
Hybrid Flow Shop Scheduling through Reinforcement Learning:
A systematic literature review

Victor Ulisses Pugliese
Universidade Federal de São Paulo
São José dos Campos, São Paulo

Brazil
pugliese@unifesp.br

Oséias Faria de Arruda Ferreira
EMBRAER S.A.

São José dos Campos, São Paulo
Brazil

oseias.ferreira@embraer.com.br

Fabio A. Faria∗
Instituto Superior Tecnico,
Universidade de Lisboa

Lisboa, Portugal
fabio.faria@tecnico.ulisboa.pt

Abstract
This paper reviews the application of Reinforcement Learning (RL)
in solving Hybrid Flow Shop Scheduling (HFS) problems, a complex
manufacturing scheduling challenge. HFS involves processing jobs
through multiple stages, each stage has multiple machines that
can work in parallel, aiming to optimize objectives like makespan,
tardiness, and energy consumption. While traditional methods are
well-studied, RL’s in HFS problem is relatively new. The review
analyzes 26 studies identified through IEEE Xplore, Scopus, and
Web of Science databases (as of April 2024), categorizing them
based on RL algorithms, problem types, and objectives. Our anal-
ysis reveals the increasing adoption of advanced RL methods like
Deep Q-Network (DQN) and Proximal Policy Optimization (PPO)
to handle the complexities of HFS, often achieving superior per-
formance compared to metaheuristics and scheduling heuristics.
Furthermore, we explore the trend of integrating RL with other
optimization techniques and discuss the potential for real-world
applications, model interpretability, and the consideration of addi-
tional constraints and uncertainties. This review provides valuable
insights into the current state and future directions in HFS using
RL.

CCS Concepts
• Computing methodologies→ Artificial intelligence; • Plan-
ning and scheduling→ Planning for deterministic actions.

Keywords
Reinforcement Learning, Hybrid Flow Shop, Scheduling

ACM Reference Format:
Victor Ulisses Pugliese, Oséias Faria de Arruda Ferreira, and Fabio A. Faria.
2025. Hybrid Flow Shop Scheduling through Reinforcement Learning: A
systematic literature review. In The 40th ACM/SIGAPP Symposium on Applied
Computing (SAC ’25), March 31-April 4, 2025, Catania, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3672608.3707903

∗Currently, Dr. Fabio A. Faria is an assistant professor at the Instituto Superior Tecnico
and Collaborator Researcher at the Universidade Federal de São Paulo (UNIFESP).

This work is licensed under a Creative Commons Attribution 4.0 International License.
SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03
https://doi.org/10.1145/3672608.3707903

1 Introduction
Smart Manufacturing has revolutionized the productive sector sce-
nario, aligning itself with the principles of the Fourth Industrial
Revolution, also known as Industry 4.0. Market dynamics played a
key role, urging companies to shift from traditional production lines
to more dynamic and flexible systems. This revolution is leveraging
advances in cyber-physical systems, the Internet of Things (IoT),
artificial intelligence (AI), and machine learning (ML) areas [29, 34].

Despite the wide range of opportunities in these areas, imple-
menting robust and complex programming solutions often requires
attention in real-world production environments.

In a production environment, the items being produced, called
jobs, can typically be broken down into multiple tasks. Each task
represents a small unit of work with constraints (e.g., raw materials,
subassemblies, machinery, equipment, conveyors, and operators),
most notably its required processing time. Scheduling determines
when each task and on which resources will be processed at that
time [6]

Scheduling tasks are often performed manually, documented in
data sheets, or managed through limited software systems [12]. To
address this challenge, scheduling heuristic and numerical optimiza-
tion emerge as potential solutions, each with unique advantages
and constraints [5].

Scheduling heuristics such as ’Early Due Date’ (EDD), which
prioritizes items based on the earliest due date, provides an efficient
decision-making process for situations with high initial inventory
and no tardiness. However, they may be inefficient when dealing
with problems involving longer time horizons and lower initial
stock levels [43]. On the other hand, numerical optimization meth-
ods find demonstrably optimal solutions, but their application is
more complex as the production environment, and objectives need
to be described mathematically in detail and then solved numeri-
cally [1]

The scheduling environment is a sociotechnical system compris-
ing numerous interconnected components (e.g., weather, worker be-
havior, tools, machines, supply chain, spatial arrangement, buffers,
and jobs) with stochastic behavior, such as fluctuations in worker
productivity. Therefore, the interconnectivity and mutual influ-
ence among those components introduce additional complexity
layers, manifesting in explicit relationships (machine-tool) and less
apparent connections (weather-process parameters). As a result,
manually constructing an accurate mathematical model proves
challenging due to these complexities [5].

Flow shop scheduling problem (FSP) is a scheduling problem
class wherein all tasks follow the same processing sequence across

1240

https://orcid.org/0000-0001-8033-6679
https://orcid.org/0000-0003-2956-6326
https://doi.org/10.1145/3672608.3707903
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3672608.3707903
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672608.3707903&domain=pdf&date_stamp=2025-05-14

SAC ’25, March 31-April 4, 2025, Catania, Italy V. U. Pugliese et al.

a set of machines. It is a typical combinatorial optimization prob-
lem, categorized as NP-hard, and widely applied to production and
service systems. Also, there is an extent concept called the hybrid
flow shop scheduling problem (HFS), which it involves multiple
parallel machines per stage, making this problem even more chal-
lenging [40, 53]

Reinforcement Learning (RL) is a paradigm that continuously
learns and adjusts to its environment through exploitation and
exploration. It is well-suited for sequential decision-making across
gaming, robotics, and control systems [10] such as scheduling prob-
lems.

The introduction of RL methods for solving scheduling prob-
lems in manufacturing has shown promising results in terms of
minimization of makespan [33], total tardiness [22], processing
time of workpieces [60], and energy consumption [51] including
better solutions than heuristic and metaheuristic [47]. In addition,
RL does not require an explicit environment model, so the agent
learns to make decisions by observing the rewards of its actions
from a state [67]. Finally, it is well-suited when dealing with com-
plex, unstructured, and uncertain tasks, whereas metaheuristics
may encounter big challenges to overcome those scenarios [59].

To the best of our knowledge, we have not found works in the
literature that address a review of RL methods for the HFS. In
this regard, our efforts have identified only sixteen articles in the
literature, with most studies focusing on sequential, discrete, and
deterministic environments.

This work is organized as follows: The next section 2 briefly
describes Hybrid Production Flow Shop Scheduling, including its
types and goals, six reinforcement learning methods, thirteen meta-
heuristics, and a set of scheduling heuristics. Section 3 describes our
methodology. Section 4 presents the research results and explores
related work. Section 5 discusses related work and answers the re-
search questions. The main findings and conclusions are presented
in Section 6.

2 Background
This section briefly introduces the main definitions and concepts
related to the areas of HFS (Section 2.1), RL (Section 2.2), and meta-
heuristics (Section 2.3), and Scheduling Heuristic (Section 2.4) ad-
dressed in this review.

2.1 Hybrid Flow Shop Scheduling
Flow Shop Scheduling (FSP) is a classic problem in manufacturing
systems, involving the sequencing jobs throughmultiple production
stages with the same machine order. This combinatorial problem
is NP-hard, indicating the lack of known algorithms that provide
polynomial-time solutions for all instances. Consequently, vari-
ous authors have proposed approximation solutions to tackle this
complexity [21, 65].

Companies have adopted strategies to increase production capac-
ity and optimize specific objective functions to meet the growing
demand for customized products in various industrial sectors. One
of these strategies involves the integration of multiple parallel ma-
chines within a production stage, a concept known as Hybrid Flow
Shop Scheduling (HFS) [21].

Based on our research in selected papers, we found these types
of HFS as listed below.

(1) HFS: The most basic form of HFS.
(2) Hybrid Flow Shop on Batch Processing Machines (HFS-BPM)

is a scheduling problem where jobs are processed in batches
and must go through multiple stages with both batch pro-
cessing and single-item processing machines [54].

