yields the same number of

reversals in both critical plane criteria. The critical plane estimates obtained without

the accumulated damage approach (BS), were ±25 for SWT and ±21◦;±69◦ for F-Socie,

respectively.

In sub-figure 5.19 d) it is shown the block multiaxial stress components time variation,

moreover in sub-figure 5.19 e), it is presented the WB results, here the WB methodology

yields 6 reversals, which is the same value extracted with the BS method. Also here, the

WB method identifies the last reversal as the most damaging one, as seen in Case 3.

In sub-figure 5.19 f) it is presented the SSF time variation for this loading block. The SSF

vitual cycle counting methodology extracts 4 reversals and the Rainflow method extracts

6 reversals from the SSF equivalent stress time evolution depicted in sub-figure 5.19 f).

The loading sequence variation between Case 3 and Case 4 do not affect substantially the

critical plane estimates and the experimental crack initiation plane, as it can be seen by

comparing the theoretical and experimental results from both loading cases.

The loading Case 5 is presented in Figure 5.20 a), this is a loading block composed by

several proportional loading branches with different stress amplitude ratios (SAR), the

loading sequence is given by the number sequence depicted in Figure 5.20 a).
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Figure 5.19: Case 4: a) von Mises stress space, b) BS results with SWT c) BS results with FSocie

d) Block stress time evolution e) WB results and f) SSF time evolution.

Figure 5.20: Case 5: a) von Mises stress space, b) BS results with SWT, c) BS results with

FSocie, d) Block stress time evolution, e) WB results, and f) SSF time evolution.

The experimental crack initiation plane for this loading block was 0o [161]. The Bannantine

and Socie method yields 10 reversals for this loading block under the SWT and F-Socie

damage criteria. The critical plane estimates under the BS accumulated damage approach

were 4o for SWT and 0o for F-Socie. The critical plane estimates obtained without
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using the BS damage accumulation approach was 0o in both SWT and F-Socie criteria.

Regarding the results of the WB methodology, it was extracted 9 reversals from this

loading block, minus 1 reversal than the ones obtained by the critical plane approach in

association with the BS method. The SSF virtual cycle counting method extracts 6.8

reversals from the SSF equivalent stress time evolution, and the Rainflow methodology

extracts 10 reversals.

Figure 5.21 a) shows the loading Case 6, which is similar to Case 5. These two loading

blocks have different loading sequences, which is given by the numeric sequence depicted in

the von Mises stress space, please see Figure 5.21 a) and Figure 5.20 a). The experimental

critical plane was measured at 6o [3].

In this loading block the BS yields 10 reversals in the SWT criterion and 11 reversals in

the F-Socie on the most loaded plane. The BS critical plane estimates were 2o for the

SWT criterion and 0o for F-Socie, respectively. The critical plane estimates without the

BS damage accumulation approach was 0o for both SWT and F-Socie criteria.

The WB methodology extracts 14 reversals from this loading block and the most loaded

reversal was the number 8. The SSF virtual cycle counting methodology extracts 6.8

reversals, and the Rainflow methodology extracts from the SSF equivalent stress time

evolution 14 reversals.

Figure 5.21: Case 6: a) von Mises stress space, b) BS results with SWT, c) BS results with

F-Socie, d) Block stress time evolution, e) WB results and, f) SSF time evolution.

Fig.(s) 5.22 to 5.24 show the results for loading Cases 7, 8 and 9, respectively. These

loading blocks are asynchronous loadings where the shear stress loading frequency is five
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times greater than the normal stress amplitude. The difference between these loading

blocks is based in the variation of their stress amplitude ratios having 2, 0.5 and 0.6 as

SAR, respectively. In loading Cases 8 and 9 the normal stress amplitude is greater than

the shear stress amplitude, in Case 7 the opposite occurs, the shear stress amplitude is

twice the normal stress amplitude. The results obtained for loading Cases 8 and 9 are

very similar, thus a slight SAR variation has little influence in the computed number of

reversals and accumulated fatigue damage.

Figure 5.22: Case 7: a) von Mises stress space, b) BS results with SWT, c) BS results with

F-Socie d) Block stress time evolution, e) WB results, and f) SSF time evolution.

Regarding the results of loading Case 7, please see Figure 5.22, it can be seen a strong

influence of the SAR increase in the accumulated damage variation in respect to θ,

comparatively to the results obtained in loading Cases 8 and 9.

In loading Cases 8 and 9, the Bannantine and Socie method extracts 11 reversals in both

critical plane criteria. The BS critical plane estimates, in Cases 8 and 9, were 24o and

26o based in the SWT criterion, and based in the F-Socie criterion were −20o and −19o.

In Case 8, the critical plane estimates without a damage accumulation criteria were −25o

and 23o based in the SWT criterion, and based in the F-Socie they were −39o and 38o.

Moreover, in Case 9 the critical plane estimates were −23o and 25o in the SWT criterion,

and in the F-Socie criterion they were −20o and 70o. The critical plane estimates in

loading Case 7 were 41o for SWT, and 8o for F-Socie. The experimental results for the

crack initiation plane in loading Cases 7, 8 and 9 were −19o, −22o and −19o [9, 162],

respectively. The critical plane estimates without the accumulative damage approach (BS

method) were −39o; 38o in the SWT criterion, and −13o; 12o in the F-Socie criterion.
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Regarding the results for the SSF virtual cycle counting method in loading Cases 7, 8 and

9, it was computed 2, 1.8 and 1.8 cycles, respectively. The Rainflow results based in the

SSF equivalent stress time evolution yields 19, 27 and 27 reversals in Cases 7, 8 and 9,

respectively.

Figure 5.23: Case 8: a) von Mises stress space, b) BS results with SWT, c) BS results with

F-Socie, d) Block stress time evolution, e) WB results, and f) SSF time evolution.

Figure 5.24: Case 9: a) von Mises stress space, b) BS results with SWT, c) BS results with

F-Socie, d) Block stress time evolution, e) WB results, and f) SSF time evolution.
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The results of loading Cases 10 and 11 are presented in Fig.(s) 5.25 and 5.26. These

loading blocks are asynchronous loadings where the shear stress loading frequency is twice

the normal stress frequency in Case 10, and in Case 11 the normal stress loading frequency

is twice the shear one.

In loading Case 10, the BS method extracts from the loading block time evolution the same

number of reversals in the SWT and F-Socie criteria on the most loaded plane (plane with

higher accumulated damage parameter). The BS critical plane estimates were −28o for

the SWT criterion, and 15o for the F-Socie criterion. In this case the experimental crack

initiation plane was −18o [162]. The critical plane estimates, without an accumulate

damage approach, were ±25◦ for the SWT criterion, and ±17◦; ±73◦ for the F-Socie. The

WB yields 4 reversals for this loading block (Case 10) where the most damaging reversal

occurs at the last quarter of the loading period.

Regarding the results of loading Case 11, the BS method yields the same number of

reversals achieved for loading Case 10, i.e. 5 reversals at most loaded plane. The critical

plane estimates under the BS accumulative approach was −22o for the SWT and ±17o for

the F-Socie criterion, the experimental crack initiation orientation was −23o [162]. The

critical plane estimates without the BS accumulative approach were ±21o for the SWT

criterion, and ±23o; ±67o for the F-Socie criterion. The WB extracted 4 reversals from

the loading block 11, where the most damaging reversal occurs in the last quarter of the

loading period.

Figure 5.25: Case 10: a) von Mises stress space, b) BS results with SWT, c) BS results with

F-Socie, d) Block stress time evolution, e) WB results, and f) SSF time evolution.

Regarding the results of the SSF virtual cycle counting method for loading Cases 10 and
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Figure 5.26: Case 11: a) von Mises stress space, b) BS results with SWT, c) BS results with

F-Socie, d) Block stress time evolution, e) WB results, and f) SSF time evolution.

11, the extracted loading cycles were 1.8, and 1.4, respectively. The Rainflow results based

in the SSF equivalent stress time evolution yields 14 and 23 reversals for loading Cases 10

and 11, respectively.

Table 5.4 presents a summary of the critical plane estimates under the BS accumulative

approach. Based on these results it can be concluded that the SWT and the F-Socie

criteria in association with the Bannantine and Socie cycle counting methodology have a

similar accuracy regarding the estimates of the crack initiation plane. Moreover, it can be

concluded that the critical plane estimates without an accumulating damage approach are

very alike to the ones obtained with the accumulated Bannantine and Socie methodology.

Table 5.5 summarizes the results of the cycle counting methods used to evaluate each

loading block considered in this section.

The results gathered in Table 5.5 show that the critical plane estimates are not improved

with the Bannantine and Socie cycle counting methodology neither with its damage

accumulation approach i.e. the critical plane estimates with the BS accumulative damage

approach and without it are very similar. However, the BS accumulative damage approach

yields different fatigue life estimates comparatively to the ones achieved without an

accumulative damage approach. The Bannantine and Socie cycle counting methodology is

based in a physical behaviour by using the Rainflow methodology to account the loading

block reversals at each plane.

In contrast, the Wang and Brown methodology identifies damaging reversals within the
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Table 5.4: Critical plane results for the selected loading blocks under the BS criterion.

Case SWT F-Socie Experiment

1 0◦ 0◦ −5◦

2 ±45◦ 0◦ 0◦

3 ±30◦ ±16◦ 29◦

4 ±29◦ ±17◦ 31◦

5 4◦ 0◦ 0◦

6 −2◦ 0◦ −6◦

7 41◦ 8◦ −19◦

8 24◦ −20◦ −22◦

9 26◦ −19◦ −20◦

10 −28◦ 15◦ −18◦

11 −22◦ ±17◦ −23◦

Table 5.5: Cycle counting results for the Bannantine and Socie, Wang and Brown, and the SSF

approaches obtained with the vcc and the Rainflow methods.

Case

BS - SWT

block cycles at

most loaded

plan

BS-FS block

cycles at most

loaded plan

WB block

cycles

SSF virtual

block cycles

SSF

Rainflow

cycles

1 2 1.5 2 1.7 2.5

2 2.5 1.5 2 1.8 2.5

3 3.5 3.5 3 2.1 2.5

4 3 3.5 3 2.0 3

5 5 3.5 4.5 3.4 5

6 7 5.5 7 3.4 7

7 5.5 5.5 5 1.0 9.5

8 5.5 5.5 5 0.9 13.5

9 5.5 5.5 5 0.9 13.5

10 2.5 2.5 2 0.9 7.5

11 2.5 1.5 1.5 0.7 6.5
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loading block without any logical connectivity to the physical damage process, thus it is

not clear in this method why certain reversals are more damaging than others. Despite

that, both methods have a very similar results regarding the block reversals extraction, in

some loading cases no significant differences were found. The maximum difference between

the results computed for these two methods was 2 reversals in loading Cases 5 and 11.

In the other loading cases considered here, the difference found between cycle counting

methods was 1 reversal or less.

The SSF virtual cycle counting methodology in some loading cases yields a number of

reversals less than one, please check the results regarding loading Case 11 presented in

Table 5.5 where the SSF virtual cycle counting extracts 1.4 reversals, which is one reversal

plus 40% from other one. These results can be explained by recalling the SSF virtual cycle

paradigm which is based on the SSF equivalent stress time evolution. In this paradigm

the number of cycles within a loading block are calculated by the summation of the peaks

and valleys divided by the maximum peak values, in this way, it is determined the block

unitary damage under the SSF approach. Therefore, the results of the SSF virtual cycle

counting method can not be round-up or round-down as seen in the Rainflow based cycle

counting methods. The values of the SSF virtual cycle counting method were inferior to

the ones obtained with the Bannantine and Socie, and Wang and Brown methods, however

the Rainflow results based in the SSF equivalent stress time evolution were in most cases

similar to the BS and WB results, but there were cases where the results were greater.

5.4.5 Vcc, WB, and BS fatigue life correlation

In order to estimate the loading blocks fatigue lives, it is necessary to take a

multidisciplinary approach in fatigue life characterization, because multiaxial loading

blocks have much more complex loading histories than the reference loadings where the

loading cycle identification is a straightforward procedure. Therefore, under complex

loading histories it is usually used three main multiaxial fatigue methods to estimate

fatigue life for complex loading histories, namely, a damage parameter criterion, a cycle

counting method,and a damage accumulation rule. The inner issue related to this fatigue

life paradigm (criterion, method, and rule) is based on the damage parameter definition;

this parameter must translate the physical fatigue damage mechanism in order to allow

the use of a cycle counting method and an damage accumulation rule.

Usually, the maximum damage parameter obtained on a specific reversal is insufficient to

capture the total fatigue damage of a loading block, and it yields unsatisfactory estimates

under complex loading histories. Thus, it is necessary to discriminate the loading block into

reversals using a cycle counting methodology in order to compute the loading block unitary

damage. After that, it is necessary to compute the contribution of each loading block to

the overall damage by using a damage accumulation rule. The reversals extraction from

complex loading paths must be always associated to the value of the damage parameter in
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order to account the stress level effect on the block unitary damage. Figure 5.27 presents

the fatigue life correlation between the theoretical estimates and experimental results for

the Bannantine and Socie cycle counting method. Fig.(s) 5.27 a) and b) show the BS

correlation based in the SWT criterion and Fig.(s) 5.27 c) and d) show BS correlation

based in the F-Socie criterion.

Figure 5.27: Fatigue life correlation for BS in association with SWT: a) and b) and c), d) with

F-Socie damage parameter.

Based on the results depicted in Figure 5.27, it can be seen that the SWT criterion yields an

accumulative damage parameter too low, because the results of the fatigue life correlation

tends to be above of the upper boundary line. Regarding the BS fatigue life results based

in the F-Socie criterion, it can be seen that the correlation yields an inconclusive trend

in the Cases 1 to 6 where a big scatter can be found. In contrast, in the Cases 7 to 11,

the fatigue life correlation is very acceptable, where only two results were found outside

of the boundary lines. The Wang and Brown fatigue life correlation is shown in Figure

5.28. In sub-figures 5.28 a) and b) it is presented the WB results for S = 0.3 which sets
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up the Wang and Brown damage parameter to the infinite fatigue life (1E6 cycles). In

sub-figures 5.28 c) and d), it is shown the fatigue life correlation for S = 0.7 that sets up

the Wang and Brown method to half fatigue life. The fatigue life correlation in Cases 1 to

6 have also a big scatter, as seen in the Bannantine and Socie method, for both S = 0.3

and S = 0.7.

However, in this scatter it can be seen a accumulative damage parameter too high in

Cases 1 to 6, where the correlation results tends to be under the lower bond of the

fatigue life limits (life factor equal to 3). Nevertheless, the results for Cases 7 to 11 show

an improved fatigue life correlation, where it can be found very acceptable results for

S = 0.7, likewise to the observed in the Bannantine and Socie method.

Figure 5.28: Fatigue life correlation for WB with S=0.3: a), b), and with S=0.7: c), d)

Figure 5.29 shows the SSF fatigue life correlation with experimental results, as it can be

seen the fatigue life correlation has very acceptable results. The scatter found in Cases 1

to 6 shown in the Bannantine and Socie and Wang and Brown methods is reduced here
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with the SSF virtual cycle counting methodology. Also the results for loading Cases 7

to 11 are within the fatigue life boundaries where only 2 points are outside of the limits.

The SSF’s scatter in these loading blocks is more reduced comparatively to the results

obtained in the Bannatine-Socie and Wang-Brown cycle counting methods.

Based on the SSF fatigue life correlation results, it can be generalized the idea in which

the SSF virtual cycle counting method associated to the SSF equivalent stress is at the

same level of the Bannatine-Socie or Wang-Brown methods, but with the advantage to be

a simpler cycle counting method and a quicker methodology to estimate fatigue lives for

loading blocks. The complexity of the reversals extraction found in the Bannantine-Socie

and Wang-Brown cycle counting methodologies makes these methods prone to errors being

not practical to implement manually or even within a numeric code.