(3) Hybrid Flow Shop with Learning and Forgetting effects (HFS-
LF) is a scheduling problem where worker experience affects
task durations. Learning decreases processing times, while
forgetting or interrupting increases them [55].

(4) Multi-stage Hybrid Flow Shop (MHFS) is a scheduling prob-
lem where jobs are scheduled across multiple stages, and
machines within each stage can undergo condition-based
maintenance [36].

(5) Two-StageHybrid Flow Shop (THFS) is about finding the best
way to schedule jobs on machines in a two-stage production
system with special rules and limitations [17].

(6) Distributed Two-Stage Hybrid Flow Shop (DTHFS) is a sched-
uling problem of organizing tasks across multiple factories,
each factory with two-stage production [69]

(7) Re-entrant Hybrid Flow Shop (RHFS) is scheduling multiple
jobs on parallel machines, with some jobs needing to revisit
machines [11]

(8) Dynamic Re-entrant Hybrid Flow Shop (DRHFS) is a sched-
uling problem in a hybrid flow shop where jobs revisit stages
and unexpected events disrupt production [49]

(9) Distributed Hybrid Flow Shop (DHFS) is a scheduling prob-
lem with multiple factories, each having several stages with
multiple machines [2].

(10) Distributed Assembly Hybrid Flow Shop (DAHFS) is a sched-
uling problem involving multiple factories and assembly
operations [38].

(11) Distributed Assembly Hybrid Flow Shop with Flexible Pre-
ventiveMaintenance (DAHFS-FPM) is an approach for sched-
uling tasks in a distributed assembly line, taking into account
machine wear and tear and the need for maintenance [48].

(12) Distributed Blocking Hybrid Flow Shop (DBHFS) is a sched-
uling problem in multiple factories’ production with limited
buffer space [20].

(13) Distributed Heterogeneous Hybrid Flow Shop Scheduling
(DHHFS) is scheduling jobs with different priorities across
multiple, unique factories, each having several production
stages with various machines that can work in parallel.

(14) Distributed Hybrid Flow Shop with Multiprocessor Tasks
(DHFS-MT) is when multiple factories work together to com-
plete tasks with multiple parts [56].

(15) Energy-Aware Distributed Hybrid Flow Shop (EADHFS) is
scheduling jobs in a distributed manufacturing system with
hybrid flow shops to minimize both production time and
energy use [68].

(16) Fuzzy Distributed Hybrid Flow Shop Considering On-Time-
Delivery (FDHFS-OTD) is a scheduling problem in multiple
factories, balancing speed, energy consumption, and on-time
delivery [31].

1241

Hybrid Flow Shop Scheduling through Reinforcement Learning SAC ’25, March 31-April 4, 2025, Catania, Italy

The list below provides an overview of the objective functions
that we found in our research.
• Minimization of Makespan: This refers to the total time it
takes to complete all jobs in a given schedule. It is essentially
the duration from the start of the first job to the finish of the
last job in the schedule [17].
• Minimization of Total Tardiness: It measures the accumu-
lated delay of jobs that are completed after their due date [17].
• Minimization of Processing Time of Workpieces: It aims to
schedule and assign workpieces to machines in a way that
reduces the total time required to complete all theworkpieces
[60].
• Minimization of Energy Consumption: Reduces energy con-
sumption without compromising production efficiency [20].
• Minimization of Total Production Cost: It means finding
ways to reduce both the expenses associated with production
delays and the costs of maintaining the machines used in
the process [36].
• Minimization of Fuzzy Makespan: It is similar to makespan,
but it considers the reality where processing times can be
uncertain due to factors like machine wear, operator skill,
and variations in materials [31].
• Delivery Accuracy: It is calculated using the similarity be-
tween the measures of makespan and due dates. A higher
value indicates a greater degree of overlap and thus better
delivery accuracy [31].
• Penalties for exceeding due dates: It penalizes late deliveries,
calculating the difference between completion time and due
date, and applying penalty cost per unit of time [3].

2.2 Reinforcement Learning Methods
Reinforcement Learning (RL) addresses the problem of automati-
cally learning optimal decisions over time. Despite that uses well-
established supervised learning methods such as deep neural net-
works for function approximation, stochastic gradient descent (SGD),
and backpropagation, RL applies them differently with no supervi-
sor through a reward signal, and the delayed feedback [63]. There-
fore, an RL agent receives dynamic states from an environment
and performs actions that aim to obtain maximum rewards in
trial-and-error interactions. Thus, the agent learns behavior from
data [32]. [67] model the RL cycle similar to a Markov Decision Pro-
cess (MDP), as shown in Figure 1. In Figure 1, the agent and

Figure 1: RL cycle

environment interact at each discrete time step of a sequence,
𝑡 = 0, 1, 2, 3, · · · . At each time step 𝑡 , the agent receives some repre-
sentation of the environment’s state 𝑠𝑡 ∈ 𝑆 , where 𝑆 is the set of
possible states and the action is 𝑎𝑡 ∈ 𝐴(𝑠𝑡), where 𝐴(𝑠𝑡) is the set
of actions available in state st. At time 𝑡 + 1, as a consequence of its

actions, the agent receives a numerical reward 𝑟𝑡+1 ∈ 𝑅 and finds
itself in a new state 𝑠𝑡+1 [67].

At each time step, the agent implements a mapping from state
to probabilities of each possible action. This mapping is called the
agent’s policy and is denoted as 𝜋𝑡 , where 𝜋𝑡 (𝑠, 𝑎) is the probability
that 𝑎𝑡 = 𝑎 if 𝑠𝑡 = 𝑠 . Reinforcement learning methods specify how
the agent changes policy due to experience. The agent aims to
maximize the total reward received over the long run [67].

2.2.1 Q-learning. Q-learning is an RL method that implements a
mapping in a Q-table from state to probabilities of each possible
action, aiming to maximize future rewards. Notably, it does not
require prior knowledge about the dynamics of the environment.
Q-learning is an off-policy algorithm that allows one to learn from
experiences, even when the current policy is suboptimal [45].

The equation mentioned in [67] essentially updates the Q-value
for the current state-action pair (𝑆𝑡 , 𝐴𝑡) based on the immediate
reward 𝑅𝑡+1 and the estimated maximum future cumulative reward.
The update is a weighted sum of the current estimate and the new
information, where the learning rate 𝛼 determines the weights and
𝛾 is the discount factor, a constant between 0 and 1 that represents
the importance of future rewards. The goal is to iteratively improve
the Q-values over time through experience and learning from the
consequences of different actions in different states. This process
helps the agent learn a policy that maximizes cumulative rewards
over time.

𝑄 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡)

+ 𝛼
[
𝑅𝑡+1 + 𝛾 max

𝑎
𝑄 (𝑆𝑡+1, 𝑎) −𝑄 (𝑆𝑡 , 𝐴𝑡)

] (1)

It solves the issue of iteration over the full set of states, but still
can struggle with situations when the count of the observable set
of states is very large [63].

2.2.2 State-Action-Reward-State-Action (SARSA). SARSA is an on-
policy reinforcement learning algorithm used to train a MDP model
on a new policy. It operates by taking actions based on rewards re-
ceived from previous actions, storing a table of state-action estimate
pairs for each Q-value, known as a Q-table [67].

What sets SARSA apart is that it’s an “on-policy" algorithm. This
means it learns based on the actual actions it takes, following a
specific policy or strategy. It’s like a student learning from their
own experiences rather than just watching others. This makes
SARSA a cautious learner, preferring safe and reliable actions over
potentially risky ones with higher rewards [71].

2.2.3 Deep Q-Network (DQN). DQN is a variation of Q-learning
that employs Deep Neural Networks. The method has been suc-
cessfully applied to Atari 2600 games. It estimates 𝑄 functions as
the expected value of future rewards when performing a certain
action in a specific state. For example, the network inputs several
game frames in Atari and calculates state values for each action [44].
To stabilize training, DQN employs replay memory and a target
network.