Figure 5.29: Fatigue life correlation for the SSF virtual cycle counting in association with the

SSF equivalent shear stress: a) Cases 1 to 6, and b) Cases 7 to 11.

5.5 Final comments

In this chapter, it was proposed a new cycle counting methodology based on the SSF

equivalent shear stress time evolution to estimate fatigue life of complex loading blocks

under multiaxial loading conditions. The capability of the SSF virtual cycle counting

method to successfully estimate fatigue lives of loading blocks was analysed based in

experimental fatigue data from 11 multiaxial loading blocks in order to be validated as a

new cycle counting method.

Moreover, it was evaluated two state-of-the-art multiaxial cycle counting methods, the

Bannatine-Socie and the Wang-Brown methods, in order to make a comparison between

their capability to deal with the fatigue damage characterization of loading blocks. The

SSF estimates were successfully correlated with the experimental fatigue life data, having

a slight advantage over the estimates yield by the Bannatine-Socie and the Wang-Brown
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methods. Also, it can be concluded that the simplicity to implement the SSF virtual cycle

counting method, comparatively to the other methods considered here, is a strong point

in favour of the new proposal.
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Chapter 6

Contributions to Level 4

6.1 Introduction

In this chapter, it is used the tools developed in the previous chapters to evaluate multiaxial

damage accumulation under random loading conditions in order to inspected the SSF

equivalent stress performance under random loading conditions using a linear damage

accumulation approach. The nature of the method present here is quite different from

the conventional or traditional multiaxial fatigue damage evaluation which is traditionally

addressed to mechanical design routines in mechanical design. The idea is to take several

tools such as damage parameters, multiaxial cycle counting methods, multiaxial fatigue

loading effects characterization, and use these tools in the structures damage monitoring

for instantaneous damage evaluation. This concept will allow to monitor the structural

health of structures in a instantaneous way which can be very useful in replace/repair

decisions as well as prevent more demanding regimes in the field. Figure 6.1 shows the

fatigue level inherent to this chapter.

Figure 6.1: Multiaxial fatigue level focused in this chapter.

One important decision to make about maintenance occurs when a part or component

should be replaced due to fatigue damage. For instance, in aeronautics some parts of

aircraft have a kind of fly hours stock that can be expended with a rate defined by the fly

manoeuvre regime. When the stock of flight hours is totally expended, the part or structure

of the aircraft must be substituted. In some cases, replacing an aircraft’s part can be quite

costly and time-consuming. Therefore, the replacing decisions based on fatigue damage
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assessment by local stress/strain measurements performed by wire or wireless could be a

way to optimize resources. The critical parts monitoring allows to compute local stresses

and their inherent local fatigue damages at the structures most loaded regions. Therefore,

in this way, the decisions of replacing parts would be based in the local stress/strain time

histories and not based on projections of damage accumulation. This is an important

subject, because local measurements will allow to interpret loading path features and their

effect on fatigue damage during the loading period, which is an important information in

the fatigue damage assessment of random loadings.

It is well-known that the loading path type has a huge influence in the fatigue strength.

Damage effects like non-proportionality, proportionality, sequential, asynchronous, mean

stresses, among others, lead to different rates of fatigue damage [16, 52, 63].

Under multiaxial random loading conditions, some of the aforementioned loading effects

may be activated individually or simultaneously. Thus, fatigue damage assessment under

such loading conditions (random loadings) must have into account the fatigue damage

inherent to each loading type found in each loading block extracted from a loading spectra.

Furthermore, those effects may have different damage levels according to the load level

and may differ from material to material.

In some cases, the loading path effect could be more damaging in one material than

in other one, because of that, and in cases of major importance, it is recommended to

have for each material a damage map, like the SSF damage map presented in Chapter 4,

which is obtained by experiments. Therefore, an universal procedure to capture all kind

of damages found within a loading spectrum without having into account the material

cyclic properties, such as the g-counts of the aircraft’s flight history, can lead to a very

conservative replacement decisions, waste of money, and cut of incomings.

The random fatigue approach aims to characterize fatigue damage from loadings with

unknown time histories, i.e. in the field a given mechanical part will be subjected to

unknown loadings, which is a loading conditions quite different from the ones usually

performed in the lab. Therefore, these kind of loadings are quite difficult to simulate in

the lab, because the most common fatigue testing machines needs an input file to operate,

which is read in a closed loop in order to load the sample according to a predetermined

loading path, and due to that, the aleatory nature always present in random loadings is

loss.

One way to overcome this issue is to record the stress/strain time variation obtained

in the field to be used as machine input. Nevertheless, in the field nothing is totally

random, for instance when car suspension travels the same path every day, the random

forces in the car suspension will have a similar pattern every day, but not the same

pattern. Another example of a structure subjected to complex loadings is the wind towers

used in energy harvest. In this case, the tower structure is subjected to wind patterns
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which can be quite random and damaging, ranging from laminar to turbulent flows [163,

164]. These structures are positioned in strategic places to be subjected to the highest

wind forces to optimize the energy harvest. Other examples are the ship and offshore

structures where the waves with random pattern induce random loadings in the structures.

These cases are examples of multiaxial random loadings in harsh environments which

have features that influences and increases fatigue damage, such as corrosion, for instance

[165]. Anodic corrosion that results from electric polarization between metal and sea water

creates micro-notches that locally, creates stress raisers. It is well-known, that the loading

path effect on fatigue damage is strongly influenced by micro-notches [166–168]. Thus,

the loading effects under corrosive environments must be treated with extra care.

As aforementioned, random loadings are very different from the ones traditionally made

in lab. However, there are some cases where the loading pattern in the field can be

successfully modulated in lab, for instance the loadings found in power shafts is one

example of that. Despite the huge amount of random loading patterns found in the field,

in literature it can be found very few works related to the damage assessment of random

loadings.

Many multiaxial fatigue models were designed to be used under lab loading conditions,

which can be quite different from the ones found in the field. One reason that can explain

such evidence is the necessity of a multidisciplinary approach, that covers all fatigue

fields, to characterize multiaxial fatigue damage from a loading spectra [167, 168]. To

characterize random multiaxial fatigue it is necessary to have a damage parameter such

as an equivalent stress, a robust cycle counting method and an accumulative damage

rule. Multiaxial random fatigue is the ultimate stage in fatigue life assessment because it

takes into account several multiaxial fields that usually are tackled separately. Moreover,

the available cycle counting methods in literature are very few especially for multiaxial

loading conditions. Most of them are very complex to carry out and takes a huge amount of

computational resources, which can be a shortcoming for the on-line damage assessment

approach such as the ones used in structural health monitoring. Also, the wide used

multiaxial cycle counting methods based on the Rainflow method do not show, so far,

good correlations with experimental lab data even for well-defined loading paths.

In mechanical design, structures can be designed for multiaxial complex loading regimes

under an assumption that the loading spectrum used in design is representative of the

damage found in the field. However, despite being a valid approach, such procedure only

indicates a fatigue life estimate if the loading history in the field is equal to the spectrum

used in design stages. Therefore, if the structure or mechanical part is loaded outside of the

design-loading spectrum the estimates obtained in design stages are meaningless. Thus,

it is important to have a reliable loading spectra based in the field patterns to estimate

structural damage under random loading conditions. Health monitoring is commonly
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made using mechanical vibration techniques and stiffness variation analysis among other

techniques. However, in terms of vibration, fatigue damage is only detectable when a

fatigue crack begins to growth (nowadays it is not possible to monitor crack initiation

using mechanical vibration techniques). In some materials, usually high strength steels,

the time spent in crack growth is very short (most of the time is spent in crack nucleation),

i.e. the remaining time until failure after the crack starts to grow is very short. Therefore,

fatigue damage monitoring based on crack growth can be quite dangerous in some cases.

6.2 SSF and the linear damage accumulation

In this section, it is not proposed a damage accumulation rule, as a matter of fact the

present author uses the linear damage rule proposed by Palmgren and Miner as a valid

tool to be used in damage accumulation assessment. Some shortcomings were pointed

out in literature regarding this damage accumulation rule, which are based in erroneously

perceived interpretations. In the present author point of view, the shortcomings pointed

out result mainly from the incapacity of their damage parameter to capture the material

constitutive behaviour under certain loading conditions. For instance, the Hi-Lo or Lo-Hi

sequence effects on the material damage cannot be captured by a Palmgren-Miner type

rule, because it only computes the fraction of damage consumed and does not have

mechanisms to account with the material cyclic behaviour. Thus, the load features must

be captured by the damage parameter and constitutive models and not by a damage

accumulation rule.

In the aforementioned loading cases (the Hi-Lo or Lo-Hi sequences), a damage parameter is

obtained by local stress-strains measurements, which must be updated by an elastic-plastic

model, such as the one proposed in Chapter 3 (the HYS model), in order to account with

the material cyclic properties variation due to the stress level variation. Thus, it makes

sense that the Palmgren-Miner rule cannot capture the material hardening or softening

due to the stress level or loading type. However, if the damage parameter captures these

effects then the Palmgren-Miner rule will give acceptable results.

It is stated in literature that the Palmgren-Miner rule estimates erroneously the overall

damage at the collapse instant, i.e. in some cases failure occurs for an accumulated damage

greater than one and in other cases occurs for an accumulated damage less than one. These

results are expected and there is nothing wrong with the Palmgren-Miner rule concept,

because in multiaxial fatigue damage characterization it is always present the statistical

behaviour typically found in fatigue life experiments. It is not possible or it is very unlikely

to get the same fatigue life in different samples for the same testing conditions. Therefore

the S-N curve is a type of statistical curve which for a certain stress load gives the most

probable fatigue life. The Palmgren-Miner linear damage rule will be used in association

with the SSF equivalent shear stress in order to account accumulated fatigue damage under

202



Multiaxial Fatigue

random loading conditions. Eq. 6.1 presents the Palmgren-Miner damage rule where Ni

is the maximum number of loading cycles before failure at certain stress level of the SSF

equivalent stress, and ni is the number of cycles performed at the SSF equivalent stress

level mentioned above. In this damage accumulation rule, failure is expected when the

damage summation reaches or overcome the value 1.

I∑
i=1

ni
Ni
≥ 1 (6.1)

As illustration, consider a constant amplitude loading at certain stress level, the maximum

number of loading cycles before failure is estimated based on that stress level in association

with the material S-N curve, which gives the Ni value. Now, if the number of loaded cycles

ni equals the value Ni thus the damage summation equals 1 with only one stress level.

Thus, the S-N curve has embedded a linear damage summation, where each loading cycle

is added until reach the collapse, this is another reason why it is chosen in this study a

linear damage accumulation rule instead a non-linear one.

6.3 Multiaxial random fatigue damage characterization

The ultimate goal under multiaxial fatigue characterization is to find a way to deal with

random multiaxial fatigue, this is an unsolved and complex problem that is dependent

of several cornerstones related to the damage parameter formulation, cycle counting

methods, block damage assessment and block extraction from random loading spectra.

Also, multiaxial random fatigue is an unpopular subject due to the complexity involved and

lack of knowledge in some pillars of multiaxial damage accumulation. However, mechanical

components and structures are mainly subjected to multiaxial random stress states with

variable amplitude, moreover, at design stages, it continues to be used simply fatigue

loading paths as a reference in design of mechanical components and structures against

fatigue. Moreover, at the present author knowledge, does not exist any methodology that

deals effectively with accumulative damage under random loadings, especially under the

loading conditions that can be found in the field.

6.3.1 Block extraction proposal

In this section, it is proposed a new method to evaluate, in real time, the accumulated

damage that can be found in a loading spectra, where the multiaxial fatigue damage

estimates are obtained using the SSF equivalent shear stress time evolution and the SSF

virtual cycle counting method. The main idea behind this new method is to extract

loading blocks from the loading spectrum recorded in the field in real time during service,

and then evaluate their unitary damages and compute the overall damage with a linear

damage accumulation rule.
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Random damage characterization is mainly a block extraction issue, i.e. in order to

evaluate multiaxial random damage it is necessary to identify the loading blocks within

a recorded loading history (loading spectra), and for each loading block it is necessary

to compute the inherent number of loading cycles as discussed in the previous Chapter

5. Thus, in the proposed method the normal and shear loading components of a loading

spectrum are computed to obtain the SSF equivalent stress time evolution, from where it is

extracted loading blocks to estimate multiaxial random accumulative damage. Afterwards,

the fatigue damage of each extracted loading block, and their amplitude variation effect

(sequential effect) is accounted using the Palmgren-Miner’s rule. The paradigm proposed

here to extract loading blocks from the SSF equivalent stress time evolution is depicted in

Figure 6.2, where it is shown the block extraction methodology from a multiaxial random

loading reduced to the SSF equivalent shear stress time evolution.

Figure 6.2: Loading blocks extraction from a random SSF equivalent shear stress time evolution.

The block extraction methodology is based on the SSF maximum peak found within the

instantaneous SSF equivalent stress, the first maximum peak is set as damage reference to

be used in the SSF virtual cycle procedures, please see point 1 in Figure 6.2. The damage

reference is maintained until the SSF maximum peak is exceeded, as seen in point 2 of

Figure 6.2, at point 2 the first block ends and starts the second block region with a new

damage reference given by the SSF new peak at point 3 depicted in Figure 6.2. The same

methodology is used to extract all other blocks from the loading spectrum. During the

block extraction can be computed the inherent block damage, as follows in expression 6.2,

and discussed in the previous Chapter 5.

Dblock =
1

Nblock.peak
vccblock

(6.2)

In Eq. 6.2, the number 1 is related to the number of extracted blocks which in this

context is 1, in dominator it is represented the material fatigue strength estimated by the

maximum SSF peak and updated with the virtual cycle counting found in the extracted
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loading block. In order to estimate the instantaneous accumulated fatigue damage, the

Palmgren-Miner’s rule is used as follows in Eq. 6.3.

DSSFrandom =
i∑
1

1[
Nblock.peak
vccblock

]
i

(6.3)

Eq. 6.3 can be used to compute the instantaneous accumulated damage, which is updated

block by block until DSSFrandom reaches the value 1, which is the damage accumulation

trigger most used to estimate a high probability of fatigue failure.

6.4 Random fatigue life correlation

In this section, the SSF criterion capability to capture fatigue damage is scrutinized in

order to validate its use in damage accumulation rules, such as the Palmgren-Miner’s rule

or the Morrows’ rule. The main objective is to inspect the SSF performance to successfully

estimate fatigue failure under complex accumulative loading conditions [88, 169]. To

validate the aforementioned hypothesis, it was gathered from literature multiaxial random

fatigue data obtained for the aluminium alloy 2024-T4 [134], in order to evaluate the

performance of the SSF method for this type of aluminium alloys under random loadings.

These data were obtained in the lab with loading spectra build with 16 loading paths

(considered as loading blocks) randomly ordered, which is a clever way to simulate random

loadings in the lab. The experimental results used here were obtained by Xia et al. in

[134], however the experiments and methodologies used in their work are briefly explained

in the following: The experiments were performed using a biaxial loading machine under

stress control, and using tubular samples. The failure criterion was the specimen total

separation. The main idea documented in [134] is to simulate random loadings based

in 16 different loading paths, in which the loading paths random combination covers

different loading effects as well has different load levels. The random loading condition

was achieved by combining aleatory the loading sequence of the 16 loading paths and

changing aleatory their stress level, thus the loading sequence is previously defined before

testing. Moreover, each loading path in the predetermined loading block sequence, is

loaded until reach 3% of its fatigue life. At the fatigue failure instant, the position of the

loading sequence (actual loading path) and the number of cycles performed with the actual

loading path is registered. Figure 6.3 presents the loading paths used in [134] to define

the aforementioned random loading sequences. These loading paths were divided in three

loading types, i.e. uniaxial, proportional, and non-proportional, and also by stress levels.

The uniaxial loading conditions were covered by the pure axial (PT) and pure shear (PS)

loadings, the proportional loading paths (PP) have a stress amplitude ratio (SAR) equal

to 0.577 and 0.77, and the non-proportional loadings (NP) have a SAR ranging from 0.5 to

0.88 with phase shift equal to 300, 450, 600, and 900. Figure 6.4 shows the SAR variation
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effect in the loading path shape. Figure 6.4 a) shows this effect in the proportional loadings

considered in this study, and Figure 6.4 b) shows the same effect in the non-proportional

loadings. Essentially, under proportional loadings, the SAR variation changes the slope of

the loading path (depicted in the von Mises stress space), and in non-proportional loading

cases it changes the shape of the loading path, i.e. the loading path changes from circular

shape to an elliptical one as the SAR increases. The experimental fatigue data of each

loading path are presented in Table 6.1.

Figure 6.3: Multiaxial loading paths, (a) Pure axial (PT); (b) Pure shear (PS), (c) PP with SAR

equal to 0.577 (PP45), (d) NP with phase shift equal to 300 and SAR equal to 0.577 (30OP45),

(e) OP with phase shift equal to 450 and SAR equal to 0.577 (45OP45), (f) OP with phase shift

equal to 600 and SAR equal to 0.577 (60OP45), (g) OP with phase shift equal to 900 and SAR

equal to 0.577 (90OP45).

Figure 6.4: SAR effect in the loading path shape. a) Proportional loading paths b)

Non-proportional loading paths with 900 of phase shift.
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Table 6.1: 2024-T4 experimental fatigue data [134].

Block Path σa [MPa] τa [MPa] τa/σa Nf

A Uniaxial tension and compression 250 0 0 56316

B Uniaxial tension and compression 350 0 0 6167

C Pure torsion 0 144 - 63795

D Pure torsion 0 167 - 49912

E Proportional 158 112 0.709 76451

F Proportional 177 102 0.576 80107

G Proportional 248 143 0.577 6488

H 30 Non-proportional 158 120 0.759 63584

I 45 Non-proportional 158 125 0.791 57004

J 45 Non –proportional 248 143 0.577 7363

K 60 Non –proportional 158 132 0.835 30893

L 90 Non-proportional 177 102 0.576 49292

M 90 Non-proportional 158 139 0.880 15459

N 90 Non-proportional 244 157 0.643 3453

O 90 Non-proportional 250 144 0.576 4634

P 90 Non-proportional 250 125 0.500 6811

Table 6.2 presents the random sequence of the loading paths used in experiments and their

inherent fatigue lives. For each loading sequence, two experiments (two runs) with two

different samples were performed. The results gathered in Table 6.2 (third column) are

read as follows: the first number indicates the number of loading paths completely loaded

before failure; the letter indicates the last running path at failure instant, and the last

number indicate the number of cycles performed during the last loading path.

The SSF validation for random loading conditions will be carried out in two steps:

First, the constant amplitude multiaxial fatigue data of the wide range of loading paths

described in Figure 6.3 and Table 6.1 are used in the SSF estimates. Second, the aleatory

combination of the loading paths described in Table 6.2, which were considered as random

loadings (runs), are used in order to evaluate fatigue damage accumulation using the

SSF criterion. The SSF packaged (SSF equivalent stress, Y parameter, and virtual cycle

counting method) in association with two accumulation damage rules described in Eq.(s)

6.4 and 6.5, were used to evaluate the fatigue damage accumulation under random loading

conditions.

The Palmgren-Miner’s rule, please see Eq. 6.4, states that the ratio between the number

of loaded cycles and the fatigue life estimate must be less than 1 to have a low probability

of fatigue failure [88].
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Table 6.2: 2024-T4 aluminium alloy fatigue data under random loading conditions [134].

Loading spectrum Aleatory loading paths sequence Results

Run 1

O-D-G-M-H-F-G-H-O-H-M-J-M-N-J-E-K-F

G-G-K-A-F-N-B-B-B-B-B-I F-J-P-O-A-B

B-B-B-B-B-B-B-B-B-N-O-B-B-B

26-B-113 31-J-57

Run 2

L-C-A-C-I-G-C-D-B-N-D-P-B-B-G-O-L-I-P

B-D-C-M-P-D-K-L-I-A-L-C-H-M-P-D-A-H

C-I-J-K-H-D-E-F-D-L-O-G-I

25-K-349 22-M-437

Run 3

O-M-B-B-B-B-B-F-G-E-L-A-M-I-I-B-B-B

B-B-I-H-A-P-H-G-P-I-B-B-B-B-B-J-D-O

P-P-H-O-M-A-H-G-D-K-J-O-L-A

28-B-182 38-H-669

Run 4

E-B-B-B-B-B-E-P-B-B-B-B-B-G-D-K-N-N

F-L-O-G-M-A-P-O-L-E-F-G-I-D-B-B-B-B

B-H-L-J-O-H-M-O-P-D-I-B-B-B

47-I-6205 44-P-92

D =

#blocks∑
j=1

(
#cycles∑
i=1

ni
Nf i

)
j

(6.4)

As stated before in previous sections, this rule adds linearly the fatigue damage obtained

in each loading path, which is an approach with good results when the loading spectrum

is based in only one loading path type, even for complex ones. Several models based

in the Palmgren-Miner’s rule can be found in literature, one example is the Morrow’s

rule, where the Palmgren-Miner ratio is corrected with the material cyclic plasticity [169].

This correction is carried out for each loading path by using the ratio of the loading

path damage to the maximum damage parameter found within the loading spectrum (all

loading blocks). The Morrows damage accumulation rule is presented in Eq. 6.5.

D =

#blocks∑
j=1

(
#cycles∑
i=1

ni
Nf i

·
(

σda
σda spectrum

)d)
j

(6.5)

where σda is the damage parameter maximum amplitude found within each loading path

of a loading spectrum, and σda spectrum is the maximum damage parameter found within

the entire loading spectrum. The exponent d is a material property; for the 2024-T4

aluminum alloy this value is equal to -0.45, for further treatment please see [134].
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6.4.1 Constant amplitude loading paths

Regarding the experimental tests described in Figure 6.3 and Table 6.1, fatigue life

estimates were carried out based on the SSF criterion presented in the previous Chapters

4 and 5. Figure 6.5 shows the fatigue life correlation between the SSF estimates and

the aluminium alloy 2024-T4 experimental data. This fatigue life correlation is quite

satisfactory, because the SSF damage map used in this calculation was not determined

for this aluminium alloy neither adapted. Therefore, this results were obtained using the

42CrMo4 high strength steel damage map determined in Chapter 4.

Based on the SSF criterion performance discussed above, it can be hypothesise the idea

of a general damage map that can be used to compute the SSF equivalent stress in any

type of material, nonetheless this hypothesis requires further analysis and validation by

experimental tests. However, it is advised the assessment of the SSF damage map for each

material by experiments in order to achieve more reliable fatigue life estimates. Regarding

the fatigue life correlation depicted in Figure 6.5, the outer boundary is defined based in

a life factor of 3, and the inner one is defined in a life factor of two.

Figure 6.5: SSF fatigue life correlation for the 2024-T4 experimental data under constant

amplitude loading.

6.4.2 Random fatigue life evaluation

Regarding the experimental tests described in Table 6.2 (random loading sequences),

fatigue life estimates were carried out based in Eq.(s) 4.4 and 4.14 and using the damage

accumulation rules presented in Eq. 6.4 and 6.5.

Figure 6.6 shows the results obtained for the damage accumulated estimates using the

Palmgren-Miner and Morrow damage accumulation rules. In both damage accumulation

rules the SSF equivalent shear stress was used to account the unitary damage of the
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loading paths considered here. Each loading path used in the random loading sequence is

well defined, thus it was not needed any method to extract loading blocks or use a cycle

counting techniques such as the virtual cycle counting method presented in Chapter 5, for

instance.

The results depicted in Figure 6.6 show to be non-conservative for the three first loading

sequences, where the accumulated damage at rupture is lower than 1. Moreover, the fourth

loading sequence has a accumulated damage greater than 1 at failure, being a conservative

result. The most conservative of the two accumulated damage rules, was the Morrow’s

rule, essentially this rule estimates an accumulated damage 10% greater than the one

estimated by the Palmgren-Miner rule.

Recalling the results of Figure 6.6 under a structural health monitoring perspective,

non-conservative estimates given by graphic bars lower than 1, indicate a residual fatigue

life when the sample is already broken, being a rather disturbing result. Therefore, only

in two runs out of eight, it would be possible to avoid the specimen collapse by stopping

the load sequence at damage summation equal to 1.

One important aspect to have in mind regarding damage accumulation estimates is

the probabilistic behaviour of experimental fatigue data where it is obtained different

experimental fatigue lives for the same damage parameter. Due to that, it is usual to show

fatigue life correlations like the one shown in Figure 6.5, with fatigue life factors of two

or three. Therefore, it is possible to have a survive sample with an accumulated damage

greater than one, which is the case of the fourth loading sequence depicted in Figure 6.6.

On the other hand, it is also possible to have a fail sample with an accumulated damage

much lower than 1, which is the cases of the loading sequences 1, 2, and 3. In this sense,

arguing that the “survive” or “not-survive” condition is based in accumulated damages

greater or lower than 1 is an inaccurate approach, and an unsuitable criterion to be used

in structural health monitoring. This is a crucial aspect of random damage accumulation

that needs to be analysed in deep and solved, i.e. it is necessary to rethink the failure

condition (trigger) for damage accumulation under random loading conditions.

One idea that can be used to overcome the probabilistic influence on the trigger

paradigm is to establish a upper and lower boundary to the trigger value like the one

used in fatigue data correlation, as presented in Figure 6.5 (life factors). One way

to ensure a conservative damage accumulation result, to avoid unexpected failures

in the field, is to increase the damage parameter amplitude in a certain percentage.

This percentage must be determined according to the probabilistic pattern of each

material family such as steels, aluminium alloys, magnesium alloys, among others.

Thus, the damage parameter increase will compensate the probabilistic effect and their

propagation during the damage accumulation process of each loading block extracted

from a loading spectrum. In this way, under a structural health monitoring perspective,
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the instantaneous accumulated damage less than 1 will give a greater confidence regarding

the structural component integrity. Thus, the structural component will stand until

reach an accumulated damage equal to 1, at this point the sample must be safely replaced.

Figure 6.6: Damage accumulation results, obtained using the SSF fatigue life estimates and the

Morrow and Miner damage accumulation rules.

The damage accumulation results achieved by Xia et al. [134] were obtained without

the use of fatigue life criterion. In its calculations, it was used the experimental fatigue

life to obtain the ratio between the number of cycles performed vs number of cycles at

failure (block fatigue life). Here, a different approach was used in order to evaluate the

SSF performance under random loading conditions. Xia et al. [134] used the experimental

fatigue life for each loading block to evaluate damage accumulation in their random loading

sequences, which is a valid approach.

However, in this study, the fatigue damage accumulation of the random loading sequences

mentioned above was obtained by estimating the loading blocks fatigue life through the

SSF package. This approach was used because for a general random loading in the field, it

is not possible to have the experimental fatigue data for all kind of loading blocks, being

necessary the use of fatigue life estimates.

6.5 Final comments

In this chapter the SSF equivalent shear stress, presented in Eq. 4.4 and the SSF damage

map presented in Eq. 4.14, were used to evaluate fatigue damage accumulation under

random loading conditions. To do that, it was gathered fatigue data from literature where

random loading spectra were achieved by an aleatory combination of 16 loading paths.

Two damage accumulation rules were used, the Palmgren-Miner, and the Morrow’s rule, to
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evaluate accumulated damage at the fatigue failure instant. Results show good correlations

between the SSF estimates and the experimental fatigue data. However, the accumulated

damage results were inconclusive due to the ”not-survive” trigger paradigm used in the

accumulated damage rules. The trigger concept based in damage accumulation greater

or lower than 1 is not suitable for field applications such as structural health monitoring

procedures. Some alternatives to the trigger concept were discussed based on a field

application perspective.
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Chapter 7

SSF assessment based in damping

properties

7.1 Introduction

In this chapter, it is evaluated the hypotheses in which the SSF function (damage map)

can be estimated based on damping properties of a given material. The present method

to obtain the SSF damage map, requires five S-N curves, where each one of them needs at

least five valid experiments as described in Chapter 4. In Chapter 4, it was also discussed

the necessity to obtain the SSF damage map by experiments for each material in order to

obtain optimal results.

However, during the work developed in this thesis, the 42CrMo4 SSF damage map was used

to estimate fatigue lives in other materials with acceptable correlations. Thus, it makes

some sense to consider the 42CrMo4 SSF damage map as an universal damage map, as

seen in the von Mises equivalent stress with the
√

3 constant, however this hypothesis

requires further validation. In this sense, here it is studied an alternative way to obtain

the SSF damage map based in vibration modes and their inherent damping ratios.

7.2 Concepts and assumptions

The material damping ratio evaluation has been a controversy subject during years, in

particular due to measurement difficulties, where several experimental factors can influence

the damping values such as the boundary conditions used in experiments. Due to that, it is

usual to evaluate the material damping ratio under a free-free boundary conditions being

considered a material property independent from the loading type (material deformation

type).

This assumption has indirectly resulted from the difficulties found to excite testing samples

with loads different from the pure axial excitation typically used under free-free boundary
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conditions. Therefore, a key question is how to measure the damping of a free-free

supported sample subjected to a multiaxial (axial plus shear) vibration modes (combined

vibration modes), which is a very challenging and interesting problem but outside of the

scope of this thesis.

To overcome the drawback of the unavailability of tools to evaluate damping ratios from

combined vibration modes, the aforementioned hypotheses was focused in the two uniaxial

vibration modes, i.e. the pure axial and pure torsion. The axial damping calculation is

straightforward procedure being easy to determine, however, the pure torsion damping is

much more difficult to achieve, but its measurement is possible.

The material damping is usually a very small value, especially in steels. In some cases, the

measurement error usually found in experiments has the same order of magnitude of the

damping value, therefore special care in lab is required in order to minimize measurements

errors. However, magnesium alloys have higher damping ratios, being suitable materials

for exploratory studies in damping measurements, due to this feature it was selected the

AZ31B-F magnesium alloy for this study.

As seen in the previous section, the SSF damage map for the uniaxial loading cases

(pure axial damage reduce to the shear damage scale) is computed as τa/σa . Thus,

the hypotheses that motivates this study is as follows in Eq. 7.1.

ssf =
τa
σa
≈ Dshear

Daxial
(7.1)

Where Dshear, and Daxial are the material damping ratio in pure torsion and pure axial,

respectively. In this hypotheses, the ratio of shear to axial damping ratios is equal to

the SSF given by the ratio of shear to axial stress amplitude (SFF for uniaxial loading

conditions).

As seen in Chapter 4, the fatigue damage of axial and shear loadings are strongly related

with the deformation pattern on a given material. Similarly, the material damping is

the material capability to damp external stimuli which is strongly related to the material

micro-structure, which in turn has different responses accordingly to the external stimuli

type. Thus, based on this reasoning, the material damping may also vary for different

type of stimuli as seen in multiaxial fatigue strength.

For instance, and generally speaking, hysteretic damping can be measured based in elastic

and plastic energies computed from hysteresis loops (stress-strain patterns) [170], which

in turn are strongly related to the material capability to resist cyclic loadings. Elastic

and plastic energies can be related to S-N curves [148], therefore it is hypothesises here

that the hysteretic damping of a given material can be also related with S-N curves, which

means that hysteretic damping variation can be associated with the fatigue life variation.
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7.3 Viscous damping ratio (ζ)

7.3.1 Half power bandwidth method

It is possible to measure damping ratios using the FRF (Frequency Response Function)

results and using the Half-power bandwidth method [171]. This method computes the

viscous damping ratio using three specific frequencies of the vibration mode. These

frequencies are the natural frequency of the vibration mode, ωn, the other two are the

ω1, and ω2, which are calculated by subtracting 3 dB from the ωn magnitude. Figure 7.1

depicts the Half-power bandwidth method and its characteristic frequency points used to

calculate viscous damping.