Replay memory randomly samples past transitions to smooth the
training distribution, reducing the correlation between consecutive
experiments. A target network, a copy of the main network, stabi-
lizes training by calculating Q values for the next state, preventing
fluctuations in Q values due to constant weight updates [44].

1242

SAC ’25, March 31-April 4, 2025, Catania, Italy V. U. Pugliese et al.

Furthermore, it uses a 𝜖-greedy method, randomly exploring
some actions while mostly sticking to the best-known action, grad-
ually learning the best way to win through exploration and ex-
ploitation [44].

2.2.4 Proximal Policy Optimization (PPO). PPO uses the actor-critic
and trains a policy in an on-policy way, meaning it samples actions
based on the latest policy iteration [26]. In this way, two neural
networks play the "actor" and "critic" roles. The "actor" learns the
policy, while the "critic" estimates the value of the action value
function (or advantage) that is used to train the "actor"

The training process also involves computing future rewards
and advantage estimates to refine the policy and adjust the value
function. It is updated using a stochastic gradient ascent optimizer,
while the value function is optimized through a gradient descent
algorithm as outlined in [61].

The degree of randomness in action selection is contingent upon
the initial conditions and the training procedure. Typically, as train-
ing progresses, the policy becomes less random due to an updated
rule that encourages exploration of previously discovered rewards
[64].

2.2.5 Advantage Actor-Critic (A2C). A2C, often perceived as a dis-
tinct algorithm, is revealed in “A2C is a special case of PPO" as a
specific configuration of Proximal Policy Optimization (PPO) oper-
ating within the actor-critic approach. A2C shares similarities with
PPO in employing separate neural networks for policy selection
(actor) and value estimation (critic). Its core objective aligns with
PPO when the latter’s update epochs are set to 1, effectively remov-
ing the clipping mechanism and streamlining the learning process
[42].

A2C is a synchronous adaptation of the Asynchronous Actor-
Critic (A3C) policy gradient approach. It operates deterministically,
waiting for every actor to complete its experience segment before
initiating updates, averaging across all actors. This strategy en-
hances GPU utilization by accommodating larger batch sizes [46].

2.2.6 REward Increment = Nonnegative Factor × Offset Reinforce-
ment × Characteristic Eligibility (REINFORCE). REINFORCE is a
fundamental algorithm in reinforcement learning based on Monte
Carlo that directly optimizes an agent’s policy. It operates by esti-
mating the gradient of the expected return concerning the policy
parameters using samples collected from the environment. These
samples typically consist of trajectories, which are sequences of
states, actions, and rewards experienced by the agent. The key
idea is to increase the probability of actions that lead to higher
rewards and decrease the probability of actions that lead to lower
rewards. REINFORCE achieves this by adjusting the policy parame-
ters toward the estimated gradient. The algorithm is known for its
simplicity and effectiveness, making it a popular choice for various
reinforcement learning tasks. [27, 67].

2.3 Metaheuristic
Our literature review found benchmark papers usingmetaheuristics
and RL to handle HFS. Some authors combine both methods, as
described in this paper [69]

2.3.1 Artificial Bee Colony (ABC). is inspired by honey bees’ for-
aging behavior. Employed bees search for solutions, while onlooker
bees choose solutions based on their fitness. Scouts randomly ex-
plore new solutions [70].

2.3.2 Artificial Immune Systems (AIS). is inspired by the human
immune system. It uses techniques like clonal selection and negative
selection to mimic learning and adaptation, enabling it to solve
complex problems effectively [15].

2.3.3 Cooperative Memetic Algorithm (CMA). combines evolution-
ary algorithms and local search. It uses a population of solutions
that compete and undergo refinement to find near-optimal solutions
for complex problems [24].

2.3.4 Cuckoo Optimization Algorithm (COA). is inspired by cuck-
oos laying eggs in other birds’ nests. It represents solutions as
habitats and eggs, with eggs surviving based on their similarity to
host eggs. It quickly finds good solutions but is limited to continu-
ous optimization [18].

2.3.5 Genetic Algorithms (GAs). are inspired by natural selection.
They evolve a population of solutions through processes like muta-
tion and alteration to find improved outcomes [28].

2.3.6 Iterated Greedy (IG). is a search method that repeatedly de-
stroys and reconstructs solutions. Unlike other algorithms, it only
yields one solution per iteration [20, 66].

2.3.7 Migrating Birds Optimization (MBO). is inspired by migrat-
ing birds’ V-formation. It uses a leader-follower structure and infor-
mation sharing to efficiently explore and find high-quality solutions
for complex problems [14].

2.3.8 Multiobjective Evolutionary Algorithms (MOEAs). solve prob-
lems with multiple conflicting objectives. They evolve a population
of solutions using selection, reproduction, and population updating
to find a set of Pareto optimal solutions [8, 8].

2.3.9 Multi-populationmemetic algorithms (MPMA). combine global
and local search using multiple subpopulations. They excel in solv-
ing complex problems with multiple peaks and variables by sharing
knowledge between subpopulations [4, 7].

2.3.10 Particle SwarmOptimization (PSO). is inspired by bird flocks’
social behavior. Particles in PSO adjust their positions based on
their own and the swarm’s best-found locations to find optimal
solutions [19].

2.3.11 Shuffled Frog Leaping Algorithm (SFLA). combines memetic
and particle swarm optimization. It uses a population of virtual frogs
that search for solutions through population division, memeplex
search, and shuffling [9, 23].

2.3.12 Teaching-Learning-Based Optimization (TLBO). is inspired
by classroom learning. It uses teaching and learning phases to
optimize an objective function [13, 41].

2.3.13 Variable Neighborhood Search (VNS). explores the solution
space by systematically changing neighborhoods. It starts with an
initial solution and moves to different neighborhoods to avoid local
optima [19].

1243

Hybrid Flow Shop Scheduling through Reinforcement Learning SAC ’25, March 31-April 4, 2025, Catania, Italy

2.4 Scheduling Heuristics
It is also possible to apply scheduling heuristics such as Shortest
Processing Time (SPT) which selects the task with the shortest
processing time to run first; Longest Processing Time (LPT) which
chooses the job with the longest processing time to run first; First
Come, First Served (FCFS) which selects tasks in order of arrival,
Nawaz-Enscore-Ham (NEH) which works by iteratively inserting
jobs into a partial schedule to minimize the makespan; Shortest
Remaining Time (SRT) which prioritizes the task with the shortest
remaining processing time [16, 47]; Family Production Tatic which
groups jobs by family to reduce setup times [17]; Proximity-first
assigns tasks to the closest available resource; First-In-First-Out
(FIFO) processes tasks in the order they are received; Process-first
prioritizes completing a single task from start to finish before mov-
ing on to the next [57]; Most Work Remaining (MWKR) is to tackle
the longest jobs first; and Least Work Remaining (LWKR) is to
complete as many jobs as possible quickly [52].

3 Methodology
Although we have identified previous reviews such as [37] and [40]
that conducted extensive studies on the HFS problem, none of them
included the use of RL for this type of scheduling problem. [37]
studied works published between 2010 and 2019, while [40] describe
works published until 2010. According to our study, the first work
about RL for scheduling is from 2019 with [60]. We extensively ana-
lyzed papers that employ RL methods to address challenges in HFS
problems. Therefore, this section provides an overview of the liter-
ature review from January/2019 to April/2024, focusing on recent
and significant contributions to the application of RL to the HFS
problem. The following subsections, namely 3.3, 3.1, and 3.2 delve
into the research questions, search strings, and inclusion/exclusion
criteria for papers, respectively, adopted to carry out the review.

3.1 Research Questions
The research protocol was defined to return works that employ
RL in HFS problem to have a state-of-the-art view of the topic and
answer the following research questions (RQ): RQ1: Trends and
statistics: when and where were studies published?; RQ2: What
RL methods have already been used in the literature? RQ3: How
were RL methods evaluated in the literature?; and RQ4: Is any
improvement gained from using RL over HFS?

3.2 Search strings
Once the objective was established, the research protocol was
followed by selecting paper searchers across relevant scientific
databases and determining the keywords for the search string. We
chose these three digital libraries: IEEE1, Scopus2, and Web of Sci-
ence3.

We employed the search keywords “flow", “shop", “reinforce-
ment", and “learning" to retrieve relevant papers from digital li-
braries. This targeted search produced 371 results, meticulously

1IEEE https://ieeexplore.ieee.org
2Scopus https://www.scopus.com
3Web of Science http://webofknowledge.com/WOS

gathered in BibTeX format across diverse areas of study to guar-
antee comprehensive coverage and avoid overlooking pertinent
papers.

3.3 Search criteria and inclusion/exclusion of
articles

In the process of selecting articles, we employed a Python script that
followed specific criteria to filter the works from the initial search
results in BibTeX format. First, duplicate entries were eliminated.
Then, for an article to be considered, its title, abstract, or keywords
had to include all the tokens from the search string, which encom-
passed terms like "Hybrid," "DQN," "PPO," and "A2C." Additionally,
only papers published from 2019 onward, marking the first year re-
inforcement learning was applied in Hybrid Flow Shop Scheduling
(HFS), were included in the final selection.

To select the relevant papers, we manually reviewed the content
of each returned result and applied specific inclusion criteria. Only
papers that were available for download, addressed Hybrid Flow
Shop (HFS) and its variations, and were written in English were
included in the final selection.

Finally, from a total of 371 papers that were initially identified, af-
ter applying the inclusion and exclusion criteria, 26 papers emerged
for in-depth analysis.

4 Research Findings
This section thoroughly reviews the literature found using our
search method adopted for this work. Section 4.1 provides useful
statistics about the papers we selected, while Section 4.2 summa-
rizes the papers chosen.

4.1 Overview and Statistics
This subsection discusses statistics on the selected papers during
the systematic review.

RL for the HFS problem emerged in 2019 with the publication
of [60]. Since then, interest in this approach has steadily grown,
with 1 publication in 2020 [58], 3 in 2021 [16, 20, 68], 5 in 2022,
and a significant increase to 11 in 2023 [23, 25, 30, 31, 36, 39, 48–
50, 54, 56]. In 2024, 5 publications have already appeared until May
[2, 3, 11, 52, 55]. No individual journal has dedicated more than two
papers to this topic.

HFS papers have predominantly focused on common objective
functions. Among these, 17 papers prioritize the minimization of
makespan [2, 11, 16, 17, 23, 30, 31, 48–50, 52, 54–57, 68, 69], 6 aim
at minimizing total tardiness [17, 25, 35, 39, 47, 49], another 7 tar-
get energy consumption reduction [2, 3, 20, 30, 31, 39, 68], and 2
focus on minimizing the processing time of workpieces [58, 60].
Additionally, 6 papers explore other objectives [3, 31, 36, 49, 50, 60].
Notably, 8 studies adopt a multi-objective approach, addressing two
or more of these criteria simultaneously [2, 3, 17, 30, 31, 39, 49, 50].

Reinforcement Learning (RL) methods demonstrate considerable
diversity. Among the reviewed articles, 13 employed Q-learning [2,
20, 23, 30, 31, 36, 47, 48, 55, 56, 58, 60, 69], 7 DQN [11, 25, 35, 36,
39, 47, 57], 5 PPO [16, 49, 50, 52, 57], and 1 each A2C [17], REIN-
FORCE [68], and SARSA [3]. Furthermore, 2 papers used other
RL approaches [36, 54]. Regarding the agent structure, 7 studies

1244

https://ieeexplore.ieee.org
https://www.scopus.com
http://webofknowledge.com/WOS

SAC ’25, March 31-April 4, 2025, Catania, Italy V. U. Pugliese et al.

used multi-agent [11, 17, 35, 36, 49, 50, 52], while 19 focused on
single-agent.

4.2 Summary of selected papers
In 2019, Han et al. [60] pioneered RL in HFS. The researchers treated
HFS as MDP, where the state represents the current stage and work-
piece, and actions involve selecting machines. Han et al. compared
the performance of Q-learning to a GA and an AIS in two con-
figurations: automotive engines and aircraft carriers, where the
Q-learning outperformed its counterparts and minimized the pro-
cessing time of workpieces. It also achieves satisfactory real-time
performance in deterministic initial sequence HFS through the
application in this paper

Guo et al. [58] also showed that Q-learning works better than
GA. Their goal was to minimize the processing time of workpieces
in steel production. Thus, they modeled the state as a tuple (piece,
workpiece), an action as the machines in the next state, and a pro-
duction process with four sequential stages (steelmaking, refining,
casting, and rolling) as HFS. Both results obtained by these pa-
pers are not necessarily optimal, but they provided some reference
for HFS compared with manual scheduling and some intelligent
algorithms scheduling.

In other studies, Reinforcement Learning methods were com-
bined with Neural Networks. For instance, Wang et al. [47] im-
plemented DQN based on classical scheduling rules to handle dy-
namic order arrivals in an HFS simulated environment. To min-
imize total tardiness, a set of seven standardized state features,
ranging between 0 and 1, is employed to represent the status of
each rescheduling point. They also defined the action space for
selecting the priority processing job according to the scheduling
rules. Comprehensive numerical experiments are conducted across
various production environments. Wang et al. found advantages in
using DQN and Q-learning over simple scheduling rules such as
FCFS, SRT, EDD, SPT, and LPT.

Gil and Lee [57] redesigned the material scheduling in HFS with
many machines, considering real-world constraints, such as the
dynamic location of the Robotic Transfer Unit (RTU) responsible
for material transportation, which impacts scheduling decisions.
Moreover, grouping machines in this RL application has mitigated
the challenge of dealing with high-dimensional spaces by using
mass machines in unmanned lines. The study introduced a reward
prediction technique to minimize the time gap between actions
and rewards to enhance learning. They used the PPO method to
minimize makespan, and its performance is better than DQN and
Proximity-First, FIFO, and Process-First scheduling rules.

Ni et al. [16] present a Reinforcement Learning algorithm de-
signed for large-scale HFS from a multi-graph perspective. This
approach showcases efficiency in policy search and impressive gen-
eralization across diverse problem distributions and scales. The
algorithm’s efficacy was demonstrated through training the PPO
method using Huawei’s supply chain data, focusing on minimizing
makespan. The results were superior to NEH, IG, and a Bilevel Deep
Reinforcement Learning Scheduler (BDS). The BDS operates with a
two-tier structure, where the upper level explores an initial global
sequence, and the lower level refines partial sequences through

exploitation, employing a sliding window sampling mechanism to
connect both levels.

Gerpott et al. [17] implemented A2C to train multiple agents to
schedule jobs in THFS with family-dependent setup times, search-
ing to minimize total tardiness and makespan as multiobjective
optimization. It performed better than conventional scheduling
heuristics like EDD and Family Production in an OpenAI Gym
discrete event simulator.

Wang et al. [35] also deals with THFS, where jobs arrive dy-
namically, and machines can process jobs in batches, proposing a
novel approach called MA-IDDQN, which leverages multi-agent
reinforcement learning with independent double DQN. The system
is designed with two agents, one for batch forming and another
for scheduling, aiming to minimize total tardiness in a simulated
environment. A key innovation was including a "waiting" action
in the batch forming agent’s policy, allowing for improved batch
utilization and reduced processing times. Thus, the cooperative en-
vironment and multi-agent analysis for joint optimization improved
performance, and MA-IDDQN achieved better than heuristics (e.g.,
EDD, SPT, FIFO), DDQN, and MA-IDDQN variations.

Xi and Lei [69] addressed the DTHFS with uncertain process-
ing times and sequence-dependent setup time. They proposed a
novel approach called Q-learning-based teaching-learning optimiza-
tion (QTLBO), combining the strengths of TLBO and Q-learning.
QTLBO employs four distinct phases, teacher, learner, teacher’s
self-learning, and learner’s self-learning, to efficiently explore the
solution space. The integration of Q-learning dynamically adjusts
the algorithm’s structure, enhancing its ability to find optimal so-
lutions. Through experiments, QTLBO performs better than meta-
heuristics such as TLBO, ABC, IG in minimizing makespan. This
research offers valuable insights into integrating reinforcement
learning with metaheuristics for tackling scheduling problems with
uncertainty in distributed manufacturing environments.