Figure 7.1: Half-power bandwidth method and its frequencies to determine viscous damping

[172].

Equation 7.2 represents the viscous damping formulation using the Half-power bandwidth

frequencies.

ζ =
ω2

2 − ω2
1

2ω2
n

(7.2)

7.3.2 Half-power bandwidth method & Nyquist

The Nyquist method [171] is a tool to estimate, with accuracy, the frequencies needed in

the Half-power bandwidth method to calculate viscous damping. The FRF experimentally

obtained is a discrete function that is strongly dependent on the acquisition rate. In order

to estimate the frequency magnitudes in the acquisition gaps the Nyquist method is used (a

circle fit method). Essentially, this method represents in the Argand plane the imaginary

and real magnitude components of the acquired frequencies, afterwards this values are

fitted with a circle. Based on the circle diameter it is possible to accurately estimate

any natural frequency that was not caught with the acquisition rate used in experiments.

Figure 7.2, shows Argand plane, for the receptance case. For the first vibration mode the
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loci can be fairly represented by a circle with negative imaginary values and positive and

negative real values.

Figure 7.2: Nyquist plot to obtain the frequencies used in the material damping determination.

Considering the case shown in Figure 7.2, the receptance amplitude of the natural

frequency is given by the circle diameter, because it is the highest amplitude value. The

amplitude of ω1, and ω2 are estimated by the hypotenuse of two circle radius. To obtain

the ω1, ω2 and ωn frequencies, a linear regression is performed using experimental data

and the amplitudes estimated by the circle fit method.

7.3.3 Logarithmic decrement

Considering the viscous damping model, the logarithmic decrement method is used in order

to estimate the material damping in time domain; basically the response to an impulse

in free vibration is measured and recorded in time. Moreover, the material damping

in free vibration has amplitude decay with peaks enveloped by an exponential function,

as depicted in Figure 7.3. The logarithmic decrement can be determined by the natural

logarithm of two successive displacement peaks. The following equations describe in which

way the logarithmic decrement is related to the material damping.

Figure 7.3: Free vibration displacement amplitude decay.
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It is possible to show in [173] that:

An
An+1

= e[ζωn(tn+1−tn)] (7.3)

The period between peaks is given by:

(tn+1 − tn) = Td =
2π

ωd
=

2π

ωn
√

1− ζ2
(7.4)

ln

[
An
An+1

]
=

[
2πζ√
1− ζ2

]
(7.5)

Where Td is the damped period, the ωd is the damped frequency, ωn is the natural

frequency and ζ is the viscous damping. The ζ damping is determined by interaction

steps.

7.3.4 Linear regression method

The linear regression method is only valid in cases where the material damping ratio is

linear in a semi-log scale [171]. The viscous damping is determined by plotting the ratio

between An and An+1 versus n, which is the number of periodic intervals between those

amplitudes. The slope from the resultant trend line is related to the material viscous

damping. Figure 7.4 shows the logarithmic value of An/An+1 versus n.

Figure 7.4: Linear regression method to determine viscous damping.

7.3.5 Area Method

The damping ratio can also be estimated using the areas inherent to each peak or valley

represented in Figure 7.5 as Sn; these areas are determined between two consecutive
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amplitude zero points; the procedure is similar to the one used in the logarithmic decrement

method with some nuances; moreover, this method proved to be a very anti-noise method

[173].

Figure 7.5: Free vibration response of the system [173].

S1 + S2 + ....+ SN
SN+1 + SN+2 + ....+ S2N

=
S1 + S2 + ....+ SN

(S1 + S2 + ....+ SN ) e−ζωnnTd
= eζωnnTd = e

2nπζ√
1−ζ2 (7.6)

The damping ratio is given by:

ζ =
1√

1 +
(
2n πE

)2 (7.7)

where:

E = ln

( ∑
Sk∑
Sk+N

)
(7.8)

7.3.6 Proposal of the Exponential regression method

In the following, it is presented a new way to calculate viscous damping based in free

vibration decay. The peaks from a free vibration decay can be fitted with an exponential

trend line as shown in Figure 7.6.

From the period decay obtained by experiments the damped frequency can be calculated

as follows in Eq. (s) 7.9 and 7.10:

ωd =
2π

Td
(7.9)
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Figure 7.6: Free vibration displacement amplitude decay.

ωd = ωn
√

1− ζ2 (7.10)

The natural and damped frequencies can be related as follows in Eq. 7.11.

ωd =

√
ω2
n − (ωnζ)2 ⇒ ωn =

√
ω2
d + (ωnζ)2 (7.11)

where the wnζ value is obtained from the exponential trend line equation of the free-decay

of the vibration amplitude. Based in these equations (7.9 to 7.11), the viscous damping

can be computed as follows in Eq. 7.12.

ζ =

√
1−

(
ωd
ωn

)2

(7.12)

7.4 SSF results based in S-N curves

Figure 7.7 a) shows the S-N results for the AZ31-BF magnesium alloy under uniaxial

loading conditions, i.e. the pure axial and pure shear loading cases. Moreover, the trend

line of each loading case is also presented in Figure 7.7. As one can see, the uniaxial shear

and axial stress amplitudes required to cause the same fatigue life are quite different, as

seen in Chapter 4 for the 42CrMo4 material. Also, it can be concluded that the relative

damage between axial and shear stress is not maintained constant in the finite fatigue

life-time range, as seen in Figure 7.7 b). Figure 7.7 b) shows the relative damage between

shear and axial stress through the SSF trend line, which was calculated based in the two

S-N curves depicted in Figure 7.7 a). The SSF experimental values have a trend line with

a negative slope, where the SSF value decreases as the fatigue life increases, please see

Table 7.1 .
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Figure 7.7: AZ31B-F magnesium alloy results a) uniaxial S-N trend lines b) SSF trend line based

in the uniaxial trend lines.

Table 7.1: AZ31B-F SSF variation with fatigue life.

Nf Axial stress Shear stress SSF

1.00E+03 156.5 113.8 0.73

1.00E+04 136.9 87.9 0.64

1.00E+05 119.8 67.9 0.57

1.00E+06 104.8 52.5 0.50

1.00E+07 91.7 40.6 0.44

1.00E+08 80.2 31.3 0.39

7.5 Experimental set-up

In this section it is presented the experimental set-up used to measure the axial and shear

viscous damping. The magnesium alloy AZ31B-F was tested as received from factory, i.e.

the specimen test was a rod with 26 mm of diameter and 1000 mm in length.

7.5.1 AZ31B-F axial damping experiments

Figure 7.8 illustrates the set-up implemented to measure the axial viscous damping. The

magnesium bar was maintained on the horizontal using two thin rubber bands in order to

simulate a free-free supported bar. The bar was hit with an instrumented impact hammer,

which has a force transducer connected to the data acquisition module. On the opposite

end of the impact zone, the specimen test had a glued accelerometer connected to the data

acquisition module. With the information from these two sources the frequency response

function was obtained.
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Figure 7.8: Magnesium alloy axial damping determination via FRF procedure.

7.5.2 AZ31B-F shear damping experiments

In order to calculate the viscous shear damping of the AZ31B-F magnesium alloy,

two different set-ups were implemented. One was implemented for frequency domain

methodologies (set-up 1) and the other one for time domain methodologies (set-up 2).

Set-up 1

The magnesium bar was glued to the floor with a cyanoacrylate adhesive in order to create

a free-fixed end boundary condition. This boundary condition is similar to the one verified

in the fatigue testing machine, i.e. the lower grip is static during the fatigue tests, being

the load torque performed by the upper grip. In order to create instantaneous torque an

aluminium cross was coupled to the bar as can be seen in Figure 7.9. The aluminium cross

was glued to the magnesium bar with the cyanoacrylate adhesive.

Three accelerometers were used in specific locations at the aluminium cross branches,

please see Figure 7.9. The data acquired from these accelerometers was used to perform

a post processing data filtering of the FRF results in order to remove any influence of the

bending moment (resultant from the impact excitation) on the experimental results. The

impact was performed in the cross branches which do not have any applied accelerometers

with a instrumented impact hammer connected to the the data acquisition module.

Set-up 2

Figure 7.10 presents the set-up 2 designed for free vibration tests. The magnesium rod

was machined in both extremities in order to improve the experiments procedures and

data acquisition. In one extremity it was machined the clapping region to optimize the

boundary condition and in the other end it was machined small grooves to facilitate

the measurements of torsional velocities. The velocities were measured using a polytec

doppler laser, which was connected to the data acquisition module, the same used in set-up

1. The bar was excited using a electric shaker and an aluminum rod as shown in Figure
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Figure 7.9: Torsion experimental set-up 1.

7.10. The magnesium rod was excited by contact near the clamping region in order to

reduce the bending moment influence on the free vibration results. The excitation was

performed with first torsional natural frequency previously determined with a commercial

FEM package. The experiment starts by exciting the magnesium rod until reach a fully

developed resonant response, at this point the excitation is removed and the free vibration

decay is registered and stored.

7.5.3 Natural frequency estimates using FEM

The natural frequency of axial and torsional vibration modes were firstly estimated using

ANSYS, a commercial FEM package, where the axial and torsional testing samples were

numerically modulated having into account the samples geometry and boundary conditions

used in experiments. The idea was to obtain a estimate for the natural frequency of

each vibration mode, to make easier the natural frequency identification in the FRF

results. Also, in the FEM simulations it is possible to visually inspect the vibration

mode animation, which helps to eliminate any doubt about the vibration mode selection
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Figure 7.10: Torsion experimental set-up 2.

and inherent natural frequency identification. Moreover, the maximum sum displacement

is also an alternative way to identify modes of vibration using FEM. Figure 7.11 shows

the maximum sum displacement for the first axial and torsional modes of vibration. The

natural frequencies estimates were 5979 Hz for the 1o axial mode of vibration and 255.4

Hz for the 1o torsional mode of vibration.

Figure 7.11: FEM results of the natural frequency estimates for a) 1o vibration axial mode b)

1o vibration torsion mode.

7.6 FRF experimental results

In this section, it is presented the FRF results obtained to identify the natural frequency

of the 1o axial and torsional vibration modes. Figure 7.12 a) shows the FRF results for

the first axial mode, and Figure 7.12 b) shows the FRF results for the first torsional mode.

From the results depicted in Figure 7.12, it can be identified distinct vibration modes with

a natural frequency near the numeric estimate for both vibration modes.
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Without the results obtained in the numeric simulations, the vibration modes identification

would be much more difficult to obtain, because from the FRF spectrum it is only possible

identify natural frequencies, therefore the FRF do not give any information regarding the

displacement of the vibration mode. However, there will be always differences between

natural frequency estimates and experimental values. This is so because the mechanical

properties used in simulations are usually slightly different from the ones found in the

testing sample, also the dimensions and boundary conditions used in simulations may

also differ from the experimental set-up. Moreover, the natural frequency estimates from

modal analysis are undamped natural frequencies, but the ones obtained by experiments

are damped natural frequencies, thus there always be a difference between these two

estimates for the natural frequency. However, due to the low damping ratio found in

metals the damped and undamped natural frequencies are very alike, which turns the

numeric simulation a powerful tool for the identification of vibration modes and their

inherent natural frequencies.

Figure 7.12: FRF experimental results: a) 1o axial mode b) 1o torsion mode.

Figure 7.13 a) and b) depicts a zooming around the peaks of the 1o axial and torsional

vibration modes in order to inspect if there is any influence of other vibration modes in

these ones. In these results, it can be found at least a 100 Hz window around the natural

frequencies in both vibration modes, indicating that the FRF is well-behaved around the

natural frequencies peaks, which allows the natural frequencies calculation of the 1o axial

and shear modes of vibration without any interference of other undesired vibration modes.

7.7 Damping calculations

7.7.1 Half power bandwidth estimates

The FRF data is not a continuous data, i.e the FRF results is composed by discrete

frequencies and amplitudes that can be accelerance or receptance. Due to the FRF discrete

nature, a local maximum obtained experimentally may not be the true maximum i.e. the
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Figure 7.13: Zooming around the natural frequencies: a) 1o axial vibration mode, b) 1o torsion

vibration mode.

natural frequency may be within the interval between two frequencies experimentally

determined. In these cases, the Nyquist circle method can be used to obtain the natural

frequency and the frequencies required to calculate the viscous damping. Figure 7.14 a)

and b) shows the Nyquist circle for the axial and shear vibration modes, respectively. In

these circles, it is used the receptance in the complex format, in the vertical axis it is

represented the receptance imaginary part and in the horizontal axis it is represented the

real part. For the first modes of vibration these circles most initiate and terminate at

graph origin, then the natural frequency will have the maximum magnitude given by the

antipodal point relatively to the graph origin.

Figure 7.14: Nyquist circle for axial and shear vibration modes a) 1o axial vibration mode b) 1o

torsional vibration mode.

Table 7.2 shows the axial and shear natural frequencies obtained from the axial and shear

FRF using the Half-power bandwidth method and the Nyquist methodology. In the last

row of Table 7.2 it is presented the viscous damping results for the axial and shear first
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vibration modes. As one can seen, the shear damping is greater than the axial one.

Table 7.2: FRF results for the axial and shear 1o vibration modes, frequencies tuned by Nyquist

method.

Axial Shear

ωn[Hz] 6009.88 255.36

ω1[Hz] 5987.06 253.95

ω2[Hz] 6026.82 256.77

Damping 0.00661 0.011

7.7.2 Exponential regression results

Figure 7.15 a) shows the data recorded regarding the velocity decay at the time instant

of the shaker removal. As one can see, the torsional velocity decay profile can be fairly

approximated with an exponential trend line as depicted in Figure 7.15 b), which has an

acceptable R2.

Figure 7.15: AZ31 free-fixed end at 1o torsion vibration mode in time domain, a) free decay

velocity b) exponential regression on the velocity peaks.

The exponential trend line equation can be used to compute the viscous torsional damping

as stated in Eq.(s) 7.9 to 7.12. Thus, damping estimate was 0.011733 for the exponential

regression method which is very close to the shear damping obtained in the Half-power

bandwidth method.

7.7.3 Linear regression results

Table 7.3 presents the hysteretic damping results obtained in the linear regression method

calculations. The damping value was calculated considering the average value of the

results obtained in five measurements. Also here, it was obtained a shear damping value

in accordance to the FRF and exponential results.
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Table 7.3: Linear regression results for pure shear free vibration mode.

Sample
η

Linear regression

1 0.014181

2 0.010759

3 0.010783

4 0.011284

5 0.009438

Average 0.011289

7.7.4 Areas method results

Table 7.4 shows the results for the area method, also here, it was performed five

measurements, the average value of the shear damping was 0.0112.

Table 7.4: Areas method results for the damping determination of pure shear free vibration mode.

Sample
η

Areas Method

1 0.01354

2 0.01047

3 0.010579

4 0.01111

5 0.01026

Average 0.011192

7.8 Results interpretation

The damping values for the first axial and shear vibration modes are summarized in

Table 7.5. The axial damping results were obtained using only the Half-power bandwidth

method, being a reliable way to experimentally obtain the first axial vibration mode.

However, the shear damping results were obtained by using two different experimental

set-ups, and four different calculation methods, in order to avoid any biased result for the

magnesium shear damping. The shear damping results shown in Table 7.5 are very alike,

despite having been used different set-ups and calculation methods. The areas and FRF

methods have the most similar values, in contrast, the result of the Exponential regression

method is the most different. It can be concluded that the magnesium shear damping was

calculated with success for the boundary conditions considered in this study, i.e. free–fixed

end. The values of the magnesium axial and shear damping ratios are shown in the last
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column of Table 7.5, where the exponential method result is not in accordance with the

other methods trend.