Liu et al. produced two scientific papers [49, 50] on HFS, con-
sidering the presence of multi-skilled workers and their fatigue
states.

The first work [50] focused on HFS, using multiple processing
stages with parallel machines, require assignment of multi-skilled
workers who experience fatigue. The authors developed an agent-
based simulation system combining GA and PPO to handle the
uncertainty introduced by worker fatigue. The GA optimizes job
sequencing and machine selection, while the PPO focuses on as-
signing workers to tasks efficiently, considering their fatigue levels
and skill sets.

The second work [49] focused on DRHFS with unforeseen events
like new job arrivals, machine breakdowns, and worker unavail-
ability to disrupt production plans, aims to minimize tardiness.
Thus, they employed PPO agents, representing machines, workers,
jobs, and stages, which collaborate and negotiate to respond to
disruptions and maintain production flow. Two RL methods were
developed to address specific sub-problems: one for job sequencing
and machine selection, utilizing a reward function that balances
long-term and short-term goals, and another for worker assign-
ment, employing an attention-based neural network to efficiently
extract relevant features and make informed decisions.

1245

Hybrid Flow Shop Scheduling through Reinforcement Learning SAC ’25, March 31-April 4, 2025, Catania, Italy

In both papers [49, 50], PPO outperforms other algorithms like
GA and SRPT, EDD, SPT, Minimum Fatigue, and Earliest Available
Worker to minimize makespan.

Gholami and Sun [56] investigate the DHFS-MT aiming to mini-
mize makespan among the factories. The paper introduces a novel
framework called Conditional Markov Chain Search (CMCS) to au-
tomate the design of heuristic algorithms, eliminating the need for
manual parameter tuning. The study proposes two new concepts,
"weight" and "impact," to assess job resource usage and influence
at different stages, enabling intelligent load balancing between
factories. By formulating HFS-MT as a Markov Decision Process
(MDP) and employing a hybrid Q-learning-local search approach,
the CMCS effectively schedules jobs within each factory. Exper-
iments on benchmark instances demonstrate the superiority of
CMCS over IG and SFLA variations, achieving significant improve-
ments in makespan reduction and solution quality

Qin et al. [20] propose a Q-Learning-based IG metaheuristic
(IGQs) in a DBHFS. The IGQ aims to minimize energy consump-
tion by efficiently allocating jobs to factories and determining their
processing order while considering blocking constraints (limita-
tions due to limited buffer space between stages). They detail the
model of the DBHFS and the design of the IGQ algorithm, including
initialization with NEH Heuristic, global search, local search, and
the Q-learning selection mechanism. The results demonstrate the
effectiveness of IGQ in reducing energy consumption compared to
metaheuristics such as ABC, IG, PSO, MBO, and GA variations.

Wang andWang [68] are also concerned about energy awareness,
addressing the challenge of EADHFS, aiming to minimize makespan
and energy consumption. They propose a novel approach using a
CMAwith a RL-based policy agent. The CMA incorporates problem-
specific heuristics for initialization, a policy network trained by
REINFORCE to guide operator selection, and a solution selection
method based on decomposition. Additionally, local intensification
and energy-saving strategies are employed to further enhance the
algorithm’s performance, and it showed the best results compared
to CMA using Random Selection, SFLA or GA variations.

Cai et al. [23] introduced QSFLA, a novel algorithm that merges
the strengths of the SFLA metaheuristic with the adaptive learning
capabilities of Q-learning to solve DAHFS with fabrication, trans-
portation, and assembly, minimizing makespan. By dynamically
selecting the most suitable search strategy based on the current
population’s state, QSFLA effectively explores the solution space
while maintaining a balance between exploration and exploitation.
This integration of reinforcement learning empowers QSFLA to
achieve superior performance compared to SFLA CMA, and vari-
ants of PSO, VNS, and COA, as demonstrated through extensive
computational experiments and a real-life case study in a furniture
company.

Cai and Wong [2] published a new paper, employing the QSFLA
to minimize the makespan and energy consumption in DHFS this
time. The Q-learning algorithm dynamically chooses the most ef-
fective search strategy based on the current state of the population,
leading to improved convergence and uniformity of solutions. QS-
FLA outperforms GA and QSFLA variants, making it a competitive
method for solving this complex scheduling problem

Jai et al [48] addressed the DAHFS-FPM, focusing on a three-
stage assembly process with the added complexities of machine

deterioration and the need for preventive maintenance. This re-
search establishes a mathematical model for it and introduces flexi-
ble preventive maintenance strategies to minimize makespan. They
employed a MPMA combined with Q-learning (MPMA-QL) which
divides the population into subpopulations, each employing dis-
tinct crossover strategies to maintain diversity and avoid local
optima. Furthermore, Q-learning is used to dynamically adjust
the number of individuals within each subpopulation, leading to
more efficient information exchange and improved problem-solving
capabilities. Experimentation demonstrated that MPMA-QL out-
performs MPMA, SFLA, and ABC, including their reinforcement
learning variations.

Luo et al [54] proposes a RL approach utilizing actor-critic tech-
niques to solve a production scheduling problem within the In-
dustrial Internet of Things context. Specifically, it addresses the
HFS-BPM tominimize makespan and the process involves determin-
ing machine allocation, processing start times, and job completion
times, enabling flexible manufacturing. The proposed approach
is evaluated on the publicly available dataset and real steel plant
production dataset from Nanjing Iron and Steel Co., Ltd. (NISCO).
It performs better than existing baselines such as FIFO, LPT, SPT,
ABC, GA on both datasets, resulting in a minimized makespan. The
paper does not mention the name of RL actor-critic method.

Luo et al [25] employed an HFS with unrelated parallel machines
with dynamically arrived jobs, using online scheduling based on
DQN and scheduling rules to minimize total tardiness. The DQN
learns to select the best scheduling rule based on the current state of
the production environment, which is represented by seven features
such as machine utilization and job completion rates. The paper
also presents the experimental results showing the effectiveness of
the DQN algorithm compared to classic scheduling rules such as
SPT, FCFS, and EDD under different production scenarios.

Li et al. [39] addressed the DHHFS with multiple priorities of
jobs, aiming to minimize tardiness and energy consumption si-
multaneously. They proposed a solution (D2QCE) combining a
co-evolutionary algorithm with a double DQN to balance computa-
tional resources between global and local searches, incorporating
problem-specific knowledge to improve convergence and using this
DQN variation to select the best scheduling operators intelligently.
The D2QCE outperforms the mainstream MOEAs algorithms, mak-
ing it a valuable tool for real-world manufacturing scenarios.

Lin et al. [11] solved the RHFS in an automated material handling
system using two DQN agents. The problem involves scheduling
jobs in amanufacturing environment where jobsmay need to revisit
specific workstations multiple times, including temporary storage
areas called stockers, used to manage work-in-process inventory.
DQN1 selects the machine for the next job, and DQN2 selects the
next job for processing. Simulation results showed that both DQN
approaches outperform metaheuristics like GA and PSO, especially
for large-scale problems. The study emphasizes the potential of RL
for solving complex scheduling problems in smart factories and
highlights the impact of stocker placement on makespan.

Cui and Yuan [3] focused on energy-aware production sched-
uling in the photovoltaic glass industry, whose layout is an HFS
with batch and non-batch machines. Their goals were minimized
energy consumption and penalties for exceeding due dates. They
proposed a hybrid GA enhanced by reinforcement learning design,

1246

SAC ’25, March 31-April 4, 2025, Catania, Italy V. U. Pugliese et al.

in which expected Sarsa is used to extract critical knowledge about
algorithmic parameters during the population evolution to guide
the exploration of the GA. The chromosome is encoded by a priority
list representing the priority relationship among all jobs, which
is then decoded by a constructive heuristic based on the problem
feature analysis. The results were greater than other metaheuristics
like GA and PSO.