Table 7.5: Magnesium alloy axial and shear damping ratio

ζ Axial ζ Shear ζ Axial / ζ Shear

FRF and Nyquist 0.00661 0.011 0.6

Exponential regression 0.011733 0.56

Linear regression 0.011289 0.59

Areas method 0.011192 0.59

7.9 Final comments

In this chapter, it was raised up the hypothesis in which the ratio of axial to shear damping

ratio, determined under a mechanical vibration approach, can be an alternative to fatigue

life experiments. The AZ31B-F magnesium alloy was used to scrutinize this hypothesis

due to their high damping properties, instead of using the high strength steel 42CrMo4

which has much lower damping ratios. The magnesium sample used in experiments (axial

and shear damping measurements) was a rod with 26 mm in diameter and 1000 mm in

length. Based on the results achieved in this chapter some conclusions can be drawn:

First, the AZ31B-F magnesium alloy has different axial and shear damping ratios, which

is a new finding. Thus, it can be concluded that the material damping is dependent on

the vibration mode type. This finding can be supported by the conceptual idea in which

different deformation patterns are obtained for different external loads (axial, shear or

multiaxial) thus it makes sense to obtain different damping ratios for different deformation

since a damping ratio is a measure of the material capability to eliminate vibration (lattice

resistance to internal motion). Second, in this study it was found out that the AZ31B-F

SSF damage map for uniaxial loading conditions varies with the energy level variation

(variation of the stress-strain hysteresis loops) used in experiments, thus this variation

can be correlated with the material hysteretic damping. One major drawback in this

exploratory study is the lack of connection between the damping ratio and the material

fatigue life. Thus, it is not possible to connect the measured damping to the material

fatigue life at the present state of the art. The SSF value obtained here is in fact within

the SSF values obtained by the S-N curves, however it is not possible to identify their

inherent fatigue life. To do this, it is required a new approach in the lab to measure the

material damping under high load levels. The loads involved in the FRF procedures are

very low being impossible to cause any damage in the material. Thus, one possibility is

to measure free vibrations with strains similar to the ones used in the S-N curves, in this

way it becomes possible to account with the load level effect in the damping values and

make a relation with their inherent fatigue life.
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Chapter 8

Contributions to Level 5

8.1 Introduction

In this chapter, it is presented the thesis contribution to the state-of-the-art in regarding

the level 5 depicted in Figure 8.1. Here, it was developed two models to estimate crack

initiation planes according to the loading path type.

Figure 8.1: Multiaxial fatigue level focused in this chapter.

Multiaxial loading effects play an important role in the crack initiation at early

crack growth stages, thus in this chapter, it is analysed these effects in two different

crystallographic micro-structures, i.e. the body-centered cubic (BCC) and the hexagonal

close-packed (HCP) micro-structures. The materials studied were the high strength

steel 42CrMo4 with a BCC micro-structure, and the magnesium alloy AZ31B-F with

a HCP micro-structure. Moreover, the multiaxial loading paths selected in this study

promote the fatigue crack initiation and growth in both stages I and II, which are

based in the combination of both axial and shear mechanisms during crack initiation and

growth process. A series of experimental tests were carried out under multiaxial loading

conditions in the AZ31B-F material in order to analyse its fatigue behaviour, regarding

the 42CrMo4 results they were gathered from literature [3]. Moreover, a fractographic

analysis was performed to depict the crack initiation an growth behaviour of two different

micro-structures. In addition, critical plane models such as the Fatemi-Socie, SWT, and

Liu as well as two models developed here were used to estimate the orientation of the crack

initiation plane for each material and loading path. Moreover, the theoretical critical plane
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estimates were correlated with the experimental data obtained in both materials. Different

results were obtained for the crack initiation planes in both materials indicating a strong

influence of the micro-structure on the critical plane direction under multiaxial loading

conditions, further information regarding experiments will be given in the next sections.

Structural failure is often caused by fatigue cracks, which frequently initiate and propagate

at the most loaded regions, generally due to complex geometric shapes and/or multiaxial

loading conditions. Fatigue crack initiation and early crack growth are two subjects that

have created growing attentions in fracture mechanics research, because these subjects

are crucial for an accurate assessment of fatigue crack propagation and to interpret the

final fracture modes of cracked components or structures [174–176]. Multiaxial fatigue

studies in magnesium alloys are quite few nowadays, especially fractography studies

under multiaxial loading conditions. Bentachfine et al. [177] was a pioneer researcher

of magnesium alloys and their mechanical behaviour under multiaxial loading conditions,

he studied the mechanical behaviour of a lithium-magnesium alloy under proportional

and non-proportional loading paths at low-cycle and high-cycle fatigue regimes. The

research focus was the evolution of the deformation mode and cyclic plasticity. Several

authors have reported that the phase shift angle found in non-proportional loading paths

decreases the material fatigue strength. In these studies, the comparative parameter

used to correlate experimental data was the von Mises equivalent stress/strain, which has

the shortcomings already discussed in Chapter 3. Moreover, the von Mises equivalent

stress under non-proportional loadings keeps a constant value during the loading period,

therefore it indicates the same loading level in all loading directions, being unsuitable

to identify crack initiation planes. However, the loading direction variation inherent to

non-proportional loading paths increases the anisotropy of the material cyclic response

at grain level, which may justify, for some materials, the decrease of the material fatigue

strength [16] when subjected to this type of loading paths. Biaxial fatigue tests were

performed by Ito and Shimamoto [178] using cruciform specimens made of a magnesium

alloy. In this study, fatigue crack propagation was analysed as well as the effect of

micro-structure in the material fatigue strength. Moreover, the experimental results for

biaxial low cycle deformation led to conclude that the twinning density evolution is strictly

related with crack initiation and slip bands formation on wrought magnesium alloys.

Recently, Yu et al. [179], also performed in-phase and out-phase fatigue tests under

strain control on the extruded magnesium alloy AZ61A using tubular specimens. The

conclusions were similar to the ones found by Bentachfine et al. [177]. Yu et al. confirmed

in their experiments the additional damage found in non-proportional loadings, where the

presence of a shift angle lead to the material fatigue strength decrease comparatively to

the in-phase loadings, for the same proportional and non-proportional equivalent strain

amplitude. At low-cycle fatigue regime was reported a kink in the strain fatigue life curve,

which is a typical behaviour usually reported in literature for uniaxial fatigue loading

regimes in magnesium alloys [180]. Furthermore, in [180] the effect of compressive mean
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stress was also evaluated, the authors reported a fatigue life enhancement due to the

compressive mean stress. A critical plane study was performed comparing the agreement

between experimental data and the theoretical results in magnesium alloy [181]. It was

used the critical plane models Fatemi-Socie, SWT, Liu1, and Liu2 to estimate the direction

of the crack initiation direction. The authors reported a poor prediction performance in

some critical plane estimates, but good agreements in other ones. Magnesium alloys

have mainly three types of shear transformations within their typical slip mechanism,

namely deformation twinning, stress-induced martensitic transformations and kinking.

Twinning deformation occurs in HCP materials when deformed at room temperatures,

the same deformation pattern also occurs in BCC materials at low temperatures close to

zero degrees. Twinning deformation mechanism occurs when it is created a boundary on

the material lattice that defines a symmetric region due to shear strains at atomic level,

please see Figure 8.2. This twin boundary defines a mirror image between deformed and

un-deformed lattice grid [143, 144], from where resulted the so-called twinning effect. In

Figure 8.2: Twinning deformation found in magnesium alloys [182].

wrought Mg alloys, fatigue crack initiation has been associated to inclusions created during

the casting process, but in the majority of the cases, the twinning deformation and the slip

bands created during the twinning density flow are the main cause of the crack initiation

process, where the crack propagation follows, in general, along the deformation twin’s

fields [183–185]. Currently, commercial FEM software do not have tools to modulate the

mechanical behaviour (static and cyclic) found in magnesium alloys, which have a peculiar

mechanical behaviour already described here in Chapter 3. Their main limitation is to

follow the different yield stress at tension and compression found in magnesium alloys,

[24]. In this work, it was performed several numeric simulations in Ansys, where it was

used the stress-strain cyclic curve of the magnesium alloy AZ31B-F, however due to the

limitations discussed above, here it was only considered the tensile branch of the AZ31B-F

stress-strain curve, depicted in Figure 3.2 of Chapter 3. This decision was based in the

fact that the tensile loading tends to be more damaging than the compression one. Figure

8.3 shows the four multiaxial loading paths considered in this study, where PS is the pure

shear uniaxial loading, PT is the pure tensile uniaxial loading, OP is the 90o out-of-phase
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loading, and PP is the proportional loading, respectively. The loading paths depicted

in Figure 8.3 were used in the FEM simulations performed here and in the experiments

carried out to characterize both materials, the 42CrMo4, and the AZ31B-F.

Figure 8.3: a) PS loading case, b) PT loading case, c) OP loading case, d) PP loading case.

Table 8.1: S-N results for the materials 42CrMo4 [3] and AZ31B-F.

42CrMo4 AZ31B-F

Case Sigma Shear Nf Sigma Shear Nf

PT 700 0 6040 140 0 13164

600 0 19951 135 0 22873

500 0 215910 130 0 38102

485 0 269178 120 0 62352

445 0 2368959 105 0 721573

455 0 247953

560 0 53752

550 0 56929

450 0 3263000

470 0 338170

480 0 284348

Case Sigma Shear Nf Sigma Shear Nf

PS 0 374 1100000 0 75 88871

0 545 2088 0 64 227808

0 484 11302 0 75 88871

0 440 70610 0 64 227808

0 402 159854

0 395 315668

Case Sigma Shear Nf Sigma Shear Nf

PP 425 245 1000000 106 61 16800

435 251 564088 92 53 46878

440 254 311401 78 45 69169

445 257 239600 67 39 1000000

465 269 109087 74 43 242685

470 271 97366 71 41 353718

495 286 48740

520 300 27204

610 352 4114

Case Sigma Shear Nf Sigma Shear Nf

OP 450 260 1000000 106 61 7182

465 269 618128 67 39 1173565

475 274 316712 78 45 11986

485 280 197548 74 43 167525

490 283 107374 71 41 800000

495 286 97548 95 55 8595

510 294 56411 73 42 576336
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Table 8.1 shows the S-N results for both materials. This tests were performed under load

control and with loading frequencies between 5 to 6 Hz. The failure criterion was the

sample total separation. Figure 8.4 shows the sample geometry used in the AZ31B-F

experiments, the 42CrMo4 sample geometry can be found in Figure 3.30.

Figure 8.4: AZ31B-F specimen test used in experiments of Table 8.1 - geometry and it dimensions.

8.2 Estimates for the fatigue crack initiation plane

The orientation of the crack initiation plane is of utmost importance in fatigue damage

characterization of loading paths. Because, it is obtained different orientations for different

loading paths, even when they have the same stress level. Moreover, the crack orientation

plane also changes with the stress level variation, as discussed in Chapter 4. Also, it is

obtained different crack initiation planes in different materials for the same loading path

and stress level. Thus, the crack initiation plane is sensitive to the loading path type,

stress level, and material type, being a important experimental evidence of the fatigue

damage process.

8.2.1 Virtual notch concept

As earlier stated in [16, 178, 179], loading paths have a strong influence on the crack

nucleation and initiation process. In this process, the crack nucleation results mainly

from cyclic intrusions and extrusions at the material surface creating local micro notches

with cyclic plasticity at the micro notch root and surface, which governs the early crack

initiation process. During this process, mode I governs the fatigue crack propagation where

the crack growth is performed mainly by the load perpendicular to the cracked surface.

Based on this experimental evidence a new methodology to estimate the orientation of

the fatigue crack initiation planes is presented here. This methodology was designed

to be used in finite element analysis of structures and mechanical components with a

well-known geometry, where the nominal stresses can be calculated and compared with

the local stresses found at the notches discussed above. In this approach the main concept

is based on the assumption that the crack tip has the greatest stress values, and they can

be determined using numerical tools such as Ansys [186], Abaqus [187] or even an in-house

developed FEM software. In the proposed approach, it is created a virtual notch in the

FEM model of a given structure. This notch was named as virtual because in reality
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doesn’t exist in the structure, but is used here as a tool to estimate the direction of the

crack initiation plane in the structure most loaded regions.

The cornerstone of this approach is based on the selection of the virtual notch geometry

used in the numeric simulations, because the notch geometry may have a strong influence

in the crack orientation estimates. Therefore, a spherical cap geometry with depth equal

to This geometry does not have a favourable direction to induce particular stress risers

since it has a equal geometry in all directions. In this way, the location of the stress risers

are strictly dependent on the loading path type and stress level.

Figure 8.5 shows a FEM simulation of the virtual notch concept in a hour glass sample.

Figure 8.5a) shows the nominal and local regions of the specimen test, where the nominal

region is sufficiently far from the local one, which allows to compute the Kt values at

the virtual notch. Figure 8.5 b) shows the spherical cap (micro notch) numerically

implemented, the spherical radius and spherical cap depth must be in agreement with

the material average grain size which depends on its heat treatment and grain growth.

Figure 8.5: a) Identification of nominal and local stress points, b) Micro notch geometry and φ

angle.

Regarding the mesh refinement in these simulations, a convergence study is required to

avoid biased result in the critical plane estimates, which may result from deficient mesh.

The virtual notch is monitored in two regions during the cyclic loadings performed in

simulations. The first region, region 1, is defined around the cap edge at specimen surface,

where the control nodes are evenly spaced in order to optimize the critical plane estimates.

The second region is located at the micro notch root, where at maximum depth (0.2 mm)

an additional node is also monitored.

The estimates of the virtual notch approach for the critical plane orientation in crack

initiation stages are given based in the Kt values found in the two virtual notch regions

described above. Thus, the critical plane orientation is estimated by linking with a line

the highest Kt values found in the control nodes at region 1.

The equivalent stress concept is unsuitable to be used in the virtual notch approach,
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because under non-proportional loadings its magnitude remains equal in all directions,

thus the most loaded regions in the virtual notch can not be identified. Due to that, the

axial and shear components of the multiaxial loadings are monitored in the virtual notch

regions (1 and 2) and in the nominal region depicted in Figure 8.5.

The axial and shear Kt values are computed separately by considering the local and

nominal stresses in axial and shear, respectively. In this way, it is obtained at each node

the axial and shear Kt values during the loading period. Since two estimates are obtained

for the critical plane orientation, one from the maximum axial Kt and another from the

maximum shear Kt, the critical plane selection is given by the estimate that has the

highest Kt value. This selection is based in the assumption that a crack starts to initiate

and grow on the most loaded plane.

Fig.(s) 8.6 to 8.9 show the virtual notch concept in the FEM simulations of an hour glass

sample subjected to the four loading paths depicted in Figure 8.3. In these figures, it

is represented through several screen shots, the axial stress gradient time evolution in

the virtual notch geometry during the loading period. These stress gradients are directly

related to the axial Kt values, where the highest stress values are depicted in red, therefore

it is hypothesised that the crack initiation process will occur on these red regions.

Figure 8.6: Time evolution within one loading cycle for the pure axial loading case.
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Figure 8.7: Time evolution within one loading cycle for the pure shear loading case.

Figure 8.8: Out-of-phase time evolution within one loading cycle.
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Figure 8.9: Proportional loading path time evolution within one loading cycle.

8.2.2 Critical plane orientation based in the Mohr’s circle

The Mohr’s circle method [175] is a useful methodology to project a stress state (stress

tensor) in any desired direction. With this method it is possible to project a known stress

state, at certain direction, to another one in which the stress state is unknown. In this

procedure it is possible to establish different relations between axial and shear stresses

just by rotating the projection direction, i.e by rotating the axes of the reference system.

Among all possible rotating directions, two specific direction can be obtained, where two

specific stress states can be evaluated. In one direction the shear stress components can

be eliminated from the stress tensor; this direction is the so-called principal direction,

which can be calculated using Eq. 8.1. The other direction is the so-called maximum

shear stress direction, where the shear stress components of the stress tensor have their

maximum values in this direction. The maximum shear stress direction is given by Eq.