Zhang el al. [55] tackle the complex challenge of scheduling tasks
in an HFS-LF, where both employee learning and forgetting impact
production efficiency. They introduce two models for learning and
forgetting, incorporating sequential setup times. The proposed so-
lution, called Meta-Reinforcement Learning-based Metaheuristic
(MRLM), aims tominimizemakespan by initially creating a schedule
using a NEH heuristic and then refining it with various search oper-
ators. MRLM’s distinctive feature is its adaptive search framework,
which involves a meta-training phase to learn about operator selec-
tion and a Q-learning-driven search phase to dynamically choose
operators based on feedback from previous searches. It outperforms
metaheuristics like IG, CSA, PSO, ABC, VNIS variations.

Deng et al. [31] introduce a novel approach called 3D-EDA/RL to
solve an FDHFS-ODT, where multiple factories collaborate to com-
plete orders whileminimizing energy consumption fuzzymakespan,
and delivery accuracy. 3D-EDA is a three-dimensional matrix where
X and Y axes represent the jobs, Z is the factories, and Value is the
probability of a job being assigned to a specific factory and the
likelihood of it being processed before another job at the same
stage within that factory. This method addresses the uncertainties
inherent in real-world manufacturing by representing processing
times as fuzzy numbers and measuring delivery accuracy using
fuzzy relative entropy. The algorithm incorporates several innova-
tive techniques, including hybrid initialization, a 3-D probability
matrix to guide offspring generation, and an adaptive biased decod-
ing mechanism based on Q-learning. The 3D-EDA/RL achieved the
best results compared to GA, CMA, and MOEAs variations.

Xu et al. [30] focus on optimizing production processes, and
minimize makespan and energy consumption in a steel manufac-
turing setting, where machine congestion and transportation time
are significant factors. They use adaptive Q-learning to make real-
time decisions based on job, machine, and queue information, using
scheduling rules like SPT, FCFS, and LPT in a THFS context. A key
innovation is the adaptive selection of objectives using a t-test at
each decision point, resulting in improved performance compared
to SPT, FCFS, LPT, Q-learning with linear weighting, and a variation
of GA.

Zhao et al. [52] propose an end-to-end architecture based on
Heterogeneous Graph Neural Network (HGNN) structure and PPO
to solve HFS with scalability, aiming to minimize makespan. It
addresses this problem by modeling the scheduling state as a Het-
erogeneous Graph and employing a specially designed HGNN to
extract scheduling information. This information is then used by a
PPO algorithm to learn optimal scheduling policies. This RL method
outperforms LPT, SPT, FIFO, MWKR, and LWKR.

Zhang et al. [36] worked to scheduling maintenance and pro-
duction in a MHFS, where machines deteriorate over time and
jobs have uncertain processing times, aiming to minimize the total
production cost. They employed a decentralized partially observ-
able Markov decision process (Dec-POMDP) model to handle this

challenge, but the vast state and action spaces posed a hurdle for
conventional reinforcement learning methods. In response, They
introduced the Counterfactual Attention Multi-Agent Reinforce-
ment Learning (CAMARL) framework, which has three main parts:
a way to focus on important details, a method to simplify the many
possible actions, and a unit to help find the best schedules quickly.
CAMARL outperforms methods such as variations of GA, VNS,
Q-learning, and DQN in different production situations, proving its
effectiveness in optimizing schedules while considering machine
wear and job uncertainties.

5 Discussion
This section delves into the essential findings and implications of
selected papers in our systematic literature review. We discuss their
effectiveness in HFS scenarios and highlight promising directions
for future research. We also answer the research questions about
RL in HFS, which we defined in the Methodology section.

Although research on RL for HFS began in 2019, there are al-
ready 26 works with different scheduling problems (e.g., two-stage
distributed assembly, batch processing machines, and energy-aware
distribution). However, there are few works by type, and only nine
articles focus on the primary form of HFS.

The pioneering studies by [58, 60] have profoundly impacted the
field of RL for HFS. These studies, which demonstrated the effective-
ness of RL, particularly Q-learning, in HFS scheduling by treating
the problem as an MDP, set the stage for subsequent research. Their
focus on minimizing processing time not only highlighted the su-
periority of Q-learning over GA but also paved the way for the
adoption of more advanced approaches in the field.

The evolution of RL algorithms in HFS research is a testament
to the field’s progress. The initial studies, which focused on basic
RL algorithms like Q-learning, have paved the way for more so-
phisticated approaches such as DQN and PPO. This shift in focus
reflects the increasing complexity of HFS problems and the need
for algorithms that can handle high-dimensional state spaces and
dynamic environments. For example, [47] implemented DQN to
handle dynamic order arrivals, [57] used PPO to manage the dy-
namic location of the RTU, and [16] designed a PPO for large-scale
HFS.

RL can address the complexities of the HFS by incorporating real-
world constraints, multi-objective optimization, and uncertainty
management. Techniques like tailored reward functions, terminal
state definitions, and restricted action spaces streamline learning.
However, most studies are limited to simulated environments, high-
lighting the need for real-world validation that accounts for factors
like worker fatigue, machine breakdowns, and processing time
uncertainties. Future research should focus on practical implemen-
tation and data collection in real-world HFS scenarios.

The articles also applied the RL in different areas, such as steel
production, aircraft carriers, automotive engines, furniture, mate-
rial, and glass. Thus, they did not compare their experiments with
each other nor share a dataset, and we cannot conclude which ap-
proach is the recommended one. However, we observed scheduling
cases in which PPO outperforms DQN, Q-learning, and heuristics
approaches [16, 52, 57].

PPO due to its ability to handle different action spaces such as
discrete, multi-discrete, and even continuous, making it perfect for

1247

Hybrid Flow Shop Scheduling through Reinforcement Learning SAC ’25, March 31-April 4, 2025, Catania, Italy

precise control. Unlike DQN, which focuses on values, PPO directly
improves policies, making learning more steady and efficient. It
uses reduced objective functions and advantage estimation to make
policy updates smoother, improving learning’s stability and relia-
bility. Additionally, PPO is better at using data efficiently, learning
from recent experiences and maximizing data use through impor-
tance sampling and on-policy learning. Its trust region constraint
and adaptive learning rate also enhance stability and robustness.
Overall, these qualities help PPO converge faster to optimal solu-
tions, especially in complex environments with high-dimensional
state and action spaces [16, 52, 57].

Some studies explore the benefits of combining RL with other
optimization techniques, such as [49] applied RL with a GA, [69]
Q-learning with TLBO, and [23] uses Q-learning with SFLA.

The interpretability of RL models for HFS deserves more atten-
tion because understanding the decision-making process behind
RL agents would enhance trust and provide valuable insights for
human schedulers.

Finally, We can synthesize the selected papers to answer the
research questions established as presented below:

• RQ1: Trends and statistics: when and where were studies
published?
Section 4.1 presents an annual breakdown of published pa-
pers detailing the HFS types, objectives, and executed RL
methods. Additionally, it explores whether a multiobjective
or multi-agent approach characterizes the examined works.
• RQ2: What RL methods have already been used? And RQ3:
How were they evaluated?
Section 4.2 summarizes the selected papers, reporting which
RL methods were employed, such as Q-learning, DQN, PPO,
A2C, REINFORCE, and SARSA, applied in areas like metal,
aircraft sortie, and simulators, using makespan, tardiness,
and energy consumption as function objectives. Some works
compare the RL with metaheuristics and scheduling rules.
There are also scientific works that combine RL with other
methods.
• RQ4: Exists an improvement obtained by using RL in HFS?
RL has the potential to surpass conventional metaheuristic
approaches due to its ability to understand interdependen-
cies related to problems [62]. This capability allows you to
generate comparable or even superior HFS solutions.
RL’s adaptability and learning capabilities are advantageous
in complex and dynamic environments because they can
treat uncertain events [62].
RL is also designed to strike a balance between exploration
and exploitation. It can explore new strategies to discover
solutions while leveraging the knowledge gained to improve
performance, avoiding local optimum, a recurring challenge
metaheuristics face.

6 Conclusion and future perspectives
In this paper, we performed a Systematic Literature Review fo-
cusing on applying Reinforcement Learning to solve the Hybrid
Flow-Shop Scheduling. The literature suggests that HFS is a widely
studied problem, but applying RL is an incipient approach. These
algorithms have improved scheduling in various scenarios, such as

metal processing workshops and aircraft sortie scheduling. The ap-
plication of RL, particularly methods like DQN and PPO, has shown
significant potential in outperforming traditional scheduling rules
and metaheuristic. These methods excel at learning optimal policies
from real-world data and adapting to dynamic environments, effec-
tively minimizing total tardiness, makespan, and others. However,
the HFS problem is NP-hard, characterized by a complex search
space involving multiple stages, parallel machines, and variable pro-
cessing times. This complexity, coupled with the stochastic nature
of processing times influenced by factors such as worker fatigue and
machine breakdowns, (for example), can limit the performance of
RL algorithms, potentially leading to suboptimal solutions, as men-
tioned by [60]. It can also be a problem for scheduling heuristic and
metaheuristic. Some papers propose multi-agent RL approaches for
HFS, especially in complex production environments. Furthermore,
there is a trend toward integrating RL with metaheuristic, such
as TLBO, GA, and SFLA. This combination can lead to promising
results, including a newway to dynamically adjust algorithm hyper-
parameters for solving complex scheduling problems. The findings
suggest several potential avenues for future research. These in-
clude investigating the impact of additional constraints, multiple
objectives, and uncertainties in scheduling problems. There is also
a focus on exploring the potential of different RL algorithms and
their integration with metaheuristics in production scheduling.

Acknowledgements
The authors would like to thank the National Council for Scientific
and Technological Development (CNPq) for granting a scholarship
to Victor Pugliese through the Academic Master’s and Doctorate
Program in Innovation (MAI/DAI) in collaboration with the EM-
BRAER S.A. company.

References
[1] 2016. Scheduling: Theory, algorithms, and systems. (2016).
[2] Jingcao Cai and Lei Wang. 2024. A Shuffled Frog Leaping Algorithm with Q-

Learning for Distributed Hybrid Flow Shop Scheduling Problem with Energy-
Saving. Journal of Artificial Intelligence and Soft Computing Research 14, 2 (2024),
101–120.

[3] Weiwei Cui and Biao Yuan. 2024. A hybrid genetic algorithm based on reinforce-
ment learning for the energy-aware production scheduling in the photovoltaic
glass industry. Computers & Operations Research 163 (2024), 106521.

[4] Leonardo de Lima Corrêa and Márcio Dorn. 2020. A multi-population memetic
algorithm for the 3-D protein structure prediction problem. Swarm and Evolu-
tionary Computation 55 (2020), 100677.

[5] Constantin Waubert de Puiseau et al. 2022. On reliability of reinforcement
learning based production scheduling systems: a comparative survey. Journal of
Intelligent Manufacturing 33, 4 (2022), 911–927.

[6] Hamilton Emmons and George Vairaktarakis. 2012. Flow shop scheduling: theo-
retical results, algorithms, and applications. Vol. 182. Springer Science & Business
Media.

[7] Andrès Gutierrez et al. 2016. A multi population memetic algorithm for the
vehicle routing problem with time windows and stochastic travel and service
times. IFAC-PapersOnLine 49, 12 (2016), 1204–1209.

[8] Aimin Zhou et al. 2011. Multiobjective evolutionary algorithms: A survey of the
state of the art. Swarm and evolutionary computation 1, 1 (2011), 32–49.

[9] Bestan B. Maaroof et al. 2022. Current studies and applications of shuffled frog
leaping algorithm: a review. Archives of Computational Methods in Engineering 2,
1 (2022), 1–16.

[10] Ching-An Cheng et al. 2021. Heuristic-guided reinforcement learning. Advances
in Neural Information Processing Systems 34 (2021), 13550–13563.

[11] Chun-Cheng Lin et al. 2024. Reentrant hybrid flow shop scheduling with stockers
in automated material handling systems using deep reinforcement learning.
Computers & Industrial Engineering (2024), 109995.

[12] Duarte Alemão et al. 2021. Smart manufacturing scheduling ap-
proaches—Systematic review and future directions. Applied Sciences 11,

1248

SAC ’25, March 31-April 4, 2025, Catania, Italy V. U. Pugliese et al.

5 (2021), 2186.
[13] Di Wu et al. 2022. An improved teaching-learning-based optimization algo-

rithm with reinforcement learning strategy for solving optimization problems.
Computational Intelligence and Neuroscience 2022 (2022).

[14] Ekrem Duman et al. 2012. Migrating birds optimization: a new metaheuristic
approach and its performance on quadratic assignment problem. Information
Sciences 217 (2012), 65–77.

[15] Feng Liu et al. 2009. Immune clonal selection algorithm for hybrid flow-shop
scheduling problem. In 2009 Chinese Control and Decision Conference. 2605–2609.

[16] Fei Ni et al. 2021. A multi-graph attributed reinforcement learning based opti-
mization algorithm for large-scale hybrid flow shop scheduling problem. In 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3441–3451.

[17] Falk T. Gerpott et al. 2022. Integration of the A2C algorithm for production
scheduling in a two-stage hybrid flow shop environment. Procedia Computer
Science 200 (2022), 585–594.

[18] G. M. Komaki et al. 2017. Improved discrete cuckoo optimization algorithm for
the three-stage assembly flowshop scheduling problem. Computers & Industrial
Engineering 105 (2017), 158–173.

[19] Guanghui Zhang et al. 2018. Scheduling distributed flowshops with flexible
assembly and set-up time to minimise makespan. Int. Journal of Production
Research 56, 9 (2018), 3226–3244.

[20] Haoxiang Qin et al. 2021. Adapting a reinforcement learning method for the
distributed blocking hybrid flow shop scheduling problem. In Asian Conference
on Artificial Intelligence Technology. 751–757.

[21] I. Maciel et al. 2022. A hybrid genetic algorithm for the hybrid flow shop schedul-
ing problemwith machine blocking and sequence-dependent setup times. Journal
of Project Management 7, 4 (2022), 201–216.

[22] Jingru Chang et al. 2022. Deep reinforcement learning for dynamic flexible job
shop scheduling with random job arrival. Processes 10, 4 (2022), 760.

[23] Jingcao Cai et al. 2023. A novel shuffled frog-leaping algorithm with reinforce-
ment learning for distributed assembly hybrid flow shop scheduling. Int. Journal
of Production Research 61, 4 (2023), 1233–1251.

[24] Jin Deng et al. 2016. A competitive memetic algorithm for the distributed two-
stage assembly flow-shop scheduling problem. Int. Journal of Production Research
54, 12 (2016), 3561–3577.

[25] Jing Luo et al. 2023. Deep reinforcement learning for solving hybrid flow shop
scheduling problem with unrelated parallel machines. In Int. Conference on Intel-
ligent Computing and Signal Processing. 1642–1645.

[26] John Schulman et al. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[27] Junzi Zhang et al. 2021. Sample efficient reinforcement learning with REINFORCE.
In AAAI conference on artificial intelligence, Vol. 35. 10887–10895.

[28] Kumara Sastry et al. 2005. Genetic algorithms. Search methodologies: Introductory
tutorials in optimization and decision support techniques (2005), 97–125.

[29] Kaishu Xia et al. 2021. A digital twin to train deep reinforcement learning agent
for smart manufacturing plants: Environment, interfaces and intelligence. Journal
of Manufacturing Systems 58 (2021), 210–230.

[30] Ke Xu et al. 2023. Reinforcement Learning-Based Multi-Objective of Two-Stage
Blocking Hybrid Flow Shop Scheduling Problem. Processes 12, 1 (2023), 51.