8.2.

2θp = tan−1

(
2τxy

σx − σy

)
(8.1)

2θs = tan−1

(
σx − σy

2τxy

)
(8.2)
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In this study, another approach to estimate the orientation of the crack initiation plane is

proposed. Thus, it is hypothesised the idea in which the orientation of the crack initiation

plane can be estimated by the two aforementioned directions calculated based in the

Mohr’s circle.

8.2.3 Critical plane orientation estimates

Structural materials have different properties under monotonic and cyclic loading regimes,

for instance the cyclic yield stress can be quite different from the monotonic one, which

depends of the material cyclic behaviour. As seen in Chapter 2 and 3, some materials can

soften or hardening or even maintain the same monotonic properties under a cyclic regime

[188]. When a cyclic softening occurs the cyclic yield stress is lower than the monotonic

one, usually all cyclic curve are under the monotonic curve for all total strains. In other

hand, material hardening occurs when the cyclic regime creates cyclic plasticity in such

way that the cyclic yield stress becomes higher than the monotonic yield stress.

Magnesium alloys tend to have a cyclic hardening behaviour in tension and a softening

one in compression, being these cyclic behaviours highly depend on the grain refinement,

purity, lattice intrinsic behaviour like twinning or foundry transformation processes found

in these alloys [189, 190]. On the other side the high strength steel 42CrMo4 also cyclically

hardens. Thus, it is of utmost importance identify the material cyclic behaviour to estimate

the local stress states.

Under strain control, the softening cyclic process lead to have a local stress states lower

than the ones estimated using the material monotonic curve. However, cyclic total strains

will be greater than the monotonic ones under stress control experiments. In cyclic

hardening, it is achieved opposite results i.e. the local stresses are greater than the

monotonic ones under strain control, and the total strains decrease their amplitude under

a stress control loading regime.

Based on these facts, it can be concluded that fatigue models must be implemented

having in to account the material cyclic behaviour since their crack initiation and

fatigue life estimates are based in stress/strain amplitudes. Thus, these values must be

corrected/updated according to the material cyclic properties [16].

In finite element analysis, the material cyclic behaviour can be accounted by using the

material cyclic curve, however the micro-notches resulted from fatigue slip bands at surface

or due to the material defects (casting impurities for instance) can create local stress risers

with high local plasticity. This non-linear behaviour can affect substantially the crack

initiation plane orientation.

Fatigue crack nucleation at grain level also can induce a micro notch presence during the

fatigue process. Moreover, the fatigue crack has also high levels of plasticity in the crack
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tip due to their geometry. Based in the aforementioned facts, one can conclude that the

cyclic plasticity influence on the stress states and strains cannot be neglected in the crack

initiation plane assessment [184, 191, 192]. Thus, it is advised to perform an update to

the stress/strain time histories by using a cyclic elastic-plasticity model before any critical

plane search [16].

In this study the critical plane identification was performed based on stresses and

strains for each loading path obtained from numerical simulations. The most loaded

spots in the testing sample were monitored for each loading path with and without the

ANSYS/Chabone plasticity model. The numeric stress/strain data were afterwards used

in a spreadsheet to identify the critical plane estimates using the proposed models and the

critical plane models selected in this study.

8.2.3.1 Critical plane estimation - direct approach (without plasticity model)

The critical plane models used to estimate the crack initiation planes were the SWT,

Fatemi-Socie, Liu1, and Liu2. These models are the most used critical plane models

among the critical plane criteria, due to that they were selected here to evaluate their

performance for the 42CrMo4 and AZ31B-F materials. Figure 8.10 shows the critical

plane damage parameter variation in θ for the loading paths considered in this study and

depicted in Figure 8.3. The results presented in Figure 8.10 are valid for both 42CrMo4,

and AZ31B-F materials, where the critical plane identification procedure yields the same

estimates for the critical plane orientation in both materials. However, in fatigue life

estimates it is necessary to compute the inherent damage parameter for each criterion and

material. The critical plane orientation θ is identified for each loading path through the

maximum damage parameter obtained along the loading period. The theoretical results

depicted in Figure 8.10 were determined for the same stress level, i.e. it was used the same

axial and shear stress components in each critical plane in order to avoid any stress level

influence on the critical plane estimates. Based on these results, it can be concluded that

the SWT and Liu 1 criteria have the same values of damage parameter in all θ, moreover

the Fatemi-Socie criterion has its highest value in the OP loading case, which indicates a

lower fatigue life estimate for this loading path comparatively to the other three loadings

considered here.

8.2.3.2 Loading path influence on Kt

Tables 8.2 and 8.3 show the numerical results for the stress concentration factors Kt

calculated for each loading path considered here. Table 8.2 gathers together the results

for the high strength steel 42CrMo4 calculated in Ansys and using its intrinsic Chaboche’s

plasticity model. The stress analysis was performed in the nodes found at notch root

and at the intersection boundary between the notch cap and the specimen surface. The

analyses was performed at each node considering each loading component, axial and shear
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Figure 8.10: Critical plane damage parameter and its critical plane orientation for the 42CrMo4,

and the AZ31B-F materials.

stress time evolution, as independent stresses. This can be made because the axial and

shear stresses numerically computed at each node, have already into account the shear

contribution to the axial stress and the axial force contribution to the shear stress. The

local axial and shear instantaneous stresses at notch root and notch cup interface with

the specimen outer surface, were divided by their antipodal nominal instantaneous values

of the axial and shear stress, respectively. This approach was adopted to compute the

stress concentration factors Kt, because equivalent stress approaches do not capture the

Kt variation in some loading paths as discussed in previous Chapters. Therefore, in this

study, it was determined a Kt for the axial loading component and other for the shear

one. The stress level of the nominal stresses used in the FEM simulations were 30%

lower than the material cyclic yield stress, in order to avoid any cyclic plasticity in the

remote stress control region i.e. antipodal nominal region. Tables 8.2 and 8.3 show the

42CrMo4 Kt numerical results obtained with and without the Chaboche plasticity model,

respectively. Based on the results gathered in Tables, 8.2 and 8.3, it can be concluded

that the Kt values obtained with the plasticity model approach are lower than the ones

obtained without it. Therefore, numeric simulation without using an plasticity model
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can result on higher stress values at notch root and respective boundary. This result is

justified through the Chaboche plasticity input, where it was used the 42CrMo4 cyclic

curve instead the monotonic one. Excepting in the PP loading case, the highest axial and

shear Kt values occur at the notch root, which were obtained with and without plasticity

model.

Table 8.2: Kt for each loading path at notch root and surface calculated with plasticity model.

Maximum values found during the loading period.

with Plasticity Model - 42CrMo4

Loading Path Location Kt Axial Kt Shear

OP Root 1.69 1.48

Surface 1.60 1.20

PP Root 1.47 1.08

Surface 1.48 1.22

PS Root nan 1.51

Surface nan 1.09

PT Root 1.69 nan

Surface 1.60 nan

Table 8.3: Kt for each loading path at notch root and sample surface calculated without plasticity

model. Maximum values found during a loading cycle period.

without Plasticity Model - 42CrMo4

Loading Path Location Kt Axial Kt Shear

OP Root 1.83 1.73

Surface 1.80 1.24

PP Root 1.83 1.67

Surface 2.06 1.43

PS Root nan 1.72

Surface nan 1.08

PT Root 1.83 nan

Surface 1.80 nan

In the PP loading case, the Kt results obtained without the plasticity model indicates

the biggest axial and shear Kt values at the sample surface being the shear Kt at notch

root higher than the one at surface, please see Table 8.3. In contrast at Table 8.2, the

opposite scenario occurs, the results obtained for the PP loading case with the plasticity

model indicates a shear Kt at notch surface higher than at notch root. These results

lead to conclude that the loading path type has influence in the stress concentration

factors. Therefore, theKt values are dependent on the crack geometry (which is of common
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knowledge) and on the loading path type, which is a new finding regarding multiaxial

fatigue. Also, the Kt values are dependent on the stress level where elastic-plastic cyclic

models play a important role. In this study, the multiaxial loading components, the axial

and shear stress of the loading path, have a stress amplitude ratio equal to τ/σ = 1/
√

3

being the shear stress amplitude
√

3 times less than the axial one. In this way, the stress

level could be defined based in the von Mises equivalent stress, for each loading path. The

average values of the axial Kt obtained in the cases OP and PP are greater than the shear

ones, in both simulations (with and without plasticity model). The numeric results of the

axial Kt obtained with the Chaboche’s plasticity model are 25% greater at notch root and

35% at notch interface with the sample surface, comparatively to the shear Kt results.

Moreover, in the simulations performed without the Chaboche plasticity model, the axial

values of Kt were 7% greater at notch root and 45% greater at the notch surface.

Table 8.4 shows the Kt variation in percentage at the notch root for each loading path.

These variations were calculated by comparing the Kt results obtained with and without

the Chaboche plasticity model. For instance, the axial value of Kt increases 20% in the

PP loading case, when the simulation is performed without plasticity model, please see

Table 8.4. The greatest variation occurs in the PP loading, where the axial Kt is reduced

about 20%, and the shear one in 35%, when it is used a plasticity model. In the other

cases, it was found a similar reduction, i.e. about 7% for the axial Kt and 12% for the

shear one.

Table 8.5 shows the mean values of axial and shear Kt at the notch cap surface obtained

with the Chaboche plasticity model; the greatest values were obtained in the OP loading

case, and the lowest ones were obtained in the PP loading case. From these results, it

can be concluded that the OP loading case, during the loading period have in average,

the highest stress level at notch, comparatively to the stress level found in the PP loading

case.

Table 8.4: Kt variation in % due to the loading path type at notch root and surface computed

without plasticity model.

At notch root - 42CrMo4

Loading Path Kt Axial [%] Kt Shear [%]

OP 7 14

PP 20 35

PS nan 12

PT 7 nan
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Table 8.5: Kt mean values at notch surface along the loading period.

with Plasticity Model - 42CrMo4

Loading Path Location Kt Axial Kt Shear

OP Surface 0.85 0.93

PP Surface 0.65 0.7

PS Surface nan 0.85

PT Surface 0.85 nan

8.2.3.3 Maximum Kt approach

Figure 8.11 shows the estimates of the maximum Kt approach for the orientation of the

crack initiation plane in each loading path. Since the Kt has an important influence on

the crack nucleation and initiation process, this method was numerically implemented to

verify the loading path effect in the fatigue life and orientation of the crack initiation

plane. Fatigue micro-cracks can be considered as micro-notches, which for the majority of

materials are created during 80% of fatigue life.

Thus, it is important to investigate the loading path effect on the stress state distribution

at yearly crack stages simulated here with a virtual notch. In the approach presented here,

the maximum value for axial and shear Kt is determined along the loading period, and

assigned to each node of the notch cup. Thus, the crack initiation plane estimated by the

axial Kt is obtained by linking the maximum axial Kt values. The same reasoning is used

to estimate the crack initiation plane using the shear Kt. From these two Kt estimates,

the one with the greatest value of Kt (in axial or in shear) will give the orientation of the

crack initiation plane for each loading path.

The graphs of Figure 8.11 depicts the Kt magnitudes, in shear and axial, associated to

each node at the interface between the notch cup and the sample surface. For instance,

in the PT loading case, Figure 8.11 a) shows the highest Kt value in axial located at

0o and 180o degrees, whereas at 90o and 270o direction the Kt is zero. It is possible to

have an idea of the Kt maximum magnitude in any direction during the loading period

by linking the graph origin to the Kt curves depicted in Figure 8.11. These curves were

determined at nodes located in the interface between the notch cup and the test sample

surface. Moreover, it is also represented two circles with two different radius, one is the

axial Kt, and the other is the shear one, both determined at the notch root.

The circle based in the axial Kt radius is depicted by a dotted line, and the shear one by

a full line, as shown in Figure 8.11. These two circles allow to perform a direct correlation

between the Kt values found at notch root and sample surface, where it is possible to

identify the location of the surface Kt values which are greater or equal to the ones found

at notch root.
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Figure 8.11: Critical plane estimates based in the maximum Kt approach for the loading cases

a) PT, b) PS, c) OP, and d) PP.

Figure 8.11 a) shows the critical plane orientation estimates for the loading case PT, where

the maximum axial Kt values indicate the critical plan at 0o, and the highest Kt value

occurs at notch root. Figure 8.11 b) shows the shear Kt magnitude variation in the loading

case PS, where the highest values of Kt found at notch surface occur at ±37o direction,

and the highest Kt value was found at notch root.

Figure 8.11 c), shows the results obtained for the OP loading case; the highest Kt values

were found in the axial curve, where the direction of the crack initiation plane is estimated

at 0o degrees. In this case, the axial Kt value at notch root is almost equal to the

maximum ones found at notch surface. Moreover, the axial Kt is greater than the shear

one, therefore the orientation of the crack initiation plane is estimated by the axial Kt

curve; the same pattern is observed on the PP loading case, please see Figure 8.11 d). This

result can be explained through the stress amplitude ratio used in this study, where the

axial stress amplitude is
√

3 times greater that the shear one, which creates an axial stress

predominance in the loading path stress level. This stress amplitude ratio is traditionally

used in fatigue life experiments and is based on the von Mises stress space.
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Figure 8.11 d) shows the results for the PP loading case; here, the critical plane orientation

is estimated by the maximum axial Kt found at ±12o direction, also at the surface notch,

the axial Kt values are very similar to the one found at the notch root. However, the

shear Kt found at the notch root is less than the maximum shear Kt values found at

surface. This result can be seen in Figure 8.11 d), where the circle depicted by a full line

intercepts the shear Kt dotted line around the −45o and 135o directions. Thus, from the

results discussed above, it can be hypothesised that the stress amplitude ratio has a strong

influence in the orientation of the crack initiation plane, which may result from a shear or

axial stress predominance.

8.2.3.4 Gradient approach

The interpretation of the Kt estimates can be facilitated by using the gradient of the axial

and shear Kt results in the notch cup. Moreover, with this gradient it becomes possible

to use this approach in numerical simulations. Figure 8.12 shows the axial and shear Kt

gradients at the notch cap obtained under the PT loading case. In Figure 8.12 a) can be

found the highest axial Kt values located at 0o and 180o degrees, please see φ referential

depicted in Figure 8.5 b). Moreover, the highest values of shear Kt were obtained at

±45o, as seen in Figure 8.12 b) Based on the maximum Kt approach, the orientation of

the crack initiation plane is given based in one of these two Kt gradients (axial or shear).

The Kt values are determined for each node of the micro notch cap in order to obtain

the Kt gradient, however, the orientation estimates of the crack initiation plane are based

in the maximum values found at the specimen surface. Thus, for the PT loading case,

Figure 8.12 a), the maximum axial Kt approach estimates the orientation of the crack

initiation plane at 0o, and the highest axial Kt value occurs at notch root. Figure 8.13

a) shows the axial Kt gradient for the PS loading case, where the maximum axial Kt was

found at ±45o. However, in this loading case (PS), the highest maximum Kt is the shear

one, as expected. Figure 8.13 b) shows the locations of the highest shear Kt found in the

micro notch interception with specimen surface, which were located at ±45o2; the highest

shear Kt was found at the micro notch root. Figure 8.14 a) shows the results obtained for

the OP loading case, where the highest Kt occurs in the axial gradient, which suggests a

crack initiation plane at 0o degrees. In this loading case (OP), the Kt at the micro notch

root is almost equal to the ones verified at notch cap interception with specimen surface.

The axial Kt gradient has the greatest values comparatively to the shear one, please see

Figure 8.14 b), thus the maximum Kt estimate for the critical plane in this loading path

is given through the axial Kt, which estimate the crack initiation plane at 0o. Figure 8.15

a) shows the axial Kt gradient for the PP loading case, which estimates the critical plane

at the ±13o direction. Moreover, in this loading case (PP), the axial Kt values are greater

than the one verified at the micro notch root, the same results was found for the shear Kt

gradient, i.e. the Kt values at surface are greater than the one verified at notch root. The
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results obtained for the PP loading case have the maximum values of Kt at the sample

surface, which is contrary to the results obtained for the other loading paths, where the

maximum Kt occurs at the notch root. Based on the aforementioned results, it can be

concluded that the Kt gradient approach is sensitive to the loading path type.

Figure 8.12: Critical plane estimation based on maximum Kt for PT loading with plasticity

model, case : a) Axial, and b) Shear.

Figure 8.13: Critical plane estimation based on maximum Kt for PS loading with plasticity

model, case : a) Axial, and b) Shear.

Figure 8.14: Critical plane estimation based on maximum Kt for OP loading with plasticity

model, case : a) Axial, and b) Shear.
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Figure 8.15: Critical plane estimation based on maximum Kt for PP loading with plasticity

model, case : a) Axial, and b) Shear.

8.2.3.5 Critical plane estimates based in the Mohr’s circle

Figure 8.16 shows the Mohr’s circle estimates for the critical plane orientations of the

loading paths considered in this study. In figure 8.16, it is depicted the critical plane

estimates based in the maximum principal stress directions, where the critical plane

direction is perpendicular to the principal stress orientation.

In Figure 8.17, it is shown the results of the critical plane estimates based in the

maximum shear stress direction given by the Mohr’s circle. In the maximum principal

stress approach, the crack opening process (initiation plus growth) is based on tensile

mechanisms, thus the fatigue crack growth is perpendicular to the opening stress direction.

On the other hand, in the maximum shear stress approach, it is proposed that the crack

opening process is based in shear stress mechanisms, which can be promoted by tensile

stress or constrained by compressive stress.

The estimates of the principal stress direction approach for cases PT, PS and PP were,

0o, −45o and −25o, respectively. This procedure do not give a direct result for the critical

plane direction under out of phase loading cases, because under non-proportionality the

principal directions changes during the loading period.

Figure 8.16 d) shows the principal directions variation on the OP loading case, starting

with a pure shear stress state (sub-Figure 8.16 d1), passing through a biaxial loading

condition (sub-Figure 8.16 d2), and ending on a pure tensile (sub-Figure 8.16 d3). In this

loading case, it was considered the principal direction that has the maximum principal

stress value in order to estimate the critical plane orientation, which in this case it was

at 0o. The same reasoning can be applied to the results of the maximum shear stress

approach for the OP loading case, where the direction of the crack initiation plane is at

90o. For the PT, PS and PP loading cases, the maximum shear stress approach estimates

the crack initiation plane at −45o, 90o and −70o, respectively.
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Figure 8.16: Critical plane estimates based in the principal stress directions obtained for loading

case a) PT, b) PS, c) PP, and d) OP

Figure 8.17: Critical plane estimates based on the maximum shear stress directions for the

loading case a) PT, b) PS, c) PP, and d) OP.
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8.3 Experimental fatigue crack analysis

Figure 8.18 shows the fracture surfaces and the crack initiation planes for the PT loading

case, in both materials considered here. The 42CrMo4 specimen failed at 247953 cycles

under 455 [MPa] and the Mg alloy failed at 13164 cycles under 140 [MPa]. Despite that

fatigue failure occurs at different fatigue life regimes in each material, one at HCF and other

near the upper limit of the LCF regime, the fracture surface shows a similar topography

for this loading case. Both surfaces suggest a ductile fatigue failure mechanism with two

different zones and roughness, i.e. the fatigue zone (FZ), with a smooth roughness, and

an instantaneous zone (IZ), with accentuated roughness.

Figure 8.18: Loading case PT: Fracture surface for a), b) 42CrMo4 and d) e), Mg AZ31B-F.

Crack initiation angle for c) 42CrMo4, and f) Mg AZ31B-F.

In the smoothest area of the fatigue zone, it is possible to identify the crack initiation

spot, and in the instantaneous zone the final fracture can be analysed. The roughness

change in the fracture surface shows different speeds of crack growth indicating that the

failure didn’t happen suddenly. In this loading case, most of the fatigue life is spent

mainly in mode I crack growth, and it finishes with a rough and crystalline appearance at

the IZ. The final fracture (IZ) occurred with a crack separation in mode II through slip
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mechanism in the maximum shear plane. No expressive propagation marks were observed

in the high strength steel, however in the Mg alloy it was observed a slight river marks

starting near the crack initiation spot which progressed into the crack growth direction.

In both materials, the experimental crack initiation planes of the PT loading path were

measured at 0o degrees. Figure 8.19 shows the fatigue crack results for the PS loading

case, where it is depicted the fatigue crack surface in both materials. The steel sample

was cyclic loaded with a von Mises equivalent stress amplitude equal to 685 [MPa], and

it failed at 315668 cycles. The Mg alloy sample was subjected to a von Mises equivalent

stress amplitude equal to 120 [MPa] and it failed at 128719 cycles. The fracture surface

found in the steel sample shows a unique initiation spot with a initiation plane oriented

at 45o, which is a typical result for twisting loads in ductile materials [16, 187]. Under

multiaxial loadings the crack initiation process has a mixed mode, thus it is expected a

reduction of this angle due to the axial component.

Figure 8.19: Loading case PS: Fracture surface for a), b) 42CrMo4 and d) e), Mg AZ31B-F.

Crack initiation angle for c) 42CrMo4, and f) Mg AZ31B-F.

The fatigue and instantaneous zones depicted in Figure 8.19 show a strong granulated

surface in the steel specimen, however in the Mg specimen the fracture surface is smoother.

Both fracture surfaces have a similar pattern in the FZ and IZ. However, in the Mg fracture
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surface, it was observed ratchet marks with two initiation spots, which grew towards the

centre of the specimen. Moreover, in the instantaneous zone, it can be seen some rifling

grooves similar to progression marks. Figure 8.20 shows the fracture surfaces obtained in

the proportional loading (PP) experiments. The steel sample was cyclic tested with a von

Mises equivalent stress amplitude equal to 622 [MPa], and their failure occurred at 311201

cycles. The Mg specimen was subjected to a von Mises equivalent stress amplitude equal

to 150 [MPa], and it failed at 16800 cycles.

Figure 8.20: Loading case PP: Fracture surface for a), b) 42CrMo4 and d) e), Mg AZ31B-F.

Crack initiation angle for c) 42CrMo4, and f) Mg AZ31B-F.

Also here, the samples were tested at different fatigue life regimes as seen in the PT loading

path. Different stress levels changed the size of the instantaneous zones found in both

samples. Due to that, it was obtained different fracture surface’s topologies for the same

loading path. Thus,under multiaxial loading conditions, the fracture surface topography is

dependent on the stress level, which is a result in opposition to the observed in the loading

cases PT and PS. The fracture surface of the steel sample has one fatigue crack origin,

and three distinct zones: the usual FZ and IZ zones and a wear region. The Mg fracture

surface shows two fatigue crack origins, and many river marks pointing to the first crack

origin. It is expected that under the same fatigue regime the fatigue fracture surface be
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more similar in both materials. The experimental direction of the crack initiation plane

was ±16o in the steel sample, and 0o in the magnesium alloy. Recalling the premise in

which the axial component of a multiaxial loading changes the crack initiation angle from

±45o (pure shear) to a value between ±45o and 0o (pure axial) accordingly to the stress

amplitude ratio, it can be concluded that the Mg alloy is much more sensitive to the

axial component than to the torsional one. This result is corroborated by the magnesium

cyclic behaviour discussed in Chapter 3. Figure 8.21 shows the fatigue crack surfaces

obtained in the OP loading path, where the steel sample was cyclic loaded with a von

Mises equivalent stress amplitude equal to 686 [MPa], the sample fatigue life was 197548

cycles. The Mg sample was cyclic loaded with a von Mises equivalent stress amplitude

equal to 72.5 [MPa] which caused the sample collapse at 576336 cycles. In both materials,

the fracture surfaces were very similar in this loading path, which supports the hypothesis

in which the fracture topography is similar in both materials for a high cycle loading

regime. In the Mg fracture surface, the IZ has a diagonal riffle grooves, which started from

the FZ and evolved throughout the end of the IZ. Diagonal riffle grooves in instantaneous

zone indicate a biaxial loading at the fracture instant.

Figure 8.21: Loading case OP: Fracture surface for a), b) 42CrMo4 and d) e), Mg AZ31B-F.

Crack initiation angle for c) 42CrMo4, and f) Mg AZ31B-F.

252



Multiaxial Fatigue

8.4 Fatigue crack estimates and experimental data

correlation

This chapter is focused in the early crack growth on the crack initiation plane, which

occurs in a very thin layer at the sample surface and where the shear stress gradient effect

is relatively small. Thus, in the previous section, it was analysed the fracture surface

topography for each loading path depicted in Figure 8.3. Moreover, the crack initiation

spots were identified and the directions of the crack initiation plane were measured. In this

section, it is performed a correlation between the experimental results and the theoretical

estimates. Table 8.6 summarizes both experimental and theoretical results for the crack

initiation planes. The 42CrMo4 experimental results were gathered from literature [3],

regarding the AZ31B-F results they were measured using a digital USB microscope.

The theoretical estimates were obtained using the well-known critical plane criteria: FS,

SWT, Liu I, Liu II, and the three criterion proposed here: the maximum Kt approach,

the principal direction approach, and the maximum shear direction approach. The SWT

and Liu I estimates are in accordance with the PT and PS experimental results obtained

in both materials, where the first principal strain amplitude used in their formulations has

a key role in this performance. Moreover, the FS and Liu II estimates are very far from

the the results obtained in experiments for these two loading paths. However, in the PP

loading case, the FS and Liu II results are satisfactory in the 42CrMo4, in contrast, for

the Mg alloy, the these estimates strongly differ from the experimental data.

Regarding the OP loading case, the critical plane criteria estimates are in accordance with

the experimental data in both materials. The results of the maximum Kt approach are

in accordance with the experimental results obtained in the PT and OP loading cases.

Also, in the PS and PP loading cases, the maximum Kt estimates are very close to the

experimental data.These estimates could be improved by refining the notch mesh in the

boundary between the notch cap and the sample surface.

In this study, in the notch boundary where the values of Kt were measured, the mesh has

a 12o gap between nodes, thus reducing this gap may improve the estimates. However,

due to the notch reduced dimensions (about 200 microns as depicted in Figure 8.5) the

mesh refinement may lead to convergence problems, specially when plasticity options are

used.

The maximum principal direction approach shows to be the most accurate and easy way

to estimate the direction of the crack initiations planes using a FEM environment, their

critical plane estimates are quite similar to the ones achieved in the SWT and LIU 1

models. On the other hand, the estimates of the maximum shear direction approach are

very alike to the ones obtained with the LIU 2 criterion, where the critical plane estimates

are very far from the experimental results.
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The good results obtained in the axial stress/strain based models can be explained by the

stress amplitude ratio used in the experiments performed in this study, where the axial

stress amplitude is greater than the shear one yielding an axial damage predominance.

Despite the results obtained in the maximum Kt approach, it may be the most sensitive

approach to the stress amplitude ratio variation being sensitive to axial or shear damage

predominance within a multiaxial loading, which is a plus comparatively to the other

approaches considered here, which are only sensitive to axial or shear fatigue damages.

Table 8.6: Critical plane experimental orientation and their theoretical estimates for the 42CrMo4

[3] and AZ31B-F materials.

Case PT Case PS Case PP Case OP

AZ31 42CrMo4 AZ31 42CrMo4 AZ31 42CrMo4 AZ31 42CrMo4

Measured 0 0 45 45 -40 -16 -5 0

FS ±40 ±40 ±3; ±87 ±3; ±87 -13 -13 0 0

SWT 0 0 ±45 ±45 25 25 0 0

Liu I 0 0 ±45 ±45 25 25 0 0

Liu II ±45 ±45 ±90; 0 ±90; 0 -20; 70 -20; 70 ±90; 0 ±90; 0

Max Kt 0 0 -37 -37 -12 -12 0 0

PD 0 0 -45 -45 -25 -25 0 0

MSD -45 -45 90 90 -70 -70 90 90

8.5 Final comments

Base on the experimental data, and theoretical estimates carried out for the two materials

considered in this chapter, a low-alloy steel and a magnesium alloy, some remarks can be

drawn:

Fatigue life analysis shows different scatter patterns in both materials, which indicates

different sensibility to the loading level. Moreover, similar slopes were found in the fatigue

life correlation trend lines inherent to each loading path, excepting the loading case OP

where the slope of the correlation trend line is much more pronounced.

Regarding the fractographic analysis results in the uniaxial loading cases, PT and PS; the

fracture surface topography in both 42CrMo4 and Az31B-F materials were very similar

and independent from the equivalent stress level. However, under multiaxial loading

conditions, the loading path type and loading level do have influence in the magnesium

alloy surface topography. For a high number of loading cycles, the fracture surface is

strongly dependent on the loading path type, but for the same loading path the fatigue

fracture surface tends to be similar in both materials.

Regarding the experimental measurements of the crack initiation planes, the orientation

of the crack initiation plane, in pure axial (PT) and pure torsion (PS) loading cases, does
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not change with the stress level variation, however, under multiaxial loading conditions

the critical plane orientation varies with the stress level variation.

The principal direction approach based in the Mohr’s circle methodology presented here,

proved to be a fast way to estimate the orientation of the crack initiation plane, however

for non-proportional loading cases this method can lead to inconsistent results due to the

principal directions variation always present in non-proportional loading paths. Moreover,

the maximum shear stress direction based in the Mohr’s circle methodology has poor

estimates for the orientation of the crack initiation plane.

Finally, the maximum Kt approach and the principal stress methodology have a similar

performance in their estimates, but the maximum Kt approach proved to be more sensitive

to non-proportional loadings, stress amplitude ratios, and local stress states due to their

synergy with cyclic elastic-plastic models.
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Chapter 9

Final remarks and possible future

research

9.1 Final remarks

At the actual state-of-the-art in multiaxial fatigue criteria, the loading path effect on

the materials fatigue strength remains to be fully understood and accounted specially

under multiaxial random loading conditions. For instance, the equivalent stress concept

under multiaxial loading conditions remains independent from the loading path type,

i.e. it can be reached the same equivalent stress for different combinations of axial and

shear stress amplitudes. However, experimental results show that the fatigue strength

varies with different combinations of axial and shear stress amplitudes. Thus, fatigue

life estimates under equivalent stress criteria under multiaxial loading conditions give

inconsistent results. This document proposes a new set of tools for multiaxial fatigue

in order to capture the several effects within the fatigue damage of multiaxial random

loadings. Multiaxial fatigue damage of random loadings is the ultimate challenge in

multiaxial fatigue characterization, because random loadings usually activates almost

all multiaxial loading path effects. In order to capture multiaxial random damages,

it was developed here a new equivalent shear stress, the SSF equivalent stress. This

equivalent stress is able to capture partially the non-proportionality of a loading path, in

order to overcome this limitation it was developed a non-proportional parameter, the

non-proportional sensitivity factor, Y, that corrects the SSF equivalent stress to the

material non-proportional response. Further, based on the SSF equivalent stress time

evolution, it was developed a new cycle counting methodology, which was validated for

block fatigue damage assessment. In order to evaluate random fatigue, it was developed

a block extraction method that yields loading block regions within multiaxial loading

spectra. For each extracted block, the fatigue damage is calculated using the SSF

equivalent stress, and the virtual cycle counting method (vcc), afterwards the overall
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damage of a loading spectrum is computed block by block using the Miner’s rule. In the

end, it was proposed three methodologies to estimate crack initiation planes for multiaxial

loading conditions.

9.2 Possible future research

During the journey of this work several paths of great interest came along such as:

1. Investigate by experiments the relation between shear and axial strains, in order to

inspect the accuracy of the von Mises estimates.

2. Investigate the integration of non-proportionality effects in the HYS model.

3. Investigate the HYS model integration in commercial FEM packages such as ANSYS

or Abaqus.