[31] Libao Deng et al. 2023. A Reinforcement-Learning-Based 3-D Estimation of
Distribution Algorithm for Fuzzy Distributed Hybrid Flow-Shop Scheduling
Considering On-Time-Delivery. IEEE Transactions on Cybernetics (2023).

[32] Leslie Kaelbling et al. 1996. Reinforcement learning: A survey. Journal of artificial
intelligence research 4 (1996), 237–285.

[33] Libing Wang et al. 2021. Dynamic job-shop scheduling in smart manufacturing
using deep reinforcement learning. Computer Networks 190 (2021), 107969.

[34] Milad Ramezankhani et al. 2021. Making costlymanufacturing smart with transfer
learning under limited data: A case study on composites autoclave processing.
Journal of Manufacturing Systems 59 (2021), 345–354.

[35] Ming Wang et al. 2022. Independent double DQN-based multi-agent reinforce-
ment learning approach for online two-stage hybrid flow shop scheduling with
batch machines. Journal of Manufacturing Systems 65 (2022), 694–708.

[36] Nianmin Zhang et al. 2023. Counterfactual-attention multi-agent reinforce-
ment learning for joint condition-based maintenance and production scheduling.
Journal of Manufacturing Systems 71 (2023), 70–81.

[37] Ömür Tosun et al. 2020. A literature review on hybrid flow shop scheduling. Int.
Journal of Advanced Operations Management 12, 2 (2020), 156–194.

[38] Qingpeng Cai et al. 2019. Reinforcement learning driven heuristic optimization.
arXiv preprint arXiv:1906.06639 (2019).

[39] Rui Li et al. 2023. Double dqn-based coevolution for green distributed het-
erogeneous hybrid flowshop scheduling with multiple priorities of jobs. IEEE
Transactions on Automation Science and Engineering (2023).

[40] Rubén Ruiz et al. 2010. The hybrid flow shop scheduling problem. European
journal of operational research 205, 1 (2010), 1–18.

[41] R. Venkata Rao et al. 2011. Teaching–learning-based optimization: a novel method
for constrained mechanical design optimization problems. Computer-aided design
43, 3 (2011), 303–315.

[42] Shengyi Huang et al. 2022. A2C is a special case of PPO. arXiv preprint
arXiv:2205.09123 (2022).

[43] Sayak Roychowdhury et al. 2017. A genetic algorithm with an earliest due date
encoding for scheduling automotive stamping operations. Computers & Industrial
Engineering 105 (2017), 201–209.

[44] Volodymyr Mnih et al. 2013. Playing Atari with Deep Reinforcement Learning.
arXiv:1312.5602 [cs.LG]

[45] Volodymyr Mnih et al. 2015. Human-level control through deep reinforcement
learning. nature 518, 7540 (2015), 529–533.

[46] Volodymyr Mnih et al. 2016. Asynchronous methods for deep reinforcement
learning. In Int. conference on machine learning. PMLR, 1928–1937.

[47] Xinrong Wang et al. 2022. DQN-based online scheduling algorithm for hybrid
flow shop to minimize the total tardiness. In Int. Symposium on Computational
Intelligence and Design. 66–69.

[48] Yanhe Jia et al. 2023. Q-learning driven multi-population memetic algorithm
for distributed three-stage assembly hybrid flow shop scheduling with flexible
preventive maintenance. Expert Systems with Applications (2023), 120837.

[49] Youshan Liu et al. 2023. Agent-based simulation and optimization of hybrid
flow shop considering multi-skilled workers and fatigue factors. Robotics and
Computer-Integrated Manufacturing 80 (2023), 102478.

[50] Youshan Liu et al. 2023. Integration of deep reinforcement learning and multi-
agent system for dynamic scheduling of re-entrant hybrid flow shop considering
worker fatigue and skill levels. Robotics and Computer-Integrated Manufacturing
84 (2023), 102605.

[51] Yanjun Xiao et al. 2024. Study on flexible job shop scheduling problem considering
energy saving. Journal of Intelligent & Fuzzy Systems (2024), 1–28.

[52] Yejian Zhao et al. 2024. The application of heterogeneous graph neural net-
work and deep reinforcement learning in hybrid flow shop scheduling problem.
Computers & Industrial Engineering 187 (2024), 109802.

[53] Zhongyuan Liang et al. 2022. A computational efficient optimization of flow
shop scheduling problems. Scientific Reports 12, 1 (2022), 845.

[54] Zihui Luo et al. 2023. Deep Reinforcement Learning Based Production Scheduling
in Industrial Internet of Things. IEEE Internet of Things Journal (2023).

[55] Zeyu Zhang et al. 2024. MRLM: A meta-reinforcement learning-based meta-
heuristic for hybrid flow-shop scheduling problem with learning and forgetting
effects. Swarm and Evolutionary Computation 85 (2024), 101479.

[56] Hadi Gholami and Hongyang Sun. 2023. Toward automated algorithm config-
uration for distributed hybrid flow shop scheduling with multiprocessor tasks.
Knowledge-Based Systems 264 (2023), 110309.

[57] Chang-Bae Gil and Jee-Hyong Lee. 2022. Deep Reinforcement Learning Approach
for Material Scheduling Considering High-Dimensional Environment of Hybrid
Flow-Shop Problem. Applied Sciences 12, 18 (2022), 9332.

[58] Fang Guo, Yongqiang Li, Ao Liu, and Zhan Liu. 2020. A reinforcement learning
method to scheduling problem of steel production process. In Journal of Physics:
Conference Series, Vol. 1486. IOP Publishing, 072035.

[59] Ricardo Luna Gutierrez and Matteo Leonetti. 2021. Meta Reinforcement Learning
for Heuristic Planing. In Int. Conference on Automated Planning and Scheduling,
Vol. 31. 551–559.

[60] Wei Han, Fang Guo, and Xichao Su. 2019. A reinforcement learning method for
a hybrid flow-shop scheduling problem. Algorithms 12, 11 (2019), 222.

[61] FrameWork Keras. 2022. PPO Proximal Policy Optimization. https://keras.io/
examples/rl/ppo_cartpole/

[62] Matthias Klar, Moritz Glatt, and Jan C Aurich. 2023. Performance comparison
of reinforcement learning and metaheuristics for factory layout planning. CIRP
Journal of Manufacturing Science and Technology 45 (2023), 10–25.

[63] Maxim Lapan. 2018. Deep Reinforcement Learning Hands-On: Apply modern RL
methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo
Zero and more. Packt Publishing Ltd.

[64] Rigoberto Sáenz Imbacuán. 2020. Evaluating the impact of curriculum learning
on the training process for an intelligent agent in a video game. (2020).

[65] Miloš Šeda. 2007. Mathematical models of flow shop and job shop scheduling
problems. Int. Journal of Physical and Mathematical Sciences 1, 7 (2007), 307–312.

[66] Thomas Stützle and Rubén Ruiz. 2018. Iterated Greedy. Handbook of heuristics
(2018), 547–577.

[67] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[68] Jing-Jing Wang and Ling Wang. 2021. A cooperative memetic algorithm with
learning-based agent for energy-aware distributed hybrid flow-shop scheduling.
IEEE Transactions on Evolutionary Computation 26, 3 (2021), 461–475.

[69] Bingjie Xi and Deming Lei. 2022. Q-learning-based teaching-learning optimiza-
tion for distributed two-stage hybrid flow shop scheduling with fuzzy processing
time. Complex System Modeling and Simulation 2, 2 (2022), 113–129.

[70] Xin-She Yang. 2020. Nature-inspired optimization algorithms. Academic Press.
[71] Lv Zhong. 2024. Comparison of Q-learning and SARSA Reinforcement Learning

Models on Cliff Walking Problem. In Int. Conference on Data Science, Advanced
Algorithm and Intelligent Computing. Atlantis Press, 207–213.

1249

https://arxiv.org/abs/1312.5602
https://keras.io/examples/rl/ppo_cartpole/
https://keras.io/examples/rl/ppo_cartpole/

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryList_V1
 qi2base