4. Additional experiments are required to exploit the Y concept (non-proportional

sensitivity) under broad non-proportional loading conditions.

5. Investigate alternative ways to obtain the material SSF damage map without or

reduced amount of fatigue tests.

6. Investigate the hypotheses of an universal SSF damage map.

7. Perform a integration of the virtual cycle counting (vcc) in commercial FEM

packages.

8. Investigate the material damping dependence of the material deformation type.

9. Development of a probabilistic trigger for multiaxial fatigue damage accumulation

under random loadings.

10. Perform a integration of the Kt approach in FEM packages.

11. Implement the SSF package in the field using SHM procedures for damage

accumulation assessment on the fly.
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Appendix A

Mechanical properties

A.1 Introduction

In this appendix it is presented the materials used in this research focusing their mechanical

properties and industrial applications. It was analysed four steels, i.e. a high strength

steel, two medium-carbon steels and one stainless steel. In addition, it was also analysed an

aluminium alloy commonly used in aerospace airframes, the 2024T4 (aluminium alloyed

with copper and heat treated), and a magnesium alloy usually used in transportation

industry, the AZ31B-F, a magnesium alloy with 3 wt% of Aluminium and 1 wt% of Zinc.

Some information presented here was gathered from literature, but other it was obtained

by experiments during this research, which was the case of some properties and fatigue

data of the 42CrMo4 and AZ31B-F materials.

A.2 42CrMo4 (AISI 4140)

The 42CrMo4 material is a high strength steel that is alloyed with Chromium, and

Molybdenum being a special structural steel. It is commonly used in high and moderately

stressed components for automotive industry such as: shafts, connecting rods, crankshafts,

screws.

A.3 Ck 45

The Ck45 is a medium carbon steel is usually used when greater strength and hardness

is required having good machinability. This material has an extreme size accuracy,

straightness and concentricity. It is normally used in component parts for vehicles, shafts,

bushings, crankshafts, connecting rods and parts for the machine building industry. it is

also used as steel for axes, knives, hammers. It is considered as a wear resistant steel.
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A.4 Medium-carbon steel C40

The C40 (AISI 1040) is a high carbon structural steel with 0.4 wt% carbon, has poor

welding capabilities and is mainly used for manufacturing wear parts, like gears and so

on. Also, it is commonly used in plastic mould, cold work die and mould bases.

A.5 Stainless steel AISI 303

The AISI 303 is an austenitic stainless steel with an excellent machinability compared with

others austenitic stainless steels. It is primarily used when production involves extensive

machining. The AISI 303 typical applications are nuts, bolts, bushings, shafts, electrical

switchgear components and food related equipment. In general, the AISI 303 is used

in components that should be heavily machined and/or in cases where good corrosion

resistance is required.

A.6 Aluminum alloy 2024-T4

The 2024-T4 is an aluminium alloy commonly used in the aircraft industry such as

load-bearing applications. This aluminium alloy has good machinability and surface

finish capabilities. It is a high strength material with adequate workability and high

resistance to fatigue crack due to the copper and age hardening. However, also due to

the copper precipitates their corrosion resistance is very low. The major corrosion types

found in this alloys are intergranular corrosion and exfoliation. The mechanical properties

of 2024-T4 depends greatly on the temper type, in this case the aluminum alloy has a

T4 heat treatment, (solution heat-treated and naturally aged to a substantially stable

condition).

A.7 Magnesium alloy AZ31B-F

Magnesium alloys have been a raw material with successful industrial applications; the

major advantages are based on the reduced weight and high specific strength. The world

magnesium production increases exponentially each year; new improvements on corrosion

and mechanical properties had led to sustaining the industry demanding specially at

automotive and aerospace industries where the driving force has settled on a weight

reduction policy. Magnesium is the sixth most abundant metal on planet earth with

high recycling properties and can be obtained from sea water. Also, it is a non-toxic

material being a good candidate to be used in human implants and replace aluminium

alloys on structural and mechanical components. However, their mechanical behaviour is

quite different from steel or aluminum alloys, the hexagonal closest-packed structure, HCP,

have some specific properties such as the reduced number of slip planes, only 3 against 12

found in steels, which gives a non-standard mechanical behaviour at room temperature.
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A.8 Mechanical properties

Table A.1: Available monotonic and cycle properties for the selected materials [3, 134, 155].

42CrMo4 Ck45 AISI 303 C40 2024-T4 AZ31B-F

Micro-structure type bcc bcc fcc bcc hc

Poisson’s ratio 0.3 0.3 0.3 0.3 0.33 0.3

Density (Kg/m3) 7830 7870 8000 7800 2770 1770

Hardness (HV) 362 195 174 149 137 86

Tensile strength (UTS) (MPa) 1100 660 625 630 469 290

Yield strength (MPa) 980 410 330 530 400 203

Elongation (%) 16 23 58 22 16 14

Young’s modulus (GPa) 206 206 178 210 73 45

Cyclic yield strenght 350

Strain hardening exponent 0.001

Fatigue strength (endurance limit) 420 300 140

σ f́ Fatigue strength coefficient (MPa) 1154 948 534 643 450

b Fatigue strength coefficient -0.061 -0.102 -0.07 -0.12

έ f Fatigue ductility coefficient 0.180 0.17 0.052 0.18 0.26

c Fatigue ductility exponent -0.53 -0.44 -0.292 -0.71

A.9 Chemical composition

Table A.2: Material chemical composition by weight % [3, 134, 155].

42CrMo4 Ck45 C40 AISI 303 2024-T4 AZ31B-F

C 0.38-0.43 0.43-0.50 0.37-0.44 0.15

Mn 0.75-1.00 0.60-0.90 0.60-0.90 2.00 0.3 - 0.9 Min 0.20

P Max 0.035 Max 0.04 Max 0.04 0.2

S Max 0.04 Max 0.05 Max 0.05 Max 0.15

Si 0.15-0.30 1.00 Max 0.5 Max 0.10

Cr 0.80-1.10 17.0-19.0 Max 0.1

Mo 0.15-0.25

Ni 8.0-10.0 Max 0.0050

Cu 3.8 - 4.9 Max 0.050

Fe Max 0.5 Max 0.0050

Mg 1.2 - 1.8

Ti Max 0.15

Zn Max 0.25 0.60 - 1.4

Al 2.5 - 3.5

Ca Max 0.040
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Appendix B

HYS’s Matlab code

Here, it is presented the Matlab code of the elastic-plastic cyclic model presented in

Chapter 3.

B.1 MATLAB – Main Axial Routine

clear all;

global A B C D

global P1 P2 P3 P4 P5 P6

strain = csvread(’Load incre 1 ciclo axial.csv’);

data=zeros(length(strain(:)),5);

% FLAG if equal to -1 is going down, if equal to 1 is rising, if equal to 0 is a turn-point

% DATA = stress — strain — flag — backbone field — strain to hysteresis

for n=1:length(strain(:))

data(n,2)=strain(n);

end

for n=1:length(strain(:))-1

if strain(n+1)-strain(n)>0

flag=1; data(n,3)=1;

else

flag =-1; data(n,3)=-1;

end

end
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data(length(strain(:)),3)=flag;

% Turn Points

i=1;

while i < length(strain(:))

if sign(data(i,3))+sign(data(i+1,3))==0

data(i+1,3)=0;

end

i=i+1;

end

% Backbone Field

rp=0;

for n=1:length(strain(:))

if data(n,3)>0 && data(n,2)>= rp

data(n,4)=1;

elseif data(n,3)==0 && data(n,2)>rp

rp = data(n,2);

data(n,4)=2;

end

end

rp=0;

for n=1:length(strain(:))

if data(n,4)==2 && data(n,2)>=rp

rp=data(n,2);

end

data(n,5)=rp;

end

for n=1:length(strain(:))

Point(data(n,2));

if data(n,4)==1 || data(n,4)==2
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data(n,1)=P1;

end

Point(data(n,5));

if data(n,3)==-1 && data(n,4)==0

P=polyfit([data(n,5); P2; 0;-data(n,5)],[P1; 0; P3;P4],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end

if data(n,3)==0 && data(n-1,3)==1

P=polyfit([data(n,5); P2; 0;-data(n,5)],[P1; 0; P3;P4],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end

if data(n,3)==1 && data(n,4)==0

P=polyfit([-data(n,5); P5; 0;data(n,5)],[P4; 0; P6; P1],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end

if data(n,3)==0 && data(n-1,3)==-1

P=polyfit([-data(n,5); P5; 0;data(n,5)],[P4; 0; P6; P1],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end

end

plot(data(:,2),data(:,1));

B.2 MATLAB – Main Shear Routine

clear all;

global P1 P2 P3 P4 P5 P6

strain = csvread(’PS 0.4 2ciclos.csv’);

data=zeros(length(strain(:)),5);

% FLAG if equal to -1 is going down, if equal to 1 is rising, if equal to 0 is a turn-point

% DATA = stress — strain — flag — backbone field — strain to hysteresis
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for n=1:length(strain(:))

data(n,2)=strain(n);

end

for n=1:length(strain(:))-1

if strain(n+1)-strain(n)>0

flag=1; data(n,3)=1;

else

flag =-1; data(n,3)=-1;

end

end

data(length(strain(:)),3)=flag;

% TurnPoints

i=1;

while i < length(strain(:))

if sign(data(i,3))+sign(data(i+1,3))==0

data(i+1,3)=0;

end

i=i+1;

end

% backbone field

rp=0;

for n=1:length(strain(:))

if data(n,3)>0 && data(n,2)>=rp

data(n,4)=1;

elseif data(n,3)==0 && data(n,2)>rp

rp = data(n,2);

data(n,4)=2;

end

end
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rp=0;

for n=1:length(strain(:))

if data(n,4)==2 && data(n,2)>=rp

rp=data(n,2);

end

data(n,5)=rp;

end

for n=1:length(strain(:))

Spoint(data(n,2));

if data(n,4)==1 || data(n,4)==2

data(n,1)=P1;

end

Spoint(data(n,5));

if data(n,3)==-1 && data(n,4)==0

P=polyfit([data(n,5); P2; 0;-data(n,5)],[P1; 0; P3;P4],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end

if data(n,3)==0 && data(n-1,3)==1

P=polyfit([data(n,5); P2; 0;-data(n,5)],[P1; 0; P3;P4],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end

if data(n,3)==1 && data(n,4)==0

P=polyfit([-data(n,5); P5; 0;data(n,5)],[P4; 0; P6; P1],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end

if data(n,3)==0 && data(n-1,3)==-1

P=polyfit([-data(n,5); P5; 0;data(n,5)],[P4; 0; P6; P1],3);

data(n, 1) = P (1) ∗ data(n, 2)3 + P (2) ∗ data(n, 2)2 + P (3) ∗ data(n, 2) + P (4);

end
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end

plot(data(:,2),data(:,1));

B.3 MATLAB – Axial Points Routine

function [P1, P2, P3, P4, P5, P6]= Point(x)

global P1 P2 P3 P4 P5 P6

% x is the total strain % P1 is also the backbone

P1 = 1612.48253449885 ∗ x7 − 9001.65583509937 ∗ x6 + 18990.5020952381 ∗ x5 −
18708.7282776579∗x4+8547.57549175112∗x3−1813.33571350405∗x2+563.137085626194∗
x− 4.76156172801138;

% point 2 ( max error < 1% )

P2 = −5.61728763324252 ∗ x7 + 31.310215828382 ∗ x6 − 66.8588782668116 ∗ x5 +

67.9999455558678∗x4−33.1600903362105∗x3+7.5210194883675∗x2−0.675107654745615∗
x+ 2.15930065232407E − 02;

% point 3 ( max error < 1% )

P3 = 3205.96736505311 ∗ x7 − 16533.1719376398 ∗ x6 + 32943.737525031 ∗ x5 −
31603.0892036718∗x4+14851.7963251929∗x3−3297.00442656992∗x2+293.317956033942∗
x− 9.28864060310319;

% point 4 ( max error < 1% )

if x<= 0.7

P4 = −1724.51736010434 ∗ x4 + 2666.5055163261 ∗ x3 − 1029.0277569031 ∗ x2 −
282.021113164475 ∗ x− 4.70001569608806;

elseif x>0.7 && x<=1.4

P4 = 3796.52087217134− 4066.94784209075 ∗ log(x)− 10980.616334377 ∗ exp(−x);

end

% point 5 ( max error < 1% )

if x<= 0.9

P5 = −0.746391184235674 ∗ x5 + 3.61699194757608 ∗ x4 − 4.14317437186328 ∗ x3 +

1.45532858067314 ∗ x2 − 0.241326691061546 ∗ x+ 6.1460339490965E − 03;

elseif x>0.9 && x<=1.4

P5 = −0.226693656177561− 0.774834235247346 ∗ log(x)/x2;
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end

% point 6 ( max error < 1% )

if x<=0.9

P6 = 1350.68526517161 ∗ x5 − 3380.897469962 ∗ x4 + 2774.52155069743 ∗ x3 −
848.438040596614 ∗ x2 + 122.960739463697 ∗ x− 3.24204992256947;

elseif x>0.9 && x<=1.4

P6 = 5779.51246461137− 5643.82166319652 ∗ log(x)− 15623.6005797354 ∗ exp(−x);

end

end

B.4 MATLAB – Shear Points Routine

function [P1, P2, P3, P4, P5, P6]= Spoint(x)

global P1 P2 P3 P4 P5 P6

P1 = −22.5107143654461 ∗ x10 + 201.854998204418 ∗ x9 − 644.893587525743 ∗ x8 +

589.807792293021∗x7+1430.93790923576∗x6−4529.29434921615∗x5+5129.10090675619∗
x4 − 2689.65237023041 ∗ x3 + 476.038605716444 ∗ x2 + 176.445398314215 ∗ x +

3.59424205647902E − 02;

P2 = −0.121507127994832 ∗ x10 + 1.5546297103227 ∗ x9 − 8.24383378545519 ∗ x8 +

23.7164284672066∗x7−40.4660019459346∗x6+41.9734744869975∗x5−26.1944602437782∗
x4 + 9.42900640243149 ∗ x3 − 1.45961323569132 ∗ x2 + 4.50637543251064E − 02 ∗ x −
2.75984233608916E − 04;

P3 = 24.6533431726864 ∗ x10 − 292.72308712462 ∗ x9 + 1480.86238369206 ∗ x8 −
4168.0553676122∗x7 +7143.84701291341∗x6−7660.14965960386∗x5 +5063.48496388391∗
x4 − 1917.81664050227 ∗ x3 + 312.436816613724 ∗ x2 − 11.2831886725052 ∗ x +

9.35899650991619E − 02;

P4 = 42.5384244894889 ∗ x10 − 426.986141656398 ∗ x9 + 1724.3989168212 ∗ x8 −
3465.80144527909∗x7+3210.12678961038∗x6−94.8787618819251∗x5−2374.90919675872∗
x4 + 1815.40465011995 ∗ x3 − 378.091432395103 ∗ x2 − 172.009816070145 ∗ x −
0.14752603498711;

P5 = 0.585030844902098 ∗ x10 − 6.32353758132731 ∗ x9 + 28.8864133619076 ∗ x8 −
72.4416286562295∗x7+108.334936430662∗x6−98.2293234426468∗x5+52.6799364225525∗
x4 − 15.6409570130916 ∗ x3 + 1.8745706258009 ∗ x2 − 8.52533212031502E − 02 ∗ x −
7.63411843645122E − 04;
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P6 = −64.2641216179107 ∗ x10 + 715.849413123197 ∗ x9 − 3389.28366128172 ∗ x8 +

8879.85897034258∗x7−14032.5004541184∗x6+13658.7630212986∗x5−8000.47811708188∗
x4 + 2591.33563475175 ∗ x3 − 339.867237908221 ∗ x2 + 18.5072444857954 ∗ x +

9.67429174377977E − 02;

end
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